xref: /freebsd/sys/kern/subr_intr.c (revision 3884d6f8bd7e13a2b152fedc2d0d4f6de5ad17b8)
1 /*-
2  * Copyright (c) 2012-2014 Jakub Wojciech Klama <jceel@FreeBSD.org>.
3  * Copyright (c) 2015 Svatopluk Kraus
4  * Copyright (c) 2015 Michal Meloun
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  *	New-style Interrupt Framework
36  *
37  *  TODO: - to support IPI (PPI) enabling on other CPUs if already started
38  *        - to complete things for removable PICs
39  */
40 
41 #include "opt_ddb.h"
42 #include "opt_platform.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/syslog.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/bus.h>
52 #include <sys/interrupt.h>
53 #include <sys/conf.h>
54 #include <sys/cpuset.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <machine/atomic.h>
58 #include <machine/intr.h>
59 #include <machine/cpu.h>
60 #include <machine/smp.h>
61 #include <machine/stdarg.h>
62 
63 #ifdef FDT
64 #include <dev/ofw/openfirm.h>
65 #include <dev/ofw/ofw_bus.h>
66 #include <dev/ofw/ofw_bus_subr.h>
67 #endif
68 
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72 
73 #include "pic_if.h"
74 
75 #define	INTRNAME_LEN	(2*MAXCOMLEN + 1)
76 
77 #ifdef DEBUG
78 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
79     printf(fmt,##args); } while (0)
80 #else
81 #define debugf(fmt, args...)
82 #endif
83 
84 MALLOC_DECLARE(M_INTRNG);
85 MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling");
86 
87 /* Main interrupt handler called from assembler -> 'hidden' for C code. */
88 void intr_irq_handler(struct trapframe *tf);
89 
90 /* Root interrupt controller stuff. */
91 static struct intr_irqsrc *irq_root_isrc;
92 static device_t irq_root_dev;
93 static intr_irq_filter_t *irq_root_filter;
94 static void *irq_root_arg;
95 static u_int irq_root_ipicount;
96 
97 /* Interrupt controller definition. */
98 struct intr_pic {
99 	SLIST_ENTRY(intr_pic)	pic_next;
100 	intptr_t		pic_xref;	/* hardware identification */
101 	device_t		pic_dev;
102 };
103 
104 static struct mtx pic_list_lock;
105 static SLIST_HEAD(, intr_pic) pic_list;
106 
107 static struct intr_pic *pic_lookup(device_t dev, intptr_t xref);
108 
109 /* Interrupt source definition. */
110 static struct mtx isrc_table_lock;
111 static struct intr_irqsrc *irq_sources[NIRQ];
112 u_int irq_next_free;
113 
114 #define IRQ_INVALID	nitems(irq_sources)
115 
116 #ifdef SMP
117 static boolean_t irq_assign_cpu = FALSE;
118 
119 static struct intr_irqsrc ipi_sources[INTR_IPI_COUNT];
120 static u_int ipi_next_num;
121 #endif
122 
123 /*
124  * - 2 counters for each I/O interrupt.
125  * - MAXCPU counters for each IPI counters for SMP.
126  */
127 #ifdef SMP
128 #define INTRCNT_COUNT   (NIRQ * 2 + INTR_IPI_COUNT * MAXCPU)
129 #else
130 #define INTRCNT_COUNT   (NIRQ * 2)
131 #endif
132 
133 /* Data for MI statistics reporting. */
134 u_long intrcnt[INTRCNT_COUNT];
135 char intrnames[INTRCNT_COUNT * INTRNAME_LEN];
136 size_t sintrcnt = sizeof(intrcnt);
137 size_t sintrnames = sizeof(intrnames);
138 static u_int intrcnt_index;
139 
140 /*
141  *  Interrupt framework initialization routine.
142  */
143 static void
144 intr_irq_init(void *dummy __unused)
145 {
146 
147 	SLIST_INIT(&pic_list);
148 	mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF);
149 	mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF);
150 }
151 SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL);
152 
153 static void
154 intrcnt_setname(const char *name, int index)
155 {
156 
157 	snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s",
158 	    INTRNAME_LEN - 1, name);
159 }
160 
161 /*
162  *  Update name for interrupt source with interrupt event.
163  */
164 static void
165 intrcnt_updatename(struct intr_irqsrc *isrc)
166 {
167 
168 	/* QQQ: What about stray counter name? */
169 	mtx_assert(&isrc_table_lock, MA_OWNED);
170 	intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index);
171 }
172 
173 /*
174  *  Virtualization for interrupt source interrupt counter increment.
175  */
176 static inline void
177 isrc_increment_count(struct intr_irqsrc *isrc)
178 {
179 
180 	/*
181 	 * XXX - It should be atomic for PPI interrupts. It was proven that
182 	 *       the lost is measurable easily for timer PPI interrupts.
183 	 */
184 	isrc->isrc_count[0]++;
185 	/*atomic_add_long(&isrc->isrc_count[0], 1);*/
186 }
187 
188 /*
189  *  Virtualization for interrupt source interrupt stray counter increment.
190  */
191 static inline void
192 isrc_increment_straycount(struct intr_irqsrc *isrc)
193 {
194 
195 	isrc->isrc_count[1]++;
196 }
197 
198 /*
199  *  Virtualization for interrupt source interrupt name update.
200  */
201 static void
202 isrc_update_name(struct intr_irqsrc *isrc, const char *name)
203 {
204 	char str[INTRNAME_LEN];
205 
206 	mtx_assert(&isrc_table_lock, MA_OWNED);
207 
208 	if (name != NULL) {
209 		snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name);
210 		intrcnt_setname(str, isrc->isrc_index);
211 		snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name,
212 		    name);
213 		intrcnt_setname(str, isrc->isrc_index + 1);
214 	} else {
215 		snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name);
216 		intrcnt_setname(str, isrc->isrc_index);
217 		snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name);
218 		intrcnt_setname(str, isrc->isrc_index + 1);
219 	}
220 }
221 
222 /*
223  *  Virtualization for interrupt source interrupt counters setup.
224  */
225 static void
226 isrc_setup_counters(struct intr_irqsrc *isrc)
227 {
228 	u_int index;
229 
230 	/*
231 	 *  XXX - it does not work well with removable controllers and
232 	 *        interrupt sources !!!
233 	 */
234 	index = atomic_fetchadd_int(&intrcnt_index, 2);
235 	isrc->isrc_index = index;
236 	isrc->isrc_count = &intrcnt[index];
237 	isrc_update_name(isrc, NULL);
238 }
239 
240 #ifdef SMP
241 /*
242  *  Virtualization for interrupt source IPI counter increment.
243  */
244 static inline void
245 isrc_increment_ipi_count(struct intr_irqsrc *isrc, u_int cpu)
246 {
247 
248 	isrc->isrc_count[cpu]++;
249 }
250 
251 /*
252  *  Virtualization for interrupt source IPI counters setup.
253  */
254 static void
255 isrc_setup_ipi_counters(struct intr_irqsrc *isrc, const char *name)
256 {
257 	u_int index, i;
258 	char str[INTRNAME_LEN];
259 
260 	index = atomic_fetchadd_int(&intrcnt_index, MAXCPU);
261 	isrc->isrc_index = index;
262 	isrc->isrc_count = &intrcnt[index];
263 
264 	for (i = 0; i < MAXCPU; i++) {
265 		/*
266 		 * We do not expect any race in IPI case here,
267 		 * so locking is not needed.
268 		 */
269 		snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name);
270 		intrcnt_setname(str, index + i);
271 	}
272 }
273 #endif
274 
275 /*
276  *  Main interrupt dispatch handler. It's called straight
277  *  from the assembler, where CPU interrupt is served.
278  */
279 void
280 intr_irq_handler(struct trapframe *tf)
281 {
282 	struct trapframe * oldframe;
283 	struct thread * td;
284 
285 	KASSERT(irq_root_filter != NULL, ("%s: no filter", __func__));
286 
287 	PCPU_INC(cnt.v_intr);
288 	critical_enter();
289 	td = curthread;
290 	oldframe = td->td_intr_frame;
291 	td->td_intr_frame = tf;
292 	irq_root_filter(irq_root_arg);
293 	td->td_intr_frame = oldframe;
294 	critical_exit();
295 }
296 
297 /*
298  *  interrupt controller dispatch function for interrupts. It should
299  *  be called straight from the interrupt controller, when associated interrupt
300  *  source is learned.
301  */
302 void
303 intr_irq_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf)
304 {
305 
306 	KASSERT(isrc != NULL, ("%s: no source", __func__));
307 
308 	isrc_increment_count(isrc);
309 
310 #ifdef INTR_SOLO
311 	if (isrc->isrc_filter != NULL) {
312 		int error;
313 		error = isrc->isrc_filter(isrc->isrc_arg, tf);
314 		PIC_POST_FILTER(isrc->isrc_dev, isrc);
315 		if (error == FILTER_HANDLED)
316 			return;
317 	} else
318 #endif
319 	if (isrc->isrc_event != NULL) {
320 		if (intr_event_handle(isrc->isrc_event, tf) == 0)
321 			return;
322 	}
323 
324 	isrc_increment_straycount(isrc);
325 	PIC_DISABLE_SOURCE(isrc->isrc_dev, isrc);
326 
327 	device_printf(isrc->isrc_dev, "stray irq <%s> disabled",
328 	    isrc->isrc_name);
329 }
330 
331 /*
332  *  Allocate interrupt source.
333  */
334 static struct intr_irqsrc *
335 isrc_alloc(u_int type, u_int extsize)
336 {
337 	struct intr_irqsrc *isrc;
338 
339 	isrc = malloc(sizeof(*isrc) + extsize, M_INTRNG, M_WAITOK | M_ZERO);
340 	isrc->isrc_irq = IRQ_INVALID;	/* just to be safe */
341 	isrc->isrc_type = type;
342 	isrc->isrc_nspc_type = INTR_IRQ_NSPC_NONE;
343 	isrc->isrc_trig = INTR_TRIGGER_CONFORM;
344 	isrc->isrc_pol = INTR_POLARITY_CONFORM;
345 	CPU_ZERO(&isrc->isrc_cpu);
346 	return (isrc);
347 }
348 
349 /*
350  *  Free interrupt source.
351  */
352 static void
353 isrc_free(struct intr_irqsrc *isrc)
354 {
355 
356 	free(isrc, M_INTRNG);
357 }
358 
359 void
360 intr_irq_set_name(struct intr_irqsrc *isrc, const char *fmt, ...)
361 {
362 	va_list ap;
363 
364 	va_start(ap, fmt);
365 	vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap);
366 	va_end(ap);
367 }
368 
369 /*
370  *  Alloc unique interrupt number (resource handle) for interrupt source.
371  *
372  *  There could be various strategies how to allocate free interrupt number
373  *  (resource handle) for new interrupt source.
374  *
375  *  1. Handles are always allocated forward, so handles are not recycled
376  *     immediately. However, if only one free handle left which is reused
377  *     constantly...
378  */
379 static int
380 isrc_alloc_irq_locked(struct intr_irqsrc *isrc)
381 {
382 	u_int maxirqs, irq;
383 
384 	mtx_assert(&isrc_table_lock, MA_OWNED);
385 
386 	maxirqs = nitems(irq_sources);
387 	if (irq_next_free >= maxirqs)
388 		return (ENOSPC);
389 
390 	for (irq = irq_next_free; irq < maxirqs; irq++) {
391 		if (irq_sources[irq] == NULL)
392 			goto found;
393 	}
394 	for (irq = 0; irq < irq_next_free; irq++) {
395 		if (irq_sources[irq] == NULL)
396 			goto found;
397 	}
398 
399 	irq_next_free = maxirqs;
400 	return (ENOSPC);
401 
402 found:
403 	isrc->isrc_irq = irq;
404 	irq_sources[irq] = isrc;
405 
406 	intr_irq_set_name(isrc, "irq%u", irq);
407 	isrc_setup_counters(isrc);
408 
409 	irq_next_free = irq + 1;
410 	if (irq_next_free >= maxirqs)
411 		irq_next_free = 0;
412 	return (0);
413 }
414 #ifdef notyet
415 /*
416  *  Free unique interrupt number (resource handle) from interrupt source.
417  */
418 static int
419 isrc_free_irq(struct intr_irqsrc *isrc)
420 {
421 	u_int maxirqs;
422 
423 	mtx_assert(&isrc_table_lock, MA_NOTOWNED);
424 
425 	maxirqs = nitems(irq_sources);
426 	if (isrc->isrc_irq >= maxirqs)
427 		return (EINVAL);
428 
429 	mtx_lock(&isrc_table_lock);
430 	if (irq_sources[isrc->isrc_irq] != isrc) {
431 		mtx_unlock(&isrc_table_lock);
432 		return (EINVAL);
433 	}
434 
435 	irq_sources[isrc->isrc_irq] = NULL;
436 	isrc->isrc_irq = IRQ_INVALID;	/* just to be safe */
437 	mtx_unlock(&isrc_table_lock);
438 
439 	return (0);
440 }
441 #endif
442 /*
443  *  Lookup interrupt source by interrupt number (resource handle).
444  */
445 static struct intr_irqsrc *
446 isrc_lookup(u_int irq)
447 {
448 
449 	if (irq < nitems(irq_sources))
450 		return (irq_sources[irq]);
451 	return (NULL);
452 }
453 
454 /*
455  *  Lookup interrupt source by namespace description.
456  */
457 static struct intr_irqsrc *
458 isrc_namespace_lookup(device_t dev, uint16_t type, uint16_t num)
459 {
460 	u_int irq;
461 	struct intr_irqsrc *isrc;
462 
463 	mtx_assert(&isrc_table_lock, MA_OWNED);
464 
465 	for (irq = 0; irq < nitems(irq_sources); irq++) {
466 		isrc = irq_sources[irq];
467 		if (isrc != NULL && isrc->isrc_dev == dev &&
468 		    isrc->isrc_nspc_type == type && isrc->isrc_nspc_num == num)
469 			return (isrc);
470 	}
471 	return (NULL);
472 }
473 
474 /*
475  *  Map interrupt source according to namespace into framework. If such mapping
476  *  does not exist, create it. Return unique interrupt number (resource handle)
477  *  associated with mapped interrupt source.
478  */
479 u_int
480 intr_namespace_map_irq(device_t dev, uint16_t type, uint16_t num)
481 {
482 	struct intr_irqsrc *isrc, *new_isrc;
483 	int error;
484 
485 	new_isrc = isrc_alloc(INTR_ISRCT_NAMESPACE, 0);
486 
487 	mtx_lock(&isrc_table_lock);
488 	isrc = isrc_namespace_lookup(dev, type, num);
489 	if (isrc != NULL) {
490 		mtx_unlock(&isrc_table_lock);
491 		isrc_free(new_isrc);
492 		return (isrc->isrc_irq);	/* already mapped */
493 	}
494 
495 	error = isrc_alloc_irq_locked(new_isrc);
496 	if (error != 0) {
497 		mtx_unlock(&isrc_table_lock);
498 		isrc_free(new_isrc);
499 		return (IRQ_INVALID);		/* no space left */
500 	}
501 
502 	new_isrc->isrc_dev = dev;
503 	new_isrc->isrc_nspc_type = type;
504 	new_isrc->isrc_nspc_num = num;
505 	mtx_unlock(&isrc_table_lock);
506 
507 	return (new_isrc->isrc_irq);
508 }
509 
510 #ifdef FDT
511 /*
512  *  Lookup interrupt source by FDT description.
513  */
514 static struct intr_irqsrc *
515 isrc_fdt_lookup(intptr_t xref, pcell_t *cells, u_int ncells)
516 {
517 	u_int irq, cellsize;
518 	struct intr_irqsrc *isrc;
519 
520 	mtx_assert(&isrc_table_lock, MA_OWNED);
521 
522 	cellsize = ncells * sizeof(*cells);
523 	for (irq = 0; irq < nitems(irq_sources); irq++) {
524 		isrc = irq_sources[irq];
525 		if (isrc != NULL && isrc->isrc_type == INTR_ISRCT_FDT &&
526 		    isrc->isrc_xref == xref && isrc->isrc_ncells == ncells &&
527 		    memcmp(isrc->isrc_cells, cells, cellsize) == 0)
528 			return (isrc);
529 	}
530 	return (NULL);
531 }
532 
533 /*
534  *  Map interrupt source according to FDT data into framework. If such mapping
535  *  does not exist, create it. Return unique interrupt number (resource handle)
536  *  associated with mapped interrupt source.
537  */
538 u_int
539 intr_fdt_map_irq(phandle_t node, pcell_t *cells, u_int ncells)
540 {
541 	struct intr_irqsrc *isrc, *new_isrc;
542 	u_int cellsize;
543 	intptr_t xref;
544 	int error;
545 
546 	xref = (intptr_t)node;	/* It's so simple for now. */
547 
548 	cellsize = ncells * sizeof(*cells);
549 	new_isrc = isrc_alloc(INTR_ISRCT_FDT, cellsize);
550 
551 	mtx_lock(&isrc_table_lock);
552 	isrc = isrc_fdt_lookup(xref, cells, ncells);
553 	if (isrc != NULL) {
554 		mtx_unlock(&isrc_table_lock);
555 		isrc_free(new_isrc);
556 		return (isrc->isrc_irq);	/* already mapped */
557 	}
558 
559 	error = isrc_alloc_irq_locked(new_isrc);
560 	if (error != 0) {
561 		mtx_unlock(&isrc_table_lock);
562 		isrc_free(new_isrc);
563 		return (IRQ_INVALID);		/* no space left */
564 	}
565 
566 	new_isrc->isrc_xref = xref;
567 	new_isrc->isrc_ncells = ncells;
568 	memcpy(new_isrc->isrc_cells, cells, cellsize);
569 	mtx_unlock(&isrc_table_lock);
570 
571 	return (new_isrc->isrc_irq);
572 }
573 #endif
574 
575 /*
576  *  Register interrupt source into interrupt controller.
577  */
578 static int
579 isrc_register(struct intr_irqsrc *isrc)
580 {
581 	struct intr_pic *pic;
582 	boolean_t is_percpu;
583 	int error;
584 
585 	if (isrc->isrc_flags & INTR_ISRCF_REGISTERED)
586 		return (0);
587 
588 	if (isrc->isrc_dev == NULL) {
589 		pic = pic_lookup(NULL, isrc->isrc_xref);
590 		if (pic == NULL || pic->pic_dev == NULL)
591 			return (ESRCH);
592 		isrc->isrc_dev = pic->pic_dev;
593 	}
594 
595 	error = PIC_REGISTER(isrc->isrc_dev, isrc, &is_percpu);
596 	if (error != 0)
597 		return (error);
598 
599 	mtx_lock(&isrc_table_lock);
600 	isrc->isrc_flags |= INTR_ISRCF_REGISTERED;
601 	if (is_percpu)
602 		isrc->isrc_flags |= INTR_ISRCF_PERCPU;
603 	isrc_update_name(isrc, NULL);
604 	mtx_unlock(&isrc_table_lock);
605 	return (0);
606 }
607 
608 #ifdef INTR_SOLO
609 /*
610  *  Setup filter into interrupt source.
611  */
612 static int
613 iscr_setup_filter(struct intr_irqsrc *isrc, const char *name,
614     intr_irq_filter_t *filter, void *arg, void **cookiep)
615 {
616 
617 	if (filter == NULL)
618 		return (EINVAL);
619 
620 	mtx_lock(&isrc_table_lock);
621 	/*
622 	 * Make sure that we do not mix the two ways
623 	 * how we handle interrupt sources.
624 	 */
625 	if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
626 		mtx_unlock(&isrc_table_lock);
627 		return (EBUSY);
628 	}
629 	isrc->isrc_filter = filter;
630 	isrc->isrc_arg = arg;
631 	isrc_update_name(isrc, name);
632 	mtx_unlock(&isrc_table_lock);
633 
634 	*cookiep = isrc;
635 	return (0);
636 }
637 #endif
638 
639 /*
640  *  Interrupt source pre_ithread method for MI interrupt framework.
641  */
642 static void
643 intr_isrc_pre_ithread(void *arg)
644 {
645 	struct intr_irqsrc *isrc = arg;
646 
647 	PIC_PRE_ITHREAD(isrc->isrc_dev, isrc);
648 }
649 
650 /*
651  *  Interrupt source post_ithread method for MI interrupt framework.
652  */
653 static void
654 intr_isrc_post_ithread(void *arg)
655 {
656 	struct intr_irqsrc *isrc = arg;
657 
658 	PIC_POST_ITHREAD(isrc->isrc_dev, isrc);
659 }
660 
661 /*
662  *  Interrupt source post_filter method for MI interrupt framework.
663  */
664 static void
665 intr_isrc_post_filter(void *arg)
666 {
667 	struct intr_irqsrc *isrc = arg;
668 
669 	PIC_POST_FILTER(isrc->isrc_dev, isrc);
670 }
671 
672 /*
673  *  Interrupt source assign_cpu method for MI interrupt framework.
674  */
675 static int
676 intr_isrc_assign_cpu(void *arg, int cpu)
677 {
678 #ifdef SMP
679 	struct intr_irqsrc *isrc = arg;
680 	int error;
681 
682 	if (isrc->isrc_dev != irq_root_dev)
683 		return (EINVAL);
684 
685 	mtx_lock(&isrc_table_lock);
686 	if (cpu == NOCPU) {
687 		CPU_ZERO(&isrc->isrc_cpu);
688 		isrc->isrc_flags &= ~INTR_ISRCF_BOUND;
689 	} else {
690 		CPU_SETOF(cpu, &isrc->isrc_cpu);
691 		isrc->isrc_flags |= INTR_ISRCF_BOUND;
692 	}
693 
694 	/*
695 	 * In NOCPU case, it's up to PIC to either leave ISRC on same CPU or
696 	 * re-balance it to another CPU or enable it on more CPUs. However,
697 	 * PIC is expected to change isrc_cpu appropriately to keep us well
698 	 * informed if the call is successfull.
699 	 */
700 	if (irq_assign_cpu) {
701 		error = PIC_BIND(isrc->isrc_dev, isrc);
702 		if (error) {
703 			CPU_ZERO(&isrc->isrc_cpu);
704 			mtx_unlock(&isrc_table_lock);
705 			return (error);
706 		}
707 	}
708 	mtx_unlock(&isrc_table_lock);
709 	return (0);
710 #else
711 	return (EOPNOTSUPP);
712 #endif
713 }
714 
715 /*
716  *  Create interrupt event for interrupt source.
717  */
718 static int
719 isrc_event_create(struct intr_irqsrc *isrc)
720 {
721 	struct intr_event *ie;
722 	int error;
723 
724 	error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq,
725 	    intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter,
726 	    intr_isrc_assign_cpu, "%s:", isrc->isrc_name);
727 	if (error)
728 		return (error);
729 
730 	mtx_lock(&isrc_table_lock);
731 	/*
732 	 * Make sure that we do not mix the two ways
733 	 * how we handle interrupt sources. Let contested event wins.
734 	 */
735 	if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
736 		mtx_unlock(&isrc_table_lock);
737 		intr_event_destroy(ie);
738 		return (isrc->isrc_event != NULL ? EBUSY : 0);
739 	}
740 	isrc->isrc_event = ie;
741 	mtx_unlock(&isrc_table_lock);
742 
743 	return (0);
744 }
745 #ifdef notyet
746 /*
747  *  Destroy interrupt event for interrupt source.
748  */
749 static void
750 isrc_event_destroy(struct intr_irqsrc *isrc)
751 {
752 	struct intr_event *ie;
753 
754 	mtx_lock(&isrc_table_lock);
755 	ie = isrc->isrc_event;
756 	isrc->isrc_event = NULL;
757 	mtx_unlock(&isrc_table_lock);
758 
759 	if (ie != NULL)
760 		intr_event_destroy(ie);
761 }
762 #endif
763 /*
764  *  Add handler to interrupt source.
765  */
766 static int
767 isrc_add_handler(struct intr_irqsrc *isrc, const char *name,
768     driver_filter_t filter, driver_intr_t handler, void *arg,
769     enum intr_type flags, void **cookiep)
770 {
771 	int error;
772 
773 	if (isrc->isrc_event == NULL) {
774 		error = isrc_event_create(isrc);
775 		if (error)
776 			return (error);
777 	}
778 
779 	error = intr_event_add_handler(isrc->isrc_event, name, filter, handler,
780 	    arg, intr_priority(flags), flags, cookiep);
781 	if (error == 0) {
782 		mtx_lock(&isrc_table_lock);
783 		intrcnt_updatename(isrc);
784 		mtx_unlock(&isrc_table_lock);
785 	}
786 
787 	return (error);
788 }
789 
790 /*
791  *  Lookup interrupt controller locked.
792  */
793 static struct intr_pic *
794 pic_lookup_locked(device_t dev, intptr_t xref)
795 {
796 	struct intr_pic *pic;
797 
798 	mtx_assert(&pic_list_lock, MA_OWNED);
799 
800 	SLIST_FOREACH(pic, &pic_list, pic_next) {
801 		if (pic->pic_xref != xref)
802 			continue;
803 		if (pic->pic_xref != 0 || pic->pic_dev == dev)
804 			return (pic);
805 	}
806 	return (NULL);
807 }
808 
809 /*
810  *  Lookup interrupt controller.
811  */
812 static struct intr_pic *
813 pic_lookup(device_t dev, intptr_t xref)
814 {
815 	struct intr_pic *pic;
816 
817 	mtx_lock(&pic_list_lock);
818 	pic = pic_lookup_locked(dev, xref);
819 	mtx_unlock(&pic_list_lock);
820 
821 	return (pic);
822 }
823 
824 /*
825  *  Create interrupt controller.
826  */
827 static struct intr_pic *
828 pic_create(device_t dev, intptr_t xref)
829 {
830 	struct intr_pic *pic;
831 
832 	mtx_lock(&pic_list_lock);
833 	pic = pic_lookup_locked(dev, xref);
834 	if (pic != NULL) {
835 		mtx_unlock(&pic_list_lock);
836 		return (pic);
837 	}
838 	pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO);
839 	pic->pic_xref = xref;
840 	pic->pic_dev = dev;
841 	SLIST_INSERT_HEAD(&pic_list, pic, pic_next);
842 	mtx_unlock(&pic_list_lock);
843 
844 	return (pic);
845 }
846 #ifdef notyet
847 /*
848  *  Destroy interrupt controller.
849  */
850 static void
851 pic_destroy(device_t dev, intptr_t xref)
852 {
853 	struct intr_pic *pic;
854 
855 	mtx_lock(&pic_list_lock);
856 	pic = pic_lookup_locked(dev, xref);
857 	if (pic == NULL) {
858 		mtx_unlock(&pic_list_lock);
859 		return;
860 	}
861 	SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next);
862 	mtx_unlock(&pic_list_lock);
863 
864 	free(pic, M_INTRNG);
865 }
866 #endif
867 /*
868  *  Register interrupt controller.
869  */
870 int
871 intr_pic_register(device_t dev, intptr_t xref)
872 {
873 	struct intr_pic *pic;
874 
875 	pic = pic_create(dev, xref);
876 	if (pic == NULL)
877 		return (ENOMEM);
878 	if (pic->pic_dev != dev)
879 		return (EINVAL);	/* XXX it could be many things. */
880 
881 	debugf("PIC %p registered for %s <xref %x>\n", pic,
882 	    device_get_nameunit(dev), xref);
883 	return (0);
884 }
885 
886 /*
887  *  Unregister interrupt controller.
888  */
889 int
890 intr_pic_unregister(device_t dev, intptr_t xref)
891 {
892 
893 	panic("%s: not implemented", __func__);
894 }
895 
896 /*
897  *  Mark interrupt controller (itself) as a root one.
898  *
899  *  Note that only an interrupt controller can really know its position
900  *  in interrupt controller's tree. So root PIC must claim itself as a root.
901  *
902  *  In FDT case, according to ePAPR approved version 1.1 from 08 April 2011,
903  *  page 30:
904  *    "The root of the interrupt tree is determined when traversal
905  *     of the interrupt tree reaches an interrupt controller node without
906  *     an interrupts property and thus no explicit interrupt parent."
907  */
908 int
909 intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter,
910     void *arg, u_int ipicount)
911 {
912 	int error;
913 	u_int rootirq;
914 
915 	if (pic_lookup(dev, xref) == NULL) {
916 		device_printf(dev, "not registered\n");
917 		return (EINVAL);
918 	}
919 	if (filter == NULL) {
920 		device_printf(dev, "filter missing\n");
921 		return (EINVAL);
922 	}
923 
924 	/*
925 	 * Only one interrupt controllers could be on the root for now.
926 	 * Note that we further suppose that there is not threaded interrupt
927 	 * routine (handler) on the root. See intr_irq_handler().
928 	 */
929 	if (irq_root_dev != NULL) {
930 		device_printf(dev, "another root already set\n");
931 		return (EBUSY);
932 	}
933 
934 	rootirq = intr_namespace_map_irq(device_get_parent(dev), 0, 0);
935 	if (rootirq == IRQ_INVALID) {
936 		device_printf(dev, "failed to map an irq for the root pic\n");
937 		return (ENOMEM);
938 	}
939 
940         /* Create the isrc. */
941 	irq_root_isrc = isrc_lookup(rootirq);
942 
943         /* XXX "register" with the PIC.  We are the "pic" here, so fake it. */
944 	irq_root_isrc->isrc_flags |= INTR_ISRCF_REGISTERED;
945 
946 	error = intr_irq_add_handler(device_get_parent(dev),
947 		(void*)filter, NULL, arg, rootirq, INTR_TYPE_CLK, NULL);
948 	if (error != 0) {
949 		device_printf(dev, "failed to install root pic handler\n");
950 		return (error);
951 	}
952 	irq_root_dev = dev;
953 	irq_root_filter = filter;
954 	irq_root_arg = arg;
955 	irq_root_ipicount = ipicount;
956 
957 	debugf("irq root set to %s\n", device_get_nameunit(dev));
958 	return (0);
959 }
960 
961 int
962 intr_irq_add_handler(device_t dev, driver_filter_t filt, driver_intr_t hand,
963     void *arg, u_int irq, int flags, void **cookiep)
964 {
965 	const char *name;
966 	struct intr_irqsrc *isrc;
967 	int error;
968 
969 	name = device_get_nameunit(dev);
970 
971 #ifdef INTR_SOLO
972 	/*
973 	 * Standard handling is done thru MI interrupt framework. However,
974 	 * some interrupts could request solely own special handling. This
975 	 * non standard handling can be used for interrupt controllers without
976 	 * handler (filter only), so in case that interrupt controllers are
977 	 * chained, MI interrupt framework is called only in leaf controller.
978 	 *
979 	 * Note that root interrupt controller routine is served as well,
980 	 * however in intr_irq_handler(), i.e. main system dispatch routine.
981 	 */
982 	if (flags & INTR_SOLO && hand != NULL) {
983 		debugf("irq %u cannot solo on %s\n", irq, name);
984 		return (EINVAL);
985 	}
986 #endif
987 
988 	isrc = isrc_lookup(irq);
989 	if (isrc == NULL) {
990 		debugf("irq %u without source on %s\n", irq, name);
991 		return (EINVAL);
992 	}
993 
994 	error = isrc_register(isrc);
995 	if (error != 0) {
996 		debugf("irq %u map error %d on %s\n", irq, error, name);
997 		return (error);
998 	}
999 
1000 #ifdef INTR_SOLO
1001 	if (flags & INTR_SOLO) {
1002 		error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt,
1003 		    arg, cookiep);
1004 		debugf("irq %u setup filter error %d on %s\n", irq, error,
1005 		    name);
1006 	} else
1007 #endif
1008 		{
1009 		error = isrc_add_handler(isrc, name, filt, hand, arg, flags,
1010 		    cookiep);
1011 		debugf("irq %u add handler error %d on %s\n", irq, error, name);
1012 	}
1013 	if (error != 0)
1014 		return (error);
1015 
1016 	mtx_lock(&isrc_table_lock);
1017 	isrc->isrc_handlers++;
1018 	if (isrc->isrc_handlers == 1) {
1019 		PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
1020 		PIC_ENABLE_SOURCE(isrc->isrc_dev, isrc);
1021 	}
1022 	mtx_unlock(&isrc_table_lock);
1023 	return (0);
1024 }
1025 
1026 int
1027 intr_irq_remove_handler(device_t dev, u_int irq, void *cookie)
1028 {
1029 	struct intr_irqsrc *isrc;
1030 	int error;
1031 
1032 	isrc = isrc_lookup(irq);
1033 	if (isrc == NULL || isrc->isrc_handlers == 0)
1034 		return (EINVAL);
1035 
1036 	if (isrc->isrc_filter != NULL) {
1037 		if (isrc != cookie)
1038 			return (EINVAL);
1039 
1040 		mtx_lock(&isrc_table_lock);
1041 		isrc->isrc_filter = NULL;
1042 		isrc->isrc_arg = NULL;
1043 		isrc->isrc_handlers = 0;
1044 		PIC_DISABLE_SOURCE(isrc->isrc_dev, isrc);
1045 		PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
1046 		isrc_update_name(isrc, NULL);
1047 		mtx_unlock(&isrc_table_lock);
1048 		return (0);
1049 	}
1050 
1051 	if (isrc != intr_handler_source(cookie))
1052 		return (EINVAL);
1053 
1054 	error = intr_event_remove_handler(cookie);
1055 	if (error == 0) {
1056 		mtx_lock(&isrc_table_lock);
1057 		isrc->isrc_handlers--;
1058 		if (isrc->isrc_handlers == 0) {
1059 			PIC_DISABLE_SOURCE(isrc->isrc_dev, isrc);
1060 			PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
1061 		}
1062 		intrcnt_updatename(isrc);
1063 		mtx_unlock(&isrc_table_lock);
1064 	}
1065 	return (error);
1066 }
1067 
1068 int
1069 intr_irq_config(u_int irq, enum intr_trigger trig, enum intr_polarity pol)
1070 {
1071 	struct intr_irqsrc *isrc;
1072 
1073 	isrc = isrc_lookup(irq);
1074 	if (isrc == NULL)
1075 		return (EINVAL);
1076 
1077 	if (isrc->isrc_handlers != 0)
1078 		return (EBUSY);	/* interrrupt is enabled (active) */
1079 
1080 	/*
1081 	 * Once an interrupt is enabled, we do not change its configuration.
1082 	 * A controller PIC_ENABLE_INTR() method is called when an interrupt
1083 	 * is going to be enabled. In this method, a controller should setup
1084 	 * the interrupt according to saved configuration parameters.
1085 	 */
1086 	isrc->isrc_trig = trig;
1087 	isrc->isrc_pol = pol;
1088 
1089 	return (0);
1090 }
1091 
1092 int
1093 intr_irq_describe(u_int irq, void *cookie, const char *descr)
1094 {
1095 	struct intr_irqsrc *isrc;
1096 	int error;
1097 
1098 	isrc = isrc_lookup(irq);
1099 	if (isrc == NULL || isrc->isrc_handlers == 0)
1100 		return (EINVAL);
1101 
1102 	if (isrc->isrc_filter != NULL) {
1103 		if (isrc != cookie)
1104 			return (EINVAL);
1105 
1106 		mtx_lock(&isrc_table_lock);
1107 		isrc_update_name(isrc, descr);
1108 		mtx_unlock(&isrc_table_lock);
1109 		return (0);
1110 	}
1111 
1112 	error = intr_event_describe_handler(isrc->isrc_event, cookie, descr);
1113 	if (error == 0) {
1114 		mtx_lock(&isrc_table_lock);
1115 		intrcnt_updatename(isrc);
1116 		mtx_unlock(&isrc_table_lock);
1117 	}
1118 	return (error);
1119 }
1120 
1121 #ifdef SMP
1122 int
1123 intr_irq_bind(u_int irq, int cpu)
1124 {
1125 	struct intr_irqsrc *isrc;
1126 
1127 	isrc = isrc_lookup(irq);
1128 	if (isrc == NULL || isrc->isrc_handlers == 0)
1129 		return (EINVAL);
1130 
1131 	if (isrc->isrc_filter != NULL)
1132 		return (intr_isrc_assign_cpu(isrc, cpu));
1133 
1134 	return (intr_event_bind(isrc->isrc_event, cpu));
1135 }
1136 
1137 /*
1138  * Return the CPU that the next interrupt source should use.
1139  * For now just returns the next CPU according to round-robin.
1140  */
1141 u_int
1142 intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask)
1143 {
1144 
1145 	if (!irq_assign_cpu || mp_ncpus == 1)
1146 		return (PCPU_GET(cpuid));
1147 
1148 	do {
1149 		last_cpu++;
1150 		if (last_cpu > mp_maxid)
1151 			last_cpu = 0;
1152 	} while (!CPU_ISSET(last_cpu, cpumask));
1153 	return (last_cpu);
1154 }
1155 
1156 /*
1157  *  Distribute all the interrupt sources among the available
1158  *  CPUs once the AP's have been launched.
1159  */
1160 static void
1161 intr_irq_shuffle(void *arg __unused)
1162 {
1163 	struct intr_irqsrc *isrc;
1164 	u_int i;
1165 
1166 	if (mp_ncpus == 1)
1167 		return;
1168 
1169 	mtx_lock(&isrc_table_lock);
1170 	irq_assign_cpu = TRUE;
1171 	for (i = 0; i < NIRQ; i++) {
1172 		isrc = irq_sources[i];
1173 		if (isrc == NULL || isrc->isrc_handlers == 0 ||
1174 		    isrc->isrc_flags & INTR_ISRCF_PERCPU)
1175 			continue;
1176 
1177 		if (isrc->isrc_event != NULL &&
1178 		    isrc->isrc_flags & INTR_ISRCF_BOUND &&
1179 		    isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1)
1180 			panic("%s: CPU inconsistency", __func__);
1181 
1182 		if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0)
1183 			CPU_ZERO(&isrc->isrc_cpu); /* start again */
1184 
1185 		/*
1186 		 * We are in wicked position here if the following call fails
1187 		 * for bound ISRC. The best thing we can do is to clear
1188 		 * isrc_cpu so inconsistency with ie_cpu will be detectable.
1189 		 */
1190 		if (PIC_BIND(isrc->isrc_dev, isrc) != 0)
1191 			CPU_ZERO(&isrc->isrc_cpu);
1192 	}
1193 	mtx_unlock(&isrc_table_lock);
1194 }
1195 SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL);
1196 
1197 #else
1198 u_int
1199 intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask)
1200 {
1201 
1202 	return (PCPU_GET(cpuid));
1203 }
1204 #endif
1205 
1206 void dosoftints(void);
1207 void
1208 dosoftints(void)
1209 {
1210 }
1211 
1212 #ifdef SMP
1213 /*
1214  *  Lookup IPI source.
1215  */
1216 static struct intr_irqsrc *
1217 intr_ipi_lookup(u_int ipi)
1218 {
1219 
1220 	if (ipi >= INTR_IPI_COUNT)
1221 		panic("%s: no such IPI %u", __func__, ipi);
1222 
1223 	return (&ipi_sources[ipi]);
1224 }
1225 
1226 /*
1227  *  interrupt controller dispatch function for IPIs. It should
1228  *  be called straight from the interrupt controller, when associated
1229  *  interrupt source is learned. Or from anybody who has an interrupt
1230  *  source mapped.
1231  */
1232 void
1233 intr_ipi_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf)
1234 {
1235 	void *arg;
1236 
1237 	KASSERT(isrc != NULL, ("%s: no source", __func__));
1238 
1239 	isrc_increment_ipi_count(isrc, PCPU_GET(cpuid));
1240 
1241 	/*
1242 	 * Supply ipi filter with trapframe argument
1243 	 * if none is registered.
1244 	 */
1245 	arg = isrc->isrc_arg != NULL ? isrc->isrc_arg : tf;
1246 	isrc->isrc_ipifilter(arg);
1247 }
1248 
1249 /*
1250  *  Map IPI into interrupt controller.
1251  *
1252  *  Not SMP coherent.
1253  */
1254 static int
1255 ipi_map(struct intr_irqsrc *isrc, u_int ipi)
1256 {
1257 	boolean_t is_percpu;
1258 	int error;
1259 
1260 	if (ipi >= INTR_IPI_COUNT)
1261 		panic("%s: no such IPI %u", __func__, ipi);
1262 
1263 	KASSERT(irq_root_dev != NULL, ("%s: no root attached", __func__));
1264 
1265 	isrc->isrc_type = INTR_ISRCT_NAMESPACE;
1266 	isrc->isrc_nspc_type = INTR_IRQ_NSPC_IPI;
1267 	isrc->isrc_nspc_num = ipi_next_num;
1268 
1269 	error = PIC_REGISTER(irq_root_dev, isrc, &is_percpu);
1270 
1271 	debugf("ipi %u mapped to %u on %s - error %d\n", ipi, ipi_next_num,
1272 	    device_get_nameunit(irq_root_dev), error);
1273 
1274 	if (error == 0) {
1275 		isrc->isrc_dev = irq_root_dev;
1276 		ipi_next_num++;
1277 	}
1278 	return (error);
1279 }
1280 
1281 /*
1282  *  Setup IPI handler to interrupt source.
1283  *
1284  *  Note that there could be more ways how to send and receive IPIs
1285  *  on a platform like fast interrupts for example. In that case,
1286  *  one can call this function with ASIF_NOALLOC flag set and then
1287  *  call intr_ipi_dispatch() when appropriate.
1288  *
1289  *  Not SMP coherent.
1290  */
1291 int
1292 intr_ipi_set_handler(u_int ipi, const char *name, intr_ipi_filter_t *filter,
1293     void *arg, u_int flags)
1294 {
1295 	struct intr_irqsrc *isrc;
1296 	int error;
1297 
1298 	if (filter == NULL)
1299 		return(EINVAL);
1300 
1301 	isrc = intr_ipi_lookup(ipi);
1302 	if (isrc->isrc_ipifilter != NULL)
1303 		return (EEXIST);
1304 
1305 	if ((flags & AISHF_NOALLOC) == 0) {
1306 		error = ipi_map(isrc, ipi);
1307 		if (error != 0)
1308 			return (error);
1309 	}
1310 
1311 	isrc->isrc_ipifilter = filter;
1312 	isrc->isrc_arg = arg;
1313 	isrc->isrc_handlers = 1;
1314 	isrc_setup_ipi_counters(isrc, name);
1315 
1316 	if (isrc->isrc_dev != NULL) {
1317 		mtx_lock(&isrc_table_lock);
1318 		PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
1319 		PIC_ENABLE_SOURCE(isrc->isrc_dev, isrc);
1320 		mtx_unlock(&isrc_table_lock);
1321 	}
1322 	return (0);
1323 }
1324 
1325 /*
1326  *  Send IPI thru interrupt controller.
1327  */
1328 void
1329 pic_ipi_send(cpuset_t cpus, u_int ipi)
1330 {
1331 	struct intr_irqsrc *isrc;
1332 
1333 	isrc = intr_ipi_lookup(ipi);
1334 
1335 	KASSERT(irq_root_dev != NULL, ("%s: no root attached", __func__));
1336 	PIC_IPI_SEND(irq_root_dev, isrc, cpus);
1337 }
1338 
1339 /*
1340  *  Init interrupt controller on another CPU.
1341  */
1342 void
1343 intr_pic_init_secondary(void)
1344 {
1345 
1346 	/*
1347 	 * QQQ: Only root PIC is aware of other CPUs ???
1348 	 */
1349 	KASSERT(irq_root_dev != NULL, ("%s: no root attached", __func__));
1350 
1351 	//mtx_lock(&isrc_table_lock);
1352 	PIC_INIT_SECONDARY(irq_root_dev);
1353 	//mtx_unlock(&isrc_table_lock);
1354 }
1355 #endif
1356 
1357 #ifdef DDB
1358 DB_SHOW_COMMAND(irqs, db_show_irqs)
1359 {
1360 	u_int i, irqsum;
1361 	struct intr_irqsrc *isrc;
1362 
1363 #ifdef SMP
1364 	for (i = 0; i <= mp_maxid; i++) {
1365 		struct pcpu *pc;
1366 		u_int ipi, ipisum;
1367 
1368 		pc = pcpu_find(i);
1369 		if (pc != NULL) {
1370 			for (ipisum = 0, ipi = 0; ipi < INTR_IPI_COUNT; ipi++) {
1371 				isrc = intr_ipi_lookup(ipi);
1372 				if (isrc->isrc_count != NULL)
1373 					ipisum += isrc->isrc_count[i];
1374 			}
1375 			printf ("cpu%u: total %u ipis %u\n", i,
1376 			    pc->pc_cnt.v_intr, ipisum);
1377 		}
1378 	}
1379 	db_printf("\n");
1380 #endif
1381 
1382 	for (irqsum = 0, i = 0; i < NIRQ; i++) {
1383 		isrc = irq_sources[i];
1384 		if (isrc == NULL)
1385 			continue;
1386 
1387 		db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i,
1388 		    isrc->isrc_name, isrc->isrc_cpu.__bits[0],
1389 		    isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "",
1390 		    isrc->isrc_count[0]);
1391 		irqsum += isrc->isrc_count[0];
1392 	}
1393 	db_printf("irq total %u\n", irqsum);
1394 }
1395 #endif
1396