1 /*- 2 * Copyright (c) 2015-2016 Svatopluk Kraus 3 * Copyright (c) 2015-2016 Michal Meloun 4 * All rights reserved. 5 * Copyright (c) 2015-2016 The FreeBSD Foundation 6 * Copyright (c) 2021 Jessica Clarke <jrtc27@FreeBSD.org> 7 * 8 * Portions of this software were developed by Andrew Turner under 9 * sponsorship from the FreeBSD Foundation. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 /* 35 * New-style Interrupt Framework 36 * 37 * TODO: - add support for disconnected PICs. 38 * - to support IPI (PPI) enabling on other CPUs if already started. 39 * - to complete things for removable PICs. 40 */ 41 42 #include "opt_ddb.h" 43 #include "opt_hwpmc_hooks.h" 44 #include "opt_iommu.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/asan.h> 49 #include <sys/bitstring.h> 50 #include <sys/bus.h> 51 #include <sys/conf.h> 52 #include <sys/cpuset.h> 53 #include <sys/interrupt.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/msan.h> 58 #include <sys/mutex.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/rman.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/taskqueue.h> 67 #include <sys/tree.h> 68 #include <sys/vmmeter.h> 69 #ifdef HWPMC_HOOKS 70 #include <sys/pmckern.h> 71 #endif 72 73 #include <machine/atomic.h> 74 #include <machine/cpu.h> 75 #include <machine/intr.h> 76 #include <machine/smp.h> 77 #include <machine/stdarg.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #ifdef IOMMU 84 #include <dev/iommu/iommu_msi.h> 85 #endif 86 87 #include "pic_if.h" 88 #include "msi_if.h" 89 90 #define INTRNAME_LEN (2*MAXCOMLEN + 1) 91 92 /* 93 * Archs may define multiple roots with INTR_ROOT_NUM to support different kinds 94 * of interrupts (e.g. arm64 FIQs which use a different exception vector than 95 * IRQs). 96 */ 97 #if !defined(INTR_ROOT_NUM) 98 #define INTR_ROOT_NUM 1 99 #endif 100 101 #ifdef DEBUG 102 #define debugf(fmt, args...) do { printf("%s(): ", __func__); \ 103 printf(fmt,##args); } while (0) 104 #else 105 #define debugf(fmt, args...) 106 #endif 107 108 MALLOC_DECLARE(M_INTRNG); 109 MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling"); 110 111 /* Root interrupt controller stuff. */ 112 struct intr_irq_root { 113 device_t dev; 114 intr_irq_filter_t *filter; 115 void *arg; 116 }; 117 118 static struct intr_irq_root intr_irq_roots[INTR_ROOT_NUM]; 119 120 struct intr_pic_child { 121 SLIST_ENTRY(intr_pic_child) pc_next; 122 struct intr_pic *pc_pic; 123 intr_child_irq_filter_t *pc_filter; 124 void *pc_filter_arg; 125 uintptr_t pc_start; 126 uintptr_t pc_length; 127 }; 128 129 /* Interrupt controller definition. */ 130 struct intr_pic { 131 SLIST_ENTRY(intr_pic) pic_next; 132 intptr_t pic_xref; /* hardware identification */ 133 device_t pic_dev; 134 /* Only one of FLAG_PIC or FLAG_MSI may be set */ 135 #define FLAG_PIC (1 << 0) 136 #define FLAG_MSI (1 << 1) 137 #define FLAG_TYPE_MASK (FLAG_PIC | FLAG_MSI) 138 u_int pic_flags; 139 struct mtx pic_child_lock; 140 SLIST_HEAD(, intr_pic_child) pic_children; 141 }; 142 143 #ifdef SMP 144 #define INTR_IPI_NAMELEN (MAXCOMLEN + 1) 145 146 struct intr_ipi { 147 intr_ipi_handler_t *ii_handler; 148 void *ii_handler_arg; 149 struct intr_irqsrc *ii_isrc; 150 char ii_name[INTR_IPI_NAMELEN]; 151 u_long *ii_count; 152 }; 153 154 static device_t intr_ipi_dev; 155 static u_int intr_ipi_dev_priority; 156 static bool intr_ipi_dev_frozen; 157 #endif 158 159 static struct mtx pic_list_lock; 160 static SLIST_HEAD(, intr_pic) pic_list; 161 162 static struct intr_pic *pic_lookup(device_t dev, intptr_t xref, u_int flags); 163 164 /* Interrupt source definition. */ 165 static struct mtx isrc_table_lock; 166 static struct intr_irqsrc **irq_sources; 167 static u_int irq_next_free; 168 169 #ifdef SMP 170 #ifdef EARLY_AP_STARTUP 171 static bool irq_assign_cpu = true; 172 #else 173 static bool irq_assign_cpu = false; 174 #endif 175 176 static struct intr_ipi ipi_sources[INTR_IPI_COUNT]; 177 #endif 178 179 u_int intr_nirq = NIRQ; 180 SYSCTL_UINT(_machdep, OID_AUTO, nirq, CTLFLAG_RDTUN, &intr_nirq, 0, 181 "Number of IRQs"); 182 183 /* Data for MI statistics reporting. */ 184 u_long *intrcnt; 185 char *intrnames; 186 size_t sintrcnt; 187 size_t sintrnames; 188 int nintrcnt; 189 static bitstr_t *intrcnt_bitmap; 190 191 static struct intr_irqsrc *intr_map_get_isrc(u_int res_id); 192 static void intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc); 193 static struct intr_map_data * intr_map_get_map_data(u_int res_id); 194 static void intr_map_copy_map_data(u_int res_id, device_t *dev, intptr_t *xref, 195 struct intr_map_data **data); 196 197 /* 198 * Interrupt framework initialization routine. 199 */ 200 static void 201 intr_irq_init(void *dummy __unused) 202 { 203 204 SLIST_INIT(&pic_list); 205 mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF); 206 207 mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF); 208 209 /* 210 * - 2 counters for each I/O interrupt. 211 * - mp_maxid + 1 counters for each IPI counters for SMP. 212 */ 213 nintrcnt = intr_nirq * 2; 214 #ifdef SMP 215 nintrcnt += INTR_IPI_COUNT * (mp_maxid + 1); 216 #endif 217 218 intrcnt = mallocarray(nintrcnt, sizeof(u_long), M_INTRNG, 219 M_WAITOK | M_ZERO); 220 intrnames = mallocarray(nintrcnt, INTRNAME_LEN, M_INTRNG, 221 M_WAITOK | M_ZERO); 222 sintrcnt = nintrcnt * sizeof(u_long); 223 sintrnames = nintrcnt * INTRNAME_LEN; 224 225 /* Allocate the bitmap tracking counter allocations. */ 226 intrcnt_bitmap = bit_alloc(nintrcnt, M_INTRNG, M_WAITOK | M_ZERO); 227 228 irq_sources = mallocarray(intr_nirq, sizeof(struct intr_irqsrc*), 229 M_INTRNG, M_WAITOK | M_ZERO); 230 } 231 SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL); 232 233 static void 234 intrcnt_setname(const char *name, int index) 235 { 236 237 snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s", 238 INTRNAME_LEN - 1, name); 239 } 240 241 /* 242 * Update name for interrupt source with interrupt event. 243 */ 244 static void 245 intrcnt_updatename(struct intr_irqsrc *isrc) 246 { 247 248 /* QQQ: What about stray counter name? */ 249 mtx_assert(&isrc_table_lock, MA_OWNED); 250 intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index); 251 } 252 253 /* 254 * Virtualization for interrupt source interrupt counter increment. 255 */ 256 static inline void 257 isrc_increment_count(struct intr_irqsrc *isrc) 258 { 259 260 if (isrc->isrc_flags & INTR_ISRCF_PPI) 261 atomic_add_long(&isrc->isrc_count[0], 1); 262 else 263 isrc->isrc_count[0]++; 264 } 265 266 /* 267 * Virtualization for interrupt source interrupt stray counter increment. 268 */ 269 static inline void 270 isrc_increment_straycount(struct intr_irqsrc *isrc) 271 { 272 273 isrc->isrc_count[1]++; 274 } 275 276 /* 277 * Virtualization for interrupt source interrupt name update. 278 */ 279 static void 280 isrc_update_name(struct intr_irqsrc *isrc, const char *name) 281 { 282 char str[INTRNAME_LEN]; 283 284 mtx_assert(&isrc_table_lock, MA_OWNED); 285 286 if (name != NULL) { 287 snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name); 288 intrcnt_setname(str, isrc->isrc_index); 289 snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name, 290 name); 291 intrcnt_setname(str, isrc->isrc_index + 1); 292 } else { 293 snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name); 294 intrcnt_setname(str, isrc->isrc_index); 295 snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name); 296 intrcnt_setname(str, isrc->isrc_index + 1); 297 } 298 } 299 300 /* 301 * Virtualization for interrupt source interrupt counters setup. 302 */ 303 static void 304 isrc_setup_counters(struct intr_irqsrc *isrc) 305 { 306 int index; 307 308 mtx_assert(&isrc_table_lock, MA_OWNED); 309 310 /* 311 * Allocate two counter values, the second tracking "stray" interrupts. 312 */ 313 bit_ffc_area(intrcnt_bitmap, nintrcnt, 2, &index); 314 if (index == -1) 315 panic("Failed to allocate 2 counters. Array exhausted?"); 316 bit_nset(intrcnt_bitmap, index, index + 1); 317 isrc->isrc_index = index; 318 isrc->isrc_count = &intrcnt[index]; 319 isrc_update_name(isrc, NULL); 320 } 321 322 /* 323 * Virtualization for interrupt source interrupt counters release. 324 */ 325 static void 326 isrc_release_counters(struct intr_irqsrc *isrc) 327 { 328 int idx = isrc->isrc_index; 329 330 mtx_assert(&isrc_table_lock, MA_OWNED); 331 332 bit_nclear(intrcnt_bitmap, idx, idx + 1); 333 } 334 335 /* 336 * Main interrupt dispatch handler. It's called straight 337 * from the assembler, where CPU interrupt is served. 338 */ 339 void 340 intr_irq_handler(struct trapframe *tf, uint32_t rootnum) 341 { 342 struct trapframe * oldframe; 343 struct thread * td; 344 struct intr_irq_root *root; 345 346 KASSERT(rootnum < INTR_ROOT_NUM, 347 ("%s: invalid interrupt root %d", __func__, rootnum)); 348 349 root = &intr_irq_roots[rootnum]; 350 KASSERT(root->filter != NULL, ("%s: no filter", __func__)); 351 352 kasan_mark(tf, sizeof(*tf), sizeof(*tf), 0); 353 kmsan_mark(tf, sizeof(*tf), KMSAN_STATE_INITED); 354 355 VM_CNT_INC(v_intr); 356 critical_enter(); 357 td = curthread; 358 oldframe = td->td_intr_frame; 359 td->td_intr_frame = tf; 360 (root->filter)(root->arg); 361 td->td_intr_frame = oldframe; 362 critical_exit(); 363 #ifdef HWPMC_HOOKS 364 if (pmc_hook && TRAPF_USERMODE(tf) && 365 (PCPU_GET(curthread)->td_pflags & TDP_CALLCHAIN)) 366 pmc_hook(PCPU_GET(curthread), PMC_FN_USER_CALLCHAIN, tf); 367 #endif 368 } 369 370 int 371 intr_child_irq_handler(struct intr_pic *parent, uintptr_t irq) 372 { 373 struct intr_pic_child *child; 374 bool found; 375 376 found = false; 377 mtx_lock_spin(&parent->pic_child_lock); 378 SLIST_FOREACH(child, &parent->pic_children, pc_next) { 379 if (child->pc_start <= irq && 380 irq < (child->pc_start + child->pc_length)) { 381 found = true; 382 break; 383 } 384 } 385 mtx_unlock_spin(&parent->pic_child_lock); 386 387 if (found) 388 return (child->pc_filter(child->pc_filter_arg, irq)); 389 390 return (FILTER_STRAY); 391 } 392 393 /* 394 * interrupt controller dispatch function for interrupts. It should 395 * be called straight from the interrupt controller, when associated interrupt 396 * source is learned. 397 */ 398 int 399 intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf) 400 { 401 402 KASSERT(isrc != NULL, ("%s: no source", __func__)); 403 404 if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) 405 isrc_increment_count(isrc); 406 407 #ifdef INTR_SOLO 408 if (isrc->isrc_filter != NULL) { 409 int error; 410 error = isrc->isrc_filter(isrc->isrc_arg, tf); 411 PIC_POST_FILTER(isrc->isrc_dev, isrc); 412 if (error == FILTER_HANDLED) 413 return (0); 414 } else 415 #endif 416 if (isrc->isrc_event != NULL) { 417 if (intr_event_handle(isrc->isrc_event, tf) == 0) 418 return (0); 419 } 420 421 if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) 422 isrc_increment_straycount(isrc); 423 return (EINVAL); 424 } 425 426 /* 427 * Alloc unique interrupt number (resource handle) for interrupt source. 428 * 429 * There could be various strategies how to allocate free interrupt number 430 * (resource handle) for new interrupt source. 431 * 432 * 1. Handles are always allocated forward, so handles are not recycled 433 * immediately. However, if only one free handle left which is reused 434 * constantly... 435 */ 436 static inline int 437 isrc_alloc_irq(struct intr_irqsrc *isrc) 438 { 439 u_int irq; 440 441 mtx_assert(&isrc_table_lock, MA_OWNED); 442 443 if (irq_next_free >= intr_nirq) 444 return (ENOSPC); 445 446 for (irq = irq_next_free; irq < intr_nirq; irq++) { 447 if (irq_sources[irq] == NULL) 448 goto found; 449 } 450 for (irq = 0; irq < irq_next_free; irq++) { 451 if (irq_sources[irq] == NULL) 452 goto found; 453 } 454 455 irq_next_free = intr_nirq; 456 return (ENOSPC); 457 458 found: 459 isrc->isrc_irq = irq; 460 irq_sources[irq] = isrc; 461 462 irq_next_free = irq + 1; 463 if (irq_next_free >= intr_nirq) 464 irq_next_free = 0; 465 return (0); 466 } 467 468 /* 469 * Free unique interrupt number (resource handle) from interrupt source. 470 */ 471 static inline int 472 isrc_free_irq(struct intr_irqsrc *isrc) 473 { 474 475 mtx_assert(&isrc_table_lock, MA_OWNED); 476 477 if (isrc->isrc_irq >= intr_nirq) 478 return (EINVAL); 479 if (irq_sources[isrc->isrc_irq] != isrc) 480 return (EINVAL); 481 482 irq_sources[isrc->isrc_irq] = NULL; 483 isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */ 484 485 /* 486 * If we are recovering from the state irq_sources table is full, 487 * then the following allocation should check the entire table. This 488 * will ensure maximum separation of allocation order from release 489 * order. 490 */ 491 if (irq_next_free >= intr_nirq) 492 irq_next_free = 0; 493 494 return (0); 495 } 496 497 device_t 498 intr_irq_root_device(uint32_t rootnum) 499 { 500 KASSERT(rootnum < INTR_ROOT_NUM, 501 ("%s: invalid interrupt root %d", __func__, rootnum)); 502 return (intr_irq_roots[rootnum].dev); 503 } 504 505 /* 506 * Initialize interrupt source and register it into global interrupt table. 507 */ 508 int 509 intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags, 510 const char *fmt, ...) 511 { 512 int error; 513 va_list ap; 514 515 bzero(isrc, sizeof(struct intr_irqsrc)); 516 isrc->isrc_dev = dev; 517 isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */ 518 isrc->isrc_flags = flags; 519 520 va_start(ap, fmt); 521 vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap); 522 va_end(ap); 523 524 mtx_lock(&isrc_table_lock); 525 error = isrc_alloc_irq(isrc); 526 if (error != 0) { 527 mtx_unlock(&isrc_table_lock); 528 return (error); 529 } 530 /* 531 * Setup interrupt counters, but not for IPI sources. Those are setup 532 * later and only for used ones (up to INTR_IPI_COUNT) to not exhaust 533 * our counter pool. 534 */ 535 if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) 536 isrc_setup_counters(isrc); 537 mtx_unlock(&isrc_table_lock); 538 return (0); 539 } 540 541 /* 542 * Deregister interrupt source from global interrupt table. 543 */ 544 int 545 intr_isrc_deregister(struct intr_irqsrc *isrc) 546 { 547 int error; 548 549 mtx_lock(&isrc_table_lock); 550 if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) 551 isrc_release_counters(isrc); 552 error = isrc_free_irq(isrc); 553 mtx_unlock(&isrc_table_lock); 554 return (error); 555 } 556 557 #ifdef SMP 558 /* 559 * A support function for a PIC to decide if provided ISRC should be inited 560 * on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of 561 * struct intr_irqsrc is the following: 562 * 563 * If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus 564 * set in isrc_cpu. If not, the ISRC should be inited on every cpu and 565 * isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct. 566 */ 567 bool 568 intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu) 569 { 570 571 if (isrc->isrc_handlers == 0) 572 return (false); 573 if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0) 574 return (false); 575 if (isrc->isrc_flags & INTR_ISRCF_BOUND) 576 return (CPU_ISSET(cpu, &isrc->isrc_cpu)); 577 578 CPU_SET(cpu, &isrc->isrc_cpu); 579 return (true); 580 } 581 #endif 582 583 #ifdef INTR_SOLO 584 /* 585 * Setup filter into interrupt source. 586 */ 587 static int 588 iscr_setup_filter(struct intr_irqsrc *isrc, const char *name, 589 intr_irq_filter_t *filter, void *arg, void **cookiep) 590 { 591 592 if (filter == NULL) 593 return (EINVAL); 594 595 mtx_lock(&isrc_table_lock); 596 /* 597 * Make sure that we do not mix the two ways 598 * how we handle interrupt sources. 599 */ 600 if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) { 601 mtx_unlock(&isrc_table_lock); 602 return (EBUSY); 603 } 604 isrc->isrc_filter = filter; 605 isrc->isrc_arg = arg; 606 isrc_update_name(isrc, name); 607 mtx_unlock(&isrc_table_lock); 608 609 *cookiep = isrc; 610 return (0); 611 } 612 #endif 613 614 /* 615 * Interrupt source pre_ithread method for MI interrupt framework. 616 */ 617 static void 618 intr_isrc_pre_ithread(void *arg) 619 { 620 struct intr_irqsrc *isrc = arg; 621 622 PIC_PRE_ITHREAD(isrc->isrc_dev, isrc); 623 } 624 625 /* 626 * Interrupt source post_ithread method for MI interrupt framework. 627 */ 628 static void 629 intr_isrc_post_ithread(void *arg) 630 { 631 struct intr_irqsrc *isrc = arg; 632 633 PIC_POST_ITHREAD(isrc->isrc_dev, isrc); 634 } 635 636 /* 637 * Interrupt source post_filter method for MI interrupt framework. 638 */ 639 static void 640 intr_isrc_post_filter(void *arg) 641 { 642 struct intr_irqsrc *isrc = arg; 643 644 PIC_POST_FILTER(isrc->isrc_dev, isrc); 645 } 646 647 /* 648 * Interrupt source assign_cpu method for MI interrupt framework. 649 */ 650 static int 651 intr_isrc_assign_cpu(void *arg, int cpu) 652 { 653 #ifdef SMP 654 struct intr_irqsrc *isrc = arg; 655 int error; 656 657 mtx_lock(&isrc_table_lock); 658 if (cpu == NOCPU) { 659 CPU_ZERO(&isrc->isrc_cpu); 660 isrc->isrc_flags &= ~INTR_ISRCF_BOUND; 661 } else { 662 CPU_SETOF(cpu, &isrc->isrc_cpu); 663 isrc->isrc_flags |= INTR_ISRCF_BOUND; 664 } 665 666 /* 667 * In NOCPU case, it's up to PIC to either leave ISRC on same CPU or 668 * re-balance it to another CPU or enable it on more CPUs. However, 669 * PIC is expected to change isrc_cpu appropriately to keep us well 670 * informed if the call is successful. 671 */ 672 if (irq_assign_cpu) { 673 error = PIC_BIND_INTR(isrc->isrc_dev, isrc); 674 if (error) { 675 CPU_ZERO(&isrc->isrc_cpu); 676 mtx_unlock(&isrc_table_lock); 677 return (error); 678 } 679 } 680 mtx_unlock(&isrc_table_lock); 681 return (0); 682 #else 683 return (EOPNOTSUPP); 684 #endif 685 } 686 687 /* 688 * Create interrupt event for interrupt source. 689 */ 690 static int 691 isrc_event_create(struct intr_irqsrc *isrc) 692 { 693 struct intr_event *ie; 694 int error; 695 696 error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq, 697 intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter, 698 intr_isrc_assign_cpu, "%s:", isrc->isrc_name); 699 if (error) 700 return (error); 701 702 mtx_lock(&isrc_table_lock); 703 /* 704 * Make sure that we do not mix the two ways 705 * how we handle interrupt sources. Let contested event wins. 706 */ 707 #ifdef INTR_SOLO 708 if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) { 709 #else 710 if (isrc->isrc_event != NULL) { 711 #endif 712 mtx_unlock(&isrc_table_lock); 713 intr_event_destroy(ie); 714 return (isrc->isrc_event != NULL ? EBUSY : 0); 715 } 716 isrc->isrc_event = ie; 717 mtx_unlock(&isrc_table_lock); 718 719 return (0); 720 } 721 #ifdef notyet 722 /* 723 * Destroy interrupt event for interrupt source. 724 */ 725 static void 726 isrc_event_destroy(struct intr_irqsrc *isrc) 727 { 728 struct intr_event *ie; 729 730 mtx_lock(&isrc_table_lock); 731 ie = isrc->isrc_event; 732 isrc->isrc_event = NULL; 733 mtx_unlock(&isrc_table_lock); 734 735 if (ie != NULL) 736 intr_event_destroy(ie); 737 } 738 #endif 739 /* 740 * Add handler to interrupt source. 741 */ 742 static int 743 isrc_add_handler(struct intr_irqsrc *isrc, const char *name, 744 driver_filter_t filter, driver_intr_t handler, void *arg, 745 enum intr_type flags, void **cookiep) 746 { 747 int error; 748 749 if (isrc->isrc_event == NULL) { 750 error = isrc_event_create(isrc); 751 if (error) 752 return (error); 753 } 754 755 error = intr_event_add_handler(isrc->isrc_event, name, filter, handler, 756 arg, intr_priority(flags), flags, cookiep); 757 if (error == 0) { 758 mtx_lock(&isrc_table_lock); 759 intrcnt_updatename(isrc); 760 mtx_unlock(&isrc_table_lock); 761 } 762 763 return (error); 764 } 765 766 /* 767 * Lookup interrupt controller locked. 768 */ 769 static inline struct intr_pic * 770 pic_lookup_locked(device_t dev, intptr_t xref, u_int flags) 771 { 772 struct intr_pic *pic; 773 774 mtx_assert(&pic_list_lock, MA_OWNED); 775 776 if (dev == NULL && xref == 0) 777 return (NULL); 778 779 /* Note that pic->pic_dev is never NULL on registered PIC. */ 780 SLIST_FOREACH(pic, &pic_list, pic_next) { 781 if ((pic->pic_flags & FLAG_TYPE_MASK) != 782 (flags & FLAG_TYPE_MASK)) 783 continue; 784 785 if (dev == NULL) { 786 if (xref == pic->pic_xref) 787 return (pic); 788 } else if (xref == 0 || pic->pic_xref == 0) { 789 if (dev == pic->pic_dev) 790 return (pic); 791 } else if (xref == pic->pic_xref && dev == pic->pic_dev) 792 return (pic); 793 } 794 return (NULL); 795 } 796 797 /* 798 * Lookup interrupt controller. 799 */ 800 static struct intr_pic * 801 pic_lookup(device_t dev, intptr_t xref, u_int flags) 802 { 803 struct intr_pic *pic; 804 805 mtx_lock(&pic_list_lock); 806 pic = pic_lookup_locked(dev, xref, flags); 807 mtx_unlock(&pic_list_lock); 808 return (pic); 809 } 810 811 /* 812 * Create interrupt controller. 813 */ 814 static struct intr_pic * 815 pic_create(device_t dev, intptr_t xref, u_int flags) 816 { 817 struct intr_pic *pic; 818 819 mtx_lock(&pic_list_lock); 820 pic = pic_lookup_locked(dev, xref, flags); 821 if (pic != NULL) { 822 mtx_unlock(&pic_list_lock); 823 return (pic); 824 } 825 pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO); 826 if (pic == NULL) { 827 mtx_unlock(&pic_list_lock); 828 return (NULL); 829 } 830 pic->pic_xref = xref; 831 pic->pic_dev = dev; 832 pic->pic_flags = flags; 833 mtx_init(&pic->pic_child_lock, "pic child lock", NULL, MTX_SPIN); 834 SLIST_INSERT_HEAD(&pic_list, pic, pic_next); 835 mtx_unlock(&pic_list_lock); 836 837 return (pic); 838 } 839 #ifdef notyet 840 /* 841 * Destroy interrupt controller. 842 */ 843 static void 844 pic_destroy(device_t dev, intptr_t xref, u_int flags) 845 { 846 struct intr_pic *pic; 847 848 mtx_lock(&pic_list_lock); 849 pic = pic_lookup_locked(dev, xref, flags); 850 if (pic == NULL) { 851 mtx_unlock(&pic_list_lock); 852 return; 853 } 854 SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next); 855 mtx_unlock(&pic_list_lock); 856 857 free(pic, M_INTRNG); 858 } 859 #endif 860 /* 861 * Register interrupt controller. 862 */ 863 struct intr_pic * 864 intr_pic_register(device_t dev, intptr_t xref) 865 { 866 struct intr_pic *pic; 867 868 if (dev == NULL) 869 return (NULL); 870 pic = pic_create(dev, xref, FLAG_PIC); 871 if (pic == NULL) 872 return (NULL); 873 874 debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic, 875 device_get_nameunit(dev), dev, (uintmax_t)xref); 876 return (pic); 877 } 878 879 /* 880 * Unregister interrupt controller. 881 */ 882 int 883 intr_pic_deregister(device_t dev, intptr_t xref) 884 { 885 886 panic("%s: not implemented", __func__); 887 } 888 889 /* 890 * Mark interrupt controller (itself) as a root one. 891 * 892 * Note that only an interrupt controller can really know its position 893 * in interrupt controller's tree. So root PIC must claim itself as a root. 894 * 895 * In FDT case, according to ePAPR approved version 1.1 from 08 April 2011, 896 * page 30: 897 * "The root of the interrupt tree is determined when traversal 898 * of the interrupt tree reaches an interrupt controller node without 899 * an interrupts property and thus no explicit interrupt parent." 900 */ 901 int 902 intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter, 903 void *arg, uint32_t rootnum) 904 { 905 struct intr_pic *pic; 906 struct intr_irq_root *root; 907 908 pic = pic_lookup(dev, xref, FLAG_PIC); 909 if (pic == NULL) { 910 device_printf(dev, "not registered\n"); 911 return (EINVAL); 912 } 913 914 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC, 915 ("%s: Found a non-PIC controller: %s", __func__, 916 device_get_name(pic->pic_dev))); 917 918 if (filter == NULL) { 919 device_printf(dev, "filter missing\n"); 920 return (EINVAL); 921 } 922 923 /* 924 * Only one interrupt controllers could be on the root for now. 925 * Note that we further suppose that there is not threaded interrupt 926 * routine (handler) on the root. See intr_irq_handler(). 927 */ 928 KASSERT(rootnum < INTR_ROOT_NUM, 929 ("%s: invalid interrupt root %d", __func__, rootnum)); 930 root = &intr_irq_roots[rootnum]; 931 if (root->dev != NULL) { 932 device_printf(dev, "another root already set\n"); 933 return (EBUSY); 934 } 935 936 root->dev = dev; 937 root->filter = filter; 938 root->arg = arg; 939 940 debugf("irq root set to %s\n", device_get_nameunit(dev)); 941 return (0); 942 } 943 944 /* 945 * Add a handler to manage a sub range of a parents interrupts. 946 */ 947 int 948 intr_pic_add_handler(device_t parent, struct intr_pic *pic, 949 intr_child_irq_filter_t *filter, void *arg, uintptr_t start, 950 uintptr_t length) 951 { 952 struct intr_pic *parent_pic; 953 struct intr_pic_child *newchild; 954 #ifdef INVARIANTS 955 struct intr_pic_child *child; 956 #endif 957 958 /* Find the parent PIC */ 959 parent_pic = pic_lookup(parent, 0, FLAG_PIC); 960 if (parent_pic == NULL) 961 return (ENXIO); 962 963 newchild = malloc(sizeof(*newchild), M_INTRNG, M_WAITOK | M_ZERO); 964 newchild->pc_pic = pic; 965 newchild->pc_filter = filter; 966 newchild->pc_filter_arg = arg; 967 newchild->pc_start = start; 968 newchild->pc_length = length; 969 970 mtx_lock_spin(&parent_pic->pic_child_lock); 971 #ifdef INVARIANTS 972 SLIST_FOREACH(child, &parent_pic->pic_children, pc_next) { 973 KASSERT(child->pc_pic != pic, ("%s: Adding a child PIC twice", 974 __func__)); 975 } 976 #endif 977 SLIST_INSERT_HEAD(&parent_pic->pic_children, newchild, pc_next); 978 mtx_unlock_spin(&parent_pic->pic_child_lock); 979 980 return (0); 981 } 982 983 static int 984 intr_resolve_irq(device_t dev, intptr_t xref, struct intr_map_data *data, 985 struct intr_irqsrc **isrc) 986 { 987 struct intr_pic *pic; 988 struct intr_map_data_msi *msi; 989 990 if (data == NULL) 991 return (EINVAL); 992 993 pic = pic_lookup(dev, xref, 994 (data->type == INTR_MAP_DATA_MSI) ? FLAG_MSI : FLAG_PIC); 995 if (pic == NULL) 996 return (ESRCH); 997 998 switch (data->type) { 999 case INTR_MAP_DATA_MSI: 1000 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, 1001 ("%s: Found a non-MSI controller: %s", __func__, 1002 device_get_name(pic->pic_dev))); 1003 msi = (struct intr_map_data_msi *)data; 1004 *isrc = msi->isrc; 1005 return (0); 1006 1007 default: 1008 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC, 1009 ("%s: Found a non-PIC controller: %s", __func__, 1010 device_get_name(pic->pic_dev))); 1011 return (PIC_MAP_INTR(pic->pic_dev, data, isrc)); 1012 } 1013 } 1014 1015 bool 1016 intr_is_per_cpu(struct resource *res) 1017 { 1018 u_int res_id; 1019 struct intr_irqsrc *isrc; 1020 1021 res_id = (u_int)rman_get_start(res); 1022 isrc = intr_map_get_isrc(res_id); 1023 1024 if (isrc == NULL) 1025 panic("Attempt to get isrc for non-active resource id: %u\n", 1026 res_id); 1027 return ((isrc->isrc_flags & INTR_ISRCF_PPI) != 0); 1028 } 1029 1030 int 1031 intr_activate_irq(device_t dev, struct resource *res) 1032 { 1033 device_t map_dev; 1034 intptr_t map_xref; 1035 struct intr_map_data *data; 1036 struct intr_irqsrc *isrc; 1037 u_int res_id; 1038 int error; 1039 1040 KASSERT(rman_get_start(res) == rman_get_end(res), 1041 ("%s: more interrupts in resource", __func__)); 1042 1043 res_id = (u_int)rman_get_start(res); 1044 if (intr_map_get_isrc(res_id) != NULL) 1045 panic("Attempt to double activation of resource id: %u\n", 1046 res_id); 1047 intr_map_copy_map_data(res_id, &map_dev, &map_xref, &data); 1048 error = intr_resolve_irq(map_dev, map_xref, data, &isrc); 1049 if (error != 0) { 1050 free(data, M_INTRNG); 1051 /* XXX TODO DISCONECTED PICs */ 1052 /* if (error == EINVAL) return(0); */ 1053 return (error); 1054 } 1055 intr_map_set_isrc(res_id, isrc); 1056 rman_set_virtual(res, data); 1057 return (PIC_ACTIVATE_INTR(isrc->isrc_dev, isrc, res, data)); 1058 } 1059 1060 int 1061 intr_deactivate_irq(device_t dev, struct resource *res) 1062 { 1063 struct intr_map_data *data; 1064 struct intr_irqsrc *isrc; 1065 u_int res_id; 1066 int error; 1067 1068 KASSERT(rman_get_start(res) == rman_get_end(res), 1069 ("%s: more interrupts in resource", __func__)); 1070 1071 res_id = (u_int)rman_get_start(res); 1072 isrc = intr_map_get_isrc(res_id); 1073 if (isrc == NULL) 1074 panic("Attempt to deactivate non-active resource id: %u\n", 1075 res_id); 1076 1077 data = rman_get_virtual(res); 1078 error = PIC_DEACTIVATE_INTR(isrc->isrc_dev, isrc, res, data); 1079 intr_map_set_isrc(res_id, NULL); 1080 rman_set_virtual(res, NULL); 1081 free(data, M_INTRNG); 1082 return (error); 1083 } 1084 1085 int 1086 intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt, 1087 driver_intr_t hand, void *arg, int flags, void **cookiep) 1088 { 1089 int error; 1090 struct intr_map_data *data; 1091 struct intr_irqsrc *isrc; 1092 const char *name; 1093 u_int res_id; 1094 1095 KASSERT(rman_get_start(res) == rman_get_end(res), 1096 ("%s: more interrupts in resource", __func__)); 1097 1098 res_id = (u_int)rman_get_start(res); 1099 isrc = intr_map_get_isrc(res_id); 1100 if (isrc == NULL) { 1101 /* XXX TODO DISCONECTED PICs */ 1102 return (EINVAL); 1103 } 1104 1105 data = rman_get_virtual(res); 1106 name = device_get_nameunit(dev); 1107 1108 #ifdef INTR_SOLO 1109 /* 1110 * Standard handling is done through MI interrupt framework. However, 1111 * some interrupts could request solely own special handling. This 1112 * non standard handling can be used for interrupt controllers without 1113 * handler (filter only), so in case that interrupt controllers are 1114 * chained, MI interrupt framework is called only in leaf controller. 1115 * 1116 * Note that root interrupt controller routine is served as well, 1117 * however in intr_irq_handler(), i.e. main system dispatch routine. 1118 */ 1119 if (flags & INTR_SOLO && hand != NULL) { 1120 debugf("irq %u cannot solo on %s\n", irq, name); 1121 return (EINVAL); 1122 } 1123 1124 if (flags & INTR_SOLO) { 1125 error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt, 1126 arg, cookiep); 1127 debugf("irq %u setup filter error %d on %s\n", isrc->isrc_irq, error, 1128 name); 1129 } else 1130 #endif 1131 { 1132 error = isrc_add_handler(isrc, name, filt, hand, arg, flags, 1133 cookiep); 1134 debugf("irq %u add handler error %d on %s\n", isrc->isrc_irq, error, name); 1135 } 1136 if (error != 0) 1137 return (error); 1138 1139 mtx_lock(&isrc_table_lock); 1140 error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data); 1141 if (error == 0) { 1142 isrc->isrc_handlers++; 1143 if (isrc->isrc_handlers == 1) 1144 PIC_ENABLE_INTR(isrc->isrc_dev, isrc); 1145 } 1146 mtx_unlock(&isrc_table_lock); 1147 if (error != 0) 1148 intr_event_remove_handler(*cookiep); 1149 return (error); 1150 } 1151 1152 int 1153 intr_teardown_irq(device_t dev, struct resource *res, void *cookie) 1154 { 1155 int error; 1156 struct intr_map_data *data; 1157 struct intr_irqsrc *isrc; 1158 u_int res_id; 1159 1160 KASSERT(rman_get_start(res) == rman_get_end(res), 1161 ("%s: more interrupts in resource", __func__)); 1162 1163 res_id = (u_int)rman_get_start(res); 1164 isrc = intr_map_get_isrc(res_id); 1165 if (isrc == NULL || isrc->isrc_handlers == 0) 1166 return (EINVAL); 1167 1168 data = rman_get_virtual(res); 1169 1170 #ifdef INTR_SOLO 1171 if (isrc->isrc_filter != NULL) { 1172 if (isrc != cookie) 1173 return (EINVAL); 1174 1175 mtx_lock(&isrc_table_lock); 1176 isrc->isrc_filter = NULL; 1177 isrc->isrc_arg = NULL; 1178 isrc->isrc_handlers = 0; 1179 PIC_DISABLE_INTR(isrc->isrc_dev, isrc); 1180 PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data); 1181 isrc_update_name(isrc, NULL); 1182 mtx_unlock(&isrc_table_lock); 1183 return (0); 1184 } 1185 #endif 1186 if (isrc != intr_handler_source(cookie)) 1187 return (EINVAL); 1188 1189 error = intr_event_remove_handler(cookie); 1190 if (error == 0) { 1191 mtx_lock(&isrc_table_lock); 1192 isrc->isrc_handlers--; 1193 if (isrc->isrc_handlers == 0) 1194 PIC_DISABLE_INTR(isrc->isrc_dev, isrc); 1195 PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data); 1196 intrcnt_updatename(isrc); 1197 mtx_unlock(&isrc_table_lock); 1198 } 1199 return (error); 1200 } 1201 1202 int 1203 intr_describe_irq(device_t dev, struct resource *res, void *cookie, 1204 const char *descr) 1205 { 1206 int error; 1207 struct intr_irqsrc *isrc; 1208 u_int res_id; 1209 1210 KASSERT(rman_get_start(res) == rman_get_end(res), 1211 ("%s: more interrupts in resource", __func__)); 1212 1213 res_id = (u_int)rman_get_start(res); 1214 isrc = intr_map_get_isrc(res_id); 1215 if (isrc == NULL || isrc->isrc_handlers == 0) 1216 return (EINVAL); 1217 #ifdef INTR_SOLO 1218 if (isrc->isrc_filter != NULL) { 1219 if (isrc != cookie) 1220 return (EINVAL); 1221 1222 mtx_lock(&isrc_table_lock); 1223 isrc_update_name(isrc, descr); 1224 mtx_unlock(&isrc_table_lock); 1225 return (0); 1226 } 1227 #endif 1228 error = intr_event_describe_handler(isrc->isrc_event, cookie, descr); 1229 if (error == 0) { 1230 mtx_lock(&isrc_table_lock); 1231 intrcnt_updatename(isrc); 1232 mtx_unlock(&isrc_table_lock); 1233 } 1234 return (error); 1235 } 1236 1237 #ifdef SMP 1238 int 1239 intr_bind_irq(device_t dev, struct resource *res, int cpu) 1240 { 1241 struct intr_irqsrc *isrc; 1242 u_int res_id; 1243 1244 KASSERT(rman_get_start(res) == rman_get_end(res), 1245 ("%s: more interrupts in resource", __func__)); 1246 1247 res_id = (u_int)rman_get_start(res); 1248 isrc = intr_map_get_isrc(res_id); 1249 if (isrc == NULL || isrc->isrc_handlers == 0) 1250 return (EINVAL); 1251 #ifdef INTR_SOLO 1252 if (isrc->isrc_filter != NULL) 1253 return (intr_isrc_assign_cpu(isrc, cpu)); 1254 #endif 1255 return (intr_event_bind(isrc->isrc_event, cpu)); 1256 } 1257 1258 /* 1259 * Return the CPU that the next interrupt source should use. 1260 * For now just returns the next CPU according to round-robin. 1261 */ 1262 u_int 1263 intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask) 1264 { 1265 u_int cpu; 1266 1267 KASSERT(!CPU_EMPTY(cpumask), ("%s: Empty CPU mask", __func__)); 1268 if (!irq_assign_cpu || mp_ncpus == 1) { 1269 cpu = PCPU_GET(cpuid); 1270 1271 if (CPU_ISSET(cpu, cpumask)) 1272 return (curcpu); 1273 1274 return (CPU_FFS(cpumask) - 1); 1275 } 1276 1277 do { 1278 last_cpu++; 1279 if (last_cpu > mp_maxid) 1280 last_cpu = 0; 1281 } while (!CPU_ISSET(last_cpu, cpumask)); 1282 return (last_cpu); 1283 } 1284 1285 #ifndef EARLY_AP_STARTUP 1286 /* 1287 * Distribute all the interrupt sources among the available 1288 * CPUs once the AP's have been launched. 1289 */ 1290 static void 1291 intr_irq_shuffle(void *arg __unused) 1292 { 1293 struct intr_irqsrc *isrc; 1294 u_int i; 1295 1296 if (mp_ncpus == 1) 1297 return; 1298 1299 mtx_lock(&isrc_table_lock); 1300 irq_assign_cpu = true; 1301 for (i = 0; i < intr_nirq; i++) { 1302 isrc = irq_sources[i]; 1303 if (isrc == NULL || isrc->isrc_handlers == 0 || 1304 isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) 1305 continue; 1306 1307 if (isrc->isrc_event != NULL && 1308 isrc->isrc_flags & INTR_ISRCF_BOUND && 1309 isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1) 1310 panic("%s: CPU inconsistency", __func__); 1311 1312 if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0) 1313 CPU_ZERO(&isrc->isrc_cpu); /* start again */ 1314 1315 /* 1316 * We are in wicked position here if the following call fails 1317 * for bound ISRC. The best thing we can do is to clear 1318 * isrc_cpu so inconsistency with ie_cpu will be detectable. 1319 */ 1320 if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0) 1321 CPU_ZERO(&isrc->isrc_cpu); 1322 } 1323 mtx_unlock(&isrc_table_lock); 1324 } 1325 SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL); 1326 #endif /* !EARLY_AP_STARTUP */ 1327 1328 #else 1329 u_int 1330 intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask) 1331 { 1332 1333 return (PCPU_GET(cpuid)); 1334 } 1335 #endif /* SMP */ 1336 1337 /* 1338 * Allocate memory for new intr_map_data structure. 1339 * Initialize common fields. 1340 */ 1341 struct intr_map_data * 1342 intr_alloc_map_data(enum intr_map_data_type type, size_t len, int flags) 1343 { 1344 struct intr_map_data *data; 1345 1346 data = malloc(len, M_INTRNG, flags); 1347 data->type = type; 1348 data->len = len; 1349 return (data); 1350 } 1351 1352 void intr_free_intr_map_data(struct intr_map_data *data) 1353 { 1354 1355 free(data, M_INTRNG); 1356 } 1357 1358 /* 1359 * Register a MSI/MSI-X interrupt controller 1360 */ 1361 int 1362 intr_msi_register(device_t dev, intptr_t xref) 1363 { 1364 struct intr_pic *pic; 1365 1366 if (dev == NULL) 1367 return (EINVAL); 1368 pic = pic_create(dev, xref, FLAG_MSI); 1369 if (pic == NULL) 1370 return (ENOMEM); 1371 1372 debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic, 1373 device_get_nameunit(dev), dev, (uintmax_t)xref); 1374 return (0); 1375 } 1376 1377 int 1378 intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count, 1379 int maxcount, int *irqs) 1380 { 1381 struct iommu_domain *domain; 1382 struct intr_irqsrc **isrc; 1383 struct intr_pic *pic; 1384 device_t pdev; 1385 struct intr_map_data_msi *msi; 1386 int err, i; 1387 1388 pic = pic_lookup(NULL, xref, FLAG_MSI); 1389 if (pic == NULL) 1390 return (ESRCH); 1391 1392 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, 1393 ("%s: Found a non-MSI controller: %s", __func__, 1394 device_get_name(pic->pic_dev))); 1395 1396 /* 1397 * If this is the first time we have used this context ask the 1398 * interrupt controller to map memory the msi source will need. 1399 */ 1400 err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain); 1401 if (err != 0) 1402 return (err); 1403 1404 isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK); 1405 err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc); 1406 if (err != 0) { 1407 free(isrc, M_INTRNG); 1408 return (err); 1409 } 1410 1411 for (i = 0; i < count; i++) { 1412 isrc[i]->isrc_iommu = domain; 1413 msi = (struct intr_map_data_msi *)intr_alloc_map_data( 1414 INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO); 1415 msi-> isrc = isrc[i]; 1416 1417 irqs[i] = intr_map_irq(pic->pic_dev, xref, 1418 (struct intr_map_data *)msi); 1419 } 1420 free(isrc, M_INTRNG); 1421 1422 return (err); 1423 } 1424 1425 int 1426 intr_release_msi(device_t pci, device_t child, intptr_t xref, int count, 1427 int *irqs) 1428 { 1429 struct intr_irqsrc **isrc; 1430 struct intr_pic *pic; 1431 struct intr_map_data_msi *msi; 1432 int i, err; 1433 1434 pic = pic_lookup(NULL, xref, FLAG_MSI); 1435 if (pic == NULL) 1436 return (ESRCH); 1437 1438 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, 1439 ("%s: Found a non-MSI controller: %s", __func__, 1440 device_get_name(pic->pic_dev))); 1441 1442 isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK); 1443 1444 for (i = 0; i < count; i++) { 1445 msi = (struct intr_map_data_msi *) 1446 intr_map_get_map_data(irqs[i]); 1447 KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI, 1448 ("%s: irq %d map data is not MSI", __func__, 1449 irqs[i])); 1450 isrc[i] = msi->isrc; 1451 } 1452 1453 MSI_IOMMU_DEINIT(pic->pic_dev, child); 1454 1455 err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc); 1456 1457 for (i = 0; i < count; i++) { 1458 if (isrc[i] != NULL) 1459 intr_unmap_irq(irqs[i]); 1460 } 1461 1462 free(isrc, M_INTRNG); 1463 return (err); 1464 } 1465 1466 int 1467 intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq) 1468 { 1469 struct iommu_domain *domain; 1470 struct intr_irqsrc *isrc; 1471 struct intr_pic *pic; 1472 device_t pdev; 1473 struct intr_map_data_msi *msi; 1474 int err; 1475 1476 pic = pic_lookup(NULL, xref, FLAG_MSI); 1477 if (pic == NULL) 1478 return (ESRCH); 1479 1480 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, 1481 ("%s: Found a non-MSI controller: %s", __func__, 1482 device_get_name(pic->pic_dev))); 1483 1484 /* 1485 * If this is the first time we have used this context ask the 1486 * interrupt controller to map memory the msi source will need. 1487 */ 1488 err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain); 1489 if (err != 0) 1490 return (err); 1491 1492 err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc); 1493 if (err != 0) 1494 return (err); 1495 1496 isrc->isrc_iommu = domain; 1497 msi = (struct intr_map_data_msi *)intr_alloc_map_data( 1498 INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO); 1499 msi->isrc = isrc; 1500 *irq = intr_map_irq(pic->pic_dev, xref, (struct intr_map_data *)msi); 1501 return (0); 1502 } 1503 1504 int 1505 intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq) 1506 { 1507 struct intr_irqsrc *isrc; 1508 struct intr_pic *pic; 1509 struct intr_map_data_msi *msi; 1510 int err; 1511 1512 pic = pic_lookup(NULL, xref, FLAG_MSI); 1513 if (pic == NULL) 1514 return (ESRCH); 1515 1516 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, 1517 ("%s: Found a non-MSI controller: %s", __func__, 1518 device_get_name(pic->pic_dev))); 1519 1520 msi = (struct intr_map_data_msi *) 1521 intr_map_get_map_data(irq); 1522 KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI, 1523 ("%s: irq %d map data is not MSI", __func__, 1524 irq)); 1525 isrc = msi->isrc; 1526 if (isrc == NULL) { 1527 intr_unmap_irq(irq); 1528 return (EINVAL); 1529 } 1530 1531 MSI_IOMMU_DEINIT(pic->pic_dev, child); 1532 1533 err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc); 1534 intr_unmap_irq(irq); 1535 1536 return (err); 1537 } 1538 1539 int 1540 intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq, 1541 uint64_t *addr, uint32_t *data) 1542 { 1543 struct intr_irqsrc *isrc; 1544 struct intr_pic *pic; 1545 int err; 1546 1547 pic = pic_lookup(NULL, xref, FLAG_MSI); 1548 if (pic == NULL) 1549 return (ESRCH); 1550 1551 KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, 1552 ("%s: Found a non-MSI controller: %s", __func__, 1553 device_get_name(pic->pic_dev))); 1554 1555 isrc = intr_map_get_isrc(irq); 1556 if (isrc == NULL) 1557 return (EINVAL); 1558 1559 err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data); 1560 1561 #ifdef IOMMU 1562 if (isrc->isrc_iommu != NULL) 1563 iommu_translate_msi(isrc->isrc_iommu, addr); 1564 #endif 1565 1566 return (err); 1567 } 1568 1569 void dosoftints(void); 1570 void 1571 dosoftints(void) 1572 { 1573 } 1574 1575 #ifdef SMP 1576 /* 1577 * Init interrupt controller on another CPU. 1578 */ 1579 void 1580 intr_pic_init_secondary(void) 1581 { 1582 device_t dev; 1583 uint32_t rootnum; 1584 1585 /* 1586 * QQQ: Only root PICs are aware of other CPUs ??? 1587 */ 1588 //mtx_lock(&isrc_table_lock); 1589 for (rootnum = 0; rootnum < INTR_ROOT_NUM; rootnum++) { 1590 dev = intr_irq_roots[rootnum].dev; 1591 if (dev != NULL) { 1592 PIC_INIT_SECONDARY(dev, rootnum); 1593 } 1594 } 1595 //mtx_unlock(&isrc_table_lock); 1596 } 1597 #endif 1598 1599 #ifdef DDB 1600 DB_SHOW_COMMAND_FLAGS(irqs, db_show_irqs, DB_CMD_MEMSAFE) 1601 { 1602 u_int i, irqsum; 1603 u_long num; 1604 struct intr_irqsrc *isrc; 1605 1606 for (irqsum = 0, i = 0; i < intr_nirq; i++) { 1607 isrc = irq_sources[i]; 1608 if (isrc == NULL) 1609 continue; 1610 1611 num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0; 1612 db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i, 1613 isrc->isrc_name, isrc->isrc_cpu.__bits[0], 1614 isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num); 1615 irqsum += num; 1616 } 1617 db_printf("irq total %u\n", irqsum); 1618 } 1619 #endif 1620 1621 /* 1622 * Interrupt mapping table functions. 1623 * 1624 * Please, keep this part separately, it can be transformed to 1625 * extension of standard resources. 1626 */ 1627 struct intr_map_entry 1628 { 1629 device_t dev; 1630 intptr_t xref; 1631 struct intr_map_data *map_data; 1632 struct intr_irqsrc *isrc; 1633 /* XXX TODO DISCONECTED PICs */ 1634 /*int flags */ 1635 }; 1636 1637 /* XXX Convert irq_map[] to dynamicaly expandable one. */ 1638 static struct intr_map_entry **irq_map; 1639 static u_int irq_map_count; 1640 static u_int irq_map_first_free_idx; 1641 static struct mtx irq_map_lock; 1642 1643 static struct intr_irqsrc * 1644 intr_map_get_isrc(u_int res_id) 1645 { 1646 struct intr_irqsrc *isrc; 1647 1648 isrc = NULL; 1649 mtx_lock(&irq_map_lock); 1650 if (res_id < irq_map_count && irq_map[res_id] != NULL) 1651 isrc = irq_map[res_id]->isrc; 1652 mtx_unlock(&irq_map_lock); 1653 1654 return (isrc); 1655 } 1656 1657 static void 1658 intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc) 1659 { 1660 1661 mtx_lock(&irq_map_lock); 1662 if (res_id < irq_map_count && irq_map[res_id] != NULL) 1663 irq_map[res_id]->isrc = isrc; 1664 mtx_unlock(&irq_map_lock); 1665 } 1666 1667 /* 1668 * Get a copy of intr_map_entry data 1669 */ 1670 static struct intr_map_data * 1671 intr_map_get_map_data(u_int res_id) 1672 { 1673 struct intr_map_data *data; 1674 1675 data = NULL; 1676 mtx_lock(&irq_map_lock); 1677 if (res_id >= irq_map_count || irq_map[res_id] == NULL) 1678 panic("Attempt to copy invalid resource id: %u\n", res_id); 1679 data = irq_map[res_id]->map_data; 1680 mtx_unlock(&irq_map_lock); 1681 1682 return (data); 1683 } 1684 1685 /* 1686 * Get a copy of intr_map_entry data 1687 */ 1688 static void 1689 intr_map_copy_map_data(u_int res_id, device_t *map_dev, intptr_t *map_xref, 1690 struct intr_map_data **data) 1691 { 1692 size_t len; 1693 1694 len = 0; 1695 mtx_lock(&irq_map_lock); 1696 if (res_id >= irq_map_count || irq_map[res_id] == NULL) 1697 panic("Attempt to copy invalid resource id: %u\n", res_id); 1698 if (irq_map[res_id]->map_data != NULL) 1699 len = irq_map[res_id]->map_data->len; 1700 mtx_unlock(&irq_map_lock); 1701 1702 if (len == 0) 1703 *data = NULL; 1704 else 1705 *data = malloc(len, M_INTRNG, M_WAITOK | M_ZERO); 1706 mtx_lock(&irq_map_lock); 1707 if (irq_map[res_id] == NULL) 1708 panic("Attempt to copy invalid resource id: %u\n", res_id); 1709 if (len != 0) { 1710 if (len != irq_map[res_id]->map_data->len) 1711 panic("Resource id: %u has changed.\n", res_id); 1712 memcpy(*data, irq_map[res_id]->map_data, len); 1713 } 1714 *map_dev = irq_map[res_id]->dev; 1715 *map_xref = irq_map[res_id]->xref; 1716 mtx_unlock(&irq_map_lock); 1717 } 1718 1719 /* 1720 * Allocate and fill new entry in irq_map table. 1721 */ 1722 u_int 1723 intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data) 1724 { 1725 u_int i; 1726 struct intr_map_entry *entry; 1727 1728 /* Prepare new entry first. */ 1729 entry = malloc(sizeof(*entry), M_INTRNG, M_WAITOK | M_ZERO); 1730 1731 entry->dev = dev; 1732 entry->xref = xref; 1733 entry->map_data = data; 1734 entry->isrc = NULL; 1735 1736 mtx_lock(&irq_map_lock); 1737 for (i = irq_map_first_free_idx; i < irq_map_count; i++) { 1738 if (irq_map[i] == NULL) { 1739 irq_map[i] = entry; 1740 irq_map_first_free_idx = i + 1; 1741 mtx_unlock(&irq_map_lock); 1742 return (i); 1743 } 1744 } 1745 for (i = 0; i < irq_map_first_free_idx; i++) { 1746 if (irq_map[i] == NULL) { 1747 irq_map[i] = entry; 1748 irq_map_first_free_idx = i + 1; 1749 mtx_unlock(&irq_map_lock); 1750 return (i); 1751 } 1752 } 1753 mtx_unlock(&irq_map_lock); 1754 1755 /* XXX Expand irq_map table */ 1756 panic("IRQ mapping table is full."); 1757 } 1758 1759 /* 1760 * Remove and free mapping entry. 1761 */ 1762 void 1763 intr_unmap_irq(u_int res_id) 1764 { 1765 struct intr_map_entry *entry; 1766 1767 mtx_lock(&irq_map_lock); 1768 if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL)) 1769 panic("Attempt to unmap invalid resource id: %u\n", res_id); 1770 entry = irq_map[res_id]; 1771 irq_map[res_id] = NULL; 1772 irq_map_first_free_idx = res_id; 1773 mtx_unlock(&irq_map_lock); 1774 intr_free_intr_map_data(entry->map_data); 1775 free(entry, M_INTRNG); 1776 } 1777 1778 /* 1779 * Clone mapping entry. 1780 */ 1781 u_int 1782 intr_map_clone_irq(u_int old_res_id) 1783 { 1784 device_t map_dev; 1785 intptr_t map_xref; 1786 struct intr_map_data *data; 1787 1788 intr_map_copy_map_data(old_res_id, &map_dev, &map_xref, &data); 1789 return (intr_map_irq(map_dev, map_xref, data)); 1790 } 1791 1792 static void 1793 intr_map_init(void *dummy __unused) 1794 { 1795 1796 mtx_init(&irq_map_lock, "intr map table", NULL, MTX_DEF); 1797 1798 irq_map_count = 2 * intr_nirq; 1799 irq_map = mallocarray(irq_map_count, sizeof(struct intr_map_entry*), 1800 M_INTRNG, M_WAITOK | M_ZERO); 1801 } 1802 SYSINIT(intr_map_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_map_init, NULL); 1803 1804 #ifdef SMP 1805 /* Virtualization for interrupt source IPI counter increment. */ 1806 static inline void 1807 intr_ipi_increment_count(u_long *counter, u_int cpu) 1808 { 1809 1810 KASSERT(cpu < mp_maxid + 1, ("%s: too big cpu %u", __func__, cpu)); 1811 counter[cpu]++; 1812 } 1813 1814 /* 1815 * Virtualization for interrupt source IPI counters setup. 1816 */ 1817 static u_long * 1818 intr_ipi_setup_counters(const char *name) 1819 { 1820 u_int index, i; 1821 char str[INTRNAME_LEN]; 1822 1823 mtx_lock(&isrc_table_lock); 1824 1825 /* 1826 * We should never have a problem finding mp_maxid + 1 contiguous 1827 * counters, in practice. Interrupts will be allocated sequentially 1828 * during boot, so the array should fill from low to high index. Once 1829 * reserved, the IPI counters will never be released. Similarly, we 1830 * will not need to allocate more IPIs once the system is running. 1831 */ 1832 bit_ffc_area(intrcnt_bitmap, nintrcnt, mp_maxid + 1, &index); 1833 if (index == -1) 1834 panic("Failed to allocate %d counters. Array exhausted?", 1835 mp_maxid + 1); 1836 bit_nset(intrcnt_bitmap, index, index + mp_maxid); 1837 for (i = 0; i < mp_maxid + 1; i++) { 1838 snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name); 1839 intrcnt_setname(str, index + i); 1840 } 1841 mtx_unlock(&isrc_table_lock); 1842 return (&intrcnt[index]); 1843 } 1844 1845 /* 1846 * Lookup IPI source. 1847 */ 1848 static struct intr_ipi * 1849 intr_ipi_lookup(u_int ipi) 1850 { 1851 1852 if (ipi >= INTR_IPI_COUNT) 1853 panic("%s: no such IPI %u", __func__, ipi); 1854 1855 return (&ipi_sources[ipi]); 1856 } 1857 1858 int 1859 intr_ipi_pic_register(device_t dev, u_int priority) 1860 { 1861 if (intr_ipi_dev_frozen) { 1862 device_printf(dev, "IPI device already frozen"); 1863 return (EBUSY); 1864 } 1865 1866 if (intr_ipi_dev == NULL || priority > intr_ipi_dev_priority) 1867 intr_ipi_dev = dev; 1868 1869 return (0); 1870 } 1871 1872 /* 1873 * Setup IPI handler on interrupt controller. 1874 * 1875 * Not SMP coherent. 1876 */ 1877 void 1878 intr_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand, 1879 void *arg) 1880 { 1881 struct intr_irqsrc *isrc; 1882 struct intr_ipi *ii; 1883 int error; 1884 1885 if (!intr_ipi_dev_frozen) { 1886 if (intr_ipi_dev == NULL) 1887 panic("%s: no IPI PIC attached", __func__); 1888 1889 intr_ipi_dev_frozen = true; 1890 device_printf(intr_ipi_dev, "using for IPIs\n"); 1891 } 1892 1893 KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi)); 1894 1895 error = PIC_IPI_SETUP(intr_ipi_dev, ipi, &isrc); 1896 if (error != 0) 1897 return; 1898 1899 isrc->isrc_handlers++; 1900 1901 ii = intr_ipi_lookup(ipi); 1902 KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi)); 1903 1904 ii->ii_handler = hand; 1905 ii->ii_handler_arg = arg; 1906 ii->ii_isrc = isrc; 1907 strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN); 1908 ii->ii_count = intr_ipi_setup_counters(name); 1909 1910 PIC_ENABLE_INTR(intr_ipi_dev, isrc); 1911 } 1912 1913 void 1914 intr_ipi_send(cpuset_t cpus, u_int ipi) 1915 { 1916 struct intr_ipi *ii; 1917 1918 KASSERT(intr_ipi_dev_frozen, 1919 ("%s: IPI device not yet frozen", __func__)); 1920 1921 ii = intr_ipi_lookup(ipi); 1922 if (ii->ii_count == NULL) 1923 panic("%s: not setup IPI %u", __func__, ipi); 1924 1925 /* 1926 * XXX: Surely needed on other architectures too? Either way should be 1927 * some kind of MI hook defined in an MD header, or the responsibility 1928 * of the MD caller if not widespread. 1929 */ 1930 #ifdef __aarch64__ 1931 /* 1932 * Ensure that this CPU's stores will be visible to IPI 1933 * recipients before starting to send the interrupts. 1934 */ 1935 dsb(ishst); 1936 #endif 1937 1938 PIC_IPI_SEND(intr_ipi_dev, ii->ii_isrc, cpus, ipi); 1939 } 1940 1941 /* 1942 * interrupt controller dispatch function for IPIs. It should 1943 * be called straight from the interrupt controller, when associated 1944 * interrupt source is learned. Or from anybody who has an interrupt 1945 * source mapped. 1946 */ 1947 void 1948 intr_ipi_dispatch(u_int ipi) 1949 { 1950 struct intr_ipi *ii; 1951 1952 ii = intr_ipi_lookup(ipi); 1953 if (ii->ii_count == NULL) 1954 panic("%s: not setup IPI %u", __func__, ipi); 1955 1956 intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid)); 1957 1958 ii->ii_handler(ii->ii_handler_arg); 1959 } 1960 #endif 1961