xref: /freebsd/sys/kern/subr_bus.c (revision f4bf2442a03f9b72cfe6d051766b650a4721f3d8)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/condvar.h>
46 #include <sys/queue.h>
47 #include <machine/bus.h>
48 #include <sys/random.h>
49 #include <sys/rman.h>
50 #include <sys/selinfo.h>
51 #include <sys/signalvar.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/uio.h>
56 #include <sys/bus.h>
57 #include <sys/interrupt.h>
58 #include <sys/cpuset.h>
59 
60 #include <net/vnet.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64 
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67 
68 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70 
71 /*
72  * Used to attach drivers to devclasses.
73  */
74 typedef struct driverlink *driverlink_t;
75 struct driverlink {
76 	kobj_class_t	driver;
77 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78 	int		pass;
79 	TAILQ_ENTRY(driverlink) passlink;
80 };
81 
82 /*
83  * Forward declarations
84  */
85 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87 typedef TAILQ_HEAD(device_list, device) device_list_t;
88 
89 struct devclass {
90 	TAILQ_ENTRY(devclass) link;
91 	devclass_t	parent;		/* parent in devclass hierarchy */
92 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93 	char		*name;
94 	device_t	*devices;	/* array of devices indexed by unit */
95 	int		maxunit;	/* size of devices array */
96 	int		flags;
97 #define DC_HAS_CHILDREN		1
98 
99 	struct sysctl_ctx_list sysctl_ctx;
100 	struct sysctl_oid *sysctl_tree;
101 };
102 
103 /**
104  * @brief Implementation of device.
105  */
106 struct device {
107 	/*
108 	 * A device is a kernel object. The first field must be the
109 	 * current ops table for the object.
110 	 */
111 	KOBJ_FIELDS;
112 
113 	/*
114 	 * Device hierarchy.
115 	 */
116 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118 	device_t	parent;		/**< parent of this device  */
119 	device_list_t	children;	/**< list of child devices */
120 
121 	/*
122 	 * Details of this device.
123 	 */
124 	driver_t	*driver;	/**< current driver */
125 	devclass_t	devclass;	/**< current device class */
126 	int		unit;		/**< current unit number */
127 	char*		nameunit;	/**< name+unit e.g. foodev0 */
128 	char*		desc;		/**< driver specific description */
129 	int		busy;		/**< count of calls to device_busy() */
130 	device_state_t	state;		/**< current device state  */
131 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132 	u_int		flags;		/**< internal device flags  */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 static void devctl2_init(void);
145 
146 #ifdef BUS_DEBUG
147 
148 static int bus_debug = 1;
149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150     "Bus debug level");
151 
152 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154 #define DRIVERNAME(d)	((d)? d->name : "no driver")
155 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
156 
157 /**
158  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159  * prevent syslog from deleting initial spaces
160  */
161 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162 
163 static void print_device_short(device_t dev, int indent);
164 static void print_device(device_t dev, int indent);
165 void print_device_tree_short(device_t dev, int indent);
166 void print_device_tree(device_t dev, int indent);
167 static void print_driver_short(driver_t *driver, int indent);
168 static void print_driver(driver_t *driver, int indent);
169 static void print_driver_list(driver_list_t drivers, int indent);
170 static void print_devclass_short(devclass_t dc, int indent);
171 static void print_devclass(devclass_t dc, int indent);
172 void print_devclass_list_short(void);
173 void print_devclass_list(void);
174 
175 #else
176 /* Make the compiler ignore the function calls */
177 #define PDEBUG(a)			/* nop */
178 #define DEVICENAME(d)			/* nop */
179 #define DRIVERNAME(d)			/* nop */
180 #define DEVCLANAME(d)			/* nop */
181 
182 #define print_device_short(d,i)		/* nop */
183 #define print_device(d,i)		/* nop */
184 #define print_device_tree_short(d,i)	/* nop */
185 #define print_device_tree(d,i)		/* nop */
186 #define print_driver_short(d,i)		/* nop */
187 #define print_driver(d,i)		/* nop */
188 #define print_driver_list(d,i)		/* nop */
189 #define print_devclass_short(d,i)	/* nop */
190 #define print_devclass(d,i)		/* nop */
191 #define print_devclass_list_short()	/* nop */
192 #define print_devclass_list()		/* nop */
193 #endif
194 
195 /*
196  * dev sysctl tree
197  */
198 
199 enum {
200 	DEVCLASS_SYSCTL_PARENT,
201 };
202 
203 static int
204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205 {
206 	devclass_t dc = (devclass_t)arg1;
207 	const char *value;
208 
209 	switch (arg2) {
210 	case DEVCLASS_SYSCTL_PARENT:
211 		value = dc->parent ? dc->parent->name : "";
212 		break;
213 	default:
214 		return (EINVAL);
215 	}
216 	return (SYSCTL_OUT_STR(req, value));
217 }
218 
219 static void
220 devclass_sysctl_init(devclass_t dc)
221 {
222 
223 	if (dc->sysctl_tree != NULL)
224 		return;
225 	sysctl_ctx_init(&dc->sysctl_ctx);
226 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228 	    CTLFLAG_RD, NULL, "");
229 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232 	    "parent class");
233 }
234 
235 enum {
236 	DEVICE_SYSCTL_DESC,
237 	DEVICE_SYSCTL_DRIVER,
238 	DEVICE_SYSCTL_LOCATION,
239 	DEVICE_SYSCTL_PNPINFO,
240 	DEVICE_SYSCTL_PARENT,
241 };
242 
243 static int
244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245 {
246 	device_t dev = (device_t)arg1;
247 	const char *value;
248 	char *buf;
249 	int error;
250 
251 	buf = NULL;
252 	switch (arg2) {
253 	case DEVICE_SYSCTL_DESC:
254 		value = dev->desc ? dev->desc : "";
255 		break;
256 	case DEVICE_SYSCTL_DRIVER:
257 		value = dev->driver ? dev->driver->name : "";
258 		break;
259 	case DEVICE_SYSCTL_LOCATION:
260 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261 		bus_child_location_str(dev, buf, 1024);
262 		break;
263 	case DEVICE_SYSCTL_PNPINFO:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_pnpinfo_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PARENT:
268 		value = dev->parent ? dev->parent->nameunit : "";
269 		break;
270 	default:
271 		return (EINVAL);
272 	}
273 	error = SYSCTL_OUT_STR(req, value);
274 	if (buf != NULL)
275 		free(buf, M_BUS);
276 	return (error);
277 }
278 
279 static void
280 device_sysctl_init(device_t dev)
281 {
282 	devclass_t dc = dev->devclass;
283 	int domain;
284 
285 	if (dev->sysctl_tree != NULL)
286 		return;
287 	devclass_sysctl_init(dc);
288 	sysctl_ctx_init(&dev->sysctl_ctx);
289 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291 	    dev->nameunit + strlen(dc->name),
292 	    CTLFLAG_RD, NULL, "");
293 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296 	    "device description");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300 	    "device driver name");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304 	    "device location relative to parent");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308 	    "device identification");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312 	    "parent device");
313 	if (bus_get_domain(dev, &domain) == 0)
314 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317 }
318 
319 static void
320 device_sysctl_update(device_t dev)
321 {
322 	devclass_t dc = dev->devclass;
323 
324 	if (dev->sysctl_tree == NULL)
325 		return;
326 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327 }
328 
329 static void
330 device_sysctl_fini(device_t dev)
331 {
332 	if (dev->sysctl_tree == NULL)
333 		return;
334 	sysctl_ctx_free(&dev->sysctl_ctx);
335 	dev->sysctl_tree = NULL;
336 }
337 
338 /*
339  * /dev/devctl implementation
340  */
341 
342 /*
343  * This design allows only one reader for /dev/devctl.  This is not desirable
344  * in the long run, but will get a lot of hair out of this implementation.
345  * Maybe we should make this device a clonable device.
346  *
347  * Also note: we specifically do not attach a device to the device_t tree
348  * to avoid potential chicken and egg problems.  One could argue that all
349  * of this belongs to the root node.  One could also further argue that the
350  * sysctl interface that we have not might more properly be an ioctl
351  * interface, but at this stage of the game, I'm not inclined to rock that
352  * boat.
353  *
354  * I'm also not sure that the SIGIO support is done correctly or not, as
355  * I copied it from a driver that had SIGIO support that likely hasn't been
356  * tested since 3.4 or 2.2.8!
357  */
358 
359 /* Deprecated way to adjust queue length */
360 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363     "devctl disable -- deprecated");
364 
365 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
366 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370 
371 static d_open_t		devopen;
372 static d_close_t	devclose;
373 static d_read_t		devread;
374 static d_ioctl_t	devioctl;
375 static d_poll_t		devpoll;
376 static d_kqfilter_t	devkqfilter;
377 
378 static struct cdevsw dev_cdevsw = {
379 	.d_version =	D_VERSION,
380 	.d_open =	devopen,
381 	.d_close =	devclose,
382 	.d_read =	devread,
383 	.d_ioctl =	devioctl,
384 	.d_poll =	devpoll,
385 	.d_kqfilter =	devkqfilter,
386 	.d_name =	"devctl",
387 };
388 
389 struct dev_event_info
390 {
391 	char *dei_data;
392 	TAILQ_ENTRY(dev_event_info) dei_link;
393 };
394 
395 TAILQ_HEAD(devq, dev_event_info);
396 
397 static struct dev_softc
398 {
399 	int	inuse;
400 	int	nonblock;
401 	int	queued;
402 	int	async;
403 	struct mtx mtx;
404 	struct cv cv;
405 	struct selinfo sel;
406 	struct devq devq;
407 	struct sigio *sigio;
408 } devsoftc;
409 
410 static void	filt_devctl_detach(struct knote *kn);
411 static int	filt_devctl_read(struct knote *kn, long hint);
412 
413 struct filterops devctl_rfiltops = {
414 	.f_isfd = 1,
415 	.f_detach = filt_devctl_detach,
416 	.f_event = filt_devctl_read,
417 };
418 
419 static struct cdev *devctl_dev;
420 
421 static void
422 devinit(void)
423 {
424 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427 	cv_init(&devsoftc.cv, "dev cv");
428 	TAILQ_INIT(&devsoftc.devq);
429 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430 	devctl2_init();
431 }
432 
433 static int
434 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435 {
436 
437 	mtx_lock(&devsoftc.mtx);
438 	if (devsoftc.inuse) {
439 		mtx_unlock(&devsoftc.mtx);
440 		return (EBUSY);
441 	}
442 	/* move to init */
443 	devsoftc.inuse = 1;
444 	mtx_unlock(&devsoftc.mtx);
445 	return (0);
446 }
447 
448 static int
449 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450 {
451 
452 	mtx_lock(&devsoftc.mtx);
453 	devsoftc.inuse = 0;
454 	devsoftc.nonblock = 0;
455 	devsoftc.async = 0;
456 	cv_broadcast(&devsoftc.cv);
457 	funsetown(&devsoftc.sigio);
458 	mtx_unlock(&devsoftc.mtx);
459 	return (0);
460 }
461 
462 /*
463  * The read channel for this device is used to report changes to
464  * userland in realtime.  We are required to free the data as well as
465  * the n1 object because we allocate them separately.  Also note that
466  * we return one record at a time.  If you try to read this device a
467  * character at a time, you will lose the rest of the data.  Listening
468  * programs are expected to cope.
469  */
470 static int
471 devread(struct cdev *dev, struct uio *uio, int ioflag)
472 {
473 	struct dev_event_info *n1;
474 	int rv;
475 
476 	mtx_lock(&devsoftc.mtx);
477 	while (TAILQ_EMPTY(&devsoftc.devq)) {
478 		if (devsoftc.nonblock) {
479 			mtx_unlock(&devsoftc.mtx);
480 			return (EAGAIN);
481 		}
482 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483 		if (rv) {
484 			/*
485 			 * Need to translate ERESTART to EINTR here? -- jake
486 			 */
487 			mtx_unlock(&devsoftc.mtx);
488 			return (rv);
489 		}
490 	}
491 	n1 = TAILQ_FIRST(&devsoftc.devq);
492 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493 	devsoftc.queued--;
494 	mtx_unlock(&devsoftc.mtx);
495 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496 	free(n1->dei_data, M_BUS);
497 	free(n1, M_BUS);
498 	return (rv);
499 }
500 
501 static	int
502 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503 {
504 	switch (cmd) {
505 
506 	case FIONBIO:
507 		if (*(int*)data)
508 			devsoftc.nonblock = 1;
509 		else
510 			devsoftc.nonblock = 0;
511 		return (0);
512 	case FIOASYNC:
513 		if (*(int*)data)
514 			devsoftc.async = 1;
515 		else
516 			devsoftc.async = 0;
517 		return (0);
518 	case FIOSETOWN:
519 		return fsetown(*(int *)data, &devsoftc.sigio);
520 	case FIOGETOWN:
521 		*(int *)data = fgetown(&devsoftc.sigio);
522 		return (0);
523 
524 		/* (un)Support for other fcntl() calls. */
525 	case FIOCLEX:
526 	case FIONCLEX:
527 	case FIONREAD:
528 	default:
529 		break;
530 	}
531 	return (ENOTTY);
532 }
533 
534 static	int
535 devpoll(struct cdev *dev, int events, struct thread *td)
536 {
537 	int	revents = 0;
538 
539 	mtx_lock(&devsoftc.mtx);
540 	if (events & (POLLIN | POLLRDNORM)) {
541 		if (!TAILQ_EMPTY(&devsoftc.devq))
542 			revents = events & (POLLIN | POLLRDNORM);
543 		else
544 			selrecord(td, &devsoftc.sel);
545 	}
546 	mtx_unlock(&devsoftc.mtx);
547 
548 	return (revents);
549 }
550 
551 static int
552 devkqfilter(struct cdev *dev, struct knote *kn)
553 {
554 	int error;
555 
556 	if (kn->kn_filter == EVFILT_READ) {
557 		kn->kn_fop = &devctl_rfiltops;
558 		knlist_add(&devsoftc.sel.si_note, kn, 0);
559 		error = 0;
560 	} else
561 		error = EINVAL;
562 	return (error);
563 }
564 
565 static void
566 filt_devctl_detach(struct knote *kn)
567 {
568 
569 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570 }
571 
572 static int
573 filt_devctl_read(struct knote *kn, long hint)
574 {
575 	kn->kn_data = devsoftc.queued;
576 	return (kn->kn_data != 0);
577 }
578 
579 /**
580  * @brief Return whether the userland process is running
581  */
582 boolean_t
583 devctl_process_running(void)
584 {
585 	return (devsoftc.inuse == 1);
586 }
587 
588 /**
589  * @brief Queue data to be read from the devctl device
590  *
591  * Generic interface to queue data to the devctl device.  It is
592  * assumed that @p data is properly formatted.  It is further assumed
593  * that @p data is allocated using the M_BUS malloc type.
594  */
595 void
596 devctl_queue_data_f(char *data, int flags)
597 {
598 	struct dev_event_info *n1 = NULL, *n2 = NULL;
599 
600 	if (strlen(data) == 0)
601 		goto out;
602 	if (devctl_queue_length == 0)
603 		goto out;
604 	n1 = malloc(sizeof(*n1), M_BUS, flags);
605 	if (n1 == NULL)
606 		goto out;
607 	n1->dei_data = data;
608 	mtx_lock(&devsoftc.mtx);
609 	if (devctl_queue_length == 0) {
610 		mtx_unlock(&devsoftc.mtx);
611 		free(n1->dei_data, M_BUS);
612 		free(n1, M_BUS);
613 		return;
614 	}
615 	/* Leave at least one spot in the queue... */
616 	while (devsoftc.queued > devctl_queue_length - 1) {
617 		n2 = TAILQ_FIRST(&devsoftc.devq);
618 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619 		free(n2->dei_data, M_BUS);
620 		free(n2, M_BUS);
621 		devsoftc.queued--;
622 	}
623 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624 	devsoftc.queued++;
625 	cv_broadcast(&devsoftc.cv);
626 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627 	mtx_unlock(&devsoftc.mtx);
628 	selwakeup(&devsoftc.sel);
629 	if (devsoftc.async && devsoftc.sigio != NULL)
630 		pgsigio(&devsoftc.sigio, SIGIO, 0);
631 	return;
632 out:
633 	/*
634 	 * We have to free data on all error paths since the caller
635 	 * assumes it will be free'd when this item is dequeued.
636 	 */
637 	free(data, M_BUS);
638 	return;
639 }
640 
641 void
642 devctl_queue_data(char *data)
643 {
644 
645 	devctl_queue_data_f(data, M_NOWAIT);
646 }
647 
648 /**
649  * @brief Send a 'notification' to userland, using standard ways
650  */
651 void
652 devctl_notify_f(const char *system, const char *subsystem, const char *type,
653     const char *data, int flags)
654 {
655 	int len = 0;
656 	char *msg;
657 
658 	if (system == NULL)
659 		return;		/* BOGUS!  Must specify system. */
660 	if (subsystem == NULL)
661 		return;		/* BOGUS!  Must specify subsystem. */
662 	if (type == NULL)
663 		return;		/* BOGUS!  Must specify type. */
664 	len += strlen(" system=") + strlen(system);
665 	len += strlen(" subsystem=") + strlen(subsystem);
666 	len += strlen(" type=") + strlen(type);
667 	/* add in the data message plus newline. */
668 	if (data != NULL)
669 		len += strlen(data);
670 	len += 3;	/* '!', '\n', and NUL */
671 	msg = malloc(len, M_BUS, flags);
672 	if (msg == NULL)
673 		return;		/* Drop it on the floor */
674 	if (data != NULL)
675 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676 		    system, subsystem, type, data);
677 	else
678 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679 		    system, subsystem, type);
680 	devctl_queue_data_f(msg, flags);
681 }
682 
683 void
684 devctl_notify(const char *system, const char *subsystem, const char *type,
685     const char *data)
686 {
687 
688 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689 }
690 
691 /*
692  * Common routine that tries to make sending messages as easy as possible.
693  * We allocate memory for the data, copy strings into that, but do not
694  * free it unless there's an error.  The dequeue part of the driver should
695  * free the data.  We don't send data when the device is disabled.  We do
696  * send data, even when we have no listeners, because we wish to avoid
697  * races relating to startup and restart of listening applications.
698  *
699  * devaddq is designed to string together the type of event, with the
700  * object of that event, plus the plug and play info and location info
701  * for that event.  This is likely most useful for devices, but less
702  * useful for other consumers of this interface.  Those should use
703  * the devctl_queue_data() interface instead.
704  */
705 static void
706 devaddq(const char *type, const char *what, device_t dev)
707 {
708 	char *data = NULL;
709 	char *loc = NULL;
710 	char *pnp = NULL;
711 	const char *parstr;
712 
713 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714 		return;
715 	data = malloc(1024, M_BUS, M_NOWAIT);
716 	if (data == NULL)
717 		goto bad;
718 
719 	/* get the bus specific location of this device */
720 	loc = malloc(1024, M_BUS, M_NOWAIT);
721 	if (loc == NULL)
722 		goto bad;
723 	*loc = '\0';
724 	bus_child_location_str(dev, loc, 1024);
725 
726 	/* Get the bus specific pnp info of this device */
727 	pnp = malloc(1024, M_BUS, M_NOWAIT);
728 	if (pnp == NULL)
729 		goto bad;
730 	*pnp = '\0';
731 	bus_child_pnpinfo_str(dev, pnp, 1024);
732 
733 	/* Get the parent of this device, or / if high enough in the tree. */
734 	if (device_get_parent(dev) == NULL)
735 		parstr = ".";	/* Or '/' ? */
736 	else
737 		parstr = device_get_nameunit(device_get_parent(dev));
738 	/* String it all together. */
739 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740 	  parstr);
741 	free(loc, M_BUS);
742 	free(pnp, M_BUS);
743 	devctl_queue_data(data);
744 	return;
745 bad:
746 	free(pnp, M_BUS);
747 	free(loc, M_BUS);
748 	free(data, M_BUS);
749 	return;
750 }
751 
752 /*
753  * A device was added to the tree.  We are called just after it successfully
754  * attaches (that is, probe and attach success for this device).  No call
755  * is made if a device is merely parented into the tree.  See devnomatch
756  * if probe fails.  If attach fails, no notification is sent (but maybe
757  * we should have a different message for this).
758  */
759 static void
760 devadded(device_t dev)
761 {
762 	devaddq("+", device_get_nameunit(dev), dev);
763 }
764 
765 /*
766  * A device was removed from the tree.  We are called just before this
767  * happens.
768  */
769 static void
770 devremoved(device_t dev)
771 {
772 	devaddq("-", device_get_nameunit(dev), dev);
773 }
774 
775 /*
776  * Called when there's no match for this device.  This is only called
777  * the first time that no match happens, so we don't keep getting this
778  * message.  Should that prove to be undesirable, we can change it.
779  * This is called when all drivers that can attach to a given bus
780  * decline to accept this device.  Other errors may not be detected.
781  */
782 static void
783 devnomatch(device_t dev)
784 {
785 	devaddq("?", "", dev);
786 }
787 
788 static int
789 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790 {
791 	struct dev_event_info *n1;
792 	int dis, error;
793 
794 	dis = (devctl_queue_length == 0);
795 	error = sysctl_handle_int(oidp, &dis, 0, req);
796 	if (error || !req->newptr)
797 		return (error);
798 	if (mtx_initialized(&devsoftc.mtx))
799 		mtx_lock(&devsoftc.mtx);
800 	if (dis) {
801 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802 			n1 = TAILQ_FIRST(&devsoftc.devq);
803 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804 			free(n1->dei_data, M_BUS);
805 			free(n1, M_BUS);
806 		}
807 		devsoftc.queued = 0;
808 		devctl_queue_length = 0;
809 	} else {
810 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811 	}
812 	if (mtx_initialized(&devsoftc.mtx))
813 		mtx_unlock(&devsoftc.mtx);
814 	return (0);
815 }
816 
817 static int
818 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819 {
820 	struct dev_event_info *n1;
821 	int q, error;
822 
823 	q = devctl_queue_length;
824 	error = sysctl_handle_int(oidp, &q, 0, req);
825 	if (error || !req->newptr)
826 		return (error);
827 	if (q < 0)
828 		return (EINVAL);
829 	if (mtx_initialized(&devsoftc.mtx))
830 		mtx_lock(&devsoftc.mtx);
831 	devctl_queue_length = q;
832 	while (devsoftc.queued > devctl_queue_length) {
833 		n1 = TAILQ_FIRST(&devsoftc.devq);
834 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835 		free(n1->dei_data, M_BUS);
836 		free(n1, M_BUS);
837 		devsoftc.queued--;
838 	}
839 	if (mtx_initialized(&devsoftc.mtx))
840 		mtx_unlock(&devsoftc.mtx);
841 	return (0);
842 }
843 
844 /**
845  * @brief safely quotes strings that might have double quotes in them.
846  *
847  * The devctl protocol relies on quoted strings having matching quotes.
848  * This routine quotes any internal quotes so the resulting string
849  * is safe to pass to snprintf to construct, for example pnp info strings.
850  * Strings are always terminated with a NUL, but may be truncated if longer
851  * than @p len bytes after quotes.
852  *
853  * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854  * @param src	Original buffer.
855  * @param len	Length of buffer pointed to by @dst, including trailing NUL
856  */
857 void
858 devctl_safe_quote(char *dst, const char *src, size_t len)
859 {
860 	char *walker = dst, *ep = dst + len - 1;
861 
862 	if (len == 0)
863 		return;
864 	while (src != NULL && walker < ep)
865 	{
866 		if (*src == '"' || *src == '\\') {
867 			if (ep - walker < 2)
868 				break;
869 			*walker++ = '\\';
870 		}
871 		*walker++ = *src++;
872 	}
873 	*walker = '\0';
874 }
875 
876 /* End of /dev/devctl code */
877 
878 static TAILQ_HEAD(,device)	bus_data_devices;
879 static int bus_data_generation = 1;
880 
881 static kobj_method_t null_methods[] = {
882 	KOBJMETHOD_END
883 };
884 
885 DEFINE_CLASS(null, null_methods, 0);
886 
887 /*
888  * Bus pass implementation
889  */
890 
891 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892 int bus_current_pass = BUS_PASS_ROOT;
893 
894 /**
895  * @internal
896  * @brief Register the pass level of a new driver attachment
897  *
898  * Register a new driver attachment's pass level.  If no driver
899  * attachment with the same pass level has been added, then @p new
900  * will be added to the global passes list.
901  *
902  * @param new		the new driver attachment
903  */
904 static void
905 driver_register_pass(struct driverlink *new)
906 {
907 	struct driverlink *dl;
908 
909 	/* We only consider pass numbers during boot. */
910 	if (bus_current_pass == BUS_PASS_DEFAULT)
911 		return;
912 
913 	/*
914 	 * Walk the passes list.  If we already know about this pass
915 	 * then there is nothing to do.  If we don't, then insert this
916 	 * driver link into the list.
917 	 */
918 	TAILQ_FOREACH(dl, &passes, passlink) {
919 		if (dl->pass < new->pass)
920 			continue;
921 		if (dl->pass == new->pass)
922 			return;
923 		TAILQ_INSERT_BEFORE(dl, new, passlink);
924 		return;
925 	}
926 	TAILQ_INSERT_TAIL(&passes, new, passlink);
927 }
928 
929 /**
930  * @brief Raise the current bus pass
931  *
932  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933  * method on the root bus to kick off a new device tree scan for each
934  * new pass level that has at least one driver.
935  */
936 void
937 bus_set_pass(int pass)
938 {
939 	struct driverlink *dl;
940 
941 	if (bus_current_pass > pass)
942 		panic("Attempt to lower bus pass level");
943 
944 	TAILQ_FOREACH(dl, &passes, passlink) {
945 		/* Skip pass values below the current pass level. */
946 		if (dl->pass <= bus_current_pass)
947 			continue;
948 
949 		/*
950 		 * Bail once we hit a driver with a pass level that is
951 		 * too high.
952 		 */
953 		if (dl->pass > pass)
954 			break;
955 
956 		/*
957 		 * Raise the pass level to the next level and rescan
958 		 * the tree.
959 		 */
960 		bus_current_pass = dl->pass;
961 		BUS_NEW_PASS(root_bus);
962 	}
963 
964 	/*
965 	 * If there isn't a driver registered for the requested pass,
966 	 * then bus_current_pass might still be less than 'pass'.  Set
967 	 * it to 'pass' in that case.
968 	 */
969 	if (bus_current_pass < pass)
970 		bus_current_pass = pass;
971 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972 }
973 
974 /*
975  * Devclass implementation
976  */
977 
978 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979 
980 /**
981  * @internal
982  * @brief Find or create a device class
983  *
984  * If a device class with the name @p classname exists, return it,
985  * otherwise if @p create is non-zero create and return a new device
986  * class.
987  *
988  * If @p parentname is non-NULL, the parent of the devclass is set to
989  * the devclass of that name.
990  *
991  * @param classname	the devclass name to find or create
992  * @param parentname	the parent devclass name or @c NULL
993  * @param create	non-zero to create a devclass
994  */
995 static devclass_t
996 devclass_find_internal(const char *classname, const char *parentname,
997 		       int create)
998 {
999 	devclass_t dc;
1000 
1001 	PDEBUG(("looking for %s", classname));
1002 	if (!classname)
1003 		return (NULL);
1004 
1005 	TAILQ_FOREACH(dc, &devclasses, link) {
1006 		if (!strcmp(dc->name, classname))
1007 			break;
1008 	}
1009 
1010 	if (create && !dc) {
1011 		PDEBUG(("creating %s", classname));
1012 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013 		    M_BUS, M_NOWAIT | M_ZERO);
1014 		if (!dc)
1015 			return (NULL);
1016 		dc->parent = NULL;
1017 		dc->name = (char*) (dc + 1);
1018 		strcpy(dc->name, classname);
1019 		TAILQ_INIT(&dc->drivers);
1020 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021 
1022 		bus_data_generation_update();
1023 	}
1024 
1025 	/*
1026 	 * If a parent class is specified, then set that as our parent so
1027 	 * that this devclass will support drivers for the parent class as
1028 	 * well.  If the parent class has the same name don't do this though
1029 	 * as it creates a cycle that can trigger an infinite loop in
1030 	 * device_probe_child() if a device exists for which there is no
1031 	 * suitable driver.
1032 	 */
1033 	if (parentname && dc && !dc->parent &&
1034 	    strcmp(classname, parentname) != 0) {
1035 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036 		dc->parent->flags |= DC_HAS_CHILDREN;
1037 	}
1038 
1039 	return (dc);
1040 }
1041 
1042 /**
1043  * @brief Create a device class
1044  *
1045  * If a device class with the name @p classname exists, return it,
1046  * otherwise create and return a new device class.
1047  *
1048  * @param classname	the devclass name to find or create
1049  */
1050 devclass_t
1051 devclass_create(const char *classname)
1052 {
1053 	return (devclass_find_internal(classname, NULL, TRUE));
1054 }
1055 
1056 /**
1057  * @brief Find a device class
1058  *
1059  * If a device class with the name @p classname exists, return it,
1060  * otherwise return @c NULL.
1061  *
1062  * @param classname	the devclass name to find
1063  */
1064 devclass_t
1065 devclass_find(const char *classname)
1066 {
1067 	return (devclass_find_internal(classname, NULL, FALSE));
1068 }
1069 
1070 /**
1071  * @brief Register that a device driver has been added to a devclass
1072  *
1073  * Register that a device driver has been added to a devclass.  This
1074  * is called by devclass_add_driver to accomplish the recursive
1075  * notification of all the children classes of dc, as well as dc.
1076  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077  * the devclass.
1078  *
1079  * We do a full search here of the devclass list at each iteration
1080  * level to save storing children-lists in the devclass structure.  If
1081  * we ever move beyond a few dozen devices doing this, we may need to
1082  * reevaluate...
1083  *
1084  * @param dc		the devclass to edit
1085  * @param driver	the driver that was just added
1086  */
1087 static void
1088 devclass_driver_added(devclass_t dc, driver_t *driver)
1089 {
1090 	devclass_t parent;
1091 	int i;
1092 
1093 	/*
1094 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095 	 */
1096 	for (i = 0; i < dc->maxunit; i++)
1097 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099 
1100 	/*
1101 	 * Walk through the children classes.  Since we only keep a
1102 	 * single parent pointer around, we walk the entire list of
1103 	 * devclasses looking for children.  We set the
1104 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105 	 * the parent, so we only walk the list for those devclasses
1106 	 * that have children.
1107 	 */
1108 	if (!(dc->flags & DC_HAS_CHILDREN))
1109 		return;
1110 	parent = dc;
1111 	TAILQ_FOREACH(dc, &devclasses, link) {
1112 		if (dc->parent == parent)
1113 			devclass_driver_added(dc, driver);
1114 	}
1115 }
1116 
1117 /**
1118  * @brief Add a device driver to a device class
1119  *
1120  * Add a device driver to a devclass. This is normally called
1121  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122  * all devices in the devclass will be called to allow them to attempt
1123  * to re-probe any unmatched children.
1124  *
1125  * @param dc		the devclass to edit
1126  * @param driver	the driver to register
1127  */
1128 int
1129 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130 {
1131 	driverlink_t dl;
1132 	const char *parentname;
1133 
1134 	PDEBUG(("%s", DRIVERNAME(driver)));
1135 
1136 	/* Don't allow invalid pass values. */
1137 	if (pass <= BUS_PASS_ROOT)
1138 		return (EINVAL);
1139 
1140 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141 	if (!dl)
1142 		return (ENOMEM);
1143 
1144 	/*
1145 	 * Compile the driver's methods. Also increase the reference count
1146 	 * so that the class doesn't get freed when the last instance
1147 	 * goes. This means we can safely use static methods and avoids a
1148 	 * double-free in devclass_delete_driver.
1149 	 */
1150 	kobj_class_compile((kobj_class_t) driver);
1151 
1152 	/*
1153 	 * If the driver has any base classes, make the
1154 	 * devclass inherit from the devclass of the driver's
1155 	 * first base class. This will allow the system to
1156 	 * search for drivers in both devclasses for children
1157 	 * of a device using this driver.
1158 	 */
1159 	if (driver->baseclasses)
1160 		parentname = driver->baseclasses[0]->name;
1161 	else
1162 		parentname = NULL;
1163 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164 
1165 	dl->driver = driver;
1166 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167 	driver->refs++;		/* XXX: kobj_mtx */
1168 	dl->pass = pass;
1169 	driver_register_pass(dl);
1170 
1171 	devclass_driver_added(dc, driver);
1172 	bus_data_generation_update();
1173 	return (0);
1174 }
1175 
1176 /**
1177  * @brief Register that a device driver has been deleted from a devclass
1178  *
1179  * Register that a device driver has been removed from a devclass.
1180  * This is called by devclass_delete_driver to accomplish the
1181  * recursive notification of all the children classes of busclass, as
1182  * well as busclass.  Each layer will attempt to detach the driver
1183  * from any devices that are children of the bus's devclass.  The function
1184  * will return an error if a device fails to detach.
1185  *
1186  * We do a full search here of the devclass list at each iteration
1187  * level to save storing children-lists in the devclass structure.  If
1188  * we ever move beyond a few dozen devices doing this, we may need to
1189  * reevaluate...
1190  *
1191  * @param busclass	the devclass of the parent bus
1192  * @param dc		the devclass of the driver being deleted
1193  * @param driver	the driver being deleted
1194  */
1195 static int
1196 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197 {
1198 	devclass_t parent;
1199 	device_t dev;
1200 	int error, i;
1201 
1202 	/*
1203 	 * Disassociate from any devices.  We iterate through all the
1204 	 * devices in the devclass of the driver and detach any which are
1205 	 * using the driver and which have a parent in the devclass which
1206 	 * we are deleting from.
1207 	 *
1208 	 * Note that since a driver can be in multiple devclasses, we
1209 	 * should not detach devices which are not children of devices in
1210 	 * the affected devclass.
1211 	 */
1212 	for (i = 0; i < dc->maxunit; i++) {
1213 		if (dc->devices[i]) {
1214 			dev = dc->devices[i];
1215 			if (dev->driver == driver && dev->parent &&
1216 			    dev->parent->devclass == busclass) {
1217 				if ((error = device_detach(dev)) != 0)
1218 					return (error);
1219 				BUS_PROBE_NOMATCH(dev->parent, dev);
1220 				devnomatch(dev);
1221 				dev->flags |= DF_DONENOMATCH;
1222 			}
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Walk through the children classes.  Since we only keep a
1228 	 * single parent pointer around, we walk the entire list of
1229 	 * devclasses looking for children.  We set the
1230 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231 	 * the parent, so we only walk the list for those devclasses
1232 	 * that have children.
1233 	 */
1234 	if (!(busclass->flags & DC_HAS_CHILDREN))
1235 		return (0);
1236 	parent = busclass;
1237 	TAILQ_FOREACH(busclass, &devclasses, link) {
1238 		if (busclass->parent == parent) {
1239 			error = devclass_driver_deleted(busclass, dc, driver);
1240 			if (error)
1241 				return (error);
1242 		}
1243 	}
1244 	return (0);
1245 }
1246 
1247 /**
1248  * @brief Delete a device driver from a device class
1249  *
1250  * Delete a device driver from a devclass. This is normally called
1251  * automatically by DRIVER_MODULE().
1252  *
1253  * If the driver is currently attached to any devices,
1254  * devclass_delete_driver() will first attempt to detach from each
1255  * device. If one of the detach calls fails, the driver will not be
1256  * deleted.
1257  *
1258  * @param dc		the devclass to edit
1259  * @param driver	the driver to unregister
1260  */
1261 int
1262 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263 {
1264 	devclass_t dc = devclass_find(driver->name);
1265 	driverlink_t dl;
1266 	int error;
1267 
1268 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269 
1270 	if (!dc)
1271 		return (0);
1272 
1273 	/*
1274 	 * Find the link structure in the bus' list of drivers.
1275 	 */
1276 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277 		if (dl->driver == driver)
1278 			break;
1279 	}
1280 
1281 	if (!dl) {
1282 		PDEBUG(("%s not found in %s list", driver->name,
1283 		    busclass->name));
1284 		return (ENOENT);
1285 	}
1286 
1287 	error = devclass_driver_deleted(busclass, dc, driver);
1288 	if (error != 0)
1289 		return (error);
1290 
1291 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292 	free(dl, M_BUS);
1293 
1294 	/* XXX: kobj_mtx */
1295 	driver->refs--;
1296 	if (driver->refs == 0)
1297 		kobj_class_free((kobj_class_t) driver);
1298 
1299 	bus_data_generation_update();
1300 	return (0);
1301 }
1302 
1303 /**
1304  * @brief Quiesces a set of device drivers from a device class
1305  *
1306  * Quiesce a device driver from a devclass. This is normally called
1307  * automatically by DRIVER_MODULE().
1308  *
1309  * If the driver is currently attached to any devices,
1310  * devclass_quiesece_driver() will first attempt to quiesce each
1311  * device.
1312  *
1313  * @param dc		the devclass to edit
1314  * @param driver	the driver to unregister
1315  */
1316 static int
1317 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318 {
1319 	devclass_t dc = devclass_find(driver->name);
1320 	driverlink_t dl;
1321 	device_t dev;
1322 	int i;
1323 	int error;
1324 
1325 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326 
1327 	if (!dc)
1328 		return (0);
1329 
1330 	/*
1331 	 * Find the link structure in the bus' list of drivers.
1332 	 */
1333 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334 		if (dl->driver == driver)
1335 			break;
1336 	}
1337 
1338 	if (!dl) {
1339 		PDEBUG(("%s not found in %s list", driver->name,
1340 		    busclass->name));
1341 		return (ENOENT);
1342 	}
1343 
1344 	/*
1345 	 * Quiesce all devices.  We iterate through all the devices in
1346 	 * the devclass of the driver and quiesce any which are using
1347 	 * the driver and which have a parent in the devclass which we
1348 	 * are quiescing.
1349 	 *
1350 	 * Note that since a driver can be in multiple devclasses, we
1351 	 * should not quiesce devices which are not children of
1352 	 * devices in the affected devclass.
1353 	 */
1354 	for (i = 0; i < dc->maxunit; i++) {
1355 		if (dc->devices[i]) {
1356 			dev = dc->devices[i];
1357 			if (dev->driver == driver && dev->parent &&
1358 			    dev->parent->devclass == busclass) {
1359 				if ((error = device_quiesce(dev)) != 0)
1360 					return (error);
1361 			}
1362 		}
1363 	}
1364 
1365 	return (0);
1366 }
1367 
1368 /**
1369  * @internal
1370  */
1371 static driverlink_t
1372 devclass_find_driver_internal(devclass_t dc, const char *classname)
1373 {
1374 	driverlink_t dl;
1375 
1376 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377 
1378 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379 		if (!strcmp(dl->driver->name, classname))
1380 			return (dl);
1381 	}
1382 
1383 	PDEBUG(("not found"));
1384 	return (NULL);
1385 }
1386 
1387 /**
1388  * @brief Return the name of the devclass
1389  */
1390 const char *
1391 devclass_get_name(devclass_t dc)
1392 {
1393 	return (dc->name);
1394 }
1395 
1396 /**
1397  * @brief Find a device given a unit number
1398  *
1399  * @param dc		the devclass to search
1400  * @param unit		the unit number to search for
1401  *
1402  * @returns		the device with the given unit number or @c
1403  *			NULL if there is no such device
1404  */
1405 device_t
1406 devclass_get_device(devclass_t dc, int unit)
1407 {
1408 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409 		return (NULL);
1410 	return (dc->devices[unit]);
1411 }
1412 
1413 /**
1414  * @brief Find the softc field of a device given a unit number
1415  *
1416  * @param dc		the devclass to search
1417  * @param unit		the unit number to search for
1418  *
1419  * @returns		the softc field of the device with the given
1420  *			unit number or @c NULL if there is no such
1421  *			device
1422  */
1423 void *
1424 devclass_get_softc(devclass_t dc, int unit)
1425 {
1426 	device_t dev;
1427 
1428 	dev = devclass_get_device(dc, unit);
1429 	if (!dev)
1430 		return (NULL);
1431 
1432 	return (device_get_softc(dev));
1433 }
1434 
1435 /**
1436  * @brief Get a list of devices in the devclass
1437  *
1438  * An array containing a list of all the devices in the given devclass
1439  * is allocated and returned in @p *devlistp. The number of devices
1440  * in the array is returned in @p *devcountp. The caller should free
1441  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442  *
1443  * @param dc		the devclass to examine
1444  * @param devlistp	points at location for array pointer return
1445  *			value
1446  * @param devcountp	points at location for array size return value
1447  *
1448  * @retval 0		success
1449  * @retval ENOMEM	the array allocation failed
1450  */
1451 int
1452 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453 {
1454 	int count, i;
1455 	device_t *list;
1456 
1457 	count = devclass_get_count(dc);
1458 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459 	if (!list)
1460 		return (ENOMEM);
1461 
1462 	count = 0;
1463 	for (i = 0; i < dc->maxunit; i++) {
1464 		if (dc->devices[i]) {
1465 			list[count] = dc->devices[i];
1466 			count++;
1467 		}
1468 	}
1469 
1470 	*devlistp = list;
1471 	*devcountp = count;
1472 
1473 	return (0);
1474 }
1475 
1476 /**
1477  * @brief Get a list of drivers in the devclass
1478  *
1479  * An array containing a list of pointers to all the drivers in the
1480  * given devclass is allocated and returned in @p *listp.  The number
1481  * of drivers in the array is returned in @p *countp. The caller should
1482  * free the array using @c free(p, M_TEMP).
1483  *
1484  * @param dc		the devclass to examine
1485  * @param listp		gives location for array pointer return value
1486  * @param countp	gives location for number of array elements
1487  *			return value
1488  *
1489  * @retval 0		success
1490  * @retval ENOMEM	the array allocation failed
1491  */
1492 int
1493 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494 {
1495 	driverlink_t dl;
1496 	driver_t **list;
1497 	int count;
1498 
1499 	count = 0;
1500 	TAILQ_FOREACH(dl, &dc->drivers, link)
1501 		count++;
1502 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503 	if (list == NULL)
1504 		return (ENOMEM);
1505 
1506 	count = 0;
1507 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508 		list[count] = dl->driver;
1509 		count++;
1510 	}
1511 	*listp = list;
1512 	*countp = count;
1513 
1514 	return (0);
1515 }
1516 
1517 /**
1518  * @brief Get the number of devices in a devclass
1519  *
1520  * @param dc		the devclass to examine
1521  */
1522 int
1523 devclass_get_count(devclass_t dc)
1524 {
1525 	int count, i;
1526 
1527 	count = 0;
1528 	for (i = 0; i < dc->maxunit; i++)
1529 		if (dc->devices[i])
1530 			count++;
1531 	return (count);
1532 }
1533 
1534 /**
1535  * @brief Get the maximum unit number used in a devclass
1536  *
1537  * Note that this is one greater than the highest currently-allocated
1538  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539  * that not even the devclass has been allocated yet.
1540  *
1541  * @param dc		the devclass to examine
1542  */
1543 int
1544 devclass_get_maxunit(devclass_t dc)
1545 {
1546 	if (dc == NULL)
1547 		return (-1);
1548 	return (dc->maxunit);
1549 }
1550 
1551 /**
1552  * @brief Find a free unit number in a devclass
1553  *
1554  * This function searches for the first unused unit number greater
1555  * that or equal to @p unit.
1556  *
1557  * @param dc		the devclass to examine
1558  * @param unit		the first unit number to check
1559  */
1560 int
1561 devclass_find_free_unit(devclass_t dc, int unit)
1562 {
1563 	if (dc == NULL)
1564 		return (unit);
1565 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566 		unit++;
1567 	return (unit);
1568 }
1569 
1570 /**
1571  * @brief Set the parent of a devclass
1572  *
1573  * The parent class is normally initialised automatically by
1574  * DRIVER_MODULE().
1575  *
1576  * @param dc		the devclass to edit
1577  * @param pdc		the new parent devclass
1578  */
1579 void
1580 devclass_set_parent(devclass_t dc, devclass_t pdc)
1581 {
1582 	dc->parent = pdc;
1583 }
1584 
1585 /**
1586  * @brief Get the parent of a devclass
1587  *
1588  * @param dc		the devclass to examine
1589  */
1590 devclass_t
1591 devclass_get_parent(devclass_t dc)
1592 {
1593 	return (dc->parent);
1594 }
1595 
1596 struct sysctl_ctx_list *
1597 devclass_get_sysctl_ctx(devclass_t dc)
1598 {
1599 	return (&dc->sysctl_ctx);
1600 }
1601 
1602 struct sysctl_oid *
1603 devclass_get_sysctl_tree(devclass_t dc)
1604 {
1605 	return (dc->sysctl_tree);
1606 }
1607 
1608 /**
1609  * @internal
1610  * @brief Allocate a unit number
1611  *
1612  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613  * will do). The allocated unit number is returned in @p *unitp.
1614 
1615  * @param dc		the devclass to allocate from
1616  * @param unitp		points at the location for the allocated unit
1617  *			number
1618  *
1619  * @retval 0		success
1620  * @retval EEXIST	the requested unit number is already allocated
1621  * @retval ENOMEM	memory allocation failure
1622  */
1623 static int
1624 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625 {
1626 	const char *s;
1627 	int unit = *unitp;
1628 
1629 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630 
1631 	/* Ask the parent bus if it wants to wire this device. */
1632 	if (unit == -1)
1633 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634 		    &unit);
1635 
1636 	/* If we were given a wired unit number, check for existing device */
1637 	/* XXX imp XXX */
1638 	if (unit != -1) {
1639 		if (unit >= 0 && unit < dc->maxunit &&
1640 		    dc->devices[unit] != NULL) {
1641 			if (bootverbose)
1642 				printf("%s: %s%d already exists; skipping it\n",
1643 				    dc->name, dc->name, *unitp);
1644 			return (EEXIST);
1645 		}
1646 	} else {
1647 		/* Unwired device, find the next available slot for it */
1648 		unit = 0;
1649 		for (unit = 0;; unit++) {
1650 			/* If there is an "at" hint for a unit then skip it. */
1651 			if (resource_string_value(dc->name, unit, "at", &s) ==
1652 			    0)
1653 				continue;
1654 
1655 			/* If this device slot is already in use, skip it. */
1656 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657 				continue;
1658 
1659 			break;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * We've selected a unit beyond the length of the table, so let's
1665 	 * extend the table to make room for all units up to and including
1666 	 * this one.
1667 	 */
1668 	if (unit >= dc->maxunit) {
1669 		device_t *newlist, *oldlist;
1670 		int newsize;
1671 
1672 		oldlist = dc->devices;
1673 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675 		if (!newlist)
1676 			return (ENOMEM);
1677 		if (oldlist != NULL)
1678 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679 		bzero(newlist + dc->maxunit,
1680 		    sizeof(device_t) * (newsize - dc->maxunit));
1681 		dc->devices = newlist;
1682 		dc->maxunit = newsize;
1683 		if (oldlist != NULL)
1684 			free(oldlist, M_BUS);
1685 	}
1686 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687 
1688 	*unitp = unit;
1689 	return (0);
1690 }
1691 
1692 /**
1693  * @internal
1694  * @brief Add a device to a devclass
1695  *
1696  * A unit number is allocated for the device (using the device's
1697  * preferred unit number if any) and the device is registered in the
1698  * devclass. This allows the device to be looked up by its unit
1699  * number, e.g. by decoding a dev_t minor number.
1700  *
1701  * @param dc		the devclass to add to
1702  * @param dev		the device to add
1703  *
1704  * @retval 0		success
1705  * @retval EEXIST	the requested unit number is already allocated
1706  * @retval ENOMEM	memory allocation failure
1707  */
1708 static int
1709 devclass_add_device(devclass_t dc, device_t dev)
1710 {
1711 	int buflen, error;
1712 
1713 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714 
1715 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716 	if (buflen < 0)
1717 		return (ENOMEM);
1718 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719 	if (!dev->nameunit)
1720 		return (ENOMEM);
1721 
1722 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723 		free(dev->nameunit, M_BUS);
1724 		dev->nameunit = NULL;
1725 		return (error);
1726 	}
1727 	dc->devices[dev->unit] = dev;
1728 	dev->devclass = dc;
1729 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730 
1731 	return (0);
1732 }
1733 
1734 /**
1735  * @internal
1736  * @brief Delete a device from a devclass
1737  *
1738  * The device is removed from the devclass's device list and its unit
1739  * number is freed.
1740 
1741  * @param dc		the devclass to delete from
1742  * @param dev		the device to delete
1743  *
1744  * @retval 0		success
1745  */
1746 static int
1747 devclass_delete_device(devclass_t dc, device_t dev)
1748 {
1749 	if (!dc || !dev)
1750 		return (0);
1751 
1752 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753 
1754 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755 		panic("devclass_delete_device: inconsistent device class");
1756 	dc->devices[dev->unit] = NULL;
1757 	if (dev->flags & DF_WILDCARD)
1758 		dev->unit = -1;
1759 	dev->devclass = NULL;
1760 	free(dev->nameunit, M_BUS);
1761 	dev->nameunit = NULL;
1762 
1763 	return (0);
1764 }
1765 
1766 /**
1767  * @internal
1768  * @brief Make a new device and add it as a child of @p parent
1769  *
1770  * @param parent	the parent of the new device
1771  * @param name		the devclass name of the new device or @c NULL
1772  *			to leave the devclass unspecified
1773  * @parem unit		the unit number of the new device of @c -1 to
1774  *			leave the unit number unspecified
1775  *
1776  * @returns the new device
1777  */
1778 static device_t
1779 make_device(device_t parent, const char *name, int unit)
1780 {
1781 	device_t dev;
1782 	devclass_t dc;
1783 
1784 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785 
1786 	if (name) {
1787 		dc = devclass_find_internal(name, NULL, TRUE);
1788 		if (!dc) {
1789 			printf("make_device: can't find device class %s\n",
1790 			    name);
1791 			return (NULL);
1792 		}
1793 	} else {
1794 		dc = NULL;
1795 	}
1796 
1797 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1798 	if (!dev)
1799 		return (NULL);
1800 
1801 	dev->parent = parent;
1802 	TAILQ_INIT(&dev->children);
1803 	kobj_init((kobj_t) dev, &null_class);
1804 	dev->driver = NULL;
1805 	dev->devclass = NULL;
1806 	dev->unit = unit;
1807 	dev->nameunit = NULL;
1808 	dev->desc = NULL;
1809 	dev->busy = 0;
1810 	dev->devflags = 0;
1811 	dev->flags = DF_ENABLED;
1812 	dev->order = 0;
1813 	if (unit == -1)
1814 		dev->flags |= DF_WILDCARD;
1815 	if (name) {
1816 		dev->flags |= DF_FIXEDCLASS;
1817 		if (devclass_add_device(dc, dev)) {
1818 			kobj_delete((kobj_t) dev, M_BUS);
1819 			return (NULL);
1820 		}
1821 	}
1822 	dev->ivars = NULL;
1823 	dev->softc = NULL;
1824 
1825 	dev->state = DS_NOTPRESENT;
1826 
1827 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828 	bus_data_generation_update();
1829 
1830 	return (dev);
1831 }
1832 
1833 /**
1834  * @internal
1835  * @brief Print a description of a device.
1836  */
1837 static int
1838 device_print_child(device_t dev, device_t child)
1839 {
1840 	int retval = 0;
1841 
1842 	if (device_is_alive(child))
1843 		retval += BUS_PRINT_CHILD(dev, child);
1844 	else
1845 		retval += device_printf(child, " not found\n");
1846 
1847 	return (retval);
1848 }
1849 
1850 /**
1851  * @brief Create a new device
1852  *
1853  * This creates a new device and adds it as a child of an existing
1854  * parent device. The new device will be added after the last existing
1855  * child with order zero.
1856  *
1857  * @param dev		the device which will be the parent of the
1858  *			new child device
1859  * @param name		devclass name for new device or @c NULL if not
1860  *			specified
1861  * @param unit		unit number for new device or @c -1 if not
1862  *			specified
1863  *
1864  * @returns		the new device
1865  */
1866 device_t
1867 device_add_child(device_t dev, const char *name, int unit)
1868 {
1869 	return (device_add_child_ordered(dev, 0, name, unit));
1870 }
1871 
1872 /**
1873  * @brief Create a new device
1874  *
1875  * This creates a new device and adds it as a child of an existing
1876  * parent device. The new device will be added after the last existing
1877  * child with the same order.
1878  *
1879  * @param dev		the device which will be the parent of the
1880  *			new child device
1881  * @param order		a value which is used to partially sort the
1882  *			children of @p dev - devices created using
1883  *			lower values of @p order appear first in @p
1884  *			dev's list of children
1885  * @param name		devclass name for new device or @c NULL if not
1886  *			specified
1887  * @param unit		unit number for new device or @c -1 if not
1888  *			specified
1889  *
1890  * @returns		the new device
1891  */
1892 device_t
1893 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894 {
1895 	device_t child;
1896 	device_t place;
1897 
1898 	PDEBUG(("%s at %s with order %u as unit %d",
1899 	    name, DEVICENAME(dev), order, unit));
1900 	KASSERT(name != NULL || unit == -1,
1901 	    ("child device with wildcard name and specific unit number"));
1902 
1903 	child = make_device(dev, name, unit);
1904 	if (child == NULL)
1905 		return (child);
1906 	child->order = order;
1907 
1908 	TAILQ_FOREACH(place, &dev->children, link) {
1909 		if (place->order > order)
1910 			break;
1911 	}
1912 
1913 	if (place) {
1914 		/*
1915 		 * The device 'place' is the first device whose order is
1916 		 * greater than the new child.
1917 		 */
1918 		TAILQ_INSERT_BEFORE(place, child, link);
1919 	} else {
1920 		/*
1921 		 * The new child's order is greater or equal to the order of
1922 		 * any existing device. Add the child to the tail of the list.
1923 		 */
1924 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925 	}
1926 
1927 	bus_data_generation_update();
1928 	return (child);
1929 }
1930 
1931 /**
1932  * @brief Delete a device
1933  *
1934  * This function deletes a device along with all of its children. If
1935  * the device currently has a driver attached to it, the device is
1936  * detached first using device_detach().
1937  *
1938  * @param dev		the parent device
1939  * @param child		the device to delete
1940  *
1941  * @retval 0		success
1942  * @retval non-zero	a unit error code describing the error
1943  */
1944 int
1945 device_delete_child(device_t dev, device_t child)
1946 {
1947 	int error;
1948 	device_t grandchild;
1949 
1950 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951 
1952 	/* remove children first */
1953 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1954 		error = device_delete_child(child, grandchild);
1955 		if (error)
1956 			return (error);
1957 	}
1958 
1959 	if ((error = device_detach(child)) != 0)
1960 		return (error);
1961 	if (child->devclass)
1962 		devclass_delete_device(child->devclass, child);
1963 	if (child->parent)
1964 		BUS_CHILD_DELETED(dev, child);
1965 	TAILQ_REMOVE(&dev->children, child, link);
1966 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1967 	kobj_delete((kobj_t) child, M_BUS);
1968 
1969 	bus_data_generation_update();
1970 	return (0);
1971 }
1972 
1973 /**
1974  * @brief Delete all children devices of the given device, if any.
1975  *
1976  * This function deletes all children devices of the given device, if
1977  * any, using the device_delete_child() function for each device it
1978  * finds. If a child device cannot be deleted, this function will
1979  * return an error code.
1980  *
1981  * @param dev		the parent device
1982  *
1983  * @retval 0		success
1984  * @retval non-zero	a device would not detach
1985  */
1986 int
1987 device_delete_children(device_t dev)
1988 {
1989 	device_t child;
1990 	int error;
1991 
1992 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1993 
1994 	error = 0;
1995 
1996 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1997 		error = device_delete_child(dev, child);
1998 		if (error) {
1999 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2000 			break;
2001 		}
2002 	}
2003 	return (error);
2004 }
2005 
2006 /**
2007  * @brief Find a device given a unit number
2008  *
2009  * This is similar to devclass_get_devices() but only searches for
2010  * devices which have @p dev as a parent.
2011  *
2012  * @param dev		the parent device to search
2013  * @param unit		the unit number to search for.  If the unit is -1,
2014  *			return the first child of @p dev which has name
2015  *			@p classname (that is, the one with the lowest unit.)
2016  *
2017  * @returns		the device with the given unit number or @c
2018  *			NULL if there is no such device
2019  */
2020 device_t
2021 device_find_child(device_t dev, const char *classname, int unit)
2022 {
2023 	devclass_t dc;
2024 	device_t child;
2025 
2026 	dc = devclass_find(classname);
2027 	if (!dc)
2028 		return (NULL);
2029 
2030 	if (unit != -1) {
2031 		child = devclass_get_device(dc, unit);
2032 		if (child && child->parent == dev)
2033 			return (child);
2034 	} else {
2035 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2036 			child = devclass_get_device(dc, unit);
2037 			if (child && child->parent == dev)
2038 				return (child);
2039 		}
2040 	}
2041 	return (NULL);
2042 }
2043 
2044 /**
2045  * @internal
2046  */
2047 static driverlink_t
2048 first_matching_driver(devclass_t dc, device_t dev)
2049 {
2050 	if (dev->devclass)
2051 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2052 	return (TAILQ_FIRST(&dc->drivers));
2053 }
2054 
2055 /**
2056  * @internal
2057  */
2058 static driverlink_t
2059 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2060 {
2061 	if (dev->devclass) {
2062 		driverlink_t dl;
2063 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2064 			if (!strcmp(dev->devclass->name, dl->driver->name))
2065 				return (dl);
2066 		return (NULL);
2067 	}
2068 	return (TAILQ_NEXT(last, link));
2069 }
2070 
2071 /**
2072  * @internal
2073  */
2074 int
2075 device_probe_child(device_t dev, device_t child)
2076 {
2077 	devclass_t dc;
2078 	driverlink_t best = NULL;
2079 	driverlink_t dl;
2080 	int result, pri = 0;
2081 	int hasclass = (child->devclass != NULL);
2082 
2083 	GIANT_REQUIRED;
2084 
2085 	dc = dev->devclass;
2086 	if (!dc)
2087 		panic("device_probe_child: parent device has no devclass");
2088 
2089 	/*
2090 	 * If the state is already probed, then return.  However, don't
2091 	 * return if we can rebid this object.
2092 	 */
2093 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2094 		return (0);
2095 
2096 	for (; dc; dc = dc->parent) {
2097 		for (dl = first_matching_driver(dc, child);
2098 		     dl;
2099 		     dl = next_matching_driver(dc, child, dl)) {
2100 			/* If this driver's pass is too high, then ignore it. */
2101 			if (dl->pass > bus_current_pass)
2102 				continue;
2103 
2104 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2105 			result = device_set_driver(child, dl->driver);
2106 			if (result == ENOMEM)
2107 				return (result);
2108 			else if (result != 0)
2109 				continue;
2110 			if (!hasclass) {
2111 				if (device_set_devclass(child,
2112 				    dl->driver->name) != 0) {
2113 					char const * devname =
2114 					    device_get_name(child);
2115 					if (devname == NULL)
2116 						devname = "(unknown)";
2117 					printf("driver bug: Unable to set "
2118 					    "devclass (class: %s "
2119 					    "devname: %s)\n",
2120 					    dl->driver->name,
2121 					    devname);
2122 					(void)device_set_driver(child, NULL);
2123 					continue;
2124 				}
2125 			}
2126 
2127 			/* Fetch any flags for the device before probing. */
2128 			resource_int_value(dl->driver->name, child->unit,
2129 			    "flags", &child->devflags);
2130 
2131 			result = DEVICE_PROBE(child);
2132 
2133 			/* Reset flags and devclass before the next probe. */
2134 			child->devflags = 0;
2135 			if (!hasclass)
2136 				(void)device_set_devclass(child, NULL);
2137 
2138 			/*
2139 			 * If the driver returns SUCCESS, there can be
2140 			 * no higher match for this device.
2141 			 */
2142 			if (result == 0) {
2143 				best = dl;
2144 				pri = 0;
2145 				break;
2146 			}
2147 
2148 			/*
2149 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2150 			 * only match on devices whose driver was explicitly
2151 			 * specified.
2152 			 */
2153 			if (result <= BUS_PROBE_NOWILDCARD &&
2154 			    !(child->flags & DF_FIXEDCLASS)) {
2155 				result = ENXIO;
2156 			}
2157 
2158 			/*
2159 			 * The driver returned an error so it
2160 			 * certainly doesn't match.
2161 			 */
2162 			if (result > 0) {
2163 				(void)device_set_driver(child, NULL);
2164 				continue;
2165 			}
2166 
2167 			/*
2168 			 * A priority lower than SUCCESS, remember the
2169 			 * best matching driver. Initialise the value
2170 			 * of pri for the first match.
2171 			 */
2172 			if (best == NULL || result > pri) {
2173 				best = dl;
2174 				pri = result;
2175 				continue;
2176 			}
2177 		}
2178 		/*
2179 		 * If we have an unambiguous match in this devclass,
2180 		 * don't look in the parent.
2181 		 */
2182 		if (best && pri == 0)
2183 			break;
2184 	}
2185 
2186 	/*
2187 	 * If we found a driver, change state and initialise the devclass.
2188 	 */
2189 	/* XXX What happens if we rebid and got no best? */
2190 	if (best) {
2191 		/*
2192 		 * If this device was attached, and we were asked to
2193 		 * rescan, and it is a different driver, then we have
2194 		 * to detach the old driver and reattach this new one.
2195 		 * Note, we don't have to check for DF_REBID here
2196 		 * because if the state is > DS_ALIVE, we know it must
2197 		 * be.
2198 		 *
2199 		 * This assumes that all DF_REBID drivers can have
2200 		 * their probe routine called at any time and that
2201 		 * they are idempotent as well as completely benign in
2202 		 * normal operations.
2203 		 *
2204 		 * We also have to make sure that the detach
2205 		 * succeeded, otherwise we fail the operation (or
2206 		 * maybe it should just fail silently?  I'm torn).
2207 		 */
2208 		if (child->state > DS_ALIVE && best->driver != child->driver)
2209 			if ((result = device_detach(dev)) != 0)
2210 				return (result);
2211 
2212 		/* Set the winning driver, devclass, and flags. */
2213 		if (!child->devclass) {
2214 			result = device_set_devclass(child, best->driver->name);
2215 			if (result != 0)
2216 				return (result);
2217 		}
2218 		result = device_set_driver(child, best->driver);
2219 		if (result != 0)
2220 			return (result);
2221 		resource_int_value(best->driver->name, child->unit,
2222 		    "flags", &child->devflags);
2223 
2224 		if (pri < 0) {
2225 			/*
2226 			 * A bit bogus. Call the probe method again to make
2227 			 * sure that we have the right description.
2228 			 */
2229 			DEVICE_PROBE(child);
2230 #if 0
2231 			child->flags |= DF_REBID;
2232 #endif
2233 		} else
2234 			child->flags &= ~DF_REBID;
2235 		child->state = DS_ALIVE;
2236 
2237 		bus_data_generation_update();
2238 		return (0);
2239 	}
2240 
2241 	return (ENXIO);
2242 }
2243 
2244 /**
2245  * @brief Return the parent of a device
2246  */
2247 device_t
2248 device_get_parent(device_t dev)
2249 {
2250 	return (dev->parent);
2251 }
2252 
2253 /**
2254  * @brief Get a list of children of a device
2255  *
2256  * An array containing a list of all the children of the given device
2257  * is allocated and returned in @p *devlistp. The number of devices
2258  * in the array is returned in @p *devcountp. The caller should free
2259  * the array using @c free(p, M_TEMP).
2260  *
2261  * @param dev		the device to examine
2262  * @param devlistp	points at location for array pointer return
2263  *			value
2264  * @param devcountp	points at location for array size return value
2265  *
2266  * @retval 0		success
2267  * @retval ENOMEM	the array allocation failed
2268  */
2269 int
2270 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2271 {
2272 	int count;
2273 	device_t child;
2274 	device_t *list;
2275 
2276 	count = 0;
2277 	TAILQ_FOREACH(child, &dev->children, link) {
2278 		count++;
2279 	}
2280 	if (count == 0) {
2281 		*devlistp = NULL;
2282 		*devcountp = 0;
2283 		return (0);
2284 	}
2285 
2286 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2287 	if (!list)
2288 		return (ENOMEM);
2289 
2290 	count = 0;
2291 	TAILQ_FOREACH(child, &dev->children, link) {
2292 		list[count] = child;
2293 		count++;
2294 	}
2295 
2296 	*devlistp = list;
2297 	*devcountp = count;
2298 
2299 	return (0);
2300 }
2301 
2302 /**
2303  * @brief Return the current driver for the device or @c NULL if there
2304  * is no driver currently attached
2305  */
2306 driver_t *
2307 device_get_driver(device_t dev)
2308 {
2309 	return (dev->driver);
2310 }
2311 
2312 /**
2313  * @brief Return the current devclass for the device or @c NULL if
2314  * there is none.
2315  */
2316 devclass_t
2317 device_get_devclass(device_t dev)
2318 {
2319 	return (dev->devclass);
2320 }
2321 
2322 /**
2323  * @brief Return the name of the device's devclass or @c NULL if there
2324  * is none.
2325  */
2326 const char *
2327 device_get_name(device_t dev)
2328 {
2329 	if (dev != NULL && dev->devclass)
2330 		return (devclass_get_name(dev->devclass));
2331 	return (NULL);
2332 }
2333 
2334 /**
2335  * @brief Return a string containing the device's devclass name
2336  * followed by an ascii representation of the device's unit number
2337  * (e.g. @c "foo2").
2338  */
2339 const char *
2340 device_get_nameunit(device_t dev)
2341 {
2342 	return (dev->nameunit);
2343 }
2344 
2345 /**
2346  * @brief Return the device's unit number.
2347  */
2348 int
2349 device_get_unit(device_t dev)
2350 {
2351 	return (dev->unit);
2352 }
2353 
2354 /**
2355  * @brief Return the device's description string
2356  */
2357 const char *
2358 device_get_desc(device_t dev)
2359 {
2360 	return (dev->desc);
2361 }
2362 
2363 /**
2364  * @brief Return the device's flags
2365  */
2366 uint32_t
2367 device_get_flags(device_t dev)
2368 {
2369 	return (dev->devflags);
2370 }
2371 
2372 struct sysctl_ctx_list *
2373 device_get_sysctl_ctx(device_t dev)
2374 {
2375 	return (&dev->sysctl_ctx);
2376 }
2377 
2378 struct sysctl_oid *
2379 device_get_sysctl_tree(device_t dev)
2380 {
2381 	return (dev->sysctl_tree);
2382 }
2383 
2384 /**
2385  * @brief Print the name of the device followed by a colon and a space
2386  *
2387  * @returns the number of characters printed
2388  */
2389 int
2390 device_print_prettyname(device_t dev)
2391 {
2392 	const char *name = device_get_name(dev);
2393 
2394 	if (name == NULL)
2395 		return (printf("unknown: "));
2396 	return (printf("%s%d: ", name, device_get_unit(dev)));
2397 }
2398 
2399 /**
2400  * @brief Print the name of the device followed by a colon, a space
2401  * and the result of calling vprintf() with the value of @p fmt and
2402  * the following arguments.
2403  *
2404  * @returns the number of characters printed
2405  */
2406 int
2407 device_printf(device_t dev, const char * fmt, ...)
2408 {
2409 	va_list ap;
2410 	int retval;
2411 
2412 	retval = device_print_prettyname(dev);
2413 	va_start(ap, fmt);
2414 	retval += vprintf(fmt, ap);
2415 	va_end(ap);
2416 	return (retval);
2417 }
2418 
2419 /**
2420  * @internal
2421  */
2422 static void
2423 device_set_desc_internal(device_t dev, const char* desc, int copy)
2424 {
2425 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2426 		free(dev->desc, M_BUS);
2427 		dev->flags &= ~DF_DESCMALLOCED;
2428 		dev->desc = NULL;
2429 	}
2430 
2431 	if (copy && desc) {
2432 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2433 		if (dev->desc) {
2434 			strcpy(dev->desc, desc);
2435 			dev->flags |= DF_DESCMALLOCED;
2436 		}
2437 	} else {
2438 		/* Avoid a -Wcast-qual warning */
2439 		dev->desc = (char *)(uintptr_t) desc;
2440 	}
2441 
2442 	bus_data_generation_update();
2443 }
2444 
2445 /**
2446  * @brief Set the device's description
2447  *
2448  * The value of @c desc should be a string constant that will not
2449  * change (at least until the description is changed in a subsequent
2450  * call to device_set_desc() or device_set_desc_copy()).
2451  */
2452 void
2453 device_set_desc(device_t dev, const char* desc)
2454 {
2455 	device_set_desc_internal(dev, desc, FALSE);
2456 }
2457 
2458 /**
2459  * @brief Set the device's description
2460  *
2461  * The string pointed to by @c desc is copied. Use this function if
2462  * the device description is generated, (e.g. with sprintf()).
2463  */
2464 void
2465 device_set_desc_copy(device_t dev, const char* desc)
2466 {
2467 	device_set_desc_internal(dev, desc, TRUE);
2468 }
2469 
2470 /**
2471  * @brief Set the device's flags
2472  */
2473 void
2474 device_set_flags(device_t dev, uint32_t flags)
2475 {
2476 	dev->devflags = flags;
2477 }
2478 
2479 /**
2480  * @brief Return the device's softc field
2481  *
2482  * The softc is allocated and zeroed when a driver is attached, based
2483  * on the size field of the driver.
2484  */
2485 void *
2486 device_get_softc(device_t dev)
2487 {
2488 	return (dev->softc);
2489 }
2490 
2491 /**
2492  * @brief Set the device's softc field
2493  *
2494  * Most drivers do not need to use this since the softc is allocated
2495  * automatically when the driver is attached.
2496  */
2497 void
2498 device_set_softc(device_t dev, void *softc)
2499 {
2500 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2501 		free(dev->softc, M_BUS_SC);
2502 	dev->softc = softc;
2503 	if (dev->softc)
2504 		dev->flags |= DF_EXTERNALSOFTC;
2505 	else
2506 		dev->flags &= ~DF_EXTERNALSOFTC;
2507 }
2508 
2509 /**
2510  * @brief Free claimed softc
2511  *
2512  * Most drivers do not need to use this since the softc is freed
2513  * automatically when the driver is detached.
2514  */
2515 void
2516 device_free_softc(void *softc)
2517 {
2518 	free(softc, M_BUS_SC);
2519 }
2520 
2521 /**
2522  * @brief Claim softc
2523  *
2524  * This function can be used to let the driver free the automatically
2525  * allocated softc using "device_free_softc()". This function is
2526  * useful when the driver is refcounting the softc and the softc
2527  * cannot be freed when the "device_detach" method is called.
2528  */
2529 void
2530 device_claim_softc(device_t dev)
2531 {
2532 	if (dev->softc)
2533 		dev->flags |= DF_EXTERNALSOFTC;
2534 	else
2535 		dev->flags &= ~DF_EXTERNALSOFTC;
2536 }
2537 
2538 /**
2539  * @brief Get the device's ivars field
2540  *
2541  * The ivars field is used by the parent device to store per-device
2542  * state (e.g. the physical location of the device or a list of
2543  * resources).
2544  */
2545 void *
2546 device_get_ivars(device_t dev)
2547 {
2548 
2549 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2550 	return (dev->ivars);
2551 }
2552 
2553 /**
2554  * @brief Set the device's ivars field
2555  */
2556 void
2557 device_set_ivars(device_t dev, void * ivars)
2558 {
2559 
2560 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2561 	dev->ivars = ivars;
2562 }
2563 
2564 /**
2565  * @brief Return the device's state
2566  */
2567 device_state_t
2568 device_get_state(device_t dev)
2569 {
2570 	return (dev->state);
2571 }
2572 
2573 /**
2574  * @brief Set the DF_ENABLED flag for the device
2575  */
2576 void
2577 device_enable(device_t dev)
2578 {
2579 	dev->flags |= DF_ENABLED;
2580 }
2581 
2582 /**
2583  * @brief Clear the DF_ENABLED flag for the device
2584  */
2585 void
2586 device_disable(device_t dev)
2587 {
2588 	dev->flags &= ~DF_ENABLED;
2589 }
2590 
2591 /**
2592  * @brief Increment the busy counter for the device
2593  */
2594 void
2595 device_busy(device_t dev)
2596 {
2597 	if (dev->state < DS_ATTACHING)
2598 		panic("device_busy: called for unattached device");
2599 	if (dev->busy == 0 && dev->parent)
2600 		device_busy(dev->parent);
2601 	dev->busy++;
2602 	if (dev->state == DS_ATTACHED)
2603 		dev->state = DS_BUSY;
2604 }
2605 
2606 /**
2607  * @brief Decrement the busy counter for the device
2608  */
2609 void
2610 device_unbusy(device_t dev)
2611 {
2612 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2613 	    dev->state != DS_ATTACHING)
2614 		panic("device_unbusy: called for non-busy device %s",
2615 		    device_get_nameunit(dev));
2616 	dev->busy--;
2617 	if (dev->busy == 0) {
2618 		if (dev->parent)
2619 			device_unbusy(dev->parent);
2620 		if (dev->state == DS_BUSY)
2621 			dev->state = DS_ATTACHED;
2622 	}
2623 }
2624 
2625 /**
2626  * @brief Set the DF_QUIET flag for the device
2627  */
2628 void
2629 device_quiet(device_t dev)
2630 {
2631 	dev->flags |= DF_QUIET;
2632 }
2633 
2634 /**
2635  * @brief Clear the DF_QUIET flag for the device
2636  */
2637 void
2638 device_verbose(device_t dev)
2639 {
2640 	dev->flags &= ~DF_QUIET;
2641 }
2642 
2643 /**
2644  * @brief Return non-zero if the DF_QUIET flag is set on the device
2645  */
2646 int
2647 device_is_quiet(device_t dev)
2648 {
2649 	return ((dev->flags & DF_QUIET) != 0);
2650 }
2651 
2652 /**
2653  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2654  */
2655 int
2656 device_is_enabled(device_t dev)
2657 {
2658 	return ((dev->flags & DF_ENABLED) != 0);
2659 }
2660 
2661 /**
2662  * @brief Return non-zero if the device was successfully probed
2663  */
2664 int
2665 device_is_alive(device_t dev)
2666 {
2667 	return (dev->state >= DS_ALIVE);
2668 }
2669 
2670 /**
2671  * @brief Return non-zero if the device currently has a driver
2672  * attached to it
2673  */
2674 int
2675 device_is_attached(device_t dev)
2676 {
2677 	return (dev->state >= DS_ATTACHED);
2678 }
2679 
2680 /**
2681  * @brief Return non-zero if the device is currently suspended.
2682  */
2683 int
2684 device_is_suspended(device_t dev)
2685 {
2686 	return ((dev->flags & DF_SUSPENDED) != 0);
2687 }
2688 
2689 /**
2690  * @brief Set the devclass of a device
2691  * @see devclass_add_device().
2692  */
2693 int
2694 device_set_devclass(device_t dev, const char *classname)
2695 {
2696 	devclass_t dc;
2697 	int error;
2698 
2699 	if (!classname) {
2700 		if (dev->devclass)
2701 			devclass_delete_device(dev->devclass, dev);
2702 		return (0);
2703 	}
2704 
2705 	if (dev->devclass) {
2706 		printf("device_set_devclass: device class already set\n");
2707 		return (EINVAL);
2708 	}
2709 
2710 	dc = devclass_find_internal(classname, NULL, TRUE);
2711 	if (!dc)
2712 		return (ENOMEM);
2713 
2714 	error = devclass_add_device(dc, dev);
2715 
2716 	bus_data_generation_update();
2717 	return (error);
2718 }
2719 
2720 /**
2721  * @brief Set the devclass of a device and mark the devclass fixed.
2722  * @see device_set_devclass()
2723  */
2724 int
2725 device_set_devclass_fixed(device_t dev, const char *classname)
2726 {
2727 	int error;
2728 
2729 	if (classname == NULL)
2730 		return (EINVAL);
2731 
2732 	error = device_set_devclass(dev, classname);
2733 	if (error)
2734 		return (error);
2735 	dev->flags |= DF_FIXEDCLASS;
2736 	return (0);
2737 }
2738 
2739 /**
2740  * @brief Set the driver of a device
2741  *
2742  * @retval 0		success
2743  * @retval EBUSY	the device already has a driver attached
2744  * @retval ENOMEM	a memory allocation failure occurred
2745  */
2746 int
2747 device_set_driver(device_t dev, driver_t *driver)
2748 {
2749 	if (dev->state >= DS_ATTACHED)
2750 		return (EBUSY);
2751 
2752 	if (dev->driver == driver)
2753 		return (0);
2754 
2755 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2756 		free(dev->softc, M_BUS_SC);
2757 		dev->softc = NULL;
2758 	}
2759 	device_set_desc(dev, NULL);
2760 	kobj_delete((kobj_t) dev, NULL);
2761 	dev->driver = driver;
2762 	if (driver) {
2763 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2764 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2765 			dev->softc = malloc(driver->size, M_BUS_SC,
2766 			    M_NOWAIT | M_ZERO);
2767 			if (!dev->softc) {
2768 				kobj_delete((kobj_t) dev, NULL);
2769 				kobj_init((kobj_t) dev, &null_class);
2770 				dev->driver = NULL;
2771 				return (ENOMEM);
2772 			}
2773 		}
2774 	} else {
2775 		kobj_init((kobj_t) dev, &null_class);
2776 	}
2777 
2778 	bus_data_generation_update();
2779 	return (0);
2780 }
2781 
2782 /**
2783  * @brief Probe a device, and return this status.
2784  *
2785  * This function is the core of the device autoconfiguration
2786  * system. Its purpose is to select a suitable driver for a device and
2787  * then call that driver to initialise the hardware appropriately. The
2788  * driver is selected by calling the DEVICE_PROBE() method of a set of
2789  * candidate drivers and then choosing the driver which returned the
2790  * best value. This driver is then attached to the device using
2791  * device_attach().
2792  *
2793  * The set of suitable drivers is taken from the list of drivers in
2794  * the parent device's devclass. If the device was originally created
2795  * with a specific class name (see device_add_child()), only drivers
2796  * with that name are probed, otherwise all drivers in the devclass
2797  * are probed. If no drivers return successful probe values in the
2798  * parent devclass, the search continues in the parent of that
2799  * devclass (see devclass_get_parent()) if any.
2800  *
2801  * @param dev		the device to initialise
2802  *
2803  * @retval 0		success
2804  * @retval ENXIO	no driver was found
2805  * @retval ENOMEM	memory allocation failure
2806  * @retval non-zero	some other unix error code
2807  * @retval -1		Device already attached
2808  */
2809 int
2810 device_probe(device_t dev)
2811 {
2812 	int error;
2813 
2814 	GIANT_REQUIRED;
2815 
2816 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2817 		return (-1);
2818 
2819 	if (!(dev->flags & DF_ENABLED)) {
2820 		if (bootverbose && device_get_name(dev) != NULL) {
2821 			device_print_prettyname(dev);
2822 			printf("not probed (disabled)\n");
2823 		}
2824 		return (-1);
2825 	}
2826 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2827 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2828 		    !(dev->flags & DF_DONENOMATCH)) {
2829 			BUS_PROBE_NOMATCH(dev->parent, dev);
2830 			devnomatch(dev);
2831 			dev->flags |= DF_DONENOMATCH;
2832 		}
2833 		return (error);
2834 	}
2835 	return (0);
2836 }
2837 
2838 /**
2839  * @brief Probe a device and attach a driver if possible
2840  *
2841  * calls device_probe() and attaches if that was successful.
2842  */
2843 int
2844 device_probe_and_attach(device_t dev)
2845 {
2846 	int error;
2847 
2848 	GIANT_REQUIRED;
2849 
2850 	error = device_probe(dev);
2851 	if (error == -1)
2852 		return (0);
2853 	else if (error != 0)
2854 		return (error);
2855 
2856 	CURVNET_SET_QUIET(vnet0);
2857 	error = device_attach(dev);
2858 	CURVNET_RESTORE();
2859 	return error;
2860 }
2861 
2862 /**
2863  * @brief Attach a device driver to a device
2864  *
2865  * This function is a wrapper around the DEVICE_ATTACH() driver
2866  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2867  * device's sysctl tree, optionally prints a description of the device
2868  * and queues a notification event for user-based device management
2869  * services.
2870  *
2871  * Normally this function is only called internally from
2872  * device_probe_and_attach().
2873  *
2874  * @param dev		the device to initialise
2875  *
2876  * @retval 0		success
2877  * @retval ENXIO	no driver was found
2878  * @retval ENOMEM	memory allocation failure
2879  * @retval non-zero	some other unix error code
2880  */
2881 int
2882 device_attach(device_t dev)
2883 {
2884 	uint64_t attachtime;
2885 	int error;
2886 
2887 	if (resource_disabled(dev->driver->name, dev->unit)) {
2888 		device_disable(dev);
2889 		if (bootverbose)
2890 			 device_printf(dev, "disabled via hints entry\n");
2891 		return (ENXIO);
2892 	}
2893 
2894 	device_sysctl_init(dev);
2895 	if (!device_is_quiet(dev))
2896 		device_print_child(dev->parent, dev);
2897 	attachtime = get_cyclecount();
2898 	dev->state = DS_ATTACHING;
2899 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2900 		printf("device_attach: %s%d attach returned %d\n",
2901 		    dev->driver->name, dev->unit, error);
2902 		if (!(dev->flags & DF_FIXEDCLASS))
2903 			devclass_delete_device(dev->devclass, dev);
2904 		(void)device_set_driver(dev, NULL);
2905 		device_sysctl_fini(dev);
2906 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2907 		dev->state = DS_NOTPRESENT;
2908 		return (error);
2909 	}
2910 	attachtime = get_cyclecount() - attachtime;
2911 	/*
2912 	 * 4 bits per device is a reasonable value for desktop and server
2913 	 * hardware with good get_cyclecount() implementations, but WILL
2914 	 * need to be adjusted on other platforms.
2915 	 */
2916 #define	RANDOM_PROBE_BIT_GUESS	4
2917 	if (bootverbose)
2918 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2919 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2920 		    dev->driver->name, dev->unit);
2921 	random_harvest_direct(&attachtime, sizeof(attachtime),
2922 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2923 	device_sysctl_update(dev);
2924 	if (dev->busy)
2925 		dev->state = DS_BUSY;
2926 	else
2927 		dev->state = DS_ATTACHED;
2928 	dev->flags &= ~DF_DONENOMATCH;
2929 	devadded(dev);
2930 	return (0);
2931 }
2932 
2933 /**
2934  * @brief Detach a driver from a device
2935  *
2936  * This function is a wrapper around the DEVICE_DETACH() driver
2937  * method. If the call to DEVICE_DETACH() succeeds, it calls
2938  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2939  * notification event for user-based device management services and
2940  * cleans up the device's sysctl tree.
2941  *
2942  * @param dev		the device to un-initialise
2943  *
2944  * @retval 0		success
2945  * @retval ENXIO	no driver was found
2946  * @retval ENOMEM	memory allocation failure
2947  * @retval non-zero	some other unix error code
2948  */
2949 int
2950 device_detach(device_t dev)
2951 {
2952 	int error;
2953 
2954 	GIANT_REQUIRED;
2955 
2956 	PDEBUG(("%s", DEVICENAME(dev)));
2957 	if (dev->state == DS_BUSY)
2958 		return (EBUSY);
2959 	if (dev->state != DS_ATTACHED)
2960 		return (0);
2961 
2962 	if ((error = DEVICE_DETACH(dev)) != 0)
2963 		return (error);
2964 	devremoved(dev);
2965 	if (!device_is_quiet(dev))
2966 		device_printf(dev, "detached\n");
2967 	if (dev->parent)
2968 		BUS_CHILD_DETACHED(dev->parent, dev);
2969 
2970 	if (!(dev->flags & DF_FIXEDCLASS))
2971 		devclass_delete_device(dev->devclass, dev);
2972 
2973 	dev->state = DS_NOTPRESENT;
2974 	(void)device_set_driver(dev, NULL);
2975 	device_sysctl_fini(dev);
2976 
2977 	return (0);
2978 }
2979 
2980 /**
2981  * @brief Tells a driver to quiesce itself.
2982  *
2983  * This function is a wrapper around the DEVICE_QUIESCE() driver
2984  * method. If the call to DEVICE_QUIESCE() succeeds.
2985  *
2986  * @param dev		the device to quiesce
2987  *
2988  * @retval 0		success
2989  * @retval ENXIO	no driver was found
2990  * @retval ENOMEM	memory allocation failure
2991  * @retval non-zero	some other unix error code
2992  */
2993 int
2994 device_quiesce(device_t dev)
2995 {
2996 
2997 	PDEBUG(("%s", DEVICENAME(dev)));
2998 	if (dev->state == DS_BUSY)
2999 		return (EBUSY);
3000 	if (dev->state != DS_ATTACHED)
3001 		return (0);
3002 
3003 	return (DEVICE_QUIESCE(dev));
3004 }
3005 
3006 /**
3007  * @brief Notify a device of system shutdown
3008  *
3009  * This function calls the DEVICE_SHUTDOWN() driver method if the
3010  * device currently has an attached driver.
3011  *
3012  * @returns the value returned by DEVICE_SHUTDOWN()
3013  */
3014 int
3015 device_shutdown(device_t dev)
3016 {
3017 	if (dev->state < DS_ATTACHED)
3018 		return (0);
3019 	return (DEVICE_SHUTDOWN(dev));
3020 }
3021 
3022 /**
3023  * @brief Set the unit number of a device
3024  *
3025  * This function can be used to override the unit number used for a
3026  * device (e.g. to wire a device to a pre-configured unit number).
3027  */
3028 int
3029 device_set_unit(device_t dev, int unit)
3030 {
3031 	devclass_t dc;
3032 	int err;
3033 
3034 	dc = device_get_devclass(dev);
3035 	if (unit < dc->maxunit && dc->devices[unit])
3036 		return (EBUSY);
3037 	err = devclass_delete_device(dc, dev);
3038 	if (err)
3039 		return (err);
3040 	dev->unit = unit;
3041 	err = devclass_add_device(dc, dev);
3042 	if (err)
3043 		return (err);
3044 
3045 	bus_data_generation_update();
3046 	return (0);
3047 }
3048 
3049 /*======================================*/
3050 /*
3051  * Some useful method implementations to make life easier for bus drivers.
3052  */
3053 
3054 void
3055 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3056 {
3057 
3058 	bzero(args, sz);
3059 	args->size = sz;
3060 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3061 }
3062 
3063 /**
3064  * @brief Initialise a resource list.
3065  *
3066  * @param rl		the resource list to initialise
3067  */
3068 void
3069 resource_list_init(struct resource_list *rl)
3070 {
3071 	STAILQ_INIT(rl);
3072 }
3073 
3074 /**
3075  * @brief Reclaim memory used by a resource list.
3076  *
3077  * This function frees the memory for all resource entries on the list
3078  * (if any).
3079  *
3080  * @param rl		the resource list to free
3081  */
3082 void
3083 resource_list_free(struct resource_list *rl)
3084 {
3085 	struct resource_list_entry *rle;
3086 
3087 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3088 		if (rle->res)
3089 			panic("resource_list_free: resource entry is busy");
3090 		STAILQ_REMOVE_HEAD(rl, link);
3091 		free(rle, M_BUS);
3092 	}
3093 }
3094 
3095 /**
3096  * @brief Add a resource entry.
3097  *
3098  * This function adds a resource entry using the given @p type, @p
3099  * start, @p end and @p count values. A rid value is chosen by
3100  * searching sequentially for the first unused rid starting at zero.
3101  *
3102  * @param rl		the resource list to edit
3103  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3104  * @param start		the start address of the resource
3105  * @param end		the end address of the resource
3106  * @param count		XXX end-start+1
3107  */
3108 int
3109 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3110     rman_res_t end, rman_res_t count)
3111 {
3112 	int rid;
3113 
3114 	rid = 0;
3115 	while (resource_list_find(rl, type, rid) != NULL)
3116 		rid++;
3117 	resource_list_add(rl, type, rid, start, end, count);
3118 	return (rid);
3119 }
3120 
3121 /**
3122  * @brief Add or modify a resource entry.
3123  *
3124  * If an existing entry exists with the same type and rid, it will be
3125  * modified using the given values of @p start, @p end and @p
3126  * count. If no entry exists, a new one will be created using the
3127  * given values.  The resource list entry that matches is then returned.
3128  *
3129  * @param rl		the resource list to edit
3130  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3131  * @param rid		the resource identifier
3132  * @param start		the start address of the resource
3133  * @param end		the end address of the resource
3134  * @param count		XXX end-start+1
3135  */
3136 struct resource_list_entry *
3137 resource_list_add(struct resource_list *rl, int type, int rid,
3138     rman_res_t start, rman_res_t end, rman_res_t count)
3139 {
3140 	struct resource_list_entry *rle;
3141 
3142 	rle = resource_list_find(rl, type, rid);
3143 	if (!rle) {
3144 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3145 		    M_NOWAIT);
3146 		if (!rle)
3147 			panic("resource_list_add: can't record entry");
3148 		STAILQ_INSERT_TAIL(rl, rle, link);
3149 		rle->type = type;
3150 		rle->rid = rid;
3151 		rle->res = NULL;
3152 		rle->flags = 0;
3153 	}
3154 
3155 	if (rle->res)
3156 		panic("resource_list_add: resource entry is busy");
3157 
3158 	rle->start = start;
3159 	rle->end = end;
3160 	rle->count = count;
3161 	return (rle);
3162 }
3163 
3164 /**
3165  * @brief Determine if a resource entry is busy.
3166  *
3167  * Returns true if a resource entry is busy meaning that it has an
3168  * associated resource that is not an unallocated "reserved" resource.
3169  *
3170  * @param rl		the resource list to search
3171  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3172  * @param rid		the resource identifier
3173  *
3174  * @returns Non-zero if the entry is busy, zero otherwise.
3175  */
3176 int
3177 resource_list_busy(struct resource_list *rl, int type, int rid)
3178 {
3179 	struct resource_list_entry *rle;
3180 
3181 	rle = resource_list_find(rl, type, rid);
3182 	if (rle == NULL || rle->res == NULL)
3183 		return (0);
3184 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3185 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3186 		    ("reserved resource is active"));
3187 		return (0);
3188 	}
3189 	return (1);
3190 }
3191 
3192 /**
3193  * @brief Determine if a resource entry is reserved.
3194  *
3195  * Returns true if a resource entry is reserved meaning that it has an
3196  * associated "reserved" resource.  The resource can either be
3197  * allocated or unallocated.
3198  *
3199  * @param rl		the resource list to search
3200  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3201  * @param rid		the resource identifier
3202  *
3203  * @returns Non-zero if the entry is reserved, zero otherwise.
3204  */
3205 int
3206 resource_list_reserved(struct resource_list *rl, int type, int rid)
3207 {
3208 	struct resource_list_entry *rle;
3209 
3210 	rle = resource_list_find(rl, type, rid);
3211 	if (rle != NULL && rle->flags & RLE_RESERVED)
3212 		return (1);
3213 	return (0);
3214 }
3215 
3216 /**
3217  * @brief Find a resource entry by type and rid.
3218  *
3219  * @param rl		the resource list to search
3220  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3221  * @param rid		the resource identifier
3222  *
3223  * @returns the resource entry pointer or NULL if there is no such
3224  * entry.
3225  */
3226 struct resource_list_entry *
3227 resource_list_find(struct resource_list *rl, int type, int rid)
3228 {
3229 	struct resource_list_entry *rle;
3230 
3231 	STAILQ_FOREACH(rle, rl, link) {
3232 		if (rle->type == type && rle->rid == rid)
3233 			return (rle);
3234 	}
3235 	return (NULL);
3236 }
3237 
3238 /**
3239  * @brief Delete a resource entry.
3240  *
3241  * @param rl		the resource list to edit
3242  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3243  * @param rid		the resource identifier
3244  */
3245 void
3246 resource_list_delete(struct resource_list *rl, int type, int rid)
3247 {
3248 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3249 
3250 	if (rle) {
3251 		if (rle->res != NULL)
3252 			panic("resource_list_delete: resource has not been released");
3253 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3254 		free(rle, M_BUS);
3255 	}
3256 }
3257 
3258 /**
3259  * @brief Allocate a reserved resource
3260  *
3261  * This can be used by busses to force the allocation of resources
3262  * that are always active in the system even if they are not allocated
3263  * by a driver (e.g. PCI BARs).  This function is usually called when
3264  * adding a new child to the bus.  The resource is allocated from the
3265  * parent bus when it is reserved.  The resource list entry is marked
3266  * with RLE_RESERVED to note that it is a reserved resource.
3267  *
3268  * Subsequent attempts to allocate the resource with
3269  * resource_list_alloc() will succeed the first time and will set
3270  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3271  * resource that has been allocated is released with
3272  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3273  * the actual resource remains allocated.  The resource can be released to
3274  * the parent bus by calling resource_list_unreserve().
3275  *
3276  * @param rl		the resource list to allocate from
3277  * @param bus		the parent device of @p child
3278  * @param child		the device for which the resource is being reserved
3279  * @param type		the type of resource to allocate
3280  * @param rid		a pointer to the resource identifier
3281  * @param start		hint at the start of the resource range - pass
3282  *			@c 0 for any start address
3283  * @param end		hint at the end of the resource range - pass
3284  *			@c ~0 for any end address
3285  * @param count		hint at the size of range required - pass @c 1
3286  *			for any size
3287  * @param flags		any extra flags to control the resource
3288  *			allocation - see @c RF_XXX flags in
3289  *			<sys/rman.h> for details
3290  *
3291  * @returns		the resource which was allocated or @c NULL if no
3292  *			resource could be allocated
3293  */
3294 struct resource *
3295 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3296     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3297 {
3298 	struct resource_list_entry *rle = NULL;
3299 	int passthrough = (device_get_parent(child) != bus);
3300 	struct resource *r;
3301 
3302 	if (passthrough)
3303 		panic(
3304     "resource_list_reserve() should only be called for direct children");
3305 	if (flags & RF_ACTIVE)
3306 		panic(
3307     "resource_list_reserve() should only reserve inactive resources");
3308 
3309 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3310 	    flags);
3311 	if (r != NULL) {
3312 		rle = resource_list_find(rl, type, *rid);
3313 		rle->flags |= RLE_RESERVED;
3314 	}
3315 	return (r);
3316 }
3317 
3318 /**
3319  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3320  *
3321  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3322  * and passing the allocation up to the parent of @p bus. This assumes
3323  * that the first entry of @c device_get_ivars(child) is a struct
3324  * resource_list. This also handles 'passthrough' allocations where a
3325  * child is a remote descendant of bus by passing the allocation up to
3326  * the parent of bus.
3327  *
3328  * Typically, a bus driver would store a list of child resources
3329  * somewhere in the child device's ivars (see device_get_ivars()) and
3330  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3331  * then call resource_list_alloc() to perform the allocation.
3332  *
3333  * @param rl		the resource list to allocate from
3334  * @param bus		the parent device of @p child
3335  * @param child		the device which is requesting an allocation
3336  * @param type		the type of resource to allocate
3337  * @param rid		a pointer to the resource identifier
3338  * @param start		hint at the start of the resource range - pass
3339  *			@c 0 for any start address
3340  * @param end		hint at the end of the resource range - pass
3341  *			@c ~0 for any end address
3342  * @param count		hint at the size of range required - pass @c 1
3343  *			for any size
3344  * @param flags		any extra flags to control the resource
3345  *			allocation - see @c RF_XXX flags in
3346  *			<sys/rman.h> for details
3347  *
3348  * @returns		the resource which was allocated or @c NULL if no
3349  *			resource could be allocated
3350  */
3351 struct resource *
3352 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3353     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3354 {
3355 	struct resource_list_entry *rle = NULL;
3356 	int passthrough = (device_get_parent(child) != bus);
3357 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3358 
3359 	if (passthrough) {
3360 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3361 		    type, rid, start, end, count, flags));
3362 	}
3363 
3364 	rle = resource_list_find(rl, type, *rid);
3365 
3366 	if (!rle)
3367 		return (NULL);		/* no resource of that type/rid */
3368 
3369 	if (rle->res) {
3370 		if (rle->flags & RLE_RESERVED) {
3371 			if (rle->flags & RLE_ALLOCATED)
3372 				return (NULL);
3373 			if ((flags & RF_ACTIVE) &&
3374 			    bus_activate_resource(child, type, *rid,
3375 			    rle->res) != 0)
3376 				return (NULL);
3377 			rle->flags |= RLE_ALLOCATED;
3378 			return (rle->res);
3379 		}
3380 		device_printf(bus,
3381 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3382 		    type, device_get_nameunit(child));
3383 		return (NULL);
3384 	}
3385 
3386 	if (isdefault) {
3387 		start = rle->start;
3388 		count = ulmax(count, rle->count);
3389 		end = ulmax(rle->end, start + count - 1);
3390 	}
3391 
3392 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3393 	    type, rid, start, end, count, flags);
3394 
3395 	/*
3396 	 * Record the new range.
3397 	 */
3398 	if (rle->res) {
3399 		rle->start = rman_get_start(rle->res);
3400 		rle->end = rman_get_end(rle->res);
3401 		rle->count = count;
3402 	}
3403 
3404 	return (rle->res);
3405 }
3406 
3407 /**
3408  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3409  *
3410  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3411  * used with resource_list_alloc().
3412  *
3413  * @param rl		the resource list which was allocated from
3414  * @param bus		the parent device of @p child
3415  * @param child		the device which is requesting a release
3416  * @param type		the type of resource to release
3417  * @param rid		the resource identifier
3418  * @param res		the resource to release
3419  *
3420  * @retval 0		success
3421  * @retval non-zero	a standard unix error code indicating what
3422  *			error condition prevented the operation
3423  */
3424 int
3425 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3426     int type, int rid, struct resource *res)
3427 {
3428 	struct resource_list_entry *rle = NULL;
3429 	int passthrough = (device_get_parent(child) != bus);
3430 	int error;
3431 
3432 	if (passthrough) {
3433 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3434 		    type, rid, res));
3435 	}
3436 
3437 	rle = resource_list_find(rl, type, rid);
3438 
3439 	if (!rle)
3440 		panic("resource_list_release: can't find resource");
3441 	if (!rle->res)
3442 		panic("resource_list_release: resource entry is not busy");
3443 	if (rle->flags & RLE_RESERVED) {
3444 		if (rle->flags & RLE_ALLOCATED) {
3445 			if (rman_get_flags(res) & RF_ACTIVE) {
3446 				error = bus_deactivate_resource(child, type,
3447 				    rid, res);
3448 				if (error)
3449 					return (error);
3450 			}
3451 			rle->flags &= ~RLE_ALLOCATED;
3452 			return (0);
3453 		}
3454 		return (EINVAL);
3455 	}
3456 
3457 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3458 	    type, rid, res);
3459 	if (error)
3460 		return (error);
3461 
3462 	rle->res = NULL;
3463 	return (0);
3464 }
3465 
3466 /**
3467  * @brief Release all active resources of a given type
3468  *
3469  * Release all active resources of a specified type.  This is intended
3470  * to be used to cleanup resources leaked by a driver after detach or
3471  * a failed attach.
3472  *
3473  * @param rl		the resource list which was allocated from
3474  * @param bus		the parent device of @p child
3475  * @param child		the device whose active resources are being released
3476  * @param type		the type of resources to release
3477  *
3478  * @retval 0		success
3479  * @retval EBUSY	at least one resource was active
3480  */
3481 int
3482 resource_list_release_active(struct resource_list *rl, device_t bus,
3483     device_t child, int type)
3484 {
3485 	struct resource_list_entry *rle;
3486 	int error, retval;
3487 
3488 	retval = 0;
3489 	STAILQ_FOREACH(rle, rl, link) {
3490 		if (rle->type != type)
3491 			continue;
3492 		if (rle->res == NULL)
3493 			continue;
3494 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3495 		    RLE_RESERVED)
3496 			continue;
3497 		retval = EBUSY;
3498 		error = resource_list_release(rl, bus, child, type,
3499 		    rman_get_rid(rle->res), rle->res);
3500 		if (error != 0)
3501 			device_printf(bus,
3502 			    "Failed to release active resource: %d\n", error);
3503 	}
3504 	return (retval);
3505 }
3506 
3507 
3508 /**
3509  * @brief Fully release a reserved resource
3510  *
3511  * Fully releases a resource reserved via resource_list_reserve().
3512  *
3513  * @param rl		the resource list which was allocated from
3514  * @param bus		the parent device of @p child
3515  * @param child		the device whose reserved resource is being released
3516  * @param type		the type of resource to release
3517  * @param rid		the resource identifier
3518  * @param res		the resource to release
3519  *
3520  * @retval 0		success
3521  * @retval non-zero	a standard unix error code indicating what
3522  *			error condition prevented the operation
3523  */
3524 int
3525 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3526     int type, int rid)
3527 {
3528 	struct resource_list_entry *rle = NULL;
3529 	int passthrough = (device_get_parent(child) != bus);
3530 
3531 	if (passthrough)
3532 		panic(
3533     "resource_list_unreserve() should only be called for direct children");
3534 
3535 	rle = resource_list_find(rl, type, rid);
3536 
3537 	if (!rle)
3538 		panic("resource_list_unreserve: can't find resource");
3539 	if (!(rle->flags & RLE_RESERVED))
3540 		return (EINVAL);
3541 	if (rle->flags & RLE_ALLOCATED)
3542 		return (EBUSY);
3543 	rle->flags &= ~RLE_RESERVED;
3544 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3545 }
3546 
3547 /**
3548  * @brief Print a description of resources in a resource list
3549  *
3550  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3551  * The name is printed if at least one resource of the given type is available.
3552  * The format is used to print resource start and end.
3553  *
3554  * @param rl		the resource list to print
3555  * @param name		the name of @p type, e.g. @c "memory"
3556  * @param type		type type of resource entry to print
3557  * @param format	printf(9) format string to print resource
3558  *			start and end values
3559  *
3560  * @returns		the number of characters printed
3561  */
3562 int
3563 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3564     const char *format)
3565 {
3566 	struct resource_list_entry *rle;
3567 	int printed, retval;
3568 
3569 	printed = 0;
3570 	retval = 0;
3571 	/* Yes, this is kinda cheating */
3572 	STAILQ_FOREACH(rle, rl, link) {
3573 		if (rle->type == type) {
3574 			if (printed == 0)
3575 				retval += printf(" %s ", name);
3576 			else
3577 				retval += printf(",");
3578 			printed++;
3579 			retval += printf(format, rle->start);
3580 			if (rle->count > 1) {
3581 				retval += printf("-");
3582 				retval += printf(format, rle->start +
3583 						 rle->count - 1);
3584 			}
3585 		}
3586 	}
3587 	return (retval);
3588 }
3589 
3590 /**
3591  * @brief Releases all the resources in a list.
3592  *
3593  * @param rl		The resource list to purge.
3594  *
3595  * @returns		nothing
3596  */
3597 void
3598 resource_list_purge(struct resource_list *rl)
3599 {
3600 	struct resource_list_entry *rle;
3601 
3602 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3603 		if (rle->res)
3604 			bus_release_resource(rman_get_device(rle->res),
3605 			    rle->type, rle->rid, rle->res);
3606 		STAILQ_REMOVE_HEAD(rl, link);
3607 		free(rle, M_BUS);
3608 	}
3609 }
3610 
3611 device_t
3612 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3613 {
3614 
3615 	return (device_add_child_ordered(dev, order, name, unit));
3616 }
3617 
3618 /**
3619  * @brief Helper function for implementing DEVICE_PROBE()
3620  *
3621  * This function can be used to help implement the DEVICE_PROBE() for
3622  * a bus (i.e. a device which has other devices attached to it). It
3623  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3624  * devclass.
3625  */
3626 int
3627 bus_generic_probe(device_t dev)
3628 {
3629 	devclass_t dc = dev->devclass;
3630 	driverlink_t dl;
3631 
3632 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3633 		/*
3634 		 * If this driver's pass is too high, then ignore it.
3635 		 * For most drivers in the default pass, this will
3636 		 * never be true.  For early-pass drivers they will
3637 		 * only call the identify routines of eligible drivers
3638 		 * when this routine is called.  Drivers for later
3639 		 * passes should have their identify routines called
3640 		 * on early-pass busses during BUS_NEW_PASS().
3641 		 */
3642 		if (dl->pass > bus_current_pass)
3643 			continue;
3644 		DEVICE_IDENTIFY(dl->driver, dev);
3645 	}
3646 
3647 	return (0);
3648 }
3649 
3650 /**
3651  * @brief Helper function for implementing DEVICE_ATTACH()
3652  *
3653  * This function can be used to help implement the DEVICE_ATTACH() for
3654  * a bus. It calls device_probe_and_attach() for each of the device's
3655  * children.
3656  */
3657 int
3658 bus_generic_attach(device_t dev)
3659 {
3660 	device_t child;
3661 
3662 	TAILQ_FOREACH(child, &dev->children, link) {
3663 		device_probe_and_attach(child);
3664 	}
3665 
3666 	return (0);
3667 }
3668 
3669 /**
3670  * @brief Helper function for implementing DEVICE_DETACH()
3671  *
3672  * This function can be used to help implement the DEVICE_DETACH() for
3673  * a bus. It calls device_detach() for each of the device's
3674  * children.
3675  */
3676 int
3677 bus_generic_detach(device_t dev)
3678 {
3679 	device_t child;
3680 	int error;
3681 
3682 	if (dev->state != DS_ATTACHED)
3683 		return (EBUSY);
3684 
3685 	TAILQ_FOREACH(child, &dev->children, link) {
3686 		if ((error = device_detach(child)) != 0)
3687 			return (error);
3688 	}
3689 
3690 	return (0);
3691 }
3692 
3693 /**
3694  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3695  *
3696  * This function can be used to help implement the DEVICE_SHUTDOWN()
3697  * for a bus. It calls device_shutdown() for each of the device's
3698  * children.
3699  */
3700 int
3701 bus_generic_shutdown(device_t dev)
3702 {
3703 	device_t child;
3704 
3705 	TAILQ_FOREACH(child, &dev->children, link) {
3706 		device_shutdown(child);
3707 	}
3708 
3709 	return (0);
3710 }
3711 
3712 /**
3713  * @brief Default function for suspending a child device.
3714  *
3715  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3716  */
3717 int
3718 bus_generic_suspend_child(device_t dev, device_t child)
3719 {
3720 	int	error;
3721 
3722 	error = DEVICE_SUSPEND(child);
3723 
3724 	if (error == 0)
3725 		child->flags |= DF_SUSPENDED;
3726 
3727 	return (error);
3728 }
3729 
3730 /**
3731  * @brief Default function for resuming a child device.
3732  *
3733  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3734  */
3735 int
3736 bus_generic_resume_child(device_t dev, device_t child)
3737 {
3738 
3739 	DEVICE_RESUME(child);
3740 	child->flags &= ~DF_SUSPENDED;
3741 
3742 	return (0);
3743 }
3744 
3745 /**
3746  * @brief Helper function for implementing DEVICE_SUSPEND()
3747  *
3748  * This function can be used to help implement the DEVICE_SUSPEND()
3749  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3750  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3751  * operation is aborted and any devices which were suspended are
3752  * resumed immediately by calling their DEVICE_RESUME() methods.
3753  */
3754 int
3755 bus_generic_suspend(device_t dev)
3756 {
3757 	int		error;
3758 	device_t	child, child2;
3759 
3760 	TAILQ_FOREACH(child, &dev->children, link) {
3761 		error = BUS_SUSPEND_CHILD(dev, child);
3762 		if (error) {
3763 			for (child2 = TAILQ_FIRST(&dev->children);
3764 			     child2 && child2 != child;
3765 			     child2 = TAILQ_NEXT(child2, link))
3766 				BUS_RESUME_CHILD(dev, child2);
3767 			return (error);
3768 		}
3769 	}
3770 	return (0);
3771 }
3772 
3773 /**
3774  * @brief Helper function for implementing DEVICE_RESUME()
3775  *
3776  * This function can be used to help implement the DEVICE_RESUME() for
3777  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3778  */
3779 int
3780 bus_generic_resume(device_t dev)
3781 {
3782 	device_t	child;
3783 
3784 	TAILQ_FOREACH(child, &dev->children, link) {
3785 		BUS_RESUME_CHILD(dev, child);
3786 		/* if resume fails, there's nothing we can usefully do... */
3787 	}
3788 	return (0);
3789 }
3790 
3791 /**
3792  * @brief Helper function for implementing BUS_PRINT_CHILD().
3793  *
3794  * This function prints the first part of the ascii representation of
3795  * @p child, including its name, unit and description (if any - see
3796  * device_set_desc()).
3797  *
3798  * @returns the number of characters printed
3799  */
3800 int
3801 bus_print_child_header(device_t dev, device_t child)
3802 {
3803 	int	retval = 0;
3804 
3805 	if (device_get_desc(child)) {
3806 		retval += device_printf(child, "<%s>", device_get_desc(child));
3807 	} else {
3808 		retval += printf("%s", device_get_nameunit(child));
3809 	}
3810 
3811 	return (retval);
3812 }
3813 
3814 /**
3815  * @brief Helper function for implementing BUS_PRINT_CHILD().
3816  *
3817  * This function prints the last part of the ascii representation of
3818  * @p child, which consists of the string @c " on " followed by the
3819  * name and unit of the @p dev.
3820  *
3821  * @returns the number of characters printed
3822  */
3823 int
3824 bus_print_child_footer(device_t dev, device_t child)
3825 {
3826 	return (printf(" on %s\n", device_get_nameunit(dev)));
3827 }
3828 
3829 /**
3830  * @brief Helper function for implementing BUS_PRINT_CHILD().
3831  *
3832  * This function prints out the VM domain for the given device.
3833  *
3834  * @returns the number of characters printed
3835  */
3836 int
3837 bus_print_child_domain(device_t dev, device_t child)
3838 {
3839 	int domain;
3840 
3841 	/* No domain? Don't print anything */
3842 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3843 		return (0);
3844 
3845 	return (printf(" numa-domain %d", domain));
3846 }
3847 
3848 /**
3849  * @brief Helper function for implementing BUS_PRINT_CHILD().
3850  *
3851  * This function simply calls bus_print_child_header() followed by
3852  * bus_print_child_footer().
3853  *
3854  * @returns the number of characters printed
3855  */
3856 int
3857 bus_generic_print_child(device_t dev, device_t child)
3858 {
3859 	int	retval = 0;
3860 
3861 	retval += bus_print_child_header(dev, child);
3862 	retval += bus_print_child_domain(dev, child);
3863 	retval += bus_print_child_footer(dev, child);
3864 
3865 	return (retval);
3866 }
3867 
3868 /**
3869  * @brief Stub function for implementing BUS_READ_IVAR().
3870  *
3871  * @returns ENOENT
3872  */
3873 int
3874 bus_generic_read_ivar(device_t dev, device_t child, int index,
3875     uintptr_t * result)
3876 {
3877 	return (ENOENT);
3878 }
3879 
3880 /**
3881  * @brief Stub function for implementing BUS_WRITE_IVAR().
3882  *
3883  * @returns ENOENT
3884  */
3885 int
3886 bus_generic_write_ivar(device_t dev, device_t child, int index,
3887     uintptr_t value)
3888 {
3889 	return (ENOENT);
3890 }
3891 
3892 /**
3893  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3894  *
3895  * @returns NULL
3896  */
3897 struct resource_list *
3898 bus_generic_get_resource_list(device_t dev, device_t child)
3899 {
3900 	return (NULL);
3901 }
3902 
3903 /**
3904  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3905  *
3906  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3907  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3908  * and then calls device_probe_and_attach() for each unattached child.
3909  */
3910 void
3911 bus_generic_driver_added(device_t dev, driver_t *driver)
3912 {
3913 	device_t child;
3914 
3915 	DEVICE_IDENTIFY(driver, dev);
3916 	TAILQ_FOREACH(child, &dev->children, link) {
3917 		if (child->state == DS_NOTPRESENT ||
3918 		    (child->flags & DF_REBID))
3919 			device_probe_and_attach(child);
3920 	}
3921 }
3922 
3923 /**
3924  * @brief Helper function for implementing BUS_NEW_PASS().
3925  *
3926  * This implementing of BUS_NEW_PASS() first calls the identify
3927  * routines for any drivers that probe at the current pass.  Then it
3928  * walks the list of devices for this bus.  If a device is already
3929  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3930  * device is not already attached, it attempts to attach a driver to
3931  * it.
3932  */
3933 void
3934 bus_generic_new_pass(device_t dev)
3935 {
3936 	driverlink_t dl;
3937 	devclass_t dc;
3938 	device_t child;
3939 
3940 	dc = dev->devclass;
3941 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3942 		if (dl->pass == bus_current_pass)
3943 			DEVICE_IDENTIFY(dl->driver, dev);
3944 	}
3945 	TAILQ_FOREACH(child, &dev->children, link) {
3946 		if (child->state >= DS_ATTACHED)
3947 			BUS_NEW_PASS(child);
3948 		else if (child->state == DS_NOTPRESENT)
3949 			device_probe_and_attach(child);
3950 	}
3951 }
3952 
3953 /**
3954  * @brief Helper function for implementing BUS_SETUP_INTR().
3955  *
3956  * This simple implementation of BUS_SETUP_INTR() simply calls the
3957  * BUS_SETUP_INTR() method of the parent of @p dev.
3958  */
3959 int
3960 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3961     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3962     void **cookiep)
3963 {
3964 	/* Propagate up the bus hierarchy until someone handles it. */
3965 	if (dev->parent)
3966 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3967 		    filter, intr, arg, cookiep));
3968 	return (EINVAL);
3969 }
3970 
3971 /**
3972  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3973  *
3974  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3975  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3976  */
3977 int
3978 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3979     void *cookie)
3980 {
3981 	/* Propagate up the bus hierarchy until someone handles it. */
3982 	if (dev->parent)
3983 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3984 	return (EINVAL);
3985 }
3986 
3987 /**
3988  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3989  *
3990  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3991  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3992  */
3993 int
3994 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3995     struct resource *r, rman_res_t start, rman_res_t end)
3996 {
3997 	/* Propagate up the bus hierarchy until someone handles it. */
3998 	if (dev->parent)
3999 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4000 		    end));
4001 	return (EINVAL);
4002 }
4003 
4004 /**
4005  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4006  *
4007  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4008  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4009  */
4010 struct resource *
4011 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4012     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4013 {
4014 	/* Propagate up the bus hierarchy until someone handles it. */
4015 	if (dev->parent)
4016 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4017 		    start, end, count, flags));
4018 	return (NULL);
4019 }
4020 
4021 /**
4022  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4023  *
4024  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4025  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4026  */
4027 int
4028 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4029     struct resource *r)
4030 {
4031 	/* Propagate up the bus hierarchy until someone handles it. */
4032 	if (dev->parent)
4033 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4034 		    r));
4035 	return (EINVAL);
4036 }
4037 
4038 /**
4039  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4040  *
4041  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4042  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4043  */
4044 int
4045 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4046     struct resource *r)
4047 {
4048 	/* Propagate up the bus hierarchy until someone handles it. */
4049 	if (dev->parent)
4050 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4051 		    r));
4052 	return (EINVAL);
4053 }
4054 
4055 /**
4056  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4057  *
4058  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4059  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4060  */
4061 int
4062 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4063     int rid, struct resource *r)
4064 {
4065 	/* Propagate up the bus hierarchy until someone handles it. */
4066 	if (dev->parent)
4067 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4068 		    r));
4069 	return (EINVAL);
4070 }
4071 
4072 /**
4073  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4074  *
4075  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4076  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4077  */
4078 int
4079 bus_generic_map_resource(device_t dev, device_t child, int type,
4080     struct resource *r, struct resource_map_request *args,
4081     struct resource_map *map)
4082 {
4083 	/* Propagate up the bus hierarchy until someone handles it. */
4084 	if (dev->parent)
4085 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4086 		    map));
4087 	return (EINVAL);
4088 }
4089 
4090 /**
4091  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4092  *
4093  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4094  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4095  */
4096 int
4097 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4098     struct resource *r, struct resource_map *map)
4099 {
4100 	/* Propagate up the bus hierarchy until someone handles it. */
4101 	if (dev->parent)
4102 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4103 	return (EINVAL);
4104 }
4105 
4106 /**
4107  * @brief Helper function for implementing BUS_BIND_INTR().
4108  *
4109  * This simple implementation of BUS_BIND_INTR() simply calls the
4110  * BUS_BIND_INTR() method of the parent of @p dev.
4111  */
4112 int
4113 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4114     int cpu)
4115 {
4116 
4117 	/* Propagate up the bus hierarchy until someone handles it. */
4118 	if (dev->parent)
4119 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4120 	return (EINVAL);
4121 }
4122 
4123 /**
4124  * @brief Helper function for implementing BUS_CONFIG_INTR().
4125  *
4126  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4127  * BUS_CONFIG_INTR() method of the parent of @p dev.
4128  */
4129 int
4130 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4131     enum intr_polarity pol)
4132 {
4133 
4134 	/* Propagate up the bus hierarchy until someone handles it. */
4135 	if (dev->parent)
4136 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4137 	return (EINVAL);
4138 }
4139 
4140 /**
4141  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4142  *
4143  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4144  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4145  */
4146 int
4147 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4148     void *cookie, const char *descr)
4149 {
4150 
4151 	/* Propagate up the bus hierarchy until someone handles it. */
4152 	if (dev->parent)
4153 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4154 		    descr));
4155 	return (EINVAL);
4156 }
4157 
4158 /**
4159  * @brief Helper function for implementing BUS_GET_CPUS().
4160  *
4161  * This simple implementation of BUS_GET_CPUS() simply calls the
4162  * BUS_GET_CPUS() method of the parent of @p dev.
4163  */
4164 int
4165 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4166     size_t setsize, cpuset_t *cpuset)
4167 {
4168 
4169 	/* Propagate up the bus hierarchy until someone handles it. */
4170 	if (dev->parent != NULL)
4171 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4172 	return (EINVAL);
4173 }
4174 
4175 /**
4176  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4177  *
4178  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4179  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4180  */
4181 bus_dma_tag_t
4182 bus_generic_get_dma_tag(device_t dev, device_t child)
4183 {
4184 
4185 	/* Propagate up the bus hierarchy until someone handles it. */
4186 	if (dev->parent != NULL)
4187 		return (BUS_GET_DMA_TAG(dev->parent, child));
4188 	return (NULL);
4189 }
4190 
4191 /**
4192  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4193  *
4194  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4195  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4196  */
4197 bus_space_tag_t
4198 bus_generic_get_bus_tag(device_t dev, device_t child)
4199 {
4200 
4201 	/* Propagate up the bus hierarchy until someone handles it. */
4202 	if (dev->parent != NULL)
4203 		return (BUS_GET_BUS_TAG(dev->parent, child));
4204 	return ((bus_space_tag_t)0);
4205 }
4206 
4207 /**
4208  * @brief Helper function for implementing BUS_GET_RESOURCE().
4209  *
4210  * This implementation of BUS_GET_RESOURCE() uses the
4211  * resource_list_find() function to do most of the work. It calls
4212  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4213  * search.
4214  */
4215 int
4216 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4217     rman_res_t *startp, rman_res_t *countp)
4218 {
4219 	struct resource_list *		rl = NULL;
4220 	struct resource_list_entry *	rle = NULL;
4221 
4222 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4223 	if (!rl)
4224 		return (EINVAL);
4225 
4226 	rle = resource_list_find(rl, type, rid);
4227 	if (!rle)
4228 		return (ENOENT);
4229 
4230 	if (startp)
4231 		*startp = rle->start;
4232 	if (countp)
4233 		*countp = rle->count;
4234 
4235 	return (0);
4236 }
4237 
4238 /**
4239  * @brief Helper function for implementing BUS_SET_RESOURCE().
4240  *
4241  * This implementation of BUS_SET_RESOURCE() uses the
4242  * resource_list_add() function to do most of the work. It calls
4243  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4244  * edit.
4245  */
4246 int
4247 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4248     rman_res_t start, rman_res_t count)
4249 {
4250 	struct resource_list *		rl = NULL;
4251 
4252 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4253 	if (!rl)
4254 		return (EINVAL);
4255 
4256 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4257 
4258 	return (0);
4259 }
4260 
4261 /**
4262  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4263  *
4264  * This implementation of BUS_DELETE_RESOURCE() uses the
4265  * resource_list_delete() function to do most of the work. It calls
4266  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4267  * edit.
4268  */
4269 void
4270 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4271 {
4272 	struct resource_list *		rl = NULL;
4273 
4274 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4275 	if (!rl)
4276 		return;
4277 
4278 	resource_list_delete(rl, type, rid);
4279 
4280 	return;
4281 }
4282 
4283 /**
4284  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4285  *
4286  * This implementation of BUS_RELEASE_RESOURCE() uses the
4287  * resource_list_release() function to do most of the work. It calls
4288  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4289  */
4290 int
4291 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4292     int rid, struct resource *r)
4293 {
4294 	struct resource_list *		rl = NULL;
4295 
4296 	if (device_get_parent(child) != dev)
4297 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4298 		    type, rid, r));
4299 
4300 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4301 	if (!rl)
4302 		return (EINVAL);
4303 
4304 	return (resource_list_release(rl, dev, child, type, rid, r));
4305 }
4306 
4307 /**
4308  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4309  *
4310  * This implementation of BUS_ALLOC_RESOURCE() uses the
4311  * resource_list_alloc() function to do most of the work. It calls
4312  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4313  */
4314 struct resource *
4315 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4316     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4317 {
4318 	struct resource_list *		rl = NULL;
4319 
4320 	if (device_get_parent(child) != dev)
4321 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4322 		    type, rid, start, end, count, flags));
4323 
4324 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4325 	if (!rl)
4326 		return (NULL);
4327 
4328 	return (resource_list_alloc(rl, dev, child, type, rid,
4329 	    start, end, count, flags));
4330 }
4331 
4332 /**
4333  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4334  *
4335  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4336  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4337  */
4338 int
4339 bus_generic_child_present(device_t dev, device_t child)
4340 {
4341 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4342 }
4343 
4344 int
4345 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4346 {
4347 
4348 	if (dev->parent)
4349 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4350 
4351 	return (ENOENT);
4352 }
4353 
4354 /**
4355  * @brief Helper function for implementing BUS_RESCAN().
4356  *
4357  * This null implementation of BUS_RESCAN() always fails to indicate
4358  * the bus does not support rescanning.
4359  */
4360 int
4361 bus_null_rescan(device_t dev)
4362 {
4363 
4364 	return (ENXIO);
4365 }
4366 
4367 /*
4368  * Some convenience functions to make it easier for drivers to use the
4369  * resource-management functions.  All these really do is hide the
4370  * indirection through the parent's method table, making for slightly
4371  * less-wordy code.  In the future, it might make sense for this code
4372  * to maintain some sort of a list of resources allocated by each device.
4373  */
4374 
4375 int
4376 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4377     struct resource **res)
4378 {
4379 	int i;
4380 
4381 	for (i = 0; rs[i].type != -1; i++)
4382 		res[i] = NULL;
4383 	for (i = 0; rs[i].type != -1; i++) {
4384 		res[i] = bus_alloc_resource_any(dev,
4385 		    rs[i].type, &rs[i].rid, rs[i].flags);
4386 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4387 			bus_release_resources(dev, rs, res);
4388 			return (ENXIO);
4389 		}
4390 	}
4391 	return (0);
4392 }
4393 
4394 void
4395 bus_release_resources(device_t dev, const struct resource_spec *rs,
4396     struct resource **res)
4397 {
4398 	int i;
4399 
4400 	for (i = 0; rs[i].type != -1; i++)
4401 		if (res[i] != NULL) {
4402 			bus_release_resource(
4403 			    dev, rs[i].type, rs[i].rid, res[i]);
4404 			res[i] = NULL;
4405 		}
4406 }
4407 
4408 /**
4409  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4410  *
4411  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4412  * parent of @p dev.
4413  */
4414 struct resource *
4415 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end,
4416     rman_res_t count, u_int flags)
4417 {
4418 	if (dev->parent == NULL)
4419 		return (NULL);
4420 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4421 	    count, flags));
4422 }
4423 
4424 /**
4425  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4426  *
4427  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4428  * parent of @p dev.
4429  */
4430 int
4431 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4432     rman_res_t end)
4433 {
4434 	if (dev->parent == NULL)
4435 		return (EINVAL);
4436 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4437 }
4438 
4439 /**
4440  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4441  *
4442  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4443  * parent of @p dev.
4444  */
4445 int
4446 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4447 {
4448 	if (dev->parent == NULL)
4449 		return (EINVAL);
4450 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4451 }
4452 
4453 /**
4454  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4455  *
4456  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4457  * parent of @p dev.
4458  */
4459 int
4460 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4461 {
4462 	if (dev->parent == NULL)
4463 		return (EINVAL);
4464 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4465 }
4466 
4467 /**
4468  * @brief Wrapper function for BUS_MAP_RESOURCE().
4469  *
4470  * This function simply calls the BUS_MAP_RESOURCE() method of the
4471  * parent of @p dev.
4472  */
4473 int
4474 bus_map_resource(device_t dev, int type, struct resource *r,
4475     struct resource_map_request *args, struct resource_map *map)
4476 {
4477 	if (dev->parent == NULL)
4478 		return (EINVAL);
4479 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4480 }
4481 
4482 /**
4483  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4484  *
4485  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4486  * parent of @p dev.
4487  */
4488 int
4489 bus_unmap_resource(device_t dev, int type, struct resource *r,
4490     struct resource_map *map)
4491 {
4492 	if (dev->parent == NULL)
4493 		return (EINVAL);
4494 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4495 }
4496 
4497 /**
4498  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4499  *
4500  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4501  * parent of @p dev.
4502  */
4503 int
4504 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4505 {
4506 	if (dev->parent == NULL)
4507 		return (EINVAL);
4508 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4509 }
4510 
4511 /**
4512  * @brief Wrapper function for BUS_SETUP_INTR().
4513  *
4514  * This function simply calls the BUS_SETUP_INTR() method of the
4515  * parent of @p dev.
4516  */
4517 int
4518 bus_setup_intr(device_t dev, struct resource *r, int flags,
4519     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4520 {
4521 	int error;
4522 
4523 	if (dev->parent == NULL)
4524 		return (EINVAL);
4525 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4526 	    arg, cookiep);
4527 	if (error != 0)
4528 		return (error);
4529 	if (handler != NULL && !(flags & INTR_MPSAFE))
4530 		device_printf(dev, "[GIANT-LOCKED]\n");
4531 	return (0);
4532 }
4533 
4534 /**
4535  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4536  *
4537  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4538  * parent of @p dev.
4539  */
4540 int
4541 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4542 {
4543 	if (dev->parent == NULL)
4544 		return (EINVAL);
4545 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4546 }
4547 
4548 /**
4549  * @brief Wrapper function for BUS_BIND_INTR().
4550  *
4551  * This function simply calls the BUS_BIND_INTR() method of the
4552  * parent of @p dev.
4553  */
4554 int
4555 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4556 {
4557 	if (dev->parent == NULL)
4558 		return (EINVAL);
4559 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4560 }
4561 
4562 /**
4563  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4564  *
4565  * This function first formats the requested description into a
4566  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4567  * the parent of @p dev.
4568  */
4569 int
4570 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4571     const char *fmt, ...)
4572 {
4573 	va_list ap;
4574 	char descr[MAXCOMLEN + 1];
4575 
4576 	if (dev->parent == NULL)
4577 		return (EINVAL);
4578 	va_start(ap, fmt);
4579 	vsnprintf(descr, sizeof(descr), fmt, ap);
4580 	va_end(ap);
4581 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4582 }
4583 
4584 /**
4585  * @brief Wrapper function for BUS_SET_RESOURCE().
4586  *
4587  * This function simply calls the BUS_SET_RESOURCE() method of the
4588  * parent of @p dev.
4589  */
4590 int
4591 bus_set_resource(device_t dev, int type, int rid,
4592     rman_res_t start, rman_res_t count)
4593 {
4594 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4595 	    start, count));
4596 }
4597 
4598 /**
4599  * @brief Wrapper function for BUS_GET_RESOURCE().
4600  *
4601  * This function simply calls the BUS_GET_RESOURCE() method of the
4602  * parent of @p dev.
4603  */
4604 int
4605 bus_get_resource(device_t dev, int type, int rid,
4606     rman_res_t *startp, rman_res_t *countp)
4607 {
4608 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4609 	    startp, countp));
4610 }
4611 
4612 /**
4613  * @brief Wrapper function for BUS_GET_RESOURCE().
4614  *
4615  * This function simply calls the BUS_GET_RESOURCE() method of the
4616  * parent of @p dev and returns the start value.
4617  */
4618 rman_res_t
4619 bus_get_resource_start(device_t dev, int type, int rid)
4620 {
4621 	rman_res_t start;
4622 	rman_res_t count;
4623 	int error;
4624 
4625 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4626 	    &start, &count);
4627 	if (error)
4628 		return (0);
4629 	return (start);
4630 }
4631 
4632 /**
4633  * @brief Wrapper function for BUS_GET_RESOURCE().
4634  *
4635  * This function simply calls the BUS_GET_RESOURCE() method of the
4636  * parent of @p dev and returns the count value.
4637  */
4638 rman_res_t
4639 bus_get_resource_count(device_t dev, int type, int rid)
4640 {
4641 	rman_res_t start;
4642 	rman_res_t count;
4643 	int error;
4644 
4645 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4646 	    &start, &count);
4647 	if (error)
4648 		return (0);
4649 	return (count);
4650 }
4651 
4652 /**
4653  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4654  *
4655  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4656  * parent of @p dev.
4657  */
4658 void
4659 bus_delete_resource(device_t dev, int type, int rid)
4660 {
4661 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4662 }
4663 
4664 /**
4665  * @brief Wrapper function for BUS_CHILD_PRESENT().
4666  *
4667  * This function simply calls the BUS_CHILD_PRESENT() method of the
4668  * parent of @p dev.
4669  */
4670 int
4671 bus_child_present(device_t child)
4672 {
4673 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4674 }
4675 
4676 /**
4677  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4678  *
4679  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4680  * parent of @p dev.
4681  */
4682 int
4683 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4684 {
4685 	device_t parent;
4686 
4687 	parent = device_get_parent(child);
4688 	if (parent == NULL) {
4689 		*buf = '\0';
4690 		return (0);
4691 	}
4692 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4693 }
4694 
4695 /**
4696  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4697  *
4698  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4699  * parent of @p dev.
4700  */
4701 int
4702 bus_child_location_str(device_t child, char *buf, size_t buflen)
4703 {
4704 	device_t parent;
4705 
4706 	parent = device_get_parent(child);
4707 	if (parent == NULL) {
4708 		*buf = '\0';
4709 		return (0);
4710 	}
4711 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4712 }
4713 
4714 /**
4715  * @brief Wrapper function for BUS_GET_CPUS().
4716  *
4717  * This function simply calls the BUS_GET_CPUS() method of the
4718  * parent of @p dev.
4719  */
4720 int
4721 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4722 {
4723 	device_t parent;
4724 
4725 	parent = device_get_parent(dev);
4726 	if (parent == NULL)
4727 		return (EINVAL);
4728 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4729 }
4730 
4731 /**
4732  * @brief Wrapper function for BUS_GET_DMA_TAG().
4733  *
4734  * This function simply calls the BUS_GET_DMA_TAG() method of the
4735  * parent of @p dev.
4736  */
4737 bus_dma_tag_t
4738 bus_get_dma_tag(device_t dev)
4739 {
4740 	device_t parent;
4741 
4742 	parent = device_get_parent(dev);
4743 	if (parent == NULL)
4744 		return (NULL);
4745 	return (BUS_GET_DMA_TAG(parent, dev));
4746 }
4747 
4748 /**
4749  * @brief Wrapper function for BUS_GET_BUS_TAG().
4750  *
4751  * This function simply calls the BUS_GET_BUS_TAG() method of the
4752  * parent of @p dev.
4753  */
4754 bus_space_tag_t
4755 bus_get_bus_tag(device_t dev)
4756 {
4757 	device_t parent;
4758 
4759 	parent = device_get_parent(dev);
4760 	if (parent == NULL)
4761 		return ((bus_space_tag_t)0);
4762 	return (BUS_GET_BUS_TAG(parent, dev));
4763 }
4764 
4765 /**
4766  * @brief Wrapper function for BUS_GET_DOMAIN().
4767  *
4768  * This function simply calls the BUS_GET_DOMAIN() method of the
4769  * parent of @p dev.
4770  */
4771 int
4772 bus_get_domain(device_t dev, int *domain)
4773 {
4774 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4775 }
4776 
4777 /* Resume all devices and then notify userland that we're up again. */
4778 static int
4779 root_resume(device_t dev)
4780 {
4781 	int error;
4782 
4783 	error = bus_generic_resume(dev);
4784 	if (error == 0)
4785 		devctl_notify("kern", "power", "resume", NULL);
4786 	return (error);
4787 }
4788 
4789 static int
4790 root_print_child(device_t dev, device_t child)
4791 {
4792 	int	retval = 0;
4793 
4794 	retval += bus_print_child_header(dev, child);
4795 	retval += printf("\n");
4796 
4797 	return (retval);
4798 }
4799 
4800 static int
4801 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4802     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4803 {
4804 	/*
4805 	 * If an interrupt mapping gets to here something bad has happened.
4806 	 */
4807 	panic("root_setup_intr");
4808 }
4809 
4810 /*
4811  * If we get here, assume that the device is permanent and really is
4812  * present in the system.  Removable bus drivers are expected to intercept
4813  * this call long before it gets here.  We return -1 so that drivers that
4814  * really care can check vs -1 or some ERRNO returned higher in the food
4815  * chain.
4816  */
4817 static int
4818 root_child_present(device_t dev, device_t child)
4819 {
4820 	return (-1);
4821 }
4822 
4823 static int
4824 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4825     cpuset_t *cpuset)
4826 {
4827 
4828 	switch (op) {
4829 	case INTR_CPUS:
4830 		/* Default to returning the set of all CPUs. */
4831 		if (setsize != sizeof(cpuset_t))
4832 			return (EINVAL);
4833 		*cpuset = all_cpus;
4834 		return (0);
4835 	default:
4836 		return (EINVAL);
4837 	}
4838 }
4839 
4840 static kobj_method_t root_methods[] = {
4841 	/* Device interface */
4842 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4843 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4844 	KOBJMETHOD(device_resume,	root_resume),
4845 
4846 	/* Bus interface */
4847 	KOBJMETHOD(bus_print_child,	root_print_child),
4848 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4849 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4850 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4851 	KOBJMETHOD(bus_child_present,	root_child_present),
4852 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4853 
4854 	KOBJMETHOD_END
4855 };
4856 
4857 static driver_t root_driver = {
4858 	"root",
4859 	root_methods,
4860 	1,			/* no softc */
4861 };
4862 
4863 device_t	root_bus;
4864 devclass_t	root_devclass;
4865 
4866 static int
4867 root_bus_module_handler(module_t mod, int what, void* arg)
4868 {
4869 	switch (what) {
4870 	case MOD_LOAD:
4871 		TAILQ_INIT(&bus_data_devices);
4872 		kobj_class_compile((kobj_class_t) &root_driver);
4873 		root_bus = make_device(NULL, "root", 0);
4874 		root_bus->desc = "System root bus";
4875 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4876 		root_bus->driver = &root_driver;
4877 		root_bus->state = DS_ATTACHED;
4878 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4879 		devinit();
4880 		return (0);
4881 
4882 	case MOD_SHUTDOWN:
4883 		device_shutdown(root_bus);
4884 		return (0);
4885 	default:
4886 		return (EOPNOTSUPP);
4887 	}
4888 
4889 	return (0);
4890 }
4891 
4892 static moduledata_t root_bus_mod = {
4893 	"rootbus",
4894 	root_bus_module_handler,
4895 	NULL
4896 };
4897 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4898 
4899 /**
4900  * @brief Automatically configure devices
4901  *
4902  * This function begins the autoconfiguration process by calling
4903  * device_probe_and_attach() for each child of the @c root0 device.
4904  */
4905 void
4906 root_bus_configure(void)
4907 {
4908 
4909 	PDEBUG(("."));
4910 
4911 	/* Eventually this will be split up, but this is sufficient for now. */
4912 	bus_set_pass(BUS_PASS_DEFAULT);
4913 }
4914 
4915 /**
4916  * @brief Module handler for registering device drivers
4917  *
4918  * This module handler is used to automatically register device
4919  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4920  * devclass_add_driver() for the driver described by the
4921  * driver_module_data structure pointed to by @p arg
4922  */
4923 int
4924 driver_module_handler(module_t mod, int what, void *arg)
4925 {
4926 	struct driver_module_data *dmd;
4927 	devclass_t bus_devclass;
4928 	kobj_class_t driver;
4929 	int error, pass;
4930 
4931 	dmd = (struct driver_module_data *)arg;
4932 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4933 	error = 0;
4934 
4935 	switch (what) {
4936 	case MOD_LOAD:
4937 		if (dmd->dmd_chainevh)
4938 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4939 
4940 		pass = dmd->dmd_pass;
4941 		driver = dmd->dmd_driver;
4942 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4943 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4944 		error = devclass_add_driver(bus_devclass, driver, pass,
4945 		    dmd->dmd_devclass);
4946 		break;
4947 
4948 	case MOD_UNLOAD:
4949 		PDEBUG(("Unloading module: driver %s from bus %s",
4950 		    DRIVERNAME(dmd->dmd_driver),
4951 		    dmd->dmd_busname));
4952 		error = devclass_delete_driver(bus_devclass,
4953 		    dmd->dmd_driver);
4954 
4955 		if (!error && dmd->dmd_chainevh)
4956 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4957 		break;
4958 	case MOD_QUIESCE:
4959 		PDEBUG(("Quiesce module: driver %s from bus %s",
4960 		    DRIVERNAME(dmd->dmd_driver),
4961 		    dmd->dmd_busname));
4962 		error = devclass_quiesce_driver(bus_devclass,
4963 		    dmd->dmd_driver);
4964 
4965 		if (!error && dmd->dmd_chainevh)
4966 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4967 		break;
4968 	default:
4969 		error = EOPNOTSUPP;
4970 		break;
4971 	}
4972 
4973 	return (error);
4974 }
4975 
4976 /**
4977  * @brief Enumerate all hinted devices for this bus.
4978  *
4979  * Walks through the hints for this bus and calls the bus_hinted_child
4980  * routine for each one it fines.  It searches first for the specific
4981  * bus that's being probed for hinted children (eg isa0), and then for
4982  * generic children (eg isa).
4983  *
4984  * @param	dev	bus device to enumerate
4985  */
4986 void
4987 bus_enumerate_hinted_children(device_t bus)
4988 {
4989 	int i;
4990 	const char *dname, *busname;
4991 	int dunit;
4992 
4993 	/*
4994 	 * enumerate all devices on the specific bus
4995 	 */
4996 	busname = device_get_nameunit(bus);
4997 	i = 0;
4998 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4999 		BUS_HINTED_CHILD(bus, dname, dunit);
5000 
5001 	/*
5002 	 * and all the generic ones.
5003 	 */
5004 	busname = device_get_name(bus);
5005 	i = 0;
5006 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5007 		BUS_HINTED_CHILD(bus, dname, dunit);
5008 }
5009 
5010 #ifdef BUS_DEBUG
5011 
5012 /* the _short versions avoid iteration by not calling anything that prints
5013  * more than oneliners. I love oneliners.
5014  */
5015 
5016 static void
5017 print_device_short(device_t dev, int indent)
5018 {
5019 	if (!dev)
5020 		return;
5021 
5022 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5023 	    dev->unit, dev->desc,
5024 	    (dev->parent? "":"no "),
5025 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5026 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5027 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5028 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5029 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5030 	    (dev->flags&DF_REBID? "rebiddable,":""),
5031 	    (dev->ivars? "":"no "),
5032 	    (dev->softc? "":"no "),
5033 	    dev->busy));
5034 }
5035 
5036 static void
5037 print_device(device_t dev, int indent)
5038 {
5039 	if (!dev)
5040 		return;
5041 
5042 	print_device_short(dev, indent);
5043 
5044 	indentprintf(("Parent:\n"));
5045 	print_device_short(dev->parent, indent+1);
5046 	indentprintf(("Driver:\n"));
5047 	print_driver_short(dev->driver, indent+1);
5048 	indentprintf(("Devclass:\n"));
5049 	print_devclass_short(dev->devclass, indent+1);
5050 }
5051 
5052 void
5053 print_device_tree_short(device_t dev, int indent)
5054 /* print the device and all its children (indented) */
5055 {
5056 	device_t child;
5057 
5058 	if (!dev)
5059 		return;
5060 
5061 	print_device_short(dev, indent);
5062 
5063 	TAILQ_FOREACH(child, &dev->children, link) {
5064 		print_device_tree_short(child, indent+1);
5065 	}
5066 }
5067 
5068 void
5069 print_device_tree(device_t dev, int indent)
5070 /* print the device and all its children (indented) */
5071 {
5072 	device_t child;
5073 
5074 	if (!dev)
5075 		return;
5076 
5077 	print_device(dev, indent);
5078 
5079 	TAILQ_FOREACH(child, &dev->children, link) {
5080 		print_device_tree(child, indent+1);
5081 	}
5082 }
5083 
5084 static void
5085 print_driver_short(driver_t *driver, int indent)
5086 {
5087 	if (!driver)
5088 		return;
5089 
5090 	indentprintf(("driver %s: softc size = %zd\n",
5091 	    driver->name, driver->size));
5092 }
5093 
5094 static void
5095 print_driver(driver_t *driver, int indent)
5096 {
5097 	if (!driver)
5098 		return;
5099 
5100 	print_driver_short(driver, indent);
5101 }
5102 
5103 static void
5104 print_driver_list(driver_list_t drivers, int indent)
5105 {
5106 	driverlink_t driver;
5107 
5108 	TAILQ_FOREACH(driver, &drivers, link) {
5109 		print_driver(driver->driver, indent);
5110 	}
5111 }
5112 
5113 static void
5114 print_devclass_short(devclass_t dc, int indent)
5115 {
5116 	if ( !dc )
5117 		return;
5118 
5119 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5120 }
5121 
5122 static void
5123 print_devclass(devclass_t dc, int indent)
5124 {
5125 	int i;
5126 
5127 	if ( !dc )
5128 		return;
5129 
5130 	print_devclass_short(dc, indent);
5131 	indentprintf(("Drivers:\n"));
5132 	print_driver_list(dc->drivers, indent+1);
5133 
5134 	indentprintf(("Devices:\n"));
5135 	for (i = 0; i < dc->maxunit; i++)
5136 		if (dc->devices[i])
5137 			print_device(dc->devices[i], indent+1);
5138 }
5139 
5140 void
5141 print_devclass_list_short(void)
5142 {
5143 	devclass_t dc;
5144 
5145 	printf("Short listing of devclasses, drivers & devices:\n");
5146 	TAILQ_FOREACH(dc, &devclasses, link) {
5147 		print_devclass_short(dc, 0);
5148 	}
5149 }
5150 
5151 void
5152 print_devclass_list(void)
5153 {
5154 	devclass_t dc;
5155 
5156 	printf("Full listing of devclasses, drivers & devices:\n");
5157 	TAILQ_FOREACH(dc, &devclasses, link) {
5158 		print_devclass(dc, 0);
5159 	}
5160 }
5161 
5162 #endif
5163 
5164 /*
5165  * User-space access to the device tree.
5166  *
5167  * We implement a small set of nodes:
5168  *
5169  * hw.bus			Single integer read method to obtain the
5170  *				current generation count.
5171  * hw.bus.devices		Reads the entire device tree in flat space.
5172  * hw.bus.rman			Resource manager interface
5173  *
5174  * We might like to add the ability to scan devclasses and/or drivers to
5175  * determine what else is currently loaded/available.
5176  */
5177 
5178 static int
5179 sysctl_bus(SYSCTL_HANDLER_ARGS)
5180 {
5181 	struct u_businfo	ubus;
5182 
5183 	ubus.ub_version = BUS_USER_VERSION;
5184 	ubus.ub_generation = bus_data_generation;
5185 
5186 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5187 }
5188 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5189     "bus-related data");
5190 
5191 static int
5192 sysctl_devices(SYSCTL_HANDLER_ARGS)
5193 {
5194 	int			*name = (int *)arg1;
5195 	u_int			namelen = arg2;
5196 	int			index;
5197 	struct device		*dev;
5198 	struct u_device		udev;	/* XXX this is a bit big */
5199 	int			error;
5200 
5201 	if (namelen != 2)
5202 		return (EINVAL);
5203 
5204 	if (bus_data_generation_check(name[0]))
5205 		return (EINVAL);
5206 
5207 	index = name[1];
5208 
5209 	/*
5210 	 * Scan the list of devices, looking for the requested index.
5211 	 */
5212 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5213 		if (index-- == 0)
5214 			break;
5215 	}
5216 	if (dev == NULL)
5217 		return (ENOENT);
5218 
5219 	/*
5220 	 * Populate the return array.
5221 	 */
5222 	bzero(&udev, sizeof(udev));
5223 	udev.dv_handle = (uintptr_t)dev;
5224 	udev.dv_parent = (uintptr_t)dev->parent;
5225 	if (dev->nameunit != NULL)
5226 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5227 	if (dev->desc != NULL)
5228 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5229 	if (dev->driver != NULL && dev->driver->name != NULL)
5230 		strlcpy(udev.dv_drivername, dev->driver->name,
5231 		    sizeof(udev.dv_drivername));
5232 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5233 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5234 	udev.dv_devflags = dev->devflags;
5235 	udev.dv_flags = dev->flags;
5236 	udev.dv_state = dev->state;
5237 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5238 	return (error);
5239 }
5240 
5241 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5242     "system device tree");
5243 
5244 int
5245 bus_data_generation_check(int generation)
5246 {
5247 	if (generation != bus_data_generation)
5248 		return (1);
5249 
5250 	/* XXX generate optimised lists here? */
5251 	return (0);
5252 }
5253 
5254 void
5255 bus_data_generation_update(void)
5256 {
5257 	bus_data_generation++;
5258 }
5259 
5260 int
5261 bus_free_resource(device_t dev, int type, struct resource *r)
5262 {
5263 	if (r == NULL)
5264 		return (0);
5265 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5266 }
5267 
5268 device_t
5269 device_lookup_by_name(const char *name)
5270 {
5271 	device_t dev;
5272 
5273 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5274 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5275 			return (dev);
5276 	}
5277 	return (NULL);
5278 }
5279 
5280 /*
5281  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5282  * implicit semantics on open, so it could not be reused for this.
5283  * Another option would be to call this /dev/bus?
5284  */
5285 static int
5286 find_device(struct devreq *req, device_t *devp)
5287 {
5288 	device_t dev;
5289 
5290 	/*
5291 	 * First, ensure that the name is nul terminated.
5292 	 */
5293 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5294 		return (EINVAL);
5295 
5296 	/*
5297 	 * Second, try to find an attached device whose name matches
5298 	 * 'name'.
5299 	 */
5300 	dev = device_lookup_by_name(req->dr_name);
5301 	if (dev != NULL) {
5302 		*devp = dev;
5303 		return (0);
5304 	}
5305 
5306 	/* Finally, give device enumerators a chance. */
5307 	dev = NULL;
5308 	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5309 	if (dev == NULL)
5310 		return (ENOENT);
5311 	*devp = dev;
5312 	return (0);
5313 }
5314 
5315 static bool
5316 driver_exists(device_t bus, const char *driver)
5317 {
5318 	devclass_t dc;
5319 
5320 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5321 		if (devclass_find_driver_internal(dc, driver) != NULL)
5322 			return (true);
5323 	}
5324 	return (false);
5325 }
5326 
5327 static int
5328 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5329     struct thread *td)
5330 {
5331 	struct devreq *req;
5332 	device_t dev;
5333 	int error, old;
5334 
5335 	/* Locate the device to control. */
5336 	mtx_lock(&Giant);
5337 	req = (struct devreq *)data;
5338 	switch (cmd) {
5339 	case DEV_ATTACH:
5340 	case DEV_DETACH:
5341 	case DEV_ENABLE:
5342 	case DEV_DISABLE:
5343 	case DEV_SUSPEND:
5344 	case DEV_RESUME:
5345 	case DEV_SET_DRIVER:
5346 	case DEV_RESCAN:
5347 	case DEV_DELETE:
5348 		error = priv_check(td, PRIV_DRIVER);
5349 		if (error == 0)
5350 			error = find_device(req, &dev);
5351 		break;
5352 	default:
5353 		error = ENOTTY;
5354 		break;
5355 	}
5356 	if (error) {
5357 		mtx_unlock(&Giant);
5358 		return (error);
5359 	}
5360 
5361 	/* Perform the requested operation. */
5362 	switch (cmd) {
5363 	case DEV_ATTACH:
5364 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5365 			error = EBUSY;
5366 		else if (!device_is_enabled(dev))
5367 			error = ENXIO;
5368 		else
5369 			error = device_probe_and_attach(dev);
5370 		break;
5371 	case DEV_DETACH:
5372 		if (!device_is_attached(dev)) {
5373 			error = ENXIO;
5374 			break;
5375 		}
5376 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5377 			error = device_quiesce(dev);
5378 			if (error)
5379 				break;
5380 		}
5381 		error = device_detach(dev);
5382 		break;
5383 	case DEV_ENABLE:
5384 		if (device_is_enabled(dev)) {
5385 			error = EBUSY;
5386 			break;
5387 		}
5388 
5389 		/*
5390 		 * If the device has been probed but not attached (e.g.
5391 		 * when it has been disabled by a loader hint), just
5392 		 * attach the device rather than doing a full probe.
5393 		 */
5394 		device_enable(dev);
5395 		if (device_is_alive(dev)) {
5396 			/*
5397 			 * If the device was disabled via a hint, clear
5398 			 * the hint.
5399 			 */
5400 			if (resource_disabled(dev->driver->name, dev->unit))
5401 				resource_unset_value(dev->driver->name,
5402 				    dev->unit, "disabled");
5403 			error = device_attach(dev);
5404 		} else
5405 			error = device_probe_and_attach(dev);
5406 		break;
5407 	case DEV_DISABLE:
5408 		if (!device_is_enabled(dev)) {
5409 			error = ENXIO;
5410 			break;
5411 		}
5412 
5413 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5414 			error = device_quiesce(dev);
5415 			if (error)
5416 				break;
5417 		}
5418 
5419 		/*
5420 		 * Force DF_FIXEDCLASS on around detach to preserve
5421 		 * the existing name.
5422 		 */
5423 		old = dev->flags;
5424 		dev->flags |= DF_FIXEDCLASS;
5425 		error = device_detach(dev);
5426 		if (!(old & DF_FIXEDCLASS))
5427 			dev->flags &= ~DF_FIXEDCLASS;
5428 		if (error == 0)
5429 			device_disable(dev);
5430 		break;
5431 	case DEV_SUSPEND:
5432 		if (device_is_suspended(dev)) {
5433 			error = EBUSY;
5434 			break;
5435 		}
5436 		if (device_get_parent(dev) == NULL) {
5437 			error = EINVAL;
5438 			break;
5439 		}
5440 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5441 		break;
5442 	case DEV_RESUME:
5443 		if (!device_is_suspended(dev)) {
5444 			error = EINVAL;
5445 			break;
5446 		}
5447 		if (device_get_parent(dev) == NULL) {
5448 			error = EINVAL;
5449 			break;
5450 		}
5451 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5452 		break;
5453 	case DEV_SET_DRIVER: {
5454 		devclass_t dc;
5455 		char driver[128];
5456 
5457 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5458 		if (error)
5459 			break;
5460 		if (driver[0] == '\0') {
5461 			error = EINVAL;
5462 			break;
5463 		}
5464 		if (dev->devclass != NULL &&
5465 		    strcmp(driver, dev->devclass->name) == 0)
5466 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5467 			break;
5468 
5469 		/*
5470 		 * Scan drivers for this device's bus looking for at
5471 		 * least one matching driver.
5472 		 */
5473 		if (dev->parent == NULL) {
5474 			error = EINVAL;
5475 			break;
5476 		}
5477 		if (!driver_exists(dev->parent, driver)) {
5478 			error = ENOENT;
5479 			break;
5480 		}
5481 		dc = devclass_create(driver);
5482 		if (dc == NULL) {
5483 			error = ENOMEM;
5484 			break;
5485 		}
5486 
5487 		/* Detach device if necessary. */
5488 		if (device_is_attached(dev)) {
5489 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5490 				error = device_detach(dev);
5491 			else
5492 				error = EBUSY;
5493 			if (error)
5494 				break;
5495 		}
5496 
5497 		/* Clear any previously-fixed device class and unit. */
5498 		if (dev->flags & DF_FIXEDCLASS)
5499 			devclass_delete_device(dev->devclass, dev);
5500 		dev->flags |= DF_WILDCARD;
5501 		dev->unit = -1;
5502 
5503 		/* Force the new device class. */
5504 		error = devclass_add_device(dc, dev);
5505 		if (error)
5506 			break;
5507 		dev->flags |= DF_FIXEDCLASS;
5508 		error = device_probe_and_attach(dev);
5509 		break;
5510 	}
5511 	case DEV_RESCAN:
5512 		if (!device_is_attached(dev)) {
5513 			error = ENXIO;
5514 			break;
5515 		}
5516 		error = BUS_RESCAN(dev);
5517 		break;
5518 	case DEV_DELETE: {
5519 		device_t parent;
5520 
5521 		parent = device_get_parent(dev);
5522 		if (parent == NULL) {
5523 			error = EINVAL;
5524 			break;
5525 		}
5526 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5527 			if (bus_child_present(dev) != 0) {
5528 				error = EBUSY;
5529 				break;
5530 			}
5531 		}
5532 
5533 		error = device_delete_child(parent, dev);
5534 		break;
5535 	}
5536 	}
5537 	mtx_unlock(&Giant);
5538 	return (error);
5539 }
5540 
5541 static struct cdevsw devctl2_cdevsw = {
5542 	.d_version =	D_VERSION,
5543 	.d_ioctl =	devctl2_ioctl,
5544 	.d_name =	"devctl2",
5545 };
5546 
5547 static void
5548 devctl2_init(void)
5549 {
5550 
5551 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5552 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5553 }
5554