1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/libkern.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/epoch.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/gtaskqueue.h> 48 #include <sys/unistd.h> 49 #include <machine/stdarg.h> 50 51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 52 static void gtaskqueue_thread_enqueue(void *); 53 static void gtaskqueue_thread_loop(void *arg); 54 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); 55 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); 56 57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 58 TASKQGROUP_DEFINE(config, 1, 1); 59 60 struct gtaskqueue_busy { 61 struct gtask *tb_running; 62 u_int tb_seq; 63 LIST_ENTRY(gtaskqueue_busy) tb_link; 64 }; 65 66 typedef void (*gtaskqueue_enqueue_fn)(void *context); 67 68 struct gtaskqueue { 69 STAILQ_HEAD(, gtask) tq_queue; 70 LIST_HEAD(, gtaskqueue_busy) tq_active; 71 u_int tq_seq; 72 int tq_callouts; 73 struct mtx_padalign tq_mutex; 74 gtaskqueue_enqueue_fn tq_enqueue; 75 void *tq_context; 76 char *tq_name; 77 struct thread **tq_threads; 78 int tq_tcount; 79 int tq_spin; 80 int tq_flags; 81 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 82 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 83 }; 84 85 #define TQ_FLAGS_ACTIVE (1 << 0) 86 #define TQ_FLAGS_BLOCKED (1 << 1) 87 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 88 89 #define DT_CALLOUT_ARMED (1 << 0) 90 91 #define TQ_LOCK(tq) \ 92 do { \ 93 if ((tq)->tq_spin) \ 94 mtx_lock_spin(&(tq)->tq_mutex); \ 95 else \ 96 mtx_lock(&(tq)->tq_mutex); \ 97 } while (0) 98 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 99 100 #define TQ_UNLOCK(tq) \ 101 do { \ 102 if ((tq)->tq_spin) \ 103 mtx_unlock_spin(&(tq)->tq_mutex); \ 104 else \ 105 mtx_unlock(&(tq)->tq_mutex); \ 106 } while (0) 107 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 108 109 #ifdef INVARIANTS 110 static void 111 gtask_dump(struct gtask *gtask) 112 { 113 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 114 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 115 } 116 #endif 117 118 static __inline int 119 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm) 120 { 121 if (tq->tq_spin) 122 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); 123 return (msleep(p, &tq->tq_mutex, 0, wm, 0)); 124 } 125 126 static struct gtaskqueue * 127 _gtaskqueue_create(const char *name, int mflags, 128 taskqueue_enqueue_fn enqueue, void *context, 129 int mtxflags, const char *mtxname __unused) 130 { 131 struct gtaskqueue *queue; 132 char *tq_name; 133 134 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 135 if (!tq_name) 136 return (NULL); 137 138 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 139 140 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 141 if (!queue) { 142 free(tq_name, M_GTASKQUEUE); 143 return (NULL); 144 } 145 146 STAILQ_INIT(&queue->tq_queue); 147 LIST_INIT(&queue->tq_active); 148 queue->tq_enqueue = enqueue; 149 queue->tq_context = context; 150 queue->tq_name = tq_name; 151 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 152 queue->tq_flags |= TQ_FLAGS_ACTIVE; 153 if (enqueue == gtaskqueue_thread_enqueue) 154 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 155 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 156 157 return (queue); 158 } 159 160 /* 161 * Signal a taskqueue thread to terminate. 162 */ 163 static void 164 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 165 { 166 167 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 168 wakeup(tq); 169 TQ_SLEEP(tq, pp, "gtq_destroy"); 170 } 171 } 172 173 static void 174 gtaskqueue_free(struct gtaskqueue *queue) 175 { 176 177 TQ_LOCK(queue); 178 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 179 gtaskqueue_terminate(queue->tq_threads, queue); 180 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); 181 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 182 mtx_destroy(&queue->tq_mutex); 183 free(queue->tq_threads, M_GTASKQUEUE); 184 free(queue->tq_name, M_GTASKQUEUE); 185 free(queue, M_GTASKQUEUE); 186 } 187 188 /* 189 * Wait for all to complete, then prevent it from being enqueued 190 */ 191 void 192 grouptask_block(struct grouptask *grouptask) 193 { 194 struct gtaskqueue *queue = grouptask->gt_taskqueue; 195 struct gtask *gtask = &grouptask->gt_task; 196 197 #ifdef INVARIANTS 198 if (queue == NULL) { 199 gtask_dump(gtask); 200 panic("queue == NULL"); 201 } 202 #endif 203 TQ_LOCK(queue); 204 gtask->ta_flags |= TASK_NOENQUEUE; 205 gtaskqueue_drain_locked(queue, gtask); 206 TQ_UNLOCK(queue); 207 } 208 209 void 210 grouptask_unblock(struct grouptask *grouptask) 211 { 212 struct gtaskqueue *queue = grouptask->gt_taskqueue; 213 struct gtask *gtask = &grouptask->gt_task; 214 215 #ifdef INVARIANTS 216 if (queue == NULL) { 217 gtask_dump(gtask); 218 panic("queue == NULL"); 219 } 220 #endif 221 TQ_LOCK(queue); 222 gtask->ta_flags &= ~TASK_NOENQUEUE; 223 TQ_UNLOCK(queue); 224 } 225 226 int 227 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 228 { 229 #ifdef INVARIANTS 230 if (queue == NULL) { 231 gtask_dump(gtask); 232 panic("queue == NULL"); 233 } 234 #endif 235 TQ_LOCK(queue); 236 if (gtask->ta_flags & TASK_ENQUEUED) { 237 TQ_UNLOCK(queue); 238 return (0); 239 } 240 if (gtask->ta_flags & TASK_NOENQUEUE) { 241 TQ_UNLOCK(queue); 242 return (EAGAIN); 243 } 244 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 245 gtask->ta_flags |= TASK_ENQUEUED; 246 TQ_UNLOCK(queue); 247 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 248 queue->tq_enqueue(queue->tq_context); 249 return (0); 250 } 251 252 static void 253 gtaskqueue_task_nop_fn(void *context) 254 { 255 } 256 257 /* 258 * Block until all currently queued tasks in this taskqueue 259 * have begun execution. Tasks queued during execution of 260 * this function are ignored. 261 */ 262 static void 263 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 264 { 265 struct gtask t_barrier; 266 267 if (STAILQ_EMPTY(&queue->tq_queue)) 268 return; 269 270 /* 271 * Enqueue our barrier after all current tasks, but with 272 * the highest priority so that newly queued tasks cannot 273 * pass it. Because of the high priority, we can not use 274 * taskqueue_enqueue_locked directly (which drops the lock 275 * anyway) so just insert it at tail while we have the 276 * queue lock. 277 */ 278 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 279 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 280 t_barrier.ta_flags |= TASK_ENQUEUED; 281 282 /* 283 * Once the barrier has executed, all previously queued tasks 284 * have completed or are currently executing. 285 */ 286 while (t_barrier.ta_flags & TASK_ENQUEUED) 287 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain"); 288 } 289 290 /* 291 * Block until all currently executing tasks for this taskqueue 292 * complete. Tasks that begin execution during the execution 293 * of this function are ignored. 294 */ 295 static void 296 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 297 { 298 struct gtaskqueue_busy *tb; 299 u_int seq; 300 301 if (LIST_EMPTY(&queue->tq_active)) 302 return; 303 304 /* Block taskq_terminate().*/ 305 queue->tq_callouts++; 306 307 /* Wait for any active task with sequence from the past. */ 308 seq = queue->tq_seq; 309 restart: 310 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 311 if ((int)(tb->tb_seq - seq) <= 0) { 312 TQ_SLEEP(queue, tb->tb_running, "gtq_adrain"); 313 goto restart; 314 } 315 } 316 317 /* Release taskqueue_terminate(). */ 318 queue->tq_callouts--; 319 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 320 wakeup_one(queue->tq_threads); 321 } 322 323 void 324 gtaskqueue_block(struct gtaskqueue *queue) 325 { 326 327 TQ_LOCK(queue); 328 queue->tq_flags |= TQ_FLAGS_BLOCKED; 329 TQ_UNLOCK(queue); 330 } 331 332 void 333 gtaskqueue_unblock(struct gtaskqueue *queue) 334 { 335 336 TQ_LOCK(queue); 337 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 338 if (!STAILQ_EMPTY(&queue->tq_queue)) 339 queue->tq_enqueue(queue->tq_context); 340 TQ_UNLOCK(queue); 341 } 342 343 static void 344 gtaskqueue_run_locked(struct gtaskqueue *queue) 345 { 346 struct epoch_tracker et; 347 struct gtaskqueue_busy tb; 348 struct gtask *gtask; 349 bool in_net_epoch; 350 351 KASSERT(queue != NULL, ("tq is NULL")); 352 TQ_ASSERT_LOCKED(queue); 353 tb.tb_running = NULL; 354 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); 355 in_net_epoch = false; 356 357 while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) { 358 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 359 gtask->ta_flags &= ~TASK_ENQUEUED; 360 tb.tb_running = gtask; 361 tb.tb_seq = ++queue->tq_seq; 362 TQ_UNLOCK(queue); 363 364 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 365 if (!in_net_epoch && TASK_IS_NET(gtask)) { 366 in_net_epoch = true; 367 NET_EPOCH_ENTER(et); 368 } else if (in_net_epoch && !TASK_IS_NET(gtask)) { 369 NET_EPOCH_EXIT(et); 370 in_net_epoch = false; 371 } 372 gtask->ta_func(gtask->ta_context); 373 374 TQ_LOCK(queue); 375 wakeup(gtask); 376 } 377 if (in_net_epoch) 378 NET_EPOCH_EXIT(et); 379 LIST_REMOVE(&tb, tb_link); 380 } 381 382 static int 383 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 384 { 385 struct gtaskqueue_busy *tb; 386 387 TQ_ASSERT_LOCKED(queue); 388 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 389 if (tb->tb_running == gtask) 390 return (1); 391 } 392 return (0); 393 } 394 395 static int 396 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 397 { 398 399 if (gtask->ta_flags & TASK_ENQUEUED) 400 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 401 gtask->ta_flags &= ~TASK_ENQUEUED; 402 return (task_is_running(queue, gtask) ? EBUSY : 0); 403 } 404 405 int 406 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 407 { 408 int error; 409 410 TQ_LOCK(queue); 411 error = gtaskqueue_cancel_locked(queue, gtask); 412 TQ_UNLOCK(queue); 413 414 return (error); 415 } 416 417 static void 418 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) 419 { 420 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 421 TQ_SLEEP(queue, gtask, "gtq_drain"); 422 } 423 424 void 425 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 426 { 427 428 if (!queue->tq_spin) 429 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 430 431 TQ_LOCK(queue); 432 gtaskqueue_drain_locked(queue, gtask); 433 TQ_UNLOCK(queue); 434 } 435 436 void 437 gtaskqueue_drain_all(struct gtaskqueue *queue) 438 { 439 440 if (!queue->tq_spin) 441 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 442 443 TQ_LOCK(queue); 444 gtaskqueue_drain_tq_queue(queue); 445 gtaskqueue_drain_tq_active(queue); 446 TQ_UNLOCK(queue); 447 } 448 449 static int 450 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 451 cpuset_t *mask, const char *name, va_list ap) 452 { 453 char ktname[MAXCOMLEN + 1]; 454 struct thread *td; 455 struct gtaskqueue *tq; 456 int i, error; 457 458 if (count <= 0) 459 return (EINVAL); 460 461 vsnprintf(ktname, sizeof(ktname), name, ap); 462 tq = *tqp; 463 464 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 465 M_NOWAIT | M_ZERO); 466 if (tq->tq_threads == NULL) { 467 printf("%s: no memory for %s threads\n", __func__, ktname); 468 return (ENOMEM); 469 } 470 471 for (i = 0; i < count; i++) { 472 if (count == 1) 473 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 474 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 475 else 476 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 477 &tq->tq_threads[i], RFSTOPPED, 0, 478 "%s_%d", ktname, i); 479 if (error) { 480 /* should be ok to continue, taskqueue_free will dtrt */ 481 printf("%s: kthread_add(%s): error %d", __func__, 482 ktname, error); 483 tq->tq_threads[i] = NULL; /* paranoid */ 484 } else 485 tq->tq_tcount++; 486 } 487 for (i = 0; i < count; i++) { 488 if (tq->tq_threads[i] == NULL) 489 continue; 490 td = tq->tq_threads[i]; 491 if (mask) { 492 error = cpuset_setthread(td->td_tid, mask); 493 /* 494 * Failing to pin is rarely an actual fatal error; 495 * it'll just affect performance. 496 */ 497 if (error) 498 printf("%s: curthread=%llu: can't pin; " 499 "error=%d\n", 500 __func__, 501 (unsigned long long) td->td_tid, 502 error); 503 } 504 thread_lock(td); 505 sched_prio(td, pri); 506 sched_add(td, SRQ_BORING); 507 } 508 509 return (0); 510 } 511 512 static int 513 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 514 const char *name, ...) 515 { 516 va_list ap; 517 int error; 518 519 va_start(ap, name); 520 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 521 va_end(ap); 522 return (error); 523 } 524 525 static inline void 526 gtaskqueue_run_callback(struct gtaskqueue *tq, 527 enum taskqueue_callback_type cb_type) 528 { 529 taskqueue_callback_fn tq_callback; 530 531 TQ_ASSERT_UNLOCKED(tq); 532 tq_callback = tq->tq_callbacks[cb_type]; 533 if (tq_callback != NULL) 534 tq_callback(tq->tq_cb_contexts[cb_type]); 535 } 536 537 static void 538 gtaskqueue_thread_loop(void *arg) 539 { 540 struct gtaskqueue **tqp, *tq; 541 542 tqp = arg; 543 tq = *tqp; 544 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 545 TQ_LOCK(tq); 546 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 547 /* XXX ? */ 548 gtaskqueue_run_locked(tq); 549 /* 550 * Because taskqueue_run() can drop tq_mutex, we need to 551 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 552 * meantime, which means we missed a wakeup. 553 */ 554 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 555 break; 556 TQ_SLEEP(tq, tq, "-"); 557 } 558 gtaskqueue_run_locked(tq); 559 /* 560 * This thread is on its way out, so just drop the lock temporarily 561 * in order to call the shutdown callback. This allows the callback 562 * to look at the taskqueue, even just before it dies. 563 */ 564 TQ_UNLOCK(tq); 565 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 566 TQ_LOCK(tq); 567 568 /* rendezvous with thread that asked us to terminate */ 569 tq->tq_tcount--; 570 wakeup_one(tq->tq_threads); 571 TQ_UNLOCK(tq); 572 kthread_exit(); 573 } 574 575 static void 576 gtaskqueue_thread_enqueue(void *context) 577 { 578 struct gtaskqueue **tqp, *tq; 579 580 tqp = context; 581 tq = *tqp; 582 wakeup_any(tq); 583 } 584 585 static struct gtaskqueue * 586 gtaskqueue_create_fast(const char *name, int mflags, 587 taskqueue_enqueue_fn enqueue, void *context) 588 { 589 return _gtaskqueue_create(name, mflags, enqueue, context, 590 MTX_SPIN, "fast_taskqueue"); 591 } 592 593 struct taskqgroup_cpu { 594 LIST_HEAD(, grouptask) tgc_tasks; 595 struct gtaskqueue *tgc_taskq; 596 int tgc_cnt; 597 int tgc_cpu; 598 }; 599 600 struct taskqgroup { 601 struct taskqgroup_cpu tqg_queue[MAXCPU]; 602 struct mtx tqg_lock; 603 const char * tqg_name; 604 int tqg_adjusting; 605 int tqg_stride; 606 int tqg_cnt; 607 }; 608 609 struct taskq_bind_task { 610 struct gtask bt_task; 611 int bt_cpuid; 612 }; 613 614 static void 615 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 616 { 617 struct taskqgroup_cpu *qcpu; 618 619 qcpu = &qgroup->tqg_queue[idx]; 620 LIST_INIT(&qcpu->tgc_tasks); 621 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 622 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 623 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 624 "%s_%d", qgroup->tqg_name, idx); 625 qcpu->tgc_cpu = cpu; 626 } 627 628 static void 629 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 630 { 631 632 gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 633 } 634 635 /* 636 * Find the taskq with least # of tasks that doesn't currently have any 637 * other queues from the uniq identifier. 638 */ 639 static int 640 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 641 { 642 struct grouptask *n; 643 int i, idx, mincnt; 644 int strict; 645 646 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 647 if (qgroup->tqg_cnt == 0) 648 return (0); 649 idx = -1; 650 mincnt = INT_MAX; 651 /* 652 * Two passes; First scan for a queue with the least tasks that 653 * does not already service this uniq id. If that fails simply find 654 * the queue with the least total tasks; 655 */ 656 for (strict = 1; mincnt == INT_MAX; strict = 0) { 657 for (i = 0; i < qgroup->tqg_cnt; i++) { 658 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 659 continue; 660 if (strict) { 661 LIST_FOREACH(n, 662 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 663 if (n->gt_uniq == uniq) 664 break; 665 if (n != NULL) 666 continue; 667 } 668 mincnt = qgroup->tqg_queue[i].tgc_cnt; 669 idx = i; 670 } 671 } 672 if (idx == -1) 673 panic("%s: failed to pick a qid.", __func__); 674 675 return (idx); 676 } 677 678 /* 679 * smp_started is unusable since it is not set for UP kernels or even for 680 * SMP kernels when there is 1 CPU. This is usually handled by adding a 681 * (mp_ncpus == 1) test, but that would be broken here since we need to 682 * to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case 683 * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP. 684 * 685 * So maintain our own flag. It must be set after all CPUs are started 686 * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed 687 * adjustment is properly delayed. SI_ORDER_FOURTH is clearly before 688 * SI_ORDER_ANY and unclearly after the CPUs are started. It would be 689 * simpler for adjustment to pass a flag indicating if it is delayed. 690 */ 691 692 static int tqg_smp_started; 693 694 static void 695 tqg_record_smp_started(void *arg) 696 { 697 tqg_smp_started = 1; 698 } 699 700 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH, 701 tqg_record_smp_started, NULL); 702 703 void 704 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 705 void *uniq, device_t dev, struct resource *irq, const char *name) 706 { 707 int cpu, qid, error; 708 709 gtask->gt_uniq = uniq; 710 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 711 gtask->gt_dev = dev; 712 gtask->gt_irq = irq; 713 gtask->gt_cpu = -1; 714 mtx_lock(&qgroup->tqg_lock); 715 qid = taskqgroup_find(qgroup, uniq); 716 qgroup->tqg_queue[qid].tgc_cnt++; 717 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 718 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 719 if (dev != NULL && irq != NULL && tqg_smp_started) { 720 cpu = qgroup->tqg_queue[qid].tgc_cpu; 721 gtask->gt_cpu = cpu; 722 mtx_unlock(&qgroup->tqg_lock); 723 error = bus_bind_intr(dev, irq, cpu); 724 if (error) 725 printf("%s: binding interrupt failed for %s: %d\n", 726 __func__, gtask->gt_name, error); 727 } else 728 mtx_unlock(&qgroup->tqg_lock); 729 } 730 731 static void 732 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 733 { 734 int qid, cpu, error; 735 736 mtx_lock(&qgroup->tqg_lock); 737 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 738 cpu = qgroup->tqg_queue[qid].tgc_cpu; 739 if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) { 740 mtx_unlock(&qgroup->tqg_lock); 741 error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu); 742 mtx_lock(&qgroup->tqg_lock); 743 if (error) 744 printf("%s: binding interrupt failed for %s: %d\n", 745 __func__, gtask->gt_name, error); 746 747 } 748 qgroup->tqg_queue[qid].tgc_cnt++; 749 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 750 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 751 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 752 mtx_unlock(&qgroup->tqg_lock); 753 } 754 755 int 756 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 757 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) 758 { 759 int i, qid, error; 760 761 qid = -1; 762 gtask->gt_uniq = uniq; 763 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 764 gtask->gt_dev = dev; 765 gtask->gt_irq = irq; 766 gtask->gt_cpu = cpu; 767 mtx_lock(&qgroup->tqg_lock); 768 if (tqg_smp_started) { 769 for (i = 0; i < qgroup->tqg_cnt; i++) 770 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 771 qid = i; 772 break; 773 } 774 if (qid == -1) { 775 mtx_unlock(&qgroup->tqg_lock); 776 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 777 return (EINVAL); 778 } 779 } else 780 qid = 0; 781 qgroup->tqg_queue[qid].tgc_cnt++; 782 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 783 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 784 cpu = qgroup->tqg_queue[qid].tgc_cpu; 785 mtx_unlock(&qgroup->tqg_lock); 786 787 if (dev != NULL && irq != NULL && tqg_smp_started) { 788 error = bus_bind_intr(dev, irq, cpu); 789 if (error) 790 printf("%s: binding interrupt failed for %s: %d\n", 791 __func__, gtask->gt_name, error); 792 } 793 return (0); 794 } 795 796 static int 797 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 798 { 799 device_t dev; 800 struct resource *irq; 801 int cpu, error, i, qid; 802 803 qid = -1; 804 dev = gtask->gt_dev; 805 irq = gtask->gt_irq; 806 cpu = gtask->gt_cpu; 807 MPASS(tqg_smp_started); 808 mtx_lock(&qgroup->tqg_lock); 809 for (i = 0; i < qgroup->tqg_cnt; i++) 810 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 811 qid = i; 812 break; 813 } 814 if (qid == -1) { 815 mtx_unlock(&qgroup->tqg_lock); 816 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 817 return (EINVAL); 818 } 819 qgroup->tqg_queue[qid].tgc_cnt++; 820 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 821 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 822 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 823 mtx_unlock(&qgroup->tqg_lock); 824 825 if (dev != NULL && irq != NULL) { 826 error = bus_bind_intr(dev, irq, cpu); 827 if (error) 828 printf("%s: binding interrupt failed for %s: %d\n", 829 __func__, gtask->gt_name, error); 830 } 831 return (0); 832 } 833 834 void 835 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 836 { 837 int i; 838 839 grouptask_block(gtask); 840 mtx_lock(&qgroup->tqg_lock); 841 for (i = 0; i < qgroup->tqg_cnt; i++) 842 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 843 break; 844 if (i == qgroup->tqg_cnt) 845 panic("%s: task %s not in group", __func__, gtask->gt_name); 846 qgroup->tqg_queue[i].tgc_cnt--; 847 LIST_REMOVE(gtask, gt_list); 848 mtx_unlock(&qgroup->tqg_lock); 849 gtask->gt_taskqueue = NULL; 850 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; 851 } 852 853 static void 854 taskqgroup_binder(void *ctx) 855 { 856 struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; 857 cpuset_t mask; 858 int error; 859 860 CPU_ZERO(&mask); 861 CPU_SET(gtask->bt_cpuid, &mask); 862 error = cpuset_setthread(curthread->td_tid, &mask); 863 thread_lock(curthread); 864 sched_bind(curthread, gtask->bt_cpuid); 865 thread_unlock(curthread); 866 867 if (error) 868 printf("%s: binding curthread failed: %d\n", __func__, error); 869 free(gtask, M_DEVBUF); 870 } 871 872 static void 873 taskqgroup_bind(struct taskqgroup *qgroup) 874 { 875 struct taskq_bind_task *gtask; 876 int i; 877 878 /* 879 * Bind taskqueue threads to specific CPUs, if they have been assigned 880 * one. 881 */ 882 if (qgroup->tqg_cnt == 1) 883 return; 884 885 for (i = 0; i < qgroup->tqg_cnt; i++) { 886 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); 887 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 888 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 889 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 890 >ask->bt_task); 891 } 892 } 893 894 static void 895 taskqgroup_config_init(void *arg) 896 { 897 struct taskqgroup *qgroup = qgroup_config; 898 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 899 900 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 901 grouptask, gt_list); 902 qgroup->tqg_queue[0].tgc_cnt = 0; 903 taskqgroup_cpu_create(qgroup, 0, 0); 904 905 qgroup->tqg_cnt = 1; 906 qgroup->tqg_stride = 1; 907 } 908 909 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND, 910 taskqgroup_config_init, NULL); 911 912 static int 913 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 914 { 915 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 916 struct grouptask *gtask; 917 int i, k, old_cnt, old_cpu, cpu; 918 919 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 920 921 if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) { 922 printf("%s: failed cnt: %d stride: %d " 923 "mp_ncpus: %d tqg_smp_started: %d\n", 924 __func__, cnt, stride, mp_ncpus, tqg_smp_started); 925 return (EINVAL); 926 } 927 if (qgroup->tqg_adjusting) { 928 printf("%s failed: adjusting\n", __func__); 929 return (EBUSY); 930 } 931 qgroup->tqg_adjusting = 1; 932 old_cnt = qgroup->tqg_cnt; 933 old_cpu = 0; 934 if (old_cnt < cnt) 935 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; 936 mtx_unlock(&qgroup->tqg_lock); 937 /* 938 * Set up queue for tasks added before boot. 939 */ 940 if (old_cnt == 0) { 941 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 942 grouptask, gt_list); 943 qgroup->tqg_queue[0].tgc_cnt = 0; 944 } 945 946 /* 947 * If new taskq threads have been added. 948 */ 949 cpu = old_cpu; 950 for (i = old_cnt; i < cnt; i++) { 951 taskqgroup_cpu_create(qgroup, i, cpu); 952 953 for (k = 0; k < stride; k++) 954 cpu = CPU_NEXT(cpu); 955 } 956 mtx_lock(&qgroup->tqg_lock); 957 qgroup->tqg_cnt = cnt; 958 qgroup->tqg_stride = stride; 959 960 /* 961 * Adjust drivers to use new taskqs. 962 */ 963 for (i = 0; i < old_cnt; i++) { 964 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 965 LIST_REMOVE(gtask, gt_list); 966 qgroup->tqg_queue[i].tgc_cnt--; 967 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 968 } 969 } 970 mtx_unlock(&qgroup->tqg_lock); 971 972 while ((gtask = LIST_FIRST(>ask_head))) { 973 LIST_REMOVE(gtask, gt_list); 974 if (gtask->gt_cpu == -1) 975 taskqgroup_attach_deferred(qgroup, gtask); 976 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) 977 taskqgroup_attach_deferred(qgroup, gtask); 978 } 979 980 #ifdef INVARIANTS 981 mtx_lock(&qgroup->tqg_lock); 982 for (i = 0; i < qgroup->tqg_cnt; i++) { 983 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); 984 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) 985 MPASS(gtask->gt_taskqueue != NULL); 986 } 987 mtx_unlock(&qgroup->tqg_lock); 988 #endif 989 /* 990 * If taskq thread count has been reduced. 991 */ 992 for (i = cnt; i < old_cnt; i++) 993 taskqgroup_cpu_remove(qgroup, i); 994 995 taskqgroup_bind(qgroup); 996 997 mtx_lock(&qgroup->tqg_lock); 998 qgroup->tqg_adjusting = 0; 999 1000 return (0); 1001 } 1002 1003 int 1004 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 1005 { 1006 int error; 1007 1008 mtx_lock(&qgroup->tqg_lock); 1009 error = _taskqgroup_adjust(qgroup, cnt, stride); 1010 mtx_unlock(&qgroup->tqg_lock); 1011 1012 return (error); 1013 } 1014 1015 struct taskqgroup * 1016 taskqgroup_create(const char *name) 1017 { 1018 struct taskqgroup *qgroup; 1019 1020 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 1021 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 1022 qgroup->tqg_name = name; 1023 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 1024 1025 return (qgroup); 1026 } 1027 1028 void 1029 taskqgroup_destroy(struct taskqgroup *qgroup) 1030 { 1031 1032 } 1033 1034 void 1035 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, 1036 const char *name) 1037 { 1038 1039 GROUPTASK_INIT(gtask, 0, fn, ctx); 1040 taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name); 1041 } 1042 1043 void 1044 taskqgroup_config_gtask_deinit(struct grouptask *gtask) 1045 { 1046 1047 taskqgroup_detach(qgroup_config, gtask); 1048 } 1049