1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/libkern.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/epoch.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/gtaskqueue.h> 48 #include <sys/unistd.h> 49 #include <machine/stdarg.h> 50 51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 52 static void gtaskqueue_thread_enqueue(void *); 53 static void gtaskqueue_thread_loop(void *arg); 54 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); 55 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); 56 57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 58 59 struct gtaskqueue_busy { 60 struct gtask *tb_running; 61 u_int tb_seq; 62 LIST_ENTRY(gtaskqueue_busy) tb_link; 63 }; 64 65 typedef void (*gtaskqueue_enqueue_fn)(void *context); 66 67 struct gtaskqueue { 68 STAILQ_HEAD(, gtask) tq_queue; 69 LIST_HEAD(, gtaskqueue_busy) tq_active; 70 u_int tq_seq; 71 int tq_callouts; 72 struct mtx_padalign tq_mutex; 73 gtaskqueue_enqueue_fn tq_enqueue; 74 void *tq_context; 75 char *tq_name; 76 struct thread **tq_threads; 77 int tq_tcount; 78 int tq_spin; 79 int tq_flags; 80 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 81 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 82 }; 83 84 #define TQ_FLAGS_ACTIVE (1 << 0) 85 #define TQ_FLAGS_BLOCKED (1 << 1) 86 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 87 88 #define DT_CALLOUT_ARMED (1 << 0) 89 90 #define TQ_LOCK(tq) \ 91 do { \ 92 if ((tq)->tq_spin) \ 93 mtx_lock_spin(&(tq)->tq_mutex); \ 94 else \ 95 mtx_lock(&(tq)->tq_mutex); \ 96 } while (0) 97 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 98 99 #define TQ_UNLOCK(tq) \ 100 do { \ 101 if ((tq)->tq_spin) \ 102 mtx_unlock_spin(&(tq)->tq_mutex); \ 103 else \ 104 mtx_unlock(&(tq)->tq_mutex); \ 105 } while (0) 106 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 107 108 #ifdef INVARIANTS 109 static void 110 gtask_dump(struct gtask *gtask) 111 { 112 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 113 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 114 } 115 #endif 116 117 static __inline int 118 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm) 119 { 120 if (tq->tq_spin) 121 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); 122 return (msleep(p, &tq->tq_mutex, 0, wm, 0)); 123 } 124 125 static struct gtaskqueue * 126 _gtaskqueue_create(const char *name, int mflags, 127 taskqueue_enqueue_fn enqueue, void *context, 128 int mtxflags, const char *mtxname __unused) 129 { 130 struct gtaskqueue *queue; 131 char *tq_name; 132 133 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 134 if (!tq_name) 135 return (NULL); 136 137 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 138 139 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 140 if (!queue) { 141 free(tq_name, M_GTASKQUEUE); 142 return (NULL); 143 } 144 145 STAILQ_INIT(&queue->tq_queue); 146 LIST_INIT(&queue->tq_active); 147 queue->tq_enqueue = enqueue; 148 queue->tq_context = context; 149 queue->tq_name = tq_name; 150 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 151 queue->tq_flags |= TQ_FLAGS_ACTIVE; 152 if (enqueue == gtaskqueue_thread_enqueue) 153 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 154 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 155 156 return (queue); 157 } 158 159 /* 160 * Signal a taskqueue thread to terminate. 161 */ 162 static void 163 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 164 { 165 166 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 167 wakeup(tq); 168 TQ_SLEEP(tq, pp, "gtq_destroy"); 169 } 170 } 171 172 static void __unused 173 gtaskqueue_free(struct gtaskqueue *queue) 174 { 175 176 TQ_LOCK(queue); 177 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 178 gtaskqueue_terminate(queue->tq_threads, queue); 179 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); 180 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 181 mtx_destroy(&queue->tq_mutex); 182 free(queue->tq_threads, M_GTASKQUEUE); 183 free(queue->tq_name, M_GTASKQUEUE); 184 free(queue, M_GTASKQUEUE); 185 } 186 187 /* 188 * Wait for all to complete, then prevent it from being enqueued 189 */ 190 void 191 grouptask_block(struct grouptask *grouptask) 192 { 193 struct gtaskqueue *queue = grouptask->gt_taskqueue; 194 struct gtask *gtask = &grouptask->gt_task; 195 196 #ifdef INVARIANTS 197 if (queue == NULL) { 198 gtask_dump(gtask); 199 panic("queue == NULL"); 200 } 201 #endif 202 TQ_LOCK(queue); 203 gtask->ta_flags |= TASK_NOENQUEUE; 204 gtaskqueue_drain_locked(queue, gtask); 205 TQ_UNLOCK(queue); 206 } 207 208 void 209 grouptask_unblock(struct grouptask *grouptask) 210 { 211 struct gtaskqueue *queue = grouptask->gt_taskqueue; 212 struct gtask *gtask = &grouptask->gt_task; 213 214 #ifdef INVARIANTS 215 if (queue == NULL) { 216 gtask_dump(gtask); 217 panic("queue == NULL"); 218 } 219 #endif 220 TQ_LOCK(queue); 221 gtask->ta_flags &= ~TASK_NOENQUEUE; 222 TQ_UNLOCK(queue); 223 } 224 225 int 226 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 227 { 228 #ifdef INVARIANTS 229 if (queue == NULL) { 230 gtask_dump(gtask); 231 panic("queue == NULL"); 232 } 233 #endif 234 TQ_LOCK(queue); 235 if (gtask->ta_flags & TASK_ENQUEUED) { 236 TQ_UNLOCK(queue); 237 return (0); 238 } 239 if (gtask->ta_flags & TASK_NOENQUEUE) { 240 TQ_UNLOCK(queue); 241 return (EAGAIN); 242 } 243 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 244 gtask->ta_flags |= TASK_ENQUEUED; 245 TQ_UNLOCK(queue); 246 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 247 queue->tq_enqueue(queue->tq_context); 248 return (0); 249 } 250 251 static void 252 gtaskqueue_task_nop_fn(void *context) 253 { 254 } 255 256 /* 257 * Block until all currently queued tasks in this taskqueue 258 * have begun execution. Tasks queued during execution of 259 * this function are ignored. 260 */ 261 static void 262 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 263 { 264 struct gtask t_barrier; 265 266 if (STAILQ_EMPTY(&queue->tq_queue)) 267 return; 268 269 /* 270 * Enqueue our barrier after all current tasks, but with 271 * the highest priority so that newly queued tasks cannot 272 * pass it. Because of the high priority, we can not use 273 * taskqueue_enqueue_locked directly (which drops the lock 274 * anyway) so just insert it at tail while we have the 275 * queue lock. 276 */ 277 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 278 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 279 t_barrier.ta_flags |= TASK_ENQUEUED; 280 281 /* 282 * Once the barrier has executed, all previously queued tasks 283 * have completed or are currently executing. 284 */ 285 while (t_barrier.ta_flags & TASK_ENQUEUED) 286 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain"); 287 } 288 289 /* 290 * Block until all currently executing tasks for this taskqueue 291 * complete. Tasks that begin execution during the execution 292 * of this function are ignored. 293 */ 294 static void 295 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 296 { 297 struct gtaskqueue_busy *tb; 298 u_int seq; 299 300 if (LIST_EMPTY(&queue->tq_active)) 301 return; 302 303 /* Block taskq_terminate().*/ 304 queue->tq_callouts++; 305 306 /* Wait for any active task with sequence from the past. */ 307 seq = queue->tq_seq; 308 restart: 309 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 310 if ((int)(tb->tb_seq - seq) <= 0) { 311 TQ_SLEEP(queue, tb->tb_running, "gtq_adrain"); 312 goto restart; 313 } 314 } 315 316 /* Release taskqueue_terminate(). */ 317 queue->tq_callouts--; 318 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 319 wakeup_one(queue->tq_threads); 320 } 321 322 void 323 gtaskqueue_block(struct gtaskqueue *queue) 324 { 325 326 TQ_LOCK(queue); 327 queue->tq_flags |= TQ_FLAGS_BLOCKED; 328 TQ_UNLOCK(queue); 329 } 330 331 void 332 gtaskqueue_unblock(struct gtaskqueue *queue) 333 { 334 335 TQ_LOCK(queue); 336 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 337 if (!STAILQ_EMPTY(&queue->tq_queue)) 338 queue->tq_enqueue(queue->tq_context); 339 TQ_UNLOCK(queue); 340 } 341 342 static void 343 gtaskqueue_run_locked(struct gtaskqueue *queue) 344 { 345 struct epoch_tracker et; 346 struct gtaskqueue_busy tb; 347 struct gtask *gtask; 348 bool in_net_epoch; 349 350 KASSERT(queue != NULL, ("tq is NULL")); 351 TQ_ASSERT_LOCKED(queue); 352 tb.tb_running = NULL; 353 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); 354 in_net_epoch = false; 355 356 while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) { 357 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 358 gtask->ta_flags &= ~TASK_ENQUEUED; 359 tb.tb_running = gtask; 360 tb.tb_seq = ++queue->tq_seq; 361 TQ_UNLOCK(queue); 362 363 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 364 if (!in_net_epoch && TASK_IS_NET(gtask)) { 365 in_net_epoch = true; 366 NET_EPOCH_ENTER(et); 367 } else if (in_net_epoch && !TASK_IS_NET(gtask)) { 368 NET_EPOCH_EXIT(et); 369 in_net_epoch = false; 370 } 371 gtask->ta_func(gtask->ta_context); 372 373 TQ_LOCK(queue); 374 wakeup(gtask); 375 } 376 if (in_net_epoch) 377 NET_EPOCH_EXIT(et); 378 LIST_REMOVE(&tb, tb_link); 379 } 380 381 static int 382 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 383 { 384 struct gtaskqueue_busy *tb; 385 386 TQ_ASSERT_LOCKED(queue); 387 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 388 if (tb->tb_running == gtask) 389 return (1); 390 } 391 return (0); 392 } 393 394 static int 395 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 396 { 397 398 if (gtask->ta_flags & TASK_ENQUEUED) 399 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 400 gtask->ta_flags &= ~TASK_ENQUEUED; 401 return (task_is_running(queue, gtask) ? EBUSY : 0); 402 } 403 404 int 405 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 406 { 407 int error; 408 409 TQ_LOCK(queue); 410 error = gtaskqueue_cancel_locked(queue, gtask); 411 TQ_UNLOCK(queue); 412 413 return (error); 414 } 415 416 static void 417 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) 418 { 419 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 420 TQ_SLEEP(queue, gtask, "gtq_drain"); 421 } 422 423 void 424 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 425 { 426 427 if (!queue->tq_spin) 428 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 429 430 TQ_LOCK(queue); 431 gtaskqueue_drain_locked(queue, gtask); 432 TQ_UNLOCK(queue); 433 } 434 435 void 436 gtaskqueue_drain_all(struct gtaskqueue *queue) 437 { 438 439 if (!queue->tq_spin) 440 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 441 442 TQ_LOCK(queue); 443 gtaskqueue_drain_tq_queue(queue); 444 gtaskqueue_drain_tq_active(queue); 445 TQ_UNLOCK(queue); 446 } 447 448 static int 449 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 450 cpuset_t *mask, const char *name, va_list ap) 451 { 452 char ktname[MAXCOMLEN + 1]; 453 struct thread *td; 454 struct gtaskqueue *tq; 455 int i, error; 456 457 if (count <= 0) 458 return (EINVAL); 459 460 vsnprintf(ktname, sizeof(ktname), name, ap); 461 tq = *tqp; 462 463 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 464 M_NOWAIT | M_ZERO); 465 if (tq->tq_threads == NULL) { 466 printf("%s: no memory for %s threads\n", __func__, ktname); 467 return (ENOMEM); 468 } 469 470 for (i = 0; i < count; i++) { 471 if (count == 1) 472 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 473 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 474 else 475 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 476 &tq->tq_threads[i], RFSTOPPED, 0, 477 "%s_%d", ktname, i); 478 if (error) { 479 /* should be ok to continue, taskqueue_free will dtrt */ 480 printf("%s: kthread_add(%s): error %d", __func__, 481 ktname, error); 482 tq->tq_threads[i] = NULL; /* paranoid */ 483 } else 484 tq->tq_tcount++; 485 } 486 for (i = 0; i < count; i++) { 487 if (tq->tq_threads[i] == NULL) 488 continue; 489 td = tq->tq_threads[i]; 490 if (mask) { 491 error = cpuset_setthread(td->td_tid, mask); 492 /* 493 * Failing to pin is rarely an actual fatal error; 494 * it'll just affect performance. 495 */ 496 if (error) 497 printf("%s: curthread=%llu: can't pin; " 498 "error=%d\n", 499 __func__, 500 (unsigned long long) td->td_tid, 501 error); 502 } 503 thread_lock(td); 504 sched_prio(td, pri); 505 sched_add(td, SRQ_BORING); 506 } 507 508 return (0); 509 } 510 511 static int 512 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 513 const char *name, ...) 514 { 515 va_list ap; 516 int error; 517 518 va_start(ap, name); 519 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 520 va_end(ap); 521 return (error); 522 } 523 524 static inline void 525 gtaskqueue_run_callback(struct gtaskqueue *tq, 526 enum taskqueue_callback_type cb_type) 527 { 528 taskqueue_callback_fn tq_callback; 529 530 TQ_ASSERT_UNLOCKED(tq); 531 tq_callback = tq->tq_callbacks[cb_type]; 532 if (tq_callback != NULL) 533 tq_callback(tq->tq_cb_contexts[cb_type]); 534 } 535 536 static void 537 gtaskqueue_thread_loop(void *arg) 538 { 539 struct gtaskqueue **tqp, *tq; 540 541 tqp = arg; 542 tq = *tqp; 543 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 544 TQ_LOCK(tq); 545 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 546 /* XXX ? */ 547 gtaskqueue_run_locked(tq); 548 /* 549 * Because taskqueue_run() can drop tq_mutex, we need to 550 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 551 * meantime, which means we missed a wakeup. 552 */ 553 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 554 break; 555 TQ_SLEEP(tq, tq, "-"); 556 } 557 gtaskqueue_run_locked(tq); 558 /* 559 * This thread is on its way out, so just drop the lock temporarily 560 * in order to call the shutdown callback. This allows the callback 561 * to look at the taskqueue, even just before it dies. 562 */ 563 TQ_UNLOCK(tq); 564 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 565 TQ_LOCK(tq); 566 567 /* rendezvous with thread that asked us to terminate */ 568 tq->tq_tcount--; 569 wakeup_one(tq->tq_threads); 570 TQ_UNLOCK(tq); 571 kthread_exit(); 572 } 573 574 static void 575 gtaskqueue_thread_enqueue(void *context) 576 { 577 struct gtaskqueue **tqp, *tq; 578 579 tqp = context; 580 tq = *tqp; 581 wakeup_any(tq); 582 } 583 584 static struct gtaskqueue * 585 gtaskqueue_create_fast(const char *name, int mflags, 586 taskqueue_enqueue_fn enqueue, void *context) 587 { 588 return _gtaskqueue_create(name, mflags, enqueue, context, 589 MTX_SPIN, "fast_taskqueue"); 590 } 591 592 struct taskqgroup_cpu { 593 LIST_HEAD(, grouptask) tgc_tasks; 594 struct gtaskqueue *tgc_taskq; 595 int tgc_cnt; 596 int tgc_cpu; 597 }; 598 599 struct taskqgroup { 600 struct taskqgroup_cpu tqg_queue[MAXCPU]; 601 struct mtx tqg_lock; 602 const char * tqg_name; 603 int tqg_cnt; 604 }; 605 606 struct taskq_bind_task { 607 struct gtask bt_task; 608 int bt_cpuid; 609 }; 610 611 static void 612 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 613 { 614 struct taskqgroup_cpu *qcpu; 615 616 qcpu = &qgroup->tqg_queue[idx]; 617 LIST_INIT(&qcpu->tgc_tasks); 618 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 619 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 620 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 621 "%s_%d", qgroup->tqg_name, idx); 622 qcpu->tgc_cpu = cpu; 623 } 624 625 /* 626 * Find the taskq with least # of tasks that doesn't currently have any 627 * other queues from the uniq identifier. 628 */ 629 static int 630 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 631 { 632 struct grouptask *n; 633 int i, idx, mincnt; 634 int strict; 635 636 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 637 KASSERT(qgroup->tqg_cnt != 0, 638 ("qgroup %s has no queues", qgroup->tqg_name)); 639 640 /* 641 * Two passes: first scan for a queue with the least tasks that 642 * does not already service this uniq id. If that fails simply find 643 * the queue with the least total tasks. 644 */ 645 for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX; 646 strict = 0) { 647 for (i = 0; i < qgroup->tqg_cnt; i++) { 648 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 649 continue; 650 if (strict) { 651 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks, 652 gt_list) 653 if (n->gt_uniq == uniq) 654 break; 655 if (n != NULL) 656 continue; 657 } 658 mincnt = qgroup->tqg_queue[i].tgc_cnt; 659 idx = i; 660 } 661 } 662 if (idx == -1) 663 panic("%s: failed to pick a qid.", __func__); 664 665 return (idx); 666 } 667 668 void 669 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 670 void *uniq, device_t dev, struct resource *irq, const char *name) 671 { 672 int cpu, qid, error; 673 674 KASSERT(qgroup->tqg_cnt > 0, 675 ("qgroup %s has no queues", qgroup->tqg_name)); 676 677 gtask->gt_uniq = uniq; 678 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 679 gtask->gt_dev = dev; 680 gtask->gt_irq = irq; 681 gtask->gt_cpu = -1; 682 mtx_lock(&qgroup->tqg_lock); 683 qid = taskqgroup_find(qgroup, uniq); 684 qgroup->tqg_queue[qid].tgc_cnt++; 685 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 686 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 687 if (dev != NULL && irq != NULL) { 688 cpu = qgroup->tqg_queue[qid].tgc_cpu; 689 gtask->gt_cpu = cpu; 690 mtx_unlock(&qgroup->tqg_lock); 691 error = bus_bind_intr(dev, irq, cpu); 692 if (error) 693 printf("%s: binding interrupt failed for %s: %d\n", 694 __func__, gtask->gt_name, error); 695 } else 696 mtx_unlock(&qgroup->tqg_lock); 697 } 698 699 int 700 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 701 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) 702 { 703 int i, qid, error; 704 705 gtask->gt_uniq = uniq; 706 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 707 gtask->gt_dev = dev; 708 gtask->gt_irq = irq; 709 gtask->gt_cpu = cpu; 710 mtx_lock(&qgroup->tqg_lock); 711 for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++) 712 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 713 qid = i; 714 break; 715 } 716 if (qid == -1) { 717 mtx_unlock(&qgroup->tqg_lock); 718 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 719 return (EINVAL); 720 } 721 qgroup->tqg_queue[qid].tgc_cnt++; 722 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 723 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 724 cpu = qgroup->tqg_queue[qid].tgc_cpu; 725 mtx_unlock(&qgroup->tqg_lock); 726 727 if (dev != NULL && irq != NULL) { 728 error = bus_bind_intr(dev, irq, cpu); 729 if (error) 730 printf("%s: binding interrupt failed for %s: %d\n", 731 __func__, gtask->gt_name, error); 732 } 733 return (0); 734 } 735 736 void 737 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 738 { 739 int i; 740 741 grouptask_block(gtask); 742 mtx_lock(&qgroup->tqg_lock); 743 for (i = 0; i < qgroup->tqg_cnt; i++) 744 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 745 break; 746 if (i == qgroup->tqg_cnt) 747 panic("%s: task %s not in group", __func__, gtask->gt_name); 748 qgroup->tqg_queue[i].tgc_cnt--; 749 LIST_REMOVE(gtask, gt_list); 750 mtx_unlock(&qgroup->tqg_lock); 751 gtask->gt_taskqueue = NULL; 752 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; 753 } 754 755 static void 756 taskqgroup_binder(void *ctx) 757 { 758 struct taskq_bind_task *gtask; 759 cpuset_t mask; 760 int error; 761 762 gtask = ctx; 763 CPU_ZERO(&mask); 764 CPU_SET(gtask->bt_cpuid, &mask); 765 error = cpuset_setthread(curthread->td_tid, &mask); 766 thread_lock(curthread); 767 sched_bind(curthread, gtask->bt_cpuid); 768 thread_unlock(curthread); 769 770 if (error) 771 printf("%s: binding curthread failed: %d\n", __func__, error); 772 free(gtask, M_DEVBUF); 773 } 774 775 void 776 taskqgroup_bind(struct taskqgroup *qgroup) 777 { 778 struct taskq_bind_task *gtask; 779 int i; 780 781 /* 782 * Bind taskqueue threads to specific CPUs, if they have been assigned 783 * one. 784 */ 785 if (qgroup->tqg_cnt == 1) 786 return; 787 788 for (i = 0; i < qgroup->tqg_cnt; i++) { 789 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK); 790 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 791 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 792 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 793 >ask->bt_task); 794 } 795 } 796 797 struct taskqgroup * 798 taskqgroup_create(const char *name, int cnt, int stride) 799 { 800 struct taskqgroup *qgroup; 801 int cpu, i, j; 802 803 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 804 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 805 qgroup->tqg_name = name; 806 qgroup->tqg_cnt = cnt; 807 808 for (cpu = i = 0; i < cnt; i++) { 809 taskqgroup_cpu_create(qgroup, i, cpu); 810 for (j = 0; j < stride; j++) 811 cpu = CPU_NEXT(cpu); 812 } 813 return (qgroup); 814 } 815 816 void 817 taskqgroup_destroy(struct taskqgroup *qgroup) 818 { 819 } 820