1 /*- 2 * Copyright (c) 2001 Wind River Systems, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * This module provides MI support for per-cpu data. 36 * 37 * Each architecture determines the mapping of logical CPU IDs to physical 38 * CPUs. The requirements of this mapping are as follows: 39 * - Logical CPU IDs must reside in the range 0 ... MAXCPU - 1. 40 * - The mapping is not required to be dense. That is, there may be 41 * gaps in the mappings. 42 * - The platform sets the value of MAXCPU in <machine/param.h>. 43 * - It is suggested, but not required, that in the non-SMP case, the 44 * platform define MAXCPU to be 1 and define the logical ID of the 45 * sole CPU as 0. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/pcpu.h> 59 #include <sys/proc.h> 60 #include <sys/smp.h> 61 #include <sys/sx.h> 62 #include <ddb/ddb.h> 63 64 MALLOC_DEFINE(M_PCPU, "Per-cpu", "Per-cpu resource accouting."); 65 66 struct dpcpu_free { 67 uintptr_t df_start; 68 int df_len; 69 TAILQ_ENTRY(dpcpu_free) df_link; 70 }; 71 72 static DPCPU_DEFINE(char, modspace[DPCPU_MODMIN]); 73 static TAILQ_HEAD(, dpcpu_free) dpcpu_head = TAILQ_HEAD_INITIALIZER(dpcpu_head); 74 static struct sx dpcpu_lock; 75 uintptr_t dpcpu_off[MAXCPU]; 76 struct pcpu *cpuid_to_pcpu[MAXCPU]; 77 struct cpuhead cpuhead = STAILQ_HEAD_INITIALIZER(cpuhead); 78 79 /* 80 * Initialize the MI portions of a struct pcpu. 81 */ 82 void 83 pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) 84 { 85 86 bzero(pcpu, size); 87 KASSERT(cpuid >= 0 && cpuid < MAXCPU, 88 ("pcpu_init: invalid cpuid %d", cpuid)); 89 pcpu->pc_cpuid = cpuid; 90 pcpu->pc_cpumask = 1 << cpuid; 91 cpuid_to_pcpu[cpuid] = pcpu; 92 STAILQ_INSERT_TAIL(&cpuhead, pcpu, pc_allcpu); 93 cpu_pcpu_init(pcpu, cpuid, size); 94 pcpu->pc_rm_queue.rmq_next = &pcpu->pc_rm_queue; 95 pcpu->pc_rm_queue.rmq_prev = &pcpu->pc_rm_queue; 96 #ifdef KTR 97 snprintf(pcpu->pc_name, sizeof(pcpu->pc_name), "CPU %d", cpuid); 98 #endif 99 } 100 101 void 102 dpcpu_init(void *dpcpu, int cpuid) 103 { 104 struct pcpu *pcpu; 105 106 pcpu = pcpu_find(cpuid); 107 pcpu->pc_dynamic = (uintptr_t)dpcpu - DPCPU_START; 108 109 /* 110 * Initialize defaults from our linker section. 111 */ 112 memcpy(dpcpu, (void *)DPCPU_START, DPCPU_BYTES); 113 114 /* 115 * Place it in the global pcpu offset array. 116 */ 117 dpcpu_off[cpuid] = pcpu->pc_dynamic; 118 } 119 120 static void 121 dpcpu_startup(void *dummy __unused) 122 { 123 struct dpcpu_free *df; 124 125 df = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 126 df->df_start = (uintptr_t)&DPCPU_NAME(modspace); 127 df->df_len = DPCPU_MODMIN; 128 TAILQ_INSERT_HEAD(&dpcpu_head, df, df_link); 129 sx_init(&dpcpu_lock, "dpcpu alloc lock"); 130 } 131 SYSINIT(dpcpu, SI_SUB_KLD, SI_ORDER_FIRST, dpcpu_startup, 0); 132 133 /* 134 * First-fit extent based allocator for allocating space in the per-cpu 135 * region reserved for modules. This is only intended for use by the 136 * kernel linkers to place module linker sets. 137 */ 138 void * 139 dpcpu_alloc(int size) 140 { 141 struct dpcpu_free *df; 142 void *s; 143 144 s = NULL; 145 size = roundup2(size, sizeof(void *)); 146 sx_xlock(&dpcpu_lock); 147 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 148 if (df->df_len < size) 149 continue; 150 if (df->df_len == size) { 151 s = (void *)df->df_start; 152 TAILQ_REMOVE(&dpcpu_head, df, df_link); 153 free(df, M_PCPU); 154 break; 155 } 156 s = (void *)df->df_start; 157 df->df_len -= size; 158 df->df_start = df->df_start + size; 159 break; 160 } 161 sx_xunlock(&dpcpu_lock); 162 163 return (s); 164 } 165 166 /* 167 * Free dynamic per-cpu space at module unload time. 168 */ 169 void 170 dpcpu_free(void *s, int size) 171 { 172 struct dpcpu_free *df; 173 struct dpcpu_free *dn; 174 uintptr_t start; 175 uintptr_t end; 176 177 size = roundup2(size, sizeof(void *)); 178 start = (uintptr_t)s; 179 end = start + size; 180 /* 181 * Free a region of space and merge it with as many neighbors as 182 * possible. Keeping the list sorted simplifies this operation. 183 */ 184 sx_xlock(&dpcpu_lock); 185 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 186 if (df->df_start > end) 187 break; 188 /* 189 * If we expand at the end of an entry we may have to 190 * merge it with the one following it as well. 191 */ 192 if (df->df_start + df->df_len == start) { 193 df->df_len += size; 194 dn = TAILQ_NEXT(df, df_link); 195 if (df->df_start + df->df_len == dn->df_start) { 196 df->df_len += dn->df_len; 197 TAILQ_REMOVE(&dpcpu_head, dn, df_link); 198 free(dn, M_PCPU); 199 } 200 sx_xunlock(&dpcpu_lock); 201 return; 202 } 203 if (df->df_start == end) { 204 df->df_start = start; 205 df->df_len += size; 206 sx_xunlock(&dpcpu_lock); 207 return; 208 } 209 } 210 dn = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 211 dn->df_start = start; 212 dn->df_len = size; 213 if (df) 214 TAILQ_INSERT_BEFORE(df, dn, df_link); 215 else 216 TAILQ_INSERT_TAIL(&dpcpu_head, dn, df_link); 217 sx_xunlock(&dpcpu_lock); 218 } 219 220 /* 221 * Initialize the per-cpu storage from an updated linker-set region. 222 */ 223 void 224 dpcpu_copy(void *s, int size) 225 { 226 #ifdef SMP 227 uintptr_t dpcpu; 228 int i; 229 230 for (i = 0; i < mp_ncpus; ++i) { 231 dpcpu = dpcpu_off[i]; 232 if (dpcpu == 0) 233 continue; 234 memcpy((void *)(dpcpu + (uintptr_t)s), s, size); 235 } 236 #else 237 memcpy((void *)(dpcpu_off[0] + (uintptr_t)s), s, size); 238 #endif 239 } 240 241 /* 242 * Destroy a struct pcpu. 243 */ 244 void 245 pcpu_destroy(struct pcpu *pcpu) 246 { 247 248 STAILQ_REMOVE(&cpuhead, pcpu, pcpu, pc_allcpu); 249 cpuid_to_pcpu[pcpu->pc_cpuid] = NULL; 250 dpcpu_off[pcpu->pc_cpuid] = 0; 251 } 252 253 /* 254 * Locate a struct pcpu by cpu id. 255 */ 256 struct pcpu * 257 pcpu_find(u_int cpuid) 258 { 259 260 return (cpuid_to_pcpu[cpuid]); 261 } 262 263 int 264 sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS) 265 { 266 uintptr_t dpcpu; 267 int64_t count; 268 int i; 269 270 count = 0; 271 for (i = 0; i < mp_ncpus; ++i) { 272 dpcpu = dpcpu_off[i]; 273 if (dpcpu == 0) 274 continue; 275 count += *(int64_t *)(dpcpu + (uintptr_t)arg1); 276 } 277 return (SYSCTL_OUT(req, &count, sizeof(count))); 278 } 279 280 int 281 sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS) 282 { 283 uintptr_t dpcpu; 284 long count; 285 int i; 286 287 count = 0; 288 for (i = 0; i < mp_ncpus; ++i) { 289 dpcpu = dpcpu_off[i]; 290 if (dpcpu == 0) 291 continue; 292 count += *(long *)(dpcpu + (uintptr_t)arg1); 293 } 294 return (SYSCTL_OUT(req, &count, sizeof(count))); 295 } 296 297 int 298 sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS) 299 { 300 uintptr_t dpcpu; 301 int count; 302 int i; 303 304 count = 0; 305 for (i = 0; i < mp_ncpus; ++i) { 306 dpcpu = dpcpu_off[i]; 307 if (dpcpu == 0) 308 continue; 309 count += *(int *)(dpcpu + (uintptr_t)arg1); 310 } 311 return (SYSCTL_OUT(req, &count, sizeof(count))); 312 } 313 314 #ifdef DDB 315 DB_SHOW_COMMAND(dpcpu_off, db_show_dpcpu_off) 316 { 317 int id; 318 319 CPU_FOREACH(id) { 320 db_printf("dpcpu_off[%2d] = 0x%jx (+ DPCPU_START = %p)\n", 321 id, (uintmax_t)dpcpu_off[id], 322 (void *)(uintptr_t)(dpcpu_off[id] + DPCPU_START)); 323 } 324 } 325 326 static void 327 show_pcpu(struct pcpu *pc) 328 { 329 struct thread *td; 330 331 db_printf("cpuid = %d\n", pc->pc_cpuid); 332 db_printf("dynamic pcpu = %p\n", (void *)pc->pc_dynamic); 333 db_printf("curthread = "); 334 td = pc->pc_curthread; 335 if (td != NULL) 336 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 337 td->td_name); 338 else 339 db_printf("none\n"); 340 db_printf("curpcb = %p\n", pc->pc_curpcb); 341 db_printf("fpcurthread = "); 342 td = pc->pc_fpcurthread; 343 if (td != NULL) 344 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 345 td->td_name); 346 else 347 db_printf("none\n"); 348 db_printf("idlethread = "); 349 td = pc->pc_idlethread; 350 if (td != NULL) 351 db_printf("%p: tid %d \"%s\"\n", td, td->td_tid, td->td_name); 352 else 353 db_printf("none\n"); 354 db_show_mdpcpu(pc); 355 356 #ifdef VIMAGE 357 db_printf("curvnet = %p\n", pc->pc_curthread->td_vnet); 358 #endif 359 360 #ifdef WITNESS 361 db_printf("spin locks held:\n"); 362 witness_list_locks(&pc->pc_spinlocks, db_printf); 363 #endif 364 } 365 366 DB_SHOW_COMMAND(pcpu, db_show_pcpu) 367 { 368 struct pcpu *pc; 369 int id; 370 371 if (have_addr) 372 id = ((addr >> 4) % 16) * 10 + (addr % 16); 373 else 374 id = PCPU_GET(cpuid); 375 pc = pcpu_find(id); 376 if (pc == NULL) { 377 db_printf("CPU %d not found\n", id); 378 return; 379 } 380 show_pcpu(pc); 381 } 382 383 DB_SHOW_ALL_COMMAND(pcpu, db_show_cpu_all) 384 { 385 struct pcpu *pc; 386 int id; 387 388 db_printf("Current CPU: %d\n\n", PCPU_GET(cpuid)); 389 for (id = 0; id <= mp_maxid; id++) { 390 pc = pcpu_find(id); 391 if (pc != NULL) { 392 show_pcpu(pc); 393 db_printf("\n"); 394 } 395 } 396 } 397 DB_SHOW_ALIAS(allpcpu, db_show_cpu_all); 398 #endif 399