xref: /freebsd/sys/kern/subr_clock.c (revision 5b0945b57059d1cde0831d3afea7ec56c7d79508)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: Utah $Hdr: clock.c 1.18 91/01/21$
37  *	from: @(#)clock.c	8.2 (Berkeley) 1/12/94
38  *	from: NetBSD: clock_subr.c,v 1.6 2001/07/07 17:04:02 thorpej Exp
39  *	and
40  *	from: src/sys/i386/isa/clock.c,v 1.176 2001/09/04
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/clock.h>
51 #include <sys/limits.h>
52 #include <sys/sysctl.h>
53 #include <sys/timetc.h>
54 
55 /*
56  * The adjkerntz and wall_cmos_clock sysctls are in the "machdep" sysctl
57  * namespace because they were misplaced there originally.
58  */
59 static int adjkerntz;
60 static int
61 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
62 {
63 	int error;
64 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
65 	if (!error && req->newptr)
66 		resettodr();
67 	return (error);
68 }
69 SYSCTL_PROC(_machdep, OID_AUTO, adjkerntz, CTLTYPE_INT | CTLFLAG_RW |
70     CTLFLAG_MPSAFE, &adjkerntz, 0, sysctl_machdep_adjkerntz, "I",
71     "Local offset from UTC in seconds");
72 
73 static int ct_debug;
74 SYSCTL_INT(_debug, OID_AUTO, clocktime, CTLFLAG_RWTUN,
75     &ct_debug, 0, "Enable printing of clocktime debugging");
76 
77 static int wall_cmos_clock;
78 SYSCTL_INT(_machdep, OID_AUTO, wall_cmos_clock, CTLFLAG_RW,
79     &wall_cmos_clock, 0, "Enables application of machdep.adjkerntz");
80 
81 /*--------------------------------------------------------------------*
82  * Generic routines to convert between a POSIX date
83  * (seconds since 1/1/1970) and yr/mo/day/hr/min/sec
84  * Derived from NetBSD arch/hp300/hp300/clock.c
85  */
86 
87 #define	FEBRUARY	2
88 #define	days_in_year(y) 	(leapyear(y) ? 366 : 365)
89 #define	days_in_month(y, m) \
90 	(month_days[(m) - 1] + (m == FEBRUARY ? leapyear(y) : 0))
91 /* Day of week. Days are counted from 1/1/1970, which was a Thursday */
92 #define	day_of_week(days)	(((days) + 4) % 7)
93 
94 static const int month_days[12] = {
95 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
96 };
97 
98 /*
99  * Optimization: using a precomputed count of days between POSIX_BASE_YEAR and
100  * some recent year avoids lots of unnecessary loop iterations in conversion.
101  * recent_base_days is the number of days before the start of recent_base_year.
102  */
103 static const int recent_base_year = 2017;
104 static const int recent_base_days = 17167;
105 
106 /*
107  * Table to 'calculate' pow(10, 9 - nsdigits) via lookup of nsdigits.
108  * Before doing the lookup, the code asserts 0 <= nsdigits <= 9.
109  */
110 static u_int nsdivisors[] = {
111     1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1
112 };
113 
114 /*
115  * This inline avoids some unnecessary modulo operations
116  * as compared with the usual macro:
117  *   ( ((year % 4) == 0 &&
118  *      (year % 100) != 0) ||
119  *     ((year % 400) == 0) )
120  * It is otherwise equivalent.
121  */
122 static int
123 leapyear(int year)
124 {
125 	int rv = 0;
126 
127 	if ((year & 3) == 0) {
128 		rv = 1;
129 		if ((year % 100) == 0) {
130 			rv = 0;
131 			if ((year % 400) == 0)
132 				rv = 1;
133 		}
134 	}
135 	return (rv);
136 }
137 
138 int
139 clock_ct_to_ts(const struct clocktime *ct, struct timespec *ts)
140 {
141 	int i, year, days;
142 
143 	if (ct_debug) {
144 		printf("ct_to_ts([");
145 		clock_print_ct(ct, 9);
146 		printf("])");
147 	}
148 
149 	/*
150 	 * Many realtime clocks store the year as 2-digit BCD; pivot on 70 to
151 	 * determine century.  Some clocks have a "century bit" and drivers do
152 	 * year += 100, so interpret values between 70-199 as relative to 1900.
153 	 */
154 	year = ct->year;
155 	if (year < 70)
156 		year += 2000;
157 	else if (year < 200)
158 		year += 1900;
159 
160 	/* Sanity checks. */
161 	if (ct->mon < 1 || ct->mon > 12 || ct->day < 1 ||
162 	    ct->day > days_in_month(year, ct->mon) ||
163 	    ct->hour > 23 ||  ct->min > 59 || ct->sec > 59 || year < 1970 ||
164 	    (sizeof(time_t) == 4 && year > 2037)) {	/* time_t overflow */
165 		if (ct_debug)
166 			printf(" = EINVAL\n");
167 		return (EINVAL);
168 	}
169 
170 	/*
171 	 * Compute days since start of time
172 	 * First from years, then from months.
173 	 */
174 	if (year >= recent_base_year) {
175 		i = recent_base_year;
176 		days = recent_base_days;
177 	} else {
178 		i = POSIX_BASE_YEAR;
179 		days = 0;
180 	}
181 	for (; i < year; i++)
182 		days += days_in_year(i);
183 
184 	/* Months */
185 	for (i = 1; i < ct->mon; i++)
186 	  	days += days_in_month(year, i);
187 	days += (ct->day - 1);
188 
189 	ts->tv_sec = (((time_t)days * 24 + ct->hour) * 60 + ct->min) * 60 +
190 	    ct->sec;
191 	ts->tv_nsec = ct->nsec;
192 
193 	if (ct_debug)
194 		printf(" = %jd.%09ld\n", (intmax_t)ts->tv_sec, ts->tv_nsec);
195 	return (0);
196 }
197 
198 int
199 clock_bcd_to_ts(const struct bcd_clocktime *bct, struct timespec *ts, bool ampm)
200 {
201 	struct clocktime ct;
202 	int bcent, byear;
203 
204 	/*
205 	 * Year may come in as 2-digit or 4-digit BCD.  Split the value into
206 	 * separate BCD century and year values for validation and conversion.
207 	 */
208 	bcent = bct->year >> 8;
209 	byear = bct->year & 0xff;
210 
211 	/*
212 	 * Ensure that all values are valid BCD numbers, to avoid assertions in
213 	 * the BCD-to-binary conversion routines.  clock_ct_to_ts() will further
214 	 * validate the field ranges (such as 0 <= min <= 59) during conversion.
215 	 */
216 	if (!validbcd(bcent) || !validbcd(byear) || !validbcd(bct->mon) ||
217 	    !validbcd(bct->day) || !validbcd(bct->hour) ||
218 	    !validbcd(bct->min) || !validbcd(bct->sec)) {
219 		if (ct_debug)
220 			printf("clock_bcd_to_ts: bad BCD: "
221 			    "[%04x-%02x-%02x %02x:%02x:%02x]\n",
222 			    bct->year, bct->mon, bct->day,
223 			    bct->hour, bct->min, bct->sec);
224 		return (EINVAL);
225 	}
226 
227 	ct.year = FROMBCD(byear) + FROMBCD(bcent) * 100;
228 	ct.mon  = FROMBCD(bct->mon);
229 	ct.day  = FROMBCD(bct->day);
230 	ct.hour = FROMBCD(bct->hour);
231 	ct.min  = FROMBCD(bct->min);
232 	ct.sec  = FROMBCD(bct->sec);
233 	ct.dow  = bct->dow;
234 	ct.nsec = bct->nsec;
235 
236 	/* If asked to handle am/pm, convert from 12hr+pmflag to 24hr. */
237 	if (ampm) {
238 		if (ct.hour == 12)
239 			ct.hour = 0;
240 		if (bct->ispm)
241 			ct.hour += 12;
242 	}
243 
244 	return (clock_ct_to_ts(&ct, ts));
245 }
246 
247 void
248 clock_ts_to_ct(const struct timespec *ts, struct clocktime *ct)
249 {
250 	time_t i, year, days;
251 	time_t rsec;	/* remainder seconds */
252 	time_t secs;
253 
254 	secs = ts->tv_sec;
255 	days = secs / SECDAY;
256 	rsec = secs % SECDAY;
257 
258 	ct->dow = day_of_week(days);
259 
260 	/* Subtract out whole years. */
261 	if (days >= recent_base_days) {
262 		year = recent_base_year;
263 		days -= recent_base_days;
264 	} else {
265 		year = POSIX_BASE_YEAR;
266 	}
267 	for (; days >= days_in_year(year); year++)
268 		days -= days_in_year(year);
269 	ct->year = year;
270 
271 	/* Subtract out whole months, counting them in i. */
272 	for (i = 1; days >= days_in_month(year, i); i++)
273 		days -= days_in_month(year, i);
274 	ct->mon = i;
275 
276 	/* Days are what is left over (+1) from all that. */
277 	ct->day = days + 1;
278 
279 	/* Hours, minutes, seconds are easy */
280 	ct->hour = rsec / 3600;
281 	rsec = rsec % 3600;
282 	ct->min  = rsec / 60;
283 	rsec = rsec % 60;
284 	ct->sec  = rsec;
285 	ct->nsec = ts->tv_nsec;
286 	if (ct_debug) {
287 		printf("ts_to_ct(%jd.%09ld) = [",
288 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
289 		clock_print_ct(ct, 9);
290 		printf("]\n");
291 	}
292 
293 	KASSERT(ct->year >= 0 && ct->year < 10000,
294 	    ("year %d isn't a 4 digit year", ct->year));
295 	KASSERT(ct->mon >= 1 && ct->mon <= 12,
296 	    ("month %d not in 1-12", ct->mon));
297 	KASSERT(ct->day >= 1 && ct->day <= 31,
298 	    ("day %d not in 1-31", ct->day));
299 	KASSERT(ct->hour >= 0 && ct->hour <= 23,
300 	    ("hour %d not in 0-23", ct->hour));
301 	KASSERT(ct->min >= 0 && ct->min <= 59,
302 	    ("minute %d not in 0-59", ct->min));
303 	/* Not sure if this interface needs to handle leapseconds or not. */
304 	KASSERT(ct->sec >= 0 && ct->sec <= 60,
305 	    ("seconds %d not in 0-60", ct->sec));
306 }
307 
308 void
309 clock_ts_to_bcd(const struct timespec *ts, struct bcd_clocktime *bct, bool ampm)
310 {
311 	struct clocktime ct;
312 
313 	clock_ts_to_ct(ts, &ct);
314 
315 	/* If asked to handle am/pm, convert from 24hr to 12hr+pmflag. */
316 	bct->ispm = false;
317 	if (ampm) {
318 		if (ct.hour >= 12) {
319 			ct.hour -= 12;
320 			bct->ispm = true;
321 		}
322 		if (ct.hour == 0)
323 			ct.hour = 12;
324 	}
325 
326 	bct->year = TOBCD(ct.year % 100) | (TOBCD(ct.year / 100) << 8);
327 	bct->mon  = TOBCD(ct.mon);
328 	bct->day  = TOBCD(ct.day);
329 	bct->hour = TOBCD(ct.hour);
330 	bct->min  = TOBCD(ct.min);
331 	bct->sec  = TOBCD(ct.sec);
332 	bct->dow  = ct.dow;
333 	bct->nsec = ct.nsec;
334 }
335 
336 void
337 clock_print_bcd(const struct bcd_clocktime *bct, int nsdigits)
338 {
339 
340 	KASSERT(nsdigits >= 0 && nsdigits <= 9, ("bad nsdigits %d", nsdigits));
341 
342 	if (nsdigits > 0) {
343 		printf("%4.4x-%2.2x-%2.2x %2.2x:%2.2x:%2.2x.%*.*ld",
344 		    bct->year, bct->mon, bct->day,
345 		    bct->hour, bct->min, bct->sec,
346 		    nsdigits, nsdigits, bct->nsec / nsdivisors[nsdigits]);
347 	} else {
348 		printf("%4.4x-%2.2x-%2.2x %2.2x:%2.2x:%2.2x",
349 		    bct->year, bct->mon, bct->day,
350 		    bct->hour, bct->min, bct->sec);
351 	}
352 }
353 
354 void
355 clock_print_ct(const struct clocktime *ct, int nsdigits)
356 {
357 
358 	KASSERT(nsdigits >= 0 && nsdigits <= 9, ("bad nsdigits %d", nsdigits));
359 
360 	if (nsdigits > 0) {
361 		printf("%04d-%02d-%02d %02d:%02d:%02d.%*.*ld",
362 		    ct->year, ct->mon, ct->day,
363 		    ct->hour, ct->min, ct->sec,
364 		    nsdigits, nsdigits, ct->nsec / nsdivisors[nsdigits]);
365 	} else {
366 		printf("%04d-%02d-%02d %02d:%02d:%02d",
367 		    ct->year, ct->mon, ct->day,
368 		    ct->hour, ct->min, ct->sec);
369 	}
370 }
371 
372 void
373 clock_print_ts(const struct timespec *ts, int nsdigits)
374 {
375 	struct clocktime ct;
376 
377 	clock_ts_to_ct(ts, &ct);
378 	clock_print_ct(&ct, nsdigits);
379 }
380 
381 int
382 utc_offset(void)
383 {
384 
385 	return (wall_cmos_clock ? adjkerntz : 0);
386 }
387