xref: /freebsd/sys/kern/subr_pctrie.c (revision 2a0c0aea42092f89c2a5345991e6e3ce4cbef99a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_ddb.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/libkern.h>
58 #include <sys/pctrie.h>
59 #include <sys/proc.h>	/* smr.h depends on struct thread. */
60 #include <sys/smr.h>
61 #include <sys/smr_types.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
68 #define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
69 
70 #if PCTRIE_WIDTH == 3
71 typedef uint8_t pn_popmap_t;
72 #elif PCTRIE_WIDTH == 4
73 typedef uint16_t pn_popmap_t;
74 #elif PCTRIE_WIDTH == 5
75 typedef uint32_t pn_popmap_t;
76 #else
77 #error Unsupported width
78 #endif
79 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
80     "pn_popmap_t too wide");
81 
82 /* Flag bits stored in node pointers. */
83 #define	PCTRIE_ISLEAF	0x1
84 #define	PCTRIE_FLAGS	0x1
85 #define	PCTRIE_PAD	PCTRIE_FLAGS
86 
87 /* Returns one unit associated with specified level. */
88 #define	PCTRIE_UNITLEVEL(lev)						\
89 	((uint64_t)1 << ((lev) * PCTRIE_WIDTH))
90 
91 struct pctrie_node;
92 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
93 
94 struct pctrie_node {
95 	uint64_t	pn_owner;			/* Owner of record. */
96 	pn_popmap_t	pn_popmap;			/* Valid children. */
97 	uint8_t		pn_clev;			/* Current level. */
98 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
99 };
100 
101 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
102 
103 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
104     enum pctrie_access access);
105 
106 /*
107  * Return the position in the array for a given level.
108  */
109 static __inline int
110 pctrie_slot(uint64_t index, uint16_t level)
111 {
112 	return ((index >> (level * PCTRIE_WIDTH)) & PCTRIE_MASK);
113 }
114 
115 /* Computes the key (index) with the low-order 'level' radix-digits zeroed. */
116 static __inline uint64_t
117 pctrie_trimkey(uint64_t index, uint16_t level)
118 {
119 	return (index & -PCTRIE_UNITLEVEL(level));
120 }
121 
122 /*
123  * Allocate a node.  Pre-allocation should ensure that the request
124  * will always be satisfied.
125  */
126 static struct pctrie_node *
127 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t index,
128     uint16_t clevel)
129 {
130 	struct pctrie_node *node;
131 
132 	node = allocfn(ptree);
133 	if (node == NULL)
134 		return (NULL);
135 
136 	/*
137 	 * We want to clear the last child pointer after the final section
138 	 * has exited so lookup can not return false negatives.  It is done
139 	 * here because it will be cache-cold in the dtor callback.
140 	 */
141 	if (node->pn_popmap != 0) {
142 		pctrie_node_store(&node->pn_child[ffs(node->pn_popmap) - 1],
143 		    NULL, PCTRIE_UNSERIALIZED);
144 		node->pn_popmap = 0;
145 	}
146 	node->pn_owner = pctrie_trimkey(index, clevel + 1);
147 	node->pn_clev = clevel;
148 	return (node);
149 }
150 
151 /*
152  * Free radix node.
153  */
154 static __inline void
155 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node,
156     pctrie_free_t freefn)
157 {
158 #ifdef INVARIANTS
159 	int slot;
160 
161 	KASSERT(powerof2(node->pn_popmap),
162 	    ("pctrie_node_put: node %p has too many children %04x", node,
163 	    node->pn_popmap));
164 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
165 		if ((node->pn_popmap & (1 << slot)) != 0)
166 			continue;
167 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
168 		    NULL, ("pctrie_node_put: node %p has a child", node));
169 	}
170 #endif
171 	freefn(ptree, node);
172 }
173 
174 /*
175  * Fetch a node pointer from a slot.
176  */
177 static __inline struct pctrie_node *
178 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
179 {
180 	switch (access) {
181 	case PCTRIE_UNSERIALIZED:
182 		return (smr_unserialized_load(p, true));
183 	case PCTRIE_LOCKED:
184 		return (smr_serialized_load(p, true));
185 	case PCTRIE_SMR:
186 		return (smr_entered_load(p, smr));
187 	}
188 	__assert_unreachable();
189 }
190 
191 static __inline void
192 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
193 {
194 	switch (access) {
195 	case PCTRIE_UNSERIALIZED:
196 		smr_unserialized_store(p, v, true);
197 		break;
198 	case PCTRIE_LOCKED:
199 		smr_serialized_store(p, v, true);
200 		break;
201 	case PCTRIE_SMR:
202 		panic("%s: Not supported in SMR section.", __func__);
203 		break;
204 	default:
205 		__assert_unreachable();
206 		break;
207 	}
208 }
209 
210 /*
211  * Get the root node for a tree.
212  */
213 static __inline struct pctrie_node *
214 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
215 {
216 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
217 }
218 
219 /*
220  * Set the root node for a tree.
221  */
222 static __inline void
223 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
224     enum pctrie_access access)
225 {
226 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
227 }
228 
229 /*
230  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
231  */
232 static __inline bool
233 pctrie_isleaf(struct pctrie_node *node)
234 {
235 
236 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
237 }
238 
239 /*
240  * Returns val with leaf bit set.
241  */
242 static __inline void *
243 pctrie_toleaf(uint64_t *val)
244 {
245 	return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
246 }
247 
248 /*
249  * Returns the associated val extracted from node.
250  */
251 static __inline uint64_t *
252 pctrie_toval(struct pctrie_node *node)
253 {
254 
255 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
256 }
257 
258 /*
259  * Make 'child' a child of 'node'.
260  */
261 static __inline void
262 pctrie_addnode(struct pctrie_node *node, uint64_t index, uint16_t clev,
263     struct pctrie_node *child, enum pctrie_access access)
264 {
265 	int slot;
266 
267 	slot = pctrie_slot(index, clev);
268 	pctrie_node_store(&node->pn_child[slot], child, access);
269 	node->pn_popmap ^= 1 << slot;
270 	KASSERT((node->pn_popmap & (1 << slot)) != 0,
271 	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
272 }
273 
274 /*
275  * Returns the level where two keys differ.
276  * It cannot accept 2 equal keys.
277  */
278 static __inline uint16_t
279 pctrie_keydiff(uint64_t index1, uint64_t index2)
280 {
281 
282 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
283 	    __func__, (uintmax_t)index1));
284 	CTASSERT(sizeof(long long) >= sizeof(uint64_t));
285 
286 	/*
287 	 * From the highest-order bit where the indexes differ,
288 	 * compute the highest level in the trie where they differ.
289 	 */
290 	return ((flsll(index1 ^ index2) - 1) / PCTRIE_WIDTH);
291 }
292 
293 /*
294  * Returns TRUE if it can be determined that key does not belong to the
295  * specified node.  Otherwise, returns FALSE.
296  */
297 static __inline bool
298 pctrie_keybarr(struct pctrie_node *node, uint64_t idx)
299 {
300 
301 	if (node->pn_clev < PCTRIE_LIMIT) {
302 		idx = pctrie_trimkey(idx, node->pn_clev + 1);
303 		return (idx != node->pn_owner);
304 	}
305 	return (false);
306 }
307 
308 /*
309  * Internal helper for pctrie_reclaim_allnodes().
310  * This function is recursive.
311  */
312 static void
313 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node,
314     pctrie_free_t freefn)
315 {
316 	struct pctrie_node *child;
317 	int slot;
318 
319 	while (node->pn_popmap != 0) {
320 		slot = ffs(node->pn_popmap) - 1;
321 		child = pctrie_node_load(&node->pn_child[slot], NULL,
322 		    PCTRIE_UNSERIALIZED);
323 		KASSERT(child != NULL, ("%s: bad popmap slot %d in node %p",
324 		    __func__, slot, node));
325 		if (!pctrie_isleaf(child))
326 			pctrie_reclaim_allnodes_int(ptree, child, freefn);
327 		node->pn_popmap ^= 1 << slot;
328 		pctrie_node_store(&node->pn_child[slot], NULL,
329 		    PCTRIE_UNSERIALIZED);
330 	}
331 	pctrie_node_put(ptree, node, freefn);
332 }
333 
334 /*
335  * pctrie node zone initializer.
336  */
337 int
338 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
339 {
340 	struct pctrie_node *node;
341 
342 	node = mem;
343 	node->pn_popmap = 0;
344 	memset(node->pn_child, 0, sizeof(node->pn_child));
345 	return (0);
346 }
347 
348 size_t
349 pctrie_node_size(void)
350 {
351 
352 	return (sizeof(struct pctrie_node));
353 }
354 
355 /*
356  * Inserts the key-value pair into the trie.
357  * Panics if the key already exists.
358  */
359 int
360 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn)
361 {
362 	uint64_t index, newind;
363 	struct pctrie_node *leaf, *node, *tmp;
364 	smr_pctnode_t *parentp;
365 	int slot;
366 	uint16_t clev;
367 
368 	index = *val;
369 	leaf = pctrie_toleaf(val);
370 
371 	/*
372 	 * The owner of record for root is not really important because it
373 	 * will never be used.
374 	 */
375 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
376 	if (node == NULL) {
377 		ptree->pt_root = (uintptr_t)leaf;
378 		return (0);
379 	}
380 	for (parentp = (smr_pctnode_t *)&ptree->pt_root;; node = tmp) {
381 		if (pctrie_isleaf(node)) {
382 			newind = *pctrie_toval(node);
383 			if (newind == index)
384 				panic("%s: key %jx is already present",
385 				    __func__, (uintmax_t)index);
386 			break;
387 		} else if (pctrie_keybarr(node, index)) {
388 			newind = node->pn_owner;
389 			break;
390 		}
391 		slot = pctrie_slot(index, node->pn_clev);
392 		parentp = &node->pn_child[slot];
393 		tmp = pctrie_node_load(parentp, NULL, PCTRIE_LOCKED);
394 		if (tmp == NULL) {
395 			pctrie_addnode(node, index, node->pn_clev, leaf,
396 			    PCTRIE_LOCKED);
397 			return (0);
398 		}
399 	}
400 
401 	/*
402 	 * A new node is needed because the right insertion level is reached.
403 	 * Setup the new intermediate node and add the 2 children: the
404 	 * new object and the older edge or object.
405 	 */
406 	clev = pctrie_keydiff(newind, index);
407 	tmp = pctrie_node_get(ptree, allocfn, index, clev);
408 	if (tmp == NULL)
409 		return (ENOMEM);
410 	/* These writes are not yet visible due to ordering. */
411 	pctrie_addnode(tmp, index, clev, leaf, PCTRIE_UNSERIALIZED);
412 	pctrie_addnode(tmp, newind, clev, node, PCTRIE_UNSERIALIZED);
413 	/* Synchronize to make the above visible. */
414 	pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
415 	return (0);
416 }
417 
418 /*
419  * Returns the value stored at the index.  If the index is not present,
420  * NULL is returned.
421  */
422 static __always_inline uint64_t *
423 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
424     enum pctrie_access access)
425 {
426 	struct pctrie_node *node;
427 	uint64_t *m;
428 	int slot;
429 
430 	node = pctrie_root_load(ptree, smr, access);
431 	while (node != NULL) {
432 		if (pctrie_isleaf(node)) {
433 			m = pctrie_toval(node);
434 			if (*m == index)
435 				return (m);
436 			break;
437 		}
438 		if (pctrie_keybarr(node, index))
439 			break;
440 		slot = pctrie_slot(index, node->pn_clev);
441 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
442 	}
443 	return (NULL);
444 }
445 
446 /*
447  * Returns the value stored at the index, assuming access is externally
448  * synchronized by a lock.
449  *
450  * If the index is not present, NULL is returned.
451  */
452 uint64_t *
453 pctrie_lookup(struct pctrie *ptree, uint64_t index)
454 {
455 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
456 }
457 
458 /*
459  * Returns the value stored at the index without requiring an external lock.
460  *
461  * If the index is not present, NULL is returned.
462  */
463 uint64_t *
464 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
465 {
466 	uint64_t *res;
467 
468 	smr_enter(smr);
469 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
470 	smr_exit(smr);
471 	return (res);
472 }
473 
474 /*
475  * Look up the nearest entry at a position bigger than or equal to index,
476  * assuming access is externally synchronized by a lock.
477  */
478 uint64_t *
479 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
480 {
481 	struct pctrie_node *stack[PCTRIE_LIMIT];
482 	uint64_t *m;
483 	struct pctrie_node *child, *node;
484 #ifdef INVARIANTS
485 	int loops = 0;
486 #endif
487 	unsigned tos;
488 	int slot;
489 
490 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
491 	if (node == NULL)
492 		return (NULL);
493 	else if (pctrie_isleaf(node)) {
494 		m = pctrie_toval(node);
495 		if (*m >= index)
496 			return (m);
497 		else
498 			return (NULL);
499 	}
500 	tos = 0;
501 	for (;;) {
502 		/*
503 		 * If the keys differ before the current bisection node,
504 		 * then the search key might rollback to the earliest
505 		 * available bisection node or to the smallest key
506 		 * in the current node (if the owner is greater than the
507 		 * search key).
508 		 */
509 		if (pctrie_keybarr(node, index)) {
510 			if (index > node->pn_owner) {
511 ascend:
512 				KASSERT(++loops < 1000,
513 				    ("pctrie_lookup_ge: too many loops"));
514 
515 				/*
516 				 * Pop nodes from the stack until either the
517 				 * stack is empty or a node that could have a
518 				 * matching descendant is found.
519 				 */
520 				do {
521 					if (tos == 0)
522 						return (NULL);
523 					node = stack[--tos];
524 				} while (pctrie_slot(index,
525 				    node->pn_clev) == (PCTRIE_COUNT - 1));
526 
527 				/*
528 				 * The following computation cannot overflow
529 				 * because index's slot at the current level
530 				 * is less than PCTRIE_COUNT - 1.
531 				 */
532 				index = pctrie_trimkey(index,
533 				    node->pn_clev);
534 				index += PCTRIE_UNITLEVEL(node->pn_clev);
535 			} else
536 				index = node->pn_owner;
537 			KASSERT(!pctrie_keybarr(node, index),
538 			    ("pctrie_lookup_ge: keybarr failed"));
539 		}
540 		slot = pctrie_slot(index, node->pn_clev);
541 		child = pctrie_node_load(&node->pn_child[slot], NULL,
542 		    PCTRIE_LOCKED);
543 		if (pctrie_isleaf(child)) {
544 			m = pctrie_toval(child);
545 			if (*m >= index)
546 				return (m);
547 		} else if (child != NULL)
548 			goto descend;
549 
550 		/* Find the first set bit beyond the first slot+1 bits. */
551 		slot = ffs(node->pn_popmap & (-2 << slot)) - 1;
552 		if (slot < 0) {
553 			/*
554 			 * A value or edge greater than the search slot is not
555 			 * found in the current node; ascend to the next
556 			 * higher-level node.
557 			 */
558 			goto ascend;
559 		}
560 		child = pctrie_node_load(&node->pn_child[slot],
561 		    NULL, PCTRIE_LOCKED);
562 		KASSERT(child != NULL, ("%s: bad popmap slot %d in node %p",
563 		    __func__, slot, node));
564 		if (pctrie_isleaf(child))
565 			return (pctrie_toval(child));
566 		index = pctrie_trimkey(index, node->pn_clev + 1) +
567 		    slot * PCTRIE_UNITLEVEL(node->pn_clev);
568 descend:
569 		KASSERT(node->pn_clev > 0,
570 		    ("pctrie_lookup_ge: pushing leaf's parent"));
571 		KASSERT(tos < PCTRIE_LIMIT,
572 		    ("pctrie_lookup_ge: stack overflow"));
573 		stack[tos++] = node;
574 		node = child;
575 	}
576 }
577 
578 /*
579  * Look up the nearest entry at a position less than or equal to index,
580  * assuming access is externally synchronized by a lock.
581  */
582 uint64_t *
583 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
584 {
585 	struct pctrie_node *stack[PCTRIE_LIMIT];
586 	uint64_t *m;
587 	struct pctrie_node *child, *node;
588 #ifdef INVARIANTS
589 	int loops = 0;
590 #endif
591 	unsigned tos;
592 	int slot;
593 
594 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
595 	if (node == NULL)
596 		return (NULL);
597 	else if (pctrie_isleaf(node)) {
598 		m = pctrie_toval(node);
599 		if (*m <= index)
600 			return (m);
601 		else
602 			return (NULL);
603 	}
604 	tos = 0;
605 	for (;;) {
606 		/*
607 		 * If the keys differ before the current bisection node,
608 		 * then the search key might rollback to the earliest
609 		 * available bisection node or to the largest key
610 		 * in the current node (if the owner is smaller than the
611 		 * search key).
612 		 */
613 		if (pctrie_keybarr(node, index)) {
614 			if (index > node->pn_owner) {
615 				index = node->pn_owner + PCTRIE_COUNT *
616 				    PCTRIE_UNITLEVEL(node->pn_clev);
617 			} else {
618 ascend:
619 				KASSERT(++loops < 1000,
620 				    ("pctrie_lookup_le: too many loops"));
621 
622 				/*
623 				 * Pop nodes from the stack until either the
624 				 * stack is empty or a node that could have a
625 				 * matching descendant is found.
626 				 */
627 				do {
628 					if (tos == 0)
629 						return (NULL);
630 					node = stack[--tos];
631 				} while (pctrie_slot(index,
632 				    node->pn_clev) == 0);
633 
634 				/*
635 				 * The following computation cannot overflow
636 				 * because index's slot at the current level
637 				 * is greater than 0.
638 				 */
639 				index = pctrie_trimkey(index,
640 				    node->pn_clev);
641 			}
642 			index--;
643 			KASSERT(!pctrie_keybarr(node, index),
644 			    ("pctrie_lookup_le: keybarr failed"));
645 		}
646 		slot = pctrie_slot(index, node->pn_clev);
647 		child = pctrie_node_load(&node->pn_child[slot], NULL,
648 		    PCTRIE_LOCKED);
649 		if (pctrie_isleaf(child)) {
650 			m = pctrie_toval(child);
651 			if (*m <= index)
652 				return (m);
653 		} else if (child != NULL)
654 			goto descend;
655 
656 		/* Find the last set bit among the first slot bits. */
657 		slot = fls(node->pn_popmap & ((1 << slot) - 1)) - 1;
658 		if (slot < 0) {
659 			/*
660 			 * A value or edge smaller than the search slot is not
661 			 * found in the current node; ascend to the next
662 			 * higher-level node.
663 			 */
664 			goto ascend;
665 		}
666 		child = pctrie_node_load(&node->pn_child[slot],
667 		    NULL, PCTRIE_LOCKED);
668 		if (pctrie_isleaf(child))
669 			return (pctrie_toval(child));
670 		index = pctrie_trimkey(index, node->pn_clev + 1) +
671 		    (slot + 1) * PCTRIE_UNITLEVEL(node->pn_clev) - 1;
672 descend:
673 		KASSERT(node->pn_clev > 0,
674 		    ("pctrie_lookup_le: pushing leaf's parent"));
675 		KASSERT(tos < PCTRIE_LIMIT,
676 		    ("pctrie_lookup_le: stack overflow"));
677 		stack[tos++] = node;
678 		node = child;
679 	}
680 }
681 
682 /*
683  * Remove the specified index from the tree.
684  * Panics if the key is not present.
685  */
686 void
687 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn)
688 {
689 	struct pctrie_node *node, *parent, *tmp;
690 	uint64_t *m;
691 	int slot;
692 
693 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
694 	if (pctrie_isleaf(node)) {
695 		m = pctrie_toval(node);
696 		if (*m != index)
697 			panic("%s: invalid key found", __func__);
698 		pctrie_root_store(ptree, NULL, PCTRIE_LOCKED);
699 		return;
700 	}
701 	parent = NULL;
702 	for (;;) {
703 		if (node == NULL)
704 			panic("pctrie_remove: impossible to locate the key");
705 		slot = pctrie_slot(index, node->pn_clev);
706 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
707 		    PCTRIE_LOCKED);
708 		if (pctrie_isleaf(tmp)) {
709 			m = pctrie_toval(tmp);
710 			if (*m != index)
711 				panic("%s: invalid key found", __func__);
712 			KASSERT((node->pn_popmap & (1 << slot)) != 0,
713 			    ("%s: bad popmap slot %d in node %p",
714 			    __func__, slot, node));
715 			node->pn_popmap ^= 1 << slot;
716 			pctrie_node_store(&node->pn_child[slot], NULL,
717 			    PCTRIE_LOCKED);
718 			if (!powerof2(node->pn_popmap))
719 				break;
720 			KASSERT(node->pn_popmap != 0,
721 			    ("%s: bad popmap all zeroes", __func__));
722 			slot = ffs(node->pn_popmap) - 1;
723 			tmp = pctrie_node_load(&node->pn_child[slot],
724 			    NULL, PCTRIE_LOCKED);
725 			KASSERT(tmp != NULL,
726 			    ("%s: bad popmap slot %d in node %p",
727 			    __func__, slot, node));
728 			if (parent == NULL)
729 				pctrie_root_store(ptree, tmp, PCTRIE_LOCKED);
730 			else {
731 				slot = pctrie_slot(index, parent->pn_clev);
732 				KASSERT(pctrie_node_load(
733 					&parent->pn_child[slot], NULL,
734 					PCTRIE_LOCKED) == node,
735 				    ("%s: invalid child value", __func__));
736 				pctrie_node_store(&parent->pn_child[slot], tmp,
737 				    PCTRIE_LOCKED);
738 			}
739 			/*
740 			 * The child is still valid and we can not zero the
741 			 * pointer until all SMR references are gone.
742 			 */
743 			pctrie_node_put(ptree, node, freefn);
744 			break;
745 		}
746 		parent = node;
747 		node = tmp;
748 	}
749 }
750 
751 /*
752  * Remove and free all the nodes from the tree.
753  * This function is recursive but there is a tight control on it as the
754  * maximum depth of the tree is fixed.
755  */
756 void
757 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn)
758 {
759 	struct pctrie_node *root;
760 
761 	root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
762 	if (root == NULL)
763 		return;
764 	pctrie_root_store(ptree, NULL, PCTRIE_UNSERIALIZED);
765 	if (!pctrie_isleaf(root))
766 		pctrie_reclaim_allnodes_int(ptree, root, freefn);
767 }
768 
769 #ifdef DDB
770 /*
771  * Show details about the given node.
772  */
773 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
774 {
775 	struct pctrie_node *node, *tmp;
776 	int slot;
777 	pn_popmap_t popmap;
778 
779         if (!have_addr)
780                 return;
781 	node = (struct pctrie_node *)addr;
782 	db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
783 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
784 	    node->pn_clev);
785 	for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
786 		slot = ffs(popmap) - 1;
787 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
788 		    PCTRIE_UNSERIALIZED);
789 		db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
790 		    slot, (void *)tmp,
791 		    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
792 		    node->pn_clev);
793 	}
794 }
795 #endif /* DDB */
796