xref: /freebsd/sys/kern/subr_pctrie.c (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_ddb.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/libkern.h>
58 #include <sys/pctrie.h>
59 #include <sys/proc.h>	/* smr.h depends on struct thread. */
60 #include <sys/smr.h>
61 #include <sys/smr_types.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
68 #define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
69 
70 /* Flag bits stored in node pointers. */
71 #define	PCTRIE_ISLEAF	0x1
72 #define	PCTRIE_FLAGS	0x1
73 #define	PCTRIE_PAD	PCTRIE_FLAGS
74 
75 /* Returns one unit associated with specified level. */
76 #define	PCTRIE_UNITLEVEL(lev)						\
77 	((uint64_t)1 << ((lev) * PCTRIE_WIDTH))
78 
79 struct pctrie_node;
80 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
81 
82 struct pctrie_node {
83 	uint64_t	pn_owner;			/* Owner of record. */
84 	uint16_t	pn_count;			/* Valid children. */
85 	uint8_t		pn_clev;			/* Current level. */
86 	int8_t		pn_last;			/* Zero last ptr. */
87 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
88 };
89 
90 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
91 
92 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
93     enum pctrie_access access);
94 
95 /*
96  * Return the position in the array for a given level.
97  */
98 static __inline int
99 pctrie_slot(uint64_t index, uint16_t level)
100 {
101 	return ((index >> (level * PCTRIE_WIDTH)) & PCTRIE_MASK);
102 }
103 
104 /* Computes the key (index) with the low-order 'level' radix-digits zeroed. */
105 static __inline uint64_t
106 pctrie_trimkey(uint64_t index, uint16_t level)
107 {
108 	return (index & -PCTRIE_UNITLEVEL(level));
109 }
110 
111 /*
112  * Allocate a node.  Pre-allocation should ensure that the request
113  * will always be satisfied.
114  */
115 static struct pctrie_node *
116 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t index,
117     uint16_t clevel)
118 {
119 	struct pctrie_node *node;
120 
121 	node = allocfn(ptree);
122 	if (node == NULL)
123 		return (NULL);
124 
125 	/*
126 	 * We want to clear the last child pointer after the final section
127 	 * has exited so lookup can not return false negatives.  It is done
128 	 * here because it will be cache-cold in the dtor callback.
129 	 */
130 	if (node->pn_last != 0) {
131 		pctrie_node_store(&node->pn_child[node->pn_last - 1], NULL,
132 		    PCTRIE_UNSERIALIZED);
133 		node->pn_last = 0;
134 	}
135 	node->pn_owner = pctrie_trimkey(index, clevel + 1);
136 	node->pn_count = 2;
137 	node->pn_clev = clevel;
138 	return (node);
139 }
140 
141 /*
142  * Free radix node.
143  */
144 static __inline void
145 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node,
146     pctrie_free_t freefn, int8_t last)
147 {
148 #ifdef INVARIANTS
149 	int slot;
150 
151 	KASSERT(node->pn_count == 0,
152 	    ("pctrie_node_put: node %p has %d children", node,
153 	    node->pn_count));
154 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
155 		if (slot == last)
156 			continue;
157 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
158 		    NULL, ("pctrie_node_put: node %p has a child", node));
159 	}
160 #endif
161 	node->pn_last = last + 1;
162 	freefn(ptree, node);
163 }
164 
165 /*
166  * Fetch a node pointer from a slot.
167  */
168 static __inline struct pctrie_node *
169 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
170 {
171 	switch (access) {
172 	case PCTRIE_UNSERIALIZED:
173 		return (smr_unserialized_load(p, true));
174 	case PCTRIE_LOCKED:
175 		return (smr_serialized_load(p, true));
176 	case PCTRIE_SMR:
177 		return (smr_entered_load(p, smr));
178 	}
179 	__assert_unreachable();
180 }
181 
182 static __inline void
183 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
184 {
185 	switch (access) {
186 	case PCTRIE_UNSERIALIZED:
187 		smr_unserialized_store(p, v, true);
188 		break;
189 	case PCTRIE_LOCKED:
190 		smr_serialized_store(p, v, true);
191 		break;
192 	case PCTRIE_SMR:
193 		panic("%s: Not supported in SMR section.", __func__);
194 		break;
195 	default:
196 		__assert_unreachable();
197 		break;
198 	}
199 }
200 
201 /*
202  * Get the root node for a tree.
203  */
204 static __inline struct pctrie_node *
205 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
206 {
207 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
208 }
209 
210 /*
211  * Set the root node for a tree.
212  */
213 static __inline void
214 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
215     enum pctrie_access access)
216 {
217 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
218 }
219 
220 /*
221  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
222  */
223 static __inline bool
224 pctrie_isleaf(struct pctrie_node *node)
225 {
226 
227 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
228 }
229 
230 /*
231  * Returns val with leaf bit set.
232  */
233 static __inline void *
234 pctrie_toleaf(uint64_t *val)
235 {
236 	return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
237 }
238 
239 /*
240  * Returns the associated val extracted from node.
241  */
242 static __inline uint64_t *
243 pctrie_toval(struct pctrie_node *node)
244 {
245 
246 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
247 }
248 
249 /*
250  * Adds the val as a child of the provided node.
251  */
252 static __inline void
253 pctrie_addval(struct pctrie_node *node, uint64_t index, uint16_t clev,
254     uint64_t *val, enum pctrie_access access)
255 {
256 	int slot;
257 
258 	slot = pctrie_slot(index, clev);
259 	pctrie_node_store(&node->pn_child[slot],
260 	    pctrie_toleaf(val), access);
261 }
262 
263 /*
264  * Returns the level where two keys differ.
265  * It cannot accept 2 equal keys.
266  */
267 static __inline uint16_t
268 pctrie_keydiff(uint64_t index1, uint64_t index2)
269 {
270 
271 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
272 	    __func__, (uintmax_t)index1));
273 	CTASSERT(sizeof(long long) >= sizeof(uint64_t));
274 
275 	/*
276 	 * From the highest-order bit where the indexes differ,
277 	 * compute the highest level in the trie where they differ.
278 	 */
279 	return ((flsll(index1 ^ index2) - 1) / PCTRIE_WIDTH);
280 }
281 
282 /*
283  * Returns TRUE if it can be determined that key does not belong to the
284  * specified node.  Otherwise, returns FALSE.
285  */
286 static __inline bool
287 pctrie_keybarr(struct pctrie_node *node, uint64_t idx)
288 {
289 
290 	if (node->pn_clev < PCTRIE_LIMIT) {
291 		idx = pctrie_trimkey(idx, node->pn_clev + 1);
292 		return (idx != node->pn_owner);
293 	}
294 	return (false);
295 }
296 
297 /*
298  * Internal helper for pctrie_reclaim_allnodes().
299  * This function is recursive.
300  */
301 static void
302 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node,
303     pctrie_free_t freefn)
304 {
305 	struct pctrie_node *child;
306 	int slot;
307 
308 	KASSERT(node->pn_count <= PCTRIE_COUNT,
309 	    ("pctrie_reclaim_allnodes_int: bad count in node %p", node));
310 	for (slot = 0; node->pn_count != 0; slot++) {
311 		child = pctrie_node_load(&node->pn_child[slot], NULL,
312 		    PCTRIE_UNSERIALIZED);
313 		if (child == NULL)
314 			continue;
315 		if (!pctrie_isleaf(child))
316 			pctrie_reclaim_allnodes_int(ptree, child, freefn);
317 		pctrie_node_store(&node->pn_child[slot], NULL,
318 		    PCTRIE_UNSERIALIZED);
319 		node->pn_count--;
320 	}
321 	pctrie_node_put(ptree, node, freefn, -1);
322 }
323 
324 /*
325  * pctrie node zone initializer.
326  */
327 int
328 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
329 {
330 	struct pctrie_node *node;
331 
332 	node = mem;
333 	node->pn_last = 0;
334 	memset(node->pn_child, 0, sizeof(node->pn_child));
335 	return (0);
336 }
337 
338 size_t
339 pctrie_node_size(void)
340 {
341 
342 	return (sizeof(struct pctrie_node));
343 }
344 
345 /*
346  * Inserts the key-value pair into the trie.
347  * Panics if the key already exists.
348  */
349 int
350 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn)
351 {
352 	uint64_t index, newind;
353 	struct pctrie_node *node, *tmp;
354 	smr_pctnode_t *parentp;
355 	uint64_t *m;
356 	int slot;
357 	uint16_t clev;
358 
359 	index = *val;
360 
361 	/*
362 	 * The owner of record for root is not really important because it
363 	 * will never be used.
364 	 */
365 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
366 	if (node == NULL) {
367 		ptree->pt_root = (uintptr_t)pctrie_toleaf(val);
368 		return (0);
369 	}
370 	parentp = (smr_pctnode_t *)&ptree->pt_root;
371 	for (;;) {
372 		if (pctrie_isleaf(node)) {
373 			m = pctrie_toval(node);
374 			if (*m == index)
375 				panic("%s: key %jx is already present",
376 				    __func__, (uintmax_t)index);
377 			clev = pctrie_keydiff(*m, index);
378 			tmp = pctrie_node_get(ptree, allocfn, index, clev);
379 			if (tmp == NULL)
380 				return (ENOMEM);
381 			/* These writes are not yet visible due to ordering. */
382 			pctrie_addval(tmp, index, clev, val,
383 			    PCTRIE_UNSERIALIZED);
384 			pctrie_addval(tmp, *m, clev, m, PCTRIE_UNSERIALIZED);
385 			/* Synchronize to make leaf visible. */
386 			pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
387 			return (0);
388 		} else if (pctrie_keybarr(node, index))
389 			break;
390 		slot = pctrie_slot(index, node->pn_clev);
391 		parentp = &node->pn_child[slot];
392 		tmp = pctrie_node_load(parentp, NULL, PCTRIE_LOCKED);
393 		if (tmp == NULL) {
394 			node->pn_count++;
395 			pctrie_addval(node, index, node->pn_clev, val,
396 			    PCTRIE_LOCKED);
397 			return (0);
398 		}
399 		node = tmp;
400 	}
401 
402 	/*
403 	 * A new node is needed because the right insertion level is reached.
404 	 * Setup the new intermediate node and add the 2 children: the
405 	 * new object and the older edge.
406 	 */
407 	newind = node->pn_owner;
408 	clev = pctrie_keydiff(newind, index);
409 	tmp = pctrie_node_get(ptree, allocfn, index, clev);
410 	if (tmp == NULL)
411 		return (ENOMEM);
412 	slot = pctrie_slot(newind, clev);
413 	/* These writes are not yet visible due to ordering. */
414 	pctrie_addval(tmp, index, clev, val, PCTRIE_UNSERIALIZED);
415 	pctrie_node_store(&tmp->pn_child[slot], node, PCTRIE_UNSERIALIZED);
416 	/* Synchronize to make the above visible. */
417 	pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
418 
419 	return (0);
420 }
421 
422 /*
423  * Returns the value stored at the index.  If the index is not present,
424  * NULL is returned.
425  */
426 static __always_inline uint64_t *
427 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
428     enum pctrie_access access)
429 {
430 	struct pctrie_node *node;
431 	uint64_t *m;
432 	int slot;
433 
434 	node = pctrie_root_load(ptree, smr, access);
435 	while (node != NULL) {
436 		if (pctrie_isleaf(node)) {
437 			m = pctrie_toval(node);
438 			if (*m == index)
439 				return (m);
440 			break;
441 		}
442 		if (pctrie_keybarr(node, index))
443 			break;
444 		slot = pctrie_slot(index, node->pn_clev);
445 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
446 	}
447 	return (NULL);
448 }
449 
450 /*
451  * Returns the value stored at the index, assuming access is externally
452  * synchronized by a lock.
453  *
454  * If the index is not present, NULL is returned.
455  */
456 uint64_t *
457 pctrie_lookup(struct pctrie *ptree, uint64_t index)
458 {
459 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
460 }
461 
462 /*
463  * Returns the value stored at the index without requiring an external lock.
464  *
465  * If the index is not present, NULL is returned.
466  */
467 uint64_t *
468 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
469 {
470 	uint64_t *res;
471 
472 	smr_enter(smr);
473 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
474 	smr_exit(smr);
475 	return (res);
476 }
477 
478 /*
479  * Look up the nearest entry at a position bigger than or equal to index,
480  * assuming access is externally synchronized by a lock.
481  */
482 uint64_t *
483 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
484 {
485 	struct pctrie_node *stack[PCTRIE_LIMIT];
486 	uint64_t inc;
487 	uint64_t *m;
488 	struct pctrie_node *child, *node;
489 #ifdef INVARIANTS
490 	int loops = 0;
491 #endif
492 	unsigned tos;
493 	int slot;
494 
495 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
496 	if (node == NULL)
497 		return (NULL);
498 	else if (pctrie_isleaf(node)) {
499 		m = pctrie_toval(node);
500 		if (*m >= index)
501 			return (m);
502 		else
503 			return (NULL);
504 	}
505 	tos = 0;
506 	for (;;) {
507 		/*
508 		 * If the keys differ before the current bisection node,
509 		 * then the search key might rollback to the earliest
510 		 * available bisection node or to the smallest key
511 		 * in the current node (if the owner is greater than the
512 		 * search key).
513 		 */
514 		if (pctrie_keybarr(node, index)) {
515 			if (index > node->pn_owner) {
516 ascend:
517 				KASSERT(++loops < 1000,
518 				    ("pctrie_lookup_ge: too many loops"));
519 
520 				/*
521 				 * Pop nodes from the stack until either the
522 				 * stack is empty or a node that could have a
523 				 * matching descendant is found.
524 				 */
525 				do {
526 					if (tos == 0)
527 						return (NULL);
528 					node = stack[--tos];
529 				} while (pctrie_slot(index,
530 				    node->pn_clev) == (PCTRIE_COUNT - 1));
531 
532 				/*
533 				 * The following computation cannot overflow
534 				 * because index's slot at the current level
535 				 * is less than PCTRIE_COUNT - 1.
536 				 */
537 				index = pctrie_trimkey(index,
538 				    node->pn_clev);
539 				index += PCTRIE_UNITLEVEL(node->pn_clev);
540 			} else
541 				index = node->pn_owner;
542 			KASSERT(!pctrie_keybarr(node, index),
543 			    ("pctrie_lookup_ge: keybarr failed"));
544 		}
545 		slot = pctrie_slot(index, node->pn_clev);
546 		child = pctrie_node_load(&node->pn_child[slot], NULL,
547 		    PCTRIE_LOCKED);
548 		if (pctrie_isleaf(child)) {
549 			m = pctrie_toval(child);
550 			if (*m >= index)
551 				return (m);
552 		} else if (child != NULL)
553 			goto descend;
554 
555 		/*
556 		 * Look for an available edge or val within the current
557 		 * bisection node.
558 		 */
559                 if (slot < (PCTRIE_COUNT - 1)) {
560 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
561 			index = pctrie_trimkey(index, node->pn_clev);
562 			do {
563 				index += inc;
564 				slot++;
565 				child = pctrie_node_load(&node->pn_child[slot],
566 				    NULL, PCTRIE_LOCKED);
567 				if (pctrie_isleaf(child)) {
568 					m = pctrie_toval(child);
569 					KASSERT(*m >= index,
570 					    ("pctrie_lookup_ge: leaf < index"));
571 					return (m);
572 				} else if (child != NULL)
573 					goto descend;
574 			} while (slot < (PCTRIE_COUNT - 1));
575 		}
576 		KASSERT(child == NULL || pctrie_isleaf(child),
577 		    ("pctrie_lookup_ge: child is radix node"));
578 
579 		/*
580 		 * If a value or edge greater than the search slot is not found
581 		 * in the current node, ascend to the next higher-level node.
582 		 */
583 		goto ascend;
584 descend:
585 		KASSERT(node->pn_clev > 0,
586 		    ("pctrie_lookup_ge: pushing leaf's parent"));
587 		KASSERT(tos < PCTRIE_LIMIT,
588 		    ("pctrie_lookup_ge: stack overflow"));
589 		stack[tos++] = node;
590 		node = child;
591 	}
592 }
593 
594 /*
595  * Look up the nearest entry at a position less than or equal to index,
596  * assuming access is externally synchronized by a lock.
597  */
598 uint64_t *
599 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
600 {
601 	struct pctrie_node *stack[PCTRIE_LIMIT];
602 	uint64_t inc;
603 	uint64_t *m;
604 	struct pctrie_node *child, *node;
605 #ifdef INVARIANTS
606 	int loops = 0;
607 #endif
608 	unsigned tos;
609 	int slot;
610 
611 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
612 	if (node == NULL)
613 		return (NULL);
614 	else if (pctrie_isleaf(node)) {
615 		m = pctrie_toval(node);
616 		if (*m <= index)
617 			return (m);
618 		else
619 			return (NULL);
620 	}
621 	tos = 0;
622 	for (;;) {
623 		/*
624 		 * If the keys differ before the current bisection node,
625 		 * then the search key might rollback to the earliest
626 		 * available bisection node or to the largest key
627 		 * in the current node (if the owner is smaller than the
628 		 * search key).
629 		 */
630 		if (pctrie_keybarr(node, index)) {
631 			if (index > node->pn_owner) {
632 				index = node->pn_owner + PCTRIE_COUNT *
633 				    PCTRIE_UNITLEVEL(node->pn_clev);
634 			} else {
635 ascend:
636 				KASSERT(++loops < 1000,
637 				    ("pctrie_lookup_le: too many loops"));
638 
639 				/*
640 				 * Pop nodes from the stack until either the
641 				 * stack is empty or a node that could have a
642 				 * matching descendant is found.
643 				 */
644 				do {
645 					if (tos == 0)
646 						return (NULL);
647 					node = stack[--tos];
648 				} while (pctrie_slot(index,
649 				    node->pn_clev) == 0);
650 
651 				/*
652 				 * The following computation cannot overflow
653 				 * because index's slot at the current level
654 				 * is greater than 0.
655 				 */
656 				index = pctrie_trimkey(index,
657 				    node->pn_clev);
658 			}
659 			index--;
660 			KASSERT(!pctrie_keybarr(node, index),
661 			    ("pctrie_lookup_le: keybarr failed"));
662 		}
663 		slot = pctrie_slot(index, node->pn_clev);
664 		child = pctrie_node_load(&node->pn_child[slot], NULL,
665 		    PCTRIE_LOCKED);
666 		if (pctrie_isleaf(child)) {
667 			m = pctrie_toval(child);
668 			if (*m <= index)
669 				return (m);
670 		} else if (child != NULL)
671 			goto descend;
672 
673 		/*
674 		 * Look for an available edge or value within the current
675 		 * bisection node.
676 		 */
677 		if (slot > 0) {
678 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
679 			index |= inc - 1;
680 			do {
681 				index -= inc;
682 				slot--;
683 				child = pctrie_node_load(&node->pn_child[slot],
684 				    NULL, PCTRIE_LOCKED);
685 				if (pctrie_isleaf(child)) {
686 					m = pctrie_toval(child);
687 					KASSERT(*m <= index,
688 					    ("pctrie_lookup_le: leaf > index"));
689 					return (m);
690 				} else if (child != NULL)
691 					goto descend;
692 			} while (slot > 0);
693 		}
694 		KASSERT(child == NULL || pctrie_isleaf(child),
695 		    ("pctrie_lookup_le: child is radix node"));
696 
697 		/*
698 		 * If a value or edge smaller than the search slot is not found
699 		 * in the current node, ascend to the next higher-level node.
700 		 */
701 		goto ascend;
702 descend:
703 		KASSERT(node->pn_clev > 0,
704 		    ("pctrie_lookup_le: pushing leaf's parent"));
705 		KASSERT(tos < PCTRIE_LIMIT,
706 		    ("pctrie_lookup_le: stack overflow"));
707 		stack[tos++] = node;
708 		node = child;
709 	}
710 }
711 
712 /*
713  * Remove the specified index from the tree.
714  * Panics if the key is not present.
715  */
716 void
717 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn)
718 {
719 	struct pctrie_node *node, *parent, *tmp;
720 	uint64_t *m;
721 	int i, slot;
722 
723 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
724 	if (pctrie_isleaf(node)) {
725 		m = pctrie_toval(node);
726 		if (*m != index)
727 			panic("%s: invalid key found", __func__);
728 		pctrie_root_store(ptree, NULL, PCTRIE_LOCKED);
729 		return;
730 	}
731 	parent = NULL;
732 	for (;;) {
733 		if (node == NULL)
734 			panic("pctrie_remove: impossible to locate the key");
735 		slot = pctrie_slot(index, node->pn_clev);
736 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
737 		    PCTRIE_LOCKED);
738 		if (pctrie_isleaf(tmp)) {
739 			m = pctrie_toval(tmp);
740 			if (*m != index)
741 				panic("%s: invalid key found", __func__);
742 			pctrie_node_store(&node->pn_child[slot], NULL,
743 			    PCTRIE_LOCKED);
744 			node->pn_count--;
745 			if (node->pn_count > 1)
746 				break;
747 			for (i = 0; i < PCTRIE_COUNT; i++) {
748 				tmp = pctrie_node_load(&node->pn_child[i],
749 				    NULL, PCTRIE_LOCKED);
750 				if (tmp != NULL)
751 					break;
752 			}
753 			KASSERT(tmp != NULL,
754 			    ("%s: invalid node configuration", __func__));
755 			if (parent == NULL)
756 				pctrie_root_store(ptree, tmp, PCTRIE_LOCKED);
757 			else {
758 				slot = pctrie_slot(index, parent->pn_clev);
759 				KASSERT(pctrie_node_load(
760 					&parent->pn_child[slot], NULL,
761 					PCTRIE_LOCKED) == node,
762 				    ("%s: invalid child value", __func__));
763 				pctrie_node_store(&parent->pn_child[slot], tmp,
764 				    PCTRIE_LOCKED);
765 			}
766 			/*
767 			 * The child is still valid and we can not zero the
768 			 * pointer until all SMR references are gone.
769 			 */
770 			node->pn_count--;
771 			pctrie_node_put(ptree, node, freefn, i);
772 			break;
773 		}
774 		parent = node;
775 		node = tmp;
776 	}
777 }
778 
779 /*
780  * Remove and free all the nodes from the tree.
781  * This function is recursive but there is a tight control on it as the
782  * maximum depth of the tree is fixed.
783  */
784 void
785 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn)
786 {
787 	struct pctrie_node *root;
788 
789 	root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
790 	if (root == NULL)
791 		return;
792 	pctrie_root_store(ptree, NULL, PCTRIE_UNSERIALIZED);
793 	if (!pctrie_isleaf(root))
794 		pctrie_reclaim_allnodes_int(ptree, root, freefn);
795 }
796 
797 #ifdef DDB
798 /*
799  * Show details about the given node.
800  */
801 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
802 {
803 	struct pctrie_node *node, *tmp;
804 	int i;
805 
806         if (!have_addr)
807                 return;
808 	node = (struct pctrie_node *)addr;
809 	db_printf("node %p, owner %jx, children count %u, level %u:\n",
810 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_count,
811 	    node->pn_clev);
812 	for (i = 0; i < PCTRIE_COUNT; i++) {
813 		tmp = pctrie_node_load(&node->pn_child[i], NULL,
814 		    PCTRIE_UNSERIALIZED);
815 		if (tmp != NULL)
816 			db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
817 			    i, (void *)tmp,
818 			    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
819 			    node->pn_clev);
820 	}
821 }
822 #endif /* DDB */
823