xref: /freebsd/sys/kern/subr_gtaskqueue.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/gtaskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50 
51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
52 static void	gtaskqueue_thread_enqueue(void *);
53 static void	gtaskqueue_thread_loop(void *arg);
54 
55 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
56 TASKQGROUP_DEFINE(config, 1, 1);
57 
58 struct gtaskqueue_busy {
59 	struct gtask	*tb_running;
60 	TAILQ_ENTRY(gtaskqueue_busy) tb_link;
61 };
62 
63 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
64 
65 struct gtaskqueue {
66 	STAILQ_HEAD(, gtask)	tq_queue;
67 	gtaskqueue_enqueue_fn	tq_enqueue;
68 	void			*tq_context;
69 	char			*tq_name;
70 	TAILQ_HEAD(, gtaskqueue_busy) tq_active;
71 	struct mtx		tq_mutex;
72 	struct thread		**tq_threads;
73 	int			tq_tcount;
74 	int			tq_spin;
75 	int			tq_flags;
76 	int			tq_callouts;
77 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
78 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
79 };
80 
81 #define	TQ_FLAGS_ACTIVE		(1 << 0)
82 #define	TQ_FLAGS_BLOCKED	(1 << 1)
83 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
84 
85 #define	DT_CALLOUT_ARMED	(1 << 0)
86 
87 #define	TQ_LOCK(tq)							\
88 	do {								\
89 		if ((tq)->tq_spin)					\
90 			mtx_lock_spin(&(tq)->tq_mutex);			\
91 		else							\
92 			mtx_lock(&(tq)->tq_mutex);			\
93 	} while (0)
94 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
95 
96 #define	TQ_UNLOCK(tq)							\
97 	do {								\
98 		if ((tq)->tq_spin)					\
99 			mtx_unlock_spin(&(tq)->tq_mutex);		\
100 		else							\
101 			mtx_unlock(&(tq)->tq_mutex);			\
102 	} while (0)
103 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
104 
105 #ifdef INVARIANTS
106 static void
107 gtask_dump(struct gtask *gtask)
108 {
109 	printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
110 	       gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
111 }
112 #endif
113 
114 static __inline int
115 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
116     int t)
117 {
118 	if (tq->tq_spin)
119 		return (msleep_spin(p, m, wm, t));
120 	return (msleep(p, m, pri, wm, t));
121 }
122 
123 static struct gtaskqueue *
124 _gtaskqueue_create(const char *name, int mflags,
125 		 taskqueue_enqueue_fn enqueue, void *context,
126 		 int mtxflags, const char *mtxname __unused)
127 {
128 	struct gtaskqueue *queue;
129 	char *tq_name;
130 
131 	tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
132 	if (!tq_name)
133 		return (NULL);
134 
135 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
136 
137 	queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
138 	if (!queue) {
139 		free(tq_name, M_GTASKQUEUE);
140 		return (NULL);
141 	}
142 
143 	STAILQ_INIT(&queue->tq_queue);
144 	TAILQ_INIT(&queue->tq_active);
145 	queue->tq_enqueue = enqueue;
146 	queue->tq_context = context;
147 	queue->tq_name = tq_name;
148 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
149 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
150 	if (enqueue == gtaskqueue_thread_enqueue)
151 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
152 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
153 
154 	return (queue);
155 }
156 
157 
158 /*
159  * Signal a taskqueue thread to terminate.
160  */
161 static void
162 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
163 {
164 
165 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
166 		wakeup(tq);
167 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
168 	}
169 }
170 
171 static void
172 gtaskqueue_free(struct gtaskqueue *queue)
173 {
174 
175 	TQ_LOCK(queue);
176 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
177 	gtaskqueue_terminate(queue->tq_threads, queue);
178 	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
179 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
180 	mtx_destroy(&queue->tq_mutex);
181 	free(queue->tq_threads, M_GTASKQUEUE);
182 	free(queue->tq_name, M_GTASKQUEUE);
183 	free(queue, M_GTASKQUEUE);
184 }
185 
186 int
187 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
188 {
189 #ifdef INVARIANTS
190 	if (queue == NULL) {
191 		gtask_dump(gtask);
192 		panic("queue == NULL");
193 	}
194 #endif
195 	TQ_LOCK(queue);
196 	if (gtask->ta_flags & TASK_ENQUEUED) {
197 		TQ_UNLOCK(queue);
198 		return (0);
199 	}
200 	STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
201 	gtask->ta_flags |= TASK_ENQUEUED;
202 	TQ_UNLOCK(queue);
203 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
204 		queue->tq_enqueue(queue->tq_context);
205 	return (0);
206 }
207 
208 static void
209 gtaskqueue_task_nop_fn(void *context)
210 {
211 }
212 
213 /*
214  * Block until all currently queued tasks in this taskqueue
215  * have begun execution.  Tasks queued during execution of
216  * this function are ignored.
217  */
218 static void
219 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
220 {
221 	struct gtask t_barrier;
222 
223 	if (STAILQ_EMPTY(&queue->tq_queue))
224 		return;
225 
226 	/*
227 	 * Enqueue our barrier after all current tasks, but with
228 	 * the highest priority so that newly queued tasks cannot
229 	 * pass it.  Because of the high priority, we can not use
230 	 * taskqueue_enqueue_locked directly (which drops the lock
231 	 * anyway) so just insert it at tail while we have the
232 	 * queue lock.
233 	 */
234 	GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
235 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
236 	t_barrier.ta_flags |= TASK_ENQUEUED;
237 
238 	/*
239 	 * Once the barrier has executed, all previously queued tasks
240 	 * have completed or are currently executing.
241 	 */
242 	while (t_barrier.ta_flags & TASK_ENQUEUED)
243 		TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
244 }
245 
246 /*
247  * Block until all currently executing tasks for this taskqueue
248  * complete.  Tasks that begin execution during the execution
249  * of this function are ignored.
250  */
251 static void
252 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
253 {
254 	struct gtaskqueue_busy tb_marker, *tb_first;
255 
256 	if (TAILQ_EMPTY(&queue->tq_active))
257 		return;
258 
259 	/* Block taskq_terminate().*/
260 	queue->tq_callouts++;
261 
262 	/*
263 	 * Wait for all currently executing taskqueue threads
264 	 * to go idle.
265 	 */
266 	tb_marker.tb_running = TB_DRAIN_WAITER;
267 	TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
268 	while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
269 		TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
270 	TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
271 
272 	/*
273 	 * Wakeup any other drain waiter that happened to queue up
274 	 * without any intervening active thread.
275 	 */
276 	tb_first = TAILQ_FIRST(&queue->tq_active);
277 	if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
278 		wakeup(tb_first);
279 
280 	/* Release taskqueue_terminate(). */
281 	queue->tq_callouts--;
282 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
283 		wakeup_one(queue->tq_threads);
284 }
285 
286 void
287 gtaskqueue_block(struct gtaskqueue *queue)
288 {
289 
290 	TQ_LOCK(queue);
291 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
292 	TQ_UNLOCK(queue);
293 }
294 
295 void
296 gtaskqueue_unblock(struct gtaskqueue *queue)
297 {
298 
299 	TQ_LOCK(queue);
300 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
301 	if (!STAILQ_EMPTY(&queue->tq_queue))
302 		queue->tq_enqueue(queue->tq_context);
303 	TQ_UNLOCK(queue);
304 }
305 
306 static void
307 gtaskqueue_run_locked(struct gtaskqueue *queue)
308 {
309 	struct gtaskqueue_busy tb;
310 	struct gtaskqueue_busy *tb_first;
311 	struct gtask *gtask;
312 
313 	KASSERT(queue != NULL, ("tq is NULL"));
314 	TQ_ASSERT_LOCKED(queue);
315 	tb.tb_running = NULL;
316 
317 	while (STAILQ_FIRST(&queue->tq_queue)) {
318 		TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
319 
320 		/*
321 		 * Carefully remove the first task from the queue and
322 		 * clear its TASK_ENQUEUED flag
323 		 */
324 		gtask = STAILQ_FIRST(&queue->tq_queue);
325 		KASSERT(gtask != NULL, ("task is NULL"));
326 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
327 		gtask->ta_flags &= ~TASK_ENQUEUED;
328 		tb.tb_running = gtask;
329 		TQ_UNLOCK(queue);
330 
331 		KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
332 		gtask->ta_func(gtask->ta_context);
333 
334 		TQ_LOCK(queue);
335 		tb.tb_running = NULL;
336 		wakeup(gtask);
337 
338 		TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
339 		tb_first = TAILQ_FIRST(&queue->tq_active);
340 		if (tb_first != NULL &&
341 		    tb_first->tb_running == TB_DRAIN_WAITER)
342 			wakeup(tb_first);
343 	}
344 }
345 
346 static int
347 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
348 {
349 	struct gtaskqueue_busy *tb;
350 
351 	TQ_ASSERT_LOCKED(queue);
352 	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
353 		if (tb->tb_running == gtask)
354 			return (1);
355 	}
356 	return (0);
357 }
358 
359 static int
360 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
361 {
362 
363 	if (gtask->ta_flags & TASK_ENQUEUED)
364 		STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
365 	gtask->ta_flags &= ~TASK_ENQUEUED;
366 	return (task_is_running(queue, gtask) ? EBUSY : 0);
367 }
368 
369 int
370 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
371 {
372 	int error;
373 
374 	TQ_LOCK(queue);
375 	error = gtaskqueue_cancel_locked(queue, gtask);
376 	TQ_UNLOCK(queue);
377 
378 	return (error);
379 }
380 
381 void
382 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
383 {
384 
385 	if (!queue->tq_spin)
386 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
387 
388 	TQ_LOCK(queue);
389 	while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
390 		TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
391 	TQ_UNLOCK(queue);
392 }
393 
394 void
395 gtaskqueue_drain_all(struct gtaskqueue *queue)
396 {
397 
398 	if (!queue->tq_spin)
399 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
400 
401 	TQ_LOCK(queue);
402 	gtaskqueue_drain_tq_queue(queue);
403 	gtaskqueue_drain_tq_active(queue);
404 	TQ_UNLOCK(queue);
405 }
406 
407 static int
408 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
409     cpuset_t *mask, const char *name, va_list ap)
410 {
411 	char ktname[MAXCOMLEN + 1];
412 	struct thread *td;
413 	struct gtaskqueue *tq;
414 	int i, error;
415 
416 	if (count <= 0)
417 		return (EINVAL);
418 
419 	vsnprintf(ktname, sizeof(ktname), name, ap);
420 	tq = *tqp;
421 
422 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
423 	    M_NOWAIT | M_ZERO);
424 	if (tq->tq_threads == NULL) {
425 		printf("%s: no memory for %s threads\n", __func__, ktname);
426 		return (ENOMEM);
427 	}
428 
429 	for (i = 0; i < count; i++) {
430 		if (count == 1)
431 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
432 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
433 		else
434 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
435 			    &tq->tq_threads[i], RFSTOPPED, 0,
436 			    "%s_%d", ktname, i);
437 		if (error) {
438 			/* should be ok to continue, taskqueue_free will dtrt */
439 			printf("%s: kthread_add(%s): error %d", __func__,
440 			    ktname, error);
441 			tq->tq_threads[i] = NULL;		/* paranoid */
442 		} else
443 			tq->tq_tcount++;
444 	}
445 	for (i = 0; i < count; i++) {
446 		if (tq->tq_threads[i] == NULL)
447 			continue;
448 		td = tq->tq_threads[i];
449 		if (mask) {
450 			error = cpuset_setthread(td->td_tid, mask);
451 			/*
452 			 * Failing to pin is rarely an actual fatal error;
453 			 * it'll just affect performance.
454 			 */
455 			if (error)
456 				printf("%s: curthread=%llu: can't pin; "
457 				    "error=%d\n",
458 				    __func__,
459 				    (unsigned long long) td->td_tid,
460 				    error);
461 		}
462 		thread_lock(td);
463 		sched_prio(td, pri);
464 		sched_add(td, SRQ_BORING);
465 		thread_unlock(td);
466 	}
467 
468 	return (0);
469 }
470 
471 static int
472 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
473     const char *name, ...)
474 {
475 	va_list ap;
476 	int error;
477 
478 	va_start(ap, name);
479 	error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
480 	va_end(ap);
481 	return (error);
482 }
483 
484 static inline void
485 gtaskqueue_run_callback(struct gtaskqueue *tq,
486     enum taskqueue_callback_type cb_type)
487 {
488 	taskqueue_callback_fn tq_callback;
489 
490 	TQ_ASSERT_UNLOCKED(tq);
491 	tq_callback = tq->tq_callbacks[cb_type];
492 	if (tq_callback != NULL)
493 		tq_callback(tq->tq_cb_contexts[cb_type]);
494 }
495 
496 static void
497 gtaskqueue_thread_loop(void *arg)
498 {
499 	struct gtaskqueue **tqp, *tq;
500 
501 	tqp = arg;
502 	tq = *tqp;
503 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
504 	TQ_LOCK(tq);
505 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
506 		/* XXX ? */
507 		gtaskqueue_run_locked(tq);
508 		/*
509 		 * Because taskqueue_run() can drop tq_mutex, we need to
510 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
511 		 * meantime, which means we missed a wakeup.
512 		 */
513 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
514 			break;
515 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
516 	}
517 	gtaskqueue_run_locked(tq);
518 	/*
519 	 * This thread is on its way out, so just drop the lock temporarily
520 	 * in order to call the shutdown callback.  This allows the callback
521 	 * to look at the taskqueue, even just before it dies.
522 	 */
523 	TQ_UNLOCK(tq);
524 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
525 	TQ_LOCK(tq);
526 
527 	/* rendezvous with thread that asked us to terminate */
528 	tq->tq_tcount--;
529 	wakeup_one(tq->tq_threads);
530 	TQ_UNLOCK(tq);
531 	kthread_exit();
532 }
533 
534 static void
535 gtaskqueue_thread_enqueue(void *context)
536 {
537 	struct gtaskqueue **tqp, *tq;
538 
539 	tqp = context;
540 	tq = *tqp;
541 	wakeup_one(tq);
542 }
543 
544 
545 static struct gtaskqueue *
546 gtaskqueue_create_fast(const char *name, int mflags,
547 		 taskqueue_enqueue_fn enqueue, void *context)
548 {
549 	return _gtaskqueue_create(name, mflags, enqueue, context,
550 			MTX_SPIN, "fast_taskqueue");
551 }
552 
553 
554 struct taskqgroup_cpu {
555 	LIST_HEAD(, grouptask)	tgc_tasks;
556 	struct gtaskqueue	*tgc_taskq;
557 	int	tgc_cnt;
558 	int	tgc_cpu;
559 };
560 
561 struct taskqgroup {
562 	struct taskqgroup_cpu tqg_queue[MAXCPU];
563 	struct mtx	tqg_lock;
564 	char *		tqg_name;
565 	int		tqg_adjusting;
566 	int		tqg_stride;
567 	int		tqg_cnt;
568 };
569 
570 struct taskq_bind_task {
571 	struct gtask bt_task;
572 	int	bt_cpuid;
573 };
574 
575 static void
576 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
577 {
578 	struct taskqgroup_cpu *qcpu;
579 
580 	qcpu = &qgroup->tqg_queue[idx];
581 	LIST_INIT(&qcpu->tgc_tasks);
582 	qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
583 	    taskqueue_thread_enqueue, &qcpu->tgc_taskq);
584 	gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
585 	    "%s_%d", qgroup->tqg_name, idx);
586 	qcpu->tgc_cpu = cpu;
587 }
588 
589 static void
590 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
591 {
592 
593 	gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
594 }
595 
596 /*
597  * Find the taskq with least # of tasks that doesn't currently have any
598  * other queues from the uniq identifier.
599  */
600 static int
601 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
602 {
603 	struct grouptask *n;
604 	int i, idx, mincnt;
605 	int strict;
606 
607 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
608 	if (qgroup->tqg_cnt == 0)
609 		return (0);
610 	idx = -1;
611 	mincnt = INT_MAX;
612 	/*
613 	 * Two passes;  First scan for a queue with the least tasks that
614 	 * does not already service this uniq id.  If that fails simply find
615 	 * the queue with the least total tasks;
616 	 */
617 	for (strict = 1; mincnt == INT_MAX; strict = 0) {
618 		for (i = 0; i < qgroup->tqg_cnt; i++) {
619 			if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
620 				continue;
621 			if (strict) {
622 				LIST_FOREACH(n,
623 				    &qgroup->tqg_queue[i].tgc_tasks, gt_list)
624 					if (n->gt_uniq == uniq)
625 						break;
626 				if (n != NULL)
627 					continue;
628 			}
629 			mincnt = qgroup->tqg_queue[i].tgc_cnt;
630 			idx = i;
631 		}
632 	}
633 	if (idx == -1)
634 		panic("taskqgroup_find: Failed to pick a qid.");
635 
636 	return (idx);
637 }
638 
639 /*
640  * smp_started is unusable since it is not set for UP kernels or even for
641  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
642  * (mp_ncpus == 1) test, but that would be broken here since we need to
643  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
644  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
645  *
646  * So maintain our own flag.  It must be set after all CPUs are started
647  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
648  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
649  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
650  * simpler for adjustment to pass a flag indicating if it is delayed.
651  */
652 
653 static int tqg_smp_started;
654 
655 static void
656 tqg_record_smp_started(void *arg)
657 {
658 	tqg_smp_started = 1;
659 }
660 
661 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
662 	tqg_record_smp_started, NULL);
663 
664 void
665 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
666     void *uniq, int irq, const char *name)
667 {
668 	cpuset_t mask;
669 	int qid, error;
670 
671 	gtask->gt_uniq = uniq;
672 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
673 	gtask->gt_irq = irq;
674 	gtask->gt_cpu = -1;
675 	mtx_lock(&qgroup->tqg_lock);
676 	qid = taskqgroup_find(qgroup, uniq);
677 	qgroup->tqg_queue[qid].tgc_cnt++;
678 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
679 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
680 	if (irq != -1 && tqg_smp_started) {
681 		gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu;
682 		CPU_ZERO(&mask);
683 		CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
684 		mtx_unlock(&qgroup->tqg_lock);
685 		error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
686 		if (error)
687 			printf("%s: setaffinity failed for %s: %d\n", __func__, gtask->gt_name, error);
688 	} else
689 		mtx_unlock(&qgroup->tqg_lock);
690 }
691 
692 static void
693 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
694 {
695 	cpuset_t mask;
696 	int qid, cpu, error;
697 
698 	mtx_lock(&qgroup->tqg_lock);
699 	qid = taskqgroup_find(qgroup, gtask->gt_uniq);
700 	cpu = qgroup->tqg_queue[qid].tgc_cpu;
701 	if (gtask->gt_irq != -1) {
702 		mtx_unlock(&qgroup->tqg_lock);
703 
704 		CPU_ZERO(&mask);
705 		CPU_SET(cpu, &mask);
706 		error = intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask);
707 		mtx_lock(&qgroup->tqg_lock);
708 		if (error)
709 			printf("%s: %s setaffinity failed: %d\n", __func__, gtask->gt_name, error);
710 
711 	}
712 	qgroup->tqg_queue[qid].tgc_cnt++;
713 
714 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask,
715 			 gt_list);
716 	MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
717 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
718 	mtx_unlock(&qgroup->tqg_lock);
719 }
720 
721 int
722 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
723 	void *uniq, int cpu, int irq, char *name)
724 {
725 	cpuset_t mask;
726 	int i, qid, error;
727 
728 	qid = -1;
729 	gtask->gt_uniq = uniq;
730 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
731 	gtask->gt_irq = irq;
732 	gtask->gt_cpu = cpu;
733 	mtx_lock(&qgroup->tqg_lock);
734 	if (tqg_smp_started) {
735 		for (i = 0; i < qgroup->tqg_cnt; i++)
736 			if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
737 				qid = i;
738 				break;
739 			}
740 		if (qid == -1) {
741 			mtx_unlock(&qgroup->tqg_lock);
742 			printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
743 			return (EINVAL);
744 		}
745 	} else
746 		qid = 0;
747 	qgroup->tqg_queue[qid].tgc_cnt++;
748 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
749 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
750 	cpu = qgroup->tqg_queue[qid].tgc_cpu;
751 	mtx_unlock(&qgroup->tqg_lock);
752 
753 	CPU_ZERO(&mask);
754 	CPU_SET(cpu, &mask);
755 	if (irq != -1 && tqg_smp_started) {
756 		error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
757 		if (error)
758 			printf("%s: setaffinity failed: %d\n", __func__, error);
759 	}
760 	return (0);
761 }
762 
763 static int
764 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
765 {
766 	cpuset_t mask;
767 	int i, qid, irq, cpu, error;
768 
769 	qid = -1;
770 	irq = gtask->gt_irq;
771 	cpu = gtask->gt_cpu;
772 	MPASS(tqg_smp_started);
773 	mtx_lock(&qgroup->tqg_lock);
774 	for (i = 0; i < qgroup->tqg_cnt; i++)
775 		if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
776 			qid = i;
777 			break;
778 		}
779 	if (qid == -1) {
780 		mtx_unlock(&qgroup->tqg_lock);
781 		printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
782 		return (EINVAL);
783 	}
784 	qgroup->tqg_queue[qid].tgc_cnt++;
785 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
786 	MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
787 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
788 	mtx_unlock(&qgroup->tqg_lock);
789 
790 	CPU_ZERO(&mask);
791 	CPU_SET(cpu, &mask);
792 
793 	if (irq != -1) {
794 		error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
795 		if (error)
796 			printf("%s: setaffinity failed: %d\n", __func__, error);
797 	}
798 	return (0);
799 }
800 
801 void
802 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
803 {
804 	int i;
805 
806 	mtx_lock(&qgroup->tqg_lock);
807 	for (i = 0; i < qgroup->tqg_cnt; i++)
808 		if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
809 			break;
810 	if (i == qgroup->tqg_cnt)
811 		panic("taskqgroup_detach: task %s not in group\n", gtask->gt_name);
812 	qgroup->tqg_queue[i].tgc_cnt--;
813 	LIST_REMOVE(gtask, gt_list);
814 	mtx_unlock(&qgroup->tqg_lock);
815 	gtask->gt_taskqueue = NULL;
816 }
817 
818 static void
819 taskqgroup_binder(void *ctx)
820 {
821 	struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
822 	cpuset_t mask;
823 	int error;
824 
825 	CPU_ZERO(&mask);
826 	CPU_SET(gtask->bt_cpuid, &mask);
827 	error = cpuset_setthread(curthread->td_tid, &mask);
828 	thread_lock(curthread);
829 	sched_bind(curthread, gtask->bt_cpuid);
830 	thread_unlock(curthread);
831 
832 	if (error)
833 		printf("%s: setaffinity failed: %d\n", __func__,
834 		    error);
835 	free(gtask, M_DEVBUF);
836 }
837 
838 static void
839 taskqgroup_bind(struct taskqgroup *qgroup)
840 {
841 	struct taskq_bind_task *gtask;
842 	int i;
843 
844 	/*
845 	 * Bind taskqueue threads to specific CPUs, if they have been assigned
846 	 * one.
847 	 */
848 	if (qgroup->tqg_cnt == 1)
849 		return;
850 
851 	for (i = 0; i < qgroup->tqg_cnt; i++) {
852 		gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
853 		GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
854 		gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
855 		grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
856 		    &gtask->bt_task);
857 	}
858 }
859 
860 static int
861 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
862 {
863 	LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
864 	struct grouptask *gtask;
865 	int i, k, old_cnt, old_cpu, cpu;
866 
867 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
868 
869 	if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
870 		printf("%s: failed cnt: %d stride: %d "
871 		    "mp_ncpus: %d tqg_smp_started: %d\n",
872 		    __func__, cnt, stride, mp_ncpus, tqg_smp_started);
873 		return (EINVAL);
874 	}
875 	if (qgroup->tqg_adjusting) {
876 		printf("%s failed: adjusting\n", __func__);
877 		return (EBUSY);
878 	}
879 	qgroup->tqg_adjusting = 1;
880 	old_cnt = qgroup->tqg_cnt;
881 	old_cpu = 0;
882 	if (old_cnt < cnt)
883 		old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
884 	mtx_unlock(&qgroup->tqg_lock);
885 	/*
886 	 * Set up queue for tasks added before boot.
887 	 */
888 	if (old_cnt == 0) {
889 		LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
890 		    grouptask, gt_list);
891 		qgroup->tqg_queue[0].tgc_cnt = 0;
892 	}
893 
894 	/*
895 	 * If new taskq threads have been added.
896 	 */
897 	cpu = old_cpu;
898 	for (i = old_cnt; i < cnt; i++) {
899 		taskqgroup_cpu_create(qgroup, i, cpu);
900 
901 		for (k = 0; k < stride; k++)
902 			cpu = CPU_NEXT(cpu);
903 	}
904 	mtx_lock(&qgroup->tqg_lock);
905 	qgroup->tqg_cnt = cnt;
906 	qgroup->tqg_stride = stride;
907 
908 	/*
909 	 * Adjust drivers to use new taskqs.
910 	 */
911 	for (i = 0; i < old_cnt; i++) {
912 		while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
913 			LIST_REMOVE(gtask, gt_list);
914 			qgroup->tqg_queue[i].tgc_cnt--;
915 			LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
916 		}
917 	}
918 	mtx_unlock(&qgroup->tqg_lock);
919 
920 	while ((gtask = LIST_FIRST(&gtask_head))) {
921 		LIST_REMOVE(gtask, gt_list);
922 		if (gtask->gt_cpu == -1)
923 			taskqgroup_attach_deferred(qgroup, gtask);
924 		else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
925 			taskqgroup_attach_deferred(qgroup, gtask);
926 	}
927 
928 #ifdef INVARIANTS
929 	mtx_lock(&qgroup->tqg_lock);
930 	for (i = 0; i < qgroup->tqg_cnt; i++) {
931 		MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
932 		LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
933 			MPASS(gtask->gt_taskqueue != NULL);
934 	}
935 	mtx_unlock(&qgroup->tqg_lock);
936 #endif
937 	/*
938 	 * If taskq thread count has been reduced.
939 	 */
940 	for (i = cnt; i < old_cnt; i++)
941 		taskqgroup_cpu_remove(qgroup, i);
942 
943 	taskqgroup_bind(qgroup);
944 
945 	mtx_lock(&qgroup->tqg_lock);
946 	qgroup->tqg_adjusting = 0;
947 
948 	return (0);
949 }
950 
951 int
952 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
953 {
954 	int error;
955 
956 	mtx_lock(&qgroup->tqg_lock);
957 	error = _taskqgroup_adjust(qgroup, cnt, stride);
958 	mtx_unlock(&qgroup->tqg_lock);
959 
960 	return (error);
961 }
962 
963 struct taskqgroup *
964 taskqgroup_create(char *name)
965 {
966 	struct taskqgroup *qgroup;
967 
968 	qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
969 	mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
970 	qgroup->tqg_name = name;
971 	LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
972 
973 	return (qgroup);
974 }
975 
976 void
977 taskqgroup_destroy(struct taskqgroup *qgroup)
978 {
979 
980 }
981 
982 void
983 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
984 	const char *name)
985 {
986 
987 	GROUPTASK_INIT(gtask, 0, fn, ctx);
988 	taskqgroup_attach(qgroup_config, gtask, gtask, -1, name);
989 }
990 
991 void
992 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
993 {
994 	taskqgroup_detach(qgroup_config, gtask);
995 }
996