1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /* 37 * This module provides MI support for per-cpu data. 38 * 39 * Each architecture determines the mapping of logical CPU IDs to physical 40 * CPUs. The requirements of this mapping are as follows: 41 * - Logical CPU IDs must reside in the range 0 ... MAXCPU - 1. 42 * - The mapping is not required to be dense. That is, there may be 43 * gaps in the mappings. 44 * - The platform sets the value of MAXCPU in <machine/param.h>. 45 * - It is suggested, but not required, that in the non-SMP case, the 46 * platform define MAXCPU to be 1 and define the logical ID of the 47 * sole CPU as 0. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 #include "opt_ddb.h" 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/sysctl.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/pcpu.h> 61 #include <sys/proc.h> 62 #include <sys/smp.h> 63 #include <sys/sx.h> 64 #include <vm/uma.h> 65 #include <ddb/ddb.h> 66 67 static MALLOC_DEFINE(M_PCPU, "Per-cpu", "Per-cpu resource accouting."); 68 69 struct dpcpu_free { 70 uintptr_t df_start; 71 int df_len; 72 TAILQ_ENTRY(dpcpu_free) df_link; 73 }; 74 75 DPCPU_DEFINE_STATIC(char, modspace[DPCPU_MODMIN] __aligned(__alignof(void *))); 76 static TAILQ_HEAD(, dpcpu_free) dpcpu_head = TAILQ_HEAD_INITIALIZER(dpcpu_head); 77 static struct sx dpcpu_lock; 78 uintptr_t dpcpu_off[MAXCPU]; 79 struct pcpu *cpuid_to_pcpu[MAXCPU]; 80 struct cpuhead cpuhead = STAILQ_HEAD_INITIALIZER(cpuhead); 81 82 /* 83 * Initialize the MI portions of a struct pcpu. 84 */ 85 void 86 pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) 87 { 88 89 bzero(pcpu, size); 90 KASSERT(cpuid >= 0 && cpuid < MAXCPU, 91 ("pcpu_init: invalid cpuid %d", cpuid)); 92 pcpu->pc_cpuid = cpuid; 93 cpuid_to_pcpu[cpuid] = pcpu; 94 STAILQ_INSERT_TAIL(&cpuhead, pcpu, pc_allcpu); 95 cpu_pcpu_init(pcpu, cpuid, size); 96 pcpu->pc_rm_queue.rmq_next = &pcpu->pc_rm_queue; 97 pcpu->pc_rm_queue.rmq_prev = &pcpu->pc_rm_queue; 98 pcpu->pc_zpcpu_offset = zpcpu_offset_cpu(cpuid); 99 } 100 101 void 102 dpcpu_init(void *dpcpu, int cpuid) 103 { 104 struct pcpu *pcpu; 105 106 TSENTER(); 107 pcpu = pcpu_find(cpuid); 108 pcpu->pc_dynamic = (uintptr_t)dpcpu - DPCPU_START; 109 110 /* 111 * Initialize defaults from our linker section. 112 */ 113 memcpy(dpcpu, (void *)DPCPU_START, DPCPU_BYTES); 114 115 /* 116 * Place it in the global pcpu offset array. 117 */ 118 dpcpu_off[cpuid] = pcpu->pc_dynamic; 119 TSEXIT(); 120 } 121 122 static void 123 dpcpu_startup(void *dummy __unused) 124 { 125 struct dpcpu_free *df; 126 127 df = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 128 df->df_start = (uintptr_t)&DPCPU_NAME(modspace); 129 df->df_len = DPCPU_MODMIN; 130 TAILQ_INSERT_HEAD(&dpcpu_head, df, df_link); 131 sx_init(&dpcpu_lock, "dpcpu alloc lock"); 132 } 133 SYSINIT(dpcpu, SI_SUB_KLD, SI_ORDER_FIRST, dpcpu_startup, NULL); 134 135 /* 136 * UMA_ZONE_PCPU zones for general kernel use. 137 */ 138 uma_zone_t pcpu_zone_4; 139 uma_zone_t pcpu_zone_8; 140 uma_zone_t pcpu_zone_16; 141 uma_zone_t pcpu_zone_32; 142 uma_zone_t pcpu_zone_64; 143 144 static void 145 pcpu_zones_startup(void) 146 { 147 148 pcpu_zone_4 = uma_zcreate("pcpu-4", 4, 149 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 150 pcpu_zone_8 = uma_zcreate("pcpu-8", 8, 151 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 152 pcpu_zone_16 = uma_zcreate("pcpu-16", 16, 153 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 154 pcpu_zone_32 = uma_zcreate("pcpu-32", 32, 155 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 156 pcpu_zone_64 = uma_zcreate("pcpu-64", 64, 157 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 158 } 159 SYSINIT(pcpu_zones, SI_SUB_COUNTER, SI_ORDER_FIRST, pcpu_zones_startup, NULL); 160 161 /* 162 * First-fit extent based allocator for allocating space in the per-cpu 163 * region reserved for modules. This is only intended for use by the 164 * kernel linkers to place module linker sets. 165 */ 166 void * 167 dpcpu_alloc(int size) 168 { 169 struct dpcpu_free *df; 170 void *s; 171 172 s = NULL; 173 size = roundup2(size, sizeof(void *)); 174 sx_xlock(&dpcpu_lock); 175 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 176 if (df->df_len < size) 177 continue; 178 if (df->df_len == size) { 179 s = (void *)df->df_start; 180 TAILQ_REMOVE(&dpcpu_head, df, df_link); 181 free(df, M_PCPU); 182 break; 183 } 184 s = (void *)df->df_start; 185 df->df_len -= size; 186 df->df_start = df->df_start + size; 187 break; 188 } 189 sx_xunlock(&dpcpu_lock); 190 191 return (s); 192 } 193 194 /* 195 * Free dynamic per-cpu space at module unload time. 196 */ 197 void 198 dpcpu_free(void *s, int size) 199 { 200 struct dpcpu_free *df; 201 struct dpcpu_free *dn; 202 uintptr_t start; 203 uintptr_t end; 204 205 size = roundup2(size, sizeof(void *)); 206 start = (uintptr_t)s; 207 end = start + size; 208 /* 209 * Free a region of space and merge it with as many neighbors as 210 * possible. Keeping the list sorted simplifies this operation. 211 */ 212 sx_xlock(&dpcpu_lock); 213 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 214 if (df->df_start > end) 215 break; 216 /* 217 * If we expand at the end of an entry we may have to 218 * merge it with the one following it as well. 219 */ 220 if (df->df_start + df->df_len == start) { 221 df->df_len += size; 222 dn = TAILQ_NEXT(df, df_link); 223 if (df->df_start + df->df_len == dn->df_start) { 224 df->df_len += dn->df_len; 225 TAILQ_REMOVE(&dpcpu_head, dn, df_link); 226 free(dn, M_PCPU); 227 } 228 sx_xunlock(&dpcpu_lock); 229 return; 230 } 231 if (df->df_start == end) { 232 df->df_start = start; 233 df->df_len += size; 234 sx_xunlock(&dpcpu_lock); 235 return; 236 } 237 } 238 dn = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 239 dn->df_start = start; 240 dn->df_len = size; 241 if (df) 242 TAILQ_INSERT_BEFORE(df, dn, df_link); 243 else 244 TAILQ_INSERT_TAIL(&dpcpu_head, dn, df_link); 245 sx_xunlock(&dpcpu_lock); 246 } 247 248 /* 249 * Initialize the per-cpu storage from an updated linker-set region. 250 */ 251 void 252 dpcpu_copy(void *s, int size) 253 { 254 #ifdef SMP 255 uintptr_t dpcpu; 256 int i; 257 258 CPU_FOREACH(i) { 259 dpcpu = dpcpu_off[i]; 260 if (dpcpu == 0) 261 continue; 262 memcpy((void *)(dpcpu + (uintptr_t)s), s, size); 263 } 264 #else 265 memcpy((void *)(dpcpu_off[0] + (uintptr_t)s), s, size); 266 #endif 267 } 268 269 /* 270 * Destroy a struct pcpu. 271 */ 272 void 273 pcpu_destroy(struct pcpu *pcpu) 274 { 275 276 STAILQ_REMOVE(&cpuhead, pcpu, pcpu, pc_allcpu); 277 cpuid_to_pcpu[pcpu->pc_cpuid] = NULL; 278 dpcpu_off[pcpu->pc_cpuid] = 0; 279 } 280 281 /* 282 * Locate a struct pcpu by cpu id. 283 */ 284 struct pcpu * 285 pcpu_find(u_int cpuid) 286 { 287 288 return (cpuid_to_pcpu[cpuid]); 289 } 290 291 int 292 sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS) 293 { 294 uintptr_t dpcpu; 295 int64_t count; 296 int i; 297 298 count = 0; 299 CPU_FOREACH(i) { 300 dpcpu = dpcpu_off[i]; 301 if (dpcpu == 0) 302 continue; 303 count += *(int64_t *)(dpcpu + (uintptr_t)arg1); 304 } 305 return (SYSCTL_OUT(req, &count, sizeof(count))); 306 } 307 308 int 309 sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS) 310 { 311 uintptr_t dpcpu; 312 long count; 313 int i; 314 315 count = 0; 316 CPU_FOREACH(i) { 317 dpcpu = dpcpu_off[i]; 318 if (dpcpu == 0) 319 continue; 320 count += *(long *)(dpcpu + (uintptr_t)arg1); 321 } 322 return (SYSCTL_OUT(req, &count, sizeof(count))); 323 } 324 325 int 326 sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS) 327 { 328 uintptr_t dpcpu; 329 int count; 330 int i; 331 332 count = 0; 333 CPU_FOREACH(i) { 334 dpcpu = dpcpu_off[i]; 335 if (dpcpu == 0) 336 continue; 337 count += *(int *)(dpcpu + (uintptr_t)arg1); 338 } 339 return (SYSCTL_OUT(req, &count, sizeof(count))); 340 } 341 342 #ifdef DDB 343 DB_SHOW_COMMAND_FLAGS(dpcpu_off, db_show_dpcpu_off, DB_CMD_MEMSAFE) 344 { 345 int id; 346 347 CPU_FOREACH(id) { 348 db_printf("dpcpu_off[%2d] = 0x%jx (+ DPCPU_START = %p)\n", 349 id, (uintmax_t)dpcpu_off[id], 350 (void *)(uintptr_t)(dpcpu_off[id] + DPCPU_START)); 351 } 352 } 353 354 static void 355 show_pcpu(struct pcpu *pc) 356 { 357 struct thread *td; 358 359 db_printf("cpuid = %d\n", pc->pc_cpuid); 360 db_printf("dynamic pcpu = %p\n", (void *)pc->pc_dynamic); 361 db_printf("curthread = "); 362 td = pc->pc_curthread; 363 if (td != NULL) 364 db_printf("%p: pid %d tid %d critnest %d \"%s\"\n", td, 365 td->td_proc->p_pid, td->td_tid, td->td_critnest, 366 td->td_name); 367 else 368 db_printf("none\n"); 369 db_printf("curpcb = %p\n", pc->pc_curpcb); 370 db_printf("fpcurthread = "); 371 td = pc->pc_fpcurthread; 372 if (td != NULL) 373 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 374 td->td_name); 375 else 376 db_printf("none\n"); 377 db_printf("idlethread = "); 378 td = pc->pc_idlethread; 379 if (td != NULL) 380 db_printf("%p: tid %d \"%s\"\n", td, td->td_tid, td->td_name); 381 else 382 db_printf("none\n"); 383 db_show_mdpcpu(pc); 384 385 #ifdef VIMAGE 386 db_printf("curvnet = %p\n", pc->pc_curthread->td_vnet); 387 #endif 388 389 #ifdef WITNESS 390 db_printf("spin locks held:\n"); 391 witness_list_locks(&pc->pc_spinlocks, db_printf); 392 #endif 393 } 394 395 DB_SHOW_COMMAND_FLAGS(pcpu, db_show_pcpu, DB_CMD_MEMSAFE) 396 { 397 struct pcpu *pc; 398 int id; 399 400 if (have_addr) 401 id = ((addr >> 4) % 16) * 10 + (addr % 16); 402 else 403 id = PCPU_GET(cpuid); 404 pc = pcpu_find(id); 405 if (pc == NULL) { 406 db_printf("CPU %d not found\n", id); 407 return; 408 } 409 show_pcpu(pc); 410 } 411 412 DB_SHOW_ALL_COMMAND(pcpu, db_show_cpu_all) 413 { 414 struct pcpu *pc; 415 int id; 416 417 db_printf("Current CPU: %d\n\n", PCPU_GET(cpuid)); 418 CPU_FOREACH(id) { 419 pc = pcpu_find(id); 420 if (pc != NULL) { 421 show_pcpu(pc); 422 db_printf("\n"); 423 } 424 } 425 } 426 DB_SHOW_ALIAS_FLAGS(allpcpu, db_show_cpu_all, DB_CMD_MEMSAFE); 427 #endif 428