1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2013 EMC Corp. 5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org> 6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 /* 33 * Path-compressed radix trie implementation. 34 * 35 * The implementation takes into account the following rationale: 36 * - Size of the nodes should be as small as possible but still big enough 37 * to avoid a large maximum depth for the trie. This is a balance 38 * between the necessity to not wire too much physical memory for the nodes 39 * and the necessity to avoid too much cache pollution during the trie 40 * operations. 41 * - There is not a huge bias toward the number of lookup operations over 42 * the number of insert and remove operations. This basically implies 43 * that optimizations supposedly helping one operation but hurting the 44 * other might be carefully evaluated. 45 * - On average not many nodes are expected to be fully populated, hence 46 * level compression may just complicate things. 47 */ 48 49 #include <sys/cdefs.h> 50 #include "opt_ddb.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/kernel.h> 55 #include <sys/libkern.h> 56 #include <sys/pctrie.h> 57 #include <sys/proc.h> /* smr.h depends on struct thread. */ 58 #include <sys/smr.h> 59 #include <sys/smr_types.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #endif 64 65 #if PCTRIE_WIDTH == 3 66 typedef uint8_t pn_popmap_t; 67 #elif PCTRIE_WIDTH == 4 68 typedef uint16_t pn_popmap_t; 69 #elif PCTRIE_WIDTH == 5 70 typedef uint32_t pn_popmap_t; 71 #else 72 #error Unsupported width 73 #endif 74 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int), 75 "pn_popmap_t too wide"); 76 77 struct pctrie_node; 78 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t; 79 80 struct pctrie_node { 81 uint64_t pn_owner; /* Owner of record. */ 82 pn_popmap_t pn_popmap; /* Valid children. */ 83 uint8_t pn_clev; /* Level * WIDTH. */ 84 smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */ 85 }; 86 87 /* 88 * Map index to an array position for the children of node, 89 */ 90 static __inline int 91 pctrie_slot(struct pctrie_node *node, uint64_t index) 92 { 93 return ((index >> node->pn_clev) & (PCTRIE_COUNT - 1)); 94 } 95 96 /* 97 * Returns true if index does not belong to the specified node. Otherwise, 98 * sets slot value, and returns false. 99 */ 100 static __inline bool 101 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot) 102 { 103 index = (index - node->pn_owner) >> node->pn_clev; 104 if (index >= PCTRIE_COUNT) 105 return (true); 106 *slot = index; 107 return (false); 108 } 109 110 /* 111 * Check radix node. 112 */ 113 static __inline void 114 pctrie_node_put(struct pctrie_node *node) 115 { 116 #ifdef INVARIANTS 117 int slot; 118 119 KASSERT(powerof2(node->pn_popmap), 120 ("pctrie_node_put: node %p has too many children %04x", node, 121 node->pn_popmap)); 122 for (slot = 0; slot < PCTRIE_COUNT; slot++) { 123 if ((node->pn_popmap & (1 << slot)) != 0) 124 continue; 125 KASSERT(smr_unserialized_load(&node->pn_child[slot], true) == 126 PCTRIE_NULL, 127 ("pctrie_node_put: node %p has a child", node)); 128 } 129 #endif 130 } 131 132 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED }; 133 134 /* 135 * Fetch a node pointer from a slot. 136 */ 137 static __inline struct pctrie_node * 138 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access) 139 { 140 switch (access) { 141 case PCTRIE_UNSERIALIZED: 142 return (smr_unserialized_load(p, true)); 143 case PCTRIE_LOCKED: 144 return (smr_serialized_load(p, true)); 145 case PCTRIE_SMR: 146 return (smr_entered_load(p, smr)); 147 } 148 __assert_unreachable(); 149 } 150 151 static __inline void 152 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access) 153 { 154 switch (access) { 155 case PCTRIE_UNSERIALIZED: 156 smr_unserialized_store(p, v, true); 157 break; 158 case PCTRIE_LOCKED: 159 smr_serialized_store(p, v, true); 160 break; 161 case PCTRIE_SMR: 162 panic("%s: Not supported in SMR section.", __func__); 163 break; 164 default: 165 __assert_unreachable(); 166 break; 167 } 168 } 169 170 /* 171 * Get the root address, cast to proper type for load/store. 172 */ 173 static __inline smr_pctnode_t * 174 pctrie_root(struct pctrie *ptree) 175 { 176 return ((smr_pctnode_t *)&ptree->pt_root); 177 } 178 179 /* 180 * Get the root node for a tree. 181 */ 182 static __inline struct pctrie_node * 183 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access) 184 { 185 return (pctrie_node_load(pctrie_root(ptree), smr, access)); 186 } 187 188 /* 189 * Returns TRUE if the specified node is a leaf and FALSE otherwise. 190 */ 191 static __inline bool 192 pctrie_isleaf(struct pctrie_node *node) 193 { 194 return (((uintptr_t)node & PCTRIE_ISLEAF) != 0); 195 } 196 197 /* 198 * Returns val with leaf bit set. 199 */ 200 static __inline void * 201 pctrie_toleaf(uint64_t *val) 202 { 203 return ((void *)((uintptr_t)val | PCTRIE_ISLEAF)); 204 } 205 206 /* 207 * Returns the associated val extracted from node. 208 */ 209 static __inline uint64_t * 210 pctrie_toval(struct pctrie_node *node) 211 { 212 return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS)); 213 } 214 215 /* 216 * Returns the associated pointer extracted from node and field offset. 217 */ 218 static __inline void * 219 pctrie_toptr(struct pctrie_node *node, int keyoff) 220 { 221 return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff)); 222 } 223 224 /* 225 * Make 'child' a child of 'node'. 226 */ 227 static __inline void 228 pctrie_addnode(struct pctrie_node *node, uint64_t index, 229 struct pctrie_node *child, enum pctrie_access access) 230 { 231 int slot; 232 233 slot = pctrie_slot(node, index); 234 pctrie_node_store(&node->pn_child[slot], child, access); 235 node->pn_popmap ^= 1 << slot; 236 KASSERT((node->pn_popmap & (1 << slot)) != 0, 237 ("%s: bad popmap slot %d in node %p", __func__, slot, node)); 238 } 239 240 /* 241 * pctrie node zone initializer. 242 */ 243 int 244 pctrie_zone_init(void *mem, int size __unused, int flags __unused) 245 { 246 struct pctrie_node *node; 247 248 node = mem; 249 node->pn_popmap = 0; 250 for (int i = 0; i < nitems(node->pn_child); i++) 251 pctrie_node_store(&node->pn_child[i], PCTRIE_NULL, 252 PCTRIE_UNSERIALIZED); 253 return (0); 254 } 255 256 size_t 257 pctrie_node_size(void) 258 { 259 260 return (sizeof(struct pctrie_node)); 261 } 262 263 enum pctrie_insert_neighbor_mode { 264 PCTRIE_INSERT_NEIGHBOR_NONE, 265 PCTRIE_INSERT_NEIGHBOR_LT, 266 PCTRIE_INSERT_NEIGHBOR_GT, 267 }; 268 269 /* 270 * Look for where to insert the key-value pair into the trie. Complete the 271 * insertion if it replaces a null leaf. Return the insertion location if the 272 * insertion needs to be completed by the caller; otherwise return NULL. 273 * 274 * If the key is already present in the trie, populate *found_out as if by 275 * pctrie_lookup(). 276 * 277 * With mode PCTRIE_INSERT_NEIGHBOR_GT or PCTRIE_INSERT_NEIGHBOR_LT, set 278 * *neighbor_out to the lowest level node we encounter during the insert lookup 279 * that is a parent of the next greater or lesser entry. The value is not 280 * defined if the key was already present in the trie. 281 * 282 * Note that mode is expected to be a compile-time constant, and this procedure 283 * is expected to be inlined into callers with extraneous code optimized out. 284 */ 285 static __always_inline void * 286 pctrie_insert_lookup_compound(struct pctrie *ptree, uint64_t *val, 287 uint64_t **found_out, struct pctrie_node **neighbor_out, 288 enum pctrie_insert_neighbor_mode mode) 289 { 290 uint64_t index; 291 struct pctrie_node *node, *parent; 292 int slot; 293 294 index = *val; 295 296 /* 297 * The owner of record for root is not really important because it 298 * will never be used. 299 */ 300 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 301 parent = NULL; 302 for (;;) { 303 if (pctrie_isleaf(node)) { 304 if (node == PCTRIE_NULL) { 305 if (parent == NULL) 306 pctrie_node_store(pctrie_root(ptree), 307 pctrie_toleaf(val), PCTRIE_LOCKED); 308 else 309 pctrie_addnode(parent, index, 310 pctrie_toleaf(val), PCTRIE_LOCKED); 311 return (NULL); 312 } 313 if (*pctrie_toval(node) == index) { 314 *found_out = pctrie_toval(node); 315 return (NULL); 316 } 317 break; 318 } 319 if (pctrie_keybarr(node, index, &slot)) 320 break; 321 /* 322 * Descend. If we're tracking the next neighbor and this node 323 * contains a neighboring entry in the right direction, record 324 * it. 325 */ 326 if (mode == PCTRIE_INSERT_NEIGHBOR_LT) { 327 if ((node->pn_popmap & ((1 << slot) - 1)) != 0) 328 *neighbor_out = node; 329 } else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) { 330 if ((node->pn_popmap >> slot) > 1) 331 *neighbor_out = node; 332 } 333 parent = node; 334 node = pctrie_node_load(&node->pn_child[slot], NULL, 335 PCTRIE_LOCKED); 336 } 337 338 /* 339 * The caller will split this node. If we're tracking the next 340 * neighbor, record the old node if the old entry is in the right 341 * direction. 342 */ 343 if (mode == PCTRIE_INSERT_NEIGHBOR_LT) { 344 if (*pctrie_toval(node) < index) 345 *neighbor_out = node; 346 } else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) { 347 if (*pctrie_toval(node) > index) 348 *neighbor_out = node; 349 } 350 351 /* 352 * 'node' must be replaced in the tree with a new branch node, with 353 * children 'node' and 'val'. Return the place that points to 'node' 354 * now, and will point to to the new branching node later. 355 */ 356 return ((parent == NULL) ? pctrie_root(ptree): &parent->pn_child[slot]); 357 } 358 359 /* 360 * Wrap pctrie_insert_lookup_compound to implement a strict insertion. Panic 361 * if the key already exists, and do not look for neighboring entries. 362 */ 363 void * 364 pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val) 365 { 366 void *parentp; 367 uint64_t *found; 368 369 found = NULL; 370 parentp = pctrie_insert_lookup_compound(ptree, val, &found, NULL, 371 PCTRIE_INSERT_NEIGHBOR_NONE); 372 if (__predict_false(found != NULL)) 373 panic("%s: key %jx is already present", __func__, 374 (uintmax_t)*val); 375 return (parentp); 376 } 377 378 /* 379 * Wrap pctrie_insert_lookup_compound to implement find-or-insert. Do not look 380 * for neighboring entries. 381 */ 382 void * 383 pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val, 384 uint64_t **found_out) 385 { 386 *found_out = NULL; 387 return (pctrie_insert_lookup_compound(ptree, val, found_out, NULL, 388 PCTRIE_INSERT_NEIGHBOR_NONE)); 389 } 390 391 /* 392 * Wrap pctrie_insert_lookup_compound to implement find or insert and find next 393 * greater entry. Find a subtree that contains the next entry greater than the 394 * newly-inserted or to-be-inserted entry. 395 */ 396 void * 397 pctrie_insert_lookup_gt(struct pctrie *ptree, uint64_t *val, 398 uint64_t **found_out, struct pctrie_node **neighbor_out) 399 { 400 *found_out = NULL; 401 *neighbor_out = NULL; 402 return (pctrie_insert_lookup_compound(ptree, val, found_out, 403 neighbor_out, PCTRIE_INSERT_NEIGHBOR_GT)); 404 } 405 406 /* 407 * Wrap pctrie_insert_lookup_compound to implement find or insert and find next 408 * lesser entry. Find a subtree that contains the next entry less than the 409 * newly-inserted or to-be-inserted entry. 410 */ 411 void * 412 pctrie_insert_lookup_lt(struct pctrie *ptree, uint64_t *val, 413 uint64_t **found_out, struct pctrie_node **neighbor_out) 414 { 415 *found_out = NULL; 416 *neighbor_out = NULL; 417 return (pctrie_insert_lookup_compound(ptree, val, found_out, 418 neighbor_out, PCTRIE_INSERT_NEIGHBOR_LT)); 419 } 420 421 /* 422 * Uses new node to insert key-value pair into the trie at given location. 423 */ 424 void 425 pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val) 426 { 427 struct pctrie_node *node; 428 uint64_t index, newind; 429 430 /* 431 * Clear the last child pointer of the newly allocated parent. We want 432 * to clear it after the final section has exited so lookup can not 433 * return false negatives. It is done here because it will be 434 * cache-cold in the dtor callback. 435 */ 436 if (parent->pn_popmap != 0) { 437 pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1], 438 PCTRIE_NULL, PCTRIE_UNSERIALIZED); 439 parent->pn_popmap = 0; 440 } 441 442 /* 443 * Recover the values of the two children of the new parent node. If 444 * 'node' is not a leaf, this stores into 'newind' the 'owner' field, 445 * which must be first in the node. 446 */ 447 index = *val; 448 node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED); 449 newind = *pctrie_toval(node); 450 451 /* 452 * From the highest-order bit where the indexes differ, 453 * compute the highest level in the trie where they differ. Then, 454 * compute the least index of this subtrie. 455 */ 456 _Static_assert(sizeof(long long) >= sizeof(uint64_t), 457 "uint64 too wide"); 458 _Static_assert(sizeof(uint64_t) * NBBY <= 459 (1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow"); 460 parent->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH); 461 parent->pn_owner = PCTRIE_COUNT; 462 parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev); 463 464 465 /* These writes are not yet visible due to ordering. */ 466 pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED); 467 pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED); 468 /* Synchronize to make the above visible. */ 469 pctrie_node_store(parentp, parent, PCTRIE_LOCKED); 470 } 471 472 /* 473 * Return the value associated with the node, if the node is a leaf that matches 474 * the index; otherwise NULL. 475 */ 476 static __always_inline uint64_t * 477 pctrie_match_value(struct pctrie_node *node, uint64_t index) 478 { 479 uint64_t *m; 480 481 if (!pctrie_isleaf(node) || (m = pctrie_toval(node)) == NULL || 482 *m != index) 483 m = NULL; 484 return (m); 485 } 486 487 /* 488 * Returns the value stored at the index. If the index is not present, 489 * NULL is returned. 490 */ 491 static __always_inline uint64_t * 492 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr, 493 enum pctrie_access access) 494 { 495 struct pctrie_node *node; 496 int slot; 497 498 node = pctrie_root_load(ptree, smr, access); 499 /* Seek a node that matches index. */ 500 while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) 501 node = pctrie_node_load(&node->pn_child[slot], smr, access); 502 return (pctrie_match_value(node, index)); 503 } 504 505 /* 506 * Returns the value stored at the index, assuming access is externally 507 * synchronized by a lock. 508 * 509 * If the index is not present, NULL is returned. 510 */ 511 uint64_t * 512 pctrie_lookup(struct pctrie *ptree, uint64_t index) 513 { 514 return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED)); 515 } 516 517 /* 518 * Returns the value stored at the index without requiring an external lock. 519 * 520 * If the index is not present, NULL is returned. 521 */ 522 uint64_t * 523 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr) 524 { 525 uint64_t *res; 526 527 smr_enter(smr); 528 res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR); 529 smr_exit(smr); 530 return (res); 531 } 532 533 /* 534 * Returns the last node examined in the search for the index, and updates the 535 * search path to that node. 536 */ 537 static __always_inline struct pctrie_node * 538 _pctrie_iter_lookup_node(struct pctrie_iter *it, uint64_t index, smr_t smr, 539 enum pctrie_access access) 540 { 541 struct pctrie_node *node; 542 int slot; 543 544 /* 545 * Climb the search path to find the lowest node from which to start the 546 * search for a value matching 'index'. 547 */ 548 while (it->top != 0) { 549 node = it->path[it->top - 1]; 550 KASSERT(!powerof2(node->pn_popmap), 551 ("%s: freed node in iter path", __func__)); 552 if (!pctrie_keybarr(node, index, &slot)) { 553 node = pctrie_node_load( 554 &node->pn_child[slot], smr, access); 555 break; 556 } 557 --it->top; 558 } 559 if (it->top == 0) 560 node = pctrie_root_load(it->ptree, smr, access); 561 562 /* Seek a node that matches index. */ 563 while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) { 564 KASSERT(it->top < nitems(it->path), 565 ("%s: path overflow in trie %p", __func__, it->ptree)); 566 it->path[it->top++] = node; 567 node = pctrie_node_load(&node->pn_child[slot], smr, access); 568 } 569 return (node); 570 } 571 572 /* 573 * Returns the value stored at a given index value, possibly NULL. 574 */ 575 static __always_inline uint64_t * 576 _pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index, smr_t smr, 577 enum pctrie_access access) 578 { 579 struct pctrie_node *node; 580 581 it->index = index; 582 node = _pctrie_iter_lookup_node(it, index, smr, access); 583 return (pctrie_match_value(node, index)); 584 } 585 586 /* 587 * Returns the value stored at a given index value, possibly NULL. 588 */ 589 uint64_t * 590 pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index) 591 { 592 return (_pctrie_iter_lookup(it, index, NULL, PCTRIE_LOCKED)); 593 } 594 595 /* 596 * Insert the val in the trie, starting search with iterator. Return a pointer 597 * to indicate where a new node must be allocated to complete insertion. 598 * Assumes access is externally synchronized by a lock. 599 */ 600 void * 601 pctrie_iter_insert_lookup(struct pctrie_iter *it, uint64_t *val) 602 { 603 struct pctrie_node *node; 604 605 it->index = *val; 606 node = _pctrie_iter_lookup_node(it, *val, NULL, PCTRIE_LOCKED); 607 if (node == PCTRIE_NULL) { 608 if (it->top == 0) 609 pctrie_node_store(pctrie_root(it->ptree), 610 pctrie_toleaf(val), PCTRIE_LOCKED); 611 else 612 pctrie_addnode(it->path[it->top - 1], it->index, 613 pctrie_toleaf(val), PCTRIE_LOCKED); 614 return (NULL); 615 } 616 if (__predict_false(pctrie_match_value(node, it->index) != NULL)) 617 panic("%s: key %jx is already present", __func__, 618 (uintmax_t)it->index); 619 620 /* 621 * 'node' must be replaced in the tree with a new branch node, with 622 * children 'node' and 'val'. Return the place that points to 'node' 623 * now, and will point to to the new branching node later. 624 */ 625 if (it->top == 0) 626 return (pctrie_root(it->ptree)); 627 node = it->path[it->top - 1]; 628 return (&node->pn_child[pctrie_slot(node, it->index)]); 629 } 630 631 /* 632 * Returns the value stored at a fixed offset from the current index value, 633 * possibly NULL. 634 */ 635 static __always_inline uint64_t * 636 _pctrie_iter_stride(struct pctrie_iter *it, int stride, smr_t smr, 637 enum pctrie_access access) 638 { 639 uint64_t index = it->index + stride; 640 641 /* Detect stride overflow. */ 642 if ((stride > 0) != (index > it->index)) 643 return (NULL); 644 /* Detect crossing limit */ 645 if ((index < it->limit) != (it->index < it->limit)) 646 return (NULL); 647 648 return (_pctrie_iter_lookup(it, index, smr, access)); 649 } 650 651 /* 652 * Returns the value stored at a fixed offset from the current index value, 653 * possibly NULL. 654 */ 655 uint64_t * 656 pctrie_iter_stride(struct pctrie_iter *it, int stride) 657 { 658 return (_pctrie_iter_stride(it, stride, NULL, PCTRIE_LOCKED)); 659 } 660 661 /* 662 * Returns the value stored at one more than the current index value, possibly 663 * NULL, assuming access is externally synchronized by a lock. 664 */ 665 uint64_t * 666 pctrie_iter_next(struct pctrie_iter *it) 667 { 668 return (_pctrie_iter_stride(it, 1, NULL, PCTRIE_LOCKED)); 669 } 670 671 /* 672 * Returns the value stored at one less than the current index value, possibly 673 * NULL, assuming access is externally synchronized by a lock. 674 */ 675 uint64_t * 676 pctrie_iter_prev(struct pctrie_iter *it) 677 { 678 return (_pctrie_iter_stride(it, -1, NULL, PCTRIE_LOCKED)); 679 } 680 681 /* 682 * Returns the value with the least index that is greater than or equal to the 683 * specified index, or NULL if there are no such values. 684 * 685 * Requires that access be externally synchronized by a lock. 686 */ 687 static __inline uint64_t * 688 pctrie_lookup_ge_node(struct pctrie_node *node, uint64_t index) 689 { 690 struct pctrie_node *succ; 691 uint64_t *m; 692 int slot; 693 694 /* 695 * Descend the trie as if performing an ordinary lookup for the 696 * specified value. However, unlike an ordinary lookup, as we descend 697 * the trie, we use "succ" to remember the last branching-off point, 698 * that is, the interior node under which the least value that is both 699 * outside our current path down the trie and greater than the specified 700 * index resides. (The node's popmap makes it fast and easy to 701 * recognize a branching-off point.) If our ordinary lookup fails to 702 * yield a value that is greater than or equal to the specified index, 703 * then we will exit this loop and perform a lookup starting from 704 * "succ". If "succ" is not NULL, then that lookup is guaranteed to 705 * succeed. 706 */ 707 succ = NULL; 708 for (;;) { 709 if (pctrie_isleaf(node)) { 710 if ((m = pctrie_toval(node)) != NULL && *m >= index) 711 return (m); 712 break; 713 } 714 if (pctrie_keybarr(node, index, &slot)) { 715 /* 716 * If all values in this subtree are > index, then the 717 * least value in this subtree is the answer. 718 */ 719 if (node->pn_owner > index) 720 succ = node; 721 break; 722 } 723 724 /* 725 * Just in case the next search step leads to a subtree of all 726 * values < index, check popmap to see if a next bigger step, to 727 * a subtree of all pages with values > index, is available. If 728 * so, remember to restart the search here. 729 */ 730 if ((node->pn_popmap >> slot) > 1) 731 succ = node; 732 node = pctrie_node_load(&node->pn_child[slot], NULL, 733 PCTRIE_LOCKED); 734 } 735 736 /* 737 * Restart the search from the last place visited in the subtree that 738 * included some values > index, if there was such a place. 739 */ 740 if (succ == NULL) 741 return (NULL); 742 if (succ != node) { 743 /* 744 * Take a step to the next bigger sibling of the node chosen 745 * last time. In that subtree, all values > index. 746 */ 747 slot = pctrie_slot(succ, index) + 1; 748 KASSERT((succ->pn_popmap >> slot) != 0, 749 ("%s: no popmap siblings past slot %d in node %p", 750 __func__, slot, succ)); 751 slot += ffs(succ->pn_popmap >> slot) - 1; 752 succ = pctrie_node_load(&succ->pn_child[slot], NULL, 753 PCTRIE_LOCKED); 754 } 755 756 /* 757 * Find the value in the subtree rooted at "succ" with the least index. 758 */ 759 while (!pctrie_isleaf(succ)) { 760 KASSERT(succ->pn_popmap != 0, 761 ("%s: no popmap children in node %p", __func__, succ)); 762 slot = ffs(succ->pn_popmap) - 1; 763 succ = pctrie_node_load(&succ->pn_child[slot], NULL, 764 PCTRIE_LOCKED); 765 } 766 return (pctrie_toval(succ)); 767 } 768 769 uint64_t * 770 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index) 771 { 772 return (pctrie_lookup_ge_node( 773 pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index)); 774 } 775 776 uint64_t * 777 pctrie_subtree_lookup_gt(struct pctrie_node *node, uint64_t index) 778 { 779 if (node == NULL || index + 1 == 0) 780 return (NULL); 781 return (pctrie_lookup_ge_node(node, index + 1)); 782 } 783 784 /* 785 * Find first leaf >= index, and fill iter with the path to the parent of that 786 * leaf. Return NULL if there is no such leaf less than limit. 787 */ 788 uint64_t * 789 pctrie_iter_lookup_ge(struct pctrie_iter *it, uint64_t index) 790 { 791 struct pctrie_node *node; 792 uint64_t *m; 793 int slot; 794 795 /* Seek a node that matches index. */ 796 node = _pctrie_iter_lookup_node(it, index, NULL, PCTRIE_LOCKED); 797 798 /* 799 * If no such node was found, and instead this path leads only to nodes 800 * < index, back up to find a subtrie with the least value > index. 801 */ 802 if (node == PCTRIE_NULL || *pctrie_toval(node) < index) { 803 /* Climb the path to find a node with a descendant > index. */ 804 while (it->top != 0) { 805 node = it->path[it->top - 1]; 806 slot = pctrie_slot(node, index) + 1; 807 if ((node->pn_popmap >> slot) != 0) 808 break; 809 --it->top; 810 } 811 if (it->top == 0) 812 return (NULL); 813 814 /* Step to the least child with a descendant > index. */ 815 slot += ffs(node->pn_popmap >> slot) - 1; 816 node = pctrie_node_load(&node->pn_child[slot], NULL, 817 PCTRIE_LOCKED); 818 } 819 /* Descend to the least leaf of the subtrie. */ 820 while (!pctrie_isleaf(node)) { 821 if (it->limit != 0 && node->pn_owner >= it->limit) 822 return (NULL); 823 slot = ffs(node->pn_popmap) - 1; 824 KASSERT(it->top < nitems(it->path), 825 ("%s: path overflow in trie %p", __func__, it->ptree)); 826 it->path[it->top++] = node; 827 node = pctrie_node_load(&node->pn_child[slot], NULL, 828 PCTRIE_LOCKED); 829 } 830 m = pctrie_toval(node); 831 if (it->limit != 0 && *m >= it->limit) 832 return (NULL); 833 it->index = *m; 834 return (m); 835 } 836 837 /* 838 * Find the first leaf with value at least 'jump' greater than the previous 839 * leaf. Return NULL if that value is >= limit. 840 */ 841 uint64_t * 842 pctrie_iter_jump_ge(struct pctrie_iter *it, int64_t jump) 843 { 844 uint64_t index = it->index + jump; 845 846 /* Detect jump overflow. */ 847 if ((jump > 0) != (index > it->index)) 848 return (NULL); 849 if (it->limit != 0 && index >= it->limit) 850 return (NULL); 851 return (pctrie_iter_lookup_ge(it, index)); 852 } 853 854 #ifdef INVARIANTS 855 void 856 pctrie_subtree_lookup_gt_assert(struct pctrie_node *node, uint64_t index, 857 struct pctrie *ptree, uint64_t *res) 858 { 859 uint64_t *expected; 860 861 if (index + 1 == 0) 862 expected = NULL; 863 else 864 expected = pctrie_lookup_ge(ptree, index + 1); 865 KASSERT(res == expected, 866 ("pctrie subtree lookup gt result different from root lookup: " 867 "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree, 868 (uintmax_t)index, node, res, expected)); 869 } 870 #endif 871 872 /* 873 * Returns the value with the greatest index that is less than or equal to the 874 * specified index, or NULL if there are no such values. 875 * 876 * Requires that access be externally synchronized by a lock. 877 */ 878 static __inline uint64_t * 879 pctrie_lookup_le_node(struct pctrie_node *node, uint64_t index) 880 { 881 struct pctrie_node *pred; 882 uint64_t *m; 883 int slot; 884 885 /* 886 * Mirror the implementation of pctrie_lookup_ge_node, described above. 887 */ 888 pred = NULL; 889 for (;;) { 890 if (pctrie_isleaf(node)) { 891 if ((m = pctrie_toval(node)) != NULL && *m <= index) 892 return (m); 893 break; 894 } 895 if (pctrie_keybarr(node, index, &slot)) { 896 if (node->pn_owner < index) 897 pred = node; 898 break; 899 } 900 if ((node->pn_popmap & ((1 << slot) - 1)) != 0) 901 pred = node; 902 node = pctrie_node_load(&node->pn_child[slot], NULL, 903 PCTRIE_LOCKED); 904 } 905 if (pred == NULL) 906 return (NULL); 907 if (pred != node) { 908 slot = pctrie_slot(pred, index); 909 KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0, 910 ("%s: no popmap siblings before slot %d in node %p", 911 __func__, slot, pred)); 912 slot = ilog2(pred->pn_popmap & ((1 << slot) - 1)); 913 pred = pctrie_node_load(&pred->pn_child[slot], NULL, 914 PCTRIE_LOCKED); 915 } 916 while (!pctrie_isleaf(pred)) { 917 KASSERT(pred->pn_popmap != 0, 918 ("%s: no popmap children in node %p", __func__, pred)); 919 slot = ilog2(pred->pn_popmap); 920 pred = pctrie_node_load(&pred->pn_child[slot], NULL, 921 PCTRIE_LOCKED); 922 } 923 return (pctrie_toval(pred)); 924 } 925 926 uint64_t * 927 pctrie_lookup_le(struct pctrie *ptree, uint64_t index) 928 { 929 return (pctrie_lookup_le_node( 930 pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index)); 931 } 932 933 uint64_t * 934 pctrie_subtree_lookup_lt(struct pctrie_node *node, uint64_t index) 935 { 936 if (node == NULL || index == 0) 937 return (NULL); 938 return (pctrie_lookup_le_node(node, index - 1)); 939 } 940 941 /* 942 * Find first leaf <= index, and fill iter with the path to the parent of that 943 * leaf. Return NULL if there is no such leaf greater than limit. 944 */ 945 uint64_t * 946 pctrie_iter_lookup_le(struct pctrie_iter *it, uint64_t index) 947 { 948 struct pctrie_node *node; 949 uint64_t *m; 950 int slot; 951 952 /* Seek a node that matches index. */ 953 node = _pctrie_iter_lookup_node(it, index, NULL, PCTRIE_LOCKED); 954 955 /* 956 * If no such node was found, and instead this path leads only to nodes 957 * > index, back up to find a subtrie with the greatest value < index. 958 */ 959 if (node == PCTRIE_NULL || *pctrie_toval(node) > index) { 960 /* Climb the path to find a node with a descendant < index. */ 961 while (it->top != 0) { 962 node = it->path[it->top - 1]; 963 slot = pctrie_slot(node, index); 964 if ((node->pn_popmap & ((1 << slot) - 1)) != 0) 965 break; 966 --it->top; 967 } 968 if (it->top == 0) 969 return (NULL); 970 971 /* Step to the greatest child with a descendant < index. */ 972 slot = ilog2(node->pn_popmap & ((1 << slot) - 1)); 973 node = pctrie_node_load(&node->pn_child[slot], NULL, 974 PCTRIE_LOCKED); 975 } 976 /* Descend to the greatest leaf of the subtrie. */ 977 while (!pctrie_isleaf(node)) { 978 if (it->limit != 0 && it->limit >= 979 node->pn_owner + (PCTRIE_COUNT << node->pn_clev) - 1) 980 return (NULL); 981 slot = ilog2(node->pn_popmap); 982 KASSERT(it->top < nitems(it->path), 983 ("%s: path overflow in trie %p", __func__, it->ptree)); 984 it->path[it->top++] = node; 985 node = pctrie_node_load(&node->pn_child[slot], NULL, 986 PCTRIE_LOCKED); 987 } 988 m = pctrie_toval(node); 989 if (it->limit != 0 && *m <= it->limit) 990 return (NULL); 991 it->index = *m; 992 return (m); 993 } 994 995 /* 996 * Find the first leaf with value at most 'jump' less than the previous 997 * leaf. Return NULL if that value is <= limit. 998 */ 999 uint64_t * 1000 pctrie_iter_jump_le(struct pctrie_iter *it, int64_t jump) 1001 { 1002 uint64_t index = it->index - jump; 1003 1004 /* Detect jump overflow. */ 1005 if ((jump > 0) != (index < it->index)) 1006 return (NULL); 1007 if (it->limit != 0 && index <= it->limit) 1008 return (NULL); 1009 return (pctrie_iter_lookup_le(it, index)); 1010 } 1011 1012 #ifdef INVARIANTS 1013 void 1014 pctrie_subtree_lookup_lt_assert(struct pctrie_node *node, uint64_t index, 1015 struct pctrie *ptree, uint64_t *res) 1016 { 1017 uint64_t *expected; 1018 1019 if (index == 0) 1020 expected = NULL; 1021 else 1022 expected = pctrie_lookup_le(ptree, index - 1); 1023 KASSERT(res == expected, 1024 ("pctrie subtree lookup lt result different from root lookup: " 1025 "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree, 1026 (uintmax_t)index, node, res, expected)); 1027 } 1028 #endif 1029 1030 static void 1031 pctrie_remove(struct pctrie *ptree, uint64_t index, struct pctrie_node *parent, 1032 struct pctrie_node *node, struct pctrie_node **freenode) 1033 { 1034 struct pctrie_node *child; 1035 int slot; 1036 1037 if (node == NULL) { 1038 pctrie_node_store(pctrie_root(ptree), 1039 PCTRIE_NULL, PCTRIE_LOCKED); 1040 return; 1041 } 1042 slot = pctrie_slot(node, index); 1043 KASSERT((node->pn_popmap & (1 << slot)) != 0, 1044 ("%s: bad popmap slot %d in node %p", 1045 __func__, slot, node)); 1046 node->pn_popmap ^= 1 << slot; 1047 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED); 1048 if (!powerof2(node->pn_popmap)) 1049 return; 1050 KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__)); 1051 slot = ffs(node->pn_popmap) - 1; 1052 child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); 1053 KASSERT(child != PCTRIE_NULL, 1054 ("%s: bad popmap slot %d in node %p", __func__, slot, node)); 1055 if (parent == NULL) 1056 pctrie_node_store(pctrie_root(ptree), child, PCTRIE_LOCKED); 1057 else { 1058 slot = pctrie_slot(parent, index); 1059 KASSERT(node == 1060 pctrie_node_load(&parent->pn_child[slot], NULL, 1061 PCTRIE_LOCKED), ("%s: invalid child value", __func__)); 1062 pctrie_node_store(&parent->pn_child[slot], child, 1063 PCTRIE_LOCKED); 1064 } 1065 /* 1066 * The child is still valid and we can not zero the 1067 * pointer until all SMR references are gone. 1068 */ 1069 pctrie_node_put(node); 1070 *freenode = node; 1071 } 1072 1073 /* 1074 * Remove the specified index from the tree, and return the value stored at 1075 * that index. If the index is not present, return NULL. 1076 */ 1077 uint64_t * 1078 pctrie_remove_lookup(struct pctrie *ptree, uint64_t index, 1079 struct pctrie_node **freenode) 1080 { 1081 struct pctrie_node *child, *node, *parent; 1082 uint64_t *m; 1083 int slot; 1084 1085 DEBUG_POISON_POINTER(parent); 1086 *freenode = node = NULL; 1087 child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 1088 while (!pctrie_isleaf(child)) { 1089 parent = node; 1090 node = child; 1091 slot = pctrie_slot(node, index); 1092 child = pctrie_node_load(&node->pn_child[slot], NULL, 1093 PCTRIE_LOCKED); 1094 } 1095 m = pctrie_match_value(child, index); 1096 if (m != NULL) 1097 pctrie_remove(ptree, index, parent, node, freenode); 1098 return (m); 1099 } 1100 1101 /* 1102 * Remove from the trie the leaf last chosen by the iterator, and 1103 * adjust the path if it's last member is to be freed. 1104 */ 1105 uint64_t * 1106 pctrie_iter_remove(struct pctrie_iter *it, struct pctrie_node **freenode) 1107 { 1108 struct pctrie_node *child, *node, *parent; 1109 uint64_t *m; 1110 int slot; 1111 1112 DEBUG_POISON_POINTER(parent); 1113 *freenode = NULL; 1114 if (it->top >= 1) { 1115 parent = (it->top >= 2) ? it->path[it->top - 2] : NULL; 1116 node = it->path[it->top - 1]; 1117 slot = pctrie_slot(node, it->index); 1118 child = pctrie_node_load(&node->pn_child[slot], NULL, 1119 PCTRIE_LOCKED); 1120 } else { 1121 node = NULL; 1122 child = pctrie_root_load(it->ptree, NULL, PCTRIE_LOCKED); 1123 } 1124 m = pctrie_match_value(child, it->index); 1125 if (m != NULL) 1126 pctrie_remove(it->ptree, it->index, parent, node, freenode); 1127 if (*freenode != NULL) 1128 --it->top; 1129 return (m); 1130 } 1131 1132 /* 1133 * Return the current leaf, assuming access is externally synchronized by a 1134 * lock. 1135 */ 1136 uint64_t * 1137 pctrie_iter_value(struct pctrie_iter *it) 1138 { 1139 struct pctrie_node *node; 1140 int slot; 1141 1142 if (it->top == 0) 1143 node = pctrie_root_load(it->ptree, NULL, 1144 PCTRIE_LOCKED); 1145 else { 1146 node = it->path[it->top - 1]; 1147 slot = pctrie_slot(node, it->index); 1148 node = pctrie_node_load(&node->pn_child[slot], NULL, 1149 PCTRIE_LOCKED); 1150 } 1151 return (pctrie_toval(node)); 1152 } 1153 1154 /* 1155 * Walk the subtrie rooted at *pnode in order, invoking callback on leaves and 1156 * using the leftmost child pointer for path reversal, until an interior node 1157 * is stripped of all children, and returned for deallocation, with *pnode left 1158 * pointing to the parent of that node. 1159 */ 1160 static __always_inline struct pctrie_node * 1161 pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent, 1162 pctrie_cb_t callback, int keyoff, void *arg) 1163 { 1164 struct pctrie_node *child, *node; 1165 int slot; 1166 1167 node = *pnode; 1168 while (node->pn_popmap != 0) { 1169 slot = ffs(node->pn_popmap) - 1; 1170 node->pn_popmap ^= 1 << slot; 1171 child = pctrie_node_load(&node->pn_child[slot], NULL, 1172 PCTRIE_UNSERIALIZED); 1173 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, 1174 PCTRIE_UNSERIALIZED); 1175 if (pctrie_isleaf(child)) { 1176 if (callback != NULL) 1177 callback(pctrie_toptr(child, keyoff), arg); 1178 continue; 1179 } 1180 /* Climb one level down the trie. */ 1181 pctrie_node_store(&node->pn_child[0], parent, 1182 PCTRIE_UNSERIALIZED); 1183 parent = node; 1184 node = child; 1185 } 1186 *pnode = parent; 1187 return (node); 1188 } 1189 1190 /* 1191 * Recover the node parent from its first child and continue pruning. 1192 */ 1193 static __always_inline struct pctrie_node * 1194 pctrie_reclaim_resume_compound(struct pctrie_node **pnode, 1195 pctrie_cb_t callback, int keyoff, void *arg) 1196 { 1197 struct pctrie_node *parent, *node; 1198 1199 node = *pnode; 1200 if (node == NULL) 1201 return (NULL); 1202 /* Climb one level up the trie. */ 1203 parent = pctrie_node_load(&node->pn_child[0], NULL, 1204 PCTRIE_UNSERIALIZED); 1205 pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED); 1206 return (pctrie_reclaim_prune(pnode, parent, callback, keyoff, arg)); 1207 } 1208 1209 /* 1210 * Find the trie root, and start pruning with a NULL parent. 1211 */ 1212 static __always_inline struct pctrie_node * 1213 pctrie_reclaim_begin_compound(struct pctrie_node **pnode, 1214 struct pctrie *ptree, 1215 pctrie_cb_t callback, int keyoff, void *arg) 1216 { 1217 struct pctrie_node *node; 1218 1219 node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED); 1220 pctrie_node_store(pctrie_root(ptree), PCTRIE_NULL, PCTRIE_UNSERIALIZED); 1221 if (pctrie_isleaf(node)) { 1222 if (callback != NULL && node != PCTRIE_NULL) 1223 callback(pctrie_toptr(node, keyoff), arg); 1224 return (NULL); 1225 } 1226 *pnode = node; 1227 return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg)); 1228 } 1229 1230 struct pctrie_node * 1231 pctrie_reclaim_resume(struct pctrie_node **pnode) 1232 { 1233 return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL)); 1234 } 1235 1236 struct pctrie_node * 1237 pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree) 1238 { 1239 return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL)); 1240 } 1241 1242 struct pctrie_node * 1243 pctrie_reclaim_resume_cb(struct pctrie_node **pnode, 1244 pctrie_cb_t callback, int keyoff, void *arg) 1245 { 1246 return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg)); 1247 } 1248 1249 struct pctrie_node * 1250 pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree, 1251 pctrie_cb_t callback, int keyoff, void *arg) 1252 { 1253 return (pctrie_reclaim_begin_compound(pnode, ptree, 1254 callback, keyoff, arg)); 1255 } 1256 1257 /* 1258 * Replace an existing value in the trie with another one. 1259 * Panics if there is not an old value in the trie at the new value's index. 1260 */ 1261 uint64_t * 1262 pctrie_replace(struct pctrie *ptree, uint64_t *newval) 1263 { 1264 struct pctrie_node *leaf, *parent, *node; 1265 uint64_t *m; 1266 uint64_t index; 1267 int slot; 1268 1269 leaf = pctrie_toleaf(newval); 1270 index = *newval; 1271 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 1272 parent = NULL; 1273 for (;;) { 1274 if (pctrie_isleaf(node)) { 1275 if ((m = pctrie_toval(node)) != NULL && *m == index) { 1276 if (parent == NULL) 1277 pctrie_node_store(pctrie_root(ptree), 1278 leaf, PCTRIE_LOCKED); 1279 else 1280 pctrie_node_store( 1281 &parent->pn_child[slot], leaf, 1282 PCTRIE_LOCKED); 1283 return (m); 1284 } 1285 break; 1286 } 1287 if (pctrie_keybarr(node, index, &slot)) 1288 break; 1289 parent = node; 1290 node = pctrie_node_load(&node->pn_child[slot], NULL, 1291 PCTRIE_LOCKED); 1292 } 1293 panic("%s: original replacing value not found", __func__); 1294 } 1295 1296 #ifdef DDB 1297 /* 1298 * Show details about the given node. 1299 */ 1300 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode) 1301 { 1302 struct pctrie_node *node, *tmp; 1303 int slot; 1304 pn_popmap_t popmap; 1305 1306 if (!have_addr) 1307 return; 1308 node = (struct pctrie_node *)addr; 1309 db_printf("node %p, owner %jx, children popmap %04x, level %u:\n", 1310 (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap, 1311 node->pn_clev / PCTRIE_WIDTH); 1312 for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) { 1313 slot = ffs(popmap) - 1; 1314 tmp = pctrie_node_load(&node->pn_child[slot], NULL, 1315 PCTRIE_UNSERIALIZED); 1316 db_printf("slot: %d, val: %p, value: %p, clev: %d\n", 1317 slot, (void *)tmp, 1318 pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL, 1319 node->pn_clev / PCTRIE_WIDTH); 1320 } 1321 } 1322 #endif /* DDB */ 1323