xref: /freebsd/sys/kern/subr_devstat.c (revision 9c151e1fbf1a71a4912afa9693a39d55a00db4eb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/disk.h>
33 #include <sys/kernel.h>
34 #include <sys/systm.h>
35 #include <sys/bio.h>
36 #include <sys/devicestat.h>
37 #include <sys/sdt.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 
46 #ifdef COMPAT_FREEBSD32
47 #include <compat/freebsd32/freebsd32.h>
48 #endif
49 
50 #include <machine/atomic.h>
51 
52 SDT_PROVIDER_DEFINE(io);
53 
54 SDT_PROBE_DEFINE2(io, , , start, "struct bio *", "struct devstat *");
55 SDT_PROBE_DEFINE2(io, , , done, "struct bio *", "struct devstat *");
56 
57 #define	DTRACE_DEVSTAT_BIO_START()	SDT_PROBE2(io, , , start, bp, ds)
58 #define	DTRACE_DEVSTAT_BIO_DONE()	SDT_PROBE2(io, , , done, bp, ds)
59 
60 static int devstat_num_devs;
61 static long devstat_generation = 1;
62 static int devstat_version = DEVSTAT_VERSION;
63 static int devstat_current_devnumber;
64 static struct mtx devstat_mutex;
65 MTX_SYSINIT(devstat_mutex, &devstat_mutex, "devstat", MTX_DEF);
66 
67 static struct devstatlist device_statq = STAILQ_HEAD_INITIALIZER(device_statq);
68 static struct devstat *devstat_alloc(void);
69 static void devstat_free(struct devstat *);
70 static void devstat_add_entry(struct devstat *ds, const void *dev_name,
71 		       int unit_number, uint32_t block_size,
72 		       devstat_support_flags flags,
73 		       devstat_type_flags device_type,
74 		       devstat_priority priority);
75 
76 /*
77  * Allocate a devstat and initialize it
78  */
79 struct devstat *
80 devstat_new_entry(const void *dev_name,
81 		  int unit_number, uint32_t block_size,
82 		  devstat_support_flags flags,
83 		  devstat_type_flags device_type,
84 		  devstat_priority priority)
85 {
86 	struct devstat *ds;
87 
88 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
89 
90 	ds = devstat_alloc();
91 	mtx_lock(&devstat_mutex);
92 	if (unit_number == -1) {
93 		ds->unit_number = unit_number;
94 		ds->id = dev_name;
95 		binuptime(&ds->creation_time);
96 		devstat_generation++;
97 	} else {
98 		devstat_add_entry(ds, dev_name, unit_number, block_size,
99 				  flags, device_type, priority);
100 	}
101 	mtx_unlock(&devstat_mutex);
102 	return (ds);
103 }
104 
105 /*
106  * Take a malloced and zeroed devstat structure given to us, fill it in
107  * and add it to the queue of devices.
108  */
109 static void
110 devstat_add_entry(struct devstat *ds, const void *dev_name,
111 		  int unit_number, uint32_t block_size,
112 		  devstat_support_flags flags,
113 		  devstat_type_flags device_type,
114 		  devstat_priority priority)
115 {
116 	struct devstatlist *devstat_head;
117 	struct devstat *ds_tmp;
118 
119 	mtx_assert(&devstat_mutex, MA_OWNED);
120 	devstat_num_devs++;
121 
122 	devstat_head = &device_statq;
123 
124 	/*
125 	 * Priority sort.  Each driver passes in its priority when it adds
126 	 * its devstat entry.  Drivers are sorted first by priority, and
127 	 * then by probe order.
128 	 *
129 	 * For the first device, we just insert it, since the priority
130 	 * doesn't really matter yet.  Subsequent devices are inserted into
131 	 * the list using the order outlined above.
132 	 */
133 	if (devstat_num_devs == 1)
134 		STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
135 	else {
136 		STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
137 			struct devstat *ds_next;
138 
139 			ds_next = STAILQ_NEXT(ds_tmp, dev_links);
140 
141 			/*
142 			 * If we find a break between higher and lower
143 			 * priority items, and if this item fits in the
144 			 * break, insert it.  This also applies if the
145 			 * "lower priority item" is the end of the list.
146 			 */
147 			if ((priority <= ds_tmp->priority)
148 			 && ((ds_next == NULL)
149 			   || (priority > ds_next->priority))) {
150 				STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
151 						    dev_links);
152 				break;
153 			} else if (priority > ds_tmp->priority) {
154 				/*
155 				 * If this is the case, we should be able
156 				 * to insert ourselves at the head of the
157 				 * list.  If we can't, something is wrong.
158 				 */
159 				if (ds_tmp == STAILQ_FIRST(devstat_head)) {
160 					STAILQ_INSERT_HEAD(devstat_head,
161 							   ds, dev_links);
162 					break;
163 				} else {
164 					STAILQ_INSERT_TAIL(devstat_head,
165 							   ds, dev_links);
166 					printf("devstat_add_entry: HELP! "
167 					       "sorting problem detected "
168 					       "for name %p unit %d\n",
169 					       dev_name, unit_number);
170 					break;
171 				}
172 			}
173 		}
174 	}
175 
176 	ds->device_number = devstat_current_devnumber++;
177 	ds->unit_number = unit_number;
178 	strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
179 	ds->block_size = block_size;
180 	ds->flags = flags;
181 	ds->device_type = device_type;
182 	ds->priority = priority;
183 	binuptime(&ds->creation_time);
184 	devstat_generation++;
185 }
186 
187 /*
188  * Remove a devstat structure from the list of devices.
189  */
190 void
191 devstat_remove_entry(struct devstat *ds)
192 {
193 	struct devstatlist *devstat_head;
194 
195 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
196 	if (ds == NULL)
197 		return;
198 
199 	mtx_lock(&devstat_mutex);
200 
201 	devstat_head = &device_statq;
202 
203 	/* Remove this entry from the devstat queue */
204 	atomic_add_acq_int(&ds->sequence1, 1);
205 	if (ds->unit_number != -1) {
206 		devstat_num_devs--;
207 		STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
208 	}
209 	devstat_free(ds);
210 	devstat_generation++;
211 	mtx_unlock(&devstat_mutex);
212 }
213 
214 /*
215  * Record a transaction start.
216  *
217  * See comments for devstat_end_transaction().  Ordering is very important
218  * here.
219  */
220 void
221 devstat_start_transaction(struct devstat *ds, const struct bintime *now)
222 {
223 
224 	/* sanity check */
225 	if (ds == NULL)
226 		return;
227 
228 	atomic_add_acq_int(&ds->sequence1, 1);
229 	/*
230 	 * We only want to set the start time when we are going from idle
231 	 * to busy.  The start time is really the start of the latest busy
232 	 * period.
233 	 */
234 	if (atomic_fetchadd_int(&ds->start_count, 1) == ds->end_count) {
235 		if (now != NULL)
236 			ds->busy_from = *now;
237 		else
238 			binuptime(&ds->busy_from);
239 	}
240 	atomic_add_rel_int(&ds->sequence0, 1);
241 }
242 
243 void
244 devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
245 {
246 
247 	/* sanity check */
248 	if (ds == NULL)
249 		return;
250 
251 	binuptime(&bp->bio_t0);
252 	devstat_start_transaction_bio_t0(ds, bp);
253 }
254 
255 void
256 devstat_start_transaction_bio_t0(struct devstat *ds, struct bio *bp)
257 {
258 
259 	/* sanity check */
260 	if (ds == NULL)
261 		return;
262 
263 	devstat_start_transaction(ds, &bp->bio_t0);
264 	DTRACE_DEVSTAT_BIO_START();
265 }
266 
267 /*
268  * Record the ending of a transaction, and incrment the various counters.
269  *
270  * Ordering in this function, and in devstat_start_transaction() is VERY
271  * important.  The idea here is to run without locks, so we are very
272  * careful to only modify some fields on the way "down" (i.e. at
273  * transaction start) and some fields on the way "up" (i.e. at transaction
274  * completion).  One exception is busy_from, which we only modify in
275  * devstat_start_transaction() when there are no outstanding transactions,
276  * and thus it can't be modified in devstat_end_transaction()
277  * simultaneously.
278  *
279  * The sequence0 and sequence1 fields are provided to enable an application
280  * spying on the structures with mmap(2) to tell when a structure is in a
281  * consistent state or not.
282  *
283  * For this to work 100% reliably, it is important that the two fields
284  * are at opposite ends of the structure and that they are incremented
285  * in the opposite order of how a memcpy(3) in userland would copy them.
286  * We assume that the copying happens front to back, but there is actually
287  * no way short of writing your own memcpy(3) replacement to guarantee
288  * this will be the case.
289  *
290  * In addition to this, being a kind of locks, they must be updated with
291  * atomic instructions using appropriate memory barriers.
292  */
293 void
294 devstat_end_transaction(struct devstat *ds, uint32_t bytes,
295 			devstat_tag_type tag_type, devstat_trans_flags flags,
296 			const struct bintime *now, const struct bintime *then)
297 {
298 	struct bintime dt, lnow;
299 
300 	/* sanity check */
301 	if (ds == NULL)
302 		return;
303 
304 	if (now == NULL) {
305 		binuptime(&lnow);
306 		now = &lnow;
307 	}
308 
309 	atomic_add_acq_int(&ds->sequence1, 1);
310 	/* Update byte and operations counts */
311 	ds->bytes[flags] += bytes;
312 	ds->operations[flags]++;
313 
314 	/*
315 	 * Keep a count of the various tag types sent.
316 	 */
317 	if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
318 	    tag_type != DEVSTAT_TAG_NONE)
319 		ds->tag_types[tag_type]++;
320 
321 	if (then != NULL) {
322 		/* Update duration of operations */
323 		dt = *now;
324 		bintime_sub(&dt, then);
325 		bintime_add(&ds->duration[flags], &dt);
326 	}
327 
328 	/* Accumulate busy time */
329 	dt = *now;
330 	bintime_sub(&dt, &ds->busy_from);
331 	bintime_add(&ds->busy_time, &dt);
332 	ds->busy_from = *now;
333 
334 	ds->end_count++;
335 	atomic_add_rel_int(&ds->sequence0, 1);
336 }
337 
338 void
339 devstat_end_transaction_bio(struct devstat *ds, const struct bio *bp)
340 {
341 
342 	devstat_end_transaction_bio_bt(ds, bp, NULL);
343 }
344 
345 void
346 devstat_end_transaction_bio_bt(struct devstat *ds, const struct bio *bp,
347     const struct bintime *now)
348 {
349 	devstat_trans_flags flg;
350 	devstat_tag_type tag;
351 
352 	/* sanity check */
353 	if (ds == NULL)
354 		return;
355 
356 	if (bp->bio_flags & BIO_ORDERED)
357 		tag = DEVSTAT_TAG_ORDERED;
358 	else
359 		tag = DEVSTAT_TAG_SIMPLE;
360 	if (bp->bio_cmd == BIO_DELETE)
361 		flg = DEVSTAT_FREE;
362 	else if ((bp->bio_cmd == BIO_READ)
363 	      || ((bp->bio_cmd == BIO_ZONE)
364 	       && (bp->bio_zone.zone_cmd == DISK_ZONE_REPORT_ZONES)))
365 		flg = DEVSTAT_READ;
366 	else if (bp->bio_cmd == BIO_WRITE)
367 		flg = DEVSTAT_WRITE;
368 	else
369 		flg = DEVSTAT_NO_DATA;
370 
371 	devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
372 				tag, flg, now, &bp->bio_t0);
373 	DTRACE_DEVSTAT_BIO_DONE();
374 }
375 
376 /*
377  * This is the sysctl handler for the devstat package.  The data pushed out
378  * on the kern.devstat.all sysctl variable consists of the current devstat
379  * generation number, and then an array of devstat structures, one for each
380  * device in the system.
381  *
382  * This is more cryptic that obvious, but basically we neither can nor
383  * want to hold the devstat_mutex for any amount of time, so we grab it
384  * only when we need to and keep an eye on devstat_generation all the time.
385  */
386 static int
387 sysctl_devstat(SYSCTL_HANDLER_ARGS)
388 {
389 	int error;
390 	long mygen;
391 	struct devstat *nds;
392 
393 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
394 
395 	/*
396 	 * XXX devstat_generation should really be "volatile" but that
397 	 * XXX freaks out the sysctl macro below.  The places where we
398 	 * XXX change it and inspect it are bracketed in the mutex which
399 	 * XXX guarantees us proper write barriers.  I don't believe the
400 	 * XXX compiler is allowed to optimize mygen away across calls
401 	 * XXX to other functions, so the following is belived to be safe.
402 	 */
403 	mygen = devstat_generation;
404 
405 #ifdef COMPAT_FREEBSD32
406 	if ((req->flags & SCTL_MASK32) != 0) {
407 		int32_t mygen32 = (int32_t)mygen;
408 
409 		error = SYSCTL_OUT(req, &mygen32, sizeof(mygen32));
410 	} else
411 #endif /* COMPAT_FREEBSD32 */
412 		error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
413 	if (error != 0)
414 		return (error);
415 
416 	if (devstat_num_devs == 0)
417 		return(0);
418 
419 	mtx_lock(&devstat_mutex);
420 	nds = STAILQ_FIRST(&device_statq);
421 	if (mygen != devstat_generation)
422 		error = EBUSY;
423 	mtx_unlock(&devstat_mutex);
424 	if (error != 0)
425 		return (error);
426 
427 	while (nds != NULL) {
428 #ifdef COMPAT_FREEBSD32
429 		if ((req->flags & SCTL_MASK32) != 0) {
430 			struct devstat32 ds32;
431 			unsigned int i;
432 
433 			CP(*nds, ds32, sequence0);
434 			CP(*nds, ds32, allocated);
435 			CP(*nds, ds32, start_count);
436 			CP(*nds, ds32, end_count);
437 			BT_CP(*nds, ds32, busy_from);
438 			PTROUT_CP(*nds, ds32, dev_links.stqe_next);
439 			CP(*nds, ds32, device_number);
440 			strcpy(ds32.device_name, nds->device_name);
441 			CP(*nds, ds32, unit_number);
442 			for (i = 0; i < DEVSTAT_N_TRANS_FLAGS; i++) {
443 				FU64_CP(*nds, ds32, bytes[i]);
444 				FU64_CP(*nds, ds32, operations[i]);
445 				BT_CP(*nds, ds32, duration[i]);
446 			}
447 			BT_CP(*nds, ds32, busy_time);
448 			BT_CP(*nds, ds32, creation_time);
449 			CP(*nds, ds32, block_size);
450 			for (i = 0; i < nitems(ds32.tag_types); i++) {
451 				FU64_CP(*nds, ds32, tag_types[i]);
452 			}
453 			CP(*nds, ds32, flags);
454 			CP(*nds, ds32, device_type);
455 			CP(*nds, ds32, priority);
456 			PTROUT_CP(*nds, ds32, id);
457 			CP(*nds, ds32, sequence1);
458 			error = SYSCTL_OUT(req, &ds32, sizeof(ds32));
459 		} else
460 #endif /* COMPAT_FREEBSD32 */
461 			error = SYSCTL_OUT(req, nds, sizeof(*nds));
462 		if (error != 0)
463 			return (error);
464 		mtx_lock(&devstat_mutex);
465 		if (mygen != devstat_generation)
466 			error = EBUSY;
467 		else
468 			nds = STAILQ_NEXT(nds, dev_links);
469 		mtx_unlock(&devstat_mutex);
470 		if (error != 0)
471 			return (error);
472 	}
473 	return (error);
474 }
475 
476 /*
477  * Sysctl entries for devstat.  The first one is a node that all the rest
478  * hang off of.
479  */
480 static SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
481     "Device Statistics");
482 
483 SYSCTL_PROC(_kern_devstat, OID_AUTO, all,
484     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
485     sysctl_devstat, "S,devstat",
486     "All devices in the devstat list");
487 /*
488  * Export the number of devices in the system so that userland utilities
489  * can determine how much memory to allocate to hold all the devices.
490  */
491 SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD,
492     &devstat_num_devs, 0, "Number of devices in the devstat list");
493 SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
494     &devstat_generation, 0, "Devstat list generation");
495 SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD,
496     &devstat_version, 0, "Devstat list version number");
497 
498 /*
499  * Allocator for struct devstat structures.  We sub-allocate these from pages
500  * which we get from malloc.  These pages are exported for mmap(2)'ing through
501  * a miniature device driver
502  */
503 
504 #define statsperpage (PAGE_SIZE / sizeof(struct devstat))
505 
506 static d_ioctl_t devstat_ioctl;
507 static d_mmap_t devstat_mmap;
508 
509 static struct cdevsw devstat_cdevsw = {
510 	.d_version =	D_VERSION,
511 	.d_ioctl =	devstat_ioctl,
512 	.d_mmap =	devstat_mmap,
513 	.d_name =	"devstat",
514 };
515 
516 struct statspage {
517 	TAILQ_ENTRY(statspage)	list;
518 	struct devstat		*stat;
519 	u_int			nfree;
520 };
521 
522 static size_t pagelist_pages = 0;
523 static TAILQ_HEAD(, statspage)	pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
524 static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
525 
526 static int
527 devstat_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
528     struct thread *td)
529 {
530 	int error = ENOTTY;
531 
532 	switch (cmd) {
533 	case DIOCGMEDIASIZE:
534 		error = 0;
535 		*(off_t *)data = pagelist_pages * PAGE_SIZE;
536 		break;
537 	}
538 
539 	return (error);
540 }
541 
542 static int
543 devstat_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
544     int nprot, vm_memattr_t *memattr)
545 {
546 	struct statspage *spp;
547 
548 	if (nprot != VM_PROT_READ)
549 		return (-1);
550 	mtx_lock(&devstat_mutex);
551 	TAILQ_FOREACH(spp, &pagelist, list) {
552 		if (offset == 0) {
553 			*paddr = vtophys(spp->stat);
554 			mtx_unlock(&devstat_mutex);
555 			return (0);
556 		}
557 		offset -= PAGE_SIZE;
558 	}
559 	mtx_unlock(&devstat_mutex);
560 	return (-1);
561 }
562 
563 static struct devstat *
564 devstat_alloc(void)
565 {
566 	struct devstat *dsp;
567 	struct statspage *spp, *spp2;
568 	u_int u;
569 	static int once;
570 
571 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
572 	if (!once) {
573 		make_dev_credf(MAKEDEV_ETERNAL | MAKEDEV_CHECKNAME,
574 		    &devstat_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0444,
575 		    DEVSTAT_DEVICE_NAME);
576 		once = 1;
577 	}
578 	spp2 = NULL;
579 	mtx_lock(&devstat_mutex);
580 	for (;;) {
581 		TAILQ_FOREACH(spp, &pagelist, list) {
582 			if (spp->nfree > 0)
583 				break;
584 		}
585 		if (spp != NULL)
586 			break;
587 		mtx_unlock(&devstat_mutex);
588 		spp2 = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
589 		spp2->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
590 		spp2->nfree = statsperpage;
591 
592 		/*
593 		 * If free statspages were added while the lock was released
594 		 * just reuse them.
595 		 */
596 		mtx_lock(&devstat_mutex);
597 		TAILQ_FOREACH(spp, &pagelist, list)
598 			if (spp->nfree > 0)
599 				break;
600 		if (spp == NULL) {
601 			spp = spp2;
602 
603 			/*
604 			 * It would make more sense to add the new page at the
605 			 * head but the order on the list determine the
606 			 * sequence of the mapping so we can't do that.
607 			 */
608 			pagelist_pages++;
609 			TAILQ_INSERT_TAIL(&pagelist, spp, list);
610 		} else
611 			break;
612 	}
613 	dsp = spp->stat;
614 	for (u = 0; u < statsperpage; u++) {
615 		if (dsp->allocated == 0)
616 			break;
617 		dsp++;
618 	}
619 	spp->nfree--;
620 	dsp->allocated = 1;
621 	mtx_unlock(&devstat_mutex);
622 	if (spp2 != NULL && spp2 != spp) {
623 		free(spp2->stat, M_DEVSTAT);
624 		free(spp2, M_DEVSTAT);
625 	}
626 	return (dsp);
627 }
628 
629 static void
630 devstat_free(struct devstat *dsp)
631 {
632 	struct statspage *spp;
633 
634 	mtx_assert(&devstat_mutex, MA_OWNED);
635 	bzero(dsp, sizeof *dsp);
636 	TAILQ_FOREACH(spp, &pagelist, list) {
637 		if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
638 			spp->nfree++;
639 			return;
640 		}
641 	}
642 }
643 
644 SYSCTL_SIZEOF_STRUCT(devstat);
645