xref: /freebsd/sys/kern/subr_gtaskqueue.c (revision eb24e1491f9900e922c78e53af588f22a3e9535f)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/gtaskqueue.h>
47 #include <sys/unistd.h>
48 #include <machine/stdarg.h>
49 
50 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
51 static void	gtaskqueue_thread_enqueue(void *);
52 static void	gtaskqueue_thread_loop(void *arg);
53 static int	task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
54 static void	gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
55 
56 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
57 TASKQGROUP_DEFINE(config, 1, 1);
58 
59 struct gtaskqueue_busy {
60 	struct gtask		*tb_running;
61 	u_int			 tb_seq;
62 	LIST_ENTRY(gtaskqueue_busy) tb_link;
63 };
64 
65 typedef void (*gtaskqueue_enqueue_fn)(void *context);
66 
67 struct gtaskqueue {
68 	STAILQ_HEAD(, gtask)	tq_queue;
69 	LIST_HEAD(, gtaskqueue_busy) tq_active;
70 	u_int			tq_seq;
71 	int			tq_callouts;
72 	struct mtx_padalign	tq_mutex;
73 	gtaskqueue_enqueue_fn	tq_enqueue;
74 	void			*tq_context;
75 	char			*tq_name;
76 	struct thread		**tq_threads;
77 	int			tq_tcount;
78 	int			tq_spin;
79 	int			tq_flags;
80 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83 
84 #define	TQ_FLAGS_ACTIVE		(1 << 0)
85 #define	TQ_FLAGS_BLOCKED	(1 << 1)
86 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
87 
88 #define	DT_CALLOUT_ARMED	(1 << 0)
89 
90 #define	TQ_LOCK(tq)							\
91 	do {								\
92 		if ((tq)->tq_spin)					\
93 			mtx_lock_spin(&(tq)->tq_mutex);			\
94 		else							\
95 			mtx_lock(&(tq)->tq_mutex);			\
96 	} while (0)
97 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98 
99 #define	TQ_UNLOCK(tq)							\
100 	do {								\
101 		if ((tq)->tq_spin)					\
102 			mtx_unlock_spin(&(tq)->tq_mutex);		\
103 		else							\
104 			mtx_unlock(&(tq)->tq_mutex);			\
105 	} while (0)
106 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107 
108 #ifdef INVARIANTS
109 static void
110 gtask_dump(struct gtask *gtask)
111 {
112 	printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113 	       gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114 }
115 #endif
116 
117 static __inline int
118 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
119 {
120 	if (tq->tq_spin)
121 		return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
122 	return (msleep(p, &tq->tq_mutex, 0, wm, 0));
123 }
124 
125 static struct gtaskqueue *
126 _gtaskqueue_create(const char *name, int mflags,
127 		 taskqueue_enqueue_fn enqueue, void *context,
128 		 int mtxflags, const char *mtxname __unused)
129 {
130 	struct gtaskqueue *queue;
131 	char *tq_name;
132 
133 	tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134 	if (!tq_name)
135 		return (NULL);
136 
137 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138 
139 	queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140 	if (!queue) {
141 		free(tq_name, M_GTASKQUEUE);
142 		return (NULL);
143 	}
144 
145 	STAILQ_INIT(&queue->tq_queue);
146 	LIST_INIT(&queue->tq_active);
147 	queue->tq_enqueue = enqueue;
148 	queue->tq_context = context;
149 	queue->tq_name = tq_name;
150 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
152 	if (enqueue == gtaskqueue_thread_enqueue)
153 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155 
156 	return (queue);
157 }
158 
159 /*
160  * Signal a taskqueue thread to terminate.
161  */
162 static void
163 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
164 {
165 
166 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
167 		wakeup(tq);
168 		TQ_SLEEP(tq, pp, "gtq_destroy");
169 	}
170 }
171 
172 static void
173 gtaskqueue_free(struct gtaskqueue *queue)
174 {
175 
176 	TQ_LOCK(queue);
177 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
178 	gtaskqueue_terminate(queue->tq_threads, queue);
179 	KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
180 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
181 	mtx_destroy(&queue->tq_mutex);
182 	free(queue->tq_threads, M_GTASKQUEUE);
183 	free(queue->tq_name, M_GTASKQUEUE);
184 	free(queue, M_GTASKQUEUE);
185 }
186 
187 /*
188  * Wait for all to complete, then prevent it from being enqueued
189  */
190 void
191 grouptask_block(struct grouptask *grouptask)
192 {
193 	struct gtaskqueue *queue = grouptask->gt_taskqueue;
194 	struct gtask *gtask = &grouptask->gt_task;
195 
196 #ifdef INVARIANTS
197 	if (queue == NULL) {
198 		gtask_dump(gtask);
199 		panic("queue == NULL");
200 	}
201 #endif
202 	TQ_LOCK(queue);
203 	gtask->ta_flags |= TASK_NOENQUEUE;
204   	gtaskqueue_drain_locked(queue, gtask);
205 	TQ_UNLOCK(queue);
206 }
207 
208 void
209 grouptask_unblock(struct grouptask *grouptask)
210 {
211 	struct gtaskqueue *queue = grouptask->gt_taskqueue;
212 	struct gtask *gtask = &grouptask->gt_task;
213 
214 #ifdef INVARIANTS
215 	if (queue == NULL) {
216 		gtask_dump(gtask);
217 		panic("queue == NULL");
218 	}
219 #endif
220 	TQ_LOCK(queue);
221 	gtask->ta_flags &= ~TASK_NOENQUEUE;
222 	TQ_UNLOCK(queue);
223 }
224 
225 int
226 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
227 {
228 #ifdef INVARIANTS
229 	if (queue == NULL) {
230 		gtask_dump(gtask);
231 		panic("queue == NULL");
232 	}
233 #endif
234 	TQ_LOCK(queue);
235 	if (gtask->ta_flags & TASK_ENQUEUED) {
236 		TQ_UNLOCK(queue);
237 		return (0);
238 	}
239 	if (gtask->ta_flags & TASK_NOENQUEUE) {
240 		TQ_UNLOCK(queue);
241 		return (EAGAIN);
242 	}
243 	STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
244 	gtask->ta_flags |= TASK_ENQUEUED;
245 	TQ_UNLOCK(queue);
246 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
247 		queue->tq_enqueue(queue->tq_context);
248 	return (0);
249 }
250 
251 static void
252 gtaskqueue_task_nop_fn(void *context)
253 {
254 }
255 
256 /*
257  * Block until all currently queued tasks in this taskqueue
258  * have begun execution.  Tasks queued during execution of
259  * this function are ignored.
260  */
261 static void
262 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
263 {
264 	struct gtask t_barrier;
265 
266 	if (STAILQ_EMPTY(&queue->tq_queue))
267 		return;
268 
269 	/*
270 	 * Enqueue our barrier after all current tasks, but with
271 	 * the highest priority so that newly queued tasks cannot
272 	 * pass it.  Because of the high priority, we can not use
273 	 * taskqueue_enqueue_locked directly (which drops the lock
274 	 * anyway) so just insert it at tail while we have the
275 	 * queue lock.
276 	 */
277 	GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
278 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
279 	t_barrier.ta_flags |= TASK_ENQUEUED;
280 
281 	/*
282 	 * Once the barrier has executed, all previously queued tasks
283 	 * have completed or are currently executing.
284 	 */
285 	while (t_barrier.ta_flags & TASK_ENQUEUED)
286 		TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
287 }
288 
289 /*
290  * Block until all currently executing tasks for this taskqueue
291  * complete.  Tasks that begin execution during the execution
292  * of this function are ignored.
293  */
294 static void
295 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
296 {
297 	struct gtaskqueue_busy *tb;
298 	u_int seq;
299 
300 	if (LIST_EMPTY(&queue->tq_active))
301 		return;
302 
303 	/* Block taskq_terminate().*/
304 	queue->tq_callouts++;
305 
306 	/* Wait for any active task with sequence from the past. */
307 	seq = queue->tq_seq;
308 restart:
309 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
310 		if ((int)(tb->tb_seq - seq) <= 0) {
311 			TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
312 			goto restart;
313 		}
314 	}
315 
316 	/* Release taskqueue_terminate(). */
317 	queue->tq_callouts--;
318 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
319 		wakeup_one(queue->tq_threads);
320 }
321 
322 void
323 gtaskqueue_block(struct gtaskqueue *queue)
324 {
325 
326 	TQ_LOCK(queue);
327 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
328 	TQ_UNLOCK(queue);
329 }
330 
331 void
332 gtaskqueue_unblock(struct gtaskqueue *queue)
333 {
334 
335 	TQ_LOCK(queue);
336 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
337 	if (!STAILQ_EMPTY(&queue->tq_queue))
338 		queue->tq_enqueue(queue->tq_context);
339 	TQ_UNLOCK(queue);
340 }
341 
342 static void
343 gtaskqueue_run_locked(struct gtaskqueue *queue)
344 {
345 	struct gtaskqueue_busy tb;
346 	struct gtask *gtask;
347 
348 	KASSERT(queue != NULL, ("tq is NULL"));
349 	TQ_ASSERT_LOCKED(queue);
350 	tb.tb_running = NULL;
351 	LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
352 
353 	while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
354 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
355 		gtask->ta_flags &= ~TASK_ENQUEUED;
356 		tb.tb_running = gtask;
357 		tb.tb_seq = ++queue->tq_seq;
358 		TQ_UNLOCK(queue);
359 
360 		KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
361 		gtask->ta_func(gtask->ta_context);
362 
363 		TQ_LOCK(queue);
364 		wakeup(gtask);
365 	}
366 	LIST_REMOVE(&tb, tb_link);
367 }
368 
369 static int
370 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
371 {
372 	struct gtaskqueue_busy *tb;
373 
374 	TQ_ASSERT_LOCKED(queue);
375 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
376 		if (tb->tb_running == gtask)
377 			return (1);
378 	}
379 	return (0);
380 }
381 
382 static int
383 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
384 {
385 
386 	if (gtask->ta_flags & TASK_ENQUEUED)
387 		STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
388 	gtask->ta_flags &= ~TASK_ENQUEUED;
389 	return (task_is_running(queue, gtask) ? EBUSY : 0);
390 }
391 
392 int
393 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
394 {
395 	int error;
396 
397 	TQ_LOCK(queue);
398 	error = gtaskqueue_cancel_locked(queue, gtask);
399 	TQ_UNLOCK(queue);
400 
401 	return (error);
402 }
403 
404 static void
405 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
406 {
407 	while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
408 		TQ_SLEEP(queue, gtask, "gtq_drain");
409 }
410 
411 void
412 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
413 {
414 
415 	if (!queue->tq_spin)
416 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
417 
418 	TQ_LOCK(queue);
419 	gtaskqueue_drain_locked(queue, gtask);
420 	TQ_UNLOCK(queue);
421 }
422 
423 void
424 gtaskqueue_drain_all(struct gtaskqueue *queue)
425 {
426 
427 	if (!queue->tq_spin)
428 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
429 
430 	TQ_LOCK(queue);
431 	gtaskqueue_drain_tq_queue(queue);
432 	gtaskqueue_drain_tq_active(queue);
433 	TQ_UNLOCK(queue);
434 }
435 
436 static int
437 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
438     cpuset_t *mask, const char *name, va_list ap)
439 {
440 	char ktname[MAXCOMLEN + 1];
441 	struct thread *td;
442 	struct gtaskqueue *tq;
443 	int i, error;
444 
445 	if (count <= 0)
446 		return (EINVAL);
447 
448 	vsnprintf(ktname, sizeof(ktname), name, ap);
449 	tq = *tqp;
450 
451 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
452 	    M_NOWAIT | M_ZERO);
453 	if (tq->tq_threads == NULL) {
454 		printf("%s: no memory for %s threads\n", __func__, ktname);
455 		return (ENOMEM);
456 	}
457 
458 	for (i = 0; i < count; i++) {
459 		if (count == 1)
460 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
461 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
462 		else
463 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
464 			    &tq->tq_threads[i], RFSTOPPED, 0,
465 			    "%s_%d", ktname, i);
466 		if (error) {
467 			/* should be ok to continue, taskqueue_free will dtrt */
468 			printf("%s: kthread_add(%s): error %d", __func__,
469 			    ktname, error);
470 			tq->tq_threads[i] = NULL;		/* paranoid */
471 		} else
472 			tq->tq_tcount++;
473 	}
474 	for (i = 0; i < count; i++) {
475 		if (tq->tq_threads[i] == NULL)
476 			continue;
477 		td = tq->tq_threads[i];
478 		if (mask) {
479 			error = cpuset_setthread(td->td_tid, mask);
480 			/*
481 			 * Failing to pin is rarely an actual fatal error;
482 			 * it'll just affect performance.
483 			 */
484 			if (error)
485 				printf("%s: curthread=%llu: can't pin; "
486 				    "error=%d\n",
487 				    __func__,
488 				    (unsigned long long) td->td_tid,
489 				    error);
490 		}
491 		thread_lock(td);
492 		sched_prio(td, pri);
493 		sched_add(td, SRQ_BORING);
494 	}
495 
496 	return (0);
497 }
498 
499 static int
500 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
501     const char *name, ...)
502 {
503 	va_list ap;
504 	int error;
505 
506 	va_start(ap, name);
507 	error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
508 	va_end(ap);
509 	return (error);
510 }
511 
512 static inline void
513 gtaskqueue_run_callback(struct gtaskqueue *tq,
514     enum taskqueue_callback_type cb_type)
515 {
516 	taskqueue_callback_fn tq_callback;
517 
518 	TQ_ASSERT_UNLOCKED(tq);
519 	tq_callback = tq->tq_callbacks[cb_type];
520 	if (tq_callback != NULL)
521 		tq_callback(tq->tq_cb_contexts[cb_type]);
522 }
523 
524 static void
525 gtaskqueue_thread_loop(void *arg)
526 {
527 	struct gtaskqueue **tqp, *tq;
528 
529 	tqp = arg;
530 	tq = *tqp;
531 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
532 	TQ_LOCK(tq);
533 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
534 		/* XXX ? */
535 		gtaskqueue_run_locked(tq);
536 		/*
537 		 * Because taskqueue_run() can drop tq_mutex, we need to
538 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
539 		 * meantime, which means we missed a wakeup.
540 		 */
541 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
542 			break;
543 		TQ_SLEEP(tq, tq, "-");
544 	}
545 	gtaskqueue_run_locked(tq);
546 	/*
547 	 * This thread is on its way out, so just drop the lock temporarily
548 	 * in order to call the shutdown callback.  This allows the callback
549 	 * to look at the taskqueue, even just before it dies.
550 	 */
551 	TQ_UNLOCK(tq);
552 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
553 	TQ_LOCK(tq);
554 
555 	/* rendezvous with thread that asked us to terminate */
556 	tq->tq_tcount--;
557 	wakeup_one(tq->tq_threads);
558 	TQ_UNLOCK(tq);
559 	kthread_exit();
560 }
561 
562 static void
563 gtaskqueue_thread_enqueue(void *context)
564 {
565 	struct gtaskqueue **tqp, *tq;
566 
567 	tqp = context;
568 	tq = *tqp;
569 	wakeup_any(tq);
570 }
571 
572 static struct gtaskqueue *
573 gtaskqueue_create_fast(const char *name, int mflags,
574 		 taskqueue_enqueue_fn enqueue, void *context)
575 {
576 	return _gtaskqueue_create(name, mflags, enqueue, context,
577 			MTX_SPIN, "fast_taskqueue");
578 }
579 
580 struct taskqgroup_cpu {
581 	LIST_HEAD(, grouptask)	tgc_tasks;
582 	struct gtaskqueue	*tgc_taskq;
583 	int	tgc_cnt;
584 	int	tgc_cpu;
585 };
586 
587 struct taskqgroup {
588 	struct taskqgroup_cpu tqg_queue[MAXCPU];
589 	struct mtx	tqg_lock;
590 	const char *	tqg_name;
591 	int		tqg_adjusting;
592 	int		tqg_stride;
593 	int		tqg_cnt;
594 };
595 
596 struct taskq_bind_task {
597 	struct gtask bt_task;
598 	int	bt_cpuid;
599 };
600 
601 static void
602 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
603 {
604 	struct taskqgroup_cpu *qcpu;
605 
606 	qcpu = &qgroup->tqg_queue[idx];
607 	LIST_INIT(&qcpu->tgc_tasks);
608 	qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
609 	    taskqueue_thread_enqueue, &qcpu->tgc_taskq);
610 	gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
611 	    "%s_%d", qgroup->tqg_name, idx);
612 	qcpu->tgc_cpu = cpu;
613 }
614 
615 static void
616 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
617 {
618 
619 	gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
620 }
621 
622 /*
623  * Find the taskq with least # of tasks that doesn't currently have any
624  * other queues from the uniq identifier.
625  */
626 static int
627 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
628 {
629 	struct grouptask *n;
630 	int i, idx, mincnt;
631 	int strict;
632 
633 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
634 	if (qgroup->tqg_cnt == 0)
635 		return (0);
636 	idx = -1;
637 	mincnt = INT_MAX;
638 	/*
639 	 * Two passes;  First scan for a queue with the least tasks that
640 	 * does not already service this uniq id.  If that fails simply find
641 	 * the queue with the least total tasks;
642 	 */
643 	for (strict = 1; mincnt == INT_MAX; strict = 0) {
644 		for (i = 0; i < qgroup->tqg_cnt; i++) {
645 			if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
646 				continue;
647 			if (strict) {
648 				LIST_FOREACH(n,
649 				    &qgroup->tqg_queue[i].tgc_tasks, gt_list)
650 					if (n->gt_uniq == uniq)
651 						break;
652 				if (n != NULL)
653 					continue;
654 			}
655 			mincnt = qgroup->tqg_queue[i].tgc_cnt;
656 			idx = i;
657 		}
658 	}
659 	if (idx == -1)
660 		panic("%s: failed to pick a qid.", __func__);
661 
662 	return (idx);
663 }
664 
665 /*
666  * smp_started is unusable since it is not set for UP kernels or even for
667  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
668  * (mp_ncpus == 1) test, but that would be broken here since we need to
669  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
670  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
671  *
672  * So maintain our own flag.  It must be set after all CPUs are started
673  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
674  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
675  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
676  * simpler for adjustment to pass a flag indicating if it is delayed.
677  */
678 
679 static int tqg_smp_started;
680 
681 static void
682 tqg_record_smp_started(void *arg)
683 {
684 	tqg_smp_started = 1;
685 }
686 
687 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
688 	tqg_record_smp_started, NULL);
689 
690 void
691 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
692     void *uniq, device_t dev, struct resource *irq, const char *name)
693 {
694 	int cpu, qid, error;
695 
696 	gtask->gt_uniq = uniq;
697 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
698 	gtask->gt_dev = dev;
699 	gtask->gt_irq = irq;
700 	gtask->gt_cpu = -1;
701 	mtx_lock(&qgroup->tqg_lock);
702 	qid = taskqgroup_find(qgroup, uniq);
703 	qgroup->tqg_queue[qid].tgc_cnt++;
704 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
705 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
706 	if (dev != NULL && irq != NULL && tqg_smp_started) {
707 		cpu = qgroup->tqg_queue[qid].tgc_cpu;
708 		gtask->gt_cpu = cpu;
709 		mtx_unlock(&qgroup->tqg_lock);
710 		error = bus_bind_intr(dev, irq, cpu);
711 		if (error)
712 			printf("%s: binding interrupt failed for %s: %d\n",
713 			    __func__, gtask->gt_name, error);
714 	} else
715 		mtx_unlock(&qgroup->tqg_lock);
716 }
717 
718 static void
719 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
720 {
721 	int qid, cpu, error;
722 
723 	mtx_lock(&qgroup->tqg_lock);
724 	qid = taskqgroup_find(qgroup, gtask->gt_uniq);
725 	cpu = qgroup->tqg_queue[qid].tgc_cpu;
726 	if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) {
727 		mtx_unlock(&qgroup->tqg_lock);
728 		error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu);
729 		mtx_lock(&qgroup->tqg_lock);
730 		if (error)
731 			printf("%s: binding interrupt failed for %s: %d\n",
732 			    __func__, gtask->gt_name, error);
733 
734 	}
735 	qgroup->tqg_queue[qid].tgc_cnt++;
736 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
737 	MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
738 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
739 	mtx_unlock(&qgroup->tqg_lock);
740 }
741 
742 int
743 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
744     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
745 {
746 	int i, qid, error;
747 
748 	qid = -1;
749 	gtask->gt_uniq = uniq;
750 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
751 	gtask->gt_dev = dev;
752 	gtask->gt_irq = irq;
753 	gtask->gt_cpu = cpu;
754 	mtx_lock(&qgroup->tqg_lock);
755 	if (tqg_smp_started) {
756 		for (i = 0; i < qgroup->tqg_cnt; i++)
757 			if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
758 				qid = i;
759 				break;
760 			}
761 		if (qid == -1) {
762 			mtx_unlock(&qgroup->tqg_lock);
763 			printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
764 			return (EINVAL);
765 		}
766 	} else
767 		qid = 0;
768 	qgroup->tqg_queue[qid].tgc_cnt++;
769 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
770 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
771 	cpu = qgroup->tqg_queue[qid].tgc_cpu;
772 	mtx_unlock(&qgroup->tqg_lock);
773 
774 	if (dev != NULL && irq != NULL && tqg_smp_started) {
775 		error = bus_bind_intr(dev, irq, cpu);
776 		if (error)
777 			printf("%s: binding interrupt failed for %s: %d\n",
778 			    __func__, gtask->gt_name, error);
779 	}
780 	return (0);
781 }
782 
783 static int
784 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
785 {
786 	device_t dev;
787 	struct resource *irq;
788 	int cpu, error, i, qid;
789 
790 	qid = -1;
791 	dev = gtask->gt_dev;
792 	irq = gtask->gt_irq;
793 	cpu = gtask->gt_cpu;
794 	MPASS(tqg_smp_started);
795 	mtx_lock(&qgroup->tqg_lock);
796 	for (i = 0; i < qgroup->tqg_cnt; i++)
797 		if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
798 			qid = i;
799 			break;
800 		}
801 	if (qid == -1) {
802 		mtx_unlock(&qgroup->tqg_lock);
803 		printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
804 		return (EINVAL);
805 	}
806 	qgroup->tqg_queue[qid].tgc_cnt++;
807 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
808 	MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
809 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
810 	mtx_unlock(&qgroup->tqg_lock);
811 
812 	if (dev != NULL && irq != NULL) {
813 		error = bus_bind_intr(dev, irq, cpu);
814 		if (error)
815 			printf("%s: binding interrupt failed for %s: %d\n",
816 			    __func__, gtask->gt_name, error);
817 	}
818 	return (0);
819 }
820 
821 void
822 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
823 {
824 	int i;
825 
826 	grouptask_block(gtask);
827 	mtx_lock(&qgroup->tqg_lock);
828 	for (i = 0; i < qgroup->tqg_cnt; i++)
829 		if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
830 			break;
831 	if (i == qgroup->tqg_cnt)
832 		panic("%s: task %s not in group", __func__, gtask->gt_name);
833 	qgroup->tqg_queue[i].tgc_cnt--;
834 	LIST_REMOVE(gtask, gt_list);
835 	mtx_unlock(&qgroup->tqg_lock);
836 	gtask->gt_taskqueue = NULL;
837 	gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
838 }
839 
840 static void
841 taskqgroup_binder(void *ctx)
842 {
843 	struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
844 	cpuset_t mask;
845 	int error;
846 
847 	CPU_ZERO(&mask);
848 	CPU_SET(gtask->bt_cpuid, &mask);
849 	error = cpuset_setthread(curthread->td_tid, &mask);
850 	thread_lock(curthread);
851 	sched_bind(curthread, gtask->bt_cpuid);
852 	thread_unlock(curthread);
853 
854 	if (error)
855 		printf("%s: binding curthread failed: %d\n", __func__, error);
856 	free(gtask, M_DEVBUF);
857 }
858 
859 static void
860 taskqgroup_bind(struct taskqgroup *qgroup)
861 {
862 	struct taskq_bind_task *gtask;
863 	int i;
864 
865 	/*
866 	 * Bind taskqueue threads to specific CPUs, if they have been assigned
867 	 * one.
868 	 */
869 	if (qgroup->tqg_cnt == 1)
870 		return;
871 
872 	for (i = 0; i < qgroup->tqg_cnt; i++) {
873 		gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
874 		GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
875 		gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
876 		grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
877 		    &gtask->bt_task);
878 	}
879 }
880 
881 static void
882 taskqgroup_config_init(void *arg)
883 {
884 	struct taskqgroup *qgroup = qgroup_config;
885 	LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
886 
887 	LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
888 	    grouptask, gt_list);
889 	qgroup->tqg_queue[0].tgc_cnt = 0;
890 	taskqgroup_cpu_create(qgroup, 0, 0);
891 
892 	qgroup->tqg_cnt = 1;
893 	qgroup->tqg_stride = 1;
894 }
895 
896 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
897 	taskqgroup_config_init, NULL);
898 
899 static int
900 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
901 {
902 	LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
903 	struct grouptask *gtask;
904 	int i, k, old_cnt, old_cpu, cpu;
905 
906 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
907 
908 	if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
909 		printf("%s: failed cnt: %d stride: %d "
910 		    "mp_ncpus: %d tqg_smp_started: %d\n",
911 		    __func__, cnt, stride, mp_ncpus, tqg_smp_started);
912 		return (EINVAL);
913 	}
914 	if (qgroup->tqg_adjusting) {
915 		printf("%s failed: adjusting\n", __func__);
916 		return (EBUSY);
917 	}
918 	qgroup->tqg_adjusting = 1;
919 	old_cnt = qgroup->tqg_cnt;
920 	old_cpu = 0;
921 	if (old_cnt < cnt)
922 		old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
923 	mtx_unlock(&qgroup->tqg_lock);
924 	/*
925 	 * Set up queue for tasks added before boot.
926 	 */
927 	if (old_cnt == 0) {
928 		LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
929 		    grouptask, gt_list);
930 		qgroup->tqg_queue[0].tgc_cnt = 0;
931 	}
932 
933 	/*
934 	 * If new taskq threads have been added.
935 	 */
936 	cpu = old_cpu;
937 	for (i = old_cnt; i < cnt; i++) {
938 		taskqgroup_cpu_create(qgroup, i, cpu);
939 
940 		for (k = 0; k < stride; k++)
941 			cpu = CPU_NEXT(cpu);
942 	}
943 	mtx_lock(&qgroup->tqg_lock);
944 	qgroup->tqg_cnt = cnt;
945 	qgroup->tqg_stride = stride;
946 
947 	/*
948 	 * Adjust drivers to use new taskqs.
949 	 */
950 	for (i = 0; i < old_cnt; i++) {
951 		while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
952 			LIST_REMOVE(gtask, gt_list);
953 			qgroup->tqg_queue[i].tgc_cnt--;
954 			LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
955 		}
956 	}
957 	mtx_unlock(&qgroup->tqg_lock);
958 
959 	while ((gtask = LIST_FIRST(&gtask_head))) {
960 		LIST_REMOVE(gtask, gt_list);
961 		if (gtask->gt_cpu == -1)
962 			taskqgroup_attach_deferred(qgroup, gtask);
963 		else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
964 			taskqgroup_attach_deferred(qgroup, gtask);
965 	}
966 
967 #ifdef INVARIANTS
968 	mtx_lock(&qgroup->tqg_lock);
969 	for (i = 0; i < qgroup->tqg_cnt; i++) {
970 		MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
971 		LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
972 			MPASS(gtask->gt_taskqueue != NULL);
973 	}
974 	mtx_unlock(&qgroup->tqg_lock);
975 #endif
976 	/*
977 	 * If taskq thread count has been reduced.
978 	 */
979 	for (i = cnt; i < old_cnt; i++)
980 		taskqgroup_cpu_remove(qgroup, i);
981 
982 	taskqgroup_bind(qgroup);
983 
984 	mtx_lock(&qgroup->tqg_lock);
985 	qgroup->tqg_adjusting = 0;
986 
987 	return (0);
988 }
989 
990 int
991 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
992 {
993 	int error;
994 
995 	mtx_lock(&qgroup->tqg_lock);
996 	error = _taskqgroup_adjust(qgroup, cnt, stride);
997 	mtx_unlock(&qgroup->tqg_lock);
998 
999 	return (error);
1000 }
1001 
1002 struct taskqgroup *
1003 taskqgroup_create(const char *name)
1004 {
1005 	struct taskqgroup *qgroup;
1006 
1007 	qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
1008 	mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1009 	qgroup->tqg_name = name;
1010 	LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1011 
1012 	return (qgroup);
1013 }
1014 
1015 void
1016 taskqgroup_destroy(struct taskqgroup *qgroup)
1017 {
1018 
1019 }
1020 
1021 void
1022 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
1023     const char *name)
1024 {
1025 
1026 	GROUPTASK_INIT(gtask, 0, fn, ctx);
1027 	taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name);
1028 }
1029 
1030 void
1031 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
1032 {
1033 
1034 	taskqgroup_detach(qgroup_config, gtask);
1035 }
1036