1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/libkern.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/sched.h> 45 #include <sys/smp.h> 46 #include <sys/gtaskqueue.h> 47 #include <sys/unistd.h> 48 #include <machine/stdarg.h> 49 50 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 51 static void gtaskqueue_thread_enqueue(void *); 52 static void gtaskqueue_thread_loop(void *arg); 53 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); 54 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); 55 56 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 57 TASKQGROUP_DEFINE(config, 1, 1); 58 59 struct gtaskqueue_busy { 60 struct gtask *tb_running; 61 TAILQ_ENTRY(gtaskqueue_busy) tb_link; 62 }; 63 64 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1; 65 66 typedef void (*gtaskqueue_enqueue_fn)(void *context); 67 68 struct gtaskqueue { 69 STAILQ_HEAD(, gtask) tq_queue; 70 gtaskqueue_enqueue_fn tq_enqueue; 71 void *tq_context; 72 char *tq_name; 73 TAILQ_HEAD(, gtaskqueue_busy) tq_active; 74 struct mtx tq_mutex; 75 struct thread **tq_threads; 76 int tq_tcount; 77 int tq_spin; 78 int tq_flags; 79 int tq_callouts; 80 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 81 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 82 }; 83 84 #define TQ_FLAGS_ACTIVE (1 << 0) 85 #define TQ_FLAGS_BLOCKED (1 << 1) 86 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 87 88 #define DT_CALLOUT_ARMED (1 << 0) 89 90 #define TQ_LOCK(tq) \ 91 do { \ 92 if ((tq)->tq_spin) \ 93 mtx_lock_spin(&(tq)->tq_mutex); \ 94 else \ 95 mtx_lock(&(tq)->tq_mutex); \ 96 } while (0) 97 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 98 99 #define TQ_UNLOCK(tq) \ 100 do { \ 101 if ((tq)->tq_spin) \ 102 mtx_unlock_spin(&(tq)->tq_mutex); \ 103 else \ 104 mtx_unlock(&(tq)->tq_mutex); \ 105 } while (0) 106 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 107 108 #ifdef INVARIANTS 109 static void 110 gtask_dump(struct gtask *gtask) 111 { 112 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 113 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 114 } 115 #endif 116 117 static __inline int 118 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 119 int t) 120 { 121 if (tq->tq_spin) 122 return (msleep_spin(p, m, wm, t)); 123 return (msleep(p, m, pri, wm, t)); 124 } 125 126 static struct gtaskqueue * 127 _gtaskqueue_create(const char *name, int mflags, 128 taskqueue_enqueue_fn enqueue, void *context, 129 int mtxflags, const char *mtxname __unused) 130 { 131 struct gtaskqueue *queue; 132 char *tq_name; 133 134 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 135 if (!tq_name) 136 return (NULL); 137 138 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 139 140 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 141 if (!queue) { 142 free(tq_name, M_GTASKQUEUE); 143 return (NULL); 144 } 145 146 STAILQ_INIT(&queue->tq_queue); 147 TAILQ_INIT(&queue->tq_active); 148 queue->tq_enqueue = enqueue; 149 queue->tq_context = context; 150 queue->tq_name = tq_name; 151 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 152 queue->tq_flags |= TQ_FLAGS_ACTIVE; 153 if (enqueue == gtaskqueue_thread_enqueue) 154 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 155 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 156 157 return (queue); 158 } 159 160 161 /* 162 * Signal a taskqueue thread to terminate. 163 */ 164 static void 165 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 166 { 167 168 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 169 wakeup(tq); 170 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 171 } 172 } 173 174 static void 175 gtaskqueue_free(struct gtaskqueue *queue) 176 { 177 178 TQ_LOCK(queue); 179 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 180 gtaskqueue_terminate(queue->tq_threads, queue); 181 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 182 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 183 mtx_destroy(&queue->tq_mutex); 184 free(queue->tq_threads, M_GTASKQUEUE); 185 free(queue->tq_name, M_GTASKQUEUE); 186 free(queue, M_GTASKQUEUE); 187 } 188 189 /* 190 * Wait for all to complete, then prevent it from being enqueued 191 */ 192 void 193 grouptask_block(struct grouptask *grouptask) 194 { 195 struct gtaskqueue *queue = grouptask->gt_taskqueue; 196 struct gtask *gtask = &grouptask->gt_task; 197 198 #ifdef INVARIANTS 199 if (queue == NULL) { 200 gtask_dump(gtask); 201 panic("queue == NULL"); 202 } 203 #endif 204 TQ_LOCK(queue); 205 gtask->ta_flags |= TASK_NOENQUEUE; 206 gtaskqueue_drain_locked(queue, gtask); 207 TQ_UNLOCK(queue); 208 } 209 210 void 211 grouptask_unblock(struct grouptask *grouptask) 212 { 213 struct gtaskqueue *queue = grouptask->gt_taskqueue; 214 struct gtask *gtask = &grouptask->gt_task; 215 216 #ifdef INVARIANTS 217 if (queue == NULL) { 218 gtask_dump(gtask); 219 panic("queue == NULL"); 220 } 221 #endif 222 TQ_LOCK(queue); 223 gtask->ta_flags &= ~TASK_NOENQUEUE; 224 TQ_UNLOCK(queue); 225 } 226 227 int 228 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 229 { 230 #ifdef INVARIANTS 231 if (queue == NULL) { 232 gtask_dump(gtask); 233 panic("queue == NULL"); 234 } 235 #endif 236 TQ_LOCK(queue); 237 if (gtask->ta_flags & TASK_ENQUEUED) { 238 TQ_UNLOCK(queue); 239 return (0); 240 } 241 if (gtask->ta_flags & TASK_NOENQUEUE) { 242 TQ_UNLOCK(queue); 243 return (EAGAIN); 244 } 245 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 246 gtask->ta_flags |= TASK_ENQUEUED; 247 TQ_UNLOCK(queue); 248 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 249 queue->tq_enqueue(queue->tq_context); 250 return (0); 251 } 252 253 static void 254 gtaskqueue_task_nop_fn(void *context) 255 { 256 } 257 258 /* 259 * Block until all currently queued tasks in this taskqueue 260 * have begun execution. Tasks queued during execution of 261 * this function are ignored. 262 */ 263 static void 264 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 265 { 266 struct gtask t_barrier; 267 268 if (STAILQ_EMPTY(&queue->tq_queue)) 269 return; 270 271 /* 272 * Enqueue our barrier after all current tasks, but with 273 * the highest priority so that newly queued tasks cannot 274 * pass it. Because of the high priority, we can not use 275 * taskqueue_enqueue_locked directly (which drops the lock 276 * anyway) so just insert it at tail while we have the 277 * queue lock. 278 */ 279 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 280 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 281 t_barrier.ta_flags |= TASK_ENQUEUED; 282 283 /* 284 * Once the barrier has executed, all previously queued tasks 285 * have completed or are currently executing. 286 */ 287 while (t_barrier.ta_flags & TASK_ENQUEUED) 288 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); 289 } 290 291 /* 292 * Block until all currently executing tasks for this taskqueue 293 * complete. Tasks that begin execution during the execution 294 * of this function are ignored. 295 */ 296 static void 297 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 298 { 299 struct gtaskqueue_busy tb_marker, *tb_first; 300 301 if (TAILQ_EMPTY(&queue->tq_active)) 302 return; 303 304 /* Block taskq_terminate().*/ 305 queue->tq_callouts++; 306 307 /* 308 * Wait for all currently executing taskqueue threads 309 * to go idle. 310 */ 311 tb_marker.tb_running = TB_DRAIN_WAITER; 312 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); 313 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) 314 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); 315 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); 316 317 /* 318 * Wakeup any other drain waiter that happened to queue up 319 * without any intervening active thread. 320 */ 321 tb_first = TAILQ_FIRST(&queue->tq_active); 322 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) 323 wakeup(tb_first); 324 325 /* Release taskqueue_terminate(). */ 326 queue->tq_callouts--; 327 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 328 wakeup_one(queue->tq_threads); 329 } 330 331 void 332 gtaskqueue_block(struct gtaskqueue *queue) 333 { 334 335 TQ_LOCK(queue); 336 queue->tq_flags |= TQ_FLAGS_BLOCKED; 337 TQ_UNLOCK(queue); 338 } 339 340 void 341 gtaskqueue_unblock(struct gtaskqueue *queue) 342 { 343 344 TQ_LOCK(queue); 345 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 346 if (!STAILQ_EMPTY(&queue->tq_queue)) 347 queue->tq_enqueue(queue->tq_context); 348 TQ_UNLOCK(queue); 349 } 350 351 static void 352 gtaskqueue_run_locked(struct gtaskqueue *queue) 353 { 354 struct gtaskqueue_busy tb; 355 struct gtaskqueue_busy *tb_first; 356 struct gtask *gtask; 357 358 KASSERT(queue != NULL, ("tq is NULL")); 359 TQ_ASSERT_LOCKED(queue); 360 tb.tb_running = NULL; 361 362 while (STAILQ_FIRST(&queue->tq_queue)) { 363 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 364 365 /* 366 * Carefully remove the first task from the queue and 367 * clear its TASK_ENQUEUED flag 368 */ 369 gtask = STAILQ_FIRST(&queue->tq_queue); 370 KASSERT(gtask != NULL, ("task is NULL")); 371 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 372 gtask->ta_flags &= ~TASK_ENQUEUED; 373 tb.tb_running = gtask; 374 TQ_UNLOCK(queue); 375 376 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 377 gtask->ta_func(gtask->ta_context); 378 379 TQ_LOCK(queue); 380 tb.tb_running = NULL; 381 wakeup(gtask); 382 383 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 384 tb_first = TAILQ_FIRST(&queue->tq_active); 385 if (tb_first != NULL && 386 tb_first->tb_running == TB_DRAIN_WAITER) 387 wakeup(tb_first); 388 } 389 } 390 391 static int 392 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 393 { 394 struct gtaskqueue_busy *tb; 395 396 TQ_ASSERT_LOCKED(queue); 397 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 398 if (tb->tb_running == gtask) 399 return (1); 400 } 401 return (0); 402 } 403 404 static int 405 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 406 { 407 408 if (gtask->ta_flags & TASK_ENQUEUED) 409 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 410 gtask->ta_flags &= ~TASK_ENQUEUED; 411 return (task_is_running(queue, gtask) ? EBUSY : 0); 412 } 413 414 int 415 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 416 { 417 int error; 418 419 TQ_LOCK(queue); 420 error = gtaskqueue_cancel_locked(queue, gtask); 421 TQ_UNLOCK(queue); 422 423 return (error); 424 } 425 426 static void 427 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) 428 { 429 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 430 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0); 431 } 432 433 void 434 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 435 { 436 437 if (!queue->tq_spin) 438 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 439 440 TQ_LOCK(queue); 441 gtaskqueue_drain_locked(queue, gtask); 442 TQ_UNLOCK(queue); 443 } 444 445 void 446 gtaskqueue_drain_all(struct gtaskqueue *queue) 447 { 448 449 if (!queue->tq_spin) 450 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 451 452 TQ_LOCK(queue); 453 gtaskqueue_drain_tq_queue(queue); 454 gtaskqueue_drain_tq_active(queue); 455 TQ_UNLOCK(queue); 456 } 457 458 static int 459 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 460 cpuset_t *mask, const char *name, va_list ap) 461 { 462 char ktname[MAXCOMLEN + 1]; 463 struct thread *td; 464 struct gtaskqueue *tq; 465 int i, error; 466 467 if (count <= 0) 468 return (EINVAL); 469 470 vsnprintf(ktname, sizeof(ktname), name, ap); 471 tq = *tqp; 472 473 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 474 M_NOWAIT | M_ZERO); 475 if (tq->tq_threads == NULL) { 476 printf("%s: no memory for %s threads\n", __func__, ktname); 477 return (ENOMEM); 478 } 479 480 for (i = 0; i < count; i++) { 481 if (count == 1) 482 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 483 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 484 else 485 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 486 &tq->tq_threads[i], RFSTOPPED, 0, 487 "%s_%d", ktname, i); 488 if (error) { 489 /* should be ok to continue, taskqueue_free will dtrt */ 490 printf("%s: kthread_add(%s): error %d", __func__, 491 ktname, error); 492 tq->tq_threads[i] = NULL; /* paranoid */ 493 } else 494 tq->tq_tcount++; 495 } 496 for (i = 0; i < count; i++) { 497 if (tq->tq_threads[i] == NULL) 498 continue; 499 td = tq->tq_threads[i]; 500 if (mask) { 501 error = cpuset_setthread(td->td_tid, mask); 502 /* 503 * Failing to pin is rarely an actual fatal error; 504 * it'll just affect performance. 505 */ 506 if (error) 507 printf("%s: curthread=%llu: can't pin; " 508 "error=%d\n", 509 __func__, 510 (unsigned long long) td->td_tid, 511 error); 512 } 513 thread_lock(td); 514 sched_prio(td, pri); 515 sched_add(td, SRQ_BORING); 516 thread_unlock(td); 517 } 518 519 return (0); 520 } 521 522 static int 523 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 524 const char *name, ...) 525 { 526 va_list ap; 527 int error; 528 529 va_start(ap, name); 530 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 531 va_end(ap); 532 return (error); 533 } 534 535 static inline void 536 gtaskqueue_run_callback(struct gtaskqueue *tq, 537 enum taskqueue_callback_type cb_type) 538 { 539 taskqueue_callback_fn tq_callback; 540 541 TQ_ASSERT_UNLOCKED(tq); 542 tq_callback = tq->tq_callbacks[cb_type]; 543 if (tq_callback != NULL) 544 tq_callback(tq->tq_cb_contexts[cb_type]); 545 } 546 547 static void 548 gtaskqueue_thread_loop(void *arg) 549 { 550 struct gtaskqueue **tqp, *tq; 551 552 tqp = arg; 553 tq = *tqp; 554 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 555 TQ_LOCK(tq); 556 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 557 /* XXX ? */ 558 gtaskqueue_run_locked(tq); 559 /* 560 * Because taskqueue_run() can drop tq_mutex, we need to 561 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 562 * meantime, which means we missed a wakeup. 563 */ 564 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 565 break; 566 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 567 } 568 gtaskqueue_run_locked(tq); 569 /* 570 * This thread is on its way out, so just drop the lock temporarily 571 * in order to call the shutdown callback. This allows the callback 572 * to look at the taskqueue, even just before it dies. 573 */ 574 TQ_UNLOCK(tq); 575 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 576 TQ_LOCK(tq); 577 578 /* rendezvous with thread that asked us to terminate */ 579 tq->tq_tcount--; 580 wakeup_one(tq->tq_threads); 581 TQ_UNLOCK(tq); 582 kthread_exit(); 583 } 584 585 static void 586 gtaskqueue_thread_enqueue(void *context) 587 { 588 struct gtaskqueue **tqp, *tq; 589 590 tqp = context; 591 tq = *tqp; 592 wakeup_one(tq); 593 } 594 595 596 static struct gtaskqueue * 597 gtaskqueue_create_fast(const char *name, int mflags, 598 taskqueue_enqueue_fn enqueue, void *context) 599 { 600 return _gtaskqueue_create(name, mflags, enqueue, context, 601 MTX_SPIN, "fast_taskqueue"); 602 } 603 604 605 struct taskqgroup_cpu { 606 LIST_HEAD(, grouptask) tgc_tasks; 607 struct gtaskqueue *tgc_taskq; 608 int tgc_cnt; 609 int tgc_cpu; 610 }; 611 612 struct taskqgroup { 613 struct taskqgroup_cpu tqg_queue[MAXCPU]; 614 struct mtx tqg_lock; 615 const char * tqg_name; 616 int tqg_adjusting; 617 int tqg_stride; 618 int tqg_cnt; 619 }; 620 621 struct taskq_bind_task { 622 struct gtask bt_task; 623 int bt_cpuid; 624 }; 625 626 static void 627 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 628 { 629 struct taskqgroup_cpu *qcpu; 630 631 qcpu = &qgroup->tqg_queue[idx]; 632 LIST_INIT(&qcpu->tgc_tasks); 633 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 634 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 635 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 636 "%s_%d", qgroup->tqg_name, idx); 637 qcpu->tgc_cpu = cpu; 638 } 639 640 static void 641 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 642 { 643 644 gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 645 } 646 647 /* 648 * Find the taskq with least # of tasks that doesn't currently have any 649 * other queues from the uniq identifier. 650 */ 651 static int 652 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 653 { 654 struct grouptask *n; 655 int i, idx, mincnt; 656 int strict; 657 658 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 659 if (qgroup->tqg_cnt == 0) 660 return (0); 661 idx = -1; 662 mincnt = INT_MAX; 663 /* 664 * Two passes; First scan for a queue with the least tasks that 665 * does not already service this uniq id. If that fails simply find 666 * the queue with the least total tasks; 667 */ 668 for (strict = 1; mincnt == INT_MAX; strict = 0) { 669 for (i = 0; i < qgroup->tqg_cnt; i++) { 670 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 671 continue; 672 if (strict) { 673 LIST_FOREACH(n, 674 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 675 if (n->gt_uniq == uniq) 676 break; 677 if (n != NULL) 678 continue; 679 } 680 mincnt = qgroup->tqg_queue[i].tgc_cnt; 681 idx = i; 682 } 683 } 684 if (idx == -1) 685 panic("%s: failed to pick a qid.", __func__); 686 687 return (idx); 688 } 689 690 /* 691 * smp_started is unusable since it is not set for UP kernels or even for 692 * SMP kernels when there is 1 CPU. This is usually handled by adding a 693 * (mp_ncpus == 1) test, but that would be broken here since we need to 694 * to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case 695 * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP. 696 * 697 * So maintain our own flag. It must be set after all CPUs are started 698 * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed 699 * adjustment is properly delayed. SI_ORDER_FOURTH is clearly before 700 * SI_ORDER_ANY and unclearly after the CPUs are started. It would be 701 * simpler for adjustment to pass a flag indicating if it is delayed. 702 */ 703 704 static int tqg_smp_started; 705 706 static void 707 tqg_record_smp_started(void *arg) 708 { 709 tqg_smp_started = 1; 710 } 711 712 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH, 713 tqg_record_smp_started, NULL); 714 715 void 716 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 717 void *uniq, device_t dev, struct resource *irq, const char *name) 718 { 719 int cpu, qid, error; 720 721 gtask->gt_uniq = uniq; 722 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 723 gtask->gt_dev = dev; 724 gtask->gt_irq = irq; 725 gtask->gt_cpu = -1; 726 mtx_lock(&qgroup->tqg_lock); 727 qid = taskqgroup_find(qgroup, uniq); 728 qgroup->tqg_queue[qid].tgc_cnt++; 729 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 730 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 731 if (dev != NULL && irq != NULL && tqg_smp_started) { 732 cpu = qgroup->tqg_queue[qid].tgc_cpu; 733 gtask->gt_cpu = cpu; 734 mtx_unlock(&qgroup->tqg_lock); 735 error = bus_bind_intr(dev, irq, cpu); 736 if (error) 737 printf("%s: binding interrupt failed for %s: %d\n", 738 __func__, gtask->gt_name, error); 739 } else 740 mtx_unlock(&qgroup->tqg_lock); 741 } 742 743 static void 744 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 745 { 746 int qid, cpu, error; 747 748 mtx_lock(&qgroup->tqg_lock); 749 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 750 cpu = qgroup->tqg_queue[qid].tgc_cpu; 751 if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) { 752 mtx_unlock(&qgroup->tqg_lock); 753 error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu); 754 mtx_lock(&qgroup->tqg_lock); 755 if (error) 756 printf("%s: binding interrupt failed for %s: %d\n", 757 __func__, gtask->gt_name, error); 758 759 } 760 qgroup->tqg_queue[qid].tgc_cnt++; 761 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 762 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 763 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 764 mtx_unlock(&qgroup->tqg_lock); 765 } 766 767 int 768 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 769 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) 770 { 771 int i, qid, error; 772 773 qid = -1; 774 gtask->gt_uniq = uniq; 775 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 776 gtask->gt_dev = dev; 777 gtask->gt_irq = irq; 778 gtask->gt_cpu = cpu; 779 mtx_lock(&qgroup->tqg_lock); 780 if (tqg_smp_started) { 781 for (i = 0; i < qgroup->tqg_cnt; i++) 782 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 783 qid = i; 784 break; 785 } 786 if (qid == -1) { 787 mtx_unlock(&qgroup->tqg_lock); 788 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 789 return (EINVAL); 790 } 791 } else 792 qid = 0; 793 qgroup->tqg_queue[qid].tgc_cnt++; 794 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 795 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 796 cpu = qgroup->tqg_queue[qid].tgc_cpu; 797 mtx_unlock(&qgroup->tqg_lock); 798 799 if (dev != NULL && irq != NULL && tqg_smp_started) { 800 error = bus_bind_intr(dev, irq, cpu); 801 if (error) 802 printf("%s: binding interrupt failed for %s: %d\n", 803 __func__, gtask->gt_name, error); 804 } 805 return (0); 806 } 807 808 static int 809 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 810 { 811 device_t dev; 812 struct resource *irq; 813 int cpu, error, i, qid; 814 815 qid = -1; 816 dev = gtask->gt_dev; 817 irq = gtask->gt_irq; 818 cpu = gtask->gt_cpu; 819 MPASS(tqg_smp_started); 820 mtx_lock(&qgroup->tqg_lock); 821 for (i = 0; i < qgroup->tqg_cnt; i++) 822 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 823 qid = i; 824 break; 825 } 826 if (qid == -1) { 827 mtx_unlock(&qgroup->tqg_lock); 828 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 829 return (EINVAL); 830 } 831 qgroup->tqg_queue[qid].tgc_cnt++; 832 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 833 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 834 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 835 mtx_unlock(&qgroup->tqg_lock); 836 837 if (dev != NULL && irq != NULL) { 838 error = bus_bind_intr(dev, irq, cpu); 839 if (error) 840 printf("%s: binding interrupt failed for %s: %d\n", 841 __func__, gtask->gt_name, error); 842 } 843 return (0); 844 } 845 846 void 847 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 848 { 849 int i; 850 851 grouptask_block(gtask); 852 mtx_lock(&qgroup->tqg_lock); 853 for (i = 0; i < qgroup->tqg_cnt; i++) 854 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 855 break; 856 if (i == qgroup->tqg_cnt) 857 panic("%s: task %s not in group", __func__, gtask->gt_name); 858 qgroup->tqg_queue[i].tgc_cnt--; 859 LIST_REMOVE(gtask, gt_list); 860 mtx_unlock(&qgroup->tqg_lock); 861 gtask->gt_taskqueue = NULL; 862 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; 863 } 864 865 static void 866 taskqgroup_binder(void *ctx) 867 { 868 struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; 869 cpuset_t mask; 870 int error; 871 872 CPU_ZERO(&mask); 873 CPU_SET(gtask->bt_cpuid, &mask); 874 error = cpuset_setthread(curthread->td_tid, &mask); 875 thread_lock(curthread); 876 sched_bind(curthread, gtask->bt_cpuid); 877 thread_unlock(curthread); 878 879 if (error) 880 printf("%s: binding curthread failed: %d\n", __func__, error); 881 free(gtask, M_DEVBUF); 882 } 883 884 static void 885 taskqgroup_bind(struct taskqgroup *qgroup) 886 { 887 struct taskq_bind_task *gtask; 888 int i; 889 890 /* 891 * Bind taskqueue threads to specific CPUs, if they have been assigned 892 * one. 893 */ 894 if (qgroup->tqg_cnt == 1) 895 return; 896 897 for (i = 0; i < qgroup->tqg_cnt; i++) { 898 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); 899 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 900 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 901 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 902 >ask->bt_task); 903 } 904 } 905 906 static void 907 taskqgroup_config_init(void *arg) 908 { 909 struct taskqgroup *qgroup = qgroup_config; 910 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 911 912 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 913 grouptask, gt_list); 914 qgroup->tqg_queue[0].tgc_cnt = 0; 915 taskqgroup_cpu_create(qgroup, 0, 0); 916 917 qgroup->tqg_cnt = 1; 918 qgroup->tqg_stride = 1; 919 } 920 921 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND, 922 taskqgroup_config_init, NULL); 923 924 static int 925 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 926 { 927 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 928 struct grouptask *gtask; 929 int i, k, old_cnt, old_cpu, cpu; 930 931 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 932 933 if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) { 934 printf("%s: failed cnt: %d stride: %d " 935 "mp_ncpus: %d tqg_smp_started: %d\n", 936 __func__, cnt, stride, mp_ncpus, tqg_smp_started); 937 return (EINVAL); 938 } 939 if (qgroup->tqg_adjusting) { 940 printf("%s failed: adjusting\n", __func__); 941 return (EBUSY); 942 } 943 qgroup->tqg_adjusting = 1; 944 old_cnt = qgroup->tqg_cnt; 945 old_cpu = 0; 946 if (old_cnt < cnt) 947 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; 948 mtx_unlock(&qgroup->tqg_lock); 949 /* 950 * Set up queue for tasks added before boot. 951 */ 952 if (old_cnt == 0) { 953 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 954 grouptask, gt_list); 955 qgroup->tqg_queue[0].tgc_cnt = 0; 956 } 957 958 /* 959 * If new taskq threads have been added. 960 */ 961 cpu = old_cpu; 962 for (i = old_cnt; i < cnt; i++) { 963 taskqgroup_cpu_create(qgroup, i, cpu); 964 965 for (k = 0; k < stride; k++) 966 cpu = CPU_NEXT(cpu); 967 } 968 mtx_lock(&qgroup->tqg_lock); 969 qgroup->tqg_cnt = cnt; 970 qgroup->tqg_stride = stride; 971 972 /* 973 * Adjust drivers to use new taskqs. 974 */ 975 for (i = 0; i < old_cnt; i++) { 976 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 977 LIST_REMOVE(gtask, gt_list); 978 qgroup->tqg_queue[i].tgc_cnt--; 979 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 980 } 981 } 982 mtx_unlock(&qgroup->tqg_lock); 983 984 while ((gtask = LIST_FIRST(>ask_head))) { 985 LIST_REMOVE(gtask, gt_list); 986 if (gtask->gt_cpu == -1) 987 taskqgroup_attach_deferred(qgroup, gtask); 988 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) 989 taskqgroup_attach_deferred(qgroup, gtask); 990 } 991 992 #ifdef INVARIANTS 993 mtx_lock(&qgroup->tqg_lock); 994 for (i = 0; i < qgroup->tqg_cnt; i++) { 995 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); 996 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) 997 MPASS(gtask->gt_taskqueue != NULL); 998 } 999 mtx_unlock(&qgroup->tqg_lock); 1000 #endif 1001 /* 1002 * If taskq thread count has been reduced. 1003 */ 1004 for (i = cnt; i < old_cnt; i++) 1005 taskqgroup_cpu_remove(qgroup, i); 1006 1007 taskqgroup_bind(qgroup); 1008 1009 mtx_lock(&qgroup->tqg_lock); 1010 qgroup->tqg_adjusting = 0; 1011 1012 return (0); 1013 } 1014 1015 int 1016 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 1017 { 1018 int error; 1019 1020 mtx_lock(&qgroup->tqg_lock); 1021 error = _taskqgroup_adjust(qgroup, cnt, stride); 1022 mtx_unlock(&qgroup->tqg_lock); 1023 1024 return (error); 1025 } 1026 1027 struct taskqgroup * 1028 taskqgroup_create(const char *name) 1029 { 1030 struct taskqgroup *qgroup; 1031 1032 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 1033 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 1034 qgroup->tqg_name = name; 1035 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 1036 1037 return (qgroup); 1038 } 1039 1040 void 1041 taskqgroup_destroy(struct taskqgroup *qgroup) 1042 { 1043 1044 } 1045 1046 void 1047 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, 1048 const char *name) 1049 { 1050 1051 GROUPTASK_INIT(gtask, 0, fn, ctx); 1052 taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name); 1053 } 1054 1055 void 1056 taskqgroup_config_gtask_deinit(struct grouptask *gtask) 1057 { 1058 1059 taskqgroup_detach(qgroup_config, gtask); 1060 } 1061