1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/interrupt.h> 37 #include <sys/kernel.h> 38 #include <sys/kthread.h> 39 #include <sys/libkern.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/gtaskqueue.h> 48 #include <sys/unistd.h> 49 #include <machine/stdarg.h> 50 51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 52 static void gtaskqueue_thread_enqueue(void *); 53 static void gtaskqueue_thread_loop(void *arg); 54 55 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 56 TASKQGROUP_DEFINE(config, 1, 1); 57 58 struct gtaskqueue_busy { 59 struct gtask *tb_running; 60 TAILQ_ENTRY(gtaskqueue_busy) tb_link; 61 }; 62 63 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1; 64 65 struct gtaskqueue { 66 STAILQ_HEAD(, gtask) tq_queue; 67 gtaskqueue_enqueue_fn tq_enqueue; 68 void *tq_context; 69 char *tq_name; 70 TAILQ_HEAD(, gtaskqueue_busy) tq_active; 71 struct mtx tq_mutex; 72 struct thread **tq_threads; 73 int tq_tcount; 74 int tq_spin; 75 int tq_flags; 76 int tq_callouts; 77 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 78 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 79 }; 80 81 #define TQ_FLAGS_ACTIVE (1 << 0) 82 #define TQ_FLAGS_BLOCKED (1 << 1) 83 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 84 85 #define DT_CALLOUT_ARMED (1 << 0) 86 87 #define TQ_LOCK(tq) \ 88 do { \ 89 if ((tq)->tq_spin) \ 90 mtx_lock_spin(&(tq)->tq_mutex); \ 91 else \ 92 mtx_lock(&(tq)->tq_mutex); \ 93 } while (0) 94 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 95 96 #define TQ_UNLOCK(tq) \ 97 do { \ 98 if ((tq)->tq_spin) \ 99 mtx_unlock_spin(&(tq)->tq_mutex); \ 100 else \ 101 mtx_unlock(&(tq)->tq_mutex); \ 102 } while (0) 103 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 104 105 #ifdef INVARIANTS 106 static void 107 gtask_dump(struct gtask *gtask) 108 { 109 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 110 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 111 } 112 #endif 113 114 static __inline int 115 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 116 int t) 117 { 118 if (tq->tq_spin) 119 return (msleep_spin(p, m, wm, t)); 120 return (msleep(p, m, pri, wm, t)); 121 } 122 123 static struct gtaskqueue * 124 _gtaskqueue_create(const char *name, int mflags, 125 taskqueue_enqueue_fn enqueue, void *context, 126 int mtxflags, const char *mtxname __unused) 127 { 128 struct gtaskqueue *queue; 129 char *tq_name; 130 131 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 132 if (!tq_name) 133 return (NULL); 134 135 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 136 137 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 138 if (!queue) { 139 free(tq_name, M_GTASKQUEUE); 140 return (NULL); 141 } 142 143 STAILQ_INIT(&queue->tq_queue); 144 TAILQ_INIT(&queue->tq_active); 145 queue->tq_enqueue = enqueue; 146 queue->tq_context = context; 147 queue->tq_name = tq_name; 148 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 149 queue->tq_flags |= TQ_FLAGS_ACTIVE; 150 if (enqueue == gtaskqueue_thread_enqueue) 151 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 152 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 153 154 return (queue); 155 } 156 157 158 /* 159 * Signal a taskqueue thread to terminate. 160 */ 161 static void 162 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 163 { 164 165 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 166 wakeup(tq); 167 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 168 } 169 } 170 171 static void 172 gtaskqueue_free(struct gtaskqueue *queue) 173 { 174 175 TQ_LOCK(queue); 176 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 177 gtaskqueue_terminate(queue->tq_threads, queue); 178 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 179 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 180 mtx_destroy(&queue->tq_mutex); 181 free(queue->tq_threads, M_GTASKQUEUE); 182 free(queue->tq_name, M_GTASKQUEUE); 183 free(queue, M_GTASKQUEUE); 184 } 185 186 int 187 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 188 { 189 #ifdef INVARIANTS 190 if (queue == NULL) { 191 gtask_dump(gtask); 192 panic("queue == NULL"); 193 } 194 #endif 195 TQ_LOCK(queue); 196 if (gtask->ta_flags & TASK_ENQUEUED) { 197 TQ_UNLOCK(queue); 198 return (0); 199 } 200 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 201 gtask->ta_flags |= TASK_ENQUEUED; 202 TQ_UNLOCK(queue); 203 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 204 queue->tq_enqueue(queue->tq_context); 205 return (0); 206 } 207 208 static void 209 gtaskqueue_task_nop_fn(void *context) 210 { 211 } 212 213 /* 214 * Block until all currently queued tasks in this taskqueue 215 * have begun execution. Tasks queued during execution of 216 * this function are ignored. 217 */ 218 static void 219 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 220 { 221 struct gtask t_barrier; 222 223 if (STAILQ_EMPTY(&queue->tq_queue)) 224 return; 225 226 /* 227 * Enqueue our barrier after all current tasks, but with 228 * the highest priority so that newly queued tasks cannot 229 * pass it. Because of the high priority, we can not use 230 * taskqueue_enqueue_locked directly (which drops the lock 231 * anyway) so just insert it at tail while we have the 232 * queue lock. 233 */ 234 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 235 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 236 t_barrier.ta_flags |= TASK_ENQUEUED; 237 238 /* 239 * Once the barrier has executed, all previously queued tasks 240 * have completed or are currently executing. 241 */ 242 while (t_barrier.ta_flags & TASK_ENQUEUED) 243 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); 244 } 245 246 /* 247 * Block until all currently executing tasks for this taskqueue 248 * complete. Tasks that begin execution during the execution 249 * of this function are ignored. 250 */ 251 static void 252 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 253 { 254 struct gtaskqueue_busy tb_marker, *tb_first; 255 256 if (TAILQ_EMPTY(&queue->tq_active)) 257 return; 258 259 /* Block taskq_terminate().*/ 260 queue->tq_callouts++; 261 262 /* 263 * Wait for all currently executing taskqueue threads 264 * to go idle. 265 */ 266 tb_marker.tb_running = TB_DRAIN_WAITER; 267 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); 268 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) 269 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); 270 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); 271 272 /* 273 * Wakeup any other drain waiter that happened to queue up 274 * without any intervening active thread. 275 */ 276 tb_first = TAILQ_FIRST(&queue->tq_active); 277 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) 278 wakeup(tb_first); 279 280 /* Release taskqueue_terminate(). */ 281 queue->tq_callouts--; 282 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 283 wakeup_one(queue->tq_threads); 284 } 285 286 void 287 gtaskqueue_block(struct gtaskqueue *queue) 288 { 289 290 TQ_LOCK(queue); 291 queue->tq_flags |= TQ_FLAGS_BLOCKED; 292 TQ_UNLOCK(queue); 293 } 294 295 void 296 gtaskqueue_unblock(struct gtaskqueue *queue) 297 { 298 299 TQ_LOCK(queue); 300 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 301 if (!STAILQ_EMPTY(&queue->tq_queue)) 302 queue->tq_enqueue(queue->tq_context); 303 TQ_UNLOCK(queue); 304 } 305 306 static void 307 gtaskqueue_run_locked(struct gtaskqueue *queue) 308 { 309 struct gtaskqueue_busy tb; 310 struct gtaskqueue_busy *tb_first; 311 struct gtask *gtask; 312 313 KASSERT(queue != NULL, ("tq is NULL")); 314 TQ_ASSERT_LOCKED(queue); 315 tb.tb_running = NULL; 316 317 while (STAILQ_FIRST(&queue->tq_queue)) { 318 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 319 320 /* 321 * Carefully remove the first task from the queue and 322 * clear its TASK_ENQUEUED flag 323 */ 324 gtask = STAILQ_FIRST(&queue->tq_queue); 325 KASSERT(gtask != NULL, ("task is NULL")); 326 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 327 gtask->ta_flags &= ~TASK_ENQUEUED; 328 tb.tb_running = gtask; 329 TQ_UNLOCK(queue); 330 331 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 332 gtask->ta_func(gtask->ta_context); 333 334 TQ_LOCK(queue); 335 tb.tb_running = NULL; 336 wakeup(gtask); 337 338 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 339 tb_first = TAILQ_FIRST(&queue->tq_active); 340 if (tb_first != NULL && 341 tb_first->tb_running == TB_DRAIN_WAITER) 342 wakeup(tb_first); 343 } 344 } 345 346 static int 347 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 348 { 349 struct gtaskqueue_busy *tb; 350 351 TQ_ASSERT_LOCKED(queue); 352 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 353 if (tb->tb_running == gtask) 354 return (1); 355 } 356 return (0); 357 } 358 359 static int 360 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 361 { 362 363 if (gtask->ta_flags & TASK_ENQUEUED) 364 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 365 gtask->ta_flags &= ~TASK_ENQUEUED; 366 return (task_is_running(queue, gtask) ? EBUSY : 0); 367 } 368 369 int 370 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 371 { 372 int error; 373 374 TQ_LOCK(queue); 375 error = gtaskqueue_cancel_locked(queue, gtask); 376 TQ_UNLOCK(queue); 377 378 return (error); 379 } 380 381 void 382 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 383 { 384 385 if (!queue->tq_spin) 386 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 387 388 TQ_LOCK(queue); 389 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 390 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0); 391 TQ_UNLOCK(queue); 392 } 393 394 void 395 gtaskqueue_drain_all(struct gtaskqueue *queue) 396 { 397 398 if (!queue->tq_spin) 399 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 400 401 TQ_LOCK(queue); 402 gtaskqueue_drain_tq_queue(queue); 403 gtaskqueue_drain_tq_active(queue); 404 TQ_UNLOCK(queue); 405 } 406 407 static int 408 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 409 cpuset_t *mask, const char *name, va_list ap) 410 { 411 char ktname[MAXCOMLEN + 1]; 412 struct thread *td; 413 struct gtaskqueue *tq; 414 int i, error; 415 416 if (count <= 0) 417 return (EINVAL); 418 419 vsnprintf(ktname, sizeof(ktname), name, ap); 420 tq = *tqp; 421 422 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 423 M_NOWAIT | M_ZERO); 424 if (tq->tq_threads == NULL) { 425 printf("%s: no memory for %s threads\n", __func__, ktname); 426 return (ENOMEM); 427 } 428 429 for (i = 0; i < count; i++) { 430 if (count == 1) 431 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 432 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 433 else 434 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 435 &tq->tq_threads[i], RFSTOPPED, 0, 436 "%s_%d", ktname, i); 437 if (error) { 438 /* should be ok to continue, taskqueue_free will dtrt */ 439 printf("%s: kthread_add(%s): error %d", __func__, 440 ktname, error); 441 tq->tq_threads[i] = NULL; /* paranoid */ 442 } else 443 tq->tq_tcount++; 444 } 445 for (i = 0; i < count; i++) { 446 if (tq->tq_threads[i] == NULL) 447 continue; 448 td = tq->tq_threads[i]; 449 if (mask) { 450 error = cpuset_setthread(td->td_tid, mask); 451 /* 452 * Failing to pin is rarely an actual fatal error; 453 * it'll just affect performance. 454 */ 455 if (error) 456 printf("%s: curthread=%llu: can't pin; " 457 "error=%d\n", 458 __func__, 459 (unsigned long long) td->td_tid, 460 error); 461 } 462 thread_lock(td); 463 sched_prio(td, pri); 464 sched_add(td, SRQ_BORING); 465 thread_unlock(td); 466 } 467 468 return (0); 469 } 470 471 static int 472 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 473 const char *name, ...) 474 { 475 va_list ap; 476 int error; 477 478 va_start(ap, name); 479 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 480 va_end(ap); 481 return (error); 482 } 483 484 static inline void 485 gtaskqueue_run_callback(struct gtaskqueue *tq, 486 enum taskqueue_callback_type cb_type) 487 { 488 taskqueue_callback_fn tq_callback; 489 490 TQ_ASSERT_UNLOCKED(tq); 491 tq_callback = tq->tq_callbacks[cb_type]; 492 if (tq_callback != NULL) 493 tq_callback(tq->tq_cb_contexts[cb_type]); 494 } 495 496 static void 497 gtaskqueue_thread_loop(void *arg) 498 { 499 struct gtaskqueue **tqp, *tq; 500 501 tqp = arg; 502 tq = *tqp; 503 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 504 TQ_LOCK(tq); 505 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 506 /* XXX ? */ 507 gtaskqueue_run_locked(tq); 508 /* 509 * Because taskqueue_run() can drop tq_mutex, we need to 510 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 511 * meantime, which means we missed a wakeup. 512 */ 513 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 514 break; 515 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 516 } 517 gtaskqueue_run_locked(tq); 518 /* 519 * This thread is on its way out, so just drop the lock temporarily 520 * in order to call the shutdown callback. This allows the callback 521 * to look at the taskqueue, even just before it dies. 522 */ 523 TQ_UNLOCK(tq); 524 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 525 TQ_LOCK(tq); 526 527 /* rendezvous with thread that asked us to terminate */ 528 tq->tq_tcount--; 529 wakeup_one(tq->tq_threads); 530 TQ_UNLOCK(tq); 531 kthread_exit(); 532 } 533 534 static void 535 gtaskqueue_thread_enqueue(void *context) 536 { 537 struct gtaskqueue **tqp, *tq; 538 539 tqp = context; 540 tq = *tqp; 541 wakeup_one(tq); 542 } 543 544 545 static struct gtaskqueue * 546 gtaskqueue_create_fast(const char *name, int mflags, 547 taskqueue_enqueue_fn enqueue, void *context) 548 { 549 return _gtaskqueue_create(name, mflags, enqueue, context, 550 MTX_SPIN, "fast_taskqueue"); 551 } 552 553 554 struct taskqgroup_cpu { 555 LIST_HEAD(, grouptask) tgc_tasks; 556 struct gtaskqueue *tgc_taskq; 557 int tgc_cnt; 558 int tgc_cpu; 559 }; 560 561 struct taskqgroup { 562 struct taskqgroup_cpu tqg_queue[MAXCPU]; 563 struct mtx tqg_lock; 564 char * tqg_name; 565 int tqg_adjusting; 566 int tqg_stride; 567 int tqg_cnt; 568 }; 569 570 struct taskq_bind_task { 571 struct gtask bt_task; 572 int bt_cpuid; 573 }; 574 575 static void 576 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 577 { 578 struct taskqgroup_cpu *qcpu; 579 580 qcpu = &qgroup->tqg_queue[idx]; 581 LIST_INIT(&qcpu->tgc_tasks); 582 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 583 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 584 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 585 "%s_%d", qgroup->tqg_name, idx); 586 qcpu->tgc_cpu = cpu; 587 } 588 589 static void 590 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 591 { 592 593 gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 594 } 595 596 /* 597 * Find the taskq with least # of tasks that doesn't currently have any 598 * other queues from the uniq identifier. 599 */ 600 static int 601 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 602 { 603 struct grouptask *n; 604 int i, idx, mincnt; 605 int strict; 606 607 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 608 if (qgroup->tqg_cnt == 0) 609 return (0); 610 idx = -1; 611 mincnt = INT_MAX; 612 /* 613 * Two passes; First scan for a queue with the least tasks that 614 * does not already service this uniq id. If that fails simply find 615 * the queue with the least total tasks; 616 */ 617 for (strict = 1; mincnt == INT_MAX; strict = 0) { 618 for (i = 0; i < qgroup->tqg_cnt; i++) { 619 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 620 continue; 621 if (strict) { 622 LIST_FOREACH(n, 623 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 624 if (n->gt_uniq == uniq) 625 break; 626 if (n != NULL) 627 continue; 628 } 629 mincnt = qgroup->tqg_queue[i].tgc_cnt; 630 idx = i; 631 } 632 } 633 if (idx == -1) 634 panic("taskqgroup_find: Failed to pick a qid."); 635 636 return (idx); 637 } 638 639 /* 640 * smp_started is unusable since it is not set for UP kernels or even for 641 * SMP kernels when there is 1 CPU. This is usually handled by adding a 642 * (mp_ncpus == 1) test, but that would be broken here since we need to 643 * to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case 644 * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP. 645 * 646 * So maintain our own flag. It must be set after all CPUs are started 647 * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed 648 * adjustment is properly delayed. SI_ORDER_FOURTH is clearly before 649 * SI_ORDER_ANY and unclearly after the CPUs are started. It would be 650 * simpler for adjustment to pass a flag indicating if it is delayed. 651 */ 652 653 static int tqg_smp_started; 654 655 static void 656 tqg_record_smp_started(void *arg) 657 { 658 tqg_smp_started = 1; 659 } 660 661 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH, 662 tqg_record_smp_started, NULL); 663 664 void 665 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 666 void *uniq, int irq, const char *name) 667 { 668 cpuset_t mask; 669 int qid, error; 670 671 gtask->gt_uniq = uniq; 672 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 673 gtask->gt_irq = irq; 674 gtask->gt_cpu = -1; 675 mtx_lock(&qgroup->tqg_lock); 676 qid = taskqgroup_find(qgroup, uniq); 677 qgroup->tqg_queue[qid].tgc_cnt++; 678 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 679 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 680 if (irq != -1 && tqg_smp_started) { 681 gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu; 682 CPU_ZERO(&mask); 683 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 684 mtx_unlock(&qgroup->tqg_lock); 685 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); 686 if (error) 687 printf("%s: setaffinity failed for %s: %d\n", __func__, gtask->gt_name, error); 688 } else 689 mtx_unlock(&qgroup->tqg_lock); 690 } 691 692 static void 693 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 694 { 695 cpuset_t mask; 696 int qid, cpu, error; 697 698 mtx_lock(&qgroup->tqg_lock); 699 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 700 cpu = qgroup->tqg_queue[qid].tgc_cpu; 701 if (gtask->gt_irq != -1) { 702 mtx_unlock(&qgroup->tqg_lock); 703 704 CPU_ZERO(&mask); 705 CPU_SET(cpu, &mask); 706 error = intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask); 707 mtx_lock(&qgroup->tqg_lock); 708 if (error) 709 printf("%s: %s setaffinity failed: %d\n", __func__, gtask->gt_name, error); 710 711 } 712 qgroup->tqg_queue[qid].tgc_cnt++; 713 714 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, 715 gt_list); 716 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 717 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 718 mtx_unlock(&qgroup->tqg_lock); 719 } 720 721 int 722 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 723 void *uniq, int cpu, int irq, char *name) 724 { 725 cpuset_t mask; 726 int i, qid, error; 727 728 qid = -1; 729 gtask->gt_uniq = uniq; 730 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 731 gtask->gt_irq = irq; 732 gtask->gt_cpu = cpu; 733 mtx_lock(&qgroup->tqg_lock); 734 if (tqg_smp_started) { 735 for (i = 0; i < qgroup->tqg_cnt; i++) 736 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 737 qid = i; 738 break; 739 } 740 if (qid == -1) { 741 mtx_unlock(&qgroup->tqg_lock); 742 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 743 return (EINVAL); 744 } 745 } else 746 qid = 0; 747 qgroup->tqg_queue[qid].tgc_cnt++; 748 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 749 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 750 cpu = qgroup->tqg_queue[qid].tgc_cpu; 751 mtx_unlock(&qgroup->tqg_lock); 752 753 CPU_ZERO(&mask); 754 CPU_SET(cpu, &mask); 755 if (irq != -1 && tqg_smp_started) { 756 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); 757 if (error) 758 printf("%s: setaffinity failed: %d\n", __func__, error); 759 } 760 return (0); 761 } 762 763 static int 764 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 765 { 766 cpuset_t mask; 767 int i, qid, irq, cpu, error; 768 769 qid = -1; 770 irq = gtask->gt_irq; 771 cpu = gtask->gt_cpu; 772 MPASS(tqg_smp_started); 773 mtx_lock(&qgroup->tqg_lock); 774 for (i = 0; i < qgroup->tqg_cnt; i++) 775 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 776 qid = i; 777 break; 778 } 779 if (qid == -1) { 780 mtx_unlock(&qgroup->tqg_lock); 781 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 782 return (EINVAL); 783 } 784 qgroup->tqg_queue[qid].tgc_cnt++; 785 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 786 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 787 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 788 mtx_unlock(&qgroup->tqg_lock); 789 790 CPU_ZERO(&mask); 791 CPU_SET(cpu, &mask); 792 793 if (irq != -1) { 794 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); 795 if (error) 796 printf("%s: setaffinity failed: %d\n", __func__, error); 797 } 798 return (0); 799 } 800 801 void 802 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 803 { 804 int i; 805 806 mtx_lock(&qgroup->tqg_lock); 807 for (i = 0; i < qgroup->tqg_cnt; i++) 808 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 809 break; 810 if (i == qgroup->tqg_cnt) 811 panic("taskqgroup_detach: task %s not in group\n", gtask->gt_name); 812 qgroup->tqg_queue[i].tgc_cnt--; 813 LIST_REMOVE(gtask, gt_list); 814 mtx_unlock(&qgroup->tqg_lock); 815 gtask->gt_taskqueue = NULL; 816 } 817 818 static void 819 taskqgroup_binder(void *ctx) 820 { 821 struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; 822 cpuset_t mask; 823 int error; 824 825 CPU_ZERO(&mask); 826 CPU_SET(gtask->bt_cpuid, &mask); 827 error = cpuset_setthread(curthread->td_tid, &mask); 828 thread_lock(curthread); 829 sched_bind(curthread, gtask->bt_cpuid); 830 thread_unlock(curthread); 831 832 if (error) 833 printf("%s: setaffinity failed: %d\n", __func__, 834 error); 835 free(gtask, M_DEVBUF); 836 } 837 838 static void 839 taskqgroup_bind(struct taskqgroup *qgroup) 840 { 841 struct taskq_bind_task *gtask; 842 int i; 843 844 /* 845 * Bind taskqueue threads to specific CPUs, if they have been assigned 846 * one. 847 */ 848 if (qgroup->tqg_cnt == 1) 849 return; 850 851 for (i = 0; i < qgroup->tqg_cnt; i++) { 852 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); 853 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 854 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 855 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 856 >ask->bt_task); 857 } 858 } 859 860 static int 861 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 862 { 863 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 864 struct grouptask *gtask; 865 int i, k, old_cnt, old_cpu, cpu; 866 867 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 868 869 if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) { 870 printf("%s: failed cnt: %d stride: %d " 871 "mp_ncpus: %d tqg_smp_started: %d\n", 872 __func__, cnt, stride, mp_ncpus, tqg_smp_started); 873 return (EINVAL); 874 } 875 if (qgroup->tqg_adjusting) { 876 printf("%s failed: adjusting\n", __func__); 877 return (EBUSY); 878 } 879 qgroup->tqg_adjusting = 1; 880 old_cnt = qgroup->tqg_cnt; 881 old_cpu = 0; 882 if (old_cnt < cnt) 883 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; 884 mtx_unlock(&qgroup->tqg_lock); 885 /* 886 * Set up queue for tasks added before boot. 887 */ 888 if (old_cnt == 0) { 889 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 890 grouptask, gt_list); 891 qgroup->tqg_queue[0].tgc_cnt = 0; 892 } 893 894 /* 895 * If new taskq threads have been added. 896 */ 897 cpu = old_cpu; 898 for (i = old_cnt; i < cnt; i++) { 899 taskqgroup_cpu_create(qgroup, i, cpu); 900 901 for (k = 0; k < stride; k++) 902 cpu = CPU_NEXT(cpu); 903 } 904 mtx_lock(&qgroup->tqg_lock); 905 qgroup->tqg_cnt = cnt; 906 qgroup->tqg_stride = stride; 907 908 /* 909 * Adjust drivers to use new taskqs. 910 */ 911 for (i = 0; i < old_cnt; i++) { 912 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 913 LIST_REMOVE(gtask, gt_list); 914 qgroup->tqg_queue[i].tgc_cnt--; 915 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 916 } 917 } 918 mtx_unlock(&qgroup->tqg_lock); 919 920 while ((gtask = LIST_FIRST(>ask_head))) { 921 LIST_REMOVE(gtask, gt_list); 922 if (gtask->gt_cpu == -1) 923 taskqgroup_attach_deferred(qgroup, gtask); 924 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) 925 taskqgroup_attach_deferred(qgroup, gtask); 926 } 927 928 #ifdef INVARIANTS 929 mtx_lock(&qgroup->tqg_lock); 930 for (i = 0; i < qgroup->tqg_cnt; i++) { 931 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); 932 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) 933 MPASS(gtask->gt_taskqueue != NULL); 934 } 935 mtx_unlock(&qgroup->tqg_lock); 936 #endif 937 /* 938 * If taskq thread count has been reduced. 939 */ 940 for (i = cnt; i < old_cnt; i++) 941 taskqgroup_cpu_remove(qgroup, i); 942 943 taskqgroup_bind(qgroup); 944 945 mtx_lock(&qgroup->tqg_lock); 946 qgroup->tqg_adjusting = 0; 947 948 return (0); 949 } 950 951 int 952 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 953 { 954 int error; 955 956 mtx_lock(&qgroup->tqg_lock); 957 error = _taskqgroup_adjust(qgroup, cnt, stride); 958 mtx_unlock(&qgroup->tqg_lock); 959 960 return (error); 961 } 962 963 struct taskqgroup * 964 taskqgroup_create(char *name) 965 { 966 struct taskqgroup *qgroup; 967 968 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 969 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 970 qgroup->tqg_name = name; 971 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 972 973 return (qgroup); 974 } 975 976 void 977 taskqgroup_destroy(struct taskqgroup *qgroup) 978 { 979 980 } 981 982 void 983 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, 984 const char *name) 985 { 986 987 GROUPTASK_INIT(gtask, 0, fn, ctx); 988 taskqgroup_attach(qgroup_config, gtask, gtask, -1, name); 989 } 990 991 void 992 taskqgroup_config_gtask_deinit(struct grouptask *gtask) 993 { 994 taskqgroup_detach(qgroup_config, gtask); 995 } 996