1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /* 37 * This module provides MI support for per-cpu data. 38 * 39 * Each architecture determines the mapping of logical CPU IDs to physical 40 * CPUs. The requirements of this mapping are as follows: 41 * - Logical CPU IDs must reside in the range 0 ... MAXCPU - 1. 42 * - The mapping is not required to be dense. That is, there may be 43 * gaps in the mappings. 44 * - The platform sets the value of MAXCPU in <machine/param.h>. 45 * - It is suggested, but not required, that in the non-SMP case, the 46 * platform define MAXCPU to be 1 and define the logical ID of the 47 * sole CPU as 0. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 #include "opt_ddb.h" 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/sysctl.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/pcpu.h> 61 #include <sys/proc.h> 62 #include <sys/smp.h> 63 #include <sys/sx.h> 64 #include <vm/uma.h> 65 #include <ddb/ddb.h> 66 67 static MALLOC_DEFINE(M_PCPU, "Per-cpu", "Per-cpu resource accouting."); 68 69 struct dpcpu_free { 70 uintptr_t df_start; 71 int df_len; 72 TAILQ_ENTRY(dpcpu_free) df_link; 73 }; 74 75 static DPCPU_DEFINE(char, modspace[DPCPU_MODMIN]); 76 static TAILQ_HEAD(, dpcpu_free) dpcpu_head = TAILQ_HEAD_INITIALIZER(dpcpu_head); 77 static struct sx dpcpu_lock; 78 uintptr_t dpcpu_off[MAXCPU]; 79 struct pcpu *cpuid_to_pcpu[MAXCPU]; 80 struct cpuhead cpuhead = STAILQ_HEAD_INITIALIZER(cpuhead); 81 82 /* 83 * Initialize the MI portions of a struct pcpu. 84 */ 85 void 86 pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) 87 { 88 89 bzero(pcpu, size); 90 KASSERT(cpuid >= 0 && cpuid < MAXCPU, 91 ("pcpu_init: invalid cpuid %d", cpuid)); 92 pcpu->pc_cpuid = cpuid; 93 cpuid_to_pcpu[cpuid] = pcpu; 94 STAILQ_INSERT_TAIL(&cpuhead, pcpu, pc_allcpu); 95 cpu_pcpu_init(pcpu, cpuid, size); 96 pcpu->pc_rm_queue.rmq_next = &pcpu->pc_rm_queue; 97 pcpu->pc_rm_queue.rmq_prev = &pcpu->pc_rm_queue; 98 } 99 100 void 101 dpcpu_init(void *dpcpu, int cpuid) 102 { 103 struct pcpu *pcpu; 104 105 pcpu = pcpu_find(cpuid); 106 pcpu->pc_dynamic = (uintptr_t)dpcpu - DPCPU_START; 107 108 /* 109 * Initialize defaults from our linker section. 110 */ 111 memcpy(dpcpu, (void *)DPCPU_START, DPCPU_BYTES); 112 113 /* 114 * Place it in the global pcpu offset array. 115 */ 116 dpcpu_off[cpuid] = pcpu->pc_dynamic; 117 } 118 119 static void 120 dpcpu_startup(void *dummy __unused) 121 { 122 struct dpcpu_free *df; 123 124 df = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 125 df->df_start = (uintptr_t)&DPCPU_NAME(modspace); 126 df->df_len = DPCPU_MODMIN; 127 TAILQ_INSERT_HEAD(&dpcpu_head, df, df_link); 128 sx_init(&dpcpu_lock, "dpcpu alloc lock"); 129 } 130 SYSINIT(dpcpu, SI_SUB_KLD, SI_ORDER_FIRST, dpcpu_startup, 0); 131 132 /* 133 * UMA_PCPU_ZONE zones, that are available for all kernel 134 * consumers. Right now 64 bit zone is used for counter(9) 135 * and pointer zone is used by flowtable. 136 */ 137 138 uma_zone_t pcpu_zone_64; 139 uma_zone_t pcpu_zone_ptr; 140 141 static void 142 pcpu_zones_startup(void) 143 { 144 145 pcpu_zone_64 = uma_zcreate("64 pcpu", sizeof(uint64_t), 146 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 147 148 if (sizeof(uint64_t) == sizeof(void *)) 149 pcpu_zone_ptr = pcpu_zone_64; 150 else 151 pcpu_zone_ptr = uma_zcreate("ptr pcpu", sizeof(void *), 152 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 153 } 154 SYSINIT(pcpu_zones, SI_SUB_KMEM, SI_ORDER_ANY, pcpu_zones_startup, NULL); 155 156 /* 157 * First-fit extent based allocator for allocating space in the per-cpu 158 * region reserved for modules. This is only intended for use by the 159 * kernel linkers to place module linker sets. 160 */ 161 void * 162 dpcpu_alloc(int size) 163 { 164 struct dpcpu_free *df; 165 void *s; 166 167 s = NULL; 168 size = roundup2(size, sizeof(void *)); 169 sx_xlock(&dpcpu_lock); 170 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 171 if (df->df_len < size) 172 continue; 173 if (df->df_len == size) { 174 s = (void *)df->df_start; 175 TAILQ_REMOVE(&dpcpu_head, df, df_link); 176 free(df, M_PCPU); 177 break; 178 } 179 s = (void *)df->df_start; 180 df->df_len -= size; 181 df->df_start = df->df_start + size; 182 break; 183 } 184 sx_xunlock(&dpcpu_lock); 185 186 return (s); 187 } 188 189 /* 190 * Free dynamic per-cpu space at module unload time. 191 */ 192 void 193 dpcpu_free(void *s, int size) 194 { 195 struct dpcpu_free *df; 196 struct dpcpu_free *dn; 197 uintptr_t start; 198 uintptr_t end; 199 200 size = roundup2(size, sizeof(void *)); 201 start = (uintptr_t)s; 202 end = start + size; 203 /* 204 * Free a region of space and merge it with as many neighbors as 205 * possible. Keeping the list sorted simplifies this operation. 206 */ 207 sx_xlock(&dpcpu_lock); 208 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 209 if (df->df_start > end) 210 break; 211 /* 212 * If we expand at the end of an entry we may have to 213 * merge it with the one following it as well. 214 */ 215 if (df->df_start + df->df_len == start) { 216 df->df_len += size; 217 dn = TAILQ_NEXT(df, df_link); 218 if (df->df_start + df->df_len == dn->df_start) { 219 df->df_len += dn->df_len; 220 TAILQ_REMOVE(&dpcpu_head, dn, df_link); 221 free(dn, M_PCPU); 222 } 223 sx_xunlock(&dpcpu_lock); 224 return; 225 } 226 if (df->df_start == end) { 227 df->df_start = start; 228 df->df_len += size; 229 sx_xunlock(&dpcpu_lock); 230 return; 231 } 232 } 233 dn = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 234 dn->df_start = start; 235 dn->df_len = size; 236 if (df) 237 TAILQ_INSERT_BEFORE(df, dn, df_link); 238 else 239 TAILQ_INSERT_TAIL(&dpcpu_head, dn, df_link); 240 sx_xunlock(&dpcpu_lock); 241 } 242 243 /* 244 * Initialize the per-cpu storage from an updated linker-set region. 245 */ 246 void 247 dpcpu_copy(void *s, int size) 248 { 249 #ifdef SMP 250 uintptr_t dpcpu; 251 int i; 252 253 CPU_FOREACH(i) { 254 dpcpu = dpcpu_off[i]; 255 if (dpcpu == 0) 256 continue; 257 memcpy((void *)(dpcpu + (uintptr_t)s), s, size); 258 } 259 #else 260 memcpy((void *)(dpcpu_off[0] + (uintptr_t)s), s, size); 261 #endif 262 } 263 264 /* 265 * Destroy a struct pcpu. 266 */ 267 void 268 pcpu_destroy(struct pcpu *pcpu) 269 { 270 271 STAILQ_REMOVE(&cpuhead, pcpu, pcpu, pc_allcpu); 272 cpuid_to_pcpu[pcpu->pc_cpuid] = NULL; 273 dpcpu_off[pcpu->pc_cpuid] = 0; 274 } 275 276 /* 277 * Locate a struct pcpu by cpu id. 278 */ 279 struct pcpu * 280 pcpu_find(u_int cpuid) 281 { 282 KASSERT(cpuid_to_pcpu[cpuid] != NULL, 283 ("Getting uninitialized PCPU %d", cpuid)); 284 285 return (cpuid_to_pcpu[cpuid]); 286 } 287 288 int 289 sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS) 290 { 291 uintptr_t dpcpu; 292 int64_t count; 293 int i; 294 295 count = 0; 296 CPU_FOREACH(i) { 297 dpcpu = dpcpu_off[i]; 298 if (dpcpu == 0) 299 continue; 300 count += *(int64_t *)(dpcpu + (uintptr_t)arg1); 301 } 302 return (SYSCTL_OUT(req, &count, sizeof(count))); 303 } 304 305 int 306 sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS) 307 { 308 uintptr_t dpcpu; 309 long count; 310 int i; 311 312 count = 0; 313 CPU_FOREACH(i) { 314 dpcpu = dpcpu_off[i]; 315 if (dpcpu == 0) 316 continue; 317 count += *(long *)(dpcpu + (uintptr_t)arg1); 318 } 319 return (SYSCTL_OUT(req, &count, sizeof(count))); 320 } 321 322 int 323 sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS) 324 { 325 uintptr_t dpcpu; 326 int count; 327 int i; 328 329 count = 0; 330 CPU_FOREACH(i) { 331 dpcpu = dpcpu_off[i]; 332 if (dpcpu == 0) 333 continue; 334 count += *(int *)(dpcpu + (uintptr_t)arg1); 335 } 336 return (SYSCTL_OUT(req, &count, sizeof(count))); 337 } 338 339 #ifdef DDB 340 DB_SHOW_COMMAND(dpcpu_off, db_show_dpcpu_off) 341 { 342 int id; 343 344 CPU_FOREACH(id) { 345 db_printf("dpcpu_off[%2d] = 0x%jx (+ DPCPU_START = %p)\n", 346 id, (uintmax_t)dpcpu_off[id], 347 (void *)(uintptr_t)(dpcpu_off[id] + DPCPU_START)); 348 } 349 } 350 351 static void 352 show_pcpu(struct pcpu *pc) 353 { 354 struct thread *td; 355 356 db_printf("cpuid = %d\n", pc->pc_cpuid); 357 db_printf("dynamic pcpu = %p\n", (void *)pc->pc_dynamic); 358 db_printf("curthread = "); 359 td = pc->pc_curthread; 360 if (td != NULL) 361 db_printf("%p: pid %d tid %d \"%s\"\n", td, td->td_proc->p_pid, 362 td->td_tid, td->td_name); 363 else 364 db_printf("none\n"); 365 db_printf("curpcb = %p\n", pc->pc_curpcb); 366 db_printf("fpcurthread = "); 367 td = pc->pc_fpcurthread; 368 if (td != NULL) 369 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 370 td->td_name); 371 else 372 db_printf("none\n"); 373 db_printf("idlethread = "); 374 td = pc->pc_idlethread; 375 if (td != NULL) 376 db_printf("%p: tid %d \"%s\"\n", td, td->td_tid, td->td_name); 377 else 378 db_printf("none\n"); 379 db_show_mdpcpu(pc); 380 381 #ifdef VIMAGE 382 db_printf("curvnet = %p\n", pc->pc_curthread->td_vnet); 383 #endif 384 385 #ifdef WITNESS 386 db_printf("spin locks held:\n"); 387 witness_list_locks(&pc->pc_spinlocks, db_printf); 388 #endif 389 } 390 391 DB_SHOW_COMMAND(pcpu, db_show_pcpu) 392 { 393 struct pcpu *pc; 394 int id; 395 396 if (have_addr) 397 id = ((addr >> 4) % 16) * 10 + (addr % 16); 398 else 399 id = PCPU_GET(cpuid); 400 pc = pcpu_find(id); 401 if (pc == NULL) { 402 db_printf("CPU %d not found\n", id); 403 return; 404 } 405 show_pcpu(pc); 406 } 407 408 DB_SHOW_ALL_COMMAND(pcpu, db_show_cpu_all) 409 { 410 struct pcpu *pc; 411 int id; 412 413 db_printf("Current CPU: %d\n\n", PCPU_GET(cpuid)); 414 CPU_FOREACH(id) { 415 pc = pcpu_find(id); 416 if (pc != NULL) { 417 show_pcpu(pc); 418 db_printf("\n"); 419 } 420 } 421 } 422 DB_SHOW_ALIAS(allpcpu, db_show_cpu_all); 423 #endif 424