xref: /freebsd/sys/kern/subr_disk.c (revision bc5304a006238115291e7568583632889dffbab9)
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * The bioq_disksort() (and the specification of the bioq API)
12  * have been written by Luigi Rizzo and Fabio Checconi under the same
13  * license as above.
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 #include "opt_geom.h"
20 
21 #include <sys/param.h>
22 #include <sys/systm.h>
23 #include <sys/bio.h>
24 #include <sys/conf.h>
25 #include <sys/disk.h>
26 #include <sys/sysctl.h>
27 #include <geom/geom_disk.h>
28 
29 static int bioq_batchsize = 128;
30 SYSCTL_INT(_debug, OID_AUTO, bioq_batchsize, CTLFLAG_RW,
31     &bioq_batchsize, 0, "BIOQ batch size");
32 
33 /*-
34  * Disk error is the preface to plaintive error messages
35  * about failing disk transfers.  It prints messages of the form
36  * 	"hp0g: BLABLABLA cmd=read fsbn 12345 of 12344-12347"
37  * blkdone should be -1 if the position of the error is unknown.
38  * The message is printed with printf.
39  */
40 void
41 disk_err(struct bio *bp, const char *what, int blkdone, int nl)
42 {
43 	daddr_t sn;
44 
45 	if (bp->bio_dev != NULL)
46 		printf("%s: %s ", devtoname(bp->bio_dev), what);
47 	else if (bp->bio_disk != NULL)
48 		printf("%s%d: %s ",
49 		    bp->bio_disk->d_name, bp->bio_disk->d_unit, what);
50 	else
51 		printf("disk??: %s ", what);
52 	switch(bp->bio_cmd) {
53 	case BIO_READ:		printf("cmd=read "); break;
54 	case BIO_WRITE:		printf("cmd=write "); break;
55 	case BIO_DELETE:	printf("cmd=delete "); break;
56 	case BIO_GETATTR:	printf("cmd=getattr "); break;
57 	case BIO_FLUSH:		printf("cmd=flush "); break;
58 	default:		printf("cmd=%x ", bp->bio_cmd); break;
59 	}
60 	sn = bp->bio_pblkno;
61 	if (bp->bio_bcount <= DEV_BSIZE) {
62 		printf("fsbn %jd%s", (intmax_t)sn, nl ? "\n" : "");
63 		return;
64 	}
65 	if (blkdone >= 0) {
66 		sn += blkdone;
67 		printf("fsbn %jd of ", (intmax_t)sn);
68 	}
69 	printf("%jd-%jd", (intmax_t)bp->bio_pblkno,
70 	    (intmax_t)(bp->bio_pblkno + (bp->bio_bcount - 1) / DEV_BSIZE));
71 	if (nl)
72 		printf("\n");
73 }
74 
75 /*
76  * BIO queue implementation
77  *
78  * Please read carefully the description below before making any change
79  * to the code, or you might change the behaviour of the data structure
80  * in undesirable ways.
81  *
82  * A bioq stores disk I/O request (bio), normally sorted according to
83  * the distance of the requested position (bio->bio_offset) from the
84  * current head position (bioq->last_offset) in the scan direction, i.e.
85  *
86  * 	(uoff_t)(bio_offset - last_offset)
87  *
88  * Note that the cast to unsigned (uoff_t) is fundamental to insure
89  * that the distance is computed in the scan direction.
90  *
91  * The main methods for manipulating the bioq are:
92  *
93  *   bioq_disksort()	performs an ordered insertion;
94  *
95  *   bioq_first()	return the head of the queue, without removing;
96  *
97  *   bioq_takefirst()	return and remove the head of the queue,
98  *		updating the 'current head position' as
99  *		bioq->last_offset = bio->bio_offset + bio->bio_length;
100  *
101  * When updating the 'current head position', we assume that the result of
102  * bioq_takefirst() is dispatched to the device, so bioq->last_offset
103  * represents the head position once the request is complete.
104  *
105  * If the bioq is manipulated using only the above calls, it starts
106  * with a sorted sequence of requests with bio_offset >= last_offset,
107  * possibly followed by another sorted sequence of requests with
108  * 0 <= bio_offset < bioq->last_offset
109  *
110  * NOTE: historical behaviour was to ignore bio->bio_length in the
111  *	update, but its use tracks the head position in a better way.
112  *	Historical behaviour was also to update the head position when
113  *	the request under service is complete, rather than when the
114  *	request is extracted from the queue. However, the current API
115  *	has no method to update the head position; secondly, once
116  *	a request has been submitted to the disk, we have no idea of
117  *	the actual head position, so the final one is our best guess.
118  *
119  * --- Direct queue manipulation ---
120  *
121  * A bioq uses an underlying TAILQ to store requests, so we also
122  * export methods to manipulate the TAILQ, in particular:
123  *
124  * bioq_insert_tail()	insert an entry at the end.
125  *		It also creates a 'barrier' so all subsequent
126  *		insertions through bioq_disksort() will end up
127  *		after this entry;
128  *
129  * bioq_insert_head()	insert an entry at the head, update
130  *		bioq->last_offset = bio->bio_offset so that
131  *		all subsequent insertions through bioq_disksort()
132  *		will end up after this entry;
133  *
134  * bioq_remove()	remove a generic element from the queue, act as
135  *		bioq_takefirst() if invoked on the head of the queue.
136  *
137  * The semantic of these methods is the same as the operations
138  * on the underlying TAILQ, but with additional guarantees on
139  * subsequent bioq_disksort() calls. E.g. bioq_insert_tail()
140  * can be useful for making sure that all previous ops are flushed
141  * to disk before continuing.
142  *
143  * Updating bioq->last_offset on a bioq_insert_head() guarantees
144  * that the bio inserted with the last bioq_insert_head() will stay
145  * at the head of the queue even after subsequent bioq_disksort().
146  *
147  * Note that when the direct queue manipulation functions are used,
148  * the queue may contain multiple inversion points (i.e. more than
149  * two sorted sequences of requests).
150  *
151  */
152 
153 void
154 bioq_init(struct bio_queue_head *head)
155 {
156 
157 	TAILQ_INIT(&head->queue);
158 	head->last_offset = 0;
159 	head->insert_point = NULL;
160 	head->total = 0;
161 	head->batched = 0;
162 }
163 
164 void
165 bioq_remove(struct bio_queue_head *head, struct bio *bp)
166 {
167 
168 	if (head->insert_point == NULL) {
169 		if (bp == TAILQ_FIRST(&head->queue))
170 			head->last_offset = bp->bio_offset + bp->bio_length;
171 	} else if (bp == head->insert_point)
172 		head->insert_point = NULL;
173 
174 	TAILQ_REMOVE(&head->queue, bp, bio_queue);
175 	if (TAILQ_EMPTY(&head->queue))
176 		head->batched = 0;
177 	head->total--;
178 }
179 
180 void
181 bioq_flush(struct bio_queue_head *head, struct devstat *stp, int error)
182 {
183 	struct bio *bp;
184 
185 	while ((bp = bioq_takefirst(head)) != NULL)
186 		biofinish(bp, stp, error);
187 }
188 
189 void
190 bioq_insert_head(struct bio_queue_head *head, struct bio *bp)
191 {
192 
193 	if (head->insert_point == NULL)
194 		head->last_offset = bp->bio_offset;
195 	TAILQ_INSERT_HEAD(&head->queue, bp, bio_queue);
196 	head->total++;
197 	head->batched = 0;
198 }
199 
200 void
201 bioq_insert_tail(struct bio_queue_head *head, struct bio *bp)
202 {
203 
204 	TAILQ_INSERT_TAIL(&head->queue, bp, bio_queue);
205 	head->total++;
206 	head->batched = 0;
207 	head->insert_point = bp;
208 	head->last_offset = bp->bio_offset;
209 }
210 
211 struct bio *
212 bioq_first(struct bio_queue_head *head)
213 {
214 
215 	return (TAILQ_FIRST(&head->queue));
216 }
217 
218 struct bio *
219 bioq_takefirst(struct bio_queue_head *head)
220 {
221 	struct bio *bp;
222 
223 	bp = TAILQ_FIRST(&head->queue);
224 	if (bp != NULL)
225 		bioq_remove(head, bp);
226 	return (bp);
227 }
228 
229 /*
230  * Compute the sorting key. The cast to unsigned is
231  * fundamental for correctness, see the description
232  * near the beginning of the file.
233  */
234 static inline uoff_t
235 bioq_bio_key(struct bio_queue_head *head, struct bio *bp)
236 {
237 
238 	return ((uoff_t)(bp->bio_offset - head->last_offset));
239 }
240 
241 /*
242  * Seek sort for disks.
243  *
244  * Sort all requests in a single queue while keeping
245  * track of the current position of the disk with last_offset.
246  * See above for details.
247  */
248 void
249 bioq_disksort(struct bio_queue_head *head, struct bio *bp)
250 {
251 	struct bio *cur, *prev;
252 	uoff_t key;
253 
254 	if ((bp->bio_flags & BIO_ORDERED) != 0) {
255 		/*
256 		 * Ordered transactions can only be dispatched
257 		 * after any currently queued transactions.  They
258 		 * also have barrier semantics - no transactions
259 		 * queued in the future can pass them.
260 		 */
261 		bioq_insert_tail(head, bp);
262 		return;
263 	}
264 
265 	/*
266 	 * We should only sort requests of types that have concept of offset.
267 	 * Other types, such as BIO_FLUSH or BIO_ZONE, may imply some degree
268 	 * of ordering even if strict ordering is not requested explicitly.
269 	 */
270 	if (bp->bio_cmd != BIO_READ && bp->bio_cmd != BIO_WRITE &&
271 	    bp->bio_cmd != BIO_DELETE) {
272 		bioq_insert_tail(head, bp);
273 		return;
274 	}
275 
276 	if (bioq_batchsize > 0 && head->batched > bioq_batchsize) {
277 		bioq_insert_tail(head, bp);
278 		return;
279 	}
280 
281 	prev = NULL;
282 	key = bioq_bio_key(head, bp);
283 	cur = TAILQ_FIRST(&head->queue);
284 
285 	if (head->insert_point) {
286 		prev = head->insert_point;
287 		cur = TAILQ_NEXT(head->insert_point, bio_queue);
288 	}
289 
290 	while (cur != NULL && key >= bioq_bio_key(head, cur)) {
291 		prev = cur;
292 		cur = TAILQ_NEXT(cur, bio_queue);
293 	}
294 
295 	if (prev == NULL)
296 		TAILQ_INSERT_HEAD(&head->queue, bp, bio_queue);
297 	else
298 		TAILQ_INSERT_AFTER(&head->queue, prev, bp, bio_queue);
299 	head->total++;
300 	head->batched++;
301 }
302