1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/interrupt.h> 37 #include <sys/kernel.h> 38 #include <sys/kthread.h> 39 #include <sys/libkern.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/gtaskqueue.h> 48 #include <sys/unistd.h> 49 #include <machine/stdarg.h> 50 51 static MALLOC_DEFINE(M_GTASKQUEUE, "taskqueue", "Task Queues"); 52 static void gtaskqueue_thread_enqueue(void *); 53 static void gtaskqueue_thread_loop(void *arg); 54 55 struct gtaskqueue_busy { 56 struct gtask *tb_running; 57 TAILQ_ENTRY(gtaskqueue_busy) tb_link; 58 }; 59 60 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1; 61 62 struct gtaskqueue { 63 STAILQ_HEAD(, gtask) tq_queue; 64 gtaskqueue_enqueue_fn tq_enqueue; 65 void *tq_context; 66 char *tq_name; 67 TAILQ_HEAD(, gtaskqueue_busy) tq_active; 68 struct mtx tq_mutex; 69 struct thread **tq_threads; 70 int tq_tcount; 71 int tq_spin; 72 int tq_flags; 73 int tq_callouts; 74 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 75 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 76 }; 77 78 #define TQ_FLAGS_ACTIVE (1 << 0) 79 #define TQ_FLAGS_BLOCKED (1 << 1) 80 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 81 82 #define DT_CALLOUT_ARMED (1 << 0) 83 84 #define TQ_LOCK(tq) \ 85 do { \ 86 if ((tq)->tq_spin) \ 87 mtx_lock_spin(&(tq)->tq_mutex); \ 88 else \ 89 mtx_lock(&(tq)->tq_mutex); \ 90 } while (0) 91 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 92 93 #define TQ_UNLOCK(tq) \ 94 do { \ 95 if ((tq)->tq_spin) \ 96 mtx_unlock_spin(&(tq)->tq_mutex); \ 97 else \ 98 mtx_unlock(&(tq)->tq_mutex); \ 99 } while (0) 100 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 101 102 #ifdef INVARIANTS 103 static void 104 gtask_dump(struct gtask *gtask) 105 { 106 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 107 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 108 } 109 #endif 110 111 static __inline int 112 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 113 int t) 114 { 115 if (tq->tq_spin) 116 return (msleep_spin(p, m, wm, t)); 117 return (msleep(p, m, pri, wm, t)); 118 } 119 120 static struct gtaskqueue * 121 _gtaskqueue_create(const char *name, int mflags, 122 taskqueue_enqueue_fn enqueue, void *context, 123 int mtxflags, const char *mtxname __unused) 124 { 125 struct gtaskqueue *queue; 126 char *tq_name; 127 128 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 129 if (!tq_name) 130 return (NULL); 131 132 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 133 134 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 135 if (!queue) 136 return (NULL); 137 138 STAILQ_INIT(&queue->tq_queue); 139 TAILQ_INIT(&queue->tq_active); 140 queue->tq_enqueue = enqueue; 141 queue->tq_context = context; 142 queue->tq_name = tq_name; 143 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 144 queue->tq_flags |= TQ_FLAGS_ACTIVE; 145 if (enqueue == gtaskqueue_thread_enqueue) 146 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 147 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 148 149 return (queue); 150 } 151 152 153 /* 154 * Signal a taskqueue thread to terminate. 155 */ 156 static void 157 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 158 { 159 160 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 161 wakeup(tq); 162 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 163 } 164 } 165 166 static void 167 gtaskqueue_free(struct gtaskqueue *queue) 168 { 169 170 TQ_LOCK(queue); 171 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 172 gtaskqueue_terminate(queue->tq_threads, queue); 173 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 174 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 175 mtx_destroy(&queue->tq_mutex); 176 free(queue->tq_threads, M_GTASKQUEUE); 177 free(queue->tq_name, M_GTASKQUEUE); 178 free(queue, M_GTASKQUEUE); 179 } 180 181 int 182 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 183 { 184 #ifdef INVARIANTS 185 if (queue == NULL) { 186 gtask_dump(gtask); 187 panic("queue == NULL"); 188 } 189 #endif 190 TQ_LOCK(queue); 191 if (gtask->ta_flags & TASK_ENQUEUED) { 192 TQ_UNLOCK(queue); 193 return (0); 194 } 195 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 196 gtask->ta_flags |= TASK_ENQUEUED; 197 TQ_UNLOCK(queue); 198 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 199 queue->tq_enqueue(queue->tq_context); 200 return (0); 201 } 202 203 static void 204 gtaskqueue_task_nop_fn(void *context) 205 { 206 } 207 208 /* 209 * Block until all currently queued tasks in this taskqueue 210 * have begun execution. Tasks queued during execution of 211 * this function are ignored. 212 */ 213 static void 214 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 215 { 216 struct gtask t_barrier; 217 218 if (STAILQ_EMPTY(&queue->tq_queue)) 219 return; 220 221 /* 222 * Enqueue our barrier after all current tasks, but with 223 * the highest priority so that newly queued tasks cannot 224 * pass it. Because of the high priority, we can not use 225 * taskqueue_enqueue_locked directly (which drops the lock 226 * anyway) so just insert it at tail while we have the 227 * queue lock. 228 */ 229 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 230 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 231 t_barrier.ta_flags |= TASK_ENQUEUED; 232 233 /* 234 * Once the barrier has executed, all previously queued tasks 235 * have completed or are currently executing. 236 */ 237 while (t_barrier.ta_flags & TASK_ENQUEUED) 238 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); 239 } 240 241 /* 242 * Block until all currently executing tasks for this taskqueue 243 * complete. Tasks that begin execution during the execution 244 * of this function are ignored. 245 */ 246 static void 247 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 248 { 249 struct gtaskqueue_busy tb_marker, *tb_first; 250 251 if (TAILQ_EMPTY(&queue->tq_active)) 252 return; 253 254 /* Block taskq_terminate().*/ 255 queue->tq_callouts++; 256 257 /* 258 * Wait for all currently executing taskqueue threads 259 * to go idle. 260 */ 261 tb_marker.tb_running = TB_DRAIN_WAITER; 262 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); 263 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) 264 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); 265 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); 266 267 /* 268 * Wakeup any other drain waiter that happened to queue up 269 * without any intervening active thread. 270 */ 271 tb_first = TAILQ_FIRST(&queue->tq_active); 272 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) 273 wakeup(tb_first); 274 275 /* Release taskqueue_terminate(). */ 276 queue->tq_callouts--; 277 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 278 wakeup_one(queue->tq_threads); 279 } 280 281 void 282 gtaskqueue_block(struct gtaskqueue *queue) 283 { 284 285 TQ_LOCK(queue); 286 queue->tq_flags |= TQ_FLAGS_BLOCKED; 287 TQ_UNLOCK(queue); 288 } 289 290 void 291 gtaskqueue_unblock(struct gtaskqueue *queue) 292 { 293 294 TQ_LOCK(queue); 295 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 296 if (!STAILQ_EMPTY(&queue->tq_queue)) 297 queue->tq_enqueue(queue->tq_context); 298 TQ_UNLOCK(queue); 299 } 300 301 static void 302 gtaskqueue_run_locked(struct gtaskqueue *queue) 303 { 304 struct gtaskqueue_busy tb; 305 struct gtaskqueue_busy *tb_first; 306 struct gtask *gtask; 307 308 KASSERT(queue != NULL, ("tq is NULL")); 309 TQ_ASSERT_LOCKED(queue); 310 tb.tb_running = NULL; 311 312 while (STAILQ_FIRST(&queue->tq_queue)) { 313 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 314 315 /* 316 * Carefully remove the first task from the queue and 317 * clear its TASK_ENQUEUED flag 318 */ 319 gtask = STAILQ_FIRST(&queue->tq_queue); 320 KASSERT(gtask != NULL, ("task is NULL")); 321 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 322 gtask->ta_flags &= ~TASK_ENQUEUED; 323 tb.tb_running = gtask; 324 TQ_UNLOCK(queue); 325 326 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 327 gtask->ta_func(gtask->ta_context); 328 329 TQ_LOCK(queue); 330 tb.tb_running = NULL; 331 wakeup(gtask); 332 333 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 334 tb_first = TAILQ_FIRST(&queue->tq_active); 335 if (tb_first != NULL && 336 tb_first->tb_running == TB_DRAIN_WAITER) 337 wakeup(tb_first); 338 } 339 } 340 341 static int 342 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 343 { 344 struct gtaskqueue_busy *tb; 345 346 TQ_ASSERT_LOCKED(queue); 347 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 348 if (tb->tb_running == gtask) 349 return (1); 350 } 351 return (0); 352 } 353 354 static int 355 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 356 { 357 358 if (gtask->ta_flags & TASK_ENQUEUED) 359 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 360 gtask->ta_flags &= ~TASK_ENQUEUED; 361 return (task_is_running(queue, gtask) ? EBUSY : 0); 362 } 363 364 int 365 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 366 { 367 int error; 368 369 TQ_LOCK(queue); 370 error = gtaskqueue_cancel_locked(queue, gtask); 371 TQ_UNLOCK(queue); 372 373 return (error); 374 } 375 376 void 377 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 378 { 379 380 if (!queue->tq_spin) 381 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 382 383 TQ_LOCK(queue); 384 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 385 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0); 386 TQ_UNLOCK(queue); 387 } 388 389 void 390 gtaskqueue_drain_all(struct gtaskqueue *queue) 391 { 392 393 if (!queue->tq_spin) 394 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 395 396 TQ_LOCK(queue); 397 gtaskqueue_drain_tq_queue(queue); 398 gtaskqueue_drain_tq_active(queue); 399 TQ_UNLOCK(queue); 400 } 401 402 static int 403 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 404 cpuset_t *mask, const char *name, va_list ap) 405 { 406 char ktname[MAXCOMLEN + 1]; 407 struct thread *td; 408 struct gtaskqueue *tq; 409 int i, error; 410 411 if (count <= 0) 412 return (EINVAL); 413 414 vsnprintf(ktname, sizeof(ktname), name, ap); 415 tq = *tqp; 416 417 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 418 M_NOWAIT | M_ZERO); 419 if (tq->tq_threads == NULL) { 420 printf("%s: no memory for %s threads\n", __func__, ktname); 421 return (ENOMEM); 422 } 423 424 for (i = 0; i < count; i++) { 425 if (count == 1) 426 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 427 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 428 else 429 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 430 &tq->tq_threads[i], RFSTOPPED, 0, 431 "%s_%d", ktname, i); 432 if (error) { 433 /* should be ok to continue, taskqueue_free will dtrt */ 434 printf("%s: kthread_add(%s): error %d", __func__, 435 ktname, error); 436 tq->tq_threads[i] = NULL; /* paranoid */ 437 } else 438 tq->tq_tcount++; 439 } 440 for (i = 0; i < count; i++) { 441 if (tq->tq_threads[i] == NULL) 442 continue; 443 td = tq->tq_threads[i]; 444 if (mask) { 445 error = cpuset_setthread(td->td_tid, mask); 446 /* 447 * Failing to pin is rarely an actual fatal error; 448 * it'll just affect performance. 449 */ 450 if (error) 451 printf("%s: curthread=%llu: can't pin; " 452 "error=%d\n", 453 __func__, 454 (unsigned long long) td->td_tid, 455 error); 456 } 457 thread_lock(td); 458 sched_prio(td, pri); 459 sched_add(td, SRQ_BORING); 460 thread_unlock(td); 461 } 462 463 return (0); 464 } 465 466 static int 467 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 468 const char *name, ...) 469 { 470 va_list ap; 471 int error; 472 473 va_start(ap, name); 474 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 475 va_end(ap); 476 return (error); 477 } 478 479 static inline void 480 gtaskqueue_run_callback(struct gtaskqueue *tq, 481 enum taskqueue_callback_type cb_type) 482 { 483 taskqueue_callback_fn tq_callback; 484 485 TQ_ASSERT_UNLOCKED(tq); 486 tq_callback = tq->tq_callbacks[cb_type]; 487 if (tq_callback != NULL) 488 tq_callback(tq->tq_cb_contexts[cb_type]); 489 } 490 491 static void 492 gtaskqueue_thread_loop(void *arg) 493 { 494 struct gtaskqueue **tqp, *tq; 495 496 tqp = arg; 497 tq = *tqp; 498 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 499 TQ_LOCK(tq); 500 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 501 /* XXX ? */ 502 gtaskqueue_run_locked(tq); 503 /* 504 * Because taskqueue_run() can drop tq_mutex, we need to 505 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 506 * meantime, which means we missed a wakeup. 507 */ 508 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 509 break; 510 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 511 } 512 gtaskqueue_run_locked(tq); 513 /* 514 * This thread is on its way out, so just drop the lock temporarily 515 * in order to call the shutdown callback. This allows the callback 516 * to look at the taskqueue, even just before it dies. 517 */ 518 TQ_UNLOCK(tq); 519 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 520 TQ_LOCK(tq); 521 522 /* rendezvous with thread that asked us to terminate */ 523 tq->tq_tcount--; 524 wakeup_one(tq->tq_threads); 525 TQ_UNLOCK(tq); 526 kthread_exit(); 527 } 528 529 static void 530 gtaskqueue_thread_enqueue(void *context) 531 { 532 struct gtaskqueue **tqp, *tq; 533 534 tqp = context; 535 tq = *tqp; 536 wakeup_one(tq); 537 } 538 539 540 static struct gtaskqueue * 541 gtaskqueue_create_fast(const char *name, int mflags, 542 taskqueue_enqueue_fn enqueue, void *context) 543 { 544 return _gtaskqueue_create(name, mflags, enqueue, context, 545 MTX_SPIN, "fast_taskqueue"); 546 } 547 548 549 struct taskqgroup_cpu { 550 LIST_HEAD(, grouptask) tgc_tasks; 551 struct gtaskqueue *tgc_taskq; 552 int tgc_cnt; 553 int tgc_cpu; 554 }; 555 556 struct taskqgroup { 557 struct taskqgroup_cpu tqg_queue[MAXCPU]; 558 struct mtx tqg_lock; 559 char * tqg_name; 560 int tqg_adjusting; 561 int tqg_stride; 562 int tqg_cnt; 563 }; 564 565 struct taskq_bind_task { 566 struct gtask bt_task; 567 int bt_cpuid; 568 }; 569 570 static void 571 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 572 { 573 struct taskqgroup_cpu *qcpu; 574 575 qcpu = &qgroup->tqg_queue[idx]; 576 LIST_INIT(&qcpu->tgc_tasks); 577 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 578 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 579 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 580 "%s_%d", qgroup->tqg_name, idx); 581 qcpu->tgc_cpu = cpu; 582 } 583 584 static void 585 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 586 { 587 588 gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 589 } 590 591 /* 592 * Find the taskq with least # of tasks that doesn't currently have any 593 * other queues from the uniq identifier. 594 */ 595 static int 596 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 597 { 598 struct grouptask *n; 599 int i, idx, mincnt; 600 int strict; 601 602 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 603 if (qgroup->tqg_cnt == 0) 604 return (0); 605 idx = -1; 606 mincnt = INT_MAX; 607 /* 608 * Two passes; First scan for a queue with the least tasks that 609 * does not already service this uniq id. If that fails simply find 610 * the queue with the least total tasks; 611 */ 612 for (strict = 1; mincnt == INT_MAX; strict = 0) { 613 for (i = 0; i < qgroup->tqg_cnt; i++) { 614 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 615 continue; 616 if (strict) { 617 LIST_FOREACH(n, 618 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 619 if (n->gt_uniq == uniq) 620 break; 621 if (n != NULL) 622 continue; 623 } 624 mincnt = qgroup->tqg_queue[i].tgc_cnt; 625 idx = i; 626 } 627 } 628 if (idx == -1) 629 panic("taskqgroup_find: Failed to pick a qid."); 630 631 return (idx); 632 } 633 634 void 635 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 636 void *uniq, int irq, char *name) 637 { 638 cpuset_t mask; 639 int qid; 640 641 gtask->gt_uniq = uniq; 642 gtask->gt_name = name; 643 gtask->gt_irq = irq; 644 gtask->gt_cpu = -1; 645 mtx_lock(&qgroup->tqg_lock); 646 qid = taskqgroup_find(qgroup, uniq); 647 qgroup->tqg_queue[qid].tgc_cnt++; 648 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 649 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 650 if (irq != -1 && (smp_started || mp_ncpus == 1)) { 651 gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu; 652 CPU_ZERO(&mask); 653 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 654 mtx_unlock(&qgroup->tqg_lock); 655 intr_setaffinity(irq, &mask); 656 } else 657 mtx_unlock(&qgroup->tqg_lock); 658 } 659 660 static void 661 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 662 { 663 cpuset_t mask; 664 int qid, cpu; 665 666 mtx_lock(&qgroup->tqg_lock); 667 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 668 cpu = qgroup->tqg_queue[qid].tgc_cpu; 669 if (gtask->gt_irq != -1) { 670 mtx_unlock(&qgroup->tqg_lock); 671 672 CPU_ZERO(&mask); 673 CPU_SET(cpu, &mask); 674 intr_setaffinity(gtask->gt_irq, &mask); 675 676 mtx_lock(&qgroup->tqg_lock); 677 } 678 qgroup->tqg_queue[qid].tgc_cnt++; 679 680 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, 681 gt_list); 682 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 683 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 684 mtx_unlock(&qgroup->tqg_lock); 685 } 686 687 int 688 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 689 void *uniq, int cpu, int irq, char *name) 690 { 691 cpuset_t mask; 692 int i, qid; 693 694 qid = -1; 695 gtask->gt_uniq = uniq; 696 gtask->gt_name = name; 697 gtask->gt_irq = irq; 698 gtask->gt_cpu = cpu; 699 mtx_lock(&qgroup->tqg_lock); 700 if (smp_started || mp_ncpus == 1) { 701 for (i = 0; i < qgroup->tqg_cnt; i++) 702 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 703 qid = i; 704 break; 705 } 706 if (qid == -1) { 707 mtx_unlock(&qgroup->tqg_lock); 708 return (EINVAL); 709 } 710 } else 711 qid = 0; 712 qgroup->tqg_queue[qid].tgc_cnt++; 713 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 714 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 715 cpu = qgroup->tqg_queue[qid].tgc_cpu; 716 mtx_unlock(&qgroup->tqg_lock); 717 718 CPU_ZERO(&mask); 719 CPU_SET(cpu, &mask); 720 if (irq != -1 && (smp_started || mp_ncpus == 1)) 721 intr_setaffinity(irq, &mask); 722 return (0); 723 } 724 725 static int 726 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 727 { 728 cpuset_t mask; 729 int i, qid, irq, cpu; 730 731 qid = -1; 732 irq = gtask->gt_irq; 733 cpu = gtask->gt_cpu; 734 MPASS(smp_started || mp_ncpus == 1); 735 mtx_lock(&qgroup->tqg_lock); 736 for (i = 0; i < qgroup->tqg_cnt; i++) 737 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 738 qid = i; 739 break; 740 } 741 if (qid == -1) { 742 mtx_unlock(&qgroup->tqg_lock); 743 return (EINVAL); 744 } 745 qgroup->tqg_queue[qid].tgc_cnt++; 746 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 747 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 748 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 749 mtx_unlock(&qgroup->tqg_lock); 750 751 CPU_ZERO(&mask); 752 CPU_SET(cpu, &mask); 753 754 if (irq != -1) 755 intr_setaffinity(irq, &mask); 756 return (0); 757 } 758 759 void 760 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 761 { 762 int i; 763 764 mtx_lock(&qgroup->tqg_lock); 765 for (i = 0; i < qgroup->tqg_cnt; i++) 766 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 767 break; 768 if (i == qgroup->tqg_cnt) 769 panic("taskqgroup_detach: task not in group\n"); 770 qgroup->tqg_queue[i].tgc_cnt--; 771 LIST_REMOVE(gtask, gt_list); 772 mtx_unlock(&qgroup->tqg_lock); 773 gtask->gt_taskqueue = NULL; 774 } 775 776 static void 777 taskqgroup_binder(void *ctx) 778 { 779 struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; 780 cpuset_t mask; 781 int error; 782 783 CPU_ZERO(&mask); 784 CPU_SET(gtask->bt_cpuid, &mask); 785 error = cpuset_setthread(curthread->td_tid, &mask); 786 thread_lock(curthread); 787 sched_bind(curthread, gtask->bt_cpuid); 788 thread_unlock(curthread); 789 790 if (error) 791 printf("taskqgroup_binder: setaffinity failed: %d\n", 792 error); 793 free(gtask, M_DEVBUF); 794 } 795 796 static void 797 taskqgroup_bind(struct taskqgroup *qgroup) 798 { 799 struct taskq_bind_task *gtask; 800 int i; 801 802 /* 803 * Bind taskqueue threads to specific CPUs, if they have been assigned 804 * one. 805 */ 806 if (qgroup->tqg_cnt == 1) 807 return; 808 809 for (i = 0; i < qgroup->tqg_cnt; i++) { 810 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); 811 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 812 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 813 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 814 >ask->bt_task); 815 } 816 } 817 818 static int 819 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 820 { 821 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 822 struct grouptask *gtask; 823 int i, k, old_cnt, old_cpu, cpu; 824 825 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 826 827 if (cnt < 1 || cnt * stride > mp_ncpus || (!smp_started && (mp_ncpus != 1))) { 828 printf("taskqgroup_adjust failed cnt: %d stride: %d mp_ncpus: %d smp_started: %d\n", 829 cnt, stride, mp_ncpus, smp_started); 830 return (EINVAL); 831 } 832 if (qgroup->tqg_adjusting) { 833 printf("taskqgroup_adjust failed: adjusting\n"); 834 return (EBUSY); 835 } 836 qgroup->tqg_adjusting = 1; 837 old_cnt = qgroup->tqg_cnt; 838 old_cpu = 0; 839 if (old_cnt < cnt) 840 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; 841 mtx_unlock(&qgroup->tqg_lock); 842 /* 843 * Set up queue for tasks added before boot. 844 */ 845 if (old_cnt == 0) { 846 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 847 grouptask, gt_list); 848 qgroup->tqg_queue[0].tgc_cnt = 0; 849 } 850 851 /* 852 * If new taskq threads have been added. 853 */ 854 cpu = old_cpu; 855 for (i = old_cnt; i < cnt; i++) { 856 taskqgroup_cpu_create(qgroup, i, cpu); 857 858 for (k = 0; k < stride; k++) 859 cpu = CPU_NEXT(cpu); 860 } 861 mtx_lock(&qgroup->tqg_lock); 862 qgroup->tqg_cnt = cnt; 863 qgroup->tqg_stride = stride; 864 865 /* 866 * Adjust drivers to use new taskqs. 867 */ 868 for (i = 0; i < old_cnt; i++) { 869 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 870 LIST_REMOVE(gtask, gt_list); 871 qgroup->tqg_queue[i].tgc_cnt--; 872 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 873 } 874 } 875 mtx_unlock(&qgroup->tqg_lock); 876 877 while ((gtask = LIST_FIRST(>ask_head))) { 878 LIST_REMOVE(gtask, gt_list); 879 if (gtask->gt_cpu == -1) 880 taskqgroup_attach_deferred(qgroup, gtask); 881 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) 882 taskqgroup_attach_deferred(qgroup, gtask); 883 } 884 885 #ifdef INVARIANTS 886 mtx_lock(&qgroup->tqg_lock); 887 for (i = 0; i < qgroup->tqg_cnt; i++) { 888 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); 889 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) 890 MPASS(gtask->gt_taskqueue != NULL); 891 } 892 mtx_unlock(&qgroup->tqg_lock); 893 #endif 894 /* 895 * If taskq thread count has been reduced. 896 */ 897 for (i = cnt; i < old_cnt; i++) 898 taskqgroup_cpu_remove(qgroup, i); 899 900 taskqgroup_bind(qgroup); 901 902 mtx_lock(&qgroup->tqg_lock); 903 qgroup->tqg_adjusting = 0; 904 905 return (0); 906 } 907 908 int 909 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 910 { 911 int error; 912 913 mtx_lock(&qgroup->tqg_lock); 914 error = _taskqgroup_adjust(qgroup, cnt, stride); 915 mtx_unlock(&qgroup->tqg_lock); 916 917 return (error); 918 } 919 920 struct taskqgroup * 921 taskqgroup_create(char *name) 922 { 923 struct taskqgroup *qgroup; 924 925 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 926 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 927 qgroup->tqg_name = name; 928 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 929 930 return (qgroup); 931 } 932 933 void 934 taskqgroup_destroy(struct taskqgroup *qgroup) 935 { 936 937 } 938