xref: /freebsd/sys/kern/subr_bus.c (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/filio.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/kobj.h>
43 #include <sys/limits.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/poll.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/queue.h>
52 #include <machine/bus.h>
53 #include <sys/random.h>
54 #include <sys/rman.h>
55 #include <sys/sbuf.h>
56 #include <sys/selinfo.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/uio.h>
62 #include <sys/bus.h>
63 #include <sys/cpuset.h>
64 
65 #include <net/vnet.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/stdarg.h>
69 
70 #include <vm/uma.h>
71 #include <vm/vm.h>
72 
73 #include <ddb/ddb.h>
74 
75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
78     NULL);
79 
80 /*
81  * Used to attach drivers to devclasses.
82  */
83 typedef struct driverlink *driverlink_t;
84 struct driverlink {
85 	kobj_class_t	driver;
86 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
87 	int		pass;
88 	int		flags;
89 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
90 	TAILQ_ENTRY(driverlink) passlink;
91 };
92 
93 /*
94  * Forward declarations
95  */
96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
98 typedef TAILQ_HEAD(device_list, device) device_list_t;
99 
100 struct devclass {
101 	TAILQ_ENTRY(devclass) link;
102 	devclass_t	parent;		/* parent in devclass hierarchy */
103 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
104 	char		*name;
105 	device_t	*devices;	/* array of devices indexed by unit */
106 	int		maxunit;	/* size of devices array */
107 	int		flags;
108 #define DC_HAS_CHILDREN		1
109 
110 	struct sysctl_ctx_list sysctl_ctx;
111 	struct sysctl_oid *sysctl_tree;
112 };
113 
114 /**
115  * @brief Implementation of device.
116  */
117 struct device {
118 	/*
119 	 * A device is a kernel object. The first field must be the
120 	 * current ops table for the object.
121 	 */
122 	KOBJ_FIELDS;
123 
124 	/*
125 	 * Device hierarchy.
126 	 */
127 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
128 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
129 	device_t	parent;		/**< parent of this device  */
130 	device_list_t	children;	/**< list of child devices */
131 
132 	/*
133 	 * Details of this device.
134 	 */
135 	driver_t	*driver;	/**< current driver */
136 	devclass_t	devclass;	/**< current device class */
137 	int		unit;		/**< current unit number */
138 	char*		nameunit;	/**< name+unit e.g. foodev0 */
139 	char*		desc;		/**< driver specific description */
140 	int		busy;		/**< count of calls to device_busy() */
141 	device_state_t	state;		/**< current device state  */
142 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
143 	u_int		flags;		/**< internal device flags  */
144 	u_int	order;			/**< order from device_add_child_ordered() */
145 	void	*ivars;			/**< instance variables  */
146 	void	*softc;			/**< current driver's variables  */
147 
148 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
149 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
150 };
151 
152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
154 
155 EVENTHANDLER_LIST_DEFINE(device_attach);
156 EVENTHANDLER_LIST_DEFINE(device_detach);
157 EVENTHANDLER_LIST_DEFINE(dev_lookup);
158 
159 static int bus_child_location_sb(device_t child, struct sbuf *sb);
160 static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb);
161 static void devctl2_init(void);
162 static bool device_frozen;
163 
164 #define DRIVERNAME(d)	((d)? d->name : "no driver")
165 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
166 
167 #ifdef BUS_DEBUG
168 
169 static int bus_debug = 1;
170 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
171     "Bus debug level");
172 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
173 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
174 
175 /**
176  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
177  * prevent syslog from deleting initial spaces
178  */
179 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
180 
181 static void print_device_short(device_t dev, int indent);
182 static void print_device(device_t dev, int indent);
183 void print_device_tree_short(device_t dev, int indent);
184 void print_device_tree(device_t dev, int indent);
185 static void print_driver_short(driver_t *driver, int indent);
186 static void print_driver(driver_t *driver, int indent);
187 static void print_driver_list(driver_list_t drivers, int indent);
188 static void print_devclass_short(devclass_t dc, int indent);
189 static void print_devclass(devclass_t dc, int indent);
190 void print_devclass_list_short(void);
191 void print_devclass_list(void);
192 
193 #else
194 /* Make the compiler ignore the function calls */
195 #define PDEBUG(a)			/* nop */
196 #define DEVICENAME(d)			/* nop */
197 
198 #define print_device_short(d,i)		/* nop */
199 #define print_device(d,i)		/* nop */
200 #define print_device_tree_short(d,i)	/* nop */
201 #define print_device_tree(d,i)		/* nop */
202 #define print_driver_short(d,i)		/* nop */
203 #define print_driver(d,i)		/* nop */
204 #define print_driver_list(d,i)		/* nop */
205 #define print_devclass_short(d,i)	/* nop */
206 #define print_devclass(d,i)		/* nop */
207 #define print_devclass_list_short()	/* nop */
208 #define print_devclass_list()		/* nop */
209 #endif
210 
211 /*
212  * dev sysctl tree
213  */
214 
215 enum {
216 	DEVCLASS_SYSCTL_PARENT,
217 };
218 
219 static int
220 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
221 {
222 	devclass_t dc = (devclass_t)arg1;
223 	const char *value;
224 
225 	switch (arg2) {
226 	case DEVCLASS_SYSCTL_PARENT:
227 		value = dc->parent ? dc->parent->name : "";
228 		break;
229 	default:
230 		return (EINVAL);
231 	}
232 	return (SYSCTL_OUT_STR(req, value));
233 }
234 
235 static void
236 devclass_sysctl_init(devclass_t dc)
237 {
238 	if (dc->sysctl_tree != NULL)
239 		return;
240 	sysctl_ctx_init(&dc->sysctl_ctx);
241 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
242 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
243 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
244 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
245 	    OID_AUTO, "%parent",
246 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
247 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
248 	    "parent class");
249 }
250 
251 enum {
252 	DEVICE_SYSCTL_DESC,
253 	DEVICE_SYSCTL_DRIVER,
254 	DEVICE_SYSCTL_LOCATION,
255 	DEVICE_SYSCTL_PNPINFO,
256 	DEVICE_SYSCTL_PARENT,
257 };
258 
259 static int
260 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
261 {
262 	struct sbuf sb;
263 	device_t dev = (device_t)arg1;
264 	int error;
265 
266 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
267 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
268 	switch (arg2) {
269 	case DEVICE_SYSCTL_DESC:
270 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
271 		break;
272 	case DEVICE_SYSCTL_DRIVER:
273 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
274 		break;
275 	case DEVICE_SYSCTL_LOCATION:
276 		bus_child_location_sb(dev, &sb);
277 		break;
278 	case DEVICE_SYSCTL_PNPINFO:
279 		bus_child_pnpinfo_sb(dev, &sb);
280 		break;
281 	case DEVICE_SYSCTL_PARENT:
282 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
283 		break;
284 	default:
285 		sbuf_delete(&sb);
286 		return (EINVAL);
287 	}
288 	error = sbuf_finish(&sb);
289 	sbuf_delete(&sb);
290 	return (error);
291 }
292 
293 static void
294 device_sysctl_init(device_t dev)
295 {
296 	devclass_t dc = dev->devclass;
297 	int domain;
298 
299 	if (dev->sysctl_tree != NULL)
300 		return;
301 	devclass_sysctl_init(dc);
302 	sysctl_ctx_init(&dev->sysctl_ctx);
303 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
304 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
305 	    dev->nameunit + strlen(dc->name),
306 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
309 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
310 	    "device description");
311 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
312 	    OID_AUTO, "%driver",
313 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
314 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
315 	    "device driver name");
316 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
317 	    OID_AUTO, "%location",
318 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
319 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
320 	    "device location relative to parent");
321 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
322 	    OID_AUTO, "%pnpinfo",
323 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
324 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
325 	    "device identification");
326 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
327 	    OID_AUTO, "%parent",
328 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
329 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
330 	    "parent device");
331 	if (bus_get_domain(dev, &domain) == 0)
332 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
333 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
334 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
335 }
336 
337 static void
338 device_sysctl_update(device_t dev)
339 {
340 	devclass_t dc = dev->devclass;
341 
342 	if (dev->sysctl_tree == NULL)
343 		return;
344 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
345 }
346 
347 static void
348 device_sysctl_fini(device_t dev)
349 {
350 	if (dev->sysctl_tree == NULL)
351 		return;
352 	sysctl_ctx_free(&dev->sysctl_ctx);
353 	dev->sysctl_tree = NULL;
354 }
355 
356 /*
357  * /dev/devctl implementation
358  */
359 
360 /*
361  * This design allows only one reader for /dev/devctl.  This is not desirable
362  * in the long run, but will get a lot of hair out of this implementation.
363  * Maybe we should make this device a clonable device.
364  *
365  * Also note: we specifically do not attach a device to the device_t tree
366  * to avoid potential chicken and egg problems.  One could argue that all
367  * of this belongs to the root node.
368  */
369 
370 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
371 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
372 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
374     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
375 
376 static d_open_t		devopen;
377 static d_close_t	devclose;
378 static d_read_t		devread;
379 static d_ioctl_t	devioctl;
380 static d_poll_t		devpoll;
381 static d_kqfilter_t	devkqfilter;
382 
383 static struct cdevsw dev_cdevsw = {
384 	.d_version =	D_VERSION,
385 	.d_open =	devopen,
386 	.d_close =	devclose,
387 	.d_read =	devread,
388 	.d_ioctl =	devioctl,
389 	.d_poll =	devpoll,
390 	.d_kqfilter =	devkqfilter,
391 	.d_name =	"devctl",
392 };
393 
394 #define DEVCTL_BUFFER (1024 - sizeof(void *))
395 struct dev_event_info {
396 	STAILQ_ENTRY(dev_event_info) dei_link;
397 	char dei_data[DEVCTL_BUFFER];
398 };
399 
400 STAILQ_HEAD(devq, dev_event_info);
401 
402 static struct dev_softc {
403 	int		inuse;
404 	int		nonblock;
405 	int		queued;
406 	int		async;
407 	struct mtx	mtx;
408 	struct cv	cv;
409 	struct selinfo	sel;
410 	struct devq	devq;
411 	struct sigio	*sigio;
412 	uma_zone_t	zone;
413 } devsoftc;
414 
415 static void	filt_devctl_detach(struct knote *kn);
416 static int	filt_devctl_read(struct knote *kn, long hint);
417 
418 struct filterops devctl_rfiltops = {
419 	.f_isfd = 1,
420 	.f_detach = filt_devctl_detach,
421 	.f_event = filt_devctl_read,
422 };
423 
424 static struct cdev *devctl_dev;
425 
426 static void
427 devinit(void)
428 {
429 	int reserve;
430 	uma_zone_t z;
431 
432 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
433 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
434 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
435 	cv_init(&devsoftc.cv, "dev cv");
436 	STAILQ_INIT(&devsoftc.devq);
437 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
438 	if (devctl_queue_length > 0) {
439 		/*
440 		 * Allocate a zone for the messages. Preallocate 2% of these for
441 		 * a reserve. Allow only devctl_queue_length slabs to cap memory
442 		 * usage.  The reserve usually allows coverage of surges of
443 		 * events during memory shortages. Normally we won't have to
444 		 * re-use events from the queue, but will in extreme shortages.
445 		 */
446 		z = devsoftc.zone = uma_zcreate("DEVCTL",
447 		    sizeof(struct dev_event_info), NULL, NULL, NULL, NULL,
448 		    UMA_ALIGN_PTR, 0);
449 		reserve = max(devctl_queue_length / 50, 100);	/* 2% reserve */
450 		uma_zone_set_max(z, devctl_queue_length);
451 		uma_zone_set_maxcache(z, 0);
452 		uma_zone_reserve(z, reserve);
453 		uma_prealloc(z, reserve);
454 	}
455 	devctl2_init();
456 }
457 
458 static int
459 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
460 {
461 	mtx_lock(&devsoftc.mtx);
462 	if (devsoftc.inuse) {
463 		mtx_unlock(&devsoftc.mtx);
464 		return (EBUSY);
465 	}
466 	/* move to init */
467 	devsoftc.inuse = 1;
468 	mtx_unlock(&devsoftc.mtx);
469 	return (0);
470 }
471 
472 static int
473 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
474 {
475 	mtx_lock(&devsoftc.mtx);
476 	devsoftc.inuse = 0;
477 	devsoftc.nonblock = 0;
478 	devsoftc.async = 0;
479 	cv_broadcast(&devsoftc.cv);
480 	funsetown(&devsoftc.sigio);
481 	mtx_unlock(&devsoftc.mtx);
482 	return (0);
483 }
484 
485 /*
486  * The read channel for this device is used to report changes to
487  * userland in realtime.  We are required to free the data as well as
488  * the n1 object because we allocate them separately.  Also note that
489  * we return one record at a time.  If you try to read this device a
490  * character at a time, you will lose the rest of the data.  Listening
491  * programs are expected to cope.
492  */
493 static int
494 devread(struct cdev *dev, struct uio *uio, int ioflag)
495 {
496 	struct dev_event_info *n1;
497 	int rv;
498 
499 	mtx_lock(&devsoftc.mtx);
500 	while (STAILQ_EMPTY(&devsoftc.devq)) {
501 		if (devsoftc.nonblock) {
502 			mtx_unlock(&devsoftc.mtx);
503 			return (EAGAIN);
504 		}
505 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
506 		if (rv) {
507 			/*
508 			 * Need to translate ERESTART to EINTR here? -- jake
509 			 */
510 			mtx_unlock(&devsoftc.mtx);
511 			return (rv);
512 		}
513 	}
514 	n1 = STAILQ_FIRST(&devsoftc.devq);
515 	STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
516 	devsoftc.queued--;
517 	mtx_unlock(&devsoftc.mtx);
518 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
519 	uma_zfree(devsoftc.zone, n1);
520 	return (rv);
521 }
522 
523 static	int
524 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
525 {
526 	switch (cmd) {
527 	case FIONBIO:
528 		if (*(int*)data)
529 			devsoftc.nonblock = 1;
530 		else
531 			devsoftc.nonblock = 0;
532 		return (0);
533 	case FIOASYNC:
534 		if (*(int*)data)
535 			devsoftc.async = 1;
536 		else
537 			devsoftc.async = 0;
538 		return (0);
539 	case FIOSETOWN:
540 		return fsetown(*(int *)data, &devsoftc.sigio);
541 	case FIOGETOWN:
542 		*(int *)data = fgetown(&devsoftc.sigio);
543 		return (0);
544 
545 		/* (un)Support for other fcntl() calls. */
546 	case FIOCLEX:
547 	case FIONCLEX:
548 	case FIONREAD:
549 	default:
550 		break;
551 	}
552 	return (ENOTTY);
553 }
554 
555 static	int
556 devpoll(struct cdev *dev, int events, struct thread *td)
557 {
558 	int	revents = 0;
559 
560 	mtx_lock(&devsoftc.mtx);
561 	if (events & (POLLIN | POLLRDNORM)) {
562 		if (!STAILQ_EMPTY(&devsoftc.devq))
563 			revents = events & (POLLIN | POLLRDNORM);
564 		else
565 			selrecord(td, &devsoftc.sel);
566 	}
567 	mtx_unlock(&devsoftc.mtx);
568 
569 	return (revents);
570 }
571 
572 static int
573 devkqfilter(struct cdev *dev, struct knote *kn)
574 {
575 	int error;
576 
577 	if (kn->kn_filter == EVFILT_READ) {
578 		kn->kn_fop = &devctl_rfiltops;
579 		knlist_add(&devsoftc.sel.si_note, kn, 0);
580 		error = 0;
581 	} else
582 		error = EINVAL;
583 	return (error);
584 }
585 
586 static void
587 filt_devctl_detach(struct knote *kn)
588 {
589 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
590 }
591 
592 static int
593 filt_devctl_read(struct knote *kn, long hint)
594 {
595 	kn->kn_data = devsoftc.queued;
596 	return (kn->kn_data != 0);
597 }
598 
599 /**
600  * @brief Return whether the userland process is running
601  */
602 bool
603 devctl_process_running(void)
604 {
605 	return (devsoftc.inuse == 1);
606 }
607 
608 static struct dev_event_info *
609 devctl_alloc_dei(void)
610 {
611 	struct dev_event_info *dei = NULL;
612 
613 	mtx_lock(&devsoftc.mtx);
614 	if (devctl_queue_length == 0)
615 		goto out;
616 	dei = uma_zalloc(devsoftc.zone, M_NOWAIT);
617 	if (dei == NULL)
618 		dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE);
619 	if (dei == NULL) {
620 		/*
621 		 * Guard against no items in the queue. Normally, this won't
622 		 * happen, but if lots of events happen all at once and there's
623 		 * a chance we're out of allocated space but none have yet been
624 		 * queued when we get here, leaving nothing to steal. This can
625 		 * also happen with error injection. Fail safe by returning
626 		 * NULL in that case..
627 		 */
628 		if (devsoftc.queued == 0)
629 			goto out;
630 		dei = STAILQ_FIRST(&devsoftc.devq);
631 		STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
632 		devsoftc.queued--;
633 	}
634 	MPASS(dei != NULL);
635 	*dei->dei_data = '\0';
636 out:
637 	mtx_unlock(&devsoftc.mtx);
638 	return (dei);
639 }
640 
641 static struct dev_event_info *
642 devctl_alloc_dei_sb(struct sbuf *sb)
643 {
644 	struct dev_event_info *dei;
645 
646 	dei = devctl_alloc_dei();
647 	if (dei != NULL)
648 		sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN);
649 	return (dei);
650 }
651 
652 static void
653 devctl_free_dei(struct dev_event_info *dei)
654 {
655 	uma_zfree(devsoftc.zone, dei);
656 }
657 
658 static void
659 devctl_queue(struct dev_event_info *dei)
660 {
661 	mtx_lock(&devsoftc.mtx);
662 	STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link);
663 	devsoftc.queued++;
664 	cv_broadcast(&devsoftc.cv);
665 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
666 	mtx_unlock(&devsoftc.mtx);
667 	selwakeup(&devsoftc.sel);
668 	if (devsoftc.async && devsoftc.sigio != NULL)
669 		pgsigio(&devsoftc.sigio, SIGIO, 0);
670 }
671 
672 /**
673  * @brief Send a 'notification' to userland, using standard ways
674  */
675 void
676 devctl_notify(const char *system, const char *subsystem, const char *type,
677     const char *data)
678 {
679 	struct dev_event_info *dei;
680 	struct sbuf sb;
681 
682 	if (system == NULL || subsystem == NULL || type == NULL)
683 		return;
684 	dei = devctl_alloc_dei_sb(&sb);
685 	if (dei == NULL)
686 		return;
687 	sbuf_cpy(&sb, "!system=");
688 	sbuf_cat(&sb, system);
689 	sbuf_cat(&sb, " subsystem=");
690 	sbuf_cat(&sb, subsystem);
691 	sbuf_cat(&sb, " type=");
692 	sbuf_cat(&sb, type);
693 	if (data != NULL) {
694 		sbuf_putc(&sb, ' ');
695 		sbuf_cat(&sb, data);
696 	}
697 	sbuf_putc(&sb, '\n');
698 	if (sbuf_finish(&sb) != 0)
699 		devctl_free_dei(dei);	/* overflow -> drop it */
700 	else
701 		devctl_queue(dei);
702 }
703 
704 /*
705  * Common routine that tries to make sending messages as easy as possible.
706  * We allocate memory for the data, copy strings into that, but do not
707  * free it unless there's an error.  The dequeue part of the driver should
708  * free the data.  We don't send data when the device is disabled.  We do
709  * send data, even when we have no listeners, because we wish to avoid
710  * races relating to startup and restart of listening applications.
711  *
712  * devaddq is designed to string together the type of event, with the
713  * object of that event, plus the plug and play info and location info
714  * for that event.  This is likely most useful for devices, but less
715  * useful for other consumers of this interface.  Those should use
716  * the devctl_notify() interface instead.
717  *
718  * Output:
719  *	${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev)
720  */
721 static void
722 devaddq(const char *type, const char *what, device_t dev)
723 {
724 	struct dev_event_info *dei;
725 	const char *parstr;
726 	struct sbuf sb;
727 
728 	dei = devctl_alloc_dei_sb(&sb);
729 	if (dei == NULL)
730 		return;
731 	sbuf_cpy(&sb, type);
732 	sbuf_cat(&sb, what);
733 	sbuf_cat(&sb, " at ");
734 
735 	/* Add in the location */
736 	bus_child_location_sb(dev, &sb);
737 	sbuf_putc(&sb, ' ');
738 
739 	/* Add in pnpinfo */
740 	bus_child_pnpinfo_sb(dev, &sb);
741 
742 	/* Get the parent of this device, or / if high enough in the tree. */
743 	if (device_get_parent(dev) == NULL)
744 		parstr = ".";	/* Or '/' ? */
745 	else
746 		parstr = device_get_nameunit(device_get_parent(dev));
747 	sbuf_cat(&sb, " on ");
748 	sbuf_cat(&sb, parstr);
749 	sbuf_putc(&sb, '\n');
750 	if (sbuf_finish(&sb) != 0)
751 		goto bad;
752 	devctl_queue(dei);
753 	return;
754 bad:
755 	devctl_free_dei(dei);
756 }
757 
758 /*
759  * A device was added to the tree.  We are called just after it successfully
760  * attaches (that is, probe and attach success for this device).  No call
761  * is made if a device is merely parented into the tree.  See devnomatch
762  * if probe fails.  If attach fails, no notification is sent (but maybe
763  * we should have a different message for this).
764  */
765 static void
766 devadded(device_t dev)
767 {
768 	devaddq("+", device_get_nameunit(dev), dev);
769 }
770 
771 /*
772  * A device was removed from the tree.  We are called just before this
773  * happens.
774  */
775 static void
776 devremoved(device_t dev)
777 {
778 	devaddq("-", device_get_nameunit(dev), dev);
779 }
780 
781 /*
782  * Called when there's no match for this device.  This is only called
783  * the first time that no match happens, so we don't keep getting this
784  * message.  Should that prove to be undesirable, we can change it.
785  * This is called when all drivers that can attach to a given bus
786  * decline to accept this device.  Other errors may not be detected.
787  */
788 static void
789 devnomatch(device_t dev)
790 {
791 	devaddq("?", "", dev);
792 }
793 
794 static int
795 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
796 {
797 	int q, error;
798 
799 	q = devctl_queue_length;
800 	error = sysctl_handle_int(oidp, &q, 0, req);
801 	if (error || !req->newptr)
802 		return (error);
803 	if (q < 0)
804 		return (EINVAL);
805 
806 	/*
807 	 * When set as a tunable, we've not yet initialized the mutex.
808 	 * It is safe to just assign to devctl_queue_length and return
809 	 * as we're racing no one. We'll use whatever value set in
810 	 * devinit.
811 	 */
812 	if (!mtx_initialized(&devsoftc.mtx)) {
813 		devctl_queue_length = q;
814 		return (0);
815 	}
816 
817 	/*
818 	 * XXX It's hard to grow or shrink the UMA zone. Only allow
819 	 * disabling the queue size for the moment until underlying
820 	 * UMA issues can be sorted out.
821 	 */
822 	if (q != 0)
823 		return (EINVAL);
824 	if (q == devctl_queue_length)
825 		return (0);
826 	mtx_lock(&devsoftc.mtx);
827 	devctl_queue_length = 0;
828 	uma_zdestroy(devsoftc.zone);
829 	devsoftc.zone = 0;
830 	mtx_unlock(&devsoftc.mtx);
831 	return (0);
832 }
833 
834 /**
835  * @brief safely quotes strings that might have double quotes in them.
836  *
837  * The devctl protocol relies on quoted strings having matching quotes.
838  * This routine quotes any internal quotes so the resulting string
839  * is safe to pass to snprintf to construct, for example pnp info strings.
840  *
841  * @param sb	sbuf to place the characters into
842  * @param src	Original buffer.
843  */
844 void
845 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
846 {
847 	while (*src != '\0') {
848 		if (*src == '"' || *src == '\\')
849 			sbuf_putc(sb, '\\');
850 		sbuf_putc(sb, *src++);
851 	}
852 }
853 
854 /* End of /dev/devctl code */
855 
856 static TAILQ_HEAD(,device)	bus_data_devices;
857 static int bus_data_generation = 1;
858 
859 static kobj_method_t null_methods[] = {
860 	KOBJMETHOD_END
861 };
862 
863 DEFINE_CLASS(null, null_methods, 0);
864 
865 /*
866  * Bus pass implementation
867  */
868 
869 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
870 int bus_current_pass = BUS_PASS_ROOT;
871 
872 /**
873  * @internal
874  * @brief Register the pass level of a new driver attachment
875  *
876  * Register a new driver attachment's pass level.  If no driver
877  * attachment with the same pass level has been added, then @p new
878  * will be added to the global passes list.
879  *
880  * @param new		the new driver attachment
881  */
882 static void
883 driver_register_pass(struct driverlink *new)
884 {
885 	struct driverlink *dl;
886 
887 	/* We only consider pass numbers during boot. */
888 	if (bus_current_pass == BUS_PASS_DEFAULT)
889 		return;
890 
891 	/*
892 	 * Walk the passes list.  If we already know about this pass
893 	 * then there is nothing to do.  If we don't, then insert this
894 	 * driver link into the list.
895 	 */
896 	TAILQ_FOREACH(dl, &passes, passlink) {
897 		if (dl->pass < new->pass)
898 			continue;
899 		if (dl->pass == new->pass)
900 			return;
901 		TAILQ_INSERT_BEFORE(dl, new, passlink);
902 		return;
903 	}
904 	TAILQ_INSERT_TAIL(&passes, new, passlink);
905 }
906 
907 /**
908  * @brief Raise the current bus pass
909  *
910  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
911  * method on the root bus to kick off a new device tree scan for each
912  * new pass level that has at least one driver.
913  */
914 void
915 bus_set_pass(int pass)
916 {
917 	struct driverlink *dl;
918 
919 	if (bus_current_pass > pass)
920 		panic("Attempt to lower bus pass level");
921 
922 	TAILQ_FOREACH(dl, &passes, passlink) {
923 		/* Skip pass values below the current pass level. */
924 		if (dl->pass <= bus_current_pass)
925 			continue;
926 
927 		/*
928 		 * Bail once we hit a driver with a pass level that is
929 		 * too high.
930 		 */
931 		if (dl->pass > pass)
932 			break;
933 
934 		/*
935 		 * Raise the pass level to the next level and rescan
936 		 * the tree.
937 		 */
938 		bus_current_pass = dl->pass;
939 		BUS_NEW_PASS(root_bus);
940 	}
941 
942 	/*
943 	 * If there isn't a driver registered for the requested pass,
944 	 * then bus_current_pass might still be less than 'pass'.  Set
945 	 * it to 'pass' in that case.
946 	 */
947 	if (bus_current_pass < pass)
948 		bus_current_pass = pass;
949 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
950 }
951 
952 /*
953  * Devclass implementation
954  */
955 
956 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
957 
958 /**
959  * @internal
960  * @brief Find or create a device class
961  *
962  * If a device class with the name @p classname exists, return it,
963  * otherwise if @p create is non-zero create and return a new device
964  * class.
965  *
966  * If @p parentname is non-NULL, the parent of the devclass is set to
967  * the devclass of that name.
968  *
969  * @param classname	the devclass name to find or create
970  * @param parentname	the parent devclass name or @c NULL
971  * @param create	non-zero to create a devclass
972  */
973 static devclass_t
974 devclass_find_internal(const char *classname, const char *parentname,
975 		       int create)
976 {
977 	devclass_t dc;
978 
979 	PDEBUG(("looking for %s", classname));
980 	if (!classname)
981 		return (NULL);
982 
983 	TAILQ_FOREACH(dc, &devclasses, link) {
984 		if (!strcmp(dc->name, classname))
985 			break;
986 	}
987 
988 	if (create && !dc) {
989 		PDEBUG(("creating %s", classname));
990 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
991 		    M_BUS, M_NOWAIT | M_ZERO);
992 		if (!dc)
993 			return (NULL);
994 		dc->parent = NULL;
995 		dc->name = (char*) (dc + 1);
996 		strcpy(dc->name, classname);
997 		TAILQ_INIT(&dc->drivers);
998 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
999 
1000 		bus_data_generation_update();
1001 	}
1002 
1003 	/*
1004 	 * If a parent class is specified, then set that as our parent so
1005 	 * that this devclass will support drivers for the parent class as
1006 	 * well.  If the parent class has the same name don't do this though
1007 	 * as it creates a cycle that can trigger an infinite loop in
1008 	 * device_probe_child() if a device exists for which there is no
1009 	 * suitable driver.
1010 	 */
1011 	if (parentname && dc && !dc->parent &&
1012 	    strcmp(classname, parentname) != 0) {
1013 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1014 		dc->parent->flags |= DC_HAS_CHILDREN;
1015 	}
1016 
1017 	return (dc);
1018 }
1019 
1020 /**
1021  * @brief Create a device class
1022  *
1023  * If a device class with the name @p classname exists, return it,
1024  * otherwise create and return a new device class.
1025  *
1026  * @param classname	the devclass name to find or create
1027  */
1028 devclass_t
1029 devclass_create(const char *classname)
1030 {
1031 	return (devclass_find_internal(classname, NULL, TRUE));
1032 }
1033 
1034 /**
1035  * @brief Find a device class
1036  *
1037  * If a device class with the name @p classname exists, return it,
1038  * otherwise return @c NULL.
1039  *
1040  * @param classname	the devclass name to find
1041  */
1042 devclass_t
1043 devclass_find(const char *classname)
1044 {
1045 	return (devclass_find_internal(classname, NULL, FALSE));
1046 }
1047 
1048 /**
1049  * @brief Register that a device driver has been added to a devclass
1050  *
1051  * Register that a device driver has been added to a devclass.  This
1052  * is called by devclass_add_driver to accomplish the recursive
1053  * notification of all the children classes of dc, as well as dc.
1054  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1055  * the devclass.
1056  *
1057  * We do a full search here of the devclass list at each iteration
1058  * level to save storing children-lists in the devclass structure.  If
1059  * we ever move beyond a few dozen devices doing this, we may need to
1060  * reevaluate...
1061  *
1062  * @param dc		the devclass to edit
1063  * @param driver	the driver that was just added
1064  */
1065 static void
1066 devclass_driver_added(devclass_t dc, driver_t *driver)
1067 {
1068 	devclass_t parent;
1069 	int i;
1070 
1071 	/*
1072 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1073 	 */
1074 	for (i = 0; i < dc->maxunit; i++)
1075 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1076 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1077 
1078 	/*
1079 	 * Walk through the children classes.  Since we only keep a
1080 	 * single parent pointer around, we walk the entire list of
1081 	 * devclasses looking for children.  We set the
1082 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1083 	 * the parent, so we only walk the list for those devclasses
1084 	 * that have children.
1085 	 */
1086 	if (!(dc->flags & DC_HAS_CHILDREN))
1087 		return;
1088 	parent = dc;
1089 	TAILQ_FOREACH(dc, &devclasses, link) {
1090 		if (dc->parent == parent)
1091 			devclass_driver_added(dc, driver);
1092 	}
1093 }
1094 
1095 /**
1096  * @brief Add a device driver to a device class
1097  *
1098  * Add a device driver to a devclass. This is normally called
1099  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1100  * all devices in the devclass will be called to allow them to attempt
1101  * to re-probe any unmatched children.
1102  *
1103  * @param dc		the devclass to edit
1104  * @param driver	the driver to register
1105  */
1106 int
1107 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1108 {
1109 	driverlink_t dl;
1110 	const char *parentname;
1111 
1112 	PDEBUG(("%s", DRIVERNAME(driver)));
1113 
1114 	/* Don't allow invalid pass values. */
1115 	if (pass <= BUS_PASS_ROOT)
1116 		return (EINVAL);
1117 
1118 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1119 	if (!dl)
1120 		return (ENOMEM);
1121 
1122 	/*
1123 	 * Compile the driver's methods. Also increase the reference count
1124 	 * so that the class doesn't get freed when the last instance
1125 	 * goes. This means we can safely use static methods and avoids a
1126 	 * double-free in devclass_delete_driver.
1127 	 */
1128 	kobj_class_compile((kobj_class_t) driver);
1129 
1130 	/*
1131 	 * If the driver has any base classes, make the
1132 	 * devclass inherit from the devclass of the driver's
1133 	 * first base class. This will allow the system to
1134 	 * search for drivers in both devclasses for children
1135 	 * of a device using this driver.
1136 	 */
1137 	if (driver->baseclasses)
1138 		parentname = driver->baseclasses[0]->name;
1139 	else
1140 		parentname = NULL;
1141 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1142 
1143 	dl->driver = driver;
1144 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1145 	driver->refs++;		/* XXX: kobj_mtx */
1146 	dl->pass = pass;
1147 	driver_register_pass(dl);
1148 
1149 	if (device_frozen) {
1150 		dl->flags |= DL_DEFERRED_PROBE;
1151 	} else {
1152 		devclass_driver_added(dc, driver);
1153 	}
1154 	bus_data_generation_update();
1155 	return (0);
1156 }
1157 
1158 /**
1159  * @brief Register that a device driver has been deleted from a devclass
1160  *
1161  * Register that a device driver has been removed from a devclass.
1162  * This is called by devclass_delete_driver to accomplish the
1163  * recursive notification of all the children classes of busclass, as
1164  * well as busclass.  Each layer will attempt to detach the driver
1165  * from any devices that are children of the bus's devclass.  The function
1166  * will return an error if a device fails to detach.
1167  *
1168  * We do a full search here of the devclass list at each iteration
1169  * level to save storing children-lists in the devclass structure.  If
1170  * we ever move beyond a few dozen devices doing this, we may need to
1171  * reevaluate...
1172  *
1173  * @param busclass	the devclass of the parent bus
1174  * @param dc		the devclass of the driver being deleted
1175  * @param driver	the driver being deleted
1176  */
1177 static int
1178 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1179 {
1180 	devclass_t parent;
1181 	device_t dev;
1182 	int error, i;
1183 
1184 	/*
1185 	 * Disassociate from any devices.  We iterate through all the
1186 	 * devices in the devclass of the driver and detach any which are
1187 	 * using the driver and which have a parent in the devclass which
1188 	 * we are deleting from.
1189 	 *
1190 	 * Note that since a driver can be in multiple devclasses, we
1191 	 * should not detach devices which are not children of devices in
1192 	 * the affected devclass.
1193 	 *
1194 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1195 	 * generate later.
1196 	 */
1197 	for (i = 0; i < dc->maxunit; i++) {
1198 		if (dc->devices[i]) {
1199 			dev = dc->devices[i];
1200 			if (dev->driver == driver && dev->parent &&
1201 			    dev->parent->devclass == busclass) {
1202 				if ((error = device_detach(dev)) != 0)
1203 					return (error);
1204 				if (device_frozen) {
1205 					dev->flags &= ~DF_DONENOMATCH;
1206 					dev->flags |= DF_NEEDNOMATCH;
1207 				} else {
1208 					BUS_PROBE_NOMATCH(dev->parent, dev);
1209 					devnomatch(dev);
1210 					dev->flags |= DF_DONENOMATCH;
1211 				}
1212 			}
1213 		}
1214 	}
1215 
1216 	/*
1217 	 * Walk through the children classes.  Since we only keep a
1218 	 * single parent pointer around, we walk the entire list of
1219 	 * devclasses looking for children.  We set the
1220 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1221 	 * the parent, so we only walk the list for those devclasses
1222 	 * that have children.
1223 	 */
1224 	if (!(busclass->flags & DC_HAS_CHILDREN))
1225 		return (0);
1226 	parent = busclass;
1227 	TAILQ_FOREACH(busclass, &devclasses, link) {
1228 		if (busclass->parent == parent) {
1229 			error = devclass_driver_deleted(busclass, dc, driver);
1230 			if (error)
1231 				return (error);
1232 		}
1233 	}
1234 	return (0);
1235 }
1236 
1237 /**
1238  * @brief Delete a device driver from a device class
1239  *
1240  * Delete a device driver from a devclass. This is normally called
1241  * automatically by DRIVER_MODULE().
1242  *
1243  * If the driver is currently attached to any devices,
1244  * devclass_delete_driver() will first attempt to detach from each
1245  * device. If one of the detach calls fails, the driver will not be
1246  * deleted.
1247  *
1248  * @param dc		the devclass to edit
1249  * @param driver	the driver to unregister
1250  */
1251 int
1252 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1253 {
1254 	devclass_t dc = devclass_find(driver->name);
1255 	driverlink_t dl;
1256 	int error;
1257 
1258 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1259 
1260 	if (!dc)
1261 		return (0);
1262 
1263 	/*
1264 	 * Find the link structure in the bus' list of drivers.
1265 	 */
1266 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1267 		if (dl->driver == driver)
1268 			break;
1269 	}
1270 
1271 	if (!dl) {
1272 		PDEBUG(("%s not found in %s list", driver->name,
1273 		    busclass->name));
1274 		return (ENOENT);
1275 	}
1276 
1277 	error = devclass_driver_deleted(busclass, dc, driver);
1278 	if (error != 0)
1279 		return (error);
1280 
1281 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1282 	free(dl, M_BUS);
1283 
1284 	/* XXX: kobj_mtx */
1285 	driver->refs--;
1286 	if (driver->refs == 0)
1287 		kobj_class_free((kobj_class_t) driver);
1288 
1289 	bus_data_generation_update();
1290 	return (0);
1291 }
1292 
1293 /**
1294  * @brief Quiesces a set of device drivers from a device class
1295  *
1296  * Quiesce a device driver from a devclass. This is normally called
1297  * automatically by DRIVER_MODULE().
1298  *
1299  * If the driver is currently attached to any devices,
1300  * devclass_quiesece_driver() will first attempt to quiesce each
1301  * device.
1302  *
1303  * @param dc		the devclass to edit
1304  * @param driver	the driver to unregister
1305  */
1306 static int
1307 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1308 {
1309 	devclass_t dc = devclass_find(driver->name);
1310 	driverlink_t dl;
1311 	device_t dev;
1312 	int i;
1313 	int error;
1314 
1315 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1316 
1317 	if (!dc)
1318 		return (0);
1319 
1320 	/*
1321 	 * Find the link structure in the bus' list of drivers.
1322 	 */
1323 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1324 		if (dl->driver == driver)
1325 			break;
1326 	}
1327 
1328 	if (!dl) {
1329 		PDEBUG(("%s not found in %s list", driver->name,
1330 		    busclass->name));
1331 		return (ENOENT);
1332 	}
1333 
1334 	/*
1335 	 * Quiesce all devices.  We iterate through all the devices in
1336 	 * the devclass of the driver and quiesce any which are using
1337 	 * the driver and which have a parent in the devclass which we
1338 	 * are quiescing.
1339 	 *
1340 	 * Note that since a driver can be in multiple devclasses, we
1341 	 * should not quiesce devices which are not children of
1342 	 * devices in the affected devclass.
1343 	 */
1344 	for (i = 0; i < dc->maxunit; i++) {
1345 		if (dc->devices[i]) {
1346 			dev = dc->devices[i];
1347 			if (dev->driver == driver && dev->parent &&
1348 			    dev->parent->devclass == busclass) {
1349 				if ((error = device_quiesce(dev)) != 0)
1350 					return (error);
1351 			}
1352 		}
1353 	}
1354 
1355 	return (0);
1356 }
1357 
1358 /**
1359  * @internal
1360  */
1361 static driverlink_t
1362 devclass_find_driver_internal(devclass_t dc, const char *classname)
1363 {
1364 	driverlink_t dl;
1365 
1366 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1367 
1368 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1369 		if (!strcmp(dl->driver->name, classname))
1370 			return (dl);
1371 	}
1372 
1373 	PDEBUG(("not found"));
1374 	return (NULL);
1375 }
1376 
1377 /**
1378  * @brief Return the name of the devclass
1379  */
1380 const char *
1381 devclass_get_name(devclass_t dc)
1382 {
1383 	return (dc->name);
1384 }
1385 
1386 /**
1387  * @brief Find a device given a unit number
1388  *
1389  * @param dc		the devclass to search
1390  * @param unit		the unit number to search for
1391  *
1392  * @returns		the device with the given unit number or @c
1393  *			NULL if there is no such device
1394  */
1395 device_t
1396 devclass_get_device(devclass_t dc, int unit)
1397 {
1398 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1399 		return (NULL);
1400 	return (dc->devices[unit]);
1401 }
1402 
1403 /**
1404  * @brief Find the softc field of a device given a unit number
1405  *
1406  * @param dc		the devclass to search
1407  * @param unit		the unit number to search for
1408  *
1409  * @returns		the softc field of the device with the given
1410  *			unit number or @c NULL if there is no such
1411  *			device
1412  */
1413 void *
1414 devclass_get_softc(devclass_t dc, int unit)
1415 {
1416 	device_t dev;
1417 
1418 	dev = devclass_get_device(dc, unit);
1419 	if (!dev)
1420 		return (NULL);
1421 
1422 	return (device_get_softc(dev));
1423 }
1424 
1425 /**
1426  * @brief Get a list of devices in the devclass
1427  *
1428  * An array containing a list of all the devices in the given devclass
1429  * is allocated and returned in @p *devlistp. The number of devices
1430  * in the array is returned in @p *devcountp. The caller should free
1431  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1432  *
1433  * @param dc		the devclass to examine
1434  * @param devlistp	points at location for array pointer return
1435  *			value
1436  * @param devcountp	points at location for array size return value
1437  *
1438  * @retval 0		success
1439  * @retval ENOMEM	the array allocation failed
1440  */
1441 int
1442 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1443 {
1444 	int count, i;
1445 	device_t *list;
1446 
1447 	count = devclass_get_count(dc);
1448 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1449 	if (!list)
1450 		return (ENOMEM);
1451 
1452 	count = 0;
1453 	for (i = 0; i < dc->maxunit; i++) {
1454 		if (dc->devices[i]) {
1455 			list[count] = dc->devices[i];
1456 			count++;
1457 		}
1458 	}
1459 
1460 	*devlistp = list;
1461 	*devcountp = count;
1462 
1463 	return (0);
1464 }
1465 
1466 /**
1467  * @brief Get a list of drivers in the devclass
1468  *
1469  * An array containing a list of pointers to all the drivers in the
1470  * given devclass is allocated and returned in @p *listp.  The number
1471  * of drivers in the array is returned in @p *countp. The caller should
1472  * free the array using @c free(p, M_TEMP).
1473  *
1474  * @param dc		the devclass to examine
1475  * @param listp		gives location for array pointer return value
1476  * @param countp	gives location for number of array elements
1477  *			return value
1478  *
1479  * @retval 0		success
1480  * @retval ENOMEM	the array allocation failed
1481  */
1482 int
1483 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1484 {
1485 	driverlink_t dl;
1486 	driver_t **list;
1487 	int count;
1488 
1489 	count = 0;
1490 	TAILQ_FOREACH(dl, &dc->drivers, link)
1491 		count++;
1492 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1493 	if (list == NULL)
1494 		return (ENOMEM);
1495 
1496 	count = 0;
1497 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1498 		list[count] = dl->driver;
1499 		count++;
1500 	}
1501 	*listp = list;
1502 	*countp = count;
1503 
1504 	return (0);
1505 }
1506 
1507 /**
1508  * @brief Get the number of devices in a devclass
1509  *
1510  * @param dc		the devclass to examine
1511  */
1512 int
1513 devclass_get_count(devclass_t dc)
1514 {
1515 	int count, i;
1516 
1517 	count = 0;
1518 	for (i = 0; i < dc->maxunit; i++)
1519 		if (dc->devices[i])
1520 			count++;
1521 	return (count);
1522 }
1523 
1524 /**
1525  * @brief Get the maximum unit number used in a devclass
1526  *
1527  * Note that this is one greater than the highest currently-allocated
1528  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1529  * that not even the devclass has been allocated yet.
1530  *
1531  * @param dc		the devclass to examine
1532  */
1533 int
1534 devclass_get_maxunit(devclass_t dc)
1535 {
1536 	if (dc == NULL)
1537 		return (-1);
1538 	return (dc->maxunit);
1539 }
1540 
1541 /**
1542  * @brief Find a free unit number in a devclass
1543  *
1544  * This function searches for the first unused unit number greater
1545  * that or equal to @p unit.
1546  *
1547  * @param dc		the devclass to examine
1548  * @param unit		the first unit number to check
1549  */
1550 int
1551 devclass_find_free_unit(devclass_t dc, int unit)
1552 {
1553 	if (dc == NULL)
1554 		return (unit);
1555 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1556 		unit++;
1557 	return (unit);
1558 }
1559 
1560 /**
1561  * @brief Set the parent of a devclass
1562  *
1563  * The parent class is normally initialised automatically by
1564  * DRIVER_MODULE().
1565  *
1566  * @param dc		the devclass to edit
1567  * @param pdc		the new parent devclass
1568  */
1569 void
1570 devclass_set_parent(devclass_t dc, devclass_t pdc)
1571 {
1572 	dc->parent = pdc;
1573 }
1574 
1575 /**
1576  * @brief Get the parent of a devclass
1577  *
1578  * @param dc		the devclass to examine
1579  */
1580 devclass_t
1581 devclass_get_parent(devclass_t dc)
1582 {
1583 	return (dc->parent);
1584 }
1585 
1586 struct sysctl_ctx_list *
1587 devclass_get_sysctl_ctx(devclass_t dc)
1588 {
1589 	return (&dc->sysctl_ctx);
1590 }
1591 
1592 struct sysctl_oid *
1593 devclass_get_sysctl_tree(devclass_t dc)
1594 {
1595 	return (dc->sysctl_tree);
1596 }
1597 
1598 /**
1599  * @internal
1600  * @brief Allocate a unit number
1601  *
1602  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1603  * will do). The allocated unit number is returned in @p *unitp.
1604 
1605  * @param dc		the devclass to allocate from
1606  * @param unitp		points at the location for the allocated unit
1607  *			number
1608  *
1609  * @retval 0		success
1610  * @retval EEXIST	the requested unit number is already allocated
1611  * @retval ENOMEM	memory allocation failure
1612  */
1613 static int
1614 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1615 {
1616 	const char *s;
1617 	int unit = *unitp;
1618 
1619 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1620 
1621 	/* Ask the parent bus if it wants to wire this device. */
1622 	if (unit == -1)
1623 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1624 		    &unit);
1625 
1626 	/* If we were given a wired unit number, check for existing device */
1627 	/* XXX imp XXX */
1628 	if (unit != -1) {
1629 		if (unit >= 0 && unit < dc->maxunit &&
1630 		    dc->devices[unit] != NULL) {
1631 			if (bootverbose)
1632 				printf("%s: %s%d already exists; skipping it\n",
1633 				    dc->name, dc->name, *unitp);
1634 			return (EEXIST);
1635 		}
1636 	} else {
1637 		/* Unwired device, find the next available slot for it */
1638 		unit = 0;
1639 		for (unit = 0;; unit++) {
1640 			/* If there is an "at" hint for a unit then skip it. */
1641 			if (resource_string_value(dc->name, unit, "at", &s) ==
1642 			    0)
1643 				continue;
1644 
1645 			/* If this device slot is already in use, skip it. */
1646 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1647 				continue;
1648 
1649 			break;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * We've selected a unit beyond the length of the table, so let's
1655 	 * extend the table to make room for all units up to and including
1656 	 * this one.
1657 	 */
1658 	if (unit >= dc->maxunit) {
1659 		device_t *newlist, *oldlist;
1660 		int newsize;
1661 
1662 		oldlist = dc->devices;
1663 		newsize = roundup((unit + 1),
1664 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1665 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1666 		if (!newlist)
1667 			return (ENOMEM);
1668 		if (oldlist != NULL)
1669 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1670 		bzero(newlist + dc->maxunit,
1671 		    sizeof(device_t) * (newsize - dc->maxunit));
1672 		dc->devices = newlist;
1673 		dc->maxunit = newsize;
1674 		if (oldlist != NULL)
1675 			free(oldlist, M_BUS);
1676 	}
1677 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1678 
1679 	*unitp = unit;
1680 	return (0);
1681 }
1682 
1683 /**
1684  * @internal
1685  * @brief Add a device to a devclass
1686  *
1687  * A unit number is allocated for the device (using the device's
1688  * preferred unit number if any) and the device is registered in the
1689  * devclass. This allows the device to be looked up by its unit
1690  * number, e.g. by decoding a dev_t minor number.
1691  *
1692  * @param dc		the devclass to add to
1693  * @param dev		the device to add
1694  *
1695  * @retval 0		success
1696  * @retval EEXIST	the requested unit number is already allocated
1697  * @retval ENOMEM	memory allocation failure
1698  */
1699 static int
1700 devclass_add_device(devclass_t dc, device_t dev)
1701 {
1702 	int buflen, error;
1703 
1704 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1705 
1706 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1707 	if (buflen < 0)
1708 		return (ENOMEM);
1709 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1710 	if (!dev->nameunit)
1711 		return (ENOMEM);
1712 
1713 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1714 		free(dev->nameunit, M_BUS);
1715 		dev->nameunit = NULL;
1716 		return (error);
1717 	}
1718 	dc->devices[dev->unit] = dev;
1719 	dev->devclass = dc;
1720 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1721 
1722 	return (0);
1723 }
1724 
1725 /**
1726  * @internal
1727  * @brief Delete a device from a devclass
1728  *
1729  * The device is removed from the devclass's device list and its unit
1730  * number is freed.
1731 
1732  * @param dc		the devclass to delete from
1733  * @param dev		the device to delete
1734  *
1735  * @retval 0		success
1736  */
1737 static int
1738 devclass_delete_device(devclass_t dc, device_t dev)
1739 {
1740 	if (!dc || !dev)
1741 		return (0);
1742 
1743 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1744 
1745 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1746 		panic("devclass_delete_device: inconsistent device class");
1747 	dc->devices[dev->unit] = NULL;
1748 	if (dev->flags & DF_WILDCARD)
1749 		dev->unit = -1;
1750 	dev->devclass = NULL;
1751 	free(dev->nameunit, M_BUS);
1752 	dev->nameunit = NULL;
1753 
1754 	return (0);
1755 }
1756 
1757 /**
1758  * @internal
1759  * @brief Make a new device and add it as a child of @p parent
1760  *
1761  * @param parent	the parent of the new device
1762  * @param name		the devclass name of the new device or @c NULL
1763  *			to leave the devclass unspecified
1764  * @parem unit		the unit number of the new device of @c -1 to
1765  *			leave the unit number unspecified
1766  *
1767  * @returns the new device
1768  */
1769 static device_t
1770 make_device(device_t parent, const char *name, int unit)
1771 {
1772 	device_t dev;
1773 	devclass_t dc;
1774 
1775 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1776 
1777 	if (name) {
1778 		dc = devclass_find_internal(name, NULL, TRUE);
1779 		if (!dc) {
1780 			printf("make_device: can't find device class %s\n",
1781 			    name);
1782 			return (NULL);
1783 		}
1784 	} else {
1785 		dc = NULL;
1786 	}
1787 
1788 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1789 	if (!dev)
1790 		return (NULL);
1791 
1792 	dev->parent = parent;
1793 	TAILQ_INIT(&dev->children);
1794 	kobj_init((kobj_t) dev, &null_class);
1795 	dev->driver = NULL;
1796 	dev->devclass = NULL;
1797 	dev->unit = unit;
1798 	dev->nameunit = NULL;
1799 	dev->desc = NULL;
1800 	dev->busy = 0;
1801 	dev->devflags = 0;
1802 	dev->flags = DF_ENABLED;
1803 	dev->order = 0;
1804 	if (unit == -1)
1805 		dev->flags |= DF_WILDCARD;
1806 	if (name) {
1807 		dev->flags |= DF_FIXEDCLASS;
1808 		if (devclass_add_device(dc, dev)) {
1809 			kobj_delete((kobj_t) dev, M_BUS);
1810 			return (NULL);
1811 		}
1812 	}
1813 	if (parent != NULL && device_has_quiet_children(parent))
1814 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1815 	dev->ivars = NULL;
1816 	dev->softc = NULL;
1817 
1818 	dev->state = DS_NOTPRESENT;
1819 
1820 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1821 	bus_data_generation_update();
1822 
1823 	return (dev);
1824 }
1825 
1826 /**
1827  * @internal
1828  * @brief Print a description of a device.
1829  */
1830 static int
1831 device_print_child(device_t dev, device_t child)
1832 {
1833 	int retval = 0;
1834 
1835 	if (device_is_alive(child))
1836 		retval += BUS_PRINT_CHILD(dev, child);
1837 	else
1838 		retval += device_printf(child, " not found\n");
1839 
1840 	return (retval);
1841 }
1842 
1843 /**
1844  * @brief Create a new device
1845  *
1846  * This creates a new device and adds it as a child of an existing
1847  * parent device. The new device will be added after the last existing
1848  * child with order zero.
1849  *
1850  * @param dev		the device which will be the parent of the
1851  *			new child device
1852  * @param name		devclass name for new device or @c NULL if not
1853  *			specified
1854  * @param unit		unit number for new device or @c -1 if not
1855  *			specified
1856  *
1857  * @returns		the new device
1858  */
1859 device_t
1860 device_add_child(device_t dev, const char *name, int unit)
1861 {
1862 	return (device_add_child_ordered(dev, 0, name, unit));
1863 }
1864 
1865 /**
1866  * @brief Create a new device
1867  *
1868  * This creates a new device and adds it as a child of an existing
1869  * parent device. The new device will be added after the last existing
1870  * child with the same order.
1871  *
1872  * @param dev		the device which will be the parent of the
1873  *			new child device
1874  * @param order		a value which is used to partially sort the
1875  *			children of @p dev - devices created using
1876  *			lower values of @p order appear first in @p
1877  *			dev's list of children
1878  * @param name		devclass name for new device or @c NULL if not
1879  *			specified
1880  * @param unit		unit number for new device or @c -1 if not
1881  *			specified
1882  *
1883  * @returns		the new device
1884  */
1885 device_t
1886 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1887 {
1888 	device_t child;
1889 	device_t place;
1890 
1891 	PDEBUG(("%s at %s with order %u as unit %d",
1892 	    name, DEVICENAME(dev), order, unit));
1893 	KASSERT(name != NULL || unit == -1,
1894 	    ("child device with wildcard name and specific unit number"));
1895 
1896 	child = make_device(dev, name, unit);
1897 	if (child == NULL)
1898 		return (child);
1899 	child->order = order;
1900 
1901 	TAILQ_FOREACH(place, &dev->children, link) {
1902 		if (place->order > order)
1903 			break;
1904 	}
1905 
1906 	if (place) {
1907 		/*
1908 		 * The device 'place' is the first device whose order is
1909 		 * greater than the new child.
1910 		 */
1911 		TAILQ_INSERT_BEFORE(place, child, link);
1912 	} else {
1913 		/*
1914 		 * The new child's order is greater or equal to the order of
1915 		 * any existing device. Add the child to the tail of the list.
1916 		 */
1917 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1918 	}
1919 
1920 	bus_data_generation_update();
1921 	return (child);
1922 }
1923 
1924 /**
1925  * @brief Delete a device
1926  *
1927  * This function deletes a device along with all of its children. If
1928  * the device currently has a driver attached to it, the device is
1929  * detached first using device_detach().
1930  *
1931  * @param dev		the parent device
1932  * @param child		the device to delete
1933  *
1934  * @retval 0		success
1935  * @retval non-zero	a unit error code describing the error
1936  */
1937 int
1938 device_delete_child(device_t dev, device_t child)
1939 {
1940 	int error;
1941 	device_t grandchild;
1942 
1943 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1944 
1945 	/* detach parent before deleting children, if any */
1946 	if ((error = device_detach(child)) != 0)
1947 		return (error);
1948 
1949 	/* remove children second */
1950 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1951 		error = device_delete_child(child, grandchild);
1952 		if (error)
1953 			return (error);
1954 	}
1955 
1956 	if (child->devclass)
1957 		devclass_delete_device(child->devclass, child);
1958 	if (child->parent)
1959 		BUS_CHILD_DELETED(dev, child);
1960 	TAILQ_REMOVE(&dev->children, child, link);
1961 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1962 	kobj_delete((kobj_t) child, M_BUS);
1963 
1964 	bus_data_generation_update();
1965 	return (0);
1966 }
1967 
1968 /**
1969  * @brief Delete all children devices of the given device, if any.
1970  *
1971  * This function deletes all children devices of the given device, if
1972  * any, using the device_delete_child() function for each device it
1973  * finds. If a child device cannot be deleted, this function will
1974  * return an error code.
1975  *
1976  * @param dev		the parent device
1977  *
1978  * @retval 0		success
1979  * @retval non-zero	a device would not detach
1980  */
1981 int
1982 device_delete_children(device_t dev)
1983 {
1984 	device_t child;
1985 	int error;
1986 
1987 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1988 
1989 	error = 0;
1990 
1991 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1992 		error = device_delete_child(dev, child);
1993 		if (error) {
1994 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1995 			break;
1996 		}
1997 	}
1998 	return (error);
1999 }
2000 
2001 /**
2002  * @brief Find a device given a unit number
2003  *
2004  * This is similar to devclass_get_devices() but only searches for
2005  * devices which have @p dev as a parent.
2006  *
2007  * @param dev		the parent device to search
2008  * @param unit		the unit number to search for.  If the unit is -1,
2009  *			return the first child of @p dev which has name
2010  *			@p classname (that is, the one with the lowest unit.)
2011  *
2012  * @returns		the device with the given unit number or @c
2013  *			NULL if there is no such device
2014  */
2015 device_t
2016 device_find_child(device_t dev, const char *classname, int unit)
2017 {
2018 	devclass_t dc;
2019 	device_t child;
2020 
2021 	dc = devclass_find(classname);
2022 	if (!dc)
2023 		return (NULL);
2024 
2025 	if (unit != -1) {
2026 		child = devclass_get_device(dc, unit);
2027 		if (child && child->parent == dev)
2028 			return (child);
2029 	} else {
2030 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2031 			child = devclass_get_device(dc, unit);
2032 			if (child && child->parent == dev)
2033 				return (child);
2034 		}
2035 	}
2036 	return (NULL);
2037 }
2038 
2039 /**
2040  * @internal
2041  */
2042 static driverlink_t
2043 first_matching_driver(devclass_t dc, device_t dev)
2044 {
2045 	if (dev->devclass)
2046 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2047 	return (TAILQ_FIRST(&dc->drivers));
2048 }
2049 
2050 /**
2051  * @internal
2052  */
2053 static driverlink_t
2054 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2055 {
2056 	if (dev->devclass) {
2057 		driverlink_t dl;
2058 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2059 			if (!strcmp(dev->devclass->name, dl->driver->name))
2060 				return (dl);
2061 		return (NULL);
2062 	}
2063 	return (TAILQ_NEXT(last, link));
2064 }
2065 
2066 /**
2067  * @internal
2068  */
2069 int
2070 device_probe_child(device_t dev, device_t child)
2071 {
2072 	devclass_t dc;
2073 	driverlink_t best = NULL;
2074 	driverlink_t dl;
2075 	int result, pri = 0;
2076 	int hasclass = (child->devclass != NULL);
2077 
2078 	GIANT_REQUIRED;
2079 
2080 	dc = dev->devclass;
2081 	if (!dc)
2082 		panic("device_probe_child: parent device has no devclass");
2083 
2084 	/*
2085 	 * If the state is already probed, then return.  However, don't
2086 	 * return if we can rebid this object.
2087 	 */
2088 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2089 		return (0);
2090 
2091 	for (; dc; dc = dc->parent) {
2092 		for (dl = first_matching_driver(dc, child);
2093 		     dl;
2094 		     dl = next_matching_driver(dc, child, dl)) {
2095 			/* If this driver's pass is too high, then ignore it. */
2096 			if (dl->pass > bus_current_pass)
2097 				continue;
2098 
2099 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2100 			result = device_set_driver(child, dl->driver);
2101 			if (result == ENOMEM)
2102 				return (result);
2103 			else if (result != 0)
2104 				continue;
2105 			if (!hasclass) {
2106 				if (device_set_devclass(child,
2107 				    dl->driver->name) != 0) {
2108 					char const * devname =
2109 					    device_get_name(child);
2110 					if (devname == NULL)
2111 						devname = "(unknown)";
2112 					printf("driver bug: Unable to set "
2113 					    "devclass (class: %s "
2114 					    "devname: %s)\n",
2115 					    dl->driver->name,
2116 					    devname);
2117 					(void)device_set_driver(child, NULL);
2118 					continue;
2119 				}
2120 			}
2121 
2122 			/* Fetch any flags for the device before probing. */
2123 			resource_int_value(dl->driver->name, child->unit,
2124 			    "flags", &child->devflags);
2125 
2126 			result = DEVICE_PROBE(child);
2127 
2128 			/* Reset flags and devclass before the next probe. */
2129 			child->devflags = 0;
2130 			if (!hasclass)
2131 				(void)device_set_devclass(child, NULL);
2132 
2133 			/*
2134 			 * If the driver returns SUCCESS, there can be
2135 			 * no higher match for this device.
2136 			 */
2137 			if (result == 0) {
2138 				best = dl;
2139 				pri = 0;
2140 				break;
2141 			}
2142 
2143 			/*
2144 			 * Reset DF_QUIET in case this driver doesn't
2145 			 * end up as the best driver.
2146 			 */
2147 			device_verbose(child);
2148 
2149 			/*
2150 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2151 			 * only match on devices whose driver was explicitly
2152 			 * specified.
2153 			 */
2154 			if (result <= BUS_PROBE_NOWILDCARD &&
2155 			    !(child->flags & DF_FIXEDCLASS)) {
2156 				result = ENXIO;
2157 			}
2158 
2159 			/*
2160 			 * The driver returned an error so it
2161 			 * certainly doesn't match.
2162 			 */
2163 			if (result > 0) {
2164 				(void)device_set_driver(child, NULL);
2165 				continue;
2166 			}
2167 
2168 			/*
2169 			 * A priority lower than SUCCESS, remember the
2170 			 * best matching driver. Initialise the value
2171 			 * of pri for the first match.
2172 			 */
2173 			if (best == NULL || result > pri) {
2174 				best = dl;
2175 				pri = result;
2176 				continue;
2177 			}
2178 		}
2179 		/*
2180 		 * If we have an unambiguous match in this devclass,
2181 		 * don't look in the parent.
2182 		 */
2183 		if (best && pri == 0)
2184 			break;
2185 	}
2186 
2187 	/*
2188 	 * If we found a driver, change state and initialise the devclass.
2189 	 */
2190 	/* XXX What happens if we rebid and got no best? */
2191 	if (best) {
2192 		/*
2193 		 * If this device was attached, and we were asked to
2194 		 * rescan, and it is a different driver, then we have
2195 		 * to detach the old driver and reattach this new one.
2196 		 * Note, we don't have to check for DF_REBID here
2197 		 * because if the state is > DS_ALIVE, we know it must
2198 		 * be.
2199 		 *
2200 		 * This assumes that all DF_REBID drivers can have
2201 		 * their probe routine called at any time and that
2202 		 * they are idempotent as well as completely benign in
2203 		 * normal operations.
2204 		 *
2205 		 * We also have to make sure that the detach
2206 		 * succeeded, otherwise we fail the operation (or
2207 		 * maybe it should just fail silently?  I'm torn).
2208 		 */
2209 		if (child->state > DS_ALIVE && best->driver != child->driver)
2210 			if ((result = device_detach(dev)) != 0)
2211 				return (result);
2212 
2213 		/* Set the winning driver, devclass, and flags. */
2214 		if (!child->devclass) {
2215 			result = device_set_devclass(child, best->driver->name);
2216 			if (result != 0)
2217 				return (result);
2218 		}
2219 		result = device_set_driver(child, best->driver);
2220 		if (result != 0)
2221 			return (result);
2222 		resource_int_value(best->driver->name, child->unit,
2223 		    "flags", &child->devflags);
2224 
2225 		if (pri < 0) {
2226 			/*
2227 			 * A bit bogus. Call the probe method again to make
2228 			 * sure that we have the right description.
2229 			 */
2230 			DEVICE_PROBE(child);
2231 #if 0
2232 			child->flags |= DF_REBID;
2233 #endif
2234 		} else
2235 			child->flags &= ~DF_REBID;
2236 		child->state = DS_ALIVE;
2237 
2238 		bus_data_generation_update();
2239 		return (0);
2240 	}
2241 
2242 	return (ENXIO);
2243 }
2244 
2245 /**
2246  * @brief Return the parent of a device
2247  */
2248 device_t
2249 device_get_parent(device_t dev)
2250 {
2251 	return (dev->parent);
2252 }
2253 
2254 /**
2255  * @brief Get a list of children of a device
2256  *
2257  * An array containing a list of all the children of the given device
2258  * is allocated and returned in @p *devlistp. The number of devices
2259  * in the array is returned in @p *devcountp. The caller should free
2260  * the array using @c free(p, M_TEMP).
2261  *
2262  * @param dev		the device to examine
2263  * @param devlistp	points at location for array pointer return
2264  *			value
2265  * @param devcountp	points at location for array size return value
2266  *
2267  * @retval 0		success
2268  * @retval ENOMEM	the array allocation failed
2269  */
2270 int
2271 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2272 {
2273 	int count;
2274 	device_t child;
2275 	device_t *list;
2276 
2277 	count = 0;
2278 	TAILQ_FOREACH(child, &dev->children, link) {
2279 		count++;
2280 	}
2281 	if (count == 0) {
2282 		*devlistp = NULL;
2283 		*devcountp = 0;
2284 		return (0);
2285 	}
2286 
2287 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2288 	if (!list)
2289 		return (ENOMEM);
2290 
2291 	count = 0;
2292 	TAILQ_FOREACH(child, &dev->children, link) {
2293 		list[count] = child;
2294 		count++;
2295 	}
2296 
2297 	*devlistp = list;
2298 	*devcountp = count;
2299 
2300 	return (0);
2301 }
2302 
2303 /**
2304  * @brief Return the current driver for the device or @c NULL if there
2305  * is no driver currently attached
2306  */
2307 driver_t *
2308 device_get_driver(device_t dev)
2309 {
2310 	return (dev->driver);
2311 }
2312 
2313 /**
2314  * @brief Return the current devclass for the device or @c NULL if
2315  * there is none.
2316  */
2317 devclass_t
2318 device_get_devclass(device_t dev)
2319 {
2320 	return (dev->devclass);
2321 }
2322 
2323 /**
2324  * @brief Return the name of the device's devclass or @c NULL if there
2325  * is none.
2326  */
2327 const char *
2328 device_get_name(device_t dev)
2329 {
2330 	if (dev != NULL && dev->devclass)
2331 		return (devclass_get_name(dev->devclass));
2332 	return (NULL);
2333 }
2334 
2335 /**
2336  * @brief Return a string containing the device's devclass name
2337  * followed by an ascii representation of the device's unit number
2338  * (e.g. @c "foo2").
2339  */
2340 const char *
2341 device_get_nameunit(device_t dev)
2342 {
2343 	return (dev->nameunit);
2344 }
2345 
2346 /**
2347  * @brief Return the device's unit number.
2348  */
2349 int
2350 device_get_unit(device_t dev)
2351 {
2352 	return (dev->unit);
2353 }
2354 
2355 /**
2356  * @brief Return the device's description string
2357  */
2358 const char *
2359 device_get_desc(device_t dev)
2360 {
2361 	return (dev->desc);
2362 }
2363 
2364 /**
2365  * @brief Return the device's flags
2366  */
2367 uint32_t
2368 device_get_flags(device_t dev)
2369 {
2370 	return (dev->devflags);
2371 }
2372 
2373 struct sysctl_ctx_list *
2374 device_get_sysctl_ctx(device_t dev)
2375 {
2376 	return (&dev->sysctl_ctx);
2377 }
2378 
2379 struct sysctl_oid *
2380 device_get_sysctl_tree(device_t dev)
2381 {
2382 	return (dev->sysctl_tree);
2383 }
2384 
2385 /**
2386  * @brief Print the name of the device followed by a colon and a space
2387  *
2388  * @returns the number of characters printed
2389  */
2390 int
2391 device_print_prettyname(device_t dev)
2392 {
2393 	const char *name = device_get_name(dev);
2394 
2395 	if (name == NULL)
2396 		return (printf("unknown: "));
2397 	return (printf("%s%d: ", name, device_get_unit(dev)));
2398 }
2399 
2400 /**
2401  * @brief Print the name of the device followed by a colon, a space
2402  * and the result of calling vprintf() with the value of @p fmt and
2403  * the following arguments.
2404  *
2405  * @returns the number of characters printed
2406  */
2407 int
2408 device_printf(device_t dev, const char * fmt, ...)
2409 {
2410 	char buf[128];
2411 	struct sbuf sb;
2412 	const char *name;
2413 	va_list ap;
2414 	size_t retval;
2415 
2416 	retval = 0;
2417 
2418 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2419 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2420 
2421 	name = device_get_name(dev);
2422 
2423 	if (name == NULL)
2424 		sbuf_cat(&sb, "unknown: ");
2425 	else
2426 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2427 
2428 	va_start(ap, fmt);
2429 	sbuf_vprintf(&sb, fmt, ap);
2430 	va_end(ap);
2431 
2432 	sbuf_finish(&sb);
2433 	sbuf_delete(&sb);
2434 
2435 	return (retval);
2436 }
2437 
2438 /**
2439  * @internal
2440  */
2441 static void
2442 device_set_desc_internal(device_t dev, const char* desc, int copy)
2443 {
2444 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2445 		free(dev->desc, M_BUS);
2446 		dev->flags &= ~DF_DESCMALLOCED;
2447 		dev->desc = NULL;
2448 	}
2449 
2450 	if (copy && desc) {
2451 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2452 		if (dev->desc) {
2453 			strcpy(dev->desc, desc);
2454 			dev->flags |= DF_DESCMALLOCED;
2455 		}
2456 	} else {
2457 		/* Avoid a -Wcast-qual warning */
2458 		dev->desc = (char *)(uintptr_t) desc;
2459 	}
2460 
2461 	bus_data_generation_update();
2462 }
2463 
2464 /**
2465  * @brief Set the device's description
2466  *
2467  * The value of @c desc should be a string constant that will not
2468  * change (at least until the description is changed in a subsequent
2469  * call to device_set_desc() or device_set_desc_copy()).
2470  */
2471 void
2472 device_set_desc(device_t dev, const char* desc)
2473 {
2474 	device_set_desc_internal(dev, desc, FALSE);
2475 }
2476 
2477 /**
2478  * @brief Set the device's description
2479  *
2480  * The string pointed to by @c desc is copied. Use this function if
2481  * the device description is generated, (e.g. with sprintf()).
2482  */
2483 void
2484 device_set_desc_copy(device_t dev, const char* desc)
2485 {
2486 	device_set_desc_internal(dev, desc, TRUE);
2487 }
2488 
2489 /**
2490  * @brief Set the device's flags
2491  */
2492 void
2493 device_set_flags(device_t dev, uint32_t flags)
2494 {
2495 	dev->devflags = flags;
2496 }
2497 
2498 /**
2499  * @brief Return the device's softc field
2500  *
2501  * The softc is allocated and zeroed when a driver is attached, based
2502  * on the size field of the driver.
2503  */
2504 void *
2505 device_get_softc(device_t dev)
2506 {
2507 	return (dev->softc);
2508 }
2509 
2510 /**
2511  * @brief Set the device's softc field
2512  *
2513  * Most drivers do not need to use this since the softc is allocated
2514  * automatically when the driver is attached.
2515  */
2516 void
2517 device_set_softc(device_t dev, void *softc)
2518 {
2519 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2520 		free(dev->softc, M_BUS_SC);
2521 	dev->softc = softc;
2522 	if (dev->softc)
2523 		dev->flags |= DF_EXTERNALSOFTC;
2524 	else
2525 		dev->flags &= ~DF_EXTERNALSOFTC;
2526 }
2527 
2528 /**
2529  * @brief Free claimed softc
2530  *
2531  * Most drivers do not need to use this since the softc is freed
2532  * automatically when the driver is detached.
2533  */
2534 void
2535 device_free_softc(void *softc)
2536 {
2537 	free(softc, M_BUS_SC);
2538 }
2539 
2540 /**
2541  * @brief Claim softc
2542  *
2543  * This function can be used to let the driver free the automatically
2544  * allocated softc using "device_free_softc()". This function is
2545  * useful when the driver is refcounting the softc and the softc
2546  * cannot be freed when the "device_detach" method is called.
2547  */
2548 void
2549 device_claim_softc(device_t dev)
2550 {
2551 	if (dev->softc)
2552 		dev->flags |= DF_EXTERNALSOFTC;
2553 	else
2554 		dev->flags &= ~DF_EXTERNALSOFTC;
2555 }
2556 
2557 /**
2558  * @brief Get the device's ivars field
2559  *
2560  * The ivars field is used by the parent device to store per-device
2561  * state (e.g. the physical location of the device or a list of
2562  * resources).
2563  */
2564 void *
2565 device_get_ivars(device_t dev)
2566 {
2567 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2568 	return (dev->ivars);
2569 }
2570 
2571 /**
2572  * @brief Set the device's ivars field
2573  */
2574 void
2575 device_set_ivars(device_t dev, void * ivars)
2576 {
2577 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2578 	dev->ivars = ivars;
2579 }
2580 
2581 /**
2582  * @brief Return the device's state
2583  */
2584 device_state_t
2585 device_get_state(device_t dev)
2586 {
2587 	return (dev->state);
2588 }
2589 
2590 /**
2591  * @brief Set the DF_ENABLED flag for the device
2592  */
2593 void
2594 device_enable(device_t dev)
2595 {
2596 	dev->flags |= DF_ENABLED;
2597 }
2598 
2599 /**
2600  * @brief Clear the DF_ENABLED flag for the device
2601  */
2602 void
2603 device_disable(device_t dev)
2604 {
2605 	dev->flags &= ~DF_ENABLED;
2606 }
2607 
2608 /**
2609  * @brief Increment the busy counter for the device
2610  */
2611 void
2612 device_busy(device_t dev)
2613 {
2614 	if (dev->state < DS_ATTACHING)
2615 		panic("device_busy: called for unattached device");
2616 	if (dev->busy == 0 && dev->parent)
2617 		device_busy(dev->parent);
2618 	dev->busy++;
2619 	if (dev->state == DS_ATTACHED)
2620 		dev->state = DS_BUSY;
2621 }
2622 
2623 /**
2624  * @brief Decrement the busy counter for the device
2625  */
2626 void
2627 device_unbusy(device_t dev)
2628 {
2629 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2630 	    dev->state != DS_ATTACHING)
2631 		panic("device_unbusy: called for non-busy device %s",
2632 		    device_get_nameunit(dev));
2633 	dev->busy--;
2634 	if (dev->busy == 0) {
2635 		if (dev->parent)
2636 			device_unbusy(dev->parent);
2637 		if (dev->state == DS_BUSY)
2638 			dev->state = DS_ATTACHED;
2639 	}
2640 }
2641 
2642 /**
2643  * @brief Set the DF_QUIET flag for the device
2644  */
2645 void
2646 device_quiet(device_t dev)
2647 {
2648 	dev->flags |= DF_QUIET;
2649 }
2650 
2651 /**
2652  * @brief Set the DF_QUIET_CHILDREN flag for the device
2653  */
2654 void
2655 device_quiet_children(device_t dev)
2656 {
2657 	dev->flags |= DF_QUIET_CHILDREN;
2658 }
2659 
2660 /**
2661  * @brief Clear the DF_QUIET flag for the device
2662  */
2663 void
2664 device_verbose(device_t dev)
2665 {
2666 	dev->flags &= ~DF_QUIET;
2667 }
2668 
2669 /**
2670  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2671  */
2672 int
2673 device_has_quiet_children(device_t dev)
2674 {
2675 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2676 }
2677 
2678 /**
2679  * @brief Return non-zero if the DF_QUIET flag is set on the device
2680  */
2681 int
2682 device_is_quiet(device_t dev)
2683 {
2684 	return ((dev->flags & DF_QUIET) != 0);
2685 }
2686 
2687 /**
2688  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2689  */
2690 int
2691 device_is_enabled(device_t dev)
2692 {
2693 	return ((dev->flags & DF_ENABLED) != 0);
2694 }
2695 
2696 /**
2697  * @brief Return non-zero if the device was successfully probed
2698  */
2699 int
2700 device_is_alive(device_t dev)
2701 {
2702 	return (dev->state >= DS_ALIVE);
2703 }
2704 
2705 /**
2706  * @brief Return non-zero if the device currently has a driver
2707  * attached to it
2708  */
2709 int
2710 device_is_attached(device_t dev)
2711 {
2712 	return (dev->state >= DS_ATTACHED);
2713 }
2714 
2715 /**
2716  * @brief Return non-zero if the device is currently suspended.
2717  */
2718 int
2719 device_is_suspended(device_t dev)
2720 {
2721 	return ((dev->flags & DF_SUSPENDED) != 0);
2722 }
2723 
2724 /**
2725  * @brief Set the devclass of a device
2726  * @see devclass_add_device().
2727  */
2728 int
2729 device_set_devclass(device_t dev, const char *classname)
2730 {
2731 	devclass_t dc;
2732 	int error;
2733 
2734 	if (!classname) {
2735 		if (dev->devclass)
2736 			devclass_delete_device(dev->devclass, dev);
2737 		return (0);
2738 	}
2739 
2740 	if (dev->devclass) {
2741 		printf("device_set_devclass: device class already set\n");
2742 		return (EINVAL);
2743 	}
2744 
2745 	dc = devclass_find_internal(classname, NULL, TRUE);
2746 	if (!dc)
2747 		return (ENOMEM);
2748 
2749 	error = devclass_add_device(dc, dev);
2750 
2751 	bus_data_generation_update();
2752 	return (error);
2753 }
2754 
2755 /**
2756  * @brief Set the devclass of a device and mark the devclass fixed.
2757  * @see device_set_devclass()
2758  */
2759 int
2760 device_set_devclass_fixed(device_t dev, const char *classname)
2761 {
2762 	int error;
2763 
2764 	if (classname == NULL)
2765 		return (EINVAL);
2766 
2767 	error = device_set_devclass(dev, classname);
2768 	if (error)
2769 		return (error);
2770 	dev->flags |= DF_FIXEDCLASS;
2771 	return (0);
2772 }
2773 
2774 /**
2775  * @brief Query the device to determine if it's of a fixed devclass
2776  * @see device_set_devclass_fixed()
2777  */
2778 bool
2779 device_is_devclass_fixed(device_t dev)
2780 {
2781 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2782 }
2783 
2784 /**
2785  * @brief Set the driver of a device
2786  *
2787  * @retval 0		success
2788  * @retval EBUSY	the device already has a driver attached
2789  * @retval ENOMEM	a memory allocation failure occurred
2790  */
2791 int
2792 device_set_driver(device_t dev, driver_t *driver)
2793 {
2794 	int domain;
2795 	struct domainset *policy;
2796 
2797 	if (dev->state >= DS_ATTACHED)
2798 		return (EBUSY);
2799 
2800 	if (dev->driver == driver)
2801 		return (0);
2802 
2803 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2804 		free(dev->softc, M_BUS_SC);
2805 		dev->softc = NULL;
2806 	}
2807 	device_set_desc(dev, NULL);
2808 	kobj_delete((kobj_t) dev, NULL);
2809 	dev->driver = driver;
2810 	if (driver) {
2811 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2812 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2813 			if (bus_get_domain(dev, &domain) == 0)
2814 				policy = DOMAINSET_PREF(domain);
2815 			else
2816 				policy = DOMAINSET_RR();
2817 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2818 			    policy, M_NOWAIT | M_ZERO);
2819 			if (!dev->softc) {
2820 				kobj_delete((kobj_t) dev, NULL);
2821 				kobj_init((kobj_t) dev, &null_class);
2822 				dev->driver = NULL;
2823 				return (ENOMEM);
2824 			}
2825 		}
2826 	} else {
2827 		kobj_init((kobj_t) dev, &null_class);
2828 	}
2829 
2830 	bus_data_generation_update();
2831 	return (0);
2832 }
2833 
2834 /**
2835  * @brief Probe a device, and return this status.
2836  *
2837  * This function is the core of the device autoconfiguration
2838  * system. Its purpose is to select a suitable driver for a device and
2839  * then call that driver to initialise the hardware appropriately. The
2840  * driver is selected by calling the DEVICE_PROBE() method of a set of
2841  * candidate drivers and then choosing the driver which returned the
2842  * best value. This driver is then attached to the device using
2843  * device_attach().
2844  *
2845  * The set of suitable drivers is taken from the list of drivers in
2846  * the parent device's devclass. If the device was originally created
2847  * with a specific class name (see device_add_child()), only drivers
2848  * with that name are probed, otherwise all drivers in the devclass
2849  * are probed. If no drivers return successful probe values in the
2850  * parent devclass, the search continues in the parent of that
2851  * devclass (see devclass_get_parent()) if any.
2852  *
2853  * @param dev		the device to initialise
2854  *
2855  * @retval 0		success
2856  * @retval ENXIO	no driver was found
2857  * @retval ENOMEM	memory allocation failure
2858  * @retval non-zero	some other unix error code
2859  * @retval -1		Device already attached
2860  */
2861 int
2862 device_probe(device_t dev)
2863 {
2864 	int error;
2865 
2866 	GIANT_REQUIRED;
2867 
2868 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2869 		return (-1);
2870 
2871 	if (!(dev->flags & DF_ENABLED)) {
2872 		if (bootverbose && device_get_name(dev) != NULL) {
2873 			device_print_prettyname(dev);
2874 			printf("not probed (disabled)\n");
2875 		}
2876 		return (-1);
2877 	}
2878 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2879 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2880 		    !(dev->flags & DF_DONENOMATCH)) {
2881 			BUS_PROBE_NOMATCH(dev->parent, dev);
2882 			devnomatch(dev);
2883 			dev->flags |= DF_DONENOMATCH;
2884 		}
2885 		return (error);
2886 	}
2887 	return (0);
2888 }
2889 
2890 /**
2891  * @brief Probe a device and attach a driver if possible
2892  *
2893  * calls device_probe() and attaches if that was successful.
2894  */
2895 int
2896 device_probe_and_attach(device_t dev)
2897 {
2898 	int error;
2899 
2900 	GIANT_REQUIRED;
2901 
2902 	error = device_probe(dev);
2903 	if (error == -1)
2904 		return (0);
2905 	else if (error != 0)
2906 		return (error);
2907 
2908 	CURVNET_SET_QUIET(vnet0);
2909 	error = device_attach(dev);
2910 	CURVNET_RESTORE();
2911 	return error;
2912 }
2913 
2914 /**
2915  * @brief Attach a device driver to a device
2916  *
2917  * This function is a wrapper around the DEVICE_ATTACH() driver
2918  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2919  * device's sysctl tree, optionally prints a description of the device
2920  * and queues a notification event for user-based device management
2921  * services.
2922  *
2923  * Normally this function is only called internally from
2924  * device_probe_and_attach().
2925  *
2926  * @param dev		the device to initialise
2927  *
2928  * @retval 0		success
2929  * @retval ENXIO	no driver was found
2930  * @retval ENOMEM	memory allocation failure
2931  * @retval non-zero	some other unix error code
2932  */
2933 int
2934 device_attach(device_t dev)
2935 {
2936 	uint64_t attachtime;
2937 	uint16_t attachentropy;
2938 	int error;
2939 
2940 	if (resource_disabled(dev->driver->name, dev->unit)) {
2941 		device_disable(dev);
2942 		if (bootverbose)
2943 			 device_printf(dev, "disabled via hints entry\n");
2944 		return (ENXIO);
2945 	}
2946 
2947 	device_sysctl_init(dev);
2948 	if (!device_is_quiet(dev))
2949 		device_print_child(dev->parent, dev);
2950 	attachtime = get_cyclecount();
2951 	dev->state = DS_ATTACHING;
2952 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2953 		printf("device_attach: %s%d attach returned %d\n",
2954 		    dev->driver->name, dev->unit, error);
2955 		if (!(dev->flags & DF_FIXEDCLASS))
2956 			devclass_delete_device(dev->devclass, dev);
2957 		(void)device_set_driver(dev, NULL);
2958 		device_sysctl_fini(dev);
2959 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2960 		dev->state = DS_NOTPRESENT;
2961 		return (error);
2962 	}
2963 	dev->flags |= DF_ATTACHED_ONCE;
2964 	/* We only need the low bits of this time, but ranges from tens to thousands
2965 	 * have been seen, so keep 2 bytes' worth.
2966 	 */
2967 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2968 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2969 	device_sysctl_update(dev);
2970 	if (dev->busy)
2971 		dev->state = DS_BUSY;
2972 	else
2973 		dev->state = DS_ATTACHED;
2974 	dev->flags &= ~DF_DONENOMATCH;
2975 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2976 	devadded(dev);
2977 	return (0);
2978 }
2979 
2980 /**
2981  * @brief Detach a driver from a device
2982  *
2983  * This function is a wrapper around the DEVICE_DETACH() driver
2984  * method. If the call to DEVICE_DETACH() succeeds, it calls
2985  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2986  * notification event for user-based device management services and
2987  * cleans up the device's sysctl tree.
2988  *
2989  * @param dev		the device to un-initialise
2990  *
2991  * @retval 0		success
2992  * @retval ENXIO	no driver was found
2993  * @retval ENOMEM	memory allocation failure
2994  * @retval non-zero	some other unix error code
2995  */
2996 int
2997 device_detach(device_t dev)
2998 {
2999 	int error;
3000 
3001 	GIANT_REQUIRED;
3002 
3003 	PDEBUG(("%s", DEVICENAME(dev)));
3004 	if (dev->state == DS_BUSY)
3005 		return (EBUSY);
3006 	if (dev->state == DS_ATTACHING) {
3007 		device_printf(dev, "device in attaching state! Deferring detach.\n");
3008 		return (EBUSY);
3009 	}
3010 	if (dev->state != DS_ATTACHED)
3011 		return (0);
3012 
3013 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
3014 	if ((error = DEVICE_DETACH(dev)) != 0) {
3015 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3016 		    EVHDEV_DETACH_FAILED);
3017 		return (error);
3018 	} else {
3019 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3020 		    EVHDEV_DETACH_COMPLETE);
3021 	}
3022 	devremoved(dev);
3023 	if (!device_is_quiet(dev))
3024 		device_printf(dev, "detached\n");
3025 	if (dev->parent)
3026 		BUS_CHILD_DETACHED(dev->parent, dev);
3027 
3028 	if (!(dev->flags & DF_FIXEDCLASS))
3029 		devclass_delete_device(dev->devclass, dev);
3030 
3031 	device_verbose(dev);
3032 	dev->state = DS_NOTPRESENT;
3033 	(void)device_set_driver(dev, NULL);
3034 	device_sysctl_fini(dev);
3035 
3036 	return (0);
3037 }
3038 
3039 /**
3040  * @brief Tells a driver to quiesce itself.
3041  *
3042  * This function is a wrapper around the DEVICE_QUIESCE() driver
3043  * method. If the call to DEVICE_QUIESCE() succeeds.
3044  *
3045  * @param dev		the device to quiesce
3046  *
3047  * @retval 0		success
3048  * @retval ENXIO	no driver was found
3049  * @retval ENOMEM	memory allocation failure
3050  * @retval non-zero	some other unix error code
3051  */
3052 int
3053 device_quiesce(device_t dev)
3054 {
3055 	PDEBUG(("%s", DEVICENAME(dev)));
3056 	if (dev->state == DS_BUSY)
3057 		return (EBUSY);
3058 	if (dev->state != DS_ATTACHED)
3059 		return (0);
3060 
3061 	return (DEVICE_QUIESCE(dev));
3062 }
3063 
3064 /**
3065  * @brief Notify a device of system shutdown
3066  *
3067  * This function calls the DEVICE_SHUTDOWN() driver method if the
3068  * device currently has an attached driver.
3069  *
3070  * @returns the value returned by DEVICE_SHUTDOWN()
3071  */
3072 int
3073 device_shutdown(device_t dev)
3074 {
3075 	if (dev->state < DS_ATTACHED)
3076 		return (0);
3077 	return (DEVICE_SHUTDOWN(dev));
3078 }
3079 
3080 /**
3081  * @brief Set the unit number of a device
3082  *
3083  * This function can be used to override the unit number used for a
3084  * device (e.g. to wire a device to a pre-configured unit number).
3085  */
3086 int
3087 device_set_unit(device_t dev, int unit)
3088 {
3089 	devclass_t dc;
3090 	int err;
3091 
3092 	dc = device_get_devclass(dev);
3093 	if (unit < dc->maxunit && dc->devices[unit])
3094 		return (EBUSY);
3095 	err = devclass_delete_device(dc, dev);
3096 	if (err)
3097 		return (err);
3098 	dev->unit = unit;
3099 	err = devclass_add_device(dc, dev);
3100 	if (err)
3101 		return (err);
3102 
3103 	bus_data_generation_update();
3104 	return (0);
3105 }
3106 
3107 /*======================================*/
3108 /*
3109  * Some useful method implementations to make life easier for bus drivers.
3110  */
3111 
3112 void
3113 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3114 {
3115 	bzero(args, sz);
3116 	args->size = sz;
3117 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3118 }
3119 
3120 /**
3121  * @brief Initialise a resource list.
3122  *
3123  * @param rl		the resource list to initialise
3124  */
3125 void
3126 resource_list_init(struct resource_list *rl)
3127 {
3128 	STAILQ_INIT(rl);
3129 }
3130 
3131 /**
3132  * @brief Reclaim memory used by a resource list.
3133  *
3134  * This function frees the memory for all resource entries on the list
3135  * (if any).
3136  *
3137  * @param rl		the resource list to free
3138  */
3139 void
3140 resource_list_free(struct resource_list *rl)
3141 {
3142 	struct resource_list_entry *rle;
3143 
3144 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3145 		if (rle->res)
3146 			panic("resource_list_free: resource entry is busy");
3147 		STAILQ_REMOVE_HEAD(rl, link);
3148 		free(rle, M_BUS);
3149 	}
3150 }
3151 
3152 /**
3153  * @brief Add a resource entry.
3154  *
3155  * This function adds a resource entry using the given @p type, @p
3156  * start, @p end and @p count values. A rid value is chosen by
3157  * searching sequentially for the first unused rid starting at zero.
3158  *
3159  * @param rl		the resource list to edit
3160  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3161  * @param start		the start address of the resource
3162  * @param end		the end address of the resource
3163  * @param count		XXX end-start+1
3164  */
3165 int
3166 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3167     rman_res_t end, rman_res_t count)
3168 {
3169 	int rid;
3170 
3171 	rid = 0;
3172 	while (resource_list_find(rl, type, rid) != NULL)
3173 		rid++;
3174 	resource_list_add(rl, type, rid, start, end, count);
3175 	return (rid);
3176 }
3177 
3178 /**
3179  * @brief Add or modify a resource entry.
3180  *
3181  * If an existing entry exists with the same type and rid, it will be
3182  * modified using the given values of @p start, @p end and @p
3183  * count. If no entry exists, a new one will be created using the
3184  * given values.  The resource list entry that matches is then returned.
3185  *
3186  * @param rl		the resource list to edit
3187  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3188  * @param rid		the resource identifier
3189  * @param start		the start address of the resource
3190  * @param end		the end address of the resource
3191  * @param count		XXX end-start+1
3192  */
3193 struct resource_list_entry *
3194 resource_list_add(struct resource_list *rl, int type, int rid,
3195     rman_res_t start, rman_res_t end, rman_res_t count)
3196 {
3197 	struct resource_list_entry *rle;
3198 
3199 	rle = resource_list_find(rl, type, rid);
3200 	if (!rle) {
3201 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3202 		    M_NOWAIT);
3203 		if (!rle)
3204 			panic("resource_list_add: can't record entry");
3205 		STAILQ_INSERT_TAIL(rl, rle, link);
3206 		rle->type = type;
3207 		rle->rid = rid;
3208 		rle->res = NULL;
3209 		rle->flags = 0;
3210 	}
3211 
3212 	if (rle->res)
3213 		panic("resource_list_add: resource entry is busy");
3214 
3215 	rle->start = start;
3216 	rle->end = end;
3217 	rle->count = count;
3218 	return (rle);
3219 }
3220 
3221 /**
3222  * @brief Determine if a resource entry is busy.
3223  *
3224  * Returns true if a resource entry is busy meaning that it has an
3225  * associated resource that is not an unallocated "reserved" resource.
3226  *
3227  * @param rl		the resource list to search
3228  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3229  * @param rid		the resource identifier
3230  *
3231  * @returns Non-zero if the entry is busy, zero otherwise.
3232  */
3233 int
3234 resource_list_busy(struct resource_list *rl, int type, int rid)
3235 {
3236 	struct resource_list_entry *rle;
3237 
3238 	rle = resource_list_find(rl, type, rid);
3239 	if (rle == NULL || rle->res == NULL)
3240 		return (0);
3241 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3242 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3243 		    ("reserved resource is active"));
3244 		return (0);
3245 	}
3246 	return (1);
3247 }
3248 
3249 /**
3250  * @brief Determine if a resource entry is reserved.
3251  *
3252  * Returns true if a resource entry is reserved meaning that it has an
3253  * associated "reserved" resource.  The resource can either be
3254  * allocated or unallocated.
3255  *
3256  * @param rl		the resource list to search
3257  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3258  * @param rid		the resource identifier
3259  *
3260  * @returns Non-zero if the entry is reserved, zero otherwise.
3261  */
3262 int
3263 resource_list_reserved(struct resource_list *rl, int type, int rid)
3264 {
3265 	struct resource_list_entry *rle;
3266 
3267 	rle = resource_list_find(rl, type, rid);
3268 	if (rle != NULL && rle->flags & RLE_RESERVED)
3269 		return (1);
3270 	return (0);
3271 }
3272 
3273 /**
3274  * @brief Find a resource entry by type and rid.
3275  *
3276  * @param rl		the resource list to search
3277  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3278  * @param rid		the resource identifier
3279  *
3280  * @returns the resource entry pointer or NULL if there is no such
3281  * entry.
3282  */
3283 struct resource_list_entry *
3284 resource_list_find(struct resource_list *rl, int type, int rid)
3285 {
3286 	struct resource_list_entry *rle;
3287 
3288 	STAILQ_FOREACH(rle, rl, link) {
3289 		if (rle->type == type && rle->rid == rid)
3290 			return (rle);
3291 	}
3292 	return (NULL);
3293 }
3294 
3295 /**
3296  * @brief Delete a resource entry.
3297  *
3298  * @param rl		the resource list to edit
3299  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3300  * @param rid		the resource identifier
3301  */
3302 void
3303 resource_list_delete(struct resource_list *rl, int type, int rid)
3304 {
3305 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3306 
3307 	if (rle) {
3308 		if (rle->res != NULL)
3309 			panic("resource_list_delete: resource has not been released");
3310 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3311 		free(rle, M_BUS);
3312 	}
3313 }
3314 
3315 /**
3316  * @brief Allocate a reserved resource
3317  *
3318  * This can be used by buses to force the allocation of resources
3319  * that are always active in the system even if they are not allocated
3320  * by a driver (e.g. PCI BARs).  This function is usually called when
3321  * adding a new child to the bus.  The resource is allocated from the
3322  * parent bus when it is reserved.  The resource list entry is marked
3323  * with RLE_RESERVED to note that it is a reserved resource.
3324  *
3325  * Subsequent attempts to allocate the resource with
3326  * resource_list_alloc() will succeed the first time and will set
3327  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3328  * resource that has been allocated is released with
3329  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3330  * the actual resource remains allocated.  The resource can be released to
3331  * the parent bus by calling resource_list_unreserve().
3332  *
3333  * @param rl		the resource list to allocate from
3334  * @param bus		the parent device of @p child
3335  * @param child		the device for which the resource is being reserved
3336  * @param type		the type of resource to allocate
3337  * @param rid		a pointer to the resource identifier
3338  * @param start		hint at the start of the resource range - pass
3339  *			@c 0 for any start address
3340  * @param end		hint at the end of the resource range - pass
3341  *			@c ~0 for any end address
3342  * @param count		hint at the size of range required - pass @c 1
3343  *			for any size
3344  * @param flags		any extra flags to control the resource
3345  *			allocation - see @c RF_XXX flags in
3346  *			<sys/rman.h> for details
3347  *
3348  * @returns		the resource which was allocated or @c NULL if no
3349  *			resource could be allocated
3350  */
3351 struct resource *
3352 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3353     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3354 {
3355 	struct resource_list_entry *rle = NULL;
3356 	int passthrough = (device_get_parent(child) != bus);
3357 	struct resource *r;
3358 
3359 	if (passthrough)
3360 		panic(
3361     "resource_list_reserve() should only be called for direct children");
3362 	if (flags & RF_ACTIVE)
3363 		panic(
3364     "resource_list_reserve() should only reserve inactive resources");
3365 
3366 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3367 	    flags);
3368 	if (r != NULL) {
3369 		rle = resource_list_find(rl, type, *rid);
3370 		rle->flags |= RLE_RESERVED;
3371 	}
3372 	return (r);
3373 }
3374 
3375 /**
3376  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3377  *
3378  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3379  * and passing the allocation up to the parent of @p bus. This assumes
3380  * that the first entry of @c device_get_ivars(child) is a struct
3381  * resource_list. This also handles 'passthrough' allocations where a
3382  * child is a remote descendant of bus by passing the allocation up to
3383  * the parent of bus.
3384  *
3385  * Typically, a bus driver would store a list of child resources
3386  * somewhere in the child device's ivars (see device_get_ivars()) and
3387  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3388  * then call resource_list_alloc() to perform the allocation.
3389  *
3390  * @param rl		the resource list to allocate from
3391  * @param bus		the parent device of @p child
3392  * @param child		the device which is requesting an allocation
3393  * @param type		the type of resource to allocate
3394  * @param rid		a pointer to the resource identifier
3395  * @param start		hint at the start of the resource range - pass
3396  *			@c 0 for any start address
3397  * @param end		hint at the end of the resource range - pass
3398  *			@c ~0 for any end address
3399  * @param count		hint at the size of range required - pass @c 1
3400  *			for any size
3401  * @param flags		any extra flags to control the resource
3402  *			allocation - see @c RF_XXX flags in
3403  *			<sys/rman.h> for details
3404  *
3405  * @returns		the resource which was allocated or @c NULL if no
3406  *			resource could be allocated
3407  */
3408 struct resource *
3409 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3410     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3411 {
3412 	struct resource_list_entry *rle = NULL;
3413 	int passthrough = (device_get_parent(child) != bus);
3414 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3415 
3416 	if (passthrough) {
3417 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3418 		    type, rid, start, end, count, flags));
3419 	}
3420 
3421 	rle = resource_list_find(rl, type, *rid);
3422 
3423 	if (!rle)
3424 		return (NULL);		/* no resource of that type/rid */
3425 
3426 	if (rle->res) {
3427 		if (rle->flags & RLE_RESERVED) {
3428 			if (rle->flags & RLE_ALLOCATED)
3429 				return (NULL);
3430 			if ((flags & RF_ACTIVE) &&
3431 			    bus_activate_resource(child, type, *rid,
3432 			    rle->res) != 0)
3433 				return (NULL);
3434 			rle->flags |= RLE_ALLOCATED;
3435 			return (rle->res);
3436 		}
3437 		device_printf(bus,
3438 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3439 		    type, device_get_nameunit(child));
3440 		return (NULL);
3441 	}
3442 
3443 	if (isdefault) {
3444 		start = rle->start;
3445 		count = ulmax(count, rle->count);
3446 		end = ulmax(rle->end, start + count - 1);
3447 	}
3448 
3449 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3450 	    type, rid, start, end, count, flags);
3451 
3452 	/*
3453 	 * Record the new range.
3454 	 */
3455 	if (rle->res) {
3456 		rle->start = rman_get_start(rle->res);
3457 		rle->end = rman_get_end(rle->res);
3458 		rle->count = count;
3459 	}
3460 
3461 	return (rle->res);
3462 }
3463 
3464 /**
3465  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3466  *
3467  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3468  * used with resource_list_alloc().
3469  *
3470  * @param rl		the resource list which was allocated from
3471  * @param bus		the parent device of @p child
3472  * @param child		the device which is requesting a release
3473  * @param type		the type of resource to release
3474  * @param rid		the resource identifier
3475  * @param res		the resource to release
3476  *
3477  * @retval 0		success
3478  * @retval non-zero	a standard unix error code indicating what
3479  *			error condition prevented the operation
3480  */
3481 int
3482 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3483     int type, int rid, struct resource *res)
3484 {
3485 	struct resource_list_entry *rle = NULL;
3486 	int passthrough = (device_get_parent(child) != bus);
3487 	int error;
3488 
3489 	if (passthrough) {
3490 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3491 		    type, rid, res));
3492 	}
3493 
3494 	rle = resource_list_find(rl, type, rid);
3495 
3496 	if (!rle)
3497 		panic("resource_list_release: can't find resource");
3498 	if (!rle->res)
3499 		panic("resource_list_release: resource entry is not busy");
3500 	if (rle->flags & RLE_RESERVED) {
3501 		if (rle->flags & RLE_ALLOCATED) {
3502 			if (rman_get_flags(res) & RF_ACTIVE) {
3503 				error = bus_deactivate_resource(child, type,
3504 				    rid, res);
3505 				if (error)
3506 					return (error);
3507 			}
3508 			rle->flags &= ~RLE_ALLOCATED;
3509 			return (0);
3510 		}
3511 		return (EINVAL);
3512 	}
3513 
3514 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3515 	    type, rid, res);
3516 	if (error)
3517 		return (error);
3518 
3519 	rle->res = NULL;
3520 	return (0);
3521 }
3522 
3523 /**
3524  * @brief Release all active resources of a given type
3525  *
3526  * Release all active resources of a specified type.  This is intended
3527  * to be used to cleanup resources leaked by a driver after detach or
3528  * a failed attach.
3529  *
3530  * @param rl		the resource list which was allocated from
3531  * @param bus		the parent device of @p child
3532  * @param child		the device whose active resources are being released
3533  * @param type		the type of resources to release
3534  *
3535  * @retval 0		success
3536  * @retval EBUSY	at least one resource was active
3537  */
3538 int
3539 resource_list_release_active(struct resource_list *rl, device_t bus,
3540     device_t child, int type)
3541 {
3542 	struct resource_list_entry *rle;
3543 	int error, retval;
3544 
3545 	retval = 0;
3546 	STAILQ_FOREACH(rle, rl, link) {
3547 		if (rle->type != type)
3548 			continue;
3549 		if (rle->res == NULL)
3550 			continue;
3551 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3552 		    RLE_RESERVED)
3553 			continue;
3554 		retval = EBUSY;
3555 		error = resource_list_release(rl, bus, child, type,
3556 		    rman_get_rid(rle->res), rle->res);
3557 		if (error != 0)
3558 			device_printf(bus,
3559 			    "Failed to release active resource: %d\n", error);
3560 	}
3561 	return (retval);
3562 }
3563 
3564 /**
3565  * @brief Fully release a reserved resource
3566  *
3567  * Fully releases a resource reserved via resource_list_reserve().
3568  *
3569  * @param rl		the resource list which was allocated from
3570  * @param bus		the parent device of @p child
3571  * @param child		the device whose reserved resource is being released
3572  * @param type		the type of resource to release
3573  * @param rid		the resource identifier
3574  * @param res		the resource to release
3575  *
3576  * @retval 0		success
3577  * @retval non-zero	a standard unix error code indicating what
3578  *			error condition prevented the operation
3579  */
3580 int
3581 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3582     int type, int rid)
3583 {
3584 	struct resource_list_entry *rle = NULL;
3585 	int passthrough = (device_get_parent(child) != bus);
3586 
3587 	if (passthrough)
3588 		panic(
3589     "resource_list_unreserve() should only be called for direct children");
3590 
3591 	rle = resource_list_find(rl, type, rid);
3592 
3593 	if (!rle)
3594 		panic("resource_list_unreserve: can't find resource");
3595 	if (!(rle->flags & RLE_RESERVED))
3596 		return (EINVAL);
3597 	if (rle->flags & RLE_ALLOCATED)
3598 		return (EBUSY);
3599 	rle->flags &= ~RLE_RESERVED;
3600 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3601 }
3602 
3603 /**
3604  * @brief Print a description of resources in a resource list
3605  *
3606  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3607  * The name is printed if at least one resource of the given type is available.
3608  * The format is used to print resource start and end.
3609  *
3610  * @param rl		the resource list to print
3611  * @param name		the name of @p type, e.g. @c "memory"
3612  * @param type		type type of resource entry to print
3613  * @param format	printf(9) format string to print resource
3614  *			start and end values
3615  *
3616  * @returns		the number of characters printed
3617  */
3618 int
3619 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3620     const char *format)
3621 {
3622 	struct resource_list_entry *rle;
3623 	int printed, retval;
3624 
3625 	printed = 0;
3626 	retval = 0;
3627 	/* Yes, this is kinda cheating */
3628 	STAILQ_FOREACH(rle, rl, link) {
3629 		if (rle->type == type) {
3630 			if (printed == 0)
3631 				retval += printf(" %s ", name);
3632 			else
3633 				retval += printf(",");
3634 			printed++;
3635 			retval += printf(format, rle->start);
3636 			if (rle->count > 1) {
3637 				retval += printf("-");
3638 				retval += printf(format, rle->start +
3639 						 rle->count - 1);
3640 			}
3641 		}
3642 	}
3643 	return (retval);
3644 }
3645 
3646 /**
3647  * @brief Releases all the resources in a list.
3648  *
3649  * @param rl		The resource list to purge.
3650  *
3651  * @returns		nothing
3652  */
3653 void
3654 resource_list_purge(struct resource_list *rl)
3655 {
3656 	struct resource_list_entry *rle;
3657 
3658 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3659 		if (rle->res)
3660 			bus_release_resource(rman_get_device(rle->res),
3661 			    rle->type, rle->rid, rle->res);
3662 		STAILQ_REMOVE_HEAD(rl, link);
3663 		free(rle, M_BUS);
3664 	}
3665 }
3666 
3667 device_t
3668 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3669 {
3670 	return (device_add_child_ordered(dev, order, name, unit));
3671 }
3672 
3673 /**
3674  * @brief Helper function for implementing DEVICE_PROBE()
3675  *
3676  * This function can be used to help implement the DEVICE_PROBE() for
3677  * a bus (i.e. a device which has other devices attached to it). It
3678  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3679  * devclass.
3680  */
3681 int
3682 bus_generic_probe(device_t dev)
3683 {
3684 	devclass_t dc = dev->devclass;
3685 	driverlink_t dl;
3686 
3687 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3688 		/*
3689 		 * If this driver's pass is too high, then ignore it.
3690 		 * For most drivers in the default pass, this will
3691 		 * never be true.  For early-pass drivers they will
3692 		 * only call the identify routines of eligible drivers
3693 		 * when this routine is called.  Drivers for later
3694 		 * passes should have their identify routines called
3695 		 * on early-pass buses during BUS_NEW_PASS().
3696 		 */
3697 		if (dl->pass > bus_current_pass)
3698 			continue;
3699 		DEVICE_IDENTIFY(dl->driver, dev);
3700 	}
3701 
3702 	return (0);
3703 }
3704 
3705 /**
3706  * @brief Helper function for implementing DEVICE_ATTACH()
3707  *
3708  * This function can be used to help implement the DEVICE_ATTACH() for
3709  * a bus. It calls device_probe_and_attach() for each of the device's
3710  * children.
3711  */
3712 int
3713 bus_generic_attach(device_t dev)
3714 {
3715 	device_t child;
3716 
3717 	TAILQ_FOREACH(child, &dev->children, link) {
3718 		device_probe_and_attach(child);
3719 	}
3720 
3721 	return (0);
3722 }
3723 
3724 /**
3725  * @brief Helper function for delaying attaching children
3726  *
3727  * Many buses can't run transactions on the bus which children need to probe and
3728  * attach until after interrupts and/or timers are running.  This function
3729  * delays their attach until interrupts and timers are enabled.
3730  */
3731 int
3732 bus_delayed_attach_children(device_t dev)
3733 {
3734 	/* Probe and attach the bus children when interrupts are available */
3735 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3736 
3737 	return (0);
3738 }
3739 
3740 /**
3741  * @brief Helper function for implementing DEVICE_DETACH()
3742  *
3743  * This function can be used to help implement the DEVICE_DETACH() for
3744  * a bus. It calls device_detach() for each of the device's
3745  * children.
3746  */
3747 int
3748 bus_generic_detach(device_t dev)
3749 {
3750 	device_t child;
3751 	int error;
3752 
3753 	if (dev->state != DS_ATTACHED)
3754 		return (EBUSY);
3755 
3756 	/*
3757 	 * Detach children in the reverse order.
3758 	 * See bus_generic_suspend for details.
3759 	 */
3760 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3761 		if ((error = device_detach(child)) != 0)
3762 			return (error);
3763 	}
3764 
3765 	return (0);
3766 }
3767 
3768 /**
3769  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3770  *
3771  * This function can be used to help implement the DEVICE_SHUTDOWN()
3772  * for a bus. It calls device_shutdown() for each of the device's
3773  * children.
3774  */
3775 int
3776 bus_generic_shutdown(device_t dev)
3777 {
3778 	device_t child;
3779 
3780 	/*
3781 	 * Shut down children in the reverse order.
3782 	 * See bus_generic_suspend for details.
3783 	 */
3784 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3785 		device_shutdown(child);
3786 	}
3787 
3788 	return (0);
3789 }
3790 
3791 /**
3792  * @brief Default function for suspending a child device.
3793  *
3794  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3795  */
3796 int
3797 bus_generic_suspend_child(device_t dev, device_t child)
3798 {
3799 	int	error;
3800 
3801 	error = DEVICE_SUSPEND(child);
3802 
3803 	if (error == 0)
3804 		child->flags |= DF_SUSPENDED;
3805 
3806 	return (error);
3807 }
3808 
3809 /**
3810  * @brief Default function for resuming a child device.
3811  *
3812  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3813  */
3814 int
3815 bus_generic_resume_child(device_t dev, device_t child)
3816 {
3817 	DEVICE_RESUME(child);
3818 	child->flags &= ~DF_SUSPENDED;
3819 
3820 	return (0);
3821 }
3822 
3823 /**
3824  * @brief Helper function for implementing DEVICE_SUSPEND()
3825  *
3826  * This function can be used to help implement the DEVICE_SUSPEND()
3827  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3828  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3829  * operation is aborted and any devices which were suspended are
3830  * resumed immediately by calling their DEVICE_RESUME() methods.
3831  */
3832 int
3833 bus_generic_suspend(device_t dev)
3834 {
3835 	int		error;
3836 	device_t	child;
3837 
3838 	/*
3839 	 * Suspend children in the reverse order.
3840 	 * For most buses all children are equal, so the order does not matter.
3841 	 * Other buses, such as acpi, carefully order their child devices to
3842 	 * express implicit dependencies between them.  For such buses it is
3843 	 * safer to bring down devices in the reverse order.
3844 	 */
3845 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3846 		error = BUS_SUSPEND_CHILD(dev, child);
3847 		if (error != 0) {
3848 			child = TAILQ_NEXT(child, link);
3849 			if (child != NULL) {
3850 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3851 					BUS_RESUME_CHILD(dev, child);
3852 			}
3853 			return (error);
3854 		}
3855 	}
3856 	return (0);
3857 }
3858 
3859 /**
3860  * @brief Helper function for implementing DEVICE_RESUME()
3861  *
3862  * This function can be used to help implement the DEVICE_RESUME() for
3863  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3864  */
3865 int
3866 bus_generic_resume(device_t dev)
3867 {
3868 	device_t	child;
3869 
3870 	TAILQ_FOREACH(child, &dev->children, link) {
3871 		BUS_RESUME_CHILD(dev, child);
3872 		/* if resume fails, there's nothing we can usefully do... */
3873 	}
3874 	return (0);
3875 }
3876 
3877 /**
3878  * @brief Helper function for implementing BUS_RESET_POST
3879  *
3880  * Bus can use this function to implement common operations of
3881  * re-attaching or resuming the children after the bus itself was
3882  * reset, and after restoring bus-unique state of children.
3883  *
3884  * @param dev	The bus
3885  * #param flags	DEVF_RESET_*
3886  */
3887 int
3888 bus_helper_reset_post(device_t dev, int flags)
3889 {
3890 	device_t child;
3891 	int error, error1;
3892 
3893 	error = 0;
3894 	TAILQ_FOREACH(child, &dev->children,link) {
3895 		BUS_RESET_POST(dev, child);
3896 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3897 		    device_probe_and_attach(child) :
3898 		    BUS_RESUME_CHILD(dev, child);
3899 		if (error == 0 && error1 != 0)
3900 			error = error1;
3901 	}
3902 	return (error);
3903 }
3904 
3905 static void
3906 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3907 {
3908 	child = TAILQ_NEXT(child, link);
3909 	if (child == NULL)
3910 		return;
3911 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3912 		BUS_RESET_POST(dev, child);
3913 		if ((flags & DEVF_RESET_DETACH) != 0)
3914 			device_probe_and_attach(child);
3915 		else
3916 			BUS_RESUME_CHILD(dev, child);
3917 	}
3918 }
3919 
3920 /**
3921  * @brief Helper function for implementing BUS_RESET_PREPARE
3922  *
3923  * Bus can use this function to implement common operations of
3924  * detaching or suspending the children before the bus itself is
3925  * reset, and then save bus-unique state of children that must
3926  * persists around reset.
3927  *
3928  * @param dev	The bus
3929  * #param flags	DEVF_RESET_*
3930  */
3931 int
3932 bus_helper_reset_prepare(device_t dev, int flags)
3933 {
3934 	device_t child;
3935 	int error;
3936 
3937 	if (dev->state != DS_ATTACHED)
3938 		return (EBUSY);
3939 
3940 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3941 		if ((flags & DEVF_RESET_DETACH) != 0) {
3942 			error = device_get_state(child) == DS_ATTACHED ?
3943 			    device_detach(child) : 0;
3944 		} else {
3945 			error = BUS_SUSPEND_CHILD(dev, child);
3946 		}
3947 		if (error == 0) {
3948 			error = BUS_RESET_PREPARE(dev, child);
3949 			if (error != 0) {
3950 				if ((flags & DEVF_RESET_DETACH) != 0)
3951 					device_probe_and_attach(child);
3952 				else
3953 					BUS_RESUME_CHILD(dev, child);
3954 			}
3955 		}
3956 		if (error != 0) {
3957 			bus_helper_reset_prepare_rollback(dev, child, flags);
3958 			return (error);
3959 		}
3960 	}
3961 	return (0);
3962 }
3963 
3964 /**
3965  * @brief Helper function for implementing BUS_PRINT_CHILD().
3966  *
3967  * This function prints the first part of the ascii representation of
3968  * @p child, including its name, unit and description (if any - see
3969  * device_set_desc()).
3970  *
3971  * @returns the number of characters printed
3972  */
3973 int
3974 bus_print_child_header(device_t dev, device_t child)
3975 {
3976 	int	retval = 0;
3977 
3978 	if (device_get_desc(child)) {
3979 		retval += device_printf(child, "<%s>", device_get_desc(child));
3980 	} else {
3981 		retval += printf("%s", device_get_nameunit(child));
3982 	}
3983 
3984 	return (retval);
3985 }
3986 
3987 /**
3988  * @brief Helper function for implementing BUS_PRINT_CHILD().
3989  *
3990  * This function prints the last part of the ascii representation of
3991  * @p child, which consists of the string @c " on " followed by the
3992  * name and unit of the @p dev.
3993  *
3994  * @returns the number of characters printed
3995  */
3996 int
3997 bus_print_child_footer(device_t dev, device_t child)
3998 {
3999 	return (printf(" on %s\n", device_get_nameunit(dev)));
4000 }
4001 
4002 /**
4003  * @brief Helper function for implementing BUS_PRINT_CHILD().
4004  *
4005  * This function prints out the VM domain for the given device.
4006  *
4007  * @returns the number of characters printed
4008  */
4009 int
4010 bus_print_child_domain(device_t dev, device_t child)
4011 {
4012 	int domain;
4013 
4014 	/* No domain? Don't print anything */
4015 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
4016 		return (0);
4017 
4018 	return (printf(" numa-domain %d", domain));
4019 }
4020 
4021 /**
4022  * @brief Helper function for implementing BUS_PRINT_CHILD().
4023  *
4024  * This function simply calls bus_print_child_header() followed by
4025  * bus_print_child_footer().
4026  *
4027  * @returns the number of characters printed
4028  */
4029 int
4030 bus_generic_print_child(device_t dev, device_t child)
4031 {
4032 	int	retval = 0;
4033 
4034 	retval += bus_print_child_header(dev, child);
4035 	retval += bus_print_child_domain(dev, child);
4036 	retval += bus_print_child_footer(dev, child);
4037 
4038 	return (retval);
4039 }
4040 
4041 /**
4042  * @brief Stub function for implementing BUS_READ_IVAR().
4043  *
4044  * @returns ENOENT
4045  */
4046 int
4047 bus_generic_read_ivar(device_t dev, device_t child, int index,
4048     uintptr_t * result)
4049 {
4050 	return (ENOENT);
4051 }
4052 
4053 /**
4054  * @brief Stub function for implementing BUS_WRITE_IVAR().
4055  *
4056  * @returns ENOENT
4057  */
4058 int
4059 bus_generic_write_ivar(device_t dev, device_t child, int index,
4060     uintptr_t value)
4061 {
4062 	return (ENOENT);
4063 }
4064 
4065 /**
4066  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4067  *
4068  * @returns NULL
4069  */
4070 struct resource_list *
4071 bus_generic_get_resource_list(device_t dev, device_t child)
4072 {
4073 	return (NULL);
4074 }
4075 
4076 /**
4077  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4078  *
4079  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4080  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4081  * and then calls device_probe_and_attach() for each unattached child.
4082  */
4083 void
4084 bus_generic_driver_added(device_t dev, driver_t *driver)
4085 {
4086 	device_t child;
4087 
4088 	DEVICE_IDENTIFY(driver, dev);
4089 	TAILQ_FOREACH(child, &dev->children, link) {
4090 		if (child->state == DS_NOTPRESENT ||
4091 		    (child->flags & DF_REBID))
4092 			device_probe_and_attach(child);
4093 	}
4094 }
4095 
4096 /**
4097  * @brief Helper function for implementing BUS_NEW_PASS().
4098  *
4099  * This implementing of BUS_NEW_PASS() first calls the identify
4100  * routines for any drivers that probe at the current pass.  Then it
4101  * walks the list of devices for this bus.  If a device is already
4102  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4103  * device is not already attached, it attempts to attach a driver to
4104  * it.
4105  */
4106 void
4107 bus_generic_new_pass(device_t dev)
4108 {
4109 	driverlink_t dl;
4110 	devclass_t dc;
4111 	device_t child;
4112 
4113 	dc = dev->devclass;
4114 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4115 		if (dl->pass == bus_current_pass)
4116 			DEVICE_IDENTIFY(dl->driver, dev);
4117 	}
4118 	TAILQ_FOREACH(child, &dev->children, link) {
4119 		if (child->state >= DS_ATTACHED)
4120 			BUS_NEW_PASS(child);
4121 		else if (child->state == DS_NOTPRESENT)
4122 			device_probe_and_attach(child);
4123 	}
4124 }
4125 
4126 /**
4127  * @brief Helper function for implementing BUS_SETUP_INTR().
4128  *
4129  * This simple implementation of BUS_SETUP_INTR() simply calls the
4130  * BUS_SETUP_INTR() method of the parent of @p dev.
4131  */
4132 int
4133 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4134     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4135     void **cookiep)
4136 {
4137 	/* Propagate up the bus hierarchy until someone handles it. */
4138 	if (dev->parent)
4139 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4140 		    filter, intr, arg, cookiep));
4141 	return (EINVAL);
4142 }
4143 
4144 /**
4145  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4146  *
4147  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4148  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4149  */
4150 int
4151 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4152     void *cookie)
4153 {
4154 	/* Propagate up the bus hierarchy until someone handles it. */
4155 	if (dev->parent)
4156 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4157 	return (EINVAL);
4158 }
4159 
4160 /**
4161  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4162  *
4163  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4164  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4165  */
4166 int
4167 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4168 {
4169 	/* Propagate up the bus hierarchy until someone handles it. */
4170 	if (dev->parent)
4171 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4172 	return (EINVAL);
4173 }
4174 
4175 /**
4176  * @brief Helper function for implementing BUS_RESUME_INTR().
4177  *
4178  * This simple implementation of BUS_RESUME_INTR() simply calls the
4179  * BUS_RESUME_INTR() method of the parent of @p dev.
4180  */
4181 int
4182 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4183 {
4184 	/* Propagate up the bus hierarchy until someone handles it. */
4185 	if (dev->parent)
4186 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4187 	return (EINVAL);
4188 }
4189 
4190 /**
4191  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4192  *
4193  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4194  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4195  */
4196 int
4197 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4198     struct resource *r, rman_res_t start, rman_res_t end)
4199 {
4200 	/* Propagate up the bus hierarchy until someone handles it. */
4201 	if (dev->parent)
4202 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4203 		    end));
4204 	return (EINVAL);
4205 }
4206 
4207 /**
4208  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4209  *
4210  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4211  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4212  */
4213 struct resource *
4214 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4215     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4216 {
4217 	/* Propagate up the bus hierarchy until someone handles it. */
4218 	if (dev->parent)
4219 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4220 		    start, end, count, flags));
4221 	return (NULL);
4222 }
4223 
4224 /**
4225  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4226  *
4227  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4228  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4229  */
4230 int
4231 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4232     struct resource *r)
4233 {
4234 	/* Propagate up the bus hierarchy until someone handles it. */
4235 	if (dev->parent)
4236 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4237 		    r));
4238 	return (EINVAL);
4239 }
4240 
4241 /**
4242  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4243  *
4244  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4245  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4246  */
4247 int
4248 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4249     struct resource *r)
4250 {
4251 	/* Propagate up the bus hierarchy until someone handles it. */
4252 	if (dev->parent)
4253 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4254 		    r));
4255 	return (EINVAL);
4256 }
4257 
4258 /**
4259  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4260  *
4261  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4262  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4263  */
4264 int
4265 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4266     int rid, struct resource *r)
4267 {
4268 	/* Propagate up the bus hierarchy until someone handles it. */
4269 	if (dev->parent)
4270 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4271 		    r));
4272 	return (EINVAL);
4273 }
4274 
4275 /**
4276  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4277  *
4278  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4279  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4280  */
4281 int
4282 bus_generic_map_resource(device_t dev, device_t child, int type,
4283     struct resource *r, struct resource_map_request *args,
4284     struct resource_map *map)
4285 {
4286 	/* Propagate up the bus hierarchy until someone handles it. */
4287 	if (dev->parent)
4288 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4289 		    map));
4290 	return (EINVAL);
4291 }
4292 
4293 /**
4294  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4295  *
4296  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4297  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4298  */
4299 int
4300 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4301     struct resource *r, struct resource_map *map)
4302 {
4303 	/* Propagate up the bus hierarchy until someone handles it. */
4304 	if (dev->parent)
4305 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4306 	return (EINVAL);
4307 }
4308 
4309 /**
4310  * @brief Helper function for implementing BUS_BIND_INTR().
4311  *
4312  * This simple implementation of BUS_BIND_INTR() simply calls the
4313  * BUS_BIND_INTR() method of the parent of @p dev.
4314  */
4315 int
4316 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4317     int cpu)
4318 {
4319 	/* Propagate up the bus hierarchy until someone handles it. */
4320 	if (dev->parent)
4321 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4322 	return (EINVAL);
4323 }
4324 
4325 /**
4326  * @brief Helper function for implementing BUS_CONFIG_INTR().
4327  *
4328  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4329  * BUS_CONFIG_INTR() method of the parent of @p dev.
4330  */
4331 int
4332 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4333     enum intr_polarity pol)
4334 {
4335 	/* Propagate up the bus hierarchy until someone handles it. */
4336 	if (dev->parent)
4337 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4338 	return (EINVAL);
4339 }
4340 
4341 /**
4342  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4343  *
4344  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4345  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4346  */
4347 int
4348 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4349     void *cookie, const char *descr)
4350 {
4351 	/* Propagate up the bus hierarchy until someone handles it. */
4352 	if (dev->parent)
4353 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4354 		    descr));
4355 	return (EINVAL);
4356 }
4357 
4358 /**
4359  * @brief Helper function for implementing BUS_GET_CPUS().
4360  *
4361  * This simple implementation of BUS_GET_CPUS() simply calls the
4362  * BUS_GET_CPUS() method of the parent of @p dev.
4363  */
4364 int
4365 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4366     size_t setsize, cpuset_t *cpuset)
4367 {
4368 	/* Propagate up the bus hierarchy until someone handles it. */
4369 	if (dev->parent != NULL)
4370 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4371 	return (EINVAL);
4372 }
4373 
4374 /**
4375  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4376  *
4377  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4378  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4379  */
4380 bus_dma_tag_t
4381 bus_generic_get_dma_tag(device_t dev, device_t child)
4382 {
4383 	/* Propagate up the bus hierarchy until someone handles it. */
4384 	if (dev->parent != NULL)
4385 		return (BUS_GET_DMA_TAG(dev->parent, child));
4386 	return (NULL);
4387 }
4388 
4389 /**
4390  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4391  *
4392  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4393  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4394  */
4395 bus_space_tag_t
4396 bus_generic_get_bus_tag(device_t dev, device_t child)
4397 {
4398 	/* Propagate up the bus hierarchy until someone handles it. */
4399 	if (dev->parent != NULL)
4400 		return (BUS_GET_BUS_TAG(dev->parent, child));
4401 	return ((bus_space_tag_t)0);
4402 }
4403 
4404 /**
4405  * @brief Helper function for implementing BUS_GET_RESOURCE().
4406  *
4407  * This implementation of BUS_GET_RESOURCE() uses the
4408  * resource_list_find() function to do most of the work. It calls
4409  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4410  * search.
4411  */
4412 int
4413 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4414     rman_res_t *startp, rman_res_t *countp)
4415 {
4416 	struct resource_list *		rl = NULL;
4417 	struct resource_list_entry *	rle = NULL;
4418 
4419 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4420 	if (!rl)
4421 		return (EINVAL);
4422 
4423 	rle = resource_list_find(rl, type, rid);
4424 	if (!rle)
4425 		return (ENOENT);
4426 
4427 	if (startp)
4428 		*startp = rle->start;
4429 	if (countp)
4430 		*countp = rle->count;
4431 
4432 	return (0);
4433 }
4434 
4435 /**
4436  * @brief Helper function for implementing BUS_SET_RESOURCE().
4437  *
4438  * This implementation of BUS_SET_RESOURCE() uses the
4439  * resource_list_add() function to do most of the work. It calls
4440  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4441  * edit.
4442  */
4443 int
4444 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4445     rman_res_t start, rman_res_t count)
4446 {
4447 	struct resource_list *		rl = NULL;
4448 
4449 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4450 	if (!rl)
4451 		return (EINVAL);
4452 
4453 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4454 
4455 	return (0);
4456 }
4457 
4458 /**
4459  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4460  *
4461  * This implementation of BUS_DELETE_RESOURCE() uses the
4462  * resource_list_delete() function to do most of the work. It calls
4463  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4464  * edit.
4465  */
4466 void
4467 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4468 {
4469 	struct resource_list *		rl = NULL;
4470 
4471 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4472 	if (!rl)
4473 		return;
4474 
4475 	resource_list_delete(rl, type, rid);
4476 
4477 	return;
4478 }
4479 
4480 /**
4481  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4482  *
4483  * This implementation of BUS_RELEASE_RESOURCE() uses the
4484  * resource_list_release() function to do most of the work. It calls
4485  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4486  */
4487 int
4488 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4489     int rid, struct resource *r)
4490 {
4491 	struct resource_list *		rl = NULL;
4492 
4493 	if (device_get_parent(child) != dev)
4494 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4495 		    type, rid, r));
4496 
4497 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4498 	if (!rl)
4499 		return (EINVAL);
4500 
4501 	return (resource_list_release(rl, dev, child, type, rid, r));
4502 }
4503 
4504 /**
4505  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4506  *
4507  * This implementation of BUS_ALLOC_RESOURCE() uses the
4508  * resource_list_alloc() function to do most of the work. It calls
4509  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4510  */
4511 struct resource *
4512 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4513     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4514 {
4515 	struct resource_list *		rl = NULL;
4516 
4517 	if (device_get_parent(child) != dev)
4518 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4519 		    type, rid, start, end, count, flags));
4520 
4521 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4522 	if (!rl)
4523 		return (NULL);
4524 
4525 	return (resource_list_alloc(rl, dev, child, type, rid,
4526 	    start, end, count, flags));
4527 }
4528 
4529 /**
4530  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4531  *
4532  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4533  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4534  */
4535 int
4536 bus_generic_child_present(device_t dev, device_t child)
4537 {
4538 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4539 }
4540 
4541 int
4542 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4543 {
4544 	if (dev->parent)
4545 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4546 
4547 	return (ENOENT);
4548 }
4549 
4550 /**
4551  * @brief Helper function for implementing BUS_RESCAN().
4552  *
4553  * This null implementation of BUS_RESCAN() always fails to indicate
4554  * the bus does not support rescanning.
4555  */
4556 int
4557 bus_null_rescan(device_t dev)
4558 {
4559 	return (ENXIO);
4560 }
4561 
4562 /*
4563  * Some convenience functions to make it easier for drivers to use the
4564  * resource-management functions.  All these really do is hide the
4565  * indirection through the parent's method table, making for slightly
4566  * less-wordy code.  In the future, it might make sense for this code
4567  * to maintain some sort of a list of resources allocated by each device.
4568  */
4569 
4570 int
4571 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4572     struct resource **res)
4573 {
4574 	int i;
4575 
4576 	for (i = 0; rs[i].type != -1; i++)
4577 		res[i] = NULL;
4578 	for (i = 0; rs[i].type != -1; i++) {
4579 		res[i] = bus_alloc_resource_any(dev,
4580 		    rs[i].type, &rs[i].rid, rs[i].flags);
4581 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4582 			bus_release_resources(dev, rs, res);
4583 			return (ENXIO);
4584 		}
4585 	}
4586 	return (0);
4587 }
4588 
4589 void
4590 bus_release_resources(device_t dev, const struct resource_spec *rs,
4591     struct resource **res)
4592 {
4593 	int i;
4594 
4595 	for (i = 0; rs[i].type != -1; i++)
4596 		if (res[i] != NULL) {
4597 			bus_release_resource(
4598 			    dev, rs[i].type, rs[i].rid, res[i]);
4599 			res[i] = NULL;
4600 		}
4601 }
4602 
4603 /**
4604  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4605  *
4606  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4607  * parent of @p dev.
4608  */
4609 struct resource *
4610 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4611     rman_res_t end, rman_res_t count, u_int flags)
4612 {
4613 	struct resource *res;
4614 
4615 	if (dev->parent == NULL)
4616 		return (NULL);
4617 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4618 	    count, flags);
4619 	return (res);
4620 }
4621 
4622 /**
4623  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4624  *
4625  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4626  * parent of @p dev.
4627  */
4628 int
4629 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4630     rman_res_t end)
4631 {
4632 	if (dev->parent == NULL)
4633 		return (EINVAL);
4634 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4635 }
4636 
4637 /**
4638  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4639  *
4640  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4641  * parent of @p dev.
4642  */
4643 int
4644 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4645 {
4646 	if (dev->parent == NULL)
4647 		return (EINVAL);
4648 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4649 }
4650 
4651 /**
4652  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4653  *
4654  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4655  * parent of @p dev.
4656  */
4657 int
4658 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4659 {
4660 	if (dev->parent == NULL)
4661 		return (EINVAL);
4662 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4663 }
4664 
4665 /**
4666  * @brief Wrapper function for BUS_MAP_RESOURCE().
4667  *
4668  * This function simply calls the BUS_MAP_RESOURCE() method of the
4669  * parent of @p dev.
4670  */
4671 int
4672 bus_map_resource(device_t dev, int type, struct resource *r,
4673     struct resource_map_request *args, struct resource_map *map)
4674 {
4675 	if (dev->parent == NULL)
4676 		return (EINVAL);
4677 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4678 }
4679 
4680 /**
4681  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4682  *
4683  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4684  * parent of @p dev.
4685  */
4686 int
4687 bus_unmap_resource(device_t dev, int type, struct resource *r,
4688     struct resource_map *map)
4689 {
4690 	if (dev->parent == NULL)
4691 		return (EINVAL);
4692 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4693 }
4694 
4695 /**
4696  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4697  *
4698  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4699  * parent of @p dev.
4700  */
4701 int
4702 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4703 {
4704 	int rv;
4705 
4706 	if (dev->parent == NULL)
4707 		return (EINVAL);
4708 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4709 	return (rv);
4710 }
4711 
4712 /**
4713  * @brief Wrapper function for BUS_SETUP_INTR().
4714  *
4715  * This function simply calls the BUS_SETUP_INTR() method of the
4716  * parent of @p dev.
4717  */
4718 int
4719 bus_setup_intr(device_t dev, struct resource *r, int flags,
4720     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4721 {
4722 	int error;
4723 
4724 	if (dev->parent == NULL)
4725 		return (EINVAL);
4726 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4727 	    arg, cookiep);
4728 	if (error != 0)
4729 		return (error);
4730 	if (handler != NULL && !(flags & INTR_MPSAFE))
4731 		device_printf(dev, "[GIANT-LOCKED]\n");
4732 	return (0);
4733 }
4734 
4735 /**
4736  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4737  *
4738  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4739  * parent of @p dev.
4740  */
4741 int
4742 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4743 {
4744 	if (dev->parent == NULL)
4745 		return (EINVAL);
4746 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4747 }
4748 
4749 /**
4750  * @brief Wrapper function for BUS_SUSPEND_INTR().
4751  *
4752  * This function simply calls the BUS_SUSPEND_INTR() method of the
4753  * parent of @p dev.
4754  */
4755 int
4756 bus_suspend_intr(device_t dev, struct resource *r)
4757 {
4758 	if (dev->parent == NULL)
4759 		return (EINVAL);
4760 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4761 }
4762 
4763 /**
4764  * @brief Wrapper function for BUS_RESUME_INTR().
4765  *
4766  * This function simply calls the BUS_RESUME_INTR() method of the
4767  * parent of @p dev.
4768  */
4769 int
4770 bus_resume_intr(device_t dev, struct resource *r)
4771 {
4772 	if (dev->parent == NULL)
4773 		return (EINVAL);
4774 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4775 }
4776 
4777 /**
4778  * @brief Wrapper function for BUS_BIND_INTR().
4779  *
4780  * This function simply calls the BUS_BIND_INTR() method of the
4781  * parent of @p dev.
4782  */
4783 int
4784 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4785 {
4786 	if (dev->parent == NULL)
4787 		return (EINVAL);
4788 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4789 }
4790 
4791 /**
4792  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4793  *
4794  * This function first formats the requested description into a
4795  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4796  * the parent of @p dev.
4797  */
4798 int
4799 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4800     const char *fmt, ...)
4801 {
4802 	va_list ap;
4803 	char descr[MAXCOMLEN + 1];
4804 
4805 	if (dev->parent == NULL)
4806 		return (EINVAL);
4807 	va_start(ap, fmt);
4808 	vsnprintf(descr, sizeof(descr), fmt, ap);
4809 	va_end(ap);
4810 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4811 }
4812 
4813 /**
4814  * @brief Wrapper function for BUS_SET_RESOURCE().
4815  *
4816  * This function simply calls the BUS_SET_RESOURCE() method of the
4817  * parent of @p dev.
4818  */
4819 int
4820 bus_set_resource(device_t dev, int type, int rid,
4821     rman_res_t start, rman_res_t count)
4822 {
4823 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4824 	    start, count));
4825 }
4826 
4827 /**
4828  * @brief Wrapper function for BUS_GET_RESOURCE().
4829  *
4830  * This function simply calls the BUS_GET_RESOURCE() method of the
4831  * parent of @p dev.
4832  */
4833 int
4834 bus_get_resource(device_t dev, int type, int rid,
4835     rman_res_t *startp, rman_res_t *countp)
4836 {
4837 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4838 	    startp, countp));
4839 }
4840 
4841 /**
4842  * @brief Wrapper function for BUS_GET_RESOURCE().
4843  *
4844  * This function simply calls the BUS_GET_RESOURCE() method of the
4845  * parent of @p dev and returns the start value.
4846  */
4847 rman_res_t
4848 bus_get_resource_start(device_t dev, int type, int rid)
4849 {
4850 	rman_res_t start;
4851 	rman_res_t count;
4852 	int error;
4853 
4854 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4855 	    &start, &count);
4856 	if (error)
4857 		return (0);
4858 	return (start);
4859 }
4860 
4861 /**
4862  * @brief Wrapper function for BUS_GET_RESOURCE().
4863  *
4864  * This function simply calls the BUS_GET_RESOURCE() method of the
4865  * parent of @p dev and returns the count value.
4866  */
4867 rman_res_t
4868 bus_get_resource_count(device_t dev, int type, int rid)
4869 {
4870 	rman_res_t start;
4871 	rman_res_t count;
4872 	int error;
4873 
4874 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4875 	    &start, &count);
4876 	if (error)
4877 		return (0);
4878 	return (count);
4879 }
4880 
4881 /**
4882  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4883  *
4884  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4885  * parent of @p dev.
4886  */
4887 void
4888 bus_delete_resource(device_t dev, int type, int rid)
4889 {
4890 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4891 }
4892 
4893 /**
4894  * @brief Wrapper function for BUS_CHILD_PRESENT().
4895  *
4896  * This function simply calls the BUS_CHILD_PRESENT() method of the
4897  * parent of @p dev.
4898  */
4899 int
4900 bus_child_present(device_t child)
4901 {
4902 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4903 }
4904 
4905 /**
4906  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4907  *
4908  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4909  * parent of @p dev.
4910  */
4911 int
4912 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4913 {
4914 	device_t parent;
4915 
4916 	parent = device_get_parent(child);
4917 	if (parent == NULL) {
4918 		*buf = '\0';
4919 		return (0);
4920 	}
4921 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4922 }
4923 
4924 /**
4925  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4926  *
4927  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4928  * parent of @p dev.
4929  */
4930 int
4931 bus_child_location_str(device_t child, char *buf, size_t buflen)
4932 {
4933 	device_t parent;
4934 
4935 	parent = device_get_parent(child);
4936 	if (parent == NULL) {
4937 		*buf = '\0';
4938 		return (0);
4939 	}
4940 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4941 }
4942 
4943 /**
4944  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4945  *
4946  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4947  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4948  * accomplish this, however. It is an interim function until we can convert
4949  * this interface more fully.
4950  */
4951 /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */
4952 #define	SPACE(s)	((s)->s_size - (s)->s_len)
4953 #define EOB(s)		((s)->s_buf + (s)->s_len)
4954 
4955 static int
4956 bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb)
4957 {
4958 	char *p;
4959 	ssize_t space;
4960 
4961 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
4962 	MPASS(sb->s_size >= sb->s_len);
4963 	if (sb->s_error != 0)
4964 		return (-1);
4965 	space = SPACE(sb);
4966 	if (space <= 1) {
4967 		sb->s_error = ENOMEM;
4968 		return (-1);
4969 	}
4970 	p = EOB(sb);
4971 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
4972 	bus_child_pnpinfo_str(dev, p, space);
4973 	sb->s_len += strlen(p);
4974 	return (0);
4975 }
4976 
4977 /**
4978  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4979  *
4980  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4981  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4982  * accomplish this, however. It is an interim function until we can convert
4983  * this interface more fully.
4984  */
4985 static int
4986 bus_child_location_sb(device_t dev, struct sbuf *sb)
4987 {
4988 	char *p;
4989 	ssize_t space;
4990 
4991 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
4992 	MPASS(sb->s_size >= sb->s_len);
4993 	if (sb->s_error != 0)
4994 		return (-1);
4995 	space = SPACE(sb);
4996 	if (space <= 1) {
4997 		sb->s_error = ENOMEM;
4998 		return (-1);
4999 	}
5000 	p = EOB(sb);
5001 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
5002 	bus_child_location_str(dev, p, space);
5003 	sb->s_len += strlen(p);
5004 	return (0);
5005 }
5006 #undef SPACE
5007 #undef EOB
5008 
5009 /**
5010  * @brief Wrapper function for BUS_GET_CPUS().
5011  *
5012  * This function simply calls the BUS_GET_CPUS() method of the
5013  * parent of @p dev.
5014  */
5015 int
5016 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5017 {
5018 	device_t parent;
5019 
5020 	parent = device_get_parent(dev);
5021 	if (parent == NULL)
5022 		return (EINVAL);
5023 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5024 }
5025 
5026 /**
5027  * @brief Wrapper function for BUS_GET_DMA_TAG().
5028  *
5029  * This function simply calls the BUS_GET_DMA_TAG() method of the
5030  * parent of @p dev.
5031  */
5032 bus_dma_tag_t
5033 bus_get_dma_tag(device_t dev)
5034 {
5035 	device_t parent;
5036 
5037 	parent = device_get_parent(dev);
5038 	if (parent == NULL)
5039 		return (NULL);
5040 	return (BUS_GET_DMA_TAG(parent, dev));
5041 }
5042 
5043 /**
5044  * @brief Wrapper function for BUS_GET_BUS_TAG().
5045  *
5046  * This function simply calls the BUS_GET_BUS_TAG() method of the
5047  * parent of @p dev.
5048  */
5049 bus_space_tag_t
5050 bus_get_bus_tag(device_t dev)
5051 {
5052 	device_t parent;
5053 
5054 	parent = device_get_parent(dev);
5055 	if (parent == NULL)
5056 		return ((bus_space_tag_t)0);
5057 	return (BUS_GET_BUS_TAG(parent, dev));
5058 }
5059 
5060 /**
5061  * @brief Wrapper function for BUS_GET_DOMAIN().
5062  *
5063  * This function simply calls the BUS_GET_DOMAIN() method of the
5064  * parent of @p dev.
5065  */
5066 int
5067 bus_get_domain(device_t dev, int *domain)
5068 {
5069 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5070 }
5071 
5072 /* Resume all devices and then notify userland that we're up again. */
5073 static int
5074 root_resume(device_t dev)
5075 {
5076 	int error;
5077 
5078 	error = bus_generic_resume(dev);
5079 	if (error == 0) {
5080 		devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */
5081 		devctl_notify("kernel", "power", "resume", NULL);
5082 	}
5083 	return (error);
5084 }
5085 
5086 static int
5087 root_print_child(device_t dev, device_t child)
5088 {
5089 	int	retval = 0;
5090 
5091 	retval += bus_print_child_header(dev, child);
5092 	retval += printf("\n");
5093 
5094 	return (retval);
5095 }
5096 
5097 static int
5098 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5099     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5100 {
5101 	/*
5102 	 * If an interrupt mapping gets to here something bad has happened.
5103 	 */
5104 	panic("root_setup_intr");
5105 }
5106 
5107 /*
5108  * If we get here, assume that the device is permanent and really is
5109  * present in the system.  Removable bus drivers are expected to intercept
5110  * this call long before it gets here.  We return -1 so that drivers that
5111  * really care can check vs -1 or some ERRNO returned higher in the food
5112  * chain.
5113  */
5114 static int
5115 root_child_present(device_t dev, device_t child)
5116 {
5117 	return (-1);
5118 }
5119 
5120 static int
5121 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5122     cpuset_t *cpuset)
5123 {
5124 	switch (op) {
5125 	case INTR_CPUS:
5126 		/* Default to returning the set of all CPUs. */
5127 		if (setsize != sizeof(cpuset_t))
5128 			return (EINVAL);
5129 		*cpuset = all_cpus;
5130 		return (0);
5131 	default:
5132 		return (EINVAL);
5133 	}
5134 }
5135 
5136 static kobj_method_t root_methods[] = {
5137 	/* Device interface */
5138 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5139 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5140 	KOBJMETHOD(device_resume,	root_resume),
5141 
5142 	/* Bus interface */
5143 	KOBJMETHOD(bus_print_child,	root_print_child),
5144 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5145 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5146 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5147 	KOBJMETHOD(bus_child_present,	root_child_present),
5148 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5149 
5150 	KOBJMETHOD_END
5151 };
5152 
5153 static driver_t root_driver = {
5154 	"root",
5155 	root_methods,
5156 	1,			/* no softc */
5157 };
5158 
5159 device_t	root_bus;
5160 devclass_t	root_devclass;
5161 
5162 static int
5163 root_bus_module_handler(module_t mod, int what, void* arg)
5164 {
5165 	switch (what) {
5166 	case MOD_LOAD:
5167 		TAILQ_INIT(&bus_data_devices);
5168 		kobj_class_compile((kobj_class_t) &root_driver);
5169 		root_bus = make_device(NULL, "root", 0);
5170 		root_bus->desc = "System root bus";
5171 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5172 		root_bus->driver = &root_driver;
5173 		root_bus->state = DS_ATTACHED;
5174 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5175 		devinit();
5176 		return (0);
5177 
5178 	case MOD_SHUTDOWN:
5179 		device_shutdown(root_bus);
5180 		return (0);
5181 	default:
5182 		return (EOPNOTSUPP);
5183 	}
5184 
5185 	return (0);
5186 }
5187 
5188 static moduledata_t root_bus_mod = {
5189 	"rootbus",
5190 	root_bus_module_handler,
5191 	NULL
5192 };
5193 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5194 
5195 /**
5196  * @brief Automatically configure devices
5197  *
5198  * This function begins the autoconfiguration process by calling
5199  * device_probe_and_attach() for each child of the @c root0 device.
5200  */
5201 void
5202 root_bus_configure(void)
5203 {
5204 	PDEBUG(("."));
5205 
5206 	/* Eventually this will be split up, but this is sufficient for now. */
5207 	bus_set_pass(BUS_PASS_DEFAULT);
5208 }
5209 
5210 /**
5211  * @brief Module handler for registering device drivers
5212  *
5213  * This module handler is used to automatically register device
5214  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5215  * devclass_add_driver() for the driver described by the
5216  * driver_module_data structure pointed to by @p arg
5217  */
5218 int
5219 driver_module_handler(module_t mod, int what, void *arg)
5220 {
5221 	struct driver_module_data *dmd;
5222 	devclass_t bus_devclass;
5223 	kobj_class_t driver;
5224 	int error, pass;
5225 
5226 	dmd = (struct driver_module_data *)arg;
5227 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5228 	error = 0;
5229 
5230 	switch (what) {
5231 	case MOD_LOAD:
5232 		if (dmd->dmd_chainevh)
5233 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5234 
5235 		pass = dmd->dmd_pass;
5236 		driver = dmd->dmd_driver;
5237 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5238 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5239 		error = devclass_add_driver(bus_devclass, driver, pass,
5240 		    dmd->dmd_devclass);
5241 		break;
5242 
5243 	case MOD_UNLOAD:
5244 		PDEBUG(("Unloading module: driver %s from bus %s",
5245 		    DRIVERNAME(dmd->dmd_driver),
5246 		    dmd->dmd_busname));
5247 		error = devclass_delete_driver(bus_devclass,
5248 		    dmd->dmd_driver);
5249 
5250 		if (!error && dmd->dmd_chainevh)
5251 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5252 		break;
5253 	case MOD_QUIESCE:
5254 		PDEBUG(("Quiesce module: driver %s from bus %s",
5255 		    DRIVERNAME(dmd->dmd_driver),
5256 		    dmd->dmd_busname));
5257 		error = devclass_quiesce_driver(bus_devclass,
5258 		    dmd->dmd_driver);
5259 
5260 		if (!error && dmd->dmd_chainevh)
5261 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5262 		break;
5263 	default:
5264 		error = EOPNOTSUPP;
5265 		break;
5266 	}
5267 
5268 	return (error);
5269 }
5270 
5271 /**
5272  * @brief Enumerate all hinted devices for this bus.
5273  *
5274  * Walks through the hints for this bus and calls the bus_hinted_child
5275  * routine for each one it fines.  It searches first for the specific
5276  * bus that's being probed for hinted children (eg isa0), and then for
5277  * generic children (eg isa).
5278  *
5279  * @param	dev	bus device to enumerate
5280  */
5281 void
5282 bus_enumerate_hinted_children(device_t bus)
5283 {
5284 	int i;
5285 	const char *dname, *busname;
5286 	int dunit;
5287 
5288 	/*
5289 	 * enumerate all devices on the specific bus
5290 	 */
5291 	busname = device_get_nameunit(bus);
5292 	i = 0;
5293 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5294 		BUS_HINTED_CHILD(bus, dname, dunit);
5295 
5296 	/*
5297 	 * and all the generic ones.
5298 	 */
5299 	busname = device_get_name(bus);
5300 	i = 0;
5301 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5302 		BUS_HINTED_CHILD(bus, dname, dunit);
5303 }
5304 
5305 #ifdef BUS_DEBUG
5306 
5307 /* the _short versions avoid iteration by not calling anything that prints
5308  * more than oneliners. I love oneliners.
5309  */
5310 
5311 static void
5312 print_device_short(device_t dev, int indent)
5313 {
5314 	if (!dev)
5315 		return;
5316 
5317 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5318 	    dev->unit, dev->desc,
5319 	    (dev->parent? "":"no "),
5320 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5321 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5322 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5323 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5324 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5325 	    (dev->flags&DF_REBID? "rebiddable,":""),
5326 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5327 	    (dev->ivars? "":"no "),
5328 	    (dev->softc? "":"no "),
5329 	    dev->busy));
5330 }
5331 
5332 static void
5333 print_device(device_t dev, int indent)
5334 {
5335 	if (!dev)
5336 		return;
5337 
5338 	print_device_short(dev, indent);
5339 
5340 	indentprintf(("Parent:\n"));
5341 	print_device_short(dev->parent, indent+1);
5342 	indentprintf(("Driver:\n"));
5343 	print_driver_short(dev->driver, indent+1);
5344 	indentprintf(("Devclass:\n"));
5345 	print_devclass_short(dev->devclass, indent+1);
5346 }
5347 
5348 void
5349 print_device_tree_short(device_t dev, int indent)
5350 /* print the device and all its children (indented) */
5351 {
5352 	device_t child;
5353 
5354 	if (!dev)
5355 		return;
5356 
5357 	print_device_short(dev, indent);
5358 
5359 	TAILQ_FOREACH(child, &dev->children, link) {
5360 		print_device_tree_short(child, indent+1);
5361 	}
5362 }
5363 
5364 void
5365 print_device_tree(device_t dev, int indent)
5366 /* print the device and all its children (indented) */
5367 {
5368 	device_t child;
5369 
5370 	if (!dev)
5371 		return;
5372 
5373 	print_device(dev, indent);
5374 
5375 	TAILQ_FOREACH(child, &dev->children, link) {
5376 		print_device_tree(child, indent+1);
5377 	}
5378 }
5379 
5380 static void
5381 print_driver_short(driver_t *driver, int indent)
5382 {
5383 	if (!driver)
5384 		return;
5385 
5386 	indentprintf(("driver %s: softc size = %zd\n",
5387 	    driver->name, driver->size));
5388 }
5389 
5390 static void
5391 print_driver(driver_t *driver, int indent)
5392 {
5393 	if (!driver)
5394 		return;
5395 
5396 	print_driver_short(driver, indent);
5397 }
5398 
5399 static void
5400 print_driver_list(driver_list_t drivers, int indent)
5401 {
5402 	driverlink_t driver;
5403 
5404 	TAILQ_FOREACH(driver, &drivers, link) {
5405 		print_driver(driver->driver, indent);
5406 	}
5407 }
5408 
5409 static void
5410 print_devclass_short(devclass_t dc, int indent)
5411 {
5412 	if ( !dc )
5413 		return;
5414 
5415 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5416 }
5417 
5418 static void
5419 print_devclass(devclass_t dc, int indent)
5420 {
5421 	int i;
5422 
5423 	if ( !dc )
5424 		return;
5425 
5426 	print_devclass_short(dc, indent);
5427 	indentprintf(("Drivers:\n"));
5428 	print_driver_list(dc->drivers, indent+1);
5429 
5430 	indentprintf(("Devices:\n"));
5431 	for (i = 0; i < dc->maxunit; i++)
5432 		if (dc->devices[i])
5433 			print_device(dc->devices[i], indent+1);
5434 }
5435 
5436 void
5437 print_devclass_list_short(void)
5438 {
5439 	devclass_t dc;
5440 
5441 	printf("Short listing of devclasses, drivers & devices:\n");
5442 	TAILQ_FOREACH(dc, &devclasses, link) {
5443 		print_devclass_short(dc, 0);
5444 	}
5445 }
5446 
5447 void
5448 print_devclass_list(void)
5449 {
5450 	devclass_t dc;
5451 
5452 	printf("Full listing of devclasses, drivers & devices:\n");
5453 	TAILQ_FOREACH(dc, &devclasses, link) {
5454 		print_devclass(dc, 0);
5455 	}
5456 }
5457 
5458 #endif
5459 
5460 /*
5461  * User-space access to the device tree.
5462  *
5463  * We implement a small set of nodes:
5464  *
5465  * hw.bus			Single integer read method to obtain the
5466  *				current generation count.
5467  * hw.bus.devices		Reads the entire device tree in flat space.
5468  * hw.bus.rman			Resource manager interface
5469  *
5470  * We might like to add the ability to scan devclasses and/or drivers to
5471  * determine what else is currently loaded/available.
5472  */
5473 
5474 static int
5475 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5476 {
5477 	struct u_businfo	ubus;
5478 
5479 	ubus.ub_version = BUS_USER_VERSION;
5480 	ubus.ub_generation = bus_data_generation;
5481 
5482 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5483 }
5484 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5485     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5486     "bus-related data");
5487 
5488 static int
5489 sysctl_devices(SYSCTL_HANDLER_ARGS)
5490 {
5491 	struct sbuf		sb;
5492 	int			*name = (int *)arg1;
5493 	u_int			namelen = arg2;
5494 	int			index;
5495 	device_t		dev;
5496 	struct u_device		*udev;
5497 	int			error;
5498 
5499 	if (namelen != 2)
5500 		return (EINVAL);
5501 
5502 	if (bus_data_generation_check(name[0]))
5503 		return (EINVAL);
5504 
5505 	index = name[1];
5506 
5507 	/*
5508 	 * Scan the list of devices, looking for the requested index.
5509 	 */
5510 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5511 		if (index-- == 0)
5512 			break;
5513 	}
5514 	if (dev == NULL)
5515 		return (ENOENT);
5516 
5517 	/*
5518 	 * Populate the return item, careful not to overflow the buffer.
5519 	 */
5520 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5521 	if (udev == NULL)
5522 		return (ENOMEM);
5523 	udev->dv_handle = (uintptr_t)dev;
5524 	udev->dv_parent = (uintptr_t)dev->parent;
5525 	udev->dv_devflags = dev->devflags;
5526 	udev->dv_flags = dev->flags;
5527 	udev->dv_state = dev->state;
5528 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5529 	if (dev->nameunit != NULL)
5530 		sbuf_cat(&sb, dev->nameunit);
5531 	else
5532 		sbuf_putc(&sb, '\0');
5533 	sbuf_putc(&sb, '\0');
5534 	if (dev->desc != NULL)
5535 		sbuf_cat(&sb, dev->desc);
5536 	else
5537 		sbuf_putc(&sb, '\0');
5538 	sbuf_putc(&sb, '\0');
5539 	if (dev->driver != NULL)
5540 		sbuf_cat(&sb, dev->driver->name);
5541 	else
5542 		sbuf_putc(&sb, '\0');
5543 	sbuf_putc(&sb, '\0');
5544 	bus_child_pnpinfo_sb(dev, &sb);
5545 	sbuf_putc(&sb, '\0');
5546 	bus_child_location_sb(dev, &sb);
5547 	sbuf_putc(&sb, '\0');
5548 	error = sbuf_finish(&sb);
5549 	if (error == 0)
5550 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5551 	sbuf_delete(&sb);
5552 	free(udev, M_BUS);
5553 	return (error);
5554 }
5555 
5556 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5557     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5558     "system device tree");
5559 
5560 int
5561 bus_data_generation_check(int generation)
5562 {
5563 	if (generation != bus_data_generation)
5564 		return (1);
5565 
5566 	/* XXX generate optimised lists here? */
5567 	return (0);
5568 }
5569 
5570 void
5571 bus_data_generation_update(void)
5572 {
5573 	atomic_add_int(&bus_data_generation, 1);
5574 }
5575 
5576 int
5577 bus_free_resource(device_t dev, int type, struct resource *r)
5578 {
5579 	if (r == NULL)
5580 		return (0);
5581 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5582 }
5583 
5584 device_t
5585 device_lookup_by_name(const char *name)
5586 {
5587 	device_t dev;
5588 
5589 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5590 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5591 			return (dev);
5592 	}
5593 	return (NULL);
5594 }
5595 
5596 /*
5597  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5598  * implicit semantics on open, so it could not be reused for this.
5599  * Another option would be to call this /dev/bus?
5600  */
5601 static int
5602 find_device(struct devreq *req, device_t *devp)
5603 {
5604 	device_t dev;
5605 
5606 	/*
5607 	 * First, ensure that the name is nul terminated.
5608 	 */
5609 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5610 		return (EINVAL);
5611 
5612 	/*
5613 	 * Second, try to find an attached device whose name matches
5614 	 * 'name'.
5615 	 */
5616 	dev = device_lookup_by_name(req->dr_name);
5617 	if (dev != NULL) {
5618 		*devp = dev;
5619 		return (0);
5620 	}
5621 
5622 	/* Finally, give device enumerators a chance. */
5623 	dev = NULL;
5624 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5625 	if (dev == NULL)
5626 		return (ENOENT);
5627 	*devp = dev;
5628 	return (0);
5629 }
5630 
5631 static bool
5632 driver_exists(device_t bus, const char *driver)
5633 {
5634 	devclass_t dc;
5635 
5636 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5637 		if (devclass_find_driver_internal(dc, driver) != NULL)
5638 			return (true);
5639 	}
5640 	return (false);
5641 }
5642 
5643 static void
5644 device_gen_nomatch(device_t dev)
5645 {
5646 	device_t child;
5647 
5648 	if (dev->flags & DF_NEEDNOMATCH &&
5649 	    dev->state == DS_NOTPRESENT) {
5650 		BUS_PROBE_NOMATCH(dev->parent, dev);
5651 		devnomatch(dev);
5652 		dev->flags |= DF_DONENOMATCH;
5653 	}
5654 	dev->flags &= ~DF_NEEDNOMATCH;
5655 	TAILQ_FOREACH(child, &dev->children, link) {
5656 		device_gen_nomatch(child);
5657 	}
5658 }
5659 
5660 static void
5661 device_do_deferred_actions(void)
5662 {
5663 	devclass_t dc;
5664 	driverlink_t dl;
5665 
5666 	/*
5667 	 * Walk through the devclasses to find all the drivers we've tagged as
5668 	 * deferred during the freeze and call the driver added routines. They
5669 	 * have already been added to the lists in the background, so the driver
5670 	 * added routines that trigger a probe will have all the right bidders
5671 	 * for the probe auction.
5672 	 */
5673 	TAILQ_FOREACH(dc, &devclasses, link) {
5674 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5675 			if (dl->flags & DL_DEFERRED_PROBE) {
5676 				devclass_driver_added(dc, dl->driver);
5677 				dl->flags &= ~DL_DEFERRED_PROBE;
5678 			}
5679 		}
5680 	}
5681 
5682 	/*
5683 	 * We also defer no-match events during a freeze. Walk the tree and
5684 	 * generate all the pent-up events that are still relevant.
5685 	 */
5686 	device_gen_nomatch(root_bus);
5687 	bus_data_generation_update();
5688 }
5689 
5690 static int
5691 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5692     struct thread *td)
5693 {
5694 	struct devreq *req;
5695 	device_t dev;
5696 	int error, old;
5697 
5698 	/* Locate the device to control. */
5699 	mtx_lock(&Giant);
5700 	req = (struct devreq *)data;
5701 	switch (cmd) {
5702 	case DEV_ATTACH:
5703 	case DEV_DETACH:
5704 	case DEV_ENABLE:
5705 	case DEV_DISABLE:
5706 	case DEV_SUSPEND:
5707 	case DEV_RESUME:
5708 	case DEV_SET_DRIVER:
5709 	case DEV_CLEAR_DRIVER:
5710 	case DEV_RESCAN:
5711 	case DEV_DELETE:
5712 	case DEV_RESET:
5713 		error = priv_check(td, PRIV_DRIVER);
5714 		if (error == 0)
5715 			error = find_device(req, &dev);
5716 		break;
5717 	case DEV_FREEZE:
5718 	case DEV_THAW:
5719 		error = priv_check(td, PRIV_DRIVER);
5720 		break;
5721 	default:
5722 		error = ENOTTY;
5723 		break;
5724 	}
5725 	if (error) {
5726 		mtx_unlock(&Giant);
5727 		return (error);
5728 	}
5729 
5730 	/* Perform the requested operation. */
5731 	switch (cmd) {
5732 	case DEV_ATTACH:
5733 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5734 			error = EBUSY;
5735 		else if (!device_is_enabled(dev))
5736 			error = ENXIO;
5737 		else
5738 			error = device_probe_and_attach(dev);
5739 		break;
5740 	case DEV_DETACH:
5741 		if (!device_is_attached(dev)) {
5742 			error = ENXIO;
5743 			break;
5744 		}
5745 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5746 			error = device_quiesce(dev);
5747 			if (error)
5748 				break;
5749 		}
5750 		error = device_detach(dev);
5751 		break;
5752 	case DEV_ENABLE:
5753 		if (device_is_enabled(dev)) {
5754 			error = EBUSY;
5755 			break;
5756 		}
5757 
5758 		/*
5759 		 * If the device has been probed but not attached (e.g.
5760 		 * when it has been disabled by a loader hint), just
5761 		 * attach the device rather than doing a full probe.
5762 		 */
5763 		device_enable(dev);
5764 		if (device_is_alive(dev)) {
5765 			/*
5766 			 * If the device was disabled via a hint, clear
5767 			 * the hint.
5768 			 */
5769 			if (resource_disabled(dev->driver->name, dev->unit))
5770 				resource_unset_value(dev->driver->name,
5771 				    dev->unit, "disabled");
5772 			error = device_attach(dev);
5773 		} else
5774 			error = device_probe_and_attach(dev);
5775 		break;
5776 	case DEV_DISABLE:
5777 		if (!device_is_enabled(dev)) {
5778 			error = ENXIO;
5779 			break;
5780 		}
5781 
5782 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5783 			error = device_quiesce(dev);
5784 			if (error)
5785 				break;
5786 		}
5787 
5788 		/*
5789 		 * Force DF_FIXEDCLASS on around detach to preserve
5790 		 * the existing name.
5791 		 */
5792 		old = dev->flags;
5793 		dev->flags |= DF_FIXEDCLASS;
5794 		error = device_detach(dev);
5795 		if (!(old & DF_FIXEDCLASS))
5796 			dev->flags &= ~DF_FIXEDCLASS;
5797 		if (error == 0)
5798 			device_disable(dev);
5799 		break;
5800 	case DEV_SUSPEND:
5801 		if (device_is_suspended(dev)) {
5802 			error = EBUSY;
5803 			break;
5804 		}
5805 		if (device_get_parent(dev) == NULL) {
5806 			error = EINVAL;
5807 			break;
5808 		}
5809 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5810 		break;
5811 	case DEV_RESUME:
5812 		if (!device_is_suspended(dev)) {
5813 			error = EINVAL;
5814 			break;
5815 		}
5816 		if (device_get_parent(dev) == NULL) {
5817 			error = EINVAL;
5818 			break;
5819 		}
5820 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5821 		break;
5822 	case DEV_SET_DRIVER: {
5823 		devclass_t dc;
5824 		char driver[128];
5825 
5826 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5827 		if (error)
5828 			break;
5829 		if (driver[0] == '\0') {
5830 			error = EINVAL;
5831 			break;
5832 		}
5833 		if (dev->devclass != NULL &&
5834 		    strcmp(driver, dev->devclass->name) == 0)
5835 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5836 			break;
5837 
5838 		/*
5839 		 * Scan drivers for this device's bus looking for at
5840 		 * least one matching driver.
5841 		 */
5842 		if (dev->parent == NULL) {
5843 			error = EINVAL;
5844 			break;
5845 		}
5846 		if (!driver_exists(dev->parent, driver)) {
5847 			error = ENOENT;
5848 			break;
5849 		}
5850 		dc = devclass_create(driver);
5851 		if (dc == NULL) {
5852 			error = ENOMEM;
5853 			break;
5854 		}
5855 
5856 		/* Detach device if necessary. */
5857 		if (device_is_attached(dev)) {
5858 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5859 				error = device_detach(dev);
5860 			else
5861 				error = EBUSY;
5862 			if (error)
5863 				break;
5864 		}
5865 
5866 		/* Clear any previously-fixed device class and unit. */
5867 		if (dev->flags & DF_FIXEDCLASS)
5868 			devclass_delete_device(dev->devclass, dev);
5869 		dev->flags |= DF_WILDCARD;
5870 		dev->unit = -1;
5871 
5872 		/* Force the new device class. */
5873 		error = devclass_add_device(dc, dev);
5874 		if (error)
5875 			break;
5876 		dev->flags |= DF_FIXEDCLASS;
5877 		error = device_probe_and_attach(dev);
5878 		break;
5879 	}
5880 	case DEV_CLEAR_DRIVER:
5881 		if (!(dev->flags & DF_FIXEDCLASS)) {
5882 			error = 0;
5883 			break;
5884 		}
5885 		if (device_is_attached(dev)) {
5886 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5887 				error = device_detach(dev);
5888 			else
5889 				error = EBUSY;
5890 			if (error)
5891 				break;
5892 		}
5893 
5894 		dev->flags &= ~DF_FIXEDCLASS;
5895 		dev->flags |= DF_WILDCARD;
5896 		devclass_delete_device(dev->devclass, dev);
5897 		error = device_probe_and_attach(dev);
5898 		break;
5899 	case DEV_RESCAN:
5900 		if (!device_is_attached(dev)) {
5901 			error = ENXIO;
5902 			break;
5903 		}
5904 		error = BUS_RESCAN(dev);
5905 		break;
5906 	case DEV_DELETE: {
5907 		device_t parent;
5908 
5909 		parent = device_get_parent(dev);
5910 		if (parent == NULL) {
5911 			error = EINVAL;
5912 			break;
5913 		}
5914 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5915 			if (bus_child_present(dev) != 0) {
5916 				error = EBUSY;
5917 				break;
5918 			}
5919 		}
5920 
5921 		error = device_delete_child(parent, dev);
5922 		break;
5923 	}
5924 	case DEV_FREEZE:
5925 		if (device_frozen)
5926 			error = EBUSY;
5927 		else
5928 			device_frozen = true;
5929 		break;
5930 	case DEV_THAW:
5931 		if (!device_frozen)
5932 			error = EBUSY;
5933 		else {
5934 			device_do_deferred_actions();
5935 			device_frozen = false;
5936 		}
5937 		break;
5938 	case DEV_RESET:
5939 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5940 			error = EINVAL;
5941 			break;
5942 		}
5943 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5944 		    req->dr_flags);
5945 		break;
5946 	}
5947 	mtx_unlock(&Giant);
5948 	return (error);
5949 }
5950 
5951 static struct cdevsw devctl2_cdevsw = {
5952 	.d_version =	D_VERSION,
5953 	.d_ioctl =	devctl2_ioctl,
5954 	.d_name =	"devctl2",
5955 };
5956 
5957 static void
5958 devctl2_init(void)
5959 {
5960 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5961 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5962 }
5963 
5964 /*
5965  * APIs to manage deprecation and obsolescence.
5966  */
5967 static int obsolete_panic = 0;
5968 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5969     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
5970     "2 = if deprecated)");
5971 
5972 static void
5973 gone_panic(int major, int running, const char *msg)
5974 {
5975 	switch (obsolete_panic)
5976 	{
5977 	case 0:
5978 		return;
5979 	case 1:
5980 		if (running < major)
5981 			return;
5982 		/* FALLTHROUGH */
5983 	default:
5984 		panic("%s", msg);
5985 	}
5986 }
5987 
5988 void
5989 _gone_in(int major, const char *msg)
5990 {
5991 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5992 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5993 		printf("Obsolete code will be removed soon: %s\n", msg);
5994 	else
5995 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5996 		    major, msg);
5997 }
5998 
5999 void
6000 _gone_in_dev(device_t dev, int major, const char *msg)
6001 {
6002 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6003 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6004 		device_printf(dev,
6005 		    "Obsolete code will be removed soon: %s\n", msg);
6006 	else
6007 		device_printf(dev,
6008 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
6009 		    major, msg);
6010 }
6011 
6012 #ifdef DDB
6013 DB_SHOW_COMMAND(device, db_show_device)
6014 {
6015 	device_t dev;
6016 
6017 	if (!have_addr)
6018 		return;
6019 
6020 	dev = (device_t)addr;
6021 
6022 	db_printf("name:    %s\n", device_get_nameunit(dev));
6023 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6024 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6025 	db_printf("  addr:    %p\n", dev);
6026 	db_printf("  parent:  %p\n", dev->parent);
6027 	db_printf("  softc:   %p\n", dev->softc);
6028 	db_printf("  ivars:   %p\n", dev->ivars);
6029 }
6030 
6031 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6032 {
6033 	device_t dev;
6034 
6035 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6036 		db_show_device((db_expr_t)dev, true, count, modif);
6037 	}
6038 }
6039 #endif
6040