1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/libkern.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/epoch.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/gtaskqueue.h> 48 #include <sys/unistd.h> 49 #include <machine/stdarg.h> 50 51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 52 static void gtaskqueue_thread_enqueue(void *); 53 static void gtaskqueue_thread_loop(void *arg); 54 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); 55 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); 56 57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 58 TASKQGROUP_DEFINE(config, 1, 1); 59 60 struct gtaskqueue_busy { 61 struct gtask *tb_running; 62 u_int tb_seq; 63 LIST_ENTRY(gtaskqueue_busy) tb_link; 64 }; 65 66 typedef void (*gtaskqueue_enqueue_fn)(void *context); 67 68 struct gtaskqueue { 69 STAILQ_HEAD(, gtask) tq_queue; 70 LIST_HEAD(, gtaskqueue_busy) tq_active; 71 u_int tq_seq; 72 int tq_callouts; 73 struct mtx_padalign tq_mutex; 74 gtaskqueue_enqueue_fn tq_enqueue; 75 void *tq_context; 76 char *tq_name; 77 struct thread **tq_threads; 78 int tq_tcount; 79 int tq_spin; 80 int tq_flags; 81 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 82 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 83 }; 84 85 #define TQ_FLAGS_ACTIVE (1 << 0) 86 #define TQ_FLAGS_BLOCKED (1 << 1) 87 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 88 89 #define DT_CALLOUT_ARMED (1 << 0) 90 91 #define TQ_LOCK(tq) \ 92 do { \ 93 if ((tq)->tq_spin) \ 94 mtx_lock_spin(&(tq)->tq_mutex); \ 95 else \ 96 mtx_lock(&(tq)->tq_mutex); \ 97 } while (0) 98 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 99 100 #define TQ_UNLOCK(tq) \ 101 do { \ 102 if ((tq)->tq_spin) \ 103 mtx_unlock_spin(&(tq)->tq_mutex); \ 104 else \ 105 mtx_unlock(&(tq)->tq_mutex); \ 106 } while (0) 107 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 108 109 #ifdef INVARIANTS 110 static void 111 gtask_dump(struct gtask *gtask) 112 { 113 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 114 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 115 } 116 #endif 117 118 static __inline int 119 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm) 120 { 121 if (tq->tq_spin) 122 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); 123 return (msleep(p, &tq->tq_mutex, 0, wm, 0)); 124 } 125 126 static struct gtaskqueue * 127 _gtaskqueue_create(const char *name, int mflags, 128 taskqueue_enqueue_fn enqueue, void *context, 129 int mtxflags, const char *mtxname __unused) 130 { 131 struct gtaskqueue *queue; 132 char *tq_name; 133 134 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 135 if (!tq_name) 136 return (NULL); 137 138 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 139 140 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 141 if (!queue) { 142 free(tq_name, M_GTASKQUEUE); 143 return (NULL); 144 } 145 146 STAILQ_INIT(&queue->tq_queue); 147 LIST_INIT(&queue->tq_active); 148 queue->tq_enqueue = enqueue; 149 queue->tq_context = context; 150 queue->tq_name = tq_name; 151 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 152 queue->tq_flags |= TQ_FLAGS_ACTIVE; 153 if (enqueue == gtaskqueue_thread_enqueue) 154 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 155 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 156 157 return (queue); 158 } 159 160 /* 161 * Signal a taskqueue thread to terminate. 162 */ 163 static void 164 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 165 { 166 167 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 168 wakeup(tq); 169 TQ_SLEEP(tq, pp, "gtq_destroy"); 170 } 171 } 172 173 static void __unused 174 gtaskqueue_free(struct gtaskqueue *queue) 175 { 176 177 TQ_LOCK(queue); 178 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 179 gtaskqueue_terminate(queue->tq_threads, queue); 180 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); 181 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 182 mtx_destroy(&queue->tq_mutex); 183 free(queue->tq_threads, M_GTASKQUEUE); 184 free(queue->tq_name, M_GTASKQUEUE); 185 free(queue, M_GTASKQUEUE); 186 } 187 188 /* 189 * Wait for all to complete, then prevent it from being enqueued 190 */ 191 void 192 grouptask_block(struct grouptask *grouptask) 193 { 194 struct gtaskqueue *queue = grouptask->gt_taskqueue; 195 struct gtask *gtask = &grouptask->gt_task; 196 197 #ifdef INVARIANTS 198 if (queue == NULL) { 199 gtask_dump(gtask); 200 panic("queue == NULL"); 201 } 202 #endif 203 TQ_LOCK(queue); 204 gtask->ta_flags |= TASK_NOENQUEUE; 205 gtaskqueue_drain_locked(queue, gtask); 206 TQ_UNLOCK(queue); 207 } 208 209 void 210 grouptask_unblock(struct grouptask *grouptask) 211 { 212 struct gtaskqueue *queue = grouptask->gt_taskqueue; 213 struct gtask *gtask = &grouptask->gt_task; 214 215 #ifdef INVARIANTS 216 if (queue == NULL) { 217 gtask_dump(gtask); 218 panic("queue == NULL"); 219 } 220 #endif 221 TQ_LOCK(queue); 222 gtask->ta_flags &= ~TASK_NOENQUEUE; 223 TQ_UNLOCK(queue); 224 } 225 226 int 227 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 228 { 229 #ifdef INVARIANTS 230 if (queue == NULL) { 231 gtask_dump(gtask); 232 panic("queue == NULL"); 233 } 234 #endif 235 TQ_LOCK(queue); 236 if (gtask->ta_flags & TASK_ENQUEUED) { 237 TQ_UNLOCK(queue); 238 return (0); 239 } 240 if (gtask->ta_flags & TASK_NOENQUEUE) { 241 TQ_UNLOCK(queue); 242 return (EAGAIN); 243 } 244 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 245 gtask->ta_flags |= TASK_ENQUEUED; 246 TQ_UNLOCK(queue); 247 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 248 queue->tq_enqueue(queue->tq_context); 249 return (0); 250 } 251 252 static void 253 gtaskqueue_task_nop_fn(void *context) 254 { 255 } 256 257 /* 258 * Block until all currently queued tasks in this taskqueue 259 * have begun execution. Tasks queued during execution of 260 * this function are ignored. 261 */ 262 static void 263 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 264 { 265 struct gtask t_barrier; 266 267 if (STAILQ_EMPTY(&queue->tq_queue)) 268 return; 269 270 /* 271 * Enqueue our barrier after all current tasks, but with 272 * the highest priority so that newly queued tasks cannot 273 * pass it. Because of the high priority, we can not use 274 * taskqueue_enqueue_locked directly (which drops the lock 275 * anyway) so just insert it at tail while we have the 276 * queue lock. 277 */ 278 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 279 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 280 t_barrier.ta_flags |= TASK_ENQUEUED; 281 282 /* 283 * Once the barrier has executed, all previously queued tasks 284 * have completed or are currently executing. 285 */ 286 while (t_barrier.ta_flags & TASK_ENQUEUED) 287 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain"); 288 } 289 290 /* 291 * Block until all currently executing tasks for this taskqueue 292 * complete. Tasks that begin execution during the execution 293 * of this function are ignored. 294 */ 295 static void 296 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 297 { 298 struct gtaskqueue_busy *tb; 299 u_int seq; 300 301 if (LIST_EMPTY(&queue->tq_active)) 302 return; 303 304 /* Block taskq_terminate().*/ 305 queue->tq_callouts++; 306 307 /* Wait for any active task with sequence from the past. */ 308 seq = queue->tq_seq; 309 restart: 310 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 311 if ((int)(tb->tb_seq - seq) <= 0) { 312 TQ_SLEEP(queue, tb->tb_running, "gtq_adrain"); 313 goto restart; 314 } 315 } 316 317 /* Release taskqueue_terminate(). */ 318 queue->tq_callouts--; 319 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 320 wakeup_one(queue->tq_threads); 321 } 322 323 void 324 gtaskqueue_block(struct gtaskqueue *queue) 325 { 326 327 TQ_LOCK(queue); 328 queue->tq_flags |= TQ_FLAGS_BLOCKED; 329 TQ_UNLOCK(queue); 330 } 331 332 void 333 gtaskqueue_unblock(struct gtaskqueue *queue) 334 { 335 336 TQ_LOCK(queue); 337 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 338 if (!STAILQ_EMPTY(&queue->tq_queue)) 339 queue->tq_enqueue(queue->tq_context); 340 TQ_UNLOCK(queue); 341 } 342 343 static void 344 gtaskqueue_run_locked(struct gtaskqueue *queue) 345 { 346 struct epoch_tracker et; 347 struct gtaskqueue_busy tb; 348 struct gtask *gtask; 349 bool in_net_epoch; 350 351 KASSERT(queue != NULL, ("tq is NULL")); 352 TQ_ASSERT_LOCKED(queue); 353 tb.tb_running = NULL; 354 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); 355 in_net_epoch = false; 356 357 while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) { 358 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 359 gtask->ta_flags &= ~TASK_ENQUEUED; 360 tb.tb_running = gtask; 361 tb.tb_seq = ++queue->tq_seq; 362 TQ_UNLOCK(queue); 363 364 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 365 if (!in_net_epoch && TASK_IS_NET(gtask)) { 366 in_net_epoch = true; 367 NET_EPOCH_ENTER(et); 368 } else if (in_net_epoch && !TASK_IS_NET(gtask)) { 369 NET_EPOCH_EXIT(et); 370 in_net_epoch = false; 371 } 372 gtask->ta_func(gtask->ta_context); 373 374 TQ_LOCK(queue); 375 wakeup(gtask); 376 } 377 if (in_net_epoch) 378 NET_EPOCH_EXIT(et); 379 LIST_REMOVE(&tb, tb_link); 380 } 381 382 static int 383 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 384 { 385 struct gtaskqueue_busy *tb; 386 387 TQ_ASSERT_LOCKED(queue); 388 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 389 if (tb->tb_running == gtask) 390 return (1); 391 } 392 return (0); 393 } 394 395 static int 396 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 397 { 398 399 if (gtask->ta_flags & TASK_ENQUEUED) 400 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 401 gtask->ta_flags &= ~TASK_ENQUEUED; 402 return (task_is_running(queue, gtask) ? EBUSY : 0); 403 } 404 405 int 406 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 407 { 408 int error; 409 410 TQ_LOCK(queue); 411 error = gtaskqueue_cancel_locked(queue, gtask); 412 TQ_UNLOCK(queue); 413 414 return (error); 415 } 416 417 static void 418 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) 419 { 420 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 421 TQ_SLEEP(queue, gtask, "gtq_drain"); 422 } 423 424 void 425 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 426 { 427 428 if (!queue->tq_spin) 429 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 430 431 TQ_LOCK(queue); 432 gtaskqueue_drain_locked(queue, gtask); 433 TQ_UNLOCK(queue); 434 } 435 436 void 437 gtaskqueue_drain_all(struct gtaskqueue *queue) 438 { 439 440 if (!queue->tq_spin) 441 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 442 443 TQ_LOCK(queue); 444 gtaskqueue_drain_tq_queue(queue); 445 gtaskqueue_drain_tq_active(queue); 446 TQ_UNLOCK(queue); 447 } 448 449 static int 450 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 451 cpuset_t *mask, const char *name, va_list ap) 452 { 453 char ktname[MAXCOMLEN + 1]; 454 struct thread *td; 455 struct gtaskqueue *tq; 456 int i, error; 457 458 if (count <= 0) 459 return (EINVAL); 460 461 vsnprintf(ktname, sizeof(ktname), name, ap); 462 tq = *tqp; 463 464 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 465 M_NOWAIT | M_ZERO); 466 if (tq->tq_threads == NULL) { 467 printf("%s: no memory for %s threads\n", __func__, ktname); 468 return (ENOMEM); 469 } 470 471 for (i = 0; i < count; i++) { 472 if (count == 1) 473 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 474 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 475 else 476 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 477 &tq->tq_threads[i], RFSTOPPED, 0, 478 "%s_%d", ktname, i); 479 if (error) { 480 /* should be ok to continue, taskqueue_free will dtrt */ 481 printf("%s: kthread_add(%s): error %d", __func__, 482 ktname, error); 483 tq->tq_threads[i] = NULL; /* paranoid */ 484 } else 485 tq->tq_tcount++; 486 } 487 for (i = 0; i < count; i++) { 488 if (tq->tq_threads[i] == NULL) 489 continue; 490 td = tq->tq_threads[i]; 491 if (mask) { 492 error = cpuset_setthread(td->td_tid, mask); 493 /* 494 * Failing to pin is rarely an actual fatal error; 495 * it'll just affect performance. 496 */ 497 if (error) 498 printf("%s: curthread=%llu: can't pin; " 499 "error=%d\n", 500 __func__, 501 (unsigned long long) td->td_tid, 502 error); 503 } 504 thread_lock(td); 505 sched_prio(td, pri); 506 sched_add(td, SRQ_BORING); 507 } 508 509 return (0); 510 } 511 512 static int 513 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 514 const char *name, ...) 515 { 516 va_list ap; 517 int error; 518 519 va_start(ap, name); 520 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 521 va_end(ap); 522 return (error); 523 } 524 525 static inline void 526 gtaskqueue_run_callback(struct gtaskqueue *tq, 527 enum taskqueue_callback_type cb_type) 528 { 529 taskqueue_callback_fn tq_callback; 530 531 TQ_ASSERT_UNLOCKED(tq); 532 tq_callback = tq->tq_callbacks[cb_type]; 533 if (tq_callback != NULL) 534 tq_callback(tq->tq_cb_contexts[cb_type]); 535 } 536 537 static void 538 gtaskqueue_thread_loop(void *arg) 539 { 540 struct gtaskqueue **tqp, *tq; 541 542 tqp = arg; 543 tq = *tqp; 544 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 545 TQ_LOCK(tq); 546 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 547 /* XXX ? */ 548 gtaskqueue_run_locked(tq); 549 /* 550 * Because taskqueue_run() can drop tq_mutex, we need to 551 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 552 * meantime, which means we missed a wakeup. 553 */ 554 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 555 break; 556 TQ_SLEEP(tq, tq, "-"); 557 } 558 gtaskqueue_run_locked(tq); 559 /* 560 * This thread is on its way out, so just drop the lock temporarily 561 * in order to call the shutdown callback. This allows the callback 562 * to look at the taskqueue, even just before it dies. 563 */ 564 TQ_UNLOCK(tq); 565 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 566 TQ_LOCK(tq); 567 568 /* rendezvous with thread that asked us to terminate */ 569 tq->tq_tcount--; 570 wakeup_one(tq->tq_threads); 571 TQ_UNLOCK(tq); 572 kthread_exit(); 573 } 574 575 static void 576 gtaskqueue_thread_enqueue(void *context) 577 { 578 struct gtaskqueue **tqp, *tq; 579 580 tqp = context; 581 tq = *tqp; 582 wakeup_any(tq); 583 } 584 585 static struct gtaskqueue * 586 gtaskqueue_create_fast(const char *name, int mflags, 587 taskqueue_enqueue_fn enqueue, void *context) 588 { 589 return _gtaskqueue_create(name, mflags, enqueue, context, 590 MTX_SPIN, "fast_taskqueue"); 591 } 592 593 struct taskqgroup_cpu { 594 LIST_HEAD(, grouptask) tgc_tasks; 595 struct gtaskqueue *tgc_taskq; 596 int tgc_cnt; 597 int tgc_cpu; 598 }; 599 600 struct taskqgroup { 601 struct taskqgroup_cpu tqg_queue[MAXCPU]; 602 struct mtx tqg_lock; 603 const char * tqg_name; 604 int tqg_cnt; 605 }; 606 607 struct taskq_bind_task { 608 struct gtask bt_task; 609 int bt_cpuid; 610 }; 611 612 static void 613 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 614 { 615 struct taskqgroup_cpu *qcpu; 616 617 qcpu = &qgroup->tqg_queue[idx]; 618 LIST_INIT(&qcpu->tgc_tasks); 619 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 620 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 621 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 622 "%s_%d", qgroup->tqg_name, idx); 623 qcpu->tgc_cpu = cpu; 624 } 625 626 /* 627 * Find the taskq with least # of tasks that doesn't currently have any 628 * other queues from the uniq identifier. 629 */ 630 static int 631 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 632 { 633 struct grouptask *n; 634 int i, idx, mincnt; 635 int strict; 636 637 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 638 KASSERT(qgroup->tqg_cnt != 0, 639 ("qgroup %s has no queues", qgroup->tqg_name)); 640 641 /* 642 * Two passes: first scan for a queue with the least tasks that 643 * does not already service this uniq id. If that fails simply find 644 * the queue with the least total tasks. 645 */ 646 for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX; 647 strict = 0) { 648 for (i = 0; i < qgroup->tqg_cnt; i++) { 649 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 650 continue; 651 if (strict) { 652 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks, 653 gt_list) 654 if (n->gt_uniq == uniq) 655 break; 656 if (n != NULL) 657 continue; 658 } 659 mincnt = qgroup->tqg_queue[i].tgc_cnt; 660 idx = i; 661 } 662 } 663 if (idx == -1) 664 panic("%s: failed to pick a qid.", __func__); 665 666 return (idx); 667 } 668 669 void 670 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 671 void *uniq, device_t dev, struct resource *irq, const char *name) 672 { 673 int cpu, qid, error; 674 675 KASSERT(qgroup->tqg_cnt > 0, 676 ("qgroup %s has no queues", qgroup->tqg_name)); 677 678 gtask->gt_uniq = uniq; 679 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 680 gtask->gt_dev = dev; 681 gtask->gt_irq = irq; 682 gtask->gt_cpu = -1; 683 mtx_lock(&qgroup->tqg_lock); 684 qid = taskqgroup_find(qgroup, uniq); 685 qgroup->tqg_queue[qid].tgc_cnt++; 686 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 687 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 688 if (dev != NULL && irq != NULL) { 689 cpu = qgroup->tqg_queue[qid].tgc_cpu; 690 gtask->gt_cpu = cpu; 691 mtx_unlock(&qgroup->tqg_lock); 692 error = bus_bind_intr(dev, irq, cpu); 693 if (error) 694 printf("%s: binding interrupt failed for %s: %d\n", 695 __func__, gtask->gt_name, error); 696 } else 697 mtx_unlock(&qgroup->tqg_lock); 698 } 699 700 int 701 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 702 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) 703 { 704 int i, qid, error; 705 706 gtask->gt_uniq = uniq; 707 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 708 gtask->gt_dev = dev; 709 gtask->gt_irq = irq; 710 gtask->gt_cpu = cpu; 711 mtx_lock(&qgroup->tqg_lock); 712 for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++) 713 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 714 qid = i; 715 break; 716 } 717 if (qid == -1) { 718 mtx_unlock(&qgroup->tqg_lock); 719 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 720 return (EINVAL); 721 } 722 qgroup->tqg_queue[qid].tgc_cnt++; 723 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 724 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 725 cpu = qgroup->tqg_queue[qid].tgc_cpu; 726 mtx_unlock(&qgroup->tqg_lock); 727 728 if (dev != NULL && irq != NULL) { 729 error = bus_bind_intr(dev, irq, cpu); 730 if (error) 731 printf("%s: binding interrupt failed for %s: %d\n", 732 __func__, gtask->gt_name, error); 733 } 734 return (0); 735 } 736 737 void 738 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 739 { 740 int i; 741 742 grouptask_block(gtask); 743 mtx_lock(&qgroup->tqg_lock); 744 for (i = 0; i < qgroup->tqg_cnt; i++) 745 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 746 break; 747 if (i == qgroup->tqg_cnt) 748 panic("%s: task %s not in group", __func__, gtask->gt_name); 749 qgroup->tqg_queue[i].tgc_cnt--; 750 LIST_REMOVE(gtask, gt_list); 751 mtx_unlock(&qgroup->tqg_lock); 752 gtask->gt_taskqueue = NULL; 753 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; 754 } 755 756 static void 757 taskqgroup_binder(void *ctx) 758 { 759 struct taskq_bind_task *gtask; 760 cpuset_t mask; 761 int error; 762 763 gtask = ctx; 764 CPU_ZERO(&mask); 765 CPU_SET(gtask->bt_cpuid, &mask); 766 error = cpuset_setthread(curthread->td_tid, &mask); 767 thread_lock(curthread); 768 sched_bind(curthread, gtask->bt_cpuid); 769 thread_unlock(curthread); 770 771 if (error) 772 printf("%s: binding curthread failed: %d\n", __func__, error); 773 free(gtask, M_DEVBUF); 774 } 775 776 void 777 taskqgroup_bind(struct taskqgroup *qgroup) 778 { 779 struct taskq_bind_task *gtask; 780 int i; 781 782 /* 783 * Bind taskqueue threads to specific CPUs, if they have been assigned 784 * one. 785 */ 786 if (qgroup->tqg_cnt == 1) 787 return; 788 789 for (i = 0; i < qgroup->tqg_cnt; i++) { 790 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK); 791 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 792 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 793 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 794 >ask->bt_task); 795 } 796 } 797 798 struct taskqgroup * 799 taskqgroup_create(const char *name, int cnt, int stride) 800 { 801 struct taskqgroup *qgroup; 802 int cpu, i, j; 803 804 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 805 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 806 qgroup->tqg_name = name; 807 qgroup->tqg_cnt = cnt; 808 809 for (cpu = i = 0; i < cnt; i++) { 810 taskqgroup_cpu_create(qgroup, i, cpu); 811 for (j = 0; j < stride; j++) 812 cpu = CPU_NEXT(cpu); 813 } 814 return (qgroup); 815 } 816 817 void 818 taskqgroup_destroy(struct taskqgroup *qgroup) 819 { 820 821 } 822 823 void 824 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, 825 const char *name) 826 { 827 828 GROUPTASK_INIT(gtask, 0, fn, ctx); 829 taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name); 830 } 831 832 void 833 taskqgroup_config_gtask_deinit(struct grouptask *gtask) 834 { 835 836 taskqgroup_detach(qgroup_config, gtask); 837 } 838