xref: /freebsd/sys/kern/subr_fattime.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 2006 Poul-Henning Kamp
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  * Convert MS-DOS FAT format timestamps to and from unix timespecs
29  *
30  * FAT filestamps originally consisted of two 16 bit integers, encoded like
31  * this:
32  *
33  *	yyyyyyymmmmddddd (year - 1980, month, day)
34  *
35  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
36  *
37  * Subsequently even Microsoft realized that files could be accessed in less
38  * than two seconds and a byte was added containing:
39  *
40  *      sfffffff	 (second mod two, 100ths of second)
41  *
42  * FAT timestamps are in the local timezone, with no indication of which
43  * timezone much less if daylight savings time applies.
44  *
45  * Later on again, in Windows NT, timestamps were defined relative to GMT.
46  *
47  * Purists will point out that UTC replaced GMT for such uses around
48  * a century ago, already then.  Ironically "NT" was an abbreviation of
49  * "New Technology".  Anyway...
50  *
51  * The 'utc' argument determines if the resulting FATTIME timestamp
52  * should b on the UTC or local timezone calendar.
53  *
54  * The conversion functions below cut time into four-year leap-second
55  * cycles rather than single years and uses table lookups inside those
56  * cycles to get the months and years sorted out.
57  *
58  * Obviously we cannot calculate the correct table index going from
59  * a posix seconds count to Y/M/D, but we can get pretty close by
60  * dividing the daycount by 32 (giving a too low index), and then
61  * adjusting upwards a couple of steps if necessary.
62  *
63  * FAT timestamps have 7 bits for the year and starts at 1980, so
64  * they can represent up to 2107 which means that the non-leap-year
65  * 2100 must be handled.
66  *
67  * XXX: As long as time_t is 32 bits this is not relevant or easily
68  * XXX: testable.  Revisit when time_t grows bigger.
69  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
70  *
71  */
72 
73 #include <sys/param.h>
74 #include <sys/types.h>
75 #include <sys/time.h>
76 #include <sys/clock.h>
77 
78 #define DAY	(24 * 60 * 60)	/* Length of day in seconds */
79 #define YEAR	365		/* Length of normal year */
80 #define LYC	(4 * YEAR + 1)	/* Length of 4 year leap-year cycle */
81 #define T1980	(10 * 365 + 2)	/* Days from 1970 to 1980 */
82 
83 /* End of month is N days from start of (normal) year */
84 #define JAN	31
85 #define FEB	(JAN + 28)
86 #define MAR	(FEB + 31)
87 #define APR	(MAR + 30)
88 #define MAY	(APR + 31)
89 #define JUN	(MAY + 30)
90 #define JUL	(JUN + 31)
91 #define AUG	(JUL + 31)
92 #define SEP	(AUG + 30)
93 #define OCT	(SEP + 31)
94 #define NOV	(OCT + 30)
95 #define DEC	(NOV + 31)
96 
97 /* Table of months in a 4 year leap-year cycle */
98 
99 #define ENC(y,m)	(((y) << 9) | ((m) << 5))
100 
101 static const struct {
102 	uint16_t	days;	/* month start in days relative to cycle */
103 	uint16_t	coded;	/* encoded year + month information */
104 } mtab[48] = {
105 	{   0 + 0 * YEAR,     ENC(0, 1)  },
106 
107 	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
108 	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
109 	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
110 	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
111 	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
112 	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
113 
114 	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
115 	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
116 	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
117 	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
118 	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
119 	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
120 
121 	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
122 	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
123 	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
124 	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
125 	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
126 	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
127 
128 	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
129 	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
130 	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
131 	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
132 	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
133 	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
134 };
135 
136 
137 void
138 timespec2fattime(struct timespec *tsp, int utc, uint16_t *ddp, uint16_t *dtp, uint8_t *dhp)
139 {
140 	time_t t1;
141 	unsigned t2, l, m;
142 
143 	t1 = tsp->tv_sec;
144 	if (!utc)
145 		t1 -= utc_offset();
146 
147 	if (dhp != NULL)
148 		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
149 	if (dtp != NULL) {
150 		*dtp = (t1 / 2) % 30;
151 		*dtp |= ((t1 / 60) % 60) << 5;
152 		*dtp |= ((t1 / 3600) % 24) << 11;
153 	}
154 	if (ddp != NULL) {
155 		t2 = t1 / DAY;
156 		if (t2 < T1980) {
157 			/* Impossible date, truncate to 1980-01-01 */
158 			*ddp = 0x0021;
159 		} else {
160 			t2 -= T1980;
161 
162 			/*
163 			 * 2100 is not a leap year.
164 			 * XXX: a 32 bit time_t can not get us here.
165 			 */
166 			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
167 				t2++;
168 
169 			/* Account for full leapyear cycles */
170 			l = t2 / LYC;
171 			*ddp = (l * 4) << 9;
172 			t2 -= l * LYC;
173 
174 			/* Find approximate table entry */
175 			m = t2 / 32;
176 
177 			/* Find correct table entry */
178 			while (m < 47 && mtab[m + 1].days <= t2)
179 				m++;
180 
181 			/* Get year + month from the table */
182 			*ddp += mtab[m].coded;
183 
184 			/* And apply the day in the month */
185 			t2 -= mtab[m].days - 1;
186 			*ddp |= t2;
187 		}
188 	}
189 }
190 
191 /*
192  * Table indexed by the bottom two bits of year + four bits of the month
193  * from the FAT timestamp, returning number of days into 4 year long
194  * leap-year cycle
195  */
196 
197 #define DCOD(m, y, l)	((m) + YEAR * (y) + (l))
198 static const uint16_t daytab[64] = {
199 	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
200 	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
201 	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
202 	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
203 	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
204 	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
205 	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
206 	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
207 	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
208 	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
209 	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
210 	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
211 	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
212 	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
213 	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
214 	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
215 };
216 
217 void
218 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc, struct timespec *tsp)
219 {
220 	unsigned day;
221 
222 	/* Unpack time fields */
223 	tsp->tv_sec = (dt & 0x1f) << 1;
224 	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
225 	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
226 	tsp->tv_sec += dh / 100;
227 	tsp->tv_nsec = (dh % 100) * 10000000;
228 
229 	/* Day of month */
230 	day = (dd & 0x1f) - 1;
231 
232 	/* Full leap-year cycles */
233 	day += LYC * ((dd >> 11) & 0x1f);
234 
235 	/* Month offset from leap-year cycle */
236 	day += daytab[(dd >> 5) & 0x3f];
237 
238 	/*
239 	 * 2100 is not a leap year.
240 	 * XXX: a 32 bit time_t can not get us here.
241 	 */
242 	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
243 		day--;
244 
245 	/* Align with time_t epoch */
246 	day += T1980;
247 
248 	tsp->tv_sec += DAY * day;
249 	if (!utc)
250 		tsp->tv_sec += utc_offset();
251 }
252 
253 #ifdef TEST_DRIVER
254 
255 #include <stdio.h>
256 #include <unistd.h>
257 #include <stdlib.h>
258 
259 int
260 main(int argc __unused, char **argv __unused)
261 {
262 	int i;
263 	struct timespec ts;
264 	struct tm tm;
265 	double a;
266 	uint16_t d, t;
267 	uint8_t p;
268 	char buf[100];
269 
270 	for (i = 0; i < 10000; i++) {
271 		do {
272 			ts.tv_sec = random();
273 		} while (ts.tv_sec < T1980 * 86400);
274 		ts.tv_nsec = random() % 1000000000;
275 
276 		printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
277 
278 		gmtime_r(&ts.tv_sec, &tm);
279 		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
280 		printf("%s -- ", buf);
281 
282 		a = ts.tv_sec + ts.tv_nsec * 1e-9;
283 		d = t = p = 0;
284 		timet2fattime(&ts, &d, &t, &p);
285 		printf("%04x %04x %02x -- ", d, t, p);
286 		printf("%3d %02d %02d %02d %02d %02d -- ",
287 		    ((d >> 9)  & 0x7f) + 1980,
288 		    (d >> 5)  & 0x0f,
289 		    (d >> 0)  & 0x1f,
290 		    (t >> 11) & 0x1f,
291 		    (t >> 5)  & 0x3f,
292 		    ((t >> 0)  & 0x1f) * 2);
293 
294 		ts.tv_sec = ts.tv_nsec = 0;
295 		fattime2timet(d, t, p, &ts);
296 		printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
297 		gmtime_r(&ts.tv_sec, &tm);
298 		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
299 		printf("%s -- ", buf);
300 		a -= ts.tv_sec + ts.tv_nsec * 1e-9;
301 		printf("%.3f", a);
302 		printf("\n");
303 	}
304 	return (0);
305 }
306 
307 #endif /* TEST_DRIVER */
308