xref: /freebsd/sys/kern/subr_fattime.c (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Convert MS-DOS FAT format timestamps to and from unix timespecs
29  *
30  * FAT filestamps originally consisted of two 16 bit integers, encoded like
31  * this:
32  *
33  *	yyyyyyymmmmddddd (year - 1980, month, day)
34  *
35  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
36  *
37  * Subsequently even Microsoft realized that files could be accessed in less
38  * than two seconds and a byte was added containing:
39  *
40  *      sfffffff	 (second mod two, 100ths of second)
41  *
42  * FAT timestamps are in the local timezone, with no indication of which
43  * timezone much less if daylight savings time applies.
44  *
45  * Later on again, in Windows NT, timestamps were defined relative to GMT.
46  *
47  * Purists will point out that UTC replaced GMT for such uses around
48  * half a century ago, already then.  Ironically "NT" was an abbreviation of
49  * "New Technology".  Anyway...
50  *
51  * The 'utc' argument determines if the resulting FATTIME timestamp
52  * should be on the UTC or local timezone calendar.
53  *
54  * The conversion functions below cut time into four-year leap-year
55  * cycles rather than single years and uses table lookups inside those
56  * cycles to get the months and years sorted out.
57  *
58  * Obviously we cannot calculate the correct table index going from
59  * a posix seconds count to Y/M/D, but we can get pretty close by
60  * dividing the daycount by 32 (giving a too low index), and then
61  * adjusting upwards a couple of steps if necessary.
62  *
63  * FAT timestamps have 7 bits for the year and starts at 1980, so
64  * they can represent up to 2107 which means that the non-leap-year
65  * 2100 must be handled.
66  *
67  * XXX: As long as time_t is 32 bits this is not relevant or easily
68  * XXX: testable.  Revisit when time_t grows bigger.
69  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
70  *
71  */
72 
73 #include <sys/param.h>
74 #include <sys/types.h>
75 #include <sys/time.h>
76 #include <sys/clock.h>
77 
78 #define DAY	(24 * 60 * 60)	/* Length of day in seconds */
79 #define YEAR	365		/* Length of normal year */
80 #define LYC	(4 * YEAR + 1)	/* Length of 4 year leap-year cycle */
81 #define T1980	(10 * 365 + 2)	/* Days from 1970 to 1980 */
82 
83 /* End of month is N days from start of (normal) year */
84 #define JAN	31
85 #define FEB	(JAN + 28)
86 #define MAR	(FEB + 31)
87 #define APR	(MAR + 30)
88 #define MAY	(APR + 31)
89 #define JUN	(MAY + 30)
90 #define JUL	(JUN + 31)
91 #define AUG	(JUL + 31)
92 #define SEP	(AUG + 30)
93 #define OCT	(SEP + 31)
94 #define NOV	(OCT + 30)
95 #define DEC	(NOV + 31)
96 
97 /* Table of months in a 4 year leap-year cycle */
98 
99 #define ENC(y,m)	(((y) << 9) | ((m) << 5))
100 
101 static const struct {
102 	uint16_t	days;	/* month start in days relative to cycle */
103 	uint16_t	coded;	/* encoded year + month information */
104 } mtab[48] = {
105 	{   0 + 0 * YEAR,     ENC(0, 1)  },
106 
107 	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
108 	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
109 	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
110 	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
111 	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
112 	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
113 
114 	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
115 	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
116 	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
117 	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
118 	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
119 	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
120 
121 	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
122 	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
123 	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
124 	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
125 	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
126 	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
127 
128 	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
129 	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
130 	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
131 	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
132 	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
133 	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
134 };
135 
136 void
137 timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
138     uint16_t *dtp, uint8_t *dhp)
139 {
140 	time_t t1;
141 	unsigned t2, l, m;
142 
143 	t1 = tsp->tv_sec;
144 	if (!utc)
145 		t1 -= utc_offset();
146 
147 	if (dhp != NULL)
148 		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
149 	if (dtp != NULL) {
150 		*dtp = (t1 / 2) % 30;
151 		*dtp |= ((t1 / 60) % 60) << 5;
152 		*dtp |= ((t1 / 3600) % 24) << 11;
153 	}
154 	if (ddp != NULL) {
155 		t2 = t1 / DAY;
156 		if (t2 < T1980) {
157 			/* Impossible date, truncate to 1980-01-01 */
158 			*ddp = 0x0021;
159 		} else {
160 			t2 -= T1980;
161 
162 			/*
163 			 * 2100 is not a leap year.
164 			 * XXX: a 32 bit time_t can not get us here.
165 			 */
166 			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
167 				t2++;
168 
169 			/* Account for full leapyear cycles */
170 			l = t2 / LYC;
171 			*ddp = (l * 4) << 9;
172 			t2 -= l * LYC;
173 
174 			/* Find approximate table entry */
175 			m = t2 / 32;
176 
177 			/* Find correct table entry */
178 			while (m < 47 && mtab[m + 1].days <= t2)
179 				m++;
180 
181 			/* Get year + month from the table */
182 			*ddp += mtab[m].coded;
183 
184 			/* And apply the day in the month */
185 			t2 -= mtab[m].days - 1;
186 			*ddp |= t2;
187 		}
188 	}
189 }
190 
191 /*
192  * Table indexed by the bottom two bits of year + four bits of the month
193  * from the FAT timestamp, returning number of days into 4 year long
194  * leap-year cycle
195  */
196 
197 #define DCOD(m, y, l)	((m) + YEAR * (y) + (l))
198 static const uint16_t daytab[64] = {
199 	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
200 	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
201 	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
202 	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
203 	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
204 	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
205 	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
206 	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
207 	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
208 	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
209 	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
210 	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
211 	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
212 	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
213 	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
214 	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
215 };
216 
217 void
218 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
219     struct timespec *tsp)
220 {
221 	unsigned day;
222 
223 	/* Unpack time fields */
224 	tsp->tv_sec = (dt & 0x1f) << 1;
225 	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
226 	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
227 	tsp->tv_sec += dh / 100;
228 	tsp->tv_nsec = (dh % 100) * 10000000;
229 
230 	/* Day of month */
231 	day = (dd & 0x1f) - 1;
232 
233 	/* Full leap-year cycles */
234 	day += LYC * ((dd >> 11) & 0x1f);
235 
236 	/* Month offset from leap-year cycle */
237 	day += daytab[(dd >> 5) & 0x3f];
238 
239 	/*
240 	 * 2100 is not a leap year.
241 	 * XXX: a 32 bit time_t can not get us here.
242 	 */
243 	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
244 		day--;
245 
246 	/* Align with time_t epoch */
247 	day += T1980;
248 
249 	tsp->tv_sec += DAY * day;
250 	if (!utc)
251 		tsp->tv_sec += utc_offset();
252 }
253 
254 #ifdef TEST_DRIVER
255 
256 #include <stdio.h>
257 #include <unistd.h>
258 #include <stdlib.h>
259 
260 int
261 main(int argc __unused, char **argv __unused)
262 {
263 	int i;
264 	struct timespec ts;
265 	struct tm tm;
266 	double a;
267 	uint16_t d, t;
268 	uint8_t p;
269 	char buf[100];
270 
271 	for (i = 0; i < 10000; i++) {
272 		do {
273 			ts.tv_sec = random();
274 		} while (ts.tv_sec < T1980 * 86400);
275 		ts.tv_nsec = random() % 1000000000;
276 
277 		printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
278 
279 		gmtime_r(&ts.tv_sec, &tm);
280 		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
281 		printf("%s -- ", buf);
282 
283 		a = ts.tv_sec + ts.tv_nsec * 1e-9;
284 		d = t = p = 0;
285 		timet2fattime(&ts, &d, &t, &p);
286 		printf("%04x %04x %02x -- ", d, t, p);
287 		printf("%3d %02d %02d %02d %02d %02d -- ",
288 		    ((d >> 9)  & 0x7f) + 1980,
289 		    (d >> 5)  & 0x0f,
290 		    (d >> 0)  & 0x1f,
291 		    (t >> 11) & 0x1f,
292 		    (t >> 5)  & 0x3f,
293 		    ((t >> 0)  & 0x1f) * 2);
294 
295 		ts.tv_sec = ts.tv_nsec = 0;
296 		fattime2timet(d, t, p, &ts);
297 		printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
298 		gmtime_r(&ts.tv_sec, &tm);
299 		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
300 		printf("%s -- ", buf);
301 		a -= ts.tv_sec + ts.tv_nsec * 1e-9;
302 		printf("%.3f", a);
303 		printf("\n");
304 	}
305 	return (0);
306 }
307 
308 #endif /* TEST_DRIVER */
309