1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, _device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of _device. 116 * 117 * The structure is named "_device" instead of "device" to avoid type confusion 118 * caused by other subsystems defining a (struct device). 119 */ 120 struct _device { 121 /* 122 * A device is a kernel object. The first field must be the 123 * current ops table for the object. 124 */ 125 KOBJ_FIELDS; 126 127 /* 128 * Device hierarchy. 129 */ 130 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 131 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 132 device_t parent; /**< parent of this device */ 133 device_list_t children; /**< list of child devices */ 134 135 /* 136 * Details of this device. 137 */ 138 driver_t *driver; /**< current driver */ 139 devclass_t devclass; /**< current device class */ 140 int unit; /**< current unit number */ 141 char* nameunit; /**< name+unit e.g. foodev0 */ 142 char* desc; /**< driver specific description */ 143 int busy; /**< count of calls to device_busy() */ 144 device_state_t state; /**< current device state */ 145 uint32_t devflags; /**< api level flags for device_get_flags() */ 146 u_int flags; /**< internal device flags */ 147 u_int order; /**< order from device_add_child_ordered() */ 148 void *ivars; /**< instance variables */ 149 void *softc; /**< current driver's variables */ 150 151 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 152 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 153 }; 154 155 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 156 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 157 158 EVENTHANDLER_LIST_DEFINE(device_attach); 159 EVENTHANDLER_LIST_DEFINE(device_detach); 160 EVENTHANDLER_LIST_DEFINE(dev_lookup); 161 162 static void devctl2_init(void); 163 static bool device_frozen; 164 165 #define DRIVERNAME(d) ((d)? d->name : "no driver") 166 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 167 168 #ifdef BUS_DEBUG 169 170 static int bus_debug = 1; 171 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 172 "Bus debug level"); 173 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 174 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 175 176 /** 177 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 178 * prevent syslog from deleting initial spaces 179 */ 180 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 181 182 static void print_device_short(device_t dev, int indent); 183 static void print_device(device_t dev, int indent); 184 void print_device_tree_short(device_t dev, int indent); 185 void print_device_tree(device_t dev, int indent); 186 static void print_driver_short(driver_t *driver, int indent); 187 static void print_driver(driver_t *driver, int indent); 188 static void print_driver_list(driver_list_t drivers, int indent); 189 static void print_devclass_short(devclass_t dc, int indent); 190 static void print_devclass(devclass_t dc, int indent); 191 void print_devclass_list_short(void); 192 void print_devclass_list(void); 193 194 #else 195 /* Make the compiler ignore the function calls */ 196 #define PDEBUG(a) /* nop */ 197 #define DEVICENAME(d) /* nop */ 198 199 #define print_device_short(d,i) /* nop */ 200 #define print_device(d,i) /* nop */ 201 #define print_device_tree_short(d,i) /* nop */ 202 #define print_device_tree(d,i) /* nop */ 203 #define print_driver_short(d,i) /* nop */ 204 #define print_driver(d,i) /* nop */ 205 #define print_driver_list(d,i) /* nop */ 206 #define print_devclass_short(d,i) /* nop */ 207 #define print_devclass(d,i) /* nop */ 208 #define print_devclass_list_short() /* nop */ 209 #define print_devclass_list() /* nop */ 210 #endif 211 212 /* 213 * dev sysctl tree 214 */ 215 216 enum { 217 DEVCLASS_SYSCTL_PARENT, 218 }; 219 220 static int 221 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 222 { 223 devclass_t dc = (devclass_t)arg1; 224 const char *value; 225 226 switch (arg2) { 227 case DEVCLASS_SYSCTL_PARENT: 228 value = dc->parent ? dc->parent->name : ""; 229 break; 230 default: 231 return (EINVAL); 232 } 233 return (SYSCTL_OUT_STR(req, value)); 234 } 235 236 static void 237 devclass_sysctl_init(devclass_t dc) 238 { 239 if (dc->sysctl_tree != NULL) 240 return; 241 sysctl_ctx_init(&dc->sysctl_ctx); 242 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 243 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 244 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 245 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 246 OID_AUTO, "%parent", 247 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 248 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 249 "parent class"); 250 } 251 252 enum { 253 DEVICE_SYSCTL_DESC, 254 DEVICE_SYSCTL_DRIVER, 255 DEVICE_SYSCTL_LOCATION, 256 DEVICE_SYSCTL_PNPINFO, 257 DEVICE_SYSCTL_PARENT, 258 }; 259 260 static int 261 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 262 { 263 struct sbuf sb; 264 device_t dev = (device_t)arg1; 265 int error; 266 267 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 268 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 269 switch (arg2) { 270 case DEVICE_SYSCTL_DESC: 271 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 272 break; 273 case DEVICE_SYSCTL_DRIVER: 274 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 275 break; 276 case DEVICE_SYSCTL_LOCATION: 277 bus_child_location(dev, &sb); 278 break; 279 case DEVICE_SYSCTL_PNPINFO: 280 bus_child_pnpinfo(dev, &sb); 281 break; 282 case DEVICE_SYSCTL_PARENT: 283 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 284 break; 285 default: 286 sbuf_delete(&sb); 287 return (EINVAL); 288 } 289 error = sbuf_finish(&sb); 290 sbuf_delete(&sb); 291 return (error); 292 } 293 294 static void 295 device_sysctl_init(device_t dev) 296 { 297 devclass_t dc = dev->devclass; 298 int domain; 299 300 if (dev->sysctl_tree != NULL) 301 return; 302 devclass_sysctl_init(dc); 303 sysctl_ctx_init(&dev->sysctl_ctx); 304 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 305 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 306 dev->nameunit + strlen(dc->name), 307 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 310 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 311 "device description"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%driver", 314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 315 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 316 "device driver name"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%location", 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 320 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 321 "device location relative to parent"); 322 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 323 OID_AUTO, "%pnpinfo", 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 325 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 326 "device identification"); 327 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 328 OID_AUTO, "%parent", 329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 330 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 331 "parent device"); 332 if (bus_get_domain(dev, &domain) == 0) 333 SYSCTL_ADD_INT(&dev->sysctl_ctx, 334 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 335 CTLFLAG_RD, NULL, domain, "NUMA domain"); 336 } 337 338 static void 339 device_sysctl_update(device_t dev) 340 { 341 devclass_t dc = dev->devclass; 342 343 if (dev->sysctl_tree == NULL) 344 return; 345 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 346 } 347 348 static void 349 device_sysctl_fini(device_t dev) 350 { 351 if (dev->sysctl_tree == NULL) 352 return; 353 sysctl_ctx_free(&dev->sysctl_ctx); 354 dev->sysctl_tree = NULL; 355 } 356 357 /* 358 * /dev/devctl implementation 359 */ 360 361 /* 362 * This design allows only one reader for /dev/devctl. This is not desirable 363 * in the long run, but will get a lot of hair out of this implementation. 364 * Maybe we should make this device a clonable device. 365 * 366 * Also note: we specifically do not attach a device to the device_t tree 367 * to avoid potential chicken and egg problems. One could argue that all 368 * of this belongs to the root node. 369 */ 370 371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 374 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 375 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 376 377 static d_open_t devopen; 378 static d_close_t devclose; 379 static d_read_t devread; 380 static d_ioctl_t devioctl; 381 static d_poll_t devpoll; 382 static d_kqfilter_t devkqfilter; 383 384 static struct cdevsw dev_cdevsw = { 385 .d_version = D_VERSION, 386 .d_open = devopen, 387 .d_close = devclose, 388 .d_read = devread, 389 .d_ioctl = devioctl, 390 .d_poll = devpoll, 391 .d_kqfilter = devkqfilter, 392 .d_name = "devctl", 393 }; 394 395 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 396 struct dev_event_info { 397 STAILQ_ENTRY(dev_event_info) dei_link; 398 char dei_data[DEVCTL_BUFFER]; 399 }; 400 401 STAILQ_HEAD(devq, dev_event_info); 402 403 static struct dev_softc { 404 int inuse; 405 int nonblock; 406 int queued; 407 int async; 408 struct mtx mtx; 409 struct cv cv; 410 struct selinfo sel; 411 struct devq devq; 412 struct sigio *sigio; 413 uma_zone_t zone; 414 } devsoftc; 415 416 static void filt_devctl_detach(struct knote *kn); 417 static int filt_devctl_read(struct knote *kn, long hint); 418 419 struct filterops devctl_rfiltops = { 420 .f_isfd = 1, 421 .f_detach = filt_devctl_detach, 422 .f_event = filt_devctl_read, 423 }; 424 425 static struct cdev *devctl_dev; 426 427 static void 428 devinit(void) 429 { 430 int reserve; 431 uma_zone_t z; 432 433 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 434 UID_ROOT, GID_WHEEL, 0600, "devctl"); 435 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 436 cv_init(&devsoftc.cv, "dev cv"); 437 STAILQ_INIT(&devsoftc.devq); 438 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 439 if (devctl_queue_length > 0) { 440 /* 441 * Allocate a zone for the messages. Preallocate 2% of these for 442 * a reserve. Allow only devctl_queue_length slabs to cap memory 443 * usage. The reserve usually allows coverage of surges of 444 * events during memory shortages. Normally we won't have to 445 * re-use events from the queue, but will in extreme shortages. 446 */ 447 z = devsoftc.zone = uma_zcreate("DEVCTL", 448 sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, 449 UMA_ALIGN_PTR, 0); 450 reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ 451 uma_zone_set_max(z, devctl_queue_length); 452 uma_zone_set_maxcache(z, 0); 453 uma_zone_reserve(z, reserve); 454 uma_prealloc(z, reserve); 455 } 456 devctl2_init(); 457 } 458 459 static int 460 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 461 { 462 mtx_lock(&devsoftc.mtx); 463 if (devsoftc.inuse) { 464 mtx_unlock(&devsoftc.mtx); 465 return (EBUSY); 466 } 467 /* move to init */ 468 devsoftc.inuse = 1; 469 mtx_unlock(&devsoftc.mtx); 470 return (0); 471 } 472 473 static int 474 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 475 { 476 mtx_lock(&devsoftc.mtx); 477 devsoftc.inuse = 0; 478 devsoftc.nonblock = 0; 479 devsoftc.async = 0; 480 cv_broadcast(&devsoftc.cv); 481 funsetown(&devsoftc.sigio); 482 mtx_unlock(&devsoftc.mtx); 483 return (0); 484 } 485 486 /* 487 * The read channel for this device is used to report changes to 488 * userland in realtime. We are required to free the data as well as 489 * the n1 object because we allocate them separately. Also note that 490 * we return one record at a time. If you try to read this device a 491 * character at a time, you will lose the rest of the data. Listening 492 * programs are expected to cope. 493 */ 494 static int 495 devread(struct cdev *dev, struct uio *uio, int ioflag) 496 { 497 struct dev_event_info *n1; 498 int rv; 499 500 mtx_lock(&devsoftc.mtx); 501 while (STAILQ_EMPTY(&devsoftc.devq)) { 502 if (devsoftc.nonblock) { 503 mtx_unlock(&devsoftc.mtx); 504 return (EAGAIN); 505 } 506 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 507 if (rv) { 508 /* 509 * Need to translate ERESTART to EINTR here? -- jake 510 */ 511 mtx_unlock(&devsoftc.mtx); 512 return (rv); 513 } 514 } 515 n1 = STAILQ_FIRST(&devsoftc.devq); 516 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 517 devsoftc.queued--; 518 mtx_unlock(&devsoftc.mtx); 519 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 520 uma_zfree(devsoftc.zone, n1); 521 return (rv); 522 } 523 524 static int 525 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 526 { 527 switch (cmd) { 528 case FIONBIO: 529 if (*(int*)data) 530 devsoftc.nonblock = 1; 531 else 532 devsoftc.nonblock = 0; 533 return (0); 534 case FIOASYNC: 535 if (*(int*)data) 536 devsoftc.async = 1; 537 else 538 devsoftc.async = 0; 539 return (0); 540 case FIOSETOWN: 541 return fsetown(*(int *)data, &devsoftc.sigio); 542 case FIOGETOWN: 543 *(int *)data = fgetown(&devsoftc.sigio); 544 return (0); 545 546 /* (un)Support for other fcntl() calls. */ 547 case FIOCLEX: 548 case FIONCLEX: 549 case FIONREAD: 550 default: 551 break; 552 } 553 return (ENOTTY); 554 } 555 556 static int 557 devpoll(struct cdev *dev, int events, struct thread *td) 558 { 559 int revents = 0; 560 561 mtx_lock(&devsoftc.mtx); 562 if (events & (POLLIN | POLLRDNORM)) { 563 if (!STAILQ_EMPTY(&devsoftc.devq)) 564 revents = events & (POLLIN | POLLRDNORM); 565 else 566 selrecord(td, &devsoftc.sel); 567 } 568 mtx_unlock(&devsoftc.mtx); 569 570 return (revents); 571 } 572 573 static int 574 devkqfilter(struct cdev *dev, struct knote *kn) 575 { 576 int error; 577 578 if (kn->kn_filter == EVFILT_READ) { 579 kn->kn_fop = &devctl_rfiltops; 580 knlist_add(&devsoftc.sel.si_note, kn, 0); 581 error = 0; 582 } else 583 error = EINVAL; 584 return (error); 585 } 586 587 static void 588 filt_devctl_detach(struct knote *kn) 589 { 590 knlist_remove(&devsoftc.sel.si_note, kn, 0); 591 } 592 593 static int 594 filt_devctl_read(struct knote *kn, long hint) 595 { 596 kn->kn_data = devsoftc.queued; 597 return (kn->kn_data != 0); 598 } 599 600 /** 601 * @brief Return whether the userland process is running 602 */ 603 bool 604 devctl_process_running(void) 605 { 606 return (devsoftc.inuse == 1); 607 } 608 609 static struct dev_event_info * 610 devctl_alloc_dei(void) 611 { 612 struct dev_event_info *dei = NULL; 613 614 mtx_lock(&devsoftc.mtx); 615 if (devctl_queue_length == 0) 616 goto out; 617 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 618 if (dei == NULL) 619 dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); 620 if (dei == NULL) { 621 /* 622 * Guard against no items in the queue. Normally, this won't 623 * happen, but if lots of events happen all at once and there's 624 * a chance we're out of allocated space but none have yet been 625 * queued when we get here, leaving nothing to steal. This can 626 * also happen with error injection. Fail safe by returning 627 * NULL in that case.. 628 */ 629 if (devsoftc.queued == 0) 630 goto out; 631 dei = STAILQ_FIRST(&devsoftc.devq); 632 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 633 devsoftc.queued--; 634 } 635 MPASS(dei != NULL); 636 *dei->dei_data = '\0'; 637 out: 638 mtx_unlock(&devsoftc.mtx); 639 return (dei); 640 } 641 642 static struct dev_event_info * 643 devctl_alloc_dei_sb(struct sbuf *sb) 644 { 645 struct dev_event_info *dei; 646 647 dei = devctl_alloc_dei(); 648 if (dei != NULL) 649 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 650 return (dei); 651 } 652 653 static void 654 devctl_free_dei(struct dev_event_info *dei) 655 { 656 uma_zfree(devsoftc.zone, dei); 657 } 658 659 static void 660 devctl_queue(struct dev_event_info *dei) 661 { 662 mtx_lock(&devsoftc.mtx); 663 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 664 devsoftc.queued++; 665 cv_broadcast(&devsoftc.cv); 666 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 667 mtx_unlock(&devsoftc.mtx); 668 selwakeup(&devsoftc.sel); 669 if (devsoftc.async && devsoftc.sigio != NULL) 670 pgsigio(&devsoftc.sigio, SIGIO, 0); 671 } 672 673 /** 674 * @brief Send a 'notification' to userland, using standard ways 675 */ 676 void 677 devctl_notify(const char *system, const char *subsystem, const char *type, 678 const char *data) 679 { 680 struct dev_event_info *dei; 681 struct sbuf sb; 682 683 if (system == NULL || subsystem == NULL || type == NULL) 684 return; 685 dei = devctl_alloc_dei_sb(&sb); 686 if (dei == NULL) 687 return; 688 sbuf_cpy(&sb, "!system="); 689 sbuf_cat(&sb, system); 690 sbuf_cat(&sb, " subsystem="); 691 sbuf_cat(&sb, subsystem); 692 sbuf_cat(&sb, " type="); 693 sbuf_cat(&sb, type); 694 if (data != NULL) { 695 sbuf_putc(&sb, ' '); 696 sbuf_cat(&sb, data); 697 } 698 sbuf_putc(&sb, '\n'); 699 if (sbuf_finish(&sb) != 0) 700 devctl_free_dei(dei); /* overflow -> drop it */ 701 else 702 devctl_queue(dei); 703 } 704 705 /* 706 * Common routine that tries to make sending messages as easy as possible. 707 * We allocate memory for the data, copy strings into that, but do not 708 * free it unless there's an error. The dequeue part of the driver should 709 * free the data. We don't send data when the device is disabled. We do 710 * send data, even when we have no listeners, because we wish to avoid 711 * races relating to startup and restart of listening applications. 712 * 713 * devaddq is designed to string together the type of event, with the 714 * object of that event, plus the plug and play info and location info 715 * for that event. This is likely most useful for devices, but less 716 * useful for other consumers of this interface. Those should use 717 * the devctl_notify() interface instead. 718 * 719 * Output: 720 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 721 */ 722 static void 723 devaddq(const char *type, const char *what, device_t dev) 724 { 725 struct dev_event_info *dei; 726 const char *parstr; 727 struct sbuf sb; 728 729 dei = devctl_alloc_dei_sb(&sb); 730 if (dei == NULL) 731 return; 732 sbuf_cpy(&sb, type); 733 sbuf_cat(&sb, what); 734 sbuf_cat(&sb, " at "); 735 736 /* Add in the location */ 737 bus_child_location(dev, &sb); 738 sbuf_putc(&sb, ' '); 739 740 /* Add in pnpinfo */ 741 bus_child_pnpinfo(dev, &sb); 742 743 /* Get the parent of this device, or / if high enough in the tree. */ 744 if (device_get_parent(dev) == NULL) 745 parstr = "."; /* Or '/' ? */ 746 else 747 parstr = device_get_nameunit(device_get_parent(dev)); 748 sbuf_cat(&sb, " on "); 749 sbuf_cat(&sb, parstr); 750 sbuf_putc(&sb, '\n'); 751 if (sbuf_finish(&sb) != 0) 752 goto bad; 753 devctl_queue(dei); 754 return; 755 bad: 756 devctl_free_dei(dei); 757 } 758 759 /* 760 * A device was added to the tree. We are called just after it successfully 761 * attaches (that is, probe and attach success for this device). No call 762 * is made if a device is merely parented into the tree. See devnomatch 763 * if probe fails. If attach fails, no notification is sent (but maybe 764 * we should have a different message for this). 765 */ 766 static void 767 devadded(device_t dev) 768 { 769 devaddq("+", device_get_nameunit(dev), dev); 770 } 771 772 /* 773 * A device was removed from the tree. We are called just before this 774 * happens. 775 */ 776 static void 777 devremoved(device_t dev) 778 { 779 devaddq("-", device_get_nameunit(dev), dev); 780 } 781 782 /* 783 * Called when there's no match for this device. This is only called 784 * the first time that no match happens, so we don't keep getting this 785 * message. Should that prove to be undesirable, we can change it. 786 * This is called when all drivers that can attach to a given bus 787 * decline to accept this device. Other errors may not be detected. 788 */ 789 static void 790 devnomatch(device_t dev) 791 { 792 devaddq("?", "", dev); 793 } 794 795 static int 796 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 797 { 798 int q, error; 799 800 q = devctl_queue_length; 801 error = sysctl_handle_int(oidp, &q, 0, req); 802 if (error || !req->newptr) 803 return (error); 804 if (q < 0) 805 return (EINVAL); 806 807 /* 808 * When set as a tunable, we've not yet initialized the mutex. 809 * It is safe to just assign to devctl_queue_length and return 810 * as we're racing no one. We'll use whatever value set in 811 * devinit. 812 */ 813 if (!mtx_initialized(&devsoftc.mtx)) { 814 devctl_queue_length = q; 815 return (0); 816 } 817 818 /* 819 * XXX It's hard to grow or shrink the UMA zone. Only allow 820 * disabling the queue size for the moment until underlying 821 * UMA issues can be sorted out. 822 */ 823 if (q != 0) 824 return (EINVAL); 825 if (q == devctl_queue_length) 826 return (0); 827 mtx_lock(&devsoftc.mtx); 828 devctl_queue_length = 0; 829 uma_zdestroy(devsoftc.zone); 830 devsoftc.zone = 0; 831 mtx_unlock(&devsoftc.mtx); 832 return (0); 833 } 834 835 /** 836 * @brief safely quotes strings that might have double quotes in them. 837 * 838 * The devctl protocol relies on quoted strings having matching quotes. 839 * This routine quotes any internal quotes so the resulting string 840 * is safe to pass to snprintf to construct, for example pnp info strings. 841 * 842 * @param sb sbuf to place the characters into 843 * @param src Original buffer. 844 */ 845 void 846 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 847 { 848 while (*src != '\0') { 849 if (*src == '"' || *src == '\\') 850 sbuf_putc(sb, '\\'); 851 sbuf_putc(sb, *src++); 852 } 853 } 854 855 /* End of /dev/devctl code */ 856 857 static struct device_list bus_data_devices; 858 static int bus_data_generation = 1; 859 860 static kobj_method_t null_methods[] = { 861 KOBJMETHOD_END 862 }; 863 864 DEFINE_CLASS(null, null_methods, 0); 865 866 /* 867 * Bus pass implementation 868 */ 869 870 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 871 int bus_current_pass = BUS_PASS_ROOT; 872 873 /** 874 * @internal 875 * @brief Register the pass level of a new driver attachment 876 * 877 * Register a new driver attachment's pass level. If no driver 878 * attachment with the same pass level has been added, then @p new 879 * will be added to the global passes list. 880 * 881 * @param new the new driver attachment 882 */ 883 static void 884 driver_register_pass(struct driverlink *new) 885 { 886 struct driverlink *dl; 887 888 /* We only consider pass numbers during boot. */ 889 if (bus_current_pass == BUS_PASS_DEFAULT) 890 return; 891 892 /* 893 * Walk the passes list. If we already know about this pass 894 * then there is nothing to do. If we don't, then insert this 895 * driver link into the list. 896 */ 897 TAILQ_FOREACH(dl, &passes, passlink) { 898 if (dl->pass < new->pass) 899 continue; 900 if (dl->pass == new->pass) 901 return; 902 TAILQ_INSERT_BEFORE(dl, new, passlink); 903 return; 904 } 905 TAILQ_INSERT_TAIL(&passes, new, passlink); 906 } 907 908 /** 909 * @brief Raise the current bus pass 910 * 911 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 912 * method on the root bus to kick off a new device tree scan for each 913 * new pass level that has at least one driver. 914 */ 915 void 916 bus_set_pass(int pass) 917 { 918 struct driverlink *dl; 919 920 if (bus_current_pass > pass) 921 panic("Attempt to lower bus pass level"); 922 923 TAILQ_FOREACH(dl, &passes, passlink) { 924 /* Skip pass values below the current pass level. */ 925 if (dl->pass <= bus_current_pass) 926 continue; 927 928 /* 929 * Bail once we hit a driver with a pass level that is 930 * too high. 931 */ 932 if (dl->pass > pass) 933 break; 934 935 /* 936 * Raise the pass level to the next level and rescan 937 * the tree. 938 */ 939 bus_current_pass = dl->pass; 940 BUS_NEW_PASS(root_bus); 941 } 942 943 /* 944 * If there isn't a driver registered for the requested pass, 945 * then bus_current_pass might still be less than 'pass'. Set 946 * it to 'pass' in that case. 947 */ 948 if (bus_current_pass < pass) 949 bus_current_pass = pass; 950 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 951 } 952 953 /* 954 * Devclass implementation 955 */ 956 957 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 958 959 /** 960 * @internal 961 * @brief Find or create a device class 962 * 963 * If a device class with the name @p classname exists, return it, 964 * otherwise if @p create is non-zero create and return a new device 965 * class. 966 * 967 * If @p parentname is non-NULL, the parent of the devclass is set to 968 * the devclass of that name. 969 * 970 * @param classname the devclass name to find or create 971 * @param parentname the parent devclass name or @c NULL 972 * @param create non-zero to create a devclass 973 */ 974 static devclass_t 975 devclass_find_internal(const char *classname, const char *parentname, 976 int create) 977 { 978 devclass_t dc; 979 980 PDEBUG(("looking for %s", classname)); 981 if (!classname) 982 return (NULL); 983 984 TAILQ_FOREACH(dc, &devclasses, link) { 985 if (!strcmp(dc->name, classname)) 986 break; 987 } 988 989 if (create && !dc) { 990 PDEBUG(("creating %s", classname)); 991 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 992 M_BUS, M_NOWAIT | M_ZERO); 993 if (!dc) 994 return (NULL); 995 dc->parent = NULL; 996 dc->name = (char*) (dc + 1); 997 strcpy(dc->name, classname); 998 TAILQ_INIT(&dc->drivers); 999 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1000 1001 bus_data_generation_update(); 1002 } 1003 1004 /* 1005 * If a parent class is specified, then set that as our parent so 1006 * that this devclass will support drivers for the parent class as 1007 * well. If the parent class has the same name don't do this though 1008 * as it creates a cycle that can trigger an infinite loop in 1009 * device_probe_child() if a device exists for which there is no 1010 * suitable driver. 1011 */ 1012 if (parentname && dc && !dc->parent && 1013 strcmp(classname, parentname) != 0) { 1014 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1015 dc->parent->flags |= DC_HAS_CHILDREN; 1016 } 1017 1018 return (dc); 1019 } 1020 1021 /** 1022 * @brief Create a device class 1023 * 1024 * If a device class with the name @p classname exists, return it, 1025 * otherwise create and return a new device class. 1026 * 1027 * @param classname the devclass name to find or create 1028 */ 1029 devclass_t 1030 devclass_create(const char *classname) 1031 { 1032 return (devclass_find_internal(classname, NULL, TRUE)); 1033 } 1034 1035 /** 1036 * @brief Find a device class 1037 * 1038 * If a device class with the name @p classname exists, return it, 1039 * otherwise return @c NULL. 1040 * 1041 * @param classname the devclass name to find 1042 */ 1043 devclass_t 1044 devclass_find(const char *classname) 1045 { 1046 return (devclass_find_internal(classname, NULL, FALSE)); 1047 } 1048 1049 /** 1050 * @brief Register that a device driver has been added to a devclass 1051 * 1052 * Register that a device driver has been added to a devclass. This 1053 * is called by devclass_add_driver to accomplish the recursive 1054 * notification of all the children classes of dc, as well as dc. 1055 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1056 * the devclass. 1057 * 1058 * We do a full search here of the devclass list at each iteration 1059 * level to save storing children-lists in the devclass structure. If 1060 * we ever move beyond a few dozen devices doing this, we may need to 1061 * reevaluate... 1062 * 1063 * @param dc the devclass to edit 1064 * @param driver the driver that was just added 1065 */ 1066 static void 1067 devclass_driver_added(devclass_t dc, driver_t *driver) 1068 { 1069 devclass_t parent; 1070 int i; 1071 1072 /* 1073 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1074 */ 1075 for (i = 0; i < dc->maxunit; i++) 1076 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1077 BUS_DRIVER_ADDED(dc->devices[i], driver); 1078 1079 /* 1080 * Walk through the children classes. Since we only keep a 1081 * single parent pointer around, we walk the entire list of 1082 * devclasses looking for children. We set the 1083 * DC_HAS_CHILDREN flag when a child devclass is created on 1084 * the parent, so we only walk the list for those devclasses 1085 * that have children. 1086 */ 1087 if (!(dc->flags & DC_HAS_CHILDREN)) 1088 return; 1089 parent = dc; 1090 TAILQ_FOREACH(dc, &devclasses, link) { 1091 if (dc->parent == parent) 1092 devclass_driver_added(dc, driver); 1093 } 1094 } 1095 1096 /** 1097 * @brief Add a device driver to a device class 1098 * 1099 * Add a device driver to a devclass. This is normally called 1100 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1101 * all devices in the devclass will be called to allow them to attempt 1102 * to re-probe any unmatched children. 1103 * 1104 * @param dc the devclass to edit 1105 * @param driver the driver to register 1106 */ 1107 int 1108 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1109 { 1110 driverlink_t dl; 1111 const char *parentname; 1112 1113 PDEBUG(("%s", DRIVERNAME(driver))); 1114 1115 /* Don't allow invalid pass values. */ 1116 if (pass <= BUS_PASS_ROOT) 1117 return (EINVAL); 1118 1119 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1120 if (!dl) 1121 return (ENOMEM); 1122 1123 /* 1124 * Compile the driver's methods. Also increase the reference count 1125 * so that the class doesn't get freed when the last instance 1126 * goes. This means we can safely use static methods and avoids a 1127 * double-free in devclass_delete_driver. 1128 */ 1129 kobj_class_compile((kobj_class_t) driver); 1130 1131 /* 1132 * If the driver has any base classes, make the 1133 * devclass inherit from the devclass of the driver's 1134 * first base class. This will allow the system to 1135 * search for drivers in both devclasses for children 1136 * of a device using this driver. 1137 */ 1138 if (driver->baseclasses) 1139 parentname = driver->baseclasses[0]->name; 1140 else 1141 parentname = NULL; 1142 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1143 1144 dl->driver = driver; 1145 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1146 driver->refs++; /* XXX: kobj_mtx */ 1147 dl->pass = pass; 1148 driver_register_pass(dl); 1149 1150 if (device_frozen) { 1151 dl->flags |= DL_DEFERRED_PROBE; 1152 } else { 1153 devclass_driver_added(dc, driver); 1154 } 1155 bus_data_generation_update(); 1156 return (0); 1157 } 1158 1159 /** 1160 * @brief Register that a device driver has been deleted from a devclass 1161 * 1162 * Register that a device driver has been removed from a devclass. 1163 * This is called by devclass_delete_driver to accomplish the 1164 * recursive notification of all the children classes of busclass, as 1165 * well as busclass. Each layer will attempt to detach the driver 1166 * from any devices that are children of the bus's devclass. The function 1167 * will return an error if a device fails to detach. 1168 * 1169 * We do a full search here of the devclass list at each iteration 1170 * level to save storing children-lists in the devclass structure. If 1171 * we ever move beyond a few dozen devices doing this, we may need to 1172 * reevaluate... 1173 * 1174 * @param busclass the devclass of the parent bus 1175 * @param dc the devclass of the driver being deleted 1176 * @param driver the driver being deleted 1177 */ 1178 static int 1179 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1180 { 1181 devclass_t parent; 1182 device_t dev; 1183 int error, i; 1184 1185 /* 1186 * Disassociate from any devices. We iterate through all the 1187 * devices in the devclass of the driver and detach any which are 1188 * using the driver and which have a parent in the devclass which 1189 * we are deleting from. 1190 * 1191 * Note that since a driver can be in multiple devclasses, we 1192 * should not detach devices which are not children of devices in 1193 * the affected devclass. 1194 * 1195 * If we're frozen, we don't generate NOMATCH events. Mark to 1196 * generate later. 1197 */ 1198 for (i = 0; i < dc->maxunit; i++) { 1199 if (dc->devices[i]) { 1200 dev = dc->devices[i]; 1201 if (dev->driver == driver && dev->parent && 1202 dev->parent->devclass == busclass) { 1203 if ((error = device_detach(dev)) != 0) 1204 return (error); 1205 if (device_frozen) { 1206 dev->flags &= ~DF_DONENOMATCH; 1207 dev->flags |= DF_NEEDNOMATCH; 1208 } else { 1209 BUS_PROBE_NOMATCH(dev->parent, dev); 1210 devnomatch(dev); 1211 dev->flags |= DF_DONENOMATCH; 1212 } 1213 } 1214 } 1215 } 1216 1217 /* 1218 * Walk through the children classes. Since we only keep a 1219 * single parent pointer around, we walk the entire list of 1220 * devclasses looking for children. We set the 1221 * DC_HAS_CHILDREN flag when a child devclass is created on 1222 * the parent, so we only walk the list for those devclasses 1223 * that have children. 1224 */ 1225 if (!(busclass->flags & DC_HAS_CHILDREN)) 1226 return (0); 1227 parent = busclass; 1228 TAILQ_FOREACH(busclass, &devclasses, link) { 1229 if (busclass->parent == parent) { 1230 error = devclass_driver_deleted(busclass, dc, driver); 1231 if (error) 1232 return (error); 1233 } 1234 } 1235 return (0); 1236 } 1237 1238 /** 1239 * @brief Delete a device driver from a device class 1240 * 1241 * Delete a device driver from a devclass. This is normally called 1242 * automatically by DRIVER_MODULE(). 1243 * 1244 * If the driver is currently attached to any devices, 1245 * devclass_delete_driver() will first attempt to detach from each 1246 * device. If one of the detach calls fails, the driver will not be 1247 * deleted. 1248 * 1249 * @param dc the devclass to edit 1250 * @param driver the driver to unregister 1251 */ 1252 int 1253 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1254 { 1255 devclass_t dc = devclass_find(driver->name); 1256 driverlink_t dl; 1257 int error; 1258 1259 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1260 1261 if (!dc) 1262 return (0); 1263 1264 /* 1265 * Find the link structure in the bus' list of drivers. 1266 */ 1267 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1268 if (dl->driver == driver) 1269 break; 1270 } 1271 1272 if (!dl) { 1273 PDEBUG(("%s not found in %s list", driver->name, 1274 busclass->name)); 1275 return (ENOENT); 1276 } 1277 1278 error = devclass_driver_deleted(busclass, dc, driver); 1279 if (error != 0) 1280 return (error); 1281 1282 TAILQ_REMOVE(&busclass->drivers, dl, link); 1283 free(dl, M_BUS); 1284 1285 /* XXX: kobj_mtx */ 1286 driver->refs--; 1287 if (driver->refs == 0) 1288 kobj_class_free((kobj_class_t) driver); 1289 1290 bus_data_generation_update(); 1291 return (0); 1292 } 1293 1294 /** 1295 * @brief Quiesces a set of device drivers from a device class 1296 * 1297 * Quiesce a device driver from a devclass. This is normally called 1298 * automatically by DRIVER_MODULE(). 1299 * 1300 * If the driver is currently attached to any devices, 1301 * devclass_quiesece_driver() will first attempt to quiesce each 1302 * device. 1303 * 1304 * @param dc the devclass to edit 1305 * @param driver the driver to unregister 1306 */ 1307 static int 1308 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1309 { 1310 devclass_t dc = devclass_find(driver->name); 1311 driverlink_t dl; 1312 device_t dev; 1313 int i; 1314 int error; 1315 1316 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1317 1318 if (!dc) 1319 return (0); 1320 1321 /* 1322 * Find the link structure in the bus' list of drivers. 1323 */ 1324 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1325 if (dl->driver == driver) 1326 break; 1327 } 1328 1329 if (!dl) { 1330 PDEBUG(("%s not found in %s list", driver->name, 1331 busclass->name)); 1332 return (ENOENT); 1333 } 1334 1335 /* 1336 * Quiesce all devices. We iterate through all the devices in 1337 * the devclass of the driver and quiesce any which are using 1338 * the driver and which have a parent in the devclass which we 1339 * are quiescing. 1340 * 1341 * Note that since a driver can be in multiple devclasses, we 1342 * should not quiesce devices which are not children of 1343 * devices in the affected devclass. 1344 */ 1345 for (i = 0; i < dc->maxunit; i++) { 1346 if (dc->devices[i]) { 1347 dev = dc->devices[i]; 1348 if (dev->driver == driver && dev->parent && 1349 dev->parent->devclass == busclass) { 1350 if ((error = device_quiesce(dev)) != 0) 1351 return (error); 1352 } 1353 } 1354 } 1355 1356 return (0); 1357 } 1358 1359 /** 1360 * @internal 1361 */ 1362 static driverlink_t 1363 devclass_find_driver_internal(devclass_t dc, const char *classname) 1364 { 1365 driverlink_t dl; 1366 1367 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1368 1369 TAILQ_FOREACH(dl, &dc->drivers, link) { 1370 if (!strcmp(dl->driver->name, classname)) 1371 return (dl); 1372 } 1373 1374 PDEBUG(("not found")); 1375 return (NULL); 1376 } 1377 1378 /** 1379 * @brief Return the name of the devclass 1380 */ 1381 const char * 1382 devclass_get_name(devclass_t dc) 1383 { 1384 return (dc->name); 1385 } 1386 1387 /** 1388 * @brief Find a device given a unit number 1389 * 1390 * @param dc the devclass to search 1391 * @param unit the unit number to search for 1392 * 1393 * @returns the device with the given unit number or @c 1394 * NULL if there is no such device 1395 */ 1396 device_t 1397 devclass_get_device(devclass_t dc, int unit) 1398 { 1399 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1400 return (NULL); 1401 return (dc->devices[unit]); 1402 } 1403 1404 /** 1405 * @brief Find the softc field of a device given a unit number 1406 * 1407 * @param dc the devclass to search 1408 * @param unit the unit number to search for 1409 * 1410 * @returns the softc field of the device with the given 1411 * unit number or @c NULL if there is no such 1412 * device 1413 */ 1414 void * 1415 devclass_get_softc(devclass_t dc, int unit) 1416 { 1417 device_t dev; 1418 1419 dev = devclass_get_device(dc, unit); 1420 if (!dev) 1421 return (NULL); 1422 1423 return (device_get_softc(dev)); 1424 } 1425 1426 /** 1427 * @brief Get a list of devices in the devclass 1428 * 1429 * An array containing a list of all the devices in the given devclass 1430 * is allocated and returned in @p *devlistp. The number of devices 1431 * in the array is returned in @p *devcountp. The caller should free 1432 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1433 * 1434 * @param dc the devclass to examine 1435 * @param devlistp points at location for array pointer return 1436 * value 1437 * @param devcountp points at location for array size return value 1438 * 1439 * @retval 0 success 1440 * @retval ENOMEM the array allocation failed 1441 */ 1442 int 1443 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1444 { 1445 int count, i; 1446 device_t *list; 1447 1448 count = devclass_get_count(dc); 1449 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1450 if (!list) 1451 return (ENOMEM); 1452 1453 count = 0; 1454 for (i = 0; i < dc->maxunit; i++) { 1455 if (dc->devices[i]) { 1456 list[count] = dc->devices[i]; 1457 count++; 1458 } 1459 } 1460 1461 *devlistp = list; 1462 *devcountp = count; 1463 1464 return (0); 1465 } 1466 1467 /** 1468 * @brief Get a list of drivers in the devclass 1469 * 1470 * An array containing a list of pointers to all the drivers in the 1471 * given devclass is allocated and returned in @p *listp. The number 1472 * of drivers in the array is returned in @p *countp. The caller should 1473 * free the array using @c free(p, M_TEMP). 1474 * 1475 * @param dc the devclass to examine 1476 * @param listp gives location for array pointer return value 1477 * @param countp gives location for number of array elements 1478 * return value 1479 * 1480 * @retval 0 success 1481 * @retval ENOMEM the array allocation failed 1482 */ 1483 int 1484 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1485 { 1486 driverlink_t dl; 1487 driver_t **list; 1488 int count; 1489 1490 count = 0; 1491 TAILQ_FOREACH(dl, &dc->drivers, link) 1492 count++; 1493 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1494 if (list == NULL) 1495 return (ENOMEM); 1496 1497 count = 0; 1498 TAILQ_FOREACH(dl, &dc->drivers, link) { 1499 list[count] = dl->driver; 1500 count++; 1501 } 1502 *listp = list; 1503 *countp = count; 1504 1505 return (0); 1506 } 1507 1508 /** 1509 * @brief Get the number of devices in a devclass 1510 * 1511 * @param dc the devclass to examine 1512 */ 1513 int 1514 devclass_get_count(devclass_t dc) 1515 { 1516 int count, i; 1517 1518 count = 0; 1519 for (i = 0; i < dc->maxunit; i++) 1520 if (dc->devices[i]) 1521 count++; 1522 return (count); 1523 } 1524 1525 /** 1526 * @brief Get the maximum unit number used in a devclass 1527 * 1528 * Note that this is one greater than the highest currently-allocated 1529 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1530 * that not even the devclass has been allocated yet. 1531 * 1532 * @param dc the devclass to examine 1533 */ 1534 int 1535 devclass_get_maxunit(devclass_t dc) 1536 { 1537 if (dc == NULL) 1538 return (-1); 1539 return (dc->maxunit); 1540 } 1541 1542 /** 1543 * @brief Find a free unit number in a devclass 1544 * 1545 * This function searches for the first unused unit number greater 1546 * that or equal to @p unit. 1547 * 1548 * @param dc the devclass to examine 1549 * @param unit the first unit number to check 1550 */ 1551 int 1552 devclass_find_free_unit(devclass_t dc, int unit) 1553 { 1554 if (dc == NULL) 1555 return (unit); 1556 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1557 unit++; 1558 return (unit); 1559 } 1560 1561 /** 1562 * @brief Set the parent of a devclass 1563 * 1564 * The parent class is normally initialised automatically by 1565 * DRIVER_MODULE(). 1566 * 1567 * @param dc the devclass to edit 1568 * @param pdc the new parent devclass 1569 */ 1570 void 1571 devclass_set_parent(devclass_t dc, devclass_t pdc) 1572 { 1573 dc->parent = pdc; 1574 } 1575 1576 /** 1577 * @brief Get the parent of a devclass 1578 * 1579 * @param dc the devclass to examine 1580 */ 1581 devclass_t 1582 devclass_get_parent(devclass_t dc) 1583 { 1584 return (dc->parent); 1585 } 1586 1587 struct sysctl_ctx_list * 1588 devclass_get_sysctl_ctx(devclass_t dc) 1589 { 1590 return (&dc->sysctl_ctx); 1591 } 1592 1593 struct sysctl_oid * 1594 devclass_get_sysctl_tree(devclass_t dc) 1595 { 1596 return (dc->sysctl_tree); 1597 } 1598 1599 /** 1600 * @internal 1601 * @brief Allocate a unit number 1602 * 1603 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1604 * will do). The allocated unit number is returned in @p *unitp. 1605 1606 * @param dc the devclass to allocate from 1607 * @param unitp points at the location for the allocated unit 1608 * number 1609 * 1610 * @retval 0 success 1611 * @retval EEXIST the requested unit number is already allocated 1612 * @retval ENOMEM memory allocation failure 1613 */ 1614 static int 1615 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1616 { 1617 const char *s; 1618 int unit = *unitp; 1619 1620 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1621 1622 /* Ask the parent bus if it wants to wire this device. */ 1623 if (unit == -1) 1624 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1625 &unit); 1626 1627 /* If we were given a wired unit number, check for existing device */ 1628 /* XXX imp XXX */ 1629 if (unit != -1) { 1630 if (unit >= 0 && unit < dc->maxunit && 1631 dc->devices[unit] != NULL) { 1632 if (bootverbose) 1633 printf("%s: %s%d already exists; skipping it\n", 1634 dc->name, dc->name, *unitp); 1635 return (EEXIST); 1636 } 1637 } else { 1638 /* Unwired device, find the next available slot for it */ 1639 unit = 0; 1640 for (unit = 0;; unit++) { 1641 /* If this device slot is already in use, skip it. */ 1642 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1643 continue; 1644 1645 /* If there is an "at" hint for a unit then skip it. */ 1646 if (resource_string_value(dc->name, unit, "at", &s) == 1647 0) 1648 continue; 1649 1650 break; 1651 } 1652 } 1653 1654 /* 1655 * We've selected a unit beyond the length of the table, so let's 1656 * extend the table to make room for all units up to and including 1657 * this one. 1658 */ 1659 if (unit >= dc->maxunit) { 1660 device_t *newlist, *oldlist; 1661 int newsize; 1662 1663 oldlist = dc->devices; 1664 newsize = roundup((unit + 1), 1665 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1666 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1667 if (!newlist) 1668 return (ENOMEM); 1669 if (oldlist != NULL) 1670 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1671 bzero(newlist + dc->maxunit, 1672 sizeof(device_t) * (newsize - dc->maxunit)); 1673 dc->devices = newlist; 1674 dc->maxunit = newsize; 1675 if (oldlist != NULL) 1676 free(oldlist, M_BUS); 1677 } 1678 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1679 1680 *unitp = unit; 1681 return (0); 1682 } 1683 1684 /** 1685 * @internal 1686 * @brief Add a device to a devclass 1687 * 1688 * A unit number is allocated for the device (using the device's 1689 * preferred unit number if any) and the device is registered in the 1690 * devclass. This allows the device to be looked up by its unit 1691 * number, e.g. by decoding a dev_t minor number. 1692 * 1693 * @param dc the devclass to add to 1694 * @param dev the device to add 1695 * 1696 * @retval 0 success 1697 * @retval EEXIST the requested unit number is already allocated 1698 * @retval ENOMEM memory allocation failure 1699 */ 1700 static int 1701 devclass_add_device(devclass_t dc, device_t dev) 1702 { 1703 int buflen, error; 1704 1705 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1706 1707 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1708 if (buflen < 0) 1709 return (ENOMEM); 1710 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1711 if (!dev->nameunit) 1712 return (ENOMEM); 1713 1714 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1715 free(dev->nameunit, M_BUS); 1716 dev->nameunit = NULL; 1717 return (error); 1718 } 1719 dc->devices[dev->unit] = dev; 1720 dev->devclass = dc; 1721 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1722 1723 return (0); 1724 } 1725 1726 /** 1727 * @internal 1728 * @brief Delete a device from a devclass 1729 * 1730 * The device is removed from the devclass's device list and its unit 1731 * number is freed. 1732 1733 * @param dc the devclass to delete from 1734 * @param dev the device to delete 1735 * 1736 * @retval 0 success 1737 */ 1738 static int 1739 devclass_delete_device(devclass_t dc, device_t dev) 1740 { 1741 if (!dc || !dev) 1742 return (0); 1743 1744 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1745 1746 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1747 panic("devclass_delete_device: inconsistent device class"); 1748 dc->devices[dev->unit] = NULL; 1749 if (dev->flags & DF_WILDCARD) 1750 dev->unit = -1; 1751 dev->devclass = NULL; 1752 free(dev->nameunit, M_BUS); 1753 dev->nameunit = NULL; 1754 1755 return (0); 1756 } 1757 1758 /** 1759 * @internal 1760 * @brief Make a new device and add it as a child of @p parent 1761 * 1762 * @param parent the parent of the new device 1763 * @param name the devclass name of the new device or @c NULL 1764 * to leave the devclass unspecified 1765 * @parem unit the unit number of the new device of @c -1 to 1766 * leave the unit number unspecified 1767 * 1768 * @returns the new device 1769 */ 1770 static device_t 1771 make_device(device_t parent, const char *name, int unit) 1772 { 1773 device_t dev; 1774 devclass_t dc; 1775 1776 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1777 1778 if (name) { 1779 dc = devclass_find_internal(name, NULL, TRUE); 1780 if (!dc) { 1781 printf("make_device: can't find device class %s\n", 1782 name); 1783 return (NULL); 1784 } 1785 } else { 1786 dc = NULL; 1787 } 1788 1789 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1790 if (!dev) 1791 return (NULL); 1792 1793 dev->parent = parent; 1794 TAILQ_INIT(&dev->children); 1795 kobj_init((kobj_t) dev, &null_class); 1796 dev->driver = NULL; 1797 dev->devclass = NULL; 1798 dev->unit = unit; 1799 dev->nameunit = NULL; 1800 dev->desc = NULL; 1801 dev->busy = 0; 1802 dev->devflags = 0; 1803 dev->flags = DF_ENABLED; 1804 dev->order = 0; 1805 if (unit == -1) 1806 dev->flags |= DF_WILDCARD; 1807 if (name) { 1808 dev->flags |= DF_FIXEDCLASS; 1809 if (devclass_add_device(dc, dev)) { 1810 kobj_delete((kobj_t) dev, M_BUS); 1811 return (NULL); 1812 } 1813 } 1814 if (parent != NULL && device_has_quiet_children(parent)) 1815 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1816 dev->ivars = NULL; 1817 dev->softc = NULL; 1818 1819 dev->state = DS_NOTPRESENT; 1820 1821 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1822 bus_data_generation_update(); 1823 1824 return (dev); 1825 } 1826 1827 /** 1828 * @internal 1829 * @brief Print a description of a device. 1830 */ 1831 static int 1832 device_print_child(device_t dev, device_t child) 1833 { 1834 int retval = 0; 1835 1836 if (device_is_alive(child)) 1837 retval += BUS_PRINT_CHILD(dev, child); 1838 else 1839 retval += device_printf(child, " not found\n"); 1840 1841 return (retval); 1842 } 1843 1844 /** 1845 * @brief Create a new device 1846 * 1847 * This creates a new device and adds it as a child of an existing 1848 * parent device. The new device will be added after the last existing 1849 * child with order zero. 1850 * 1851 * @param dev the device which will be the parent of the 1852 * new child device 1853 * @param name devclass name for new device or @c NULL if not 1854 * specified 1855 * @param unit unit number for new device or @c -1 if not 1856 * specified 1857 * 1858 * @returns the new device 1859 */ 1860 device_t 1861 device_add_child(device_t dev, const char *name, int unit) 1862 { 1863 return (device_add_child_ordered(dev, 0, name, unit)); 1864 } 1865 1866 /** 1867 * @brief Create a new device 1868 * 1869 * This creates a new device and adds it as a child of an existing 1870 * parent device. The new device will be added after the last existing 1871 * child with the same order. 1872 * 1873 * @param dev the device which will be the parent of the 1874 * new child device 1875 * @param order a value which is used to partially sort the 1876 * children of @p dev - devices created using 1877 * lower values of @p order appear first in @p 1878 * dev's list of children 1879 * @param name devclass name for new device or @c NULL if not 1880 * specified 1881 * @param unit unit number for new device or @c -1 if not 1882 * specified 1883 * 1884 * @returns the new device 1885 */ 1886 device_t 1887 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1888 { 1889 device_t child; 1890 device_t place; 1891 1892 PDEBUG(("%s at %s with order %u as unit %d", 1893 name, DEVICENAME(dev), order, unit)); 1894 KASSERT(name != NULL || unit == -1, 1895 ("child device with wildcard name and specific unit number")); 1896 1897 child = make_device(dev, name, unit); 1898 if (child == NULL) 1899 return (child); 1900 child->order = order; 1901 1902 TAILQ_FOREACH(place, &dev->children, link) { 1903 if (place->order > order) 1904 break; 1905 } 1906 1907 if (place) { 1908 /* 1909 * The device 'place' is the first device whose order is 1910 * greater than the new child. 1911 */ 1912 TAILQ_INSERT_BEFORE(place, child, link); 1913 } else { 1914 /* 1915 * The new child's order is greater or equal to the order of 1916 * any existing device. Add the child to the tail of the list. 1917 */ 1918 TAILQ_INSERT_TAIL(&dev->children, child, link); 1919 } 1920 1921 bus_data_generation_update(); 1922 return (child); 1923 } 1924 1925 /** 1926 * @brief Delete a device 1927 * 1928 * This function deletes a device along with all of its children. If 1929 * the device currently has a driver attached to it, the device is 1930 * detached first using device_detach(). 1931 * 1932 * @param dev the parent device 1933 * @param child the device to delete 1934 * 1935 * @retval 0 success 1936 * @retval non-zero a unit error code describing the error 1937 */ 1938 int 1939 device_delete_child(device_t dev, device_t child) 1940 { 1941 int error; 1942 device_t grandchild; 1943 1944 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1945 1946 /* detach parent before deleting children, if any */ 1947 if ((error = device_detach(child)) != 0) 1948 return (error); 1949 1950 /* remove children second */ 1951 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1952 error = device_delete_child(child, grandchild); 1953 if (error) 1954 return (error); 1955 } 1956 1957 if (child->devclass) 1958 devclass_delete_device(child->devclass, child); 1959 if (child->parent) 1960 BUS_CHILD_DELETED(dev, child); 1961 TAILQ_REMOVE(&dev->children, child, link); 1962 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1963 kobj_delete((kobj_t) child, M_BUS); 1964 1965 bus_data_generation_update(); 1966 return (0); 1967 } 1968 1969 /** 1970 * @brief Delete all children devices of the given device, if any. 1971 * 1972 * This function deletes all children devices of the given device, if 1973 * any, using the device_delete_child() function for each device it 1974 * finds. If a child device cannot be deleted, this function will 1975 * return an error code. 1976 * 1977 * @param dev the parent device 1978 * 1979 * @retval 0 success 1980 * @retval non-zero a device would not detach 1981 */ 1982 int 1983 device_delete_children(device_t dev) 1984 { 1985 device_t child; 1986 int error; 1987 1988 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1989 1990 error = 0; 1991 1992 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1993 error = device_delete_child(dev, child); 1994 if (error) { 1995 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1996 break; 1997 } 1998 } 1999 return (error); 2000 } 2001 2002 /** 2003 * @brief Find a device given a unit number 2004 * 2005 * This is similar to devclass_get_devices() but only searches for 2006 * devices which have @p dev as a parent. 2007 * 2008 * @param dev the parent device to search 2009 * @param unit the unit number to search for. If the unit is -1, 2010 * return the first child of @p dev which has name 2011 * @p classname (that is, the one with the lowest unit.) 2012 * 2013 * @returns the device with the given unit number or @c 2014 * NULL if there is no such device 2015 */ 2016 device_t 2017 device_find_child(device_t dev, const char *classname, int unit) 2018 { 2019 devclass_t dc; 2020 device_t child; 2021 2022 dc = devclass_find(classname); 2023 if (!dc) 2024 return (NULL); 2025 2026 if (unit != -1) { 2027 child = devclass_get_device(dc, unit); 2028 if (child && child->parent == dev) 2029 return (child); 2030 } else { 2031 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2032 child = devclass_get_device(dc, unit); 2033 if (child && child->parent == dev) 2034 return (child); 2035 } 2036 } 2037 return (NULL); 2038 } 2039 2040 /** 2041 * @internal 2042 */ 2043 static driverlink_t 2044 first_matching_driver(devclass_t dc, device_t dev) 2045 { 2046 if (dev->devclass) 2047 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2048 return (TAILQ_FIRST(&dc->drivers)); 2049 } 2050 2051 /** 2052 * @internal 2053 */ 2054 static driverlink_t 2055 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2056 { 2057 if (dev->devclass) { 2058 driverlink_t dl; 2059 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2060 if (!strcmp(dev->devclass->name, dl->driver->name)) 2061 return (dl); 2062 return (NULL); 2063 } 2064 return (TAILQ_NEXT(last, link)); 2065 } 2066 2067 /** 2068 * @internal 2069 */ 2070 int 2071 device_probe_child(device_t dev, device_t child) 2072 { 2073 devclass_t dc; 2074 driverlink_t best = NULL; 2075 driverlink_t dl; 2076 int result, pri = 0; 2077 /* We should preserve the devclass (or lack of) set by the bus. */ 2078 int hasclass = (child->devclass != NULL); 2079 2080 GIANT_REQUIRED; 2081 2082 dc = dev->devclass; 2083 if (!dc) 2084 panic("device_probe_child: parent device has no devclass"); 2085 2086 /* 2087 * If the state is already probed, then return. 2088 */ 2089 if (child->state == DS_ALIVE) 2090 return (0); 2091 2092 for (; dc; dc = dc->parent) { 2093 for (dl = first_matching_driver(dc, child); 2094 dl; 2095 dl = next_matching_driver(dc, child, dl)) { 2096 /* If this driver's pass is too high, then ignore it. */ 2097 if (dl->pass > bus_current_pass) 2098 continue; 2099 2100 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2101 result = device_set_driver(child, dl->driver); 2102 if (result == ENOMEM) 2103 return (result); 2104 else if (result != 0) 2105 continue; 2106 if (!hasclass) { 2107 if (device_set_devclass(child, 2108 dl->driver->name) != 0) { 2109 char const * devname = 2110 device_get_name(child); 2111 if (devname == NULL) 2112 devname = "(unknown)"; 2113 printf("driver bug: Unable to set " 2114 "devclass (class: %s " 2115 "devname: %s)\n", 2116 dl->driver->name, 2117 devname); 2118 (void)device_set_driver(child, NULL); 2119 continue; 2120 } 2121 } 2122 2123 /* Fetch any flags for the device before probing. */ 2124 resource_int_value(dl->driver->name, child->unit, 2125 "flags", &child->devflags); 2126 2127 result = DEVICE_PROBE(child); 2128 2129 /* 2130 * If the driver returns SUCCESS, there can be 2131 * no higher match for this device. 2132 */ 2133 if (result == 0) { 2134 best = dl; 2135 pri = 0; 2136 break; 2137 } 2138 2139 /* Reset flags and devclass before the next probe. */ 2140 child->devflags = 0; 2141 if (!hasclass) 2142 (void)device_set_devclass(child, NULL); 2143 2144 /* 2145 * Reset DF_QUIET in case this driver doesn't 2146 * end up as the best driver. 2147 */ 2148 device_verbose(child); 2149 2150 /* 2151 * Probes that return BUS_PROBE_NOWILDCARD or lower 2152 * only match on devices whose driver was explicitly 2153 * specified. 2154 */ 2155 if (result <= BUS_PROBE_NOWILDCARD && 2156 !(child->flags & DF_FIXEDCLASS)) { 2157 result = ENXIO; 2158 } 2159 2160 /* 2161 * The driver returned an error so it 2162 * certainly doesn't match. 2163 */ 2164 if (result > 0) { 2165 (void)device_set_driver(child, NULL); 2166 continue; 2167 } 2168 2169 /* 2170 * A priority lower than SUCCESS, remember the 2171 * best matching driver. Initialise the value 2172 * of pri for the first match. 2173 */ 2174 if (best == NULL || result > pri) { 2175 best = dl; 2176 pri = result; 2177 continue; 2178 } 2179 } 2180 /* 2181 * If we have an unambiguous match in this devclass, 2182 * don't look in the parent. 2183 */ 2184 if (best && pri == 0) 2185 break; 2186 } 2187 2188 if (best == NULL) 2189 return (ENXIO); 2190 2191 /* 2192 * If we found a driver, change state and initialise the devclass. 2193 */ 2194 if (pri < 0) { 2195 /* Set the winning driver, devclass, and flags. */ 2196 result = device_set_driver(child, best->driver); 2197 if (result != 0) 2198 return (result); 2199 if (!child->devclass) { 2200 result = device_set_devclass(child, best->driver->name); 2201 if (result != 0) { 2202 (void)device_set_driver(child, NULL); 2203 return (result); 2204 } 2205 } 2206 resource_int_value(best->driver->name, child->unit, 2207 "flags", &child->devflags); 2208 2209 /* 2210 * A bit bogus. Call the probe method again to make sure 2211 * that we have the right description. 2212 */ 2213 result = DEVICE_PROBE(child); 2214 if (result > 0) { 2215 if (!hasclass) 2216 (void)device_set_devclass(child, NULL); 2217 (void)device_set_driver(child, NULL); 2218 return (result); 2219 } 2220 } 2221 2222 child->state = DS_ALIVE; 2223 bus_data_generation_update(); 2224 return (0); 2225 } 2226 2227 /** 2228 * @brief Return the parent of a device 2229 */ 2230 device_t 2231 device_get_parent(device_t dev) 2232 { 2233 return (dev->parent); 2234 } 2235 2236 /** 2237 * @brief Get a list of children of a device 2238 * 2239 * An array containing a list of all the children of the given device 2240 * is allocated and returned in @p *devlistp. The number of devices 2241 * in the array is returned in @p *devcountp. The caller should free 2242 * the array using @c free(p, M_TEMP). 2243 * 2244 * @param dev the device to examine 2245 * @param devlistp points at location for array pointer return 2246 * value 2247 * @param devcountp points at location for array size return value 2248 * 2249 * @retval 0 success 2250 * @retval ENOMEM the array allocation failed 2251 */ 2252 int 2253 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2254 { 2255 int count; 2256 device_t child; 2257 device_t *list; 2258 2259 count = 0; 2260 TAILQ_FOREACH(child, &dev->children, link) { 2261 count++; 2262 } 2263 if (count == 0) { 2264 *devlistp = NULL; 2265 *devcountp = 0; 2266 return (0); 2267 } 2268 2269 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2270 if (!list) 2271 return (ENOMEM); 2272 2273 count = 0; 2274 TAILQ_FOREACH(child, &dev->children, link) { 2275 list[count] = child; 2276 count++; 2277 } 2278 2279 *devlistp = list; 2280 *devcountp = count; 2281 2282 return (0); 2283 } 2284 2285 /** 2286 * @brief Return the current driver for the device or @c NULL if there 2287 * is no driver currently attached 2288 */ 2289 driver_t * 2290 device_get_driver(device_t dev) 2291 { 2292 return (dev->driver); 2293 } 2294 2295 /** 2296 * @brief Return the current devclass for the device or @c NULL if 2297 * there is none. 2298 */ 2299 devclass_t 2300 device_get_devclass(device_t dev) 2301 { 2302 return (dev->devclass); 2303 } 2304 2305 /** 2306 * @brief Return the name of the device's devclass or @c NULL if there 2307 * is none. 2308 */ 2309 const char * 2310 device_get_name(device_t dev) 2311 { 2312 if (dev != NULL && dev->devclass) 2313 return (devclass_get_name(dev->devclass)); 2314 return (NULL); 2315 } 2316 2317 /** 2318 * @brief Return a string containing the device's devclass name 2319 * followed by an ascii representation of the device's unit number 2320 * (e.g. @c "foo2"). 2321 */ 2322 const char * 2323 device_get_nameunit(device_t dev) 2324 { 2325 return (dev->nameunit); 2326 } 2327 2328 /** 2329 * @brief Return the device's unit number. 2330 */ 2331 int 2332 device_get_unit(device_t dev) 2333 { 2334 return (dev->unit); 2335 } 2336 2337 /** 2338 * @brief Return the device's description string 2339 */ 2340 const char * 2341 device_get_desc(device_t dev) 2342 { 2343 return (dev->desc); 2344 } 2345 2346 /** 2347 * @brief Return the device's flags 2348 */ 2349 uint32_t 2350 device_get_flags(device_t dev) 2351 { 2352 return (dev->devflags); 2353 } 2354 2355 struct sysctl_ctx_list * 2356 device_get_sysctl_ctx(device_t dev) 2357 { 2358 return (&dev->sysctl_ctx); 2359 } 2360 2361 struct sysctl_oid * 2362 device_get_sysctl_tree(device_t dev) 2363 { 2364 return (dev->sysctl_tree); 2365 } 2366 2367 /** 2368 * @brief Print the name of the device followed by a colon and a space 2369 * 2370 * @returns the number of characters printed 2371 */ 2372 int 2373 device_print_prettyname(device_t dev) 2374 { 2375 const char *name = device_get_name(dev); 2376 2377 if (name == NULL) 2378 return (printf("unknown: ")); 2379 return (printf("%s%d: ", name, device_get_unit(dev))); 2380 } 2381 2382 /** 2383 * @brief Print the name of the device followed by a colon, a space 2384 * and the result of calling vprintf() with the value of @p fmt and 2385 * the following arguments. 2386 * 2387 * @returns the number of characters printed 2388 */ 2389 int 2390 device_printf(device_t dev, const char * fmt, ...) 2391 { 2392 char buf[128]; 2393 struct sbuf sb; 2394 const char *name; 2395 va_list ap; 2396 size_t retval; 2397 2398 retval = 0; 2399 2400 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2401 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2402 2403 name = device_get_name(dev); 2404 2405 if (name == NULL) 2406 sbuf_cat(&sb, "unknown: "); 2407 else 2408 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2409 2410 va_start(ap, fmt); 2411 sbuf_vprintf(&sb, fmt, ap); 2412 va_end(ap); 2413 2414 sbuf_finish(&sb); 2415 sbuf_delete(&sb); 2416 2417 return (retval); 2418 } 2419 2420 /** 2421 * @brief Print the name of the device followed by a colon, a space 2422 * and the result of calling log() with the value of @p fmt and 2423 * the following arguments. 2424 * 2425 * @returns the number of characters printed 2426 */ 2427 int 2428 device_log(device_t dev, int pri, const char * fmt, ...) 2429 { 2430 char buf[128]; 2431 struct sbuf sb; 2432 const char *name; 2433 va_list ap; 2434 size_t retval; 2435 2436 retval = 0; 2437 2438 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2439 2440 name = device_get_name(dev); 2441 2442 if (name == NULL) 2443 sbuf_cat(&sb, "unknown: "); 2444 else 2445 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2446 2447 va_start(ap, fmt); 2448 sbuf_vprintf(&sb, fmt, ap); 2449 va_end(ap); 2450 2451 sbuf_finish(&sb); 2452 2453 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2454 retval = sbuf_len(&sb); 2455 2456 sbuf_delete(&sb); 2457 2458 return (retval); 2459 } 2460 2461 /** 2462 * @internal 2463 */ 2464 static void 2465 device_set_desc_internal(device_t dev, const char* desc, int copy) 2466 { 2467 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2468 free(dev->desc, M_BUS); 2469 dev->flags &= ~DF_DESCMALLOCED; 2470 dev->desc = NULL; 2471 } 2472 2473 if (copy && desc) { 2474 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2475 if (dev->desc) { 2476 strcpy(dev->desc, desc); 2477 dev->flags |= DF_DESCMALLOCED; 2478 } 2479 } else { 2480 /* Avoid a -Wcast-qual warning */ 2481 dev->desc = (char *)(uintptr_t) desc; 2482 } 2483 2484 bus_data_generation_update(); 2485 } 2486 2487 /** 2488 * @brief Set the device's description 2489 * 2490 * The value of @c desc should be a string constant that will not 2491 * change (at least until the description is changed in a subsequent 2492 * call to device_set_desc() or device_set_desc_copy()). 2493 */ 2494 void 2495 device_set_desc(device_t dev, const char* desc) 2496 { 2497 device_set_desc_internal(dev, desc, FALSE); 2498 } 2499 2500 /** 2501 * @brief Set the device's description 2502 * 2503 * The string pointed to by @c desc is copied. Use this function if 2504 * the device description is generated, (e.g. with sprintf()). 2505 */ 2506 void 2507 device_set_desc_copy(device_t dev, const char* desc) 2508 { 2509 device_set_desc_internal(dev, desc, TRUE); 2510 } 2511 2512 /** 2513 * @brief Set the device's flags 2514 */ 2515 void 2516 device_set_flags(device_t dev, uint32_t flags) 2517 { 2518 dev->devflags = flags; 2519 } 2520 2521 /** 2522 * @brief Return the device's softc field 2523 * 2524 * The softc is allocated and zeroed when a driver is attached, based 2525 * on the size field of the driver. 2526 */ 2527 void * 2528 device_get_softc(device_t dev) 2529 { 2530 return (dev->softc); 2531 } 2532 2533 /** 2534 * @brief Set the device's softc field 2535 * 2536 * Most drivers do not need to use this since the softc is allocated 2537 * automatically when the driver is attached. 2538 */ 2539 void 2540 device_set_softc(device_t dev, void *softc) 2541 { 2542 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2543 free(dev->softc, M_BUS_SC); 2544 dev->softc = softc; 2545 if (dev->softc) 2546 dev->flags |= DF_EXTERNALSOFTC; 2547 else 2548 dev->flags &= ~DF_EXTERNALSOFTC; 2549 } 2550 2551 /** 2552 * @brief Free claimed softc 2553 * 2554 * Most drivers do not need to use this since the softc is freed 2555 * automatically when the driver is detached. 2556 */ 2557 void 2558 device_free_softc(void *softc) 2559 { 2560 free(softc, M_BUS_SC); 2561 } 2562 2563 /** 2564 * @brief Claim softc 2565 * 2566 * This function can be used to let the driver free the automatically 2567 * allocated softc using "device_free_softc()". This function is 2568 * useful when the driver is refcounting the softc and the softc 2569 * cannot be freed when the "device_detach" method is called. 2570 */ 2571 void 2572 device_claim_softc(device_t dev) 2573 { 2574 if (dev->softc) 2575 dev->flags |= DF_EXTERNALSOFTC; 2576 else 2577 dev->flags &= ~DF_EXTERNALSOFTC; 2578 } 2579 2580 /** 2581 * @brief Get the device's ivars field 2582 * 2583 * The ivars field is used by the parent device to store per-device 2584 * state (e.g. the physical location of the device or a list of 2585 * resources). 2586 */ 2587 void * 2588 device_get_ivars(device_t dev) 2589 { 2590 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2591 return (dev->ivars); 2592 } 2593 2594 /** 2595 * @brief Set the device's ivars field 2596 */ 2597 void 2598 device_set_ivars(device_t dev, void * ivars) 2599 { 2600 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2601 dev->ivars = ivars; 2602 } 2603 2604 /** 2605 * @brief Return the device's state 2606 */ 2607 device_state_t 2608 device_get_state(device_t dev) 2609 { 2610 return (dev->state); 2611 } 2612 2613 /** 2614 * @brief Set the DF_ENABLED flag for the device 2615 */ 2616 void 2617 device_enable(device_t dev) 2618 { 2619 dev->flags |= DF_ENABLED; 2620 } 2621 2622 /** 2623 * @brief Clear the DF_ENABLED flag for the device 2624 */ 2625 void 2626 device_disable(device_t dev) 2627 { 2628 dev->flags &= ~DF_ENABLED; 2629 } 2630 2631 /** 2632 * @brief Increment the busy counter for the device 2633 */ 2634 void 2635 device_busy(device_t dev) 2636 { 2637 if (dev->state < DS_ATTACHING) 2638 panic("device_busy: called for unattached device"); 2639 if (dev->busy == 0 && dev->parent) 2640 device_busy(dev->parent); 2641 dev->busy++; 2642 if (dev->state == DS_ATTACHED) 2643 dev->state = DS_BUSY; 2644 } 2645 2646 /** 2647 * @brief Decrement the busy counter for the device 2648 */ 2649 void 2650 device_unbusy(device_t dev) 2651 { 2652 if (dev->busy != 0 && dev->state != DS_BUSY && 2653 dev->state != DS_ATTACHING) 2654 panic("device_unbusy: called for non-busy device %s", 2655 device_get_nameunit(dev)); 2656 dev->busy--; 2657 if (dev->busy == 0) { 2658 if (dev->parent) 2659 device_unbusy(dev->parent); 2660 if (dev->state == DS_BUSY) 2661 dev->state = DS_ATTACHED; 2662 } 2663 } 2664 2665 /** 2666 * @brief Set the DF_QUIET flag for the device 2667 */ 2668 void 2669 device_quiet(device_t dev) 2670 { 2671 dev->flags |= DF_QUIET; 2672 } 2673 2674 /** 2675 * @brief Set the DF_QUIET_CHILDREN flag for the device 2676 */ 2677 void 2678 device_quiet_children(device_t dev) 2679 { 2680 dev->flags |= DF_QUIET_CHILDREN; 2681 } 2682 2683 /** 2684 * @brief Clear the DF_QUIET flag for the device 2685 */ 2686 void 2687 device_verbose(device_t dev) 2688 { 2689 dev->flags &= ~DF_QUIET; 2690 } 2691 2692 ssize_t 2693 device_get_property(device_t dev, const char *prop, void *val, size_t sz) 2694 { 2695 device_t bus = device_get_parent(dev); 2696 2697 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz)); 2698 } 2699 2700 bool 2701 device_has_property(device_t dev, const char *prop) 2702 { 2703 return (device_get_property(dev, prop, NULL, 0) >= 0); 2704 } 2705 2706 /** 2707 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2708 */ 2709 int 2710 device_has_quiet_children(device_t dev) 2711 { 2712 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2713 } 2714 2715 /** 2716 * @brief Return non-zero if the DF_QUIET flag is set on the device 2717 */ 2718 int 2719 device_is_quiet(device_t dev) 2720 { 2721 return ((dev->flags & DF_QUIET) != 0); 2722 } 2723 2724 /** 2725 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2726 */ 2727 int 2728 device_is_enabled(device_t dev) 2729 { 2730 return ((dev->flags & DF_ENABLED) != 0); 2731 } 2732 2733 /** 2734 * @brief Return non-zero if the device was successfully probed 2735 */ 2736 int 2737 device_is_alive(device_t dev) 2738 { 2739 return (dev->state >= DS_ALIVE); 2740 } 2741 2742 /** 2743 * @brief Return non-zero if the device currently has a driver 2744 * attached to it 2745 */ 2746 int 2747 device_is_attached(device_t dev) 2748 { 2749 return (dev->state >= DS_ATTACHED); 2750 } 2751 2752 /** 2753 * @brief Return non-zero if the device is currently suspended. 2754 */ 2755 int 2756 device_is_suspended(device_t dev) 2757 { 2758 return ((dev->flags & DF_SUSPENDED) != 0); 2759 } 2760 2761 /** 2762 * @brief Set the devclass of a device 2763 * @see devclass_add_device(). 2764 */ 2765 int 2766 device_set_devclass(device_t dev, const char *classname) 2767 { 2768 devclass_t dc; 2769 int error; 2770 2771 if (!classname) { 2772 if (dev->devclass) 2773 devclass_delete_device(dev->devclass, dev); 2774 return (0); 2775 } 2776 2777 if (dev->devclass) { 2778 printf("device_set_devclass: device class already set\n"); 2779 return (EINVAL); 2780 } 2781 2782 dc = devclass_find_internal(classname, NULL, TRUE); 2783 if (!dc) 2784 return (ENOMEM); 2785 2786 error = devclass_add_device(dc, dev); 2787 2788 bus_data_generation_update(); 2789 return (error); 2790 } 2791 2792 /** 2793 * @brief Set the devclass of a device and mark the devclass fixed. 2794 * @see device_set_devclass() 2795 */ 2796 int 2797 device_set_devclass_fixed(device_t dev, const char *classname) 2798 { 2799 int error; 2800 2801 if (classname == NULL) 2802 return (EINVAL); 2803 2804 error = device_set_devclass(dev, classname); 2805 if (error) 2806 return (error); 2807 dev->flags |= DF_FIXEDCLASS; 2808 return (0); 2809 } 2810 2811 /** 2812 * @brief Query the device to determine if it's of a fixed devclass 2813 * @see device_set_devclass_fixed() 2814 */ 2815 bool 2816 device_is_devclass_fixed(device_t dev) 2817 { 2818 return ((dev->flags & DF_FIXEDCLASS) != 0); 2819 } 2820 2821 /** 2822 * @brief Set the driver of a device 2823 * 2824 * @retval 0 success 2825 * @retval EBUSY the device already has a driver attached 2826 * @retval ENOMEM a memory allocation failure occurred 2827 */ 2828 int 2829 device_set_driver(device_t dev, driver_t *driver) 2830 { 2831 int domain; 2832 struct domainset *policy; 2833 2834 if (dev->state >= DS_ATTACHED) 2835 return (EBUSY); 2836 2837 if (dev->driver == driver) 2838 return (0); 2839 2840 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2841 free(dev->softc, M_BUS_SC); 2842 dev->softc = NULL; 2843 } 2844 device_set_desc(dev, NULL); 2845 kobj_delete((kobj_t) dev, NULL); 2846 dev->driver = driver; 2847 if (driver) { 2848 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2849 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2850 if (bus_get_domain(dev, &domain) == 0) 2851 policy = DOMAINSET_PREF(domain); 2852 else 2853 policy = DOMAINSET_RR(); 2854 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2855 policy, M_NOWAIT | M_ZERO); 2856 if (!dev->softc) { 2857 kobj_delete((kobj_t) dev, NULL); 2858 kobj_init((kobj_t) dev, &null_class); 2859 dev->driver = NULL; 2860 return (ENOMEM); 2861 } 2862 } 2863 } else { 2864 kobj_init((kobj_t) dev, &null_class); 2865 } 2866 2867 bus_data_generation_update(); 2868 return (0); 2869 } 2870 2871 /** 2872 * @brief Probe a device, and return this status. 2873 * 2874 * This function is the core of the device autoconfiguration 2875 * system. Its purpose is to select a suitable driver for a device and 2876 * then call that driver to initialise the hardware appropriately. The 2877 * driver is selected by calling the DEVICE_PROBE() method of a set of 2878 * candidate drivers and then choosing the driver which returned the 2879 * best value. This driver is then attached to the device using 2880 * device_attach(). 2881 * 2882 * The set of suitable drivers is taken from the list of drivers in 2883 * the parent device's devclass. If the device was originally created 2884 * with a specific class name (see device_add_child()), only drivers 2885 * with that name are probed, otherwise all drivers in the devclass 2886 * are probed. If no drivers return successful probe values in the 2887 * parent devclass, the search continues in the parent of that 2888 * devclass (see devclass_get_parent()) if any. 2889 * 2890 * @param dev the device to initialise 2891 * 2892 * @retval 0 success 2893 * @retval ENXIO no driver was found 2894 * @retval ENOMEM memory allocation failure 2895 * @retval non-zero some other unix error code 2896 * @retval -1 Device already attached 2897 */ 2898 int 2899 device_probe(device_t dev) 2900 { 2901 int error; 2902 2903 GIANT_REQUIRED; 2904 2905 if (dev->state >= DS_ALIVE) 2906 return (-1); 2907 2908 if (!(dev->flags & DF_ENABLED)) { 2909 if (bootverbose && device_get_name(dev) != NULL) { 2910 device_print_prettyname(dev); 2911 printf("not probed (disabled)\n"); 2912 } 2913 return (-1); 2914 } 2915 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2916 if (bus_current_pass == BUS_PASS_DEFAULT && 2917 !(dev->flags & DF_DONENOMATCH)) { 2918 BUS_PROBE_NOMATCH(dev->parent, dev); 2919 devnomatch(dev); 2920 dev->flags |= DF_DONENOMATCH; 2921 } 2922 return (error); 2923 } 2924 return (0); 2925 } 2926 2927 /** 2928 * @brief Probe a device and attach a driver if possible 2929 * 2930 * calls device_probe() and attaches if that was successful. 2931 */ 2932 int 2933 device_probe_and_attach(device_t dev) 2934 { 2935 int error; 2936 2937 GIANT_REQUIRED; 2938 2939 error = device_probe(dev); 2940 if (error == -1) 2941 return (0); 2942 else if (error != 0) 2943 return (error); 2944 2945 CURVNET_SET_QUIET(vnet0); 2946 error = device_attach(dev); 2947 CURVNET_RESTORE(); 2948 return error; 2949 } 2950 2951 /** 2952 * @brief Attach a device driver to a device 2953 * 2954 * This function is a wrapper around the DEVICE_ATTACH() driver 2955 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2956 * device's sysctl tree, optionally prints a description of the device 2957 * and queues a notification event for user-based device management 2958 * services. 2959 * 2960 * Normally this function is only called internally from 2961 * device_probe_and_attach(). 2962 * 2963 * @param dev the device to initialise 2964 * 2965 * @retval 0 success 2966 * @retval ENXIO no driver was found 2967 * @retval ENOMEM memory allocation failure 2968 * @retval non-zero some other unix error code 2969 */ 2970 int 2971 device_attach(device_t dev) 2972 { 2973 uint64_t attachtime; 2974 uint16_t attachentropy; 2975 int error; 2976 2977 if (resource_disabled(dev->driver->name, dev->unit)) { 2978 device_disable(dev); 2979 if (bootverbose) 2980 device_printf(dev, "disabled via hints entry\n"); 2981 return (ENXIO); 2982 } 2983 2984 device_sysctl_init(dev); 2985 if (!device_is_quiet(dev)) 2986 device_print_child(dev->parent, dev); 2987 attachtime = get_cyclecount(); 2988 dev->state = DS_ATTACHING; 2989 if ((error = DEVICE_ATTACH(dev)) != 0) { 2990 printf("device_attach: %s%d attach returned %d\n", 2991 dev->driver->name, dev->unit, error); 2992 if (!(dev->flags & DF_FIXEDCLASS)) 2993 devclass_delete_device(dev->devclass, dev); 2994 (void)device_set_driver(dev, NULL); 2995 device_sysctl_fini(dev); 2996 KASSERT(dev->busy == 0, ("attach failed but busy")); 2997 dev->state = DS_NOTPRESENT; 2998 return (error); 2999 } 3000 dev->flags |= DF_ATTACHED_ONCE; 3001 /* We only need the low bits of this time, but ranges from tens to thousands 3002 * have been seen, so keep 2 bytes' worth. 3003 */ 3004 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 3005 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 3006 device_sysctl_update(dev); 3007 if (dev->busy) 3008 dev->state = DS_BUSY; 3009 else 3010 dev->state = DS_ATTACHED; 3011 dev->flags &= ~DF_DONENOMATCH; 3012 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 3013 devadded(dev); 3014 return (0); 3015 } 3016 3017 /** 3018 * @brief Detach a driver from a device 3019 * 3020 * This function is a wrapper around the DEVICE_DETACH() driver 3021 * method. If the call to DEVICE_DETACH() succeeds, it calls 3022 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3023 * notification event for user-based device management services and 3024 * cleans up the device's sysctl tree. 3025 * 3026 * @param dev the device to un-initialise 3027 * 3028 * @retval 0 success 3029 * @retval ENXIO no driver was found 3030 * @retval ENOMEM memory allocation failure 3031 * @retval non-zero some other unix error code 3032 */ 3033 int 3034 device_detach(device_t dev) 3035 { 3036 int error; 3037 3038 GIANT_REQUIRED; 3039 3040 PDEBUG(("%s", DEVICENAME(dev))); 3041 if (dev->state == DS_BUSY) 3042 return (EBUSY); 3043 if (dev->state == DS_ATTACHING) { 3044 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3045 return (EBUSY); 3046 } 3047 if (dev->state != DS_ATTACHED) 3048 return (0); 3049 3050 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3051 if ((error = DEVICE_DETACH(dev)) != 0) { 3052 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3053 EVHDEV_DETACH_FAILED); 3054 return (error); 3055 } else { 3056 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3057 EVHDEV_DETACH_COMPLETE); 3058 } 3059 devremoved(dev); 3060 if (!device_is_quiet(dev)) 3061 device_printf(dev, "detached\n"); 3062 if (dev->parent) 3063 BUS_CHILD_DETACHED(dev->parent, dev); 3064 3065 if (!(dev->flags & DF_FIXEDCLASS)) 3066 devclass_delete_device(dev->devclass, dev); 3067 3068 device_verbose(dev); 3069 dev->state = DS_NOTPRESENT; 3070 (void)device_set_driver(dev, NULL); 3071 device_sysctl_fini(dev); 3072 3073 return (0); 3074 } 3075 3076 /** 3077 * @brief Tells a driver to quiesce itself. 3078 * 3079 * This function is a wrapper around the DEVICE_QUIESCE() driver 3080 * method. If the call to DEVICE_QUIESCE() succeeds. 3081 * 3082 * @param dev the device to quiesce 3083 * 3084 * @retval 0 success 3085 * @retval ENXIO no driver was found 3086 * @retval ENOMEM memory allocation failure 3087 * @retval non-zero some other unix error code 3088 */ 3089 int 3090 device_quiesce(device_t dev) 3091 { 3092 PDEBUG(("%s", DEVICENAME(dev))); 3093 if (dev->state == DS_BUSY) 3094 return (EBUSY); 3095 if (dev->state != DS_ATTACHED) 3096 return (0); 3097 3098 return (DEVICE_QUIESCE(dev)); 3099 } 3100 3101 /** 3102 * @brief Notify a device of system shutdown 3103 * 3104 * This function calls the DEVICE_SHUTDOWN() driver method if the 3105 * device currently has an attached driver. 3106 * 3107 * @returns the value returned by DEVICE_SHUTDOWN() 3108 */ 3109 int 3110 device_shutdown(device_t dev) 3111 { 3112 if (dev->state < DS_ATTACHED) 3113 return (0); 3114 return (DEVICE_SHUTDOWN(dev)); 3115 } 3116 3117 /** 3118 * @brief Set the unit number of a device 3119 * 3120 * This function can be used to override the unit number used for a 3121 * device (e.g. to wire a device to a pre-configured unit number). 3122 */ 3123 int 3124 device_set_unit(device_t dev, int unit) 3125 { 3126 devclass_t dc; 3127 int err; 3128 3129 if (unit == dev->unit) 3130 return (0); 3131 dc = device_get_devclass(dev); 3132 if (unit < dc->maxunit && dc->devices[unit]) 3133 return (EBUSY); 3134 err = devclass_delete_device(dc, dev); 3135 if (err) 3136 return (err); 3137 dev->unit = unit; 3138 err = devclass_add_device(dc, dev); 3139 if (err) 3140 return (err); 3141 3142 bus_data_generation_update(); 3143 return (0); 3144 } 3145 3146 /*======================================*/ 3147 /* 3148 * Some useful method implementations to make life easier for bus drivers. 3149 */ 3150 3151 void 3152 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3153 { 3154 bzero(args, sz); 3155 args->size = sz; 3156 args->memattr = VM_MEMATTR_DEVICE; 3157 } 3158 3159 /** 3160 * @brief Initialise a resource list. 3161 * 3162 * @param rl the resource list to initialise 3163 */ 3164 void 3165 resource_list_init(struct resource_list *rl) 3166 { 3167 STAILQ_INIT(rl); 3168 } 3169 3170 /** 3171 * @brief Reclaim memory used by a resource list. 3172 * 3173 * This function frees the memory for all resource entries on the list 3174 * (if any). 3175 * 3176 * @param rl the resource list to free 3177 */ 3178 void 3179 resource_list_free(struct resource_list *rl) 3180 { 3181 struct resource_list_entry *rle; 3182 3183 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3184 if (rle->res) 3185 panic("resource_list_free: resource entry is busy"); 3186 STAILQ_REMOVE_HEAD(rl, link); 3187 free(rle, M_BUS); 3188 } 3189 } 3190 3191 /** 3192 * @brief Add a resource entry. 3193 * 3194 * This function adds a resource entry using the given @p type, @p 3195 * start, @p end and @p count values. A rid value is chosen by 3196 * searching sequentially for the first unused rid starting at zero. 3197 * 3198 * @param rl the resource list to edit 3199 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3200 * @param start the start address of the resource 3201 * @param end the end address of the resource 3202 * @param count XXX end-start+1 3203 */ 3204 int 3205 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3206 rman_res_t end, rman_res_t count) 3207 { 3208 int rid; 3209 3210 rid = 0; 3211 while (resource_list_find(rl, type, rid) != NULL) 3212 rid++; 3213 resource_list_add(rl, type, rid, start, end, count); 3214 return (rid); 3215 } 3216 3217 /** 3218 * @brief Add or modify a resource entry. 3219 * 3220 * If an existing entry exists with the same type and rid, it will be 3221 * modified using the given values of @p start, @p end and @p 3222 * count. If no entry exists, a new one will be created using the 3223 * given values. The resource list entry that matches is then returned. 3224 * 3225 * @param rl the resource list to edit 3226 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3227 * @param rid the resource identifier 3228 * @param start the start address of the resource 3229 * @param end the end address of the resource 3230 * @param count XXX end-start+1 3231 */ 3232 struct resource_list_entry * 3233 resource_list_add(struct resource_list *rl, int type, int rid, 3234 rman_res_t start, rman_res_t end, rman_res_t count) 3235 { 3236 struct resource_list_entry *rle; 3237 3238 rle = resource_list_find(rl, type, rid); 3239 if (!rle) { 3240 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3241 M_NOWAIT); 3242 if (!rle) 3243 panic("resource_list_add: can't record entry"); 3244 STAILQ_INSERT_TAIL(rl, rle, link); 3245 rle->type = type; 3246 rle->rid = rid; 3247 rle->res = NULL; 3248 rle->flags = 0; 3249 } 3250 3251 if (rle->res) 3252 panic("resource_list_add: resource entry is busy"); 3253 3254 rle->start = start; 3255 rle->end = end; 3256 rle->count = count; 3257 return (rle); 3258 } 3259 3260 /** 3261 * @brief Determine if a resource entry is busy. 3262 * 3263 * Returns true if a resource entry is busy meaning that it has an 3264 * associated resource that is not an unallocated "reserved" resource. 3265 * 3266 * @param rl the resource list to search 3267 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3268 * @param rid the resource identifier 3269 * 3270 * @returns Non-zero if the entry is busy, zero otherwise. 3271 */ 3272 int 3273 resource_list_busy(struct resource_list *rl, int type, int rid) 3274 { 3275 struct resource_list_entry *rle; 3276 3277 rle = resource_list_find(rl, type, rid); 3278 if (rle == NULL || rle->res == NULL) 3279 return (0); 3280 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3281 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3282 ("reserved resource is active")); 3283 return (0); 3284 } 3285 return (1); 3286 } 3287 3288 /** 3289 * @brief Determine if a resource entry is reserved. 3290 * 3291 * Returns true if a resource entry is reserved meaning that it has an 3292 * associated "reserved" resource. The resource can either be 3293 * allocated or unallocated. 3294 * 3295 * @param rl the resource list to search 3296 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3297 * @param rid the resource identifier 3298 * 3299 * @returns Non-zero if the entry is reserved, zero otherwise. 3300 */ 3301 int 3302 resource_list_reserved(struct resource_list *rl, int type, int rid) 3303 { 3304 struct resource_list_entry *rle; 3305 3306 rle = resource_list_find(rl, type, rid); 3307 if (rle != NULL && rle->flags & RLE_RESERVED) 3308 return (1); 3309 return (0); 3310 } 3311 3312 /** 3313 * @brief Find a resource entry by type and rid. 3314 * 3315 * @param rl the resource list to search 3316 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3317 * @param rid the resource identifier 3318 * 3319 * @returns the resource entry pointer or NULL if there is no such 3320 * entry. 3321 */ 3322 struct resource_list_entry * 3323 resource_list_find(struct resource_list *rl, int type, int rid) 3324 { 3325 struct resource_list_entry *rle; 3326 3327 STAILQ_FOREACH(rle, rl, link) { 3328 if (rle->type == type && rle->rid == rid) 3329 return (rle); 3330 } 3331 return (NULL); 3332 } 3333 3334 /** 3335 * @brief Delete a resource entry. 3336 * 3337 * @param rl the resource list to edit 3338 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3339 * @param rid the resource identifier 3340 */ 3341 void 3342 resource_list_delete(struct resource_list *rl, int type, int rid) 3343 { 3344 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3345 3346 if (rle) { 3347 if (rle->res != NULL) 3348 panic("resource_list_delete: resource has not been released"); 3349 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3350 free(rle, M_BUS); 3351 } 3352 } 3353 3354 /** 3355 * @brief Allocate a reserved resource 3356 * 3357 * This can be used by buses to force the allocation of resources 3358 * that are always active in the system even if they are not allocated 3359 * by a driver (e.g. PCI BARs). This function is usually called when 3360 * adding a new child to the bus. The resource is allocated from the 3361 * parent bus when it is reserved. The resource list entry is marked 3362 * with RLE_RESERVED to note that it is a reserved resource. 3363 * 3364 * Subsequent attempts to allocate the resource with 3365 * resource_list_alloc() will succeed the first time and will set 3366 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3367 * resource that has been allocated is released with 3368 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3369 * the actual resource remains allocated. The resource can be released to 3370 * the parent bus by calling resource_list_unreserve(). 3371 * 3372 * @param rl the resource list to allocate from 3373 * @param bus the parent device of @p child 3374 * @param child the device for which the resource is being reserved 3375 * @param type the type of resource to allocate 3376 * @param rid a pointer to the resource identifier 3377 * @param start hint at the start of the resource range - pass 3378 * @c 0 for any start address 3379 * @param end hint at the end of the resource range - pass 3380 * @c ~0 for any end address 3381 * @param count hint at the size of range required - pass @c 1 3382 * for any size 3383 * @param flags any extra flags to control the resource 3384 * allocation - see @c RF_XXX flags in 3385 * <sys/rman.h> for details 3386 * 3387 * @returns the resource which was allocated or @c NULL if no 3388 * resource could be allocated 3389 */ 3390 struct resource * 3391 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3392 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3393 { 3394 struct resource_list_entry *rle = NULL; 3395 int passthrough = (device_get_parent(child) != bus); 3396 struct resource *r; 3397 3398 if (passthrough) 3399 panic( 3400 "resource_list_reserve() should only be called for direct children"); 3401 if (flags & RF_ACTIVE) 3402 panic( 3403 "resource_list_reserve() should only reserve inactive resources"); 3404 3405 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3406 flags); 3407 if (r != NULL) { 3408 rle = resource_list_find(rl, type, *rid); 3409 rle->flags |= RLE_RESERVED; 3410 } 3411 return (r); 3412 } 3413 3414 /** 3415 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3416 * 3417 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3418 * and passing the allocation up to the parent of @p bus. This assumes 3419 * that the first entry of @c device_get_ivars(child) is a struct 3420 * resource_list. This also handles 'passthrough' allocations where a 3421 * child is a remote descendant of bus by passing the allocation up to 3422 * the parent of bus. 3423 * 3424 * Typically, a bus driver would store a list of child resources 3425 * somewhere in the child device's ivars (see device_get_ivars()) and 3426 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3427 * then call resource_list_alloc() to perform the allocation. 3428 * 3429 * @param rl the resource list to allocate from 3430 * @param bus the parent device of @p child 3431 * @param child the device which is requesting an allocation 3432 * @param type the type of resource to allocate 3433 * @param rid a pointer to the resource identifier 3434 * @param start hint at the start of the resource range - pass 3435 * @c 0 for any start address 3436 * @param end hint at the end of the resource range - pass 3437 * @c ~0 for any end address 3438 * @param count hint at the size of range required - pass @c 1 3439 * for any size 3440 * @param flags any extra flags to control the resource 3441 * allocation - see @c RF_XXX flags in 3442 * <sys/rman.h> for details 3443 * 3444 * @returns the resource which was allocated or @c NULL if no 3445 * resource could be allocated 3446 */ 3447 struct resource * 3448 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3449 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3450 { 3451 struct resource_list_entry *rle = NULL; 3452 int passthrough = (device_get_parent(child) != bus); 3453 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3454 3455 if (passthrough) { 3456 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3457 type, rid, start, end, count, flags)); 3458 } 3459 3460 rle = resource_list_find(rl, type, *rid); 3461 3462 if (!rle) 3463 return (NULL); /* no resource of that type/rid */ 3464 3465 if (rle->res) { 3466 if (rle->flags & RLE_RESERVED) { 3467 if (rle->flags & RLE_ALLOCATED) 3468 return (NULL); 3469 if ((flags & RF_ACTIVE) && 3470 bus_activate_resource(child, type, *rid, 3471 rle->res) != 0) 3472 return (NULL); 3473 rle->flags |= RLE_ALLOCATED; 3474 return (rle->res); 3475 } 3476 device_printf(bus, 3477 "resource entry %#x type %d for child %s is busy\n", *rid, 3478 type, device_get_nameunit(child)); 3479 return (NULL); 3480 } 3481 3482 if (isdefault) { 3483 start = rle->start; 3484 count = ulmax(count, rle->count); 3485 end = ulmax(rle->end, start + count - 1); 3486 } 3487 3488 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3489 type, rid, start, end, count, flags); 3490 3491 /* 3492 * Record the new range. 3493 */ 3494 if (rle->res) { 3495 rle->start = rman_get_start(rle->res); 3496 rle->end = rman_get_end(rle->res); 3497 rle->count = count; 3498 } 3499 3500 return (rle->res); 3501 } 3502 3503 /** 3504 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3505 * 3506 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3507 * used with resource_list_alloc(). 3508 * 3509 * @param rl the resource list which was allocated from 3510 * @param bus the parent device of @p child 3511 * @param child the device which is requesting a release 3512 * @param type the type of resource to release 3513 * @param rid the resource identifier 3514 * @param res the resource to release 3515 * 3516 * @retval 0 success 3517 * @retval non-zero a standard unix error code indicating what 3518 * error condition prevented the operation 3519 */ 3520 int 3521 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3522 int type, int rid, struct resource *res) 3523 { 3524 struct resource_list_entry *rle = NULL; 3525 int passthrough = (device_get_parent(child) != bus); 3526 int error; 3527 3528 if (passthrough) { 3529 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3530 type, rid, res)); 3531 } 3532 3533 rle = resource_list_find(rl, type, rid); 3534 3535 if (!rle) 3536 panic("resource_list_release: can't find resource"); 3537 if (!rle->res) 3538 panic("resource_list_release: resource entry is not busy"); 3539 if (rle->flags & RLE_RESERVED) { 3540 if (rle->flags & RLE_ALLOCATED) { 3541 if (rman_get_flags(res) & RF_ACTIVE) { 3542 error = bus_deactivate_resource(child, type, 3543 rid, res); 3544 if (error) 3545 return (error); 3546 } 3547 rle->flags &= ~RLE_ALLOCATED; 3548 return (0); 3549 } 3550 return (EINVAL); 3551 } 3552 3553 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3554 type, rid, res); 3555 if (error) 3556 return (error); 3557 3558 rle->res = NULL; 3559 return (0); 3560 } 3561 3562 /** 3563 * @brief Release all active resources of a given type 3564 * 3565 * Release all active resources of a specified type. This is intended 3566 * to be used to cleanup resources leaked by a driver after detach or 3567 * a failed attach. 3568 * 3569 * @param rl the resource list which was allocated from 3570 * @param bus the parent device of @p child 3571 * @param child the device whose active resources are being released 3572 * @param type the type of resources to release 3573 * 3574 * @retval 0 success 3575 * @retval EBUSY at least one resource was active 3576 */ 3577 int 3578 resource_list_release_active(struct resource_list *rl, device_t bus, 3579 device_t child, int type) 3580 { 3581 struct resource_list_entry *rle; 3582 int error, retval; 3583 3584 retval = 0; 3585 STAILQ_FOREACH(rle, rl, link) { 3586 if (rle->type != type) 3587 continue; 3588 if (rle->res == NULL) 3589 continue; 3590 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3591 RLE_RESERVED) 3592 continue; 3593 retval = EBUSY; 3594 error = resource_list_release(rl, bus, child, type, 3595 rman_get_rid(rle->res), rle->res); 3596 if (error != 0) 3597 device_printf(bus, 3598 "Failed to release active resource: %d\n", error); 3599 } 3600 return (retval); 3601 } 3602 3603 /** 3604 * @brief Fully release a reserved resource 3605 * 3606 * Fully releases a resource reserved via resource_list_reserve(). 3607 * 3608 * @param rl the resource list which was allocated from 3609 * @param bus the parent device of @p child 3610 * @param child the device whose reserved resource is being released 3611 * @param type the type of resource to release 3612 * @param rid the resource identifier 3613 * @param res the resource to release 3614 * 3615 * @retval 0 success 3616 * @retval non-zero a standard unix error code indicating what 3617 * error condition prevented the operation 3618 */ 3619 int 3620 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3621 int type, int rid) 3622 { 3623 struct resource_list_entry *rle = NULL; 3624 int passthrough = (device_get_parent(child) != bus); 3625 3626 if (passthrough) 3627 panic( 3628 "resource_list_unreserve() should only be called for direct children"); 3629 3630 rle = resource_list_find(rl, type, rid); 3631 3632 if (!rle) 3633 panic("resource_list_unreserve: can't find resource"); 3634 if (!(rle->flags & RLE_RESERVED)) 3635 return (EINVAL); 3636 if (rle->flags & RLE_ALLOCATED) 3637 return (EBUSY); 3638 rle->flags &= ~RLE_RESERVED; 3639 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3640 } 3641 3642 /** 3643 * @brief Print a description of resources in a resource list 3644 * 3645 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3646 * The name is printed if at least one resource of the given type is available. 3647 * The format is used to print resource start and end. 3648 * 3649 * @param rl the resource list to print 3650 * @param name the name of @p type, e.g. @c "memory" 3651 * @param type type type of resource entry to print 3652 * @param format printf(9) format string to print resource 3653 * start and end values 3654 * 3655 * @returns the number of characters printed 3656 */ 3657 int 3658 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3659 const char *format) 3660 { 3661 struct resource_list_entry *rle; 3662 int printed, retval; 3663 3664 printed = 0; 3665 retval = 0; 3666 /* Yes, this is kinda cheating */ 3667 STAILQ_FOREACH(rle, rl, link) { 3668 if (rle->type == type) { 3669 if (printed == 0) 3670 retval += printf(" %s ", name); 3671 else 3672 retval += printf(","); 3673 printed++; 3674 retval += printf(format, rle->start); 3675 if (rle->count > 1) { 3676 retval += printf("-"); 3677 retval += printf(format, rle->start + 3678 rle->count - 1); 3679 } 3680 } 3681 } 3682 return (retval); 3683 } 3684 3685 /** 3686 * @brief Releases all the resources in a list. 3687 * 3688 * @param rl The resource list to purge. 3689 * 3690 * @returns nothing 3691 */ 3692 void 3693 resource_list_purge(struct resource_list *rl) 3694 { 3695 struct resource_list_entry *rle; 3696 3697 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3698 if (rle->res) 3699 bus_release_resource(rman_get_device(rle->res), 3700 rle->type, rle->rid, rle->res); 3701 STAILQ_REMOVE_HEAD(rl, link); 3702 free(rle, M_BUS); 3703 } 3704 } 3705 3706 device_t 3707 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3708 { 3709 return (device_add_child_ordered(dev, order, name, unit)); 3710 } 3711 3712 /** 3713 * @brief Helper function for implementing DEVICE_PROBE() 3714 * 3715 * This function can be used to help implement the DEVICE_PROBE() for 3716 * a bus (i.e. a device which has other devices attached to it). It 3717 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3718 * devclass. 3719 */ 3720 int 3721 bus_generic_probe(device_t dev) 3722 { 3723 devclass_t dc = dev->devclass; 3724 driverlink_t dl; 3725 3726 TAILQ_FOREACH(dl, &dc->drivers, link) { 3727 /* 3728 * If this driver's pass is too high, then ignore it. 3729 * For most drivers in the default pass, this will 3730 * never be true. For early-pass drivers they will 3731 * only call the identify routines of eligible drivers 3732 * when this routine is called. Drivers for later 3733 * passes should have their identify routines called 3734 * on early-pass buses during BUS_NEW_PASS(). 3735 */ 3736 if (dl->pass > bus_current_pass) 3737 continue; 3738 DEVICE_IDENTIFY(dl->driver, dev); 3739 } 3740 3741 return (0); 3742 } 3743 3744 /** 3745 * @brief Helper function for implementing DEVICE_ATTACH() 3746 * 3747 * This function can be used to help implement the DEVICE_ATTACH() for 3748 * a bus. It calls device_probe_and_attach() for each of the device's 3749 * children. 3750 */ 3751 int 3752 bus_generic_attach(device_t dev) 3753 { 3754 device_t child; 3755 3756 TAILQ_FOREACH(child, &dev->children, link) { 3757 device_probe_and_attach(child); 3758 } 3759 3760 return (0); 3761 } 3762 3763 /** 3764 * @brief Helper function for delaying attaching children 3765 * 3766 * Many buses can't run transactions on the bus which children need to probe and 3767 * attach until after interrupts and/or timers are running. This function 3768 * delays their attach until interrupts and timers are enabled. 3769 */ 3770 int 3771 bus_delayed_attach_children(device_t dev) 3772 { 3773 /* Probe and attach the bus children when interrupts are available */ 3774 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3775 3776 return (0); 3777 } 3778 3779 /** 3780 * @brief Helper function for implementing DEVICE_DETACH() 3781 * 3782 * This function can be used to help implement the DEVICE_DETACH() for 3783 * a bus. It calls device_detach() for each of the device's 3784 * children. 3785 */ 3786 int 3787 bus_generic_detach(device_t dev) 3788 { 3789 device_t child; 3790 int error; 3791 3792 if (dev->state != DS_ATTACHED) 3793 return (EBUSY); 3794 3795 /* 3796 * Detach children in the reverse order. 3797 * See bus_generic_suspend for details. 3798 */ 3799 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3800 if ((error = device_detach(child)) != 0) 3801 return (error); 3802 } 3803 3804 return (0); 3805 } 3806 3807 /** 3808 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3809 * 3810 * This function can be used to help implement the DEVICE_SHUTDOWN() 3811 * for a bus. It calls device_shutdown() for each of the device's 3812 * children. 3813 */ 3814 int 3815 bus_generic_shutdown(device_t dev) 3816 { 3817 device_t child; 3818 3819 /* 3820 * Shut down children in the reverse order. 3821 * See bus_generic_suspend for details. 3822 */ 3823 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3824 device_shutdown(child); 3825 } 3826 3827 return (0); 3828 } 3829 3830 /** 3831 * @brief Default function for suspending a child device. 3832 * 3833 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3834 */ 3835 int 3836 bus_generic_suspend_child(device_t dev, device_t child) 3837 { 3838 int error; 3839 3840 error = DEVICE_SUSPEND(child); 3841 3842 if (error == 0) 3843 child->flags |= DF_SUSPENDED; 3844 3845 return (error); 3846 } 3847 3848 /** 3849 * @brief Default function for resuming a child device. 3850 * 3851 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3852 */ 3853 int 3854 bus_generic_resume_child(device_t dev, device_t child) 3855 { 3856 DEVICE_RESUME(child); 3857 child->flags &= ~DF_SUSPENDED; 3858 3859 return (0); 3860 } 3861 3862 /** 3863 * @brief Helper function for implementing DEVICE_SUSPEND() 3864 * 3865 * This function can be used to help implement the DEVICE_SUSPEND() 3866 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3867 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3868 * operation is aborted and any devices which were suspended are 3869 * resumed immediately by calling their DEVICE_RESUME() methods. 3870 */ 3871 int 3872 bus_generic_suspend(device_t dev) 3873 { 3874 int error; 3875 device_t child; 3876 3877 /* 3878 * Suspend children in the reverse order. 3879 * For most buses all children are equal, so the order does not matter. 3880 * Other buses, such as acpi, carefully order their child devices to 3881 * express implicit dependencies between them. For such buses it is 3882 * safer to bring down devices in the reverse order. 3883 */ 3884 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3885 error = BUS_SUSPEND_CHILD(dev, child); 3886 if (error != 0) { 3887 child = TAILQ_NEXT(child, link); 3888 if (child != NULL) { 3889 TAILQ_FOREACH_FROM(child, &dev->children, link) 3890 BUS_RESUME_CHILD(dev, child); 3891 } 3892 return (error); 3893 } 3894 } 3895 return (0); 3896 } 3897 3898 /** 3899 * @brief Helper function for implementing DEVICE_RESUME() 3900 * 3901 * This function can be used to help implement the DEVICE_RESUME() for 3902 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3903 */ 3904 int 3905 bus_generic_resume(device_t dev) 3906 { 3907 device_t child; 3908 3909 TAILQ_FOREACH(child, &dev->children, link) { 3910 BUS_RESUME_CHILD(dev, child); 3911 /* if resume fails, there's nothing we can usefully do... */ 3912 } 3913 return (0); 3914 } 3915 3916 /** 3917 * @brief Helper function for implementing BUS_RESET_POST 3918 * 3919 * Bus can use this function to implement common operations of 3920 * re-attaching or resuming the children after the bus itself was 3921 * reset, and after restoring bus-unique state of children. 3922 * 3923 * @param dev The bus 3924 * #param flags DEVF_RESET_* 3925 */ 3926 int 3927 bus_helper_reset_post(device_t dev, int flags) 3928 { 3929 device_t child; 3930 int error, error1; 3931 3932 error = 0; 3933 TAILQ_FOREACH(child, &dev->children,link) { 3934 BUS_RESET_POST(dev, child); 3935 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3936 device_probe_and_attach(child) : 3937 BUS_RESUME_CHILD(dev, child); 3938 if (error == 0 && error1 != 0) 3939 error = error1; 3940 } 3941 return (error); 3942 } 3943 3944 static void 3945 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3946 { 3947 child = TAILQ_NEXT(child, link); 3948 if (child == NULL) 3949 return; 3950 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3951 BUS_RESET_POST(dev, child); 3952 if ((flags & DEVF_RESET_DETACH) != 0) 3953 device_probe_and_attach(child); 3954 else 3955 BUS_RESUME_CHILD(dev, child); 3956 } 3957 } 3958 3959 /** 3960 * @brief Helper function for implementing BUS_RESET_PREPARE 3961 * 3962 * Bus can use this function to implement common operations of 3963 * detaching or suspending the children before the bus itself is 3964 * reset, and then save bus-unique state of children that must 3965 * persists around reset. 3966 * 3967 * @param dev The bus 3968 * #param flags DEVF_RESET_* 3969 */ 3970 int 3971 bus_helper_reset_prepare(device_t dev, int flags) 3972 { 3973 device_t child; 3974 int error; 3975 3976 if (dev->state != DS_ATTACHED) 3977 return (EBUSY); 3978 3979 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3980 if ((flags & DEVF_RESET_DETACH) != 0) { 3981 error = device_get_state(child) == DS_ATTACHED ? 3982 device_detach(child) : 0; 3983 } else { 3984 error = BUS_SUSPEND_CHILD(dev, child); 3985 } 3986 if (error == 0) { 3987 error = BUS_RESET_PREPARE(dev, child); 3988 if (error != 0) { 3989 if ((flags & DEVF_RESET_DETACH) != 0) 3990 device_probe_and_attach(child); 3991 else 3992 BUS_RESUME_CHILD(dev, child); 3993 } 3994 } 3995 if (error != 0) { 3996 bus_helper_reset_prepare_rollback(dev, child, flags); 3997 return (error); 3998 } 3999 } 4000 return (0); 4001 } 4002 4003 /** 4004 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4005 * 4006 * This function prints the first part of the ascii representation of 4007 * @p child, including its name, unit and description (if any - see 4008 * device_set_desc()). 4009 * 4010 * @returns the number of characters printed 4011 */ 4012 int 4013 bus_print_child_header(device_t dev, device_t child) 4014 { 4015 int retval = 0; 4016 4017 if (device_get_desc(child)) { 4018 retval += device_printf(child, "<%s>", device_get_desc(child)); 4019 } else { 4020 retval += printf("%s", device_get_nameunit(child)); 4021 } 4022 4023 return (retval); 4024 } 4025 4026 /** 4027 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4028 * 4029 * This function prints the last part of the ascii representation of 4030 * @p child, which consists of the string @c " on " followed by the 4031 * name and unit of the @p dev. 4032 * 4033 * @returns the number of characters printed 4034 */ 4035 int 4036 bus_print_child_footer(device_t dev, device_t child) 4037 { 4038 return (printf(" on %s\n", device_get_nameunit(dev))); 4039 } 4040 4041 /** 4042 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4043 * 4044 * This function prints out the VM domain for the given device. 4045 * 4046 * @returns the number of characters printed 4047 */ 4048 int 4049 bus_print_child_domain(device_t dev, device_t child) 4050 { 4051 int domain; 4052 4053 /* No domain? Don't print anything */ 4054 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4055 return (0); 4056 4057 return (printf(" numa-domain %d", domain)); 4058 } 4059 4060 /** 4061 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4062 * 4063 * This function simply calls bus_print_child_header() followed by 4064 * bus_print_child_footer(). 4065 * 4066 * @returns the number of characters printed 4067 */ 4068 int 4069 bus_generic_print_child(device_t dev, device_t child) 4070 { 4071 int retval = 0; 4072 4073 retval += bus_print_child_header(dev, child); 4074 retval += bus_print_child_domain(dev, child); 4075 retval += bus_print_child_footer(dev, child); 4076 4077 return (retval); 4078 } 4079 4080 /** 4081 * @brief Stub function for implementing BUS_READ_IVAR(). 4082 * 4083 * @returns ENOENT 4084 */ 4085 int 4086 bus_generic_read_ivar(device_t dev, device_t child, int index, 4087 uintptr_t * result) 4088 { 4089 return (ENOENT); 4090 } 4091 4092 /** 4093 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4094 * 4095 * @returns ENOENT 4096 */ 4097 int 4098 bus_generic_write_ivar(device_t dev, device_t child, int index, 4099 uintptr_t value) 4100 { 4101 return (ENOENT); 4102 } 4103 4104 /** 4105 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4106 * 4107 * @returns NULL 4108 */ 4109 struct resource_list * 4110 bus_generic_get_resource_list(device_t dev, device_t child) 4111 { 4112 return (NULL); 4113 } 4114 4115 /** 4116 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4117 * 4118 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4119 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4120 * and then calls device_probe_and_attach() for each unattached child. 4121 */ 4122 void 4123 bus_generic_driver_added(device_t dev, driver_t *driver) 4124 { 4125 device_t child; 4126 4127 DEVICE_IDENTIFY(driver, dev); 4128 TAILQ_FOREACH(child, &dev->children, link) { 4129 if (child->state == DS_NOTPRESENT) 4130 device_probe_and_attach(child); 4131 } 4132 } 4133 4134 /** 4135 * @brief Helper function for implementing BUS_NEW_PASS(). 4136 * 4137 * This implementing of BUS_NEW_PASS() first calls the identify 4138 * routines for any drivers that probe at the current pass. Then it 4139 * walks the list of devices for this bus. If a device is already 4140 * attached, then it calls BUS_NEW_PASS() on that device. If the 4141 * device is not already attached, it attempts to attach a driver to 4142 * it. 4143 */ 4144 void 4145 bus_generic_new_pass(device_t dev) 4146 { 4147 driverlink_t dl; 4148 devclass_t dc; 4149 device_t child; 4150 4151 dc = dev->devclass; 4152 TAILQ_FOREACH(dl, &dc->drivers, link) { 4153 if (dl->pass == bus_current_pass) 4154 DEVICE_IDENTIFY(dl->driver, dev); 4155 } 4156 TAILQ_FOREACH(child, &dev->children, link) { 4157 if (child->state >= DS_ATTACHED) 4158 BUS_NEW_PASS(child); 4159 else if (child->state == DS_NOTPRESENT) 4160 device_probe_and_attach(child); 4161 } 4162 } 4163 4164 /** 4165 * @brief Helper function for implementing BUS_SETUP_INTR(). 4166 * 4167 * This simple implementation of BUS_SETUP_INTR() simply calls the 4168 * BUS_SETUP_INTR() method of the parent of @p dev. 4169 */ 4170 int 4171 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4172 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4173 void **cookiep) 4174 { 4175 /* Propagate up the bus hierarchy until someone handles it. */ 4176 if (dev->parent) 4177 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4178 filter, intr, arg, cookiep)); 4179 return (EINVAL); 4180 } 4181 4182 /** 4183 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4184 * 4185 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4186 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4187 */ 4188 int 4189 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4190 void *cookie) 4191 { 4192 /* Propagate up the bus hierarchy until someone handles it. */ 4193 if (dev->parent) 4194 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4195 return (EINVAL); 4196 } 4197 4198 /** 4199 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4200 * 4201 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4202 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4203 */ 4204 int 4205 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4206 { 4207 /* Propagate up the bus hierarchy until someone handles it. */ 4208 if (dev->parent) 4209 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4210 return (EINVAL); 4211 } 4212 4213 /** 4214 * @brief Helper function for implementing BUS_RESUME_INTR(). 4215 * 4216 * This simple implementation of BUS_RESUME_INTR() simply calls the 4217 * BUS_RESUME_INTR() method of the parent of @p dev. 4218 */ 4219 int 4220 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4221 { 4222 /* Propagate up the bus hierarchy until someone handles it. */ 4223 if (dev->parent) 4224 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4225 return (EINVAL); 4226 } 4227 4228 /** 4229 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4230 * 4231 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4232 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4233 */ 4234 int 4235 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4236 struct resource *r, rman_res_t start, rman_res_t end) 4237 { 4238 /* Propagate up the bus hierarchy until someone handles it. */ 4239 if (dev->parent) 4240 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4241 end)); 4242 return (EINVAL); 4243 } 4244 4245 /* 4246 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 4247 * 4248 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 4249 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 4250 * parent, no translation happens. 4251 */ 4252 int 4253 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 4254 rman_res_t *newstart) 4255 { 4256 if (dev->parent) 4257 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 4258 newstart)); 4259 *newstart = start; 4260 return (0); 4261 } 4262 4263 /** 4264 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4265 * 4266 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4267 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4268 */ 4269 struct resource * 4270 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4271 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4272 { 4273 /* Propagate up the bus hierarchy until someone handles it. */ 4274 if (dev->parent) 4275 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4276 start, end, count, flags)); 4277 return (NULL); 4278 } 4279 4280 /** 4281 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4282 * 4283 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4284 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4285 */ 4286 int 4287 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4288 struct resource *r) 4289 { 4290 /* Propagate up the bus hierarchy until someone handles it. */ 4291 if (dev->parent) 4292 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4293 r)); 4294 return (EINVAL); 4295 } 4296 4297 /** 4298 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4299 * 4300 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4301 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4302 */ 4303 int 4304 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4305 struct resource *r) 4306 { 4307 /* Propagate up the bus hierarchy until someone handles it. */ 4308 if (dev->parent) 4309 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4310 r)); 4311 return (EINVAL); 4312 } 4313 4314 /** 4315 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4316 * 4317 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4318 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4319 */ 4320 int 4321 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4322 int rid, struct resource *r) 4323 { 4324 /* Propagate up the bus hierarchy until someone handles it. */ 4325 if (dev->parent) 4326 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4327 r)); 4328 return (EINVAL); 4329 } 4330 4331 /** 4332 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4333 * 4334 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4335 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4336 */ 4337 int 4338 bus_generic_map_resource(device_t dev, device_t child, int type, 4339 struct resource *r, struct resource_map_request *args, 4340 struct resource_map *map) 4341 { 4342 /* Propagate up the bus hierarchy until someone handles it. */ 4343 if (dev->parent) 4344 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4345 map)); 4346 return (EINVAL); 4347 } 4348 4349 /** 4350 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4351 * 4352 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4353 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4354 */ 4355 int 4356 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4357 struct resource *r, struct resource_map *map) 4358 { 4359 /* Propagate up the bus hierarchy until someone handles it. */ 4360 if (dev->parent) 4361 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4362 return (EINVAL); 4363 } 4364 4365 /** 4366 * @brief Helper function for implementing BUS_BIND_INTR(). 4367 * 4368 * This simple implementation of BUS_BIND_INTR() simply calls the 4369 * BUS_BIND_INTR() method of the parent of @p dev. 4370 */ 4371 int 4372 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4373 int cpu) 4374 { 4375 /* Propagate up the bus hierarchy until someone handles it. */ 4376 if (dev->parent) 4377 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4378 return (EINVAL); 4379 } 4380 4381 /** 4382 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4383 * 4384 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4385 * BUS_CONFIG_INTR() method of the parent of @p dev. 4386 */ 4387 int 4388 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4389 enum intr_polarity pol) 4390 { 4391 /* Propagate up the bus hierarchy until someone handles it. */ 4392 if (dev->parent) 4393 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4394 return (EINVAL); 4395 } 4396 4397 /** 4398 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4399 * 4400 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4401 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4402 */ 4403 int 4404 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4405 void *cookie, const char *descr) 4406 { 4407 /* Propagate up the bus hierarchy until someone handles it. */ 4408 if (dev->parent) 4409 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4410 descr)); 4411 return (EINVAL); 4412 } 4413 4414 /** 4415 * @brief Helper function for implementing BUS_GET_CPUS(). 4416 * 4417 * This simple implementation of BUS_GET_CPUS() simply calls the 4418 * BUS_GET_CPUS() method of the parent of @p dev. 4419 */ 4420 int 4421 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4422 size_t setsize, cpuset_t *cpuset) 4423 { 4424 /* Propagate up the bus hierarchy until someone handles it. */ 4425 if (dev->parent != NULL) 4426 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4427 return (EINVAL); 4428 } 4429 4430 /** 4431 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4432 * 4433 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4434 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4435 */ 4436 bus_dma_tag_t 4437 bus_generic_get_dma_tag(device_t dev, device_t child) 4438 { 4439 /* Propagate up the bus hierarchy until someone handles it. */ 4440 if (dev->parent != NULL) 4441 return (BUS_GET_DMA_TAG(dev->parent, child)); 4442 return (NULL); 4443 } 4444 4445 /** 4446 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4447 * 4448 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4449 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4450 */ 4451 bus_space_tag_t 4452 bus_generic_get_bus_tag(device_t dev, device_t child) 4453 { 4454 /* Propagate up the bus hierarchy until someone handles it. */ 4455 if (dev->parent != NULL) 4456 return (BUS_GET_BUS_TAG(dev->parent, child)); 4457 return ((bus_space_tag_t)0); 4458 } 4459 4460 /** 4461 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4462 * 4463 * This implementation of BUS_GET_RESOURCE() uses the 4464 * resource_list_find() function to do most of the work. It calls 4465 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4466 * search. 4467 */ 4468 int 4469 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4470 rman_res_t *startp, rman_res_t *countp) 4471 { 4472 struct resource_list * rl = NULL; 4473 struct resource_list_entry * rle = NULL; 4474 4475 rl = BUS_GET_RESOURCE_LIST(dev, child); 4476 if (!rl) 4477 return (EINVAL); 4478 4479 rle = resource_list_find(rl, type, rid); 4480 if (!rle) 4481 return (ENOENT); 4482 4483 if (startp) 4484 *startp = rle->start; 4485 if (countp) 4486 *countp = rle->count; 4487 4488 return (0); 4489 } 4490 4491 /** 4492 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4493 * 4494 * This implementation of BUS_SET_RESOURCE() uses the 4495 * resource_list_add() function to do most of the work. It calls 4496 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4497 * edit. 4498 */ 4499 int 4500 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4501 rman_res_t start, rman_res_t count) 4502 { 4503 struct resource_list * rl = NULL; 4504 4505 rl = BUS_GET_RESOURCE_LIST(dev, child); 4506 if (!rl) 4507 return (EINVAL); 4508 4509 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4510 4511 return (0); 4512 } 4513 4514 /** 4515 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4516 * 4517 * This implementation of BUS_DELETE_RESOURCE() uses the 4518 * resource_list_delete() function to do most of the work. It calls 4519 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4520 * edit. 4521 */ 4522 void 4523 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4524 { 4525 struct resource_list * rl = NULL; 4526 4527 rl = BUS_GET_RESOURCE_LIST(dev, child); 4528 if (!rl) 4529 return; 4530 4531 resource_list_delete(rl, type, rid); 4532 4533 return; 4534 } 4535 4536 /** 4537 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4538 * 4539 * This implementation of BUS_RELEASE_RESOURCE() uses the 4540 * resource_list_release() function to do most of the work. It calls 4541 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4542 */ 4543 int 4544 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4545 int rid, struct resource *r) 4546 { 4547 struct resource_list * rl = NULL; 4548 4549 if (device_get_parent(child) != dev) 4550 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4551 type, rid, r)); 4552 4553 rl = BUS_GET_RESOURCE_LIST(dev, child); 4554 if (!rl) 4555 return (EINVAL); 4556 4557 return (resource_list_release(rl, dev, child, type, rid, r)); 4558 } 4559 4560 /** 4561 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4562 * 4563 * This implementation of BUS_ALLOC_RESOURCE() uses the 4564 * resource_list_alloc() function to do most of the work. It calls 4565 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4566 */ 4567 struct resource * 4568 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4569 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4570 { 4571 struct resource_list * rl = NULL; 4572 4573 if (device_get_parent(child) != dev) 4574 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4575 type, rid, start, end, count, flags)); 4576 4577 rl = BUS_GET_RESOURCE_LIST(dev, child); 4578 if (!rl) 4579 return (NULL); 4580 4581 return (resource_list_alloc(rl, dev, child, type, rid, 4582 start, end, count, flags)); 4583 } 4584 4585 /** 4586 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4587 * 4588 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4589 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4590 */ 4591 int 4592 bus_generic_child_present(device_t dev, device_t child) 4593 { 4594 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4595 } 4596 4597 int 4598 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4599 { 4600 if (dev->parent) 4601 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4602 4603 return (ENOENT); 4604 } 4605 4606 /** 4607 * @brief Helper function for implementing BUS_RESCAN(). 4608 * 4609 * This null implementation of BUS_RESCAN() always fails to indicate 4610 * the bus does not support rescanning. 4611 */ 4612 int 4613 bus_null_rescan(device_t dev) 4614 { 4615 return (ENXIO); 4616 } 4617 4618 /* 4619 * Some convenience functions to make it easier for drivers to use the 4620 * resource-management functions. All these really do is hide the 4621 * indirection through the parent's method table, making for slightly 4622 * less-wordy code. In the future, it might make sense for this code 4623 * to maintain some sort of a list of resources allocated by each device. 4624 */ 4625 4626 int 4627 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4628 struct resource **res) 4629 { 4630 int i; 4631 4632 for (i = 0; rs[i].type != -1; i++) 4633 res[i] = NULL; 4634 for (i = 0; rs[i].type != -1; i++) { 4635 res[i] = bus_alloc_resource_any(dev, 4636 rs[i].type, &rs[i].rid, rs[i].flags); 4637 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4638 bus_release_resources(dev, rs, res); 4639 return (ENXIO); 4640 } 4641 } 4642 return (0); 4643 } 4644 4645 void 4646 bus_release_resources(device_t dev, const struct resource_spec *rs, 4647 struct resource **res) 4648 { 4649 int i; 4650 4651 for (i = 0; rs[i].type != -1; i++) 4652 if (res[i] != NULL) { 4653 bus_release_resource( 4654 dev, rs[i].type, rs[i].rid, res[i]); 4655 res[i] = NULL; 4656 } 4657 } 4658 4659 /** 4660 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4661 * 4662 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4663 * parent of @p dev. 4664 */ 4665 struct resource * 4666 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4667 rman_res_t end, rman_res_t count, u_int flags) 4668 { 4669 struct resource *res; 4670 4671 if (dev->parent == NULL) 4672 return (NULL); 4673 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4674 count, flags); 4675 return (res); 4676 } 4677 4678 /** 4679 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4680 * 4681 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4682 * parent of @p dev. 4683 */ 4684 int 4685 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4686 rman_res_t end) 4687 { 4688 if (dev->parent == NULL) 4689 return (EINVAL); 4690 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4691 } 4692 4693 /** 4694 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4695 * 4696 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4697 * parent of @p dev. 4698 */ 4699 int 4700 bus_translate_resource(device_t dev, int type, rman_res_t start, 4701 rman_res_t *newstart) 4702 { 4703 if (dev->parent == NULL) 4704 return (EINVAL); 4705 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4706 } 4707 4708 /** 4709 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4710 * 4711 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4712 * parent of @p dev. 4713 */ 4714 int 4715 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4716 { 4717 if (dev->parent == NULL) 4718 return (EINVAL); 4719 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4720 } 4721 4722 /** 4723 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4724 * 4725 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4726 * parent of @p dev. 4727 */ 4728 int 4729 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4730 { 4731 if (dev->parent == NULL) 4732 return (EINVAL); 4733 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4734 } 4735 4736 /** 4737 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4738 * 4739 * This function simply calls the BUS_MAP_RESOURCE() method of the 4740 * parent of @p dev. 4741 */ 4742 int 4743 bus_map_resource(device_t dev, int type, struct resource *r, 4744 struct resource_map_request *args, struct resource_map *map) 4745 { 4746 if (dev->parent == NULL) 4747 return (EINVAL); 4748 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4749 } 4750 4751 /** 4752 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4753 * 4754 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4755 * parent of @p dev. 4756 */ 4757 int 4758 bus_unmap_resource(device_t dev, int type, struct resource *r, 4759 struct resource_map *map) 4760 { 4761 if (dev->parent == NULL) 4762 return (EINVAL); 4763 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4764 } 4765 4766 /** 4767 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4768 * 4769 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4770 * parent of @p dev. 4771 */ 4772 int 4773 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4774 { 4775 int rv; 4776 4777 if (dev->parent == NULL) 4778 return (EINVAL); 4779 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4780 return (rv); 4781 } 4782 4783 /** 4784 * @brief Wrapper function for BUS_SETUP_INTR(). 4785 * 4786 * This function simply calls the BUS_SETUP_INTR() method of the 4787 * parent of @p dev. 4788 */ 4789 int 4790 bus_setup_intr(device_t dev, struct resource *r, int flags, 4791 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4792 { 4793 int error; 4794 4795 if (dev->parent == NULL) 4796 return (EINVAL); 4797 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4798 arg, cookiep); 4799 if (error != 0) 4800 return (error); 4801 if (handler != NULL && !(flags & INTR_MPSAFE)) 4802 device_printf(dev, "[GIANT-LOCKED]\n"); 4803 return (0); 4804 } 4805 4806 /** 4807 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4808 * 4809 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4810 * parent of @p dev. 4811 */ 4812 int 4813 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4814 { 4815 if (dev->parent == NULL) 4816 return (EINVAL); 4817 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4818 } 4819 4820 /** 4821 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4822 * 4823 * This function simply calls the BUS_SUSPEND_INTR() method of the 4824 * parent of @p dev. 4825 */ 4826 int 4827 bus_suspend_intr(device_t dev, struct resource *r) 4828 { 4829 if (dev->parent == NULL) 4830 return (EINVAL); 4831 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4832 } 4833 4834 /** 4835 * @brief Wrapper function for BUS_RESUME_INTR(). 4836 * 4837 * This function simply calls the BUS_RESUME_INTR() method of the 4838 * parent of @p dev. 4839 */ 4840 int 4841 bus_resume_intr(device_t dev, struct resource *r) 4842 { 4843 if (dev->parent == NULL) 4844 return (EINVAL); 4845 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4846 } 4847 4848 /** 4849 * @brief Wrapper function for BUS_BIND_INTR(). 4850 * 4851 * This function simply calls the BUS_BIND_INTR() method of the 4852 * parent of @p dev. 4853 */ 4854 int 4855 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4856 { 4857 if (dev->parent == NULL) 4858 return (EINVAL); 4859 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4860 } 4861 4862 /** 4863 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4864 * 4865 * This function first formats the requested description into a 4866 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4867 * the parent of @p dev. 4868 */ 4869 int 4870 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4871 const char *fmt, ...) 4872 { 4873 va_list ap; 4874 char descr[MAXCOMLEN + 1]; 4875 4876 if (dev->parent == NULL) 4877 return (EINVAL); 4878 va_start(ap, fmt); 4879 vsnprintf(descr, sizeof(descr), fmt, ap); 4880 va_end(ap); 4881 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4882 } 4883 4884 /** 4885 * @brief Wrapper function for BUS_SET_RESOURCE(). 4886 * 4887 * This function simply calls the BUS_SET_RESOURCE() method of the 4888 * parent of @p dev. 4889 */ 4890 int 4891 bus_set_resource(device_t dev, int type, int rid, 4892 rman_res_t start, rman_res_t count) 4893 { 4894 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4895 start, count)); 4896 } 4897 4898 /** 4899 * @brief Wrapper function for BUS_GET_RESOURCE(). 4900 * 4901 * This function simply calls the BUS_GET_RESOURCE() method of the 4902 * parent of @p dev. 4903 */ 4904 int 4905 bus_get_resource(device_t dev, int type, int rid, 4906 rman_res_t *startp, rman_res_t *countp) 4907 { 4908 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4909 startp, countp)); 4910 } 4911 4912 /** 4913 * @brief Wrapper function for BUS_GET_RESOURCE(). 4914 * 4915 * This function simply calls the BUS_GET_RESOURCE() method of the 4916 * parent of @p dev and returns the start value. 4917 */ 4918 rman_res_t 4919 bus_get_resource_start(device_t dev, int type, int rid) 4920 { 4921 rman_res_t start; 4922 rman_res_t count; 4923 int error; 4924 4925 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4926 &start, &count); 4927 if (error) 4928 return (0); 4929 return (start); 4930 } 4931 4932 /** 4933 * @brief Wrapper function for BUS_GET_RESOURCE(). 4934 * 4935 * This function simply calls the BUS_GET_RESOURCE() method of the 4936 * parent of @p dev and returns the count value. 4937 */ 4938 rman_res_t 4939 bus_get_resource_count(device_t dev, int type, int rid) 4940 { 4941 rman_res_t start; 4942 rman_res_t count; 4943 int error; 4944 4945 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4946 &start, &count); 4947 if (error) 4948 return (0); 4949 return (count); 4950 } 4951 4952 /** 4953 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4954 * 4955 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4956 * parent of @p dev. 4957 */ 4958 void 4959 bus_delete_resource(device_t dev, int type, int rid) 4960 { 4961 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4962 } 4963 4964 /** 4965 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4966 * 4967 * This function simply calls the BUS_CHILD_PRESENT() method of the 4968 * parent of @p dev. 4969 */ 4970 int 4971 bus_child_present(device_t child) 4972 { 4973 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4974 } 4975 4976 /** 4977 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4978 * 4979 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4980 * dev. 4981 */ 4982 int 4983 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4984 { 4985 device_t parent; 4986 4987 parent = device_get_parent(child); 4988 if (parent == NULL) 4989 return (0); 4990 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4991 } 4992 4993 /** 4994 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4995 * 4996 * This function has the right signature and returns 0 since the sbuf is passed 4997 * to us to append to. 4998 */ 4999 int 5000 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 5001 { 5002 return (0); 5003 } 5004 5005 /** 5006 * @brief Wrapper function for BUS_CHILD_LOCATION(). 5007 * 5008 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 5009 * @p dev. 5010 */ 5011 int 5012 bus_child_location(device_t child, struct sbuf *sb) 5013 { 5014 device_t parent; 5015 5016 parent = device_get_parent(child); 5017 if (parent == NULL) 5018 return (0); 5019 return (BUS_CHILD_LOCATION(parent, child, sb)); 5020 } 5021 5022 /** 5023 * @brief Generic implementation that does nothing for bus_child_location 5024 * 5025 * This function has the right signature and returns 0 since the sbuf is passed 5026 * to us to append to. 5027 */ 5028 int 5029 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5030 { 5031 return (0); 5032 } 5033 5034 /** 5035 * @brief Wrapper function for BUS_GET_CPUS(). 5036 * 5037 * This function simply calls the BUS_GET_CPUS() method of the 5038 * parent of @p dev. 5039 */ 5040 int 5041 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5042 { 5043 device_t parent; 5044 5045 parent = device_get_parent(dev); 5046 if (parent == NULL) 5047 return (EINVAL); 5048 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5049 } 5050 5051 /** 5052 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5053 * 5054 * This function simply calls the BUS_GET_DMA_TAG() method of the 5055 * parent of @p dev. 5056 */ 5057 bus_dma_tag_t 5058 bus_get_dma_tag(device_t dev) 5059 { 5060 device_t parent; 5061 5062 parent = device_get_parent(dev); 5063 if (parent == NULL) 5064 return (NULL); 5065 return (BUS_GET_DMA_TAG(parent, dev)); 5066 } 5067 5068 /** 5069 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5070 * 5071 * This function simply calls the BUS_GET_BUS_TAG() method of the 5072 * parent of @p dev. 5073 */ 5074 bus_space_tag_t 5075 bus_get_bus_tag(device_t dev) 5076 { 5077 device_t parent; 5078 5079 parent = device_get_parent(dev); 5080 if (parent == NULL) 5081 return ((bus_space_tag_t)0); 5082 return (BUS_GET_BUS_TAG(parent, dev)); 5083 } 5084 5085 /** 5086 * @brief Wrapper function for BUS_GET_DOMAIN(). 5087 * 5088 * This function simply calls the BUS_GET_DOMAIN() method of the 5089 * parent of @p dev. 5090 */ 5091 int 5092 bus_get_domain(device_t dev, int *domain) 5093 { 5094 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5095 } 5096 5097 /* Resume all devices and then notify userland that we're up again. */ 5098 static int 5099 root_resume(device_t dev) 5100 { 5101 int error; 5102 5103 error = bus_generic_resume(dev); 5104 if (error == 0) { 5105 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5106 devctl_notify("kernel", "power", "resume", NULL); 5107 } 5108 return (error); 5109 } 5110 5111 static int 5112 root_print_child(device_t dev, device_t child) 5113 { 5114 int retval = 0; 5115 5116 retval += bus_print_child_header(dev, child); 5117 retval += printf("\n"); 5118 5119 return (retval); 5120 } 5121 5122 static int 5123 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5124 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5125 { 5126 /* 5127 * If an interrupt mapping gets to here something bad has happened. 5128 */ 5129 panic("root_setup_intr"); 5130 } 5131 5132 /* 5133 * If we get here, assume that the device is permanent and really is 5134 * present in the system. Removable bus drivers are expected to intercept 5135 * this call long before it gets here. We return -1 so that drivers that 5136 * really care can check vs -1 or some ERRNO returned higher in the food 5137 * chain. 5138 */ 5139 static int 5140 root_child_present(device_t dev, device_t child) 5141 { 5142 return (-1); 5143 } 5144 5145 static int 5146 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5147 cpuset_t *cpuset) 5148 { 5149 switch (op) { 5150 case INTR_CPUS: 5151 /* Default to returning the set of all CPUs. */ 5152 if (setsize != sizeof(cpuset_t)) 5153 return (EINVAL); 5154 *cpuset = all_cpus; 5155 return (0); 5156 default: 5157 return (EINVAL); 5158 } 5159 } 5160 5161 static kobj_method_t root_methods[] = { 5162 /* Device interface */ 5163 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5164 KOBJMETHOD(device_suspend, bus_generic_suspend), 5165 KOBJMETHOD(device_resume, root_resume), 5166 5167 /* Bus interface */ 5168 KOBJMETHOD(bus_print_child, root_print_child), 5169 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5170 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5171 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5172 KOBJMETHOD(bus_child_present, root_child_present), 5173 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5174 5175 KOBJMETHOD_END 5176 }; 5177 5178 static driver_t root_driver = { 5179 "root", 5180 root_methods, 5181 1, /* no softc */ 5182 }; 5183 5184 device_t root_bus; 5185 devclass_t root_devclass; 5186 5187 static int 5188 root_bus_module_handler(module_t mod, int what, void* arg) 5189 { 5190 switch (what) { 5191 case MOD_LOAD: 5192 TAILQ_INIT(&bus_data_devices); 5193 kobj_class_compile((kobj_class_t) &root_driver); 5194 root_bus = make_device(NULL, "root", 0); 5195 root_bus->desc = "System root bus"; 5196 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5197 root_bus->driver = &root_driver; 5198 root_bus->state = DS_ATTACHED; 5199 root_devclass = devclass_find_internal("root", NULL, FALSE); 5200 devinit(); 5201 return (0); 5202 5203 case MOD_SHUTDOWN: 5204 device_shutdown(root_bus); 5205 return (0); 5206 default: 5207 return (EOPNOTSUPP); 5208 } 5209 5210 return (0); 5211 } 5212 5213 static moduledata_t root_bus_mod = { 5214 "rootbus", 5215 root_bus_module_handler, 5216 NULL 5217 }; 5218 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5219 5220 /** 5221 * @brief Automatically configure devices 5222 * 5223 * This function begins the autoconfiguration process by calling 5224 * device_probe_and_attach() for each child of the @c root0 device. 5225 */ 5226 void 5227 root_bus_configure(void) 5228 { 5229 PDEBUG((".")); 5230 5231 /* Eventually this will be split up, but this is sufficient for now. */ 5232 bus_set_pass(BUS_PASS_DEFAULT); 5233 } 5234 5235 /** 5236 * @brief Module handler for registering device drivers 5237 * 5238 * This module handler is used to automatically register device 5239 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5240 * devclass_add_driver() for the driver described by the 5241 * driver_module_data structure pointed to by @p arg 5242 */ 5243 int 5244 driver_module_handler(module_t mod, int what, void *arg) 5245 { 5246 struct driver_module_data *dmd; 5247 devclass_t bus_devclass; 5248 kobj_class_t driver; 5249 int error, pass; 5250 5251 dmd = (struct driver_module_data *)arg; 5252 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5253 error = 0; 5254 5255 switch (what) { 5256 case MOD_LOAD: 5257 if (dmd->dmd_chainevh) 5258 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5259 5260 pass = dmd->dmd_pass; 5261 driver = dmd->dmd_driver; 5262 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5263 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5264 error = devclass_add_driver(bus_devclass, driver, pass, 5265 dmd->dmd_devclass); 5266 break; 5267 5268 case MOD_UNLOAD: 5269 PDEBUG(("Unloading module: driver %s from bus %s", 5270 DRIVERNAME(dmd->dmd_driver), 5271 dmd->dmd_busname)); 5272 error = devclass_delete_driver(bus_devclass, 5273 dmd->dmd_driver); 5274 5275 if (!error && dmd->dmd_chainevh) 5276 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5277 break; 5278 case MOD_QUIESCE: 5279 PDEBUG(("Quiesce module: driver %s from bus %s", 5280 DRIVERNAME(dmd->dmd_driver), 5281 dmd->dmd_busname)); 5282 error = devclass_quiesce_driver(bus_devclass, 5283 dmd->dmd_driver); 5284 5285 if (!error && dmd->dmd_chainevh) 5286 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5287 break; 5288 default: 5289 error = EOPNOTSUPP; 5290 break; 5291 } 5292 5293 return (error); 5294 } 5295 5296 /** 5297 * @brief Enumerate all hinted devices for this bus. 5298 * 5299 * Walks through the hints for this bus and calls the bus_hinted_child 5300 * routine for each one it fines. It searches first for the specific 5301 * bus that's being probed for hinted children (eg isa0), and then for 5302 * generic children (eg isa). 5303 * 5304 * @param dev bus device to enumerate 5305 */ 5306 void 5307 bus_enumerate_hinted_children(device_t bus) 5308 { 5309 int i; 5310 const char *dname, *busname; 5311 int dunit; 5312 5313 /* 5314 * enumerate all devices on the specific bus 5315 */ 5316 busname = device_get_nameunit(bus); 5317 i = 0; 5318 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5319 BUS_HINTED_CHILD(bus, dname, dunit); 5320 5321 /* 5322 * and all the generic ones. 5323 */ 5324 busname = device_get_name(bus); 5325 i = 0; 5326 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5327 BUS_HINTED_CHILD(bus, dname, dunit); 5328 } 5329 5330 #ifdef BUS_DEBUG 5331 5332 /* the _short versions avoid iteration by not calling anything that prints 5333 * more than oneliners. I love oneliners. 5334 */ 5335 5336 static void 5337 print_device_short(device_t dev, int indent) 5338 { 5339 if (!dev) 5340 return; 5341 5342 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5343 dev->unit, dev->desc, 5344 (dev->parent? "":"no "), 5345 (TAILQ_EMPTY(&dev->children)? "no ":""), 5346 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5347 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5348 (dev->flags&DF_WILDCARD? "wildcard,":""), 5349 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5350 (dev->flags&DF_SUSPENDED? "suspended,":""), 5351 (dev->ivars? "":"no "), 5352 (dev->softc? "":"no "), 5353 dev->busy)); 5354 } 5355 5356 static void 5357 print_device(device_t dev, int indent) 5358 { 5359 if (!dev) 5360 return; 5361 5362 print_device_short(dev, indent); 5363 5364 indentprintf(("Parent:\n")); 5365 print_device_short(dev->parent, indent+1); 5366 indentprintf(("Driver:\n")); 5367 print_driver_short(dev->driver, indent+1); 5368 indentprintf(("Devclass:\n")); 5369 print_devclass_short(dev->devclass, indent+1); 5370 } 5371 5372 void 5373 print_device_tree_short(device_t dev, int indent) 5374 /* print the device and all its children (indented) */ 5375 { 5376 device_t child; 5377 5378 if (!dev) 5379 return; 5380 5381 print_device_short(dev, indent); 5382 5383 TAILQ_FOREACH(child, &dev->children, link) { 5384 print_device_tree_short(child, indent+1); 5385 } 5386 } 5387 5388 void 5389 print_device_tree(device_t dev, int indent) 5390 /* print the device and all its children (indented) */ 5391 { 5392 device_t child; 5393 5394 if (!dev) 5395 return; 5396 5397 print_device(dev, indent); 5398 5399 TAILQ_FOREACH(child, &dev->children, link) { 5400 print_device_tree(child, indent+1); 5401 } 5402 } 5403 5404 static void 5405 print_driver_short(driver_t *driver, int indent) 5406 { 5407 if (!driver) 5408 return; 5409 5410 indentprintf(("driver %s: softc size = %zd\n", 5411 driver->name, driver->size)); 5412 } 5413 5414 static void 5415 print_driver(driver_t *driver, int indent) 5416 { 5417 if (!driver) 5418 return; 5419 5420 print_driver_short(driver, indent); 5421 } 5422 5423 static void 5424 print_driver_list(driver_list_t drivers, int indent) 5425 { 5426 driverlink_t driver; 5427 5428 TAILQ_FOREACH(driver, &drivers, link) { 5429 print_driver(driver->driver, indent); 5430 } 5431 } 5432 5433 static void 5434 print_devclass_short(devclass_t dc, int indent) 5435 { 5436 if ( !dc ) 5437 return; 5438 5439 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5440 } 5441 5442 static void 5443 print_devclass(devclass_t dc, int indent) 5444 { 5445 int i; 5446 5447 if ( !dc ) 5448 return; 5449 5450 print_devclass_short(dc, indent); 5451 indentprintf(("Drivers:\n")); 5452 print_driver_list(dc->drivers, indent+1); 5453 5454 indentprintf(("Devices:\n")); 5455 for (i = 0; i < dc->maxunit; i++) 5456 if (dc->devices[i]) 5457 print_device(dc->devices[i], indent+1); 5458 } 5459 5460 void 5461 print_devclass_list_short(void) 5462 { 5463 devclass_t dc; 5464 5465 printf("Short listing of devclasses, drivers & devices:\n"); 5466 TAILQ_FOREACH(dc, &devclasses, link) { 5467 print_devclass_short(dc, 0); 5468 } 5469 } 5470 5471 void 5472 print_devclass_list(void) 5473 { 5474 devclass_t dc; 5475 5476 printf("Full listing of devclasses, drivers & devices:\n"); 5477 TAILQ_FOREACH(dc, &devclasses, link) { 5478 print_devclass(dc, 0); 5479 } 5480 } 5481 5482 #endif 5483 5484 /* 5485 * User-space access to the device tree. 5486 * 5487 * We implement a small set of nodes: 5488 * 5489 * hw.bus Single integer read method to obtain the 5490 * current generation count. 5491 * hw.bus.devices Reads the entire device tree in flat space. 5492 * hw.bus.rman Resource manager interface 5493 * 5494 * We might like to add the ability to scan devclasses and/or drivers to 5495 * determine what else is currently loaded/available. 5496 */ 5497 5498 static int 5499 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5500 { 5501 struct u_businfo ubus; 5502 5503 ubus.ub_version = BUS_USER_VERSION; 5504 ubus.ub_generation = bus_data_generation; 5505 5506 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5507 } 5508 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5509 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5510 "bus-related data"); 5511 5512 static int 5513 sysctl_devices(SYSCTL_HANDLER_ARGS) 5514 { 5515 struct sbuf sb; 5516 int *name = (int *)arg1; 5517 u_int namelen = arg2; 5518 int index; 5519 device_t dev; 5520 struct u_device *udev; 5521 int error; 5522 5523 if (namelen != 2) 5524 return (EINVAL); 5525 5526 if (bus_data_generation_check(name[0])) 5527 return (EINVAL); 5528 5529 index = name[1]; 5530 5531 /* 5532 * Scan the list of devices, looking for the requested index. 5533 */ 5534 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5535 if (index-- == 0) 5536 break; 5537 } 5538 if (dev == NULL) 5539 return (ENOENT); 5540 5541 /* 5542 * Populate the return item, careful not to overflow the buffer. 5543 */ 5544 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5545 if (udev == NULL) 5546 return (ENOMEM); 5547 udev->dv_handle = (uintptr_t)dev; 5548 udev->dv_parent = (uintptr_t)dev->parent; 5549 udev->dv_devflags = dev->devflags; 5550 udev->dv_flags = dev->flags; 5551 udev->dv_state = dev->state; 5552 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5553 if (dev->nameunit != NULL) 5554 sbuf_cat(&sb, dev->nameunit); 5555 sbuf_putc(&sb, '\0'); 5556 if (dev->desc != NULL) 5557 sbuf_cat(&sb, dev->desc); 5558 sbuf_putc(&sb, '\0'); 5559 if (dev->driver != NULL) 5560 sbuf_cat(&sb, dev->driver->name); 5561 sbuf_putc(&sb, '\0'); 5562 bus_child_pnpinfo(dev, &sb); 5563 sbuf_putc(&sb, '\0'); 5564 bus_child_location(dev, &sb); 5565 sbuf_putc(&sb, '\0'); 5566 error = sbuf_finish(&sb); 5567 if (error == 0) 5568 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5569 sbuf_delete(&sb); 5570 free(udev, M_BUS); 5571 return (error); 5572 } 5573 5574 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5575 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5576 "system device tree"); 5577 5578 int 5579 bus_data_generation_check(int generation) 5580 { 5581 if (generation != bus_data_generation) 5582 return (1); 5583 5584 /* XXX generate optimised lists here? */ 5585 return (0); 5586 } 5587 5588 void 5589 bus_data_generation_update(void) 5590 { 5591 atomic_add_int(&bus_data_generation, 1); 5592 } 5593 5594 int 5595 bus_free_resource(device_t dev, int type, struct resource *r) 5596 { 5597 if (r == NULL) 5598 return (0); 5599 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5600 } 5601 5602 device_t 5603 device_lookup_by_name(const char *name) 5604 { 5605 device_t dev; 5606 5607 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5608 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5609 return (dev); 5610 } 5611 return (NULL); 5612 } 5613 5614 /* 5615 * /dev/devctl2 implementation. The existing /dev/devctl device has 5616 * implicit semantics on open, so it could not be reused for this. 5617 * Another option would be to call this /dev/bus? 5618 */ 5619 static int 5620 find_device(struct devreq *req, device_t *devp) 5621 { 5622 device_t dev; 5623 5624 /* 5625 * First, ensure that the name is nul terminated. 5626 */ 5627 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5628 return (EINVAL); 5629 5630 /* 5631 * Second, try to find an attached device whose name matches 5632 * 'name'. 5633 */ 5634 dev = device_lookup_by_name(req->dr_name); 5635 if (dev != NULL) { 5636 *devp = dev; 5637 return (0); 5638 } 5639 5640 /* Finally, give device enumerators a chance. */ 5641 dev = NULL; 5642 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5643 if (dev == NULL) 5644 return (ENOENT); 5645 *devp = dev; 5646 return (0); 5647 } 5648 5649 static bool 5650 driver_exists(device_t bus, const char *driver) 5651 { 5652 devclass_t dc; 5653 5654 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5655 if (devclass_find_driver_internal(dc, driver) != NULL) 5656 return (true); 5657 } 5658 return (false); 5659 } 5660 5661 static void 5662 device_gen_nomatch(device_t dev) 5663 { 5664 device_t child; 5665 5666 if (dev->flags & DF_NEEDNOMATCH && 5667 dev->state == DS_NOTPRESENT) { 5668 BUS_PROBE_NOMATCH(dev->parent, dev); 5669 devnomatch(dev); 5670 dev->flags |= DF_DONENOMATCH; 5671 } 5672 dev->flags &= ~DF_NEEDNOMATCH; 5673 TAILQ_FOREACH(child, &dev->children, link) { 5674 device_gen_nomatch(child); 5675 } 5676 } 5677 5678 static void 5679 device_do_deferred_actions(void) 5680 { 5681 devclass_t dc; 5682 driverlink_t dl; 5683 5684 /* 5685 * Walk through the devclasses to find all the drivers we've tagged as 5686 * deferred during the freeze and call the driver added routines. They 5687 * have already been added to the lists in the background, so the driver 5688 * added routines that trigger a probe will have all the right bidders 5689 * for the probe auction. 5690 */ 5691 TAILQ_FOREACH(dc, &devclasses, link) { 5692 TAILQ_FOREACH(dl, &dc->drivers, link) { 5693 if (dl->flags & DL_DEFERRED_PROBE) { 5694 devclass_driver_added(dc, dl->driver); 5695 dl->flags &= ~DL_DEFERRED_PROBE; 5696 } 5697 } 5698 } 5699 5700 /* 5701 * We also defer no-match events during a freeze. Walk the tree and 5702 * generate all the pent-up events that are still relevant. 5703 */ 5704 device_gen_nomatch(root_bus); 5705 bus_data_generation_update(); 5706 } 5707 5708 static int 5709 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5710 struct thread *td) 5711 { 5712 struct devreq *req; 5713 device_t dev; 5714 int error, old; 5715 5716 /* Locate the device to control. */ 5717 mtx_lock(&Giant); 5718 req = (struct devreq *)data; 5719 switch (cmd) { 5720 case DEV_ATTACH: 5721 case DEV_DETACH: 5722 case DEV_ENABLE: 5723 case DEV_DISABLE: 5724 case DEV_SUSPEND: 5725 case DEV_RESUME: 5726 case DEV_SET_DRIVER: 5727 case DEV_CLEAR_DRIVER: 5728 case DEV_RESCAN: 5729 case DEV_DELETE: 5730 case DEV_RESET: 5731 error = priv_check(td, PRIV_DRIVER); 5732 if (error == 0) 5733 error = find_device(req, &dev); 5734 break; 5735 case DEV_FREEZE: 5736 case DEV_THAW: 5737 error = priv_check(td, PRIV_DRIVER); 5738 break; 5739 default: 5740 error = ENOTTY; 5741 break; 5742 } 5743 if (error) { 5744 mtx_unlock(&Giant); 5745 return (error); 5746 } 5747 5748 /* Perform the requested operation. */ 5749 switch (cmd) { 5750 case DEV_ATTACH: 5751 if (device_is_attached(dev)) 5752 error = EBUSY; 5753 else if (!device_is_enabled(dev)) 5754 error = ENXIO; 5755 else 5756 error = device_probe_and_attach(dev); 5757 break; 5758 case DEV_DETACH: 5759 if (!device_is_attached(dev)) { 5760 error = ENXIO; 5761 break; 5762 } 5763 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5764 error = device_quiesce(dev); 5765 if (error) 5766 break; 5767 } 5768 error = device_detach(dev); 5769 break; 5770 case DEV_ENABLE: 5771 if (device_is_enabled(dev)) { 5772 error = EBUSY; 5773 break; 5774 } 5775 5776 /* 5777 * If the device has been probed but not attached (e.g. 5778 * when it has been disabled by a loader hint), just 5779 * attach the device rather than doing a full probe. 5780 */ 5781 device_enable(dev); 5782 if (device_is_alive(dev)) { 5783 /* 5784 * If the device was disabled via a hint, clear 5785 * the hint. 5786 */ 5787 if (resource_disabled(dev->driver->name, dev->unit)) 5788 resource_unset_value(dev->driver->name, 5789 dev->unit, "disabled"); 5790 error = device_attach(dev); 5791 } else 5792 error = device_probe_and_attach(dev); 5793 break; 5794 case DEV_DISABLE: 5795 if (!device_is_enabled(dev)) { 5796 error = ENXIO; 5797 break; 5798 } 5799 5800 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5801 error = device_quiesce(dev); 5802 if (error) 5803 break; 5804 } 5805 5806 /* 5807 * Force DF_FIXEDCLASS on around detach to preserve 5808 * the existing name. 5809 */ 5810 old = dev->flags; 5811 dev->flags |= DF_FIXEDCLASS; 5812 error = device_detach(dev); 5813 if (!(old & DF_FIXEDCLASS)) 5814 dev->flags &= ~DF_FIXEDCLASS; 5815 if (error == 0) 5816 device_disable(dev); 5817 break; 5818 case DEV_SUSPEND: 5819 if (device_is_suspended(dev)) { 5820 error = EBUSY; 5821 break; 5822 } 5823 if (device_get_parent(dev) == NULL) { 5824 error = EINVAL; 5825 break; 5826 } 5827 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5828 break; 5829 case DEV_RESUME: 5830 if (!device_is_suspended(dev)) { 5831 error = EINVAL; 5832 break; 5833 } 5834 if (device_get_parent(dev) == NULL) { 5835 error = EINVAL; 5836 break; 5837 } 5838 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5839 break; 5840 case DEV_SET_DRIVER: { 5841 devclass_t dc; 5842 char driver[128]; 5843 5844 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5845 if (error) 5846 break; 5847 if (driver[0] == '\0') { 5848 error = EINVAL; 5849 break; 5850 } 5851 if (dev->devclass != NULL && 5852 strcmp(driver, dev->devclass->name) == 0) 5853 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5854 break; 5855 5856 /* 5857 * Scan drivers for this device's bus looking for at 5858 * least one matching driver. 5859 */ 5860 if (dev->parent == NULL) { 5861 error = EINVAL; 5862 break; 5863 } 5864 if (!driver_exists(dev->parent, driver)) { 5865 error = ENOENT; 5866 break; 5867 } 5868 dc = devclass_create(driver); 5869 if (dc == NULL) { 5870 error = ENOMEM; 5871 break; 5872 } 5873 5874 /* Detach device if necessary. */ 5875 if (device_is_attached(dev)) { 5876 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5877 error = device_detach(dev); 5878 else 5879 error = EBUSY; 5880 if (error) 5881 break; 5882 } 5883 5884 /* Clear any previously-fixed device class and unit. */ 5885 if (dev->flags & DF_FIXEDCLASS) 5886 devclass_delete_device(dev->devclass, dev); 5887 dev->flags |= DF_WILDCARD; 5888 dev->unit = -1; 5889 5890 /* Force the new device class. */ 5891 error = devclass_add_device(dc, dev); 5892 if (error) 5893 break; 5894 dev->flags |= DF_FIXEDCLASS; 5895 error = device_probe_and_attach(dev); 5896 break; 5897 } 5898 case DEV_CLEAR_DRIVER: 5899 if (!(dev->flags & DF_FIXEDCLASS)) { 5900 error = 0; 5901 break; 5902 } 5903 if (device_is_attached(dev)) { 5904 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5905 error = device_detach(dev); 5906 else 5907 error = EBUSY; 5908 if (error) 5909 break; 5910 } 5911 5912 dev->flags &= ~DF_FIXEDCLASS; 5913 dev->flags |= DF_WILDCARD; 5914 devclass_delete_device(dev->devclass, dev); 5915 error = device_probe_and_attach(dev); 5916 break; 5917 case DEV_RESCAN: 5918 if (!device_is_attached(dev)) { 5919 error = ENXIO; 5920 break; 5921 } 5922 error = BUS_RESCAN(dev); 5923 break; 5924 case DEV_DELETE: { 5925 device_t parent; 5926 5927 parent = device_get_parent(dev); 5928 if (parent == NULL) { 5929 error = EINVAL; 5930 break; 5931 } 5932 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5933 if (bus_child_present(dev) != 0) { 5934 error = EBUSY; 5935 break; 5936 } 5937 } 5938 5939 error = device_delete_child(parent, dev); 5940 break; 5941 } 5942 case DEV_FREEZE: 5943 if (device_frozen) 5944 error = EBUSY; 5945 else 5946 device_frozen = true; 5947 break; 5948 case DEV_THAW: 5949 if (!device_frozen) 5950 error = EBUSY; 5951 else { 5952 device_do_deferred_actions(); 5953 device_frozen = false; 5954 } 5955 break; 5956 case DEV_RESET: 5957 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5958 error = EINVAL; 5959 break; 5960 } 5961 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5962 req->dr_flags); 5963 break; 5964 } 5965 mtx_unlock(&Giant); 5966 return (error); 5967 } 5968 5969 static struct cdevsw devctl2_cdevsw = { 5970 .d_version = D_VERSION, 5971 .d_ioctl = devctl2_ioctl, 5972 .d_name = "devctl2", 5973 }; 5974 5975 static void 5976 devctl2_init(void) 5977 { 5978 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5979 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5980 } 5981 5982 /* 5983 * APIs to manage deprecation and obsolescence. 5984 */ 5985 static int obsolete_panic = 0; 5986 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5987 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5988 "2 = if deprecated)"); 5989 5990 static void 5991 gone_panic(int major, int running, const char *msg) 5992 { 5993 switch (obsolete_panic) 5994 { 5995 case 0: 5996 return; 5997 case 1: 5998 if (running < major) 5999 return; 6000 /* FALLTHROUGH */ 6001 default: 6002 panic("%s", msg); 6003 } 6004 } 6005 6006 void 6007 _gone_in(int major, const char *msg) 6008 { 6009 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6010 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6011 printf("Obsolete code will be removed soon: %s\n", msg); 6012 else 6013 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6014 major, msg); 6015 } 6016 6017 void 6018 _gone_in_dev(device_t dev, int major, const char *msg) 6019 { 6020 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6021 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6022 device_printf(dev, 6023 "Obsolete code will be removed soon: %s\n", msg); 6024 else 6025 device_printf(dev, 6026 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6027 major, msg); 6028 } 6029 6030 #ifdef DDB 6031 DB_SHOW_COMMAND(device, db_show_device) 6032 { 6033 device_t dev; 6034 6035 if (!have_addr) 6036 return; 6037 6038 dev = (device_t)addr; 6039 6040 db_printf("name: %s\n", device_get_nameunit(dev)); 6041 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6042 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6043 db_printf(" addr: %p\n", dev); 6044 db_printf(" parent: %p\n", dev->parent); 6045 db_printf(" softc: %p\n", dev->softc); 6046 db_printf(" ivars: %p\n", dev->ivars); 6047 } 6048 6049 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6050 { 6051 device_t dev; 6052 6053 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6054 db_show_device((db_expr_t)dev, true, count, modif); 6055 } 6056 } 6057 #endif 6058