1 /*- 2 * Copyright (c) 2001 Wind River Systems, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * This module provides MI support for per-cpu data. 36 * 37 * Each architecture determines the mapping of logical CPU IDs to physical 38 * CPUs. The requirements of this mapping are as follows: 39 * - Logical CPU IDs must reside in the range 0 ... MAXCPU - 1. 40 * - The mapping is not required to be dense. That is, there may be 41 * gaps in the mappings. 42 * - The platform sets the value of MAXCPU in <machine/param.h>. 43 * - It is suggested, but not required, that in the non-SMP case, the 44 * platform define MAXCPU to be 1 and define the logical ID of the 45 * sole CPU as 0. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/pcpu.h> 59 #include <sys/proc.h> 60 #include <sys/smp.h> 61 #include <sys/sx.h> 62 #include <vm/uma.h> 63 #include <ddb/ddb.h> 64 65 static MALLOC_DEFINE(M_PCPU, "Per-cpu", "Per-cpu resource accouting."); 66 67 struct dpcpu_free { 68 uintptr_t df_start; 69 int df_len; 70 TAILQ_ENTRY(dpcpu_free) df_link; 71 }; 72 73 static DPCPU_DEFINE(char, modspace[DPCPU_MODMIN]); 74 static TAILQ_HEAD(, dpcpu_free) dpcpu_head = TAILQ_HEAD_INITIALIZER(dpcpu_head); 75 static struct sx dpcpu_lock; 76 uintptr_t dpcpu_off[MAXCPU]; 77 struct pcpu *cpuid_to_pcpu[MAXCPU]; 78 struct cpuhead cpuhead = STAILQ_HEAD_INITIALIZER(cpuhead); 79 80 /* 81 * Initialize the MI portions of a struct pcpu. 82 */ 83 void 84 pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) 85 { 86 87 bzero(pcpu, size); 88 KASSERT(cpuid >= 0 && cpuid < MAXCPU, 89 ("pcpu_init: invalid cpuid %d", cpuid)); 90 pcpu->pc_cpuid = cpuid; 91 cpuid_to_pcpu[cpuid] = pcpu; 92 STAILQ_INSERT_TAIL(&cpuhead, pcpu, pc_allcpu); 93 cpu_pcpu_init(pcpu, cpuid, size); 94 pcpu->pc_rm_queue.rmq_next = &pcpu->pc_rm_queue; 95 pcpu->pc_rm_queue.rmq_prev = &pcpu->pc_rm_queue; 96 } 97 98 void 99 dpcpu_init(void *dpcpu, int cpuid) 100 { 101 struct pcpu *pcpu; 102 103 pcpu = pcpu_find(cpuid); 104 pcpu->pc_dynamic = (uintptr_t)dpcpu - DPCPU_START; 105 106 /* 107 * Initialize defaults from our linker section. 108 */ 109 memcpy(dpcpu, (void *)DPCPU_START, DPCPU_BYTES); 110 111 /* 112 * Place it in the global pcpu offset array. 113 */ 114 dpcpu_off[cpuid] = pcpu->pc_dynamic; 115 } 116 117 static void 118 dpcpu_startup(void *dummy __unused) 119 { 120 struct dpcpu_free *df; 121 122 df = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 123 df->df_start = (uintptr_t)&DPCPU_NAME(modspace); 124 df->df_len = DPCPU_MODMIN; 125 TAILQ_INSERT_HEAD(&dpcpu_head, df, df_link); 126 sx_init(&dpcpu_lock, "dpcpu alloc lock"); 127 } 128 SYSINIT(dpcpu, SI_SUB_KLD, SI_ORDER_FIRST, dpcpu_startup, 0); 129 130 /* 131 * UMA_PCPU_ZONE zones, that are available for all kernel 132 * consumers. Right now 64 bit zone is used for counter(9) 133 * and pointer zone is used by flowtable. 134 */ 135 136 uma_zone_t pcpu_zone_64; 137 uma_zone_t pcpu_zone_ptr; 138 139 static void 140 pcpu_zones_startup(void) 141 { 142 143 pcpu_zone_64 = uma_zcreate("64 pcpu", sizeof(uint64_t), 144 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 145 146 if (sizeof(uint64_t) == sizeof(void *)) 147 pcpu_zone_ptr = pcpu_zone_64; 148 else 149 pcpu_zone_ptr = uma_zcreate("ptr pcpu", sizeof(void *), 150 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 151 } 152 SYSINIT(pcpu_zones, SI_SUB_KMEM, SI_ORDER_ANY, pcpu_zones_startup, NULL); 153 154 /* 155 * First-fit extent based allocator for allocating space in the per-cpu 156 * region reserved for modules. This is only intended for use by the 157 * kernel linkers to place module linker sets. 158 */ 159 void * 160 dpcpu_alloc(int size) 161 { 162 struct dpcpu_free *df; 163 void *s; 164 165 s = NULL; 166 size = roundup2(size, sizeof(void *)); 167 sx_xlock(&dpcpu_lock); 168 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 169 if (df->df_len < size) 170 continue; 171 if (df->df_len == size) { 172 s = (void *)df->df_start; 173 TAILQ_REMOVE(&dpcpu_head, df, df_link); 174 free(df, M_PCPU); 175 break; 176 } 177 s = (void *)df->df_start; 178 df->df_len -= size; 179 df->df_start = df->df_start + size; 180 break; 181 } 182 sx_xunlock(&dpcpu_lock); 183 184 return (s); 185 } 186 187 /* 188 * Free dynamic per-cpu space at module unload time. 189 */ 190 void 191 dpcpu_free(void *s, int size) 192 { 193 struct dpcpu_free *df; 194 struct dpcpu_free *dn; 195 uintptr_t start; 196 uintptr_t end; 197 198 size = roundup2(size, sizeof(void *)); 199 start = (uintptr_t)s; 200 end = start + size; 201 /* 202 * Free a region of space and merge it with as many neighbors as 203 * possible. Keeping the list sorted simplifies this operation. 204 */ 205 sx_xlock(&dpcpu_lock); 206 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 207 if (df->df_start > end) 208 break; 209 /* 210 * If we expand at the end of an entry we may have to 211 * merge it with the one following it as well. 212 */ 213 if (df->df_start + df->df_len == start) { 214 df->df_len += size; 215 dn = TAILQ_NEXT(df, df_link); 216 if (df->df_start + df->df_len == dn->df_start) { 217 df->df_len += dn->df_len; 218 TAILQ_REMOVE(&dpcpu_head, dn, df_link); 219 free(dn, M_PCPU); 220 } 221 sx_xunlock(&dpcpu_lock); 222 return; 223 } 224 if (df->df_start == end) { 225 df->df_start = start; 226 df->df_len += size; 227 sx_xunlock(&dpcpu_lock); 228 return; 229 } 230 } 231 dn = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 232 dn->df_start = start; 233 dn->df_len = size; 234 if (df) 235 TAILQ_INSERT_BEFORE(df, dn, df_link); 236 else 237 TAILQ_INSERT_TAIL(&dpcpu_head, dn, df_link); 238 sx_xunlock(&dpcpu_lock); 239 } 240 241 /* 242 * Initialize the per-cpu storage from an updated linker-set region. 243 */ 244 void 245 dpcpu_copy(void *s, int size) 246 { 247 #ifdef SMP 248 uintptr_t dpcpu; 249 int i; 250 251 CPU_FOREACH(i) { 252 dpcpu = dpcpu_off[i]; 253 if (dpcpu == 0) 254 continue; 255 memcpy((void *)(dpcpu + (uintptr_t)s), s, size); 256 } 257 #else 258 memcpy((void *)(dpcpu_off[0] + (uintptr_t)s), s, size); 259 #endif 260 } 261 262 /* 263 * Destroy a struct pcpu. 264 */ 265 void 266 pcpu_destroy(struct pcpu *pcpu) 267 { 268 269 STAILQ_REMOVE(&cpuhead, pcpu, pcpu, pc_allcpu); 270 cpuid_to_pcpu[pcpu->pc_cpuid] = NULL; 271 dpcpu_off[pcpu->pc_cpuid] = 0; 272 } 273 274 /* 275 * Locate a struct pcpu by cpu id. 276 */ 277 struct pcpu * 278 pcpu_find(u_int cpuid) 279 { 280 281 return (cpuid_to_pcpu[cpuid]); 282 } 283 284 int 285 sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS) 286 { 287 uintptr_t dpcpu; 288 int64_t count; 289 int i; 290 291 count = 0; 292 CPU_FOREACH(i) { 293 dpcpu = dpcpu_off[i]; 294 if (dpcpu == 0) 295 continue; 296 count += *(int64_t *)(dpcpu + (uintptr_t)arg1); 297 } 298 return (SYSCTL_OUT(req, &count, sizeof(count))); 299 } 300 301 int 302 sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS) 303 { 304 uintptr_t dpcpu; 305 long count; 306 int i; 307 308 count = 0; 309 CPU_FOREACH(i) { 310 dpcpu = dpcpu_off[i]; 311 if (dpcpu == 0) 312 continue; 313 count += *(long *)(dpcpu + (uintptr_t)arg1); 314 } 315 return (SYSCTL_OUT(req, &count, sizeof(count))); 316 } 317 318 int 319 sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS) 320 { 321 uintptr_t dpcpu; 322 int count; 323 int i; 324 325 count = 0; 326 CPU_FOREACH(i) { 327 dpcpu = dpcpu_off[i]; 328 if (dpcpu == 0) 329 continue; 330 count += *(int *)(dpcpu + (uintptr_t)arg1); 331 } 332 return (SYSCTL_OUT(req, &count, sizeof(count))); 333 } 334 335 #ifdef DDB 336 DB_SHOW_COMMAND(dpcpu_off, db_show_dpcpu_off) 337 { 338 int id; 339 340 CPU_FOREACH(id) { 341 db_printf("dpcpu_off[%2d] = 0x%jx (+ DPCPU_START = %p)\n", 342 id, (uintmax_t)dpcpu_off[id], 343 (void *)(uintptr_t)(dpcpu_off[id] + DPCPU_START)); 344 } 345 } 346 347 static void 348 show_pcpu(struct pcpu *pc) 349 { 350 struct thread *td; 351 352 db_printf("cpuid = %d\n", pc->pc_cpuid); 353 db_printf("dynamic pcpu = %p\n", (void *)pc->pc_dynamic); 354 db_printf("curthread = "); 355 td = pc->pc_curthread; 356 if (td != NULL) 357 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 358 td->td_name); 359 else 360 db_printf("none\n"); 361 db_printf("curpcb = %p\n", pc->pc_curpcb); 362 db_printf("fpcurthread = "); 363 td = pc->pc_fpcurthread; 364 if (td != NULL) 365 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 366 td->td_name); 367 else 368 db_printf("none\n"); 369 db_printf("idlethread = "); 370 td = pc->pc_idlethread; 371 if (td != NULL) 372 db_printf("%p: tid %d \"%s\"\n", td, td->td_tid, td->td_name); 373 else 374 db_printf("none\n"); 375 db_show_mdpcpu(pc); 376 377 #ifdef VIMAGE 378 db_printf("curvnet = %p\n", pc->pc_curthread->td_vnet); 379 #endif 380 381 #ifdef WITNESS 382 db_printf("spin locks held:\n"); 383 witness_list_locks(&pc->pc_spinlocks, db_printf); 384 #endif 385 } 386 387 DB_SHOW_COMMAND(pcpu, db_show_pcpu) 388 { 389 struct pcpu *pc; 390 int id; 391 392 if (have_addr) 393 id = ((addr >> 4) % 16) * 10 + (addr % 16); 394 else 395 id = PCPU_GET(cpuid); 396 pc = pcpu_find(id); 397 if (pc == NULL) { 398 db_printf("CPU %d not found\n", id); 399 return; 400 } 401 show_pcpu(pc); 402 } 403 404 DB_SHOW_ALL_COMMAND(pcpu, db_show_cpu_all) 405 { 406 struct pcpu *pc; 407 int id; 408 409 db_printf("Current CPU: %d\n\n", PCPU_GET(cpuid)); 410 for (id = 0; id <= mp_maxid; id++) { 411 pc = pcpu_find(id); 412 if (pc != NULL) { 413 show_pcpu(pc); 414 db_printf("\n"); 415 } 416 } 417 } 418 DB_SHOW_ALIAS(allpcpu, db_show_cpu_all); 419 #endif 420