xref: /freebsd/sys/kern/subr_bus.c (revision eaa797943eeac5614edfdc8f6309f332343c3dd2)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/condvar.h>
46 #include <sys/queue.h>
47 #include <machine/bus.h>
48 #include <sys/random.h>
49 #include <sys/rman.h>
50 #include <sys/selinfo.h>
51 #include <sys/signalvar.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/uio.h>
56 #include <sys/bus.h>
57 #include <sys/interrupt.h>
58 #include <sys/cpuset.h>
59 
60 #include <net/vnet.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64 
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67 
68 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70 
71 /*
72  * Used to attach drivers to devclasses.
73  */
74 typedef struct driverlink *driverlink_t;
75 struct driverlink {
76 	kobj_class_t	driver;
77 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78 	int		pass;
79 	TAILQ_ENTRY(driverlink) passlink;
80 };
81 
82 /*
83  * Forward declarations
84  */
85 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87 typedef TAILQ_HEAD(device_list, device) device_list_t;
88 
89 struct devclass {
90 	TAILQ_ENTRY(devclass) link;
91 	devclass_t	parent;		/* parent in devclass hierarchy */
92 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93 	char		*name;
94 	device_t	*devices;	/* array of devices indexed by unit */
95 	int		maxunit;	/* size of devices array */
96 	int		flags;
97 #define DC_HAS_CHILDREN		1
98 
99 	struct sysctl_ctx_list sysctl_ctx;
100 	struct sysctl_oid *sysctl_tree;
101 };
102 
103 /**
104  * @brief Implementation of device.
105  */
106 struct device {
107 	/*
108 	 * A device is a kernel object. The first field must be the
109 	 * current ops table for the object.
110 	 */
111 	KOBJ_FIELDS;
112 
113 	/*
114 	 * Device hierarchy.
115 	 */
116 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118 	device_t	parent;		/**< parent of this device  */
119 	device_list_t	children;	/**< list of child devices */
120 
121 	/*
122 	 * Details of this device.
123 	 */
124 	driver_t	*driver;	/**< current driver */
125 	devclass_t	devclass;	/**< current device class */
126 	int		unit;		/**< current unit number */
127 	char*		nameunit;	/**< name+unit e.g. foodev0 */
128 	char*		desc;		/**< driver specific description */
129 	int		busy;		/**< count of calls to device_busy() */
130 	device_state_t	state;		/**< current device state  */
131 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132 	u_int		flags;		/**< internal device flags  */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 static void devctl2_init(void);
145 
146 #ifdef BUS_DEBUG
147 
148 static int bus_debug = 1;
149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150     "Bus debug level");
151 
152 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154 #define DRIVERNAME(d)	((d)? d->name : "no driver")
155 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
156 
157 /**
158  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159  * prevent syslog from deleting initial spaces
160  */
161 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162 
163 static void print_device_short(device_t dev, int indent);
164 static void print_device(device_t dev, int indent);
165 void print_device_tree_short(device_t dev, int indent);
166 void print_device_tree(device_t dev, int indent);
167 static void print_driver_short(driver_t *driver, int indent);
168 static void print_driver(driver_t *driver, int indent);
169 static void print_driver_list(driver_list_t drivers, int indent);
170 static void print_devclass_short(devclass_t dc, int indent);
171 static void print_devclass(devclass_t dc, int indent);
172 void print_devclass_list_short(void);
173 void print_devclass_list(void);
174 
175 #else
176 /* Make the compiler ignore the function calls */
177 #define PDEBUG(a)			/* nop */
178 #define DEVICENAME(d)			/* nop */
179 #define DRIVERNAME(d)			/* nop */
180 #define DEVCLANAME(d)			/* nop */
181 
182 #define print_device_short(d,i)		/* nop */
183 #define print_device(d,i)		/* nop */
184 #define print_device_tree_short(d,i)	/* nop */
185 #define print_device_tree(d,i)		/* nop */
186 #define print_driver_short(d,i)		/* nop */
187 #define print_driver(d,i)		/* nop */
188 #define print_driver_list(d,i)		/* nop */
189 #define print_devclass_short(d,i)	/* nop */
190 #define print_devclass(d,i)		/* nop */
191 #define print_devclass_list_short()	/* nop */
192 #define print_devclass_list()		/* nop */
193 #endif
194 
195 /*
196  * dev sysctl tree
197  */
198 
199 enum {
200 	DEVCLASS_SYSCTL_PARENT,
201 };
202 
203 static int
204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205 {
206 	devclass_t dc = (devclass_t)arg1;
207 	const char *value;
208 
209 	switch (arg2) {
210 	case DEVCLASS_SYSCTL_PARENT:
211 		value = dc->parent ? dc->parent->name : "";
212 		break;
213 	default:
214 		return (EINVAL);
215 	}
216 	return (SYSCTL_OUT_STR(req, value));
217 }
218 
219 static void
220 devclass_sysctl_init(devclass_t dc)
221 {
222 
223 	if (dc->sysctl_tree != NULL)
224 		return;
225 	sysctl_ctx_init(&dc->sysctl_ctx);
226 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228 	    CTLFLAG_RD, NULL, "");
229 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232 	    "parent class");
233 }
234 
235 enum {
236 	DEVICE_SYSCTL_DESC,
237 	DEVICE_SYSCTL_DRIVER,
238 	DEVICE_SYSCTL_LOCATION,
239 	DEVICE_SYSCTL_PNPINFO,
240 	DEVICE_SYSCTL_PARENT,
241 };
242 
243 static int
244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245 {
246 	device_t dev = (device_t)arg1;
247 	const char *value;
248 	char *buf;
249 	int error;
250 
251 	buf = NULL;
252 	switch (arg2) {
253 	case DEVICE_SYSCTL_DESC:
254 		value = dev->desc ? dev->desc : "";
255 		break;
256 	case DEVICE_SYSCTL_DRIVER:
257 		value = dev->driver ? dev->driver->name : "";
258 		break;
259 	case DEVICE_SYSCTL_LOCATION:
260 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261 		bus_child_location_str(dev, buf, 1024);
262 		break;
263 	case DEVICE_SYSCTL_PNPINFO:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_pnpinfo_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PARENT:
268 		value = dev->parent ? dev->parent->nameunit : "";
269 		break;
270 	default:
271 		return (EINVAL);
272 	}
273 	error = SYSCTL_OUT_STR(req, value);
274 	if (buf != NULL)
275 		free(buf, M_BUS);
276 	return (error);
277 }
278 
279 static void
280 device_sysctl_init(device_t dev)
281 {
282 	devclass_t dc = dev->devclass;
283 	int domain;
284 
285 	if (dev->sysctl_tree != NULL)
286 		return;
287 	devclass_sysctl_init(dc);
288 	sysctl_ctx_init(&dev->sysctl_ctx);
289 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291 	    dev->nameunit + strlen(dc->name),
292 	    CTLFLAG_RD, NULL, "");
293 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296 	    "device description");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300 	    "device driver name");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304 	    "device location relative to parent");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308 	    "device identification");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312 	    "parent device");
313 	if (bus_get_domain(dev, &domain) == 0)
314 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317 }
318 
319 static void
320 device_sysctl_update(device_t dev)
321 {
322 	devclass_t dc = dev->devclass;
323 
324 	if (dev->sysctl_tree == NULL)
325 		return;
326 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327 }
328 
329 static void
330 device_sysctl_fini(device_t dev)
331 {
332 	if (dev->sysctl_tree == NULL)
333 		return;
334 	sysctl_ctx_free(&dev->sysctl_ctx);
335 	dev->sysctl_tree = NULL;
336 }
337 
338 /*
339  * /dev/devctl implementation
340  */
341 
342 /*
343  * This design allows only one reader for /dev/devctl.  This is not desirable
344  * in the long run, but will get a lot of hair out of this implementation.
345  * Maybe we should make this device a clonable device.
346  *
347  * Also note: we specifically do not attach a device to the device_t tree
348  * to avoid potential chicken and egg problems.  One could argue that all
349  * of this belongs to the root node.  One could also further argue that the
350  * sysctl interface that we have not might more properly be an ioctl
351  * interface, but at this stage of the game, I'm not inclined to rock that
352  * boat.
353  *
354  * I'm also not sure that the SIGIO support is done correctly or not, as
355  * I copied it from a driver that had SIGIO support that likely hasn't been
356  * tested since 3.4 or 2.2.8!
357  */
358 
359 /* Deprecated way to adjust queue length */
360 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363     "devctl disable -- deprecated");
364 
365 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
366 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370 
371 static d_open_t		devopen;
372 static d_close_t	devclose;
373 static d_read_t		devread;
374 static d_ioctl_t	devioctl;
375 static d_poll_t		devpoll;
376 static d_kqfilter_t	devkqfilter;
377 
378 static struct cdevsw dev_cdevsw = {
379 	.d_version =	D_VERSION,
380 	.d_open =	devopen,
381 	.d_close =	devclose,
382 	.d_read =	devread,
383 	.d_ioctl =	devioctl,
384 	.d_poll =	devpoll,
385 	.d_kqfilter =	devkqfilter,
386 	.d_name =	"devctl",
387 };
388 
389 struct dev_event_info
390 {
391 	char *dei_data;
392 	TAILQ_ENTRY(dev_event_info) dei_link;
393 };
394 
395 TAILQ_HEAD(devq, dev_event_info);
396 
397 static struct dev_softc
398 {
399 	int	inuse;
400 	int	nonblock;
401 	int	queued;
402 	int	async;
403 	struct mtx mtx;
404 	struct cv cv;
405 	struct selinfo sel;
406 	struct devq devq;
407 	struct sigio *sigio;
408 } devsoftc;
409 
410 static void	filt_devctl_detach(struct knote *kn);
411 static int	filt_devctl_read(struct knote *kn, long hint);
412 
413 struct filterops devctl_rfiltops = {
414 	.f_isfd = 1,
415 	.f_detach = filt_devctl_detach,
416 	.f_event = filt_devctl_read,
417 };
418 
419 static struct cdev *devctl_dev;
420 
421 static void
422 devinit(void)
423 {
424 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427 	cv_init(&devsoftc.cv, "dev cv");
428 	TAILQ_INIT(&devsoftc.devq);
429 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430 	devctl2_init();
431 }
432 
433 static int
434 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435 {
436 
437 	mtx_lock(&devsoftc.mtx);
438 	if (devsoftc.inuse) {
439 		mtx_unlock(&devsoftc.mtx);
440 		return (EBUSY);
441 	}
442 	/* move to init */
443 	devsoftc.inuse = 1;
444 	mtx_unlock(&devsoftc.mtx);
445 	return (0);
446 }
447 
448 static int
449 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450 {
451 
452 	mtx_lock(&devsoftc.mtx);
453 	devsoftc.inuse = 0;
454 	devsoftc.nonblock = 0;
455 	devsoftc.async = 0;
456 	cv_broadcast(&devsoftc.cv);
457 	funsetown(&devsoftc.sigio);
458 	mtx_unlock(&devsoftc.mtx);
459 	return (0);
460 }
461 
462 /*
463  * The read channel for this device is used to report changes to
464  * userland in realtime.  We are required to free the data as well as
465  * the n1 object because we allocate them separately.  Also note that
466  * we return one record at a time.  If you try to read this device a
467  * character at a time, you will lose the rest of the data.  Listening
468  * programs are expected to cope.
469  */
470 static int
471 devread(struct cdev *dev, struct uio *uio, int ioflag)
472 {
473 	struct dev_event_info *n1;
474 	int rv;
475 
476 	mtx_lock(&devsoftc.mtx);
477 	while (TAILQ_EMPTY(&devsoftc.devq)) {
478 		if (devsoftc.nonblock) {
479 			mtx_unlock(&devsoftc.mtx);
480 			return (EAGAIN);
481 		}
482 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483 		if (rv) {
484 			/*
485 			 * Need to translate ERESTART to EINTR here? -- jake
486 			 */
487 			mtx_unlock(&devsoftc.mtx);
488 			return (rv);
489 		}
490 	}
491 	n1 = TAILQ_FIRST(&devsoftc.devq);
492 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493 	devsoftc.queued--;
494 	mtx_unlock(&devsoftc.mtx);
495 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496 	free(n1->dei_data, M_BUS);
497 	free(n1, M_BUS);
498 	return (rv);
499 }
500 
501 static	int
502 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503 {
504 	switch (cmd) {
505 
506 	case FIONBIO:
507 		if (*(int*)data)
508 			devsoftc.nonblock = 1;
509 		else
510 			devsoftc.nonblock = 0;
511 		return (0);
512 	case FIOASYNC:
513 		if (*(int*)data)
514 			devsoftc.async = 1;
515 		else
516 			devsoftc.async = 0;
517 		return (0);
518 	case FIOSETOWN:
519 		return fsetown(*(int *)data, &devsoftc.sigio);
520 	case FIOGETOWN:
521 		*(int *)data = fgetown(&devsoftc.sigio);
522 		return (0);
523 
524 		/* (un)Support for other fcntl() calls. */
525 	case FIOCLEX:
526 	case FIONCLEX:
527 	case FIONREAD:
528 	default:
529 		break;
530 	}
531 	return (ENOTTY);
532 }
533 
534 static	int
535 devpoll(struct cdev *dev, int events, struct thread *td)
536 {
537 	int	revents = 0;
538 
539 	mtx_lock(&devsoftc.mtx);
540 	if (events & (POLLIN | POLLRDNORM)) {
541 		if (!TAILQ_EMPTY(&devsoftc.devq))
542 			revents = events & (POLLIN | POLLRDNORM);
543 		else
544 			selrecord(td, &devsoftc.sel);
545 	}
546 	mtx_unlock(&devsoftc.mtx);
547 
548 	return (revents);
549 }
550 
551 static int
552 devkqfilter(struct cdev *dev, struct knote *kn)
553 {
554 	int error;
555 
556 	if (kn->kn_filter == EVFILT_READ) {
557 		kn->kn_fop = &devctl_rfiltops;
558 		knlist_add(&devsoftc.sel.si_note, kn, 0);
559 		error = 0;
560 	} else
561 		error = EINVAL;
562 	return (error);
563 }
564 
565 static void
566 filt_devctl_detach(struct knote *kn)
567 {
568 
569 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570 }
571 
572 static int
573 filt_devctl_read(struct knote *kn, long hint)
574 {
575 	kn->kn_data = devsoftc.queued;
576 	return (kn->kn_data != 0);
577 }
578 
579 /**
580  * @brief Return whether the userland process is running
581  */
582 boolean_t
583 devctl_process_running(void)
584 {
585 	return (devsoftc.inuse == 1);
586 }
587 
588 /**
589  * @brief Queue data to be read from the devctl device
590  *
591  * Generic interface to queue data to the devctl device.  It is
592  * assumed that @p data is properly formatted.  It is further assumed
593  * that @p data is allocated using the M_BUS malloc type.
594  */
595 void
596 devctl_queue_data_f(char *data, int flags)
597 {
598 	struct dev_event_info *n1 = NULL, *n2 = NULL;
599 
600 	if (strlen(data) == 0)
601 		goto out;
602 	if (devctl_queue_length == 0)
603 		goto out;
604 	n1 = malloc(sizeof(*n1), M_BUS, flags);
605 	if (n1 == NULL)
606 		goto out;
607 	n1->dei_data = data;
608 	mtx_lock(&devsoftc.mtx);
609 	if (devctl_queue_length == 0) {
610 		mtx_unlock(&devsoftc.mtx);
611 		free(n1->dei_data, M_BUS);
612 		free(n1, M_BUS);
613 		return;
614 	}
615 	/* Leave at least one spot in the queue... */
616 	while (devsoftc.queued > devctl_queue_length - 1) {
617 		n2 = TAILQ_FIRST(&devsoftc.devq);
618 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619 		free(n2->dei_data, M_BUS);
620 		free(n2, M_BUS);
621 		devsoftc.queued--;
622 	}
623 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624 	devsoftc.queued++;
625 	cv_broadcast(&devsoftc.cv);
626 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627 	mtx_unlock(&devsoftc.mtx);
628 	selwakeup(&devsoftc.sel);
629 	if (devsoftc.async && devsoftc.sigio != NULL)
630 		pgsigio(&devsoftc.sigio, SIGIO, 0);
631 	return;
632 out:
633 	/*
634 	 * We have to free data on all error paths since the caller
635 	 * assumes it will be free'd when this item is dequeued.
636 	 */
637 	free(data, M_BUS);
638 	return;
639 }
640 
641 void
642 devctl_queue_data(char *data)
643 {
644 
645 	devctl_queue_data_f(data, M_NOWAIT);
646 }
647 
648 /**
649  * @brief Send a 'notification' to userland, using standard ways
650  */
651 void
652 devctl_notify_f(const char *system, const char *subsystem, const char *type,
653     const char *data, int flags)
654 {
655 	int len = 0;
656 	char *msg;
657 
658 	if (system == NULL)
659 		return;		/* BOGUS!  Must specify system. */
660 	if (subsystem == NULL)
661 		return;		/* BOGUS!  Must specify subsystem. */
662 	if (type == NULL)
663 		return;		/* BOGUS!  Must specify type. */
664 	len += strlen(" system=") + strlen(system);
665 	len += strlen(" subsystem=") + strlen(subsystem);
666 	len += strlen(" type=") + strlen(type);
667 	/* add in the data message plus newline. */
668 	if (data != NULL)
669 		len += strlen(data);
670 	len += 3;	/* '!', '\n', and NUL */
671 	msg = malloc(len, M_BUS, flags);
672 	if (msg == NULL)
673 		return;		/* Drop it on the floor */
674 	if (data != NULL)
675 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676 		    system, subsystem, type, data);
677 	else
678 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679 		    system, subsystem, type);
680 	devctl_queue_data_f(msg, flags);
681 }
682 
683 void
684 devctl_notify(const char *system, const char *subsystem, const char *type,
685     const char *data)
686 {
687 
688 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689 }
690 
691 /*
692  * Common routine that tries to make sending messages as easy as possible.
693  * We allocate memory for the data, copy strings into that, but do not
694  * free it unless there's an error.  The dequeue part of the driver should
695  * free the data.  We don't send data when the device is disabled.  We do
696  * send data, even when we have no listeners, because we wish to avoid
697  * races relating to startup and restart of listening applications.
698  *
699  * devaddq is designed to string together the type of event, with the
700  * object of that event, plus the plug and play info and location info
701  * for that event.  This is likely most useful for devices, but less
702  * useful for other consumers of this interface.  Those should use
703  * the devctl_queue_data() interface instead.
704  */
705 static void
706 devaddq(const char *type, const char *what, device_t dev)
707 {
708 	char *data = NULL;
709 	char *loc = NULL;
710 	char *pnp = NULL;
711 	const char *parstr;
712 
713 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714 		return;
715 	data = malloc(1024, M_BUS, M_NOWAIT);
716 	if (data == NULL)
717 		goto bad;
718 
719 	/* get the bus specific location of this device */
720 	loc = malloc(1024, M_BUS, M_NOWAIT);
721 	if (loc == NULL)
722 		goto bad;
723 	*loc = '\0';
724 	bus_child_location_str(dev, loc, 1024);
725 
726 	/* Get the bus specific pnp info of this device */
727 	pnp = malloc(1024, M_BUS, M_NOWAIT);
728 	if (pnp == NULL)
729 		goto bad;
730 	*pnp = '\0';
731 	bus_child_pnpinfo_str(dev, pnp, 1024);
732 
733 	/* Get the parent of this device, or / if high enough in the tree. */
734 	if (device_get_parent(dev) == NULL)
735 		parstr = ".";	/* Or '/' ? */
736 	else
737 		parstr = device_get_nameunit(device_get_parent(dev));
738 	/* String it all together. */
739 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740 	  parstr);
741 	free(loc, M_BUS);
742 	free(pnp, M_BUS);
743 	devctl_queue_data(data);
744 	return;
745 bad:
746 	free(pnp, M_BUS);
747 	free(loc, M_BUS);
748 	free(data, M_BUS);
749 	return;
750 }
751 
752 /*
753  * A device was added to the tree.  We are called just after it successfully
754  * attaches (that is, probe and attach success for this device).  No call
755  * is made if a device is merely parented into the tree.  See devnomatch
756  * if probe fails.  If attach fails, no notification is sent (but maybe
757  * we should have a different message for this).
758  */
759 static void
760 devadded(device_t dev)
761 {
762 	devaddq("+", device_get_nameunit(dev), dev);
763 }
764 
765 /*
766  * A device was removed from the tree.  We are called just before this
767  * happens.
768  */
769 static void
770 devremoved(device_t dev)
771 {
772 	devaddq("-", device_get_nameunit(dev), dev);
773 }
774 
775 /*
776  * Called when there's no match for this device.  This is only called
777  * the first time that no match happens, so we don't keep getting this
778  * message.  Should that prove to be undesirable, we can change it.
779  * This is called when all drivers that can attach to a given bus
780  * decline to accept this device.  Other errors may not be detected.
781  */
782 static void
783 devnomatch(device_t dev)
784 {
785 	devaddq("?", "", dev);
786 }
787 
788 static int
789 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790 {
791 	struct dev_event_info *n1;
792 	int dis, error;
793 
794 	dis = (devctl_queue_length == 0);
795 	error = sysctl_handle_int(oidp, &dis, 0, req);
796 	if (error || !req->newptr)
797 		return (error);
798 	if (mtx_initialized(&devsoftc.mtx))
799 		mtx_lock(&devsoftc.mtx);
800 	if (dis) {
801 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802 			n1 = TAILQ_FIRST(&devsoftc.devq);
803 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804 			free(n1->dei_data, M_BUS);
805 			free(n1, M_BUS);
806 		}
807 		devsoftc.queued = 0;
808 		devctl_queue_length = 0;
809 	} else {
810 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811 	}
812 	if (mtx_initialized(&devsoftc.mtx))
813 		mtx_unlock(&devsoftc.mtx);
814 	return (0);
815 }
816 
817 static int
818 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819 {
820 	struct dev_event_info *n1;
821 	int q, error;
822 
823 	q = devctl_queue_length;
824 	error = sysctl_handle_int(oidp, &q, 0, req);
825 	if (error || !req->newptr)
826 		return (error);
827 	if (q < 0)
828 		return (EINVAL);
829 	if (mtx_initialized(&devsoftc.mtx))
830 		mtx_lock(&devsoftc.mtx);
831 	devctl_queue_length = q;
832 	while (devsoftc.queued > devctl_queue_length) {
833 		n1 = TAILQ_FIRST(&devsoftc.devq);
834 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835 		free(n1->dei_data, M_BUS);
836 		free(n1, M_BUS);
837 		devsoftc.queued--;
838 	}
839 	if (mtx_initialized(&devsoftc.mtx))
840 		mtx_unlock(&devsoftc.mtx);
841 	return (0);
842 }
843 
844 /**
845  * @brief safely quotes strings that might have double quotes in them.
846  *
847  * The devctl protocol relies on quoted strings having matching quotes.
848  * This routine quotes any internal quotes so the resulting string
849  * is safe to pass to snprintf to construct, for example pnp info strings.
850  * Strings are always terminated with a NUL, but may be truncated if longer
851  * than @p len bytes after quotes.
852  *
853  * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854  * @param src	Original buffer.
855  * @param len	Length of buffer pointed to by @dst, including trailing NUL
856  */
857 void
858 devctl_safe_quote(char *dst, const char *src, size_t len)
859 {
860 	char *walker = dst, *ep = dst + len - 1;
861 
862 	if (len == 0)
863 		return;
864 	while (src != NULL && walker < ep)
865 	{
866 		if (*src == '"' || *src == '\\') {
867 			if (ep - walker < 2)
868 				break;
869 			*walker++ = '\\';
870 		}
871 		*walker++ = *src++;
872 	}
873 	*walker = '\0';
874 }
875 
876 /* End of /dev/devctl code */
877 
878 static TAILQ_HEAD(,device)	bus_data_devices;
879 static int bus_data_generation = 1;
880 
881 static kobj_method_t null_methods[] = {
882 	KOBJMETHOD_END
883 };
884 
885 DEFINE_CLASS(null, null_methods, 0);
886 
887 /*
888  * Bus pass implementation
889  */
890 
891 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892 int bus_current_pass = BUS_PASS_ROOT;
893 
894 /**
895  * @internal
896  * @brief Register the pass level of a new driver attachment
897  *
898  * Register a new driver attachment's pass level.  If no driver
899  * attachment with the same pass level has been added, then @p new
900  * will be added to the global passes list.
901  *
902  * @param new		the new driver attachment
903  */
904 static void
905 driver_register_pass(struct driverlink *new)
906 {
907 	struct driverlink *dl;
908 
909 	/* We only consider pass numbers during boot. */
910 	if (bus_current_pass == BUS_PASS_DEFAULT)
911 		return;
912 
913 	/*
914 	 * Walk the passes list.  If we already know about this pass
915 	 * then there is nothing to do.  If we don't, then insert this
916 	 * driver link into the list.
917 	 */
918 	TAILQ_FOREACH(dl, &passes, passlink) {
919 		if (dl->pass < new->pass)
920 			continue;
921 		if (dl->pass == new->pass)
922 			return;
923 		TAILQ_INSERT_BEFORE(dl, new, passlink);
924 		return;
925 	}
926 	TAILQ_INSERT_TAIL(&passes, new, passlink);
927 }
928 
929 /**
930  * @brief Raise the current bus pass
931  *
932  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933  * method on the root bus to kick off a new device tree scan for each
934  * new pass level that has at least one driver.
935  */
936 void
937 bus_set_pass(int pass)
938 {
939 	struct driverlink *dl;
940 
941 	if (bus_current_pass > pass)
942 		panic("Attempt to lower bus pass level");
943 
944 	TAILQ_FOREACH(dl, &passes, passlink) {
945 		/* Skip pass values below the current pass level. */
946 		if (dl->pass <= bus_current_pass)
947 			continue;
948 
949 		/*
950 		 * Bail once we hit a driver with a pass level that is
951 		 * too high.
952 		 */
953 		if (dl->pass > pass)
954 			break;
955 
956 		/*
957 		 * Raise the pass level to the next level and rescan
958 		 * the tree.
959 		 */
960 		bus_current_pass = dl->pass;
961 		BUS_NEW_PASS(root_bus);
962 	}
963 
964 	/*
965 	 * If there isn't a driver registered for the requested pass,
966 	 * then bus_current_pass might still be less than 'pass'.  Set
967 	 * it to 'pass' in that case.
968 	 */
969 	if (bus_current_pass < pass)
970 		bus_current_pass = pass;
971 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972 }
973 
974 /*
975  * Devclass implementation
976  */
977 
978 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979 
980 /**
981  * @internal
982  * @brief Find or create a device class
983  *
984  * If a device class with the name @p classname exists, return it,
985  * otherwise if @p create is non-zero create and return a new device
986  * class.
987  *
988  * If @p parentname is non-NULL, the parent of the devclass is set to
989  * the devclass of that name.
990  *
991  * @param classname	the devclass name to find or create
992  * @param parentname	the parent devclass name or @c NULL
993  * @param create	non-zero to create a devclass
994  */
995 static devclass_t
996 devclass_find_internal(const char *classname, const char *parentname,
997 		       int create)
998 {
999 	devclass_t dc;
1000 
1001 	PDEBUG(("looking for %s", classname));
1002 	if (!classname)
1003 		return (NULL);
1004 
1005 	TAILQ_FOREACH(dc, &devclasses, link) {
1006 		if (!strcmp(dc->name, classname))
1007 			break;
1008 	}
1009 
1010 	if (create && !dc) {
1011 		PDEBUG(("creating %s", classname));
1012 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013 		    M_BUS, M_NOWAIT | M_ZERO);
1014 		if (!dc)
1015 			return (NULL);
1016 		dc->parent = NULL;
1017 		dc->name = (char*) (dc + 1);
1018 		strcpy(dc->name, classname);
1019 		TAILQ_INIT(&dc->drivers);
1020 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021 
1022 		bus_data_generation_update();
1023 	}
1024 
1025 	/*
1026 	 * If a parent class is specified, then set that as our parent so
1027 	 * that this devclass will support drivers for the parent class as
1028 	 * well.  If the parent class has the same name don't do this though
1029 	 * as it creates a cycle that can trigger an infinite loop in
1030 	 * device_probe_child() if a device exists for which there is no
1031 	 * suitable driver.
1032 	 */
1033 	if (parentname && dc && !dc->parent &&
1034 	    strcmp(classname, parentname) != 0) {
1035 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036 		dc->parent->flags |= DC_HAS_CHILDREN;
1037 	}
1038 
1039 	return (dc);
1040 }
1041 
1042 /**
1043  * @brief Create a device class
1044  *
1045  * If a device class with the name @p classname exists, return it,
1046  * otherwise create and return a new device class.
1047  *
1048  * @param classname	the devclass name to find or create
1049  */
1050 devclass_t
1051 devclass_create(const char *classname)
1052 {
1053 	return (devclass_find_internal(classname, NULL, TRUE));
1054 }
1055 
1056 /**
1057  * @brief Find a device class
1058  *
1059  * If a device class with the name @p classname exists, return it,
1060  * otherwise return @c NULL.
1061  *
1062  * @param classname	the devclass name to find
1063  */
1064 devclass_t
1065 devclass_find(const char *classname)
1066 {
1067 	return (devclass_find_internal(classname, NULL, FALSE));
1068 }
1069 
1070 /**
1071  * @brief Register that a device driver has been added to a devclass
1072  *
1073  * Register that a device driver has been added to a devclass.  This
1074  * is called by devclass_add_driver to accomplish the recursive
1075  * notification of all the children classes of dc, as well as dc.
1076  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077  * the devclass.
1078  *
1079  * We do a full search here of the devclass list at each iteration
1080  * level to save storing children-lists in the devclass structure.  If
1081  * we ever move beyond a few dozen devices doing this, we may need to
1082  * reevaluate...
1083  *
1084  * @param dc		the devclass to edit
1085  * @param driver	the driver that was just added
1086  */
1087 static void
1088 devclass_driver_added(devclass_t dc, driver_t *driver)
1089 {
1090 	devclass_t parent;
1091 	int i;
1092 
1093 	/*
1094 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095 	 */
1096 	for (i = 0; i < dc->maxunit; i++)
1097 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099 
1100 	/*
1101 	 * Walk through the children classes.  Since we only keep a
1102 	 * single parent pointer around, we walk the entire list of
1103 	 * devclasses looking for children.  We set the
1104 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105 	 * the parent, so we only walk the list for those devclasses
1106 	 * that have children.
1107 	 */
1108 	if (!(dc->flags & DC_HAS_CHILDREN))
1109 		return;
1110 	parent = dc;
1111 	TAILQ_FOREACH(dc, &devclasses, link) {
1112 		if (dc->parent == parent)
1113 			devclass_driver_added(dc, driver);
1114 	}
1115 }
1116 
1117 /**
1118  * @brief Add a device driver to a device class
1119  *
1120  * Add a device driver to a devclass. This is normally called
1121  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122  * all devices in the devclass will be called to allow them to attempt
1123  * to re-probe any unmatched children.
1124  *
1125  * @param dc		the devclass to edit
1126  * @param driver	the driver to register
1127  */
1128 int
1129 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130 {
1131 	driverlink_t dl;
1132 	const char *parentname;
1133 
1134 	PDEBUG(("%s", DRIVERNAME(driver)));
1135 
1136 	/* Don't allow invalid pass values. */
1137 	if (pass <= BUS_PASS_ROOT)
1138 		return (EINVAL);
1139 
1140 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141 	if (!dl)
1142 		return (ENOMEM);
1143 
1144 	/*
1145 	 * Compile the driver's methods. Also increase the reference count
1146 	 * so that the class doesn't get freed when the last instance
1147 	 * goes. This means we can safely use static methods and avoids a
1148 	 * double-free in devclass_delete_driver.
1149 	 */
1150 	kobj_class_compile((kobj_class_t) driver);
1151 
1152 	/*
1153 	 * If the driver has any base classes, make the
1154 	 * devclass inherit from the devclass of the driver's
1155 	 * first base class. This will allow the system to
1156 	 * search for drivers in both devclasses for children
1157 	 * of a device using this driver.
1158 	 */
1159 	if (driver->baseclasses)
1160 		parentname = driver->baseclasses[0]->name;
1161 	else
1162 		parentname = NULL;
1163 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164 
1165 	dl->driver = driver;
1166 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167 	driver->refs++;		/* XXX: kobj_mtx */
1168 	dl->pass = pass;
1169 	driver_register_pass(dl);
1170 
1171 	devclass_driver_added(dc, driver);
1172 	bus_data_generation_update();
1173 	return (0);
1174 }
1175 
1176 /**
1177  * @brief Register that a device driver has been deleted from a devclass
1178  *
1179  * Register that a device driver has been removed from a devclass.
1180  * This is called by devclass_delete_driver to accomplish the
1181  * recursive notification of all the children classes of busclass, as
1182  * well as busclass.  Each layer will attempt to detach the driver
1183  * from any devices that are children of the bus's devclass.  The function
1184  * will return an error if a device fails to detach.
1185  *
1186  * We do a full search here of the devclass list at each iteration
1187  * level to save storing children-lists in the devclass structure.  If
1188  * we ever move beyond a few dozen devices doing this, we may need to
1189  * reevaluate...
1190  *
1191  * @param busclass	the devclass of the parent bus
1192  * @param dc		the devclass of the driver being deleted
1193  * @param driver	the driver being deleted
1194  */
1195 static int
1196 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197 {
1198 	devclass_t parent;
1199 	device_t dev;
1200 	int error, i;
1201 
1202 	/*
1203 	 * Disassociate from any devices.  We iterate through all the
1204 	 * devices in the devclass of the driver and detach any which are
1205 	 * using the driver and which have a parent in the devclass which
1206 	 * we are deleting from.
1207 	 *
1208 	 * Note that since a driver can be in multiple devclasses, we
1209 	 * should not detach devices which are not children of devices in
1210 	 * the affected devclass.
1211 	 */
1212 	for (i = 0; i < dc->maxunit; i++) {
1213 		if (dc->devices[i]) {
1214 			dev = dc->devices[i];
1215 			if (dev->driver == driver && dev->parent &&
1216 			    dev->parent->devclass == busclass) {
1217 				if ((error = device_detach(dev)) != 0)
1218 					return (error);
1219 				BUS_PROBE_NOMATCH(dev->parent, dev);
1220 				devnomatch(dev);
1221 				dev->flags |= DF_DONENOMATCH;
1222 			}
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Walk through the children classes.  Since we only keep a
1228 	 * single parent pointer around, we walk the entire list of
1229 	 * devclasses looking for children.  We set the
1230 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231 	 * the parent, so we only walk the list for those devclasses
1232 	 * that have children.
1233 	 */
1234 	if (!(busclass->flags & DC_HAS_CHILDREN))
1235 		return (0);
1236 	parent = busclass;
1237 	TAILQ_FOREACH(busclass, &devclasses, link) {
1238 		if (busclass->parent == parent) {
1239 			error = devclass_driver_deleted(busclass, dc, driver);
1240 			if (error)
1241 				return (error);
1242 		}
1243 	}
1244 	return (0);
1245 }
1246 
1247 /**
1248  * @brief Delete a device driver from a device class
1249  *
1250  * Delete a device driver from a devclass. This is normally called
1251  * automatically by DRIVER_MODULE().
1252  *
1253  * If the driver is currently attached to any devices,
1254  * devclass_delete_driver() will first attempt to detach from each
1255  * device. If one of the detach calls fails, the driver will not be
1256  * deleted.
1257  *
1258  * @param dc		the devclass to edit
1259  * @param driver	the driver to unregister
1260  */
1261 int
1262 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263 {
1264 	devclass_t dc = devclass_find(driver->name);
1265 	driverlink_t dl;
1266 	int error;
1267 
1268 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269 
1270 	if (!dc)
1271 		return (0);
1272 
1273 	/*
1274 	 * Find the link structure in the bus' list of drivers.
1275 	 */
1276 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277 		if (dl->driver == driver)
1278 			break;
1279 	}
1280 
1281 	if (!dl) {
1282 		PDEBUG(("%s not found in %s list", driver->name,
1283 		    busclass->name));
1284 		return (ENOENT);
1285 	}
1286 
1287 	error = devclass_driver_deleted(busclass, dc, driver);
1288 	if (error != 0)
1289 		return (error);
1290 
1291 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292 	free(dl, M_BUS);
1293 
1294 	/* XXX: kobj_mtx */
1295 	driver->refs--;
1296 	if (driver->refs == 0)
1297 		kobj_class_free((kobj_class_t) driver);
1298 
1299 	bus_data_generation_update();
1300 	return (0);
1301 }
1302 
1303 /**
1304  * @brief Quiesces a set of device drivers from a device class
1305  *
1306  * Quiesce a device driver from a devclass. This is normally called
1307  * automatically by DRIVER_MODULE().
1308  *
1309  * If the driver is currently attached to any devices,
1310  * devclass_quiesece_driver() will first attempt to quiesce each
1311  * device.
1312  *
1313  * @param dc		the devclass to edit
1314  * @param driver	the driver to unregister
1315  */
1316 static int
1317 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318 {
1319 	devclass_t dc = devclass_find(driver->name);
1320 	driverlink_t dl;
1321 	device_t dev;
1322 	int i;
1323 	int error;
1324 
1325 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326 
1327 	if (!dc)
1328 		return (0);
1329 
1330 	/*
1331 	 * Find the link structure in the bus' list of drivers.
1332 	 */
1333 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334 		if (dl->driver == driver)
1335 			break;
1336 	}
1337 
1338 	if (!dl) {
1339 		PDEBUG(("%s not found in %s list", driver->name,
1340 		    busclass->name));
1341 		return (ENOENT);
1342 	}
1343 
1344 	/*
1345 	 * Quiesce all devices.  We iterate through all the devices in
1346 	 * the devclass of the driver and quiesce any which are using
1347 	 * the driver and which have a parent in the devclass which we
1348 	 * are quiescing.
1349 	 *
1350 	 * Note that since a driver can be in multiple devclasses, we
1351 	 * should not quiesce devices which are not children of
1352 	 * devices in the affected devclass.
1353 	 */
1354 	for (i = 0; i < dc->maxunit; i++) {
1355 		if (dc->devices[i]) {
1356 			dev = dc->devices[i];
1357 			if (dev->driver == driver && dev->parent &&
1358 			    dev->parent->devclass == busclass) {
1359 				if ((error = device_quiesce(dev)) != 0)
1360 					return (error);
1361 			}
1362 		}
1363 	}
1364 
1365 	return (0);
1366 }
1367 
1368 /**
1369  * @internal
1370  */
1371 static driverlink_t
1372 devclass_find_driver_internal(devclass_t dc, const char *classname)
1373 {
1374 	driverlink_t dl;
1375 
1376 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377 
1378 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379 		if (!strcmp(dl->driver->name, classname))
1380 			return (dl);
1381 	}
1382 
1383 	PDEBUG(("not found"));
1384 	return (NULL);
1385 }
1386 
1387 /**
1388  * @brief Return the name of the devclass
1389  */
1390 const char *
1391 devclass_get_name(devclass_t dc)
1392 {
1393 	return (dc->name);
1394 }
1395 
1396 /**
1397  * @brief Find a device given a unit number
1398  *
1399  * @param dc		the devclass to search
1400  * @param unit		the unit number to search for
1401  *
1402  * @returns		the device with the given unit number or @c
1403  *			NULL if there is no such device
1404  */
1405 device_t
1406 devclass_get_device(devclass_t dc, int unit)
1407 {
1408 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409 		return (NULL);
1410 	return (dc->devices[unit]);
1411 }
1412 
1413 /**
1414  * @brief Find the softc field of a device given a unit number
1415  *
1416  * @param dc		the devclass to search
1417  * @param unit		the unit number to search for
1418  *
1419  * @returns		the softc field of the device with the given
1420  *			unit number or @c NULL if there is no such
1421  *			device
1422  */
1423 void *
1424 devclass_get_softc(devclass_t dc, int unit)
1425 {
1426 	device_t dev;
1427 
1428 	dev = devclass_get_device(dc, unit);
1429 	if (!dev)
1430 		return (NULL);
1431 
1432 	return (device_get_softc(dev));
1433 }
1434 
1435 /**
1436  * @brief Get a list of devices in the devclass
1437  *
1438  * An array containing a list of all the devices in the given devclass
1439  * is allocated and returned in @p *devlistp. The number of devices
1440  * in the array is returned in @p *devcountp. The caller should free
1441  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442  *
1443  * @param dc		the devclass to examine
1444  * @param devlistp	points at location for array pointer return
1445  *			value
1446  * @param devcountp	points at location for array size return value
1447  *
1448  * @retval 0		success
1449  * @retval ENOMEM	the array allocation failed
1450  */
1451 int
1452 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453 {
1454 	int count, i;
1455 	device_t *list;
1456 
1457 	count = devclass_get_count(dc);
1458 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459 	if (!list)
1460 		return (ENOMEM);
1461 
1462 	count = 0;
1463 	for (i = 0; i < dc->maxunit; i++) {
1464 		if (dc->devices[i]) {
1465 			list[count] = dc->devices[i];
1466 			count++;
1467 		}
1468 	}
1469 
1470 	*devlistp = list;
1471 	*devcountp = count;
1472 
1473 	return (0);
1474 }
1475 
1476 /**
1477  * @brief Get a list of drivers in the devclass
1478  *
1479  * An array containing a list of pointers to all the drivers in the
1480  * given devclass is allocated and returned in @p *listp.  The number
1481  * of drivers in the array is returned in @p *countp. The caller should
1482  * free the array using @c free(p, M_TEMP).
1483  *
1484  * @param dc		the devclass to examine
1485  * @param listp		gives location for array pointer return value
1486  * @param countp	gives location for number of array elements
1487  *			return value
1488  *
1489  * @retval 0		success
1490  * @retval ENOMEM	the array allocation failed
1491  */
1492 int
1493 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494 {
1495 	driverlink_t dl;
1496 	driver_t **list;
1497 	int count;
1498 
1499 	count = 0;
1500 	TAILQ_FOREACH(dl, &dc->drivers, link)
1501 		count++;
1502 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503 	if (list == NULL)
1504 		return (ENOMEM);
1505 
1506 	count = 0;
1507 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508 		list[count] = dl->driver;
1509 		count++;
1510 	}
1511 	*listp = list;
1512 	*countp = count;
1513 
1514 	return (0);
1515 }
1516 
1517 /**
1518  * @brief Get the number of devices in a devclass
1519  *
1520  * @param dc		the devclass to examine
1521  */
1522 int
1523 devclass_get_count(devclass_t dc)
1524 {
1525 	int count, i;
1526 
1527 	count = 0;
1528 	for (i = 0; i < dc->maxunit; i++)
1529 		if (dc->devices[i])
1530 			count++;
1531 	return (count);
1532 }
1533 
1534 /**
1535  * @brief Get the maximum unit number used in a devclass
1536  *
1537  * Note that this is one greater than the highest currently-allocated
1538  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539  * that not even the devclass has been allocated yet.
1540  *
1541  * @param dc		the devclass to examine
1542  */
1543 int
1544 devclass_get_maxunit(devclass_t dc)
1545 {
1546 	if (dc == NULL)
1547 		return (-1);
1548 	return (dc->maxunit);
1549 }
1550 
1551 /**
1552  * @brief Find a free unit number in a devclass
1553  *
1554  * This function searches for the first unused unit number greater
1555  * that or equal to @p unit.
1556  *
1557  * @param dc		the devclass to examine
1558  * @param unit		the first unit number to check
1559  */
1560 int
1561 devclass_find_free_unit(devclass_t dc, int unit)
1562 {
1563 	if (dc == NULL)
1564 		return (unit);
1565 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566 		unit++;
1567 	return (unit);
1568 }
1569 
1570 /**
1571  * @brief Set the parent of a devclass
1572  *
1573  * The parent class is normally initialised automatically by
1574  * DRIVER_MODULE().
1575  *
1576  * @param dc		the devclass to edit
1577  * @param pdc		the new parent devclass
1578  */
1579 void
1580 devclass_set_parent(devclass_t dc, devclass_t pdc)
1581 {
1582 	dc->parent = pdc;
1583 }
1584 
1585 /**
1586  * @brief Get the parent of a devclass
1587  *
1588  * @param dc		the devclass to examine
1589  */
1590 devclass_t
1591 devclass_get_parent(devclass_t dc)
1592 {
1593 	return (dc->parent);
1594 }
1595 
1596 struct sysctl_ctx_list *
1597 devclass_get_sysctl_ctx(devclass_t dc)
1598 {
1599 	return (&dc->sysctl_ctx);
1600 }
1601 
1602 struct sysctl_oid *
1603 devclass_get_sysctl_tree(devclass_t dc)
1604 {
1605 	return (dc->sysctl_tree);
1606 }
1607 
1608 /**
1609  * @internal
1610  * @brief Allocate a unit number
1611  *
1612  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613  * will do). The allocated unit number is returned in @p *unitp.
1614 
1615  * @param dc		the devclass to allocate from
1616  * @param unitp		points at the location for the allocated unit
1617  *			number
1618  *
1619  * @retval 0		success
1620  * @retval EEXIST	the requested unit number is already allocated
1621  * @retval ENOMEM	memory allocation failure
1622  */
1623 static int
1624 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625 {
1626 	const char *s;
1627 	int unit = *unitp;
1628 
1629 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630 
1631 	/* Ask the parent bus if it wants to wire this device. */
1632 	if (unit == -1)
1633 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634 		    &unit);
1635 
1636 	/* If we were given a wired unit number, check for existing device */
1637 	/* XXX imp XXX */
1638 	if (unit != -1) {
1639 		if (unit >= 0 && unit < dc->maxunit &&
1640 		    dc->devices[unit] != NULL) {
1641 			if (bootverbose)
1642 				printf("%s: %s%d already exists; skipping it\n",
1643 				    dc->name, dc->name, *unitp);
1644 			return (EEXIST);
1645 		}
1646 	} else {
1647 		/* Unwired device, find the next available slot for it */
1648 		unit = 0;
1649 		for (unit = 0;; unit++) {
1650 			/* If there is an "at" hint for a unit then skip it. */
1651 			if (resource_string_value(dc->name, unit, "at", &s) ==
1652 			    0)
1653 				continue;
1654 
1655 			/* If this device slot is already in use, skip it. */
1656 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657 				continue;
1658 
1659 			break;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * We've selected a unit beyond the length of the table, so let's
1665 	 * extend the table to make room for all units up to and including
1666 	 * this one.
1667 	 */
1668 	if (unit >= dc->maxunit) {
1669 		device_t *newlist, *oldlist;
1670 		int newsize;
1671 
1672 		oldlist = dc->devices;
1673 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675 		if (!newlist)
1676 			return (ENOMEM);
1677 		if (oldlist != NULL)
1678 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679 		bzero(newlist + dc->maxunit,
1680 		    sizeof(device_t) * (newsize - dc->maxunit));
1681 		dc->devices = newlist;
1682 		dc->maxunit = newsize;
1683 		if (oldlist != NULL)
1684 			free(oldlist, M_BUS);
1685 	}
1686 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687 
1688 	*unitp = unit;
1689 	return (0);
1690 }
1691 
1692 /**
1693  * @internal
1694  * @brief Add a device to a devclass
1695  *
1696  * A unit number is allocated for the device (using the device's
1697  * preferred unit number if any) and the device is registered in the
1698  * devclass. This allows the device to be looked up by its unit
1699  * number, e.g. by decoding a dev_t minor number.
1700  *
1701  * @param dc		the devclass to add to
1702  * @param dev		the device to add
1703  *
1704  * @retval 0		success
1705  * @retval EEXIST	the requested unit number is already allocated
1706  * @retval ENOMEM	memory allocation failure
1707  */
1708 static int
1709 devclass_add_device(devclass_t dc, device_t dev)
1710 {
1711 	int buflen, error;
1712 
1713 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714 
1715 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716 	if (buflen < 0)
1717 		return (ENOMEM);
1718 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719 	if (!dev->nameunit)
1720 		return (ENOMEM);
1721 
1722 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723 		free(dev->nameunit, M_BUS);
1724 		dev->nameunit = NULL;
1725 		return (error);
1726 	}
1727 	dc->devices[dev->unit] = dev;
1728 	dev->devclass = dc;
1729 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730 
1731 	return (0);
1732 }
1733 
1734 /**
1735  * @internal
1736  * @brief Delete a device from a devclass
1737  *
1738  * The device is removed from the devclass's device list and its unit
1739  * number is freed.
1740 
1741  * @param dc		the devclass to delete from
1742  * @param dev		the device to delete
1743  *
1744  * @retval 0		success
1745  */
1746 static int
1747 devclass_delete_device(devclass_t dc, device_t dev)
1748 {
1749 	if (!dc || !dev)
1750 		return (0);
1751 
1752 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753 
1754 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755 		panic("devclass_delete_device: inconsistent device class");
1756 	dc->devices[dev->unit] = NULL;
1757 	if (dev->flags & DF_WILDCARD)
1758 		dev->unit = -1;
1759 	dev->devclass = NULL;
1760 	free(dev->nameunit, M_BUS);
1761 	dev->nameunit = NULL;
1762 
1763 	return (0);
1764 }
1765 
1766 /**
1767  * @internal
1768  * @brief Make a new device and add it as a child of @p parent
1769  *
1770  * @param parent	the parent of the new device
1771  * @param name		the devclass name of the new device or @c NULL
1772  *			to leave the devclass unspecified
1773  * @parem unit		the unit number of the new device of @c -1 to
1774  *			leave the unit number unspecified
1775  *
1776  * @returns the new device
1777  */
1778 static device_t
1779 make_device(device_t parent, const char *name, int unit)
1780 {
1781 	device_t dev;
1782 	devclass_t dc;
1783 
1784 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785 
1786 	if (name) {
1787 		dc = devclass_find_internal(name, NULL, TRUE);
1788 		if (!dc) {
1789 			printf("make_device: can't find device class %s\n",
1790 			    name);
1791 			return (NULL);
1792 		}
1793 	} else {
1794 		dc = NULL;
1795 	}
1796 
1797 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1798 	if (!dev)
1799 		return (NULL);
1800 
1801 	dev->parent = parent;
1802 	TAILQ_INIT(&dev->children);
1803 	kobj_init((kobj_t) dev, &null_class);
1804 	dev->driver = NULL;
1805 	dev->devclass = NULL;
1806 	dev->unit = unit;
1807 	dev->nameunit = NULL;
1808 	dev->desc = NULL;
1809 	dev->busy = 0;
1810 	dev->devflags = 0;
1811 	dev->flags = DF_ENABLED;
1812 	dev->order = 0;
1813 	if (unit == -1)
1814 		dev->flags |= DF_WILDCARD;
1815 	if (name) {
1816 		dev->flags |= DF_FIXEDCLASS;
1817 		if (devclass_add_device(dc, dev)) {
1818 			kobj_delete((kobj_t) dev, M_BUS);
1819 			return (NULL);
1820 		}
1821 	}
1822 	dev->ivars = NULL;
1823 	dev->softc = NULL;
1824 
1825 	dev->state = DS_NOTPRESENT;
1826 
1827 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828 	bus_data_generation_update();
1829 
1830 	return (dev);
1831 }
1832 
1833 /**
1834  * @internal
1835  * @brief Print a description of a device.
1836  */
1837 static int
1838 device_print_child(device_t dev, device_t child)
1839 {
1840 	int retval = 0;
1841 
1842 	if (device_is_alive(child))
1843 		retval += BUS_PRINT_CHILD(dev, child);
1844 	else
1845 		retval += device_printf(child, " not found\n");
1846 
1847 	return (retval);
1848 }
1849 
1850 /**
1851  * @brief Create a new device
1852  *
1853  * This creates a new device and adds it as a child of an existing
1854  * parent device. The new device will be added after the last existing
1855  * child with order zero.
1856  *
1857  * @param dev		the device which will be the parent of the
1858  *			new child device
1859  * @param name		devclass name for new device or @c NULL if not
1860  *			specified
1861  * @param unit		unit number for new device or @c -1 if not
1862  *			specified
1863  *
1864  * @returns		the new device
1865  */
1866 device_t
1867 device_add_child(device_t dev, const char *name, int unit)
1868 {
1869 	return (device_add_child_ordered(dev, 0, name, unit));
1870 }
1871 
1872 /**
1873  * @brief Create a new device
1874  *
1875  * This creates a new device and adds it as a child of an existing
1876  * parent device. The new device will be added after the last existing
1877  * child with the same order.
1878  *
1879  * @param dev		the device which will be the parent of the
1880  *			new child device
1881  * @param order		a value which is used to partially sort the
1882  *			children of @p dev - devices created using
1883  *			lower values of @p order appear first in @p
1884  *			dev's list of children
1885  * @param name		devclass name for new device or @c NULL if not
1886  *			specified
1887  * @param unit		unit number for new device or @c -1 if not
1888  *			specified
1889  *
1890  * @returns		the new device
1891  */
1892 device_t
1893 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894 {
1895 	device_t child;
1896 	device_t place;
1897 
1898 	PDEBUG(("%s at %s with order %u as unit %d",
1899 	    name, DEVICENAME(dev), order, unit));
1900 	KASSERT(name != NULL || unit == -1,
1901 	    ("child device with wildcard name and specific unit number"));
1902 
1903 	child = make_device(dev, name, unit);
1904 	if (child == NULL)
1905 		return (child);
1906 	child->order = order;
1907 
1908 	TAILQ_FOREACH(place, &dev->children, link) {
1909 		if (place->order > order)
1910 			break;
1911 	}
1912 
1913 	if (place) {
1914 		/*
1915 		 * The device 'place' is the first device whose order is
1916 		 * greater than the new child.
1917 		 */
1918 		TAILQ_INSERT_BEFORE(place, child, link);
1919 	} else {
1920 		/*
1921 		 * The new child's order is greater or equal to the order of
1922 		 * any existing device. Add the child to the tail of the list.
1923 		 */
1924 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925 	}
1926 
1927 	bus_data_generation_update();
1928 	return (child);
1929 }
1930 
1931 /**
1932  * @brief Delete a device
1933  *
1934  * This function deletes a device along with all of its children. If
1935  * the device currently has a driver attached to it, the device is
1936  * detached first using device_detach().
1937  *
1938  * @param dev		the parent device
1939  * @param child		the device to delete
1940  *
1941  * @retval 0		success
1942  * @retval non-zero	a unit error code describing the error
1943  */
1944 int
1945 device_delete_child(device_t dev, device_t child)
1946 {
1947 	int error;
1948 	device_t grandchild;
1949 
1950 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951 
1952 	/* remove children first */
1953 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1954 		error = device_delete_child(child, grandchild);
1955 		if (error)
1956 			return (error);
1957 	}
1958 
1959 	if ((error = device_detach(child)) != 0)
1960 		return (error);
1961 	if (child->devclass)
1962 		devclass_delete_device(child->devclass, child);
1963 	if (child->parent)
1964 		BUS_CHILD_DELETED(dev, child);
1965 	TAILQ_REMOVE(&dev->children, child, link);
1966 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1967 	kobj_delete((kobj_t) child, M_BUS);
1968 
1969 	bus_data_generation_update();
1970 	return (0);
1971 }
1972 
1973 /**
1974  * @brief Delete all children devices of the given device, if any.
1975  *
1976  * This function deletes all children devices of the given device, if
1977  * any, using the device_delete_child() function for each device it
1978  * finds. If a child device cannot be deleted, this function will
1979  * return an error code.
1980  *
1981  * @param dev		the parent device
1982  *
1983  * @retval 0		success
1984  * @retval non-zero	a device would not detach
1985  */
1986 int
1987 device_delete_children(device_t dev)
1988 {
1989 	device_t child;
1990 	int error;
1991 
1992 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1993 
1994 	error = 0;
1995 
1996 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1997 		error = device_delete_child(dev, child);
1998 		if (error) {
1999 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2000 			break;
2001 		}
2002 	}
2003 	return (error);
2004 }
2005 
2006 /**
2007  * @brief Find a device given a unit number
2008  *
2009  * This is similar to devclass_get_devices() but only searches for
2010  * devices which have @p dev as a parent.
2011  *
2012  * @param dev		the parent device to search
2013  * @param unit		the unit number to search for.  If the unit is -1,
2014  *			return the first child of @p dev which has name
2015  *			@p classname (that is, the one with the lowest unit.)
2016  *
2017  * @returns		the device with the given unit number or @c
2018  *			NULL if there is no such device
2019  */
2020 device_t
2021 device_find_child(device_t dev, const char *classname, int unit)
2022 {
2023 	devclass_t dc;
2024 	device_t child;
2025 
2026 	dc = devclass_find(classname);
2027 	if (!dc)
2028 		return (NULL);
2029 
2030 	if (unit != -1) {
2031 		child = devclass_get_device(dc, unit);
2032 		if (child && child->parent == dev)
2033 			return (child);
2034 	} else {
2035 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2036 			child = devclass_get_device(dc, unit);
2037 			if (child && child->parent == dev)
2038 				return (child);
2039 		}
2040 	}
2041 	return (NULL);
2042 }
2043 
2044 /**
2045  * @internal
2046  */
2047 static driverlink_t
2048 first_matching_driver(devclass_t dc, device_t dev)
2049 {
2050 	if (dev->devclass)
2051 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2052 	return (TAILQ_FIRST(&dc->drivers));
2053 }
2054 
2055 /**
2056  * @internal
2057  */
2058 static driverlink_t
2059 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2060 {
2061 	if (dev->devclass) {
2062 		driverlink_t dl;
2063 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2064 			if (!strcmp(dev->devclass->name, dl->driver->name))
2065 				return (dl);
2066 		return (NULL);
2067 	}
2068 	return (TAILQ_NEXT(last, link));
2069 }
2070 
2071 /**
2072  * @internal
2073  */
2074 int
2075 device_probe_child(device_t dev, device_t child)
2076 {
2077 	devclass_t dc;
2078 	driverlink_t best = NULL;
2079 	driverlink_t dl;
2080 	int result, pri = 0;
2081 	int hasclass = (child->devclass != NULL);
2082 
2083 	GIANT_REQUIRED;
2084 
2085 	dc = dev->devclass;
2086 	if (!dc)
2087 		panic("device_probe_child: parent device has no devclass");
2088 
2089 	/*
2090 	 * If the state is already probed, then return.  However, don't
2091 	 * return if we can rebid this object.
2092 	 */
2093 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2094 		return (0);
2095 
2096 	for (; dc; dc = dc->parent) {
2097 		for (dl = first_matching_driver(dc, child);
2098 		     dl;
2099 		     dl = next_matching_driver(dc, child, dl)) {
2100 			/* If this driver's pass is too high, then ignore it. */
2101 			if (dl->pass > bus_current_pass)
2102 				continue;
2103 
2104 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2105 			result = device_set_driver(child, dl->driver);
2106 			if (result == ENOMEM)
2107 				return (result);
2108 			else if (result != 0)
2109 				continue;
2110 			if (!hasclass) {
2111 				if (device_set_devclass(child,
2112 				    dl->driver->name) != 0) {
2113 					char const * devname =
2114 					    device_get_name(child);
2115 					if (devname == NULL)
2116 						devname = "(unknown)";
2117 					printf("driver bug: Unable to set "
2118 					    "devclass (class: %s "
2119 					    "devname: %s)\n",
2120 					    dl->driver->name,
2121 					    devname);
2122 					(void)device_set_driver(child, NULL);
2123 					continue;
2124 				}
2125 			}
2126 
2127 			/* Fetch any flags for the device before probing. */
2128 			resource_int_value(dl->driver->name, child->unit,
2129 			    "flags", &child->devflags);
2130 
2131 			result = DEVICE_PROBE(child);
2132 
2133 			/* Reset flags and devclass before the next probe. */
2134 			child->devflags = 0;
2135 			if (!hasclass)
2136 				(void)device_set_devclass(child, NULL);
2137 
2138 			/*
2139 			 * If the driver returns SUCCESS, there can be
2140 			 * no higher match for this device.
2141 			 */
2142 			if (result == 0) {
2143 				best = dl;
2144 				pri = 0;
2145 				break;
2146 			}
2147 
2148 			/*
2149 			 * Reset DF_QUIET in case this driver doesn't
2150 			 * end up as the best driver.
2151 			 */
2152 			device_verbose(child);
2153 
2154 			/*
2155 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2156 			 * only match on devices whose driver was explicitly
2157 			 * specified.
2158 			 */
2159 			if (result <= BUS_PROBE_NOWILDCARD &&
2160 			    !(child->flags & DF_FIXEDCLASS)) {
2161 				result = ENXIO;
2162 			}
2163 
2164 			/*
2165 			 * The driver returned an error so it
2166 			 * certainly doesn't match.
2167 			 */
2168 			if (result > 0) {
2169 				(void)device_set_driver(child, NULL);
2170 				continue;
2171 			}
2172 
2173 			/*
2174 			 * A priority lower than SUCCESS, remember the
2175 			 * best matching driver. Initialise the value
2176 			 * of pri for the first match.
2177 			 */
2178 			if (best == NULL || result > pri) {
2179 				best = dl;
2180 				pri = result;
2181 				continue;
2182 			}
2183 		}
2184 		/*
2185 		 * If we have an unambiguous match in this devclass,
2186 		 * don't look in the parent.
2187 		 */
2188 		if (best && pri == 0)
2189 			break;
2190 	}
2191 
2192 	/*
2193 	 * If we found a driver, change state and initialise the devclass.
2194 	 */
2195 	/* XXX What happens if we rebid and got no best? */
2196 	if (best) {
2197 		/*
2198 		 * If this device was attached, and we were asked to
2199 		 * rescan, and it is a different driver, then we have
2200 		 * to detach the old driver and reattach this new one.
2201 		 * Note, we don't have to check for DF_REBID here
2202 		 * because if the state is > DS_ALIVE, we know it must
2203 		 * be.
2204 		 *
2205 		 * This assumes that all DF_REBID drivers can have
2206 		 * their probe routine called at any time and that
2207 		 * they are idempotent as well as completely benign in
2208 		 * normal operations.
2209 		 *
2210 		 * We also have to make sure that the detach
2211 		 * succeeded, otherwise we fail the operation (or
2212 		 * maybe it should just fail silently?  I'm torn).
2213 		 */
2214 		if (child->state > DS_ALIVE && best->driver != child->driver)
2215 			if ((result = device_detach(dev)) != 0)
2216 				return (result);
2217 
2218 		/* Set the winning driver, devclass, and flags. */
2219 		if (!child->devclass) {
2220 			result = device_set_devclass(child, best->driver->name);
2221 			if (result != 0)
2222 				return (result);
2223 		}
2224 		result = device_set_driver(child, best->driver);
2225 		if (result != 0)
2226 			return (result);
2227 		resource_int_value(best->driver->name, child->unit,
2228 		    "flags", &child->devflags);
2229 
2230 		if (pri < 0) {
2231 			/*
2232 			 * A bit bogus. Call the probe method again to make
2233 			 * sure that we have the right description.
2234 			 */
2235 			DEVICE_PROBE(child);
2236 #if 0
2237 			child->flags |= DF_REBID;
2238 #endif
2239 		} else
2240 			child->flags &= ~DF_REBID;
2241 		child->state = DS_ALIVE;
2242 
2243 		bus_data_generation_update();
2244 		return (0);
2245 	}
2246 
2247 	return (ENXIO);
2248 }
2249 
2250 /**
2251  * @brief Return the parent of a device
2252  */
2253 device_t
2254 device_get_parent(device_t dev)
2255 {
2256 	return (dev->parent);
2257 }
2258 
2259 /**
2260  * @brief Get a list of children of a device
2261  *
2262  * An array containing a list of all the children of the given device
2263  * is allocated and returned in @p *devlistp. The number of devices
2264  * in the array is returned in @p *devcountp. The caller should free
2265  * the array using @c free(p, M_TEMP).
2266  *
2267  * @param dev		the device to examine
2268  * @param devlistp	points at location for array pointer return
2269  *			value
2270  * @param devcountp	points at location for array size return value
2271  *
2272  * @retval 0		success
2273  * @retval ENOMEM	the array allocation failed
2274  */
2275 int
2276 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2277 {
2278 	int count;
2279 	device_t child;
2280 	device_t *list;
2281 
2282 	count = 0;
2283 	TAILQ_FOREACH(child, &dev->children, link) {
2284 		count++;
2285 	}
2286 	if (count == 0) {
2287 		*devlistp = NULL;
2288 		*devcountp = 0;
2289 		return (0);
2290 	}
2291 
2292 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2293 	if (!list)
2294 		return (ENOMEM);
2295 
2296 	count = 0;
2297 	TAILQ_FOREACH(child, &dev->children, link) {
2298 		list[count] = child;
2299 		count++;
2300 	}
2301 
2302 	*devlistp = list;
2303 	*devcountp = count;
2304 
2305 	return (0);
2306 }
2307 
2308 /**
2309  * @brief Return the current driver for the device or @c NULL if there
2310  * is no driver currently attached
2311  */
2312 driver_t *
2313 device_get_driver(device_t dev)
2314 {
2315 	return (dev->driver);
2316 }
2317 
2318 /**
2319  * @brief Return the current devclass for the device or @c NULL if
2320  * there is none.
2321  */
2322 devclass_t
2323 device_get_devclass(device_t dev)
2324 {
2325 	return (dev->devclass);
2326 }
2327 
2328 /**
2329  * @brief Return the name of the device's devclass or @c NULL if there
2330  * is none.
2331  */
2332 const char *
2333 device_get_name(device_t dev)
2334 {
2335 	if (dev != NULL && dev->devclass)
2336 		return (devclass_get_name(dev->devclass));
2337 	return (NULL);
2338 }
2339 
2340 /**
2341  * @brief Return a string containing the device's devclass name
2342  * followed by an ascii representation of the device's unit number
2343  * (e.g. @c "foo2").
2344  */
2345 const char *
2346 device_get_nameunit(device_t dev)
2347 {
2348 	return (dev->nameunit);
2349 }
2350 
2351 /**
2352  * @brief Return the device's unit number.
2353  */
2354 int
2355 device_get_unit(device_t dev)
2356 {
2357 	return (dev->unit);
2358 }
2359 
2360 /**
2361  * @brief Return the device's description string
2362  */
2363 const char *
2364 device_get_desc(device_t dev)
2365 {
2366 	return (dev->desc);
2367 }
2368 
2369 /**
2370  * @brief Return the device's flags
2371  */
2372 uint32_t
2373 device_get_flags(device_t dev)
2374 {
2375 	return (dev->devflags);
2376 }
2377 
2378 struct sysctl_ctx_list *
2379 device_get_sysctl_ctx(device_t dev)
2380 {
2381 	return (&dev->sysctl_ctx);
2382 }
2383 
2384 struct sysctl_oid *
2385 device_get_sysctl_tree(device_t dev)
2386 {
2387 	return (dev->sysctl_tree);
2388 }
2389 
2390 /**
2391  * @brief Print the name of the device followed by a colon and a space
2392  *
2393  * @returns the number of characters printed
2394  */
2395 int
2396 device_print_prettyname(device_t dev)
2397 {
2398 	const char *name = device_get_name(dev);
2399 
2400 	if (name == NULL)
2401 		return (printf("unknown: "));
2402 	return (printf("%s%d: ", name, device_get_unit(dev)));
2403 }
2404 
2405 /**
2406  * @brief Print the name of the device followed by a colon, a space
2407  * and the result of calling vprintf() with the value of @p fmt and
2408  * the following arguments.
2409  *
2410  * @returns the number of characters printed
2411  */
2412 int
2413 device_printf(device_t dev, const char * fmt, ...)
2414 {
2415 	va_list ap;
2416 	int retval;
2417 
2418 	retval = device_print_prettyname(dev);
2419 	va_start(ap, fmt);
2420 	retval += vprintf(fmt, ap);
2421 	va_end(ap);
2422 	return (retval);
2423 }
2424 
2425 /**
2426  * @internal
2427  */
2428 static void
2429 device_set_desc_internal(device_t dev, const char* desc, int copy)
2430 {
2431 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2432 		free(dev->desc, M_BUS);
2433 		dev->flags &= ~DF_DESCMALLOCED;
2434 		dev->desc = NULL;
2435 	}
2436 
2437 	if (copy && desc) {
2438 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2439 		if (dev->desc) {
2440 			strcpy(dev->desc, desc);
2441 			dev->flags |= DF_DESCMALLOCED;
2442 		}
2443 	} else {
2444 		/* Avoid a -Wcast-qual warning */
2445 		dev->desc = (char *)(uintptr_t) desc;
2446 	}
2447 
2448 	bus_data_generation_update();
2449 }
2450 
2451 /**
2452  * @brief Set the device's description
2453  *
2454  * The value of @c desc should be a string constant that will not
2455  * change (at least until the description is changed in a subsequent
2456  * call to device_set_desc() or device_set_desc_copy()).
2457  */
2458 void
2459 device_set_desc(device_t dev, const char* desc)
2460 {
2461 	device_set_desc_internal(dev, desc, FALSE);
2462 }
2463 
2464 /**
2465  * @brief Set the device's description
2466  *
2467  * The string pointed to by @c desc is copied. Use this function if
2468  * the device description is generated, (e.g. with sprintf()).
2469  */
2470 void
2471 device_set_desc_copy(device_t dev, const char* desc)
2472 {
2473 	device_set_desc_internal(dev, desc, TRUE);
2474 }
2475 
2476 /**
2477  * @brief Set the device's flags
2478  */
2479 void
2480 device_set_flags(device_t dev, uint32_t flags)
2481 {
2482 	dev->devflags = flags;
2483 }
2484 
2485 /**
2486  * @brief Return the device's softc field
2487  *
2488  * The softc is allocated and zeroed when a driver is attached, based
2489  * on the size field of the driver.
2490  */
2491 void *
2492 device_get_softc(device_t dev)
2493 {
2494 	return (dev->softc);
2495 }
2496 
2497 /**
2498  * @brief Set the device's softc field
2499  *
2500  * Most drivers do not need to use this since the softc is allocated
2501  * automatically when the driver is attached.
2502  */
2503 void
2504 device_set_softc(device_t dev, void *softc)
2505 {
2506 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2507 		free(dev->softc, M_BUS_SC);
2508 	dev->softc = softc;
2509 	if (dev->softc)
2510 		dev->flags |= DF_EXTERNALSOFTC;
2511 	else
2512 		dev->flags &= ~DF_EXTERNALSOFTC;
2513 }
2514 
2515 /**
2516  * @brief Free claimed softc
2517  *
2518  * Most drivers do not need to use this since the softc is freed
2519  * automatically when the driver is detached.
2520  */
2521 void
2522 device_free_softc(void *softc)
2523 {
2524 	free(softc, M_BUS_SC);
2525 }
2526 
2527 /**
2528  * @brief Claim softc
2529  *
2530  * This function can be used to let the driver free the automatically
2531  * allocated softc using "device_free_softc()". This function is
2532  * useful when the driver is refcounting the softc and the softc
2533  * cannot be freed when the "device_detach" method is called.
2534  */
2535 void
2536 device_claim_softc(device_t dev)
2537 {
2538 	if (dev->softc)
2539 		dev->flags |= DF_EXTERNALSOFTC;
2540 	else
2541 		dev->flags &= ~DF_EXTERNALSOFTC;
2542 }
2543 
2544 /**
2545  * @brief Get the device's ivars field
2546  *
2547  * The ivars field is used by the parent device to store per-device
2548  * state (e.g. the physical location of the device or a list of
2549  * resources).
2550  */
2551 void *
2552 device_get_ivars(device_t dev)
2553 {
2554 
2555 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2556 	return (dev->ivars);
2557 }
2558 
2559 /**
2560  * @brief Set the device's ivars field
2561  */
2562 void
2563 device_set_ivars(device_t dev, void * ivars)
2564 {
2565 
2566 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2567 	dev->ivars = ivars;
2568 }
2569 
2570 /**
2571  * @brief Return the device's state
2572  */
2573 device_state_t
2574 device_get_state(device_t dev)
2575 {
2576 	return (dev->state);
2577 }
2578 
2579 /**
2580  * @brief Set the DF_ENABLED flag for the device
2581  */
2582 void
2583 device_enable(device_t dev)
2584 {
2585 	dev->flags |= DF_ENABLED;
2586 }
2587 
2588 /**
2589  * @brief Clear the DF_ENABLED flag for the device
2590  */
2591 void
2592 device_disable(device_t dev)
2593 {
2594 	dev->flags &= ~DF_ENABLED;
2595 }
2596 
2597 /**
2598  * @brief Increment the busy counter for the device
2599  */
2600 void
2601 device_busy(device_t dev)
2602 {
2603 	if (dev->state < DS_ATTACHING)
2604 		panic("device_busy: called for unattached device");
2605 	if (dev->busy == 0 && dev->parent)
2606 		device_busy(dev->parent);
2607 	dev->busy++;
2608 	if (dev->state == DS_ATTACHED)
2609 		dev->state = DS_BUSY;
2610 }
2611 
2612 /**
2613  * @brief Decrement the busy counter for the device
2614  */
2615 void
2616 device_unbusy(device_t dev)
2617 {
2618 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2619 	    dev->state != DS_ATTACHING)
2620 		panic("device_unbusy: called for non-busy device %s",
2621 		    device_get_nameunit(dev));
2622 	dev->busy--;
2623 	if (dev->busy == 0) {
2624 		if (dev->parent)
2625 			device_unbusy(dev->parent);
2626 		if (dev->state == DS_BUSY)
2627 			dev->state = DS_ATTACHED;
2628 	}
2629 }
2630 
2631 /**
2632  * @brief Set the DF_QUIET flag for the device
2633  */
2634 void
2635 device_quiet(device_t dev)
2636 {
2637 	dev->flags |= DF_QUIET;
2638 }
2639 
2640 /**
2641  * @brief Clear the DF_QUIET flag for the device
2642  */
2643 void
2644 device_verbose(device_t dev)
2645 {
2646 	dev->flags &= ~DF_QUIET;
2647 }
2648 
2649 /**
2650  * @brief Return non-zero if the DF_QUIET flag is set on the device
2651  */
2652 int
2653 device_is_quiet(device_t dev)
2654 {
2655 	return ((dev->flags & DF_QUIET) != 0);
2656 }
2657 
2658 /**
2659  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2660  */
2661 int
2662 device_is_enabled(device_t dev)
2663 {
2664 	return ((dev->flags & DF_ENABLED) != 0);
2665 }
2666 
2667 /**
2668  * @brief Return non-zero if the device was successfully probed
2669  */
2670 int
2671 device_is_alive(device_t dev)
2672 {
2673 	return (dev->state >= DS_ALIVE);
2674 }
2675 
2676 /**
2677  * @brief Return non-zero if the device currently has a driver
2678  * attached to it
2679  */
2680 int
2681 device_is_attached(device_t dev)
2682 {
2683 	return (dev->state >= DS_ATTACHED);
2684 }
2685 
2686 /**
2687  * @brief Return non-zero if the device is currently suspended.
2688  */
2689 int
2690 device_is_suspended(device_t dev)
2691 {
2692 	return ((dev->flags & DF_SUSPENDED) != 0);
2693 }
2694 
2695 /**
2696  * @brief Set the devclass of a device
2697  * @see devclass_add_device().
2698  */
2699 int
2700 device_set_devclass(device_t dev, const char *classname)
2701 {
2702 	devclass_t dc;
2703 	int error;
2704 
2705 	if (!classname) {
2706 		if (dev->devclass)
2707 			devclass_delete_device(dev->devclass, dev);
2708 		return (0);
2709 	}
2710 
2711 	if (dev->devclass) {
2712 		printf("device_set_devclass: device class already set\n");
2713 		return (EINVAL);
2714 	}
2715 
2716 	dc = devclass_find_internal(classname, NULL, TRUE);
2717 	if (!dc)
2718 		return (ENOMEM);
2719 
2720 	error = devclass_add_device(dc, dev);
2721 
2722 	bus_data_generation_update();
2723 	return (error);
2724 }
2725 
2726 /**
2727  * @brief Set the devclass of a device and mark the devclass fixed.
2728  * @see device_set_devclass()
2729  */
2730 int
2731 device_set_devclass_fixed(device_t dev, const char *classname)
2732 {
2733 	int error;
2734 
2735 	if (classname == NULL)
2736 		return (EINVAL);
2737 
2738 	error = device_set_devclass(dev, classname);
2739 	if (error)
2740 		return (error);
2741 	dev->flags |= DF_FIXEDCLASS;
2742 	return (0);
2743 }
2744 
2745 /**
2746  * @brief Set the driver of a device
2747  *
2748  * @retval 0		success
2749  * @retval EBUSY	the device already has a driver attached
2750  * @retval ENOMEM	a memory allocation failure occurred
2751  */
2752 int
2753 device_set_driver(device_t dev, driver_t *driver)
2754 {
2755 	if (dev->state >= DS_ATTACHED)
2756 		return (EBUSY);
2757 
2758 	if (dev->driver == driver)
2759 		return (0);
2760 
2761 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2762 		free(dev->softc, M_BUS_SC);
2763 		dev->softc = NULL;
2764 	}
2765 	device_set_desc(dev, NULL);
2766 	kobj_delete((kobj_t) dev, NULL);
2767 	dev->driver = driver;
2768 	if (driver) {
2769 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2770 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2771 			dev->softc = malloc(driver->size, M_BUS_SC,
2772 			    M_NOWAIT | M_ZERO);
2773 			if (!dev->softc) {
2774 				kobj_delete((kobj_t) dev, NULL);
2775 				kobj_init((kobj_t) dev, &null_class);
2776 				dev->driver = NULL;
2777 				return (ENOMEM);
2778 			}
2779 		}
2780 	} else {
2781 		kobj_init((kobj_t) dev, &null_class);
2782 	}
2783 
2784 	bus_data_generation_update();
2785 	return (0);
2786 }
2787 
2788 /**
2789  * @brief Probe a device, and return this status.
2790  *
2791  * This function is the core of the device autoconfiguration
2792  * system. Its purpose is to select a suitable driver for a device and
2793  * then call that driver to initialise the hardware appropriately. The
2794  * driver is selected by calling the DEVICE_PROBE() method of a set of
2795  * candidate drivers and then choosing the driver which returned the
2796  * best value. This driver is then attached to the device using
2797  * device_attach().
2798  *
2799  * The set of suitable drivers is taken from the list of drivers in
2800  * the parent device's devclass. If the device was originally created
2801  * with a specific class name (see device_add_child()), only drivers
2802  * with that name are probed, otherwise all drivers in the devclass
2803  * are probed. If no drivers return successful probe values in the
2804  * parent devclass, the search continues in the parent of that
2805  * devclass (see devclass_get_parent()) if any.
2806  *
2807  * @param dev		the device to initialise
2808  *
2809  * @retval 0		success
2810  * @retval ENXIO	no driver was found
2811  * @retval ENOMEM	memory allocation failure
2812  * @retval non-zero	some other unix error code
2813  * @retval -1		Device already attached
2814  */
2815 int
2816 device_probe(device_t dev)
2817 {
2818 	int error;
2819 
2820 	GIANT_REQUIRED;
2821 
2822 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2823 		return (-1);
2824 
2825 	if (!(dev->flags & DF_ENABLED)) {
2826 		if (bootverbose && device_get_name(dev) != NULL) {
2827 			device_print_prettyname(dev);
2828 			printf("not probed (disabled)\n");
2829 		}
2830 		return (-1);
2831 	}
2832 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2833 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2834 		    !(dev->flags & DF_DONENOMATCH)) {
2835 			BUS_PROBE_NOMATCH(dev->parent, dev);
2836 			devnomatch(dev);
2837 			dev->flags |= DF_DONENOMATCH;
2838 		}
2839 		return (error);
2840 	}
2841 	return (0);
2842 }
2843 
2844 /**
2845  * @brief Probe a device and attach a driver if possible
2846  *
2847  * calls device_probe() and attaches if that was successful.
2848  */
2849 int
2850 device_probe_and_attach(device_t dev)
2851 {
2852 	int error;
2853 
2854 	GIANT_REQUIRED;
2855 
2856 	error = device_probe(dev);
2857 	if (error == -1)
2858 		return (0);
2859 	else if (error != 0)
2860 		return (error);
2861 
2862 	CURVNET_SET_QUIET(vnet0);
2863 	error = device_attach(dev);
2864 	CURVNET_RESTORE();
2865 	return error;
2866 }
2867 
2868 /**
2869  * @brief Attach a device driver to a device
2870  *
2871  * This function is a wrapper around the DEVICE_ATTACH() driver
2872  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2873  * device's sysctl tree, optionally prints a description of the device
2874  * and queues a notification event for user-based device management
2875  * services.
2876  *
2877  * Normally this function is only called internally from
2878  * device_probe_and_attach().
2879  *
2880  * @param dev		the device to initialise
2881  *
2882  * @retval 0		success
2883  * @retval ENXIO	no driver was found
2884  * @retval ENOMEM	memory allocation failure
2885  * @retval non-zero	some other unix error code
2886  */
2887 int
2888 device_attach(device_t dev)
2889 {
2890 	uint64_t attachtime;
2891 	int error;
2892 
2893 	if (resource_disabled(dev->driver->name, dev->unit)) {
2894 		device_disable(dev);
2895 		if (bootverbose)
2896 			 device_printf(dev, "disabled via hints entry\n");
2897 		return (ENXIO);
2898 	}
2899 
2900 	device_sysctl_init(dev);
2901 	if (!device_is_quiet(dev))
2902 		device_print_child(dev->parent, dev);
2903 	attachtime = get_cyclecount();
2904 	dev->state = DS_ATTACHING;
2905 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2906 		printf("device_attach: %s%d attach returned %d\n",
2907 		    dev->driver->name, dev->unit, error);
2908 		if (!(dev->flags & DF_FIXEDCLASS))
2909 			devclass_delete_device(dev->devclass, dev);
2910 		(void)device_set_driver(dev, NULL);
2911 		device_sysctl_fini(dev);
2912 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2913 		dev->state = DS_NOTPRESENT;
2914 		return (error);
2915 	}
2916 	attachtime = get_cyclecount() - attachtime;
2917 	/*
2918 	 * 4 bits per device is a reasonable value for desktop and server
2919 	 * hardware with good get_cyclecount() implementations, but WILL
2920 	 * need to be adjusted on other platforms.
2921 	 */
2922 #define	RANDOM_PROBE_BIT_GUESS	4
2923 	if (bootverbose)
2924 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2925 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2926 		    dev->driver->name, dev->unit);
2927 	random_harvest_direct(&attachtime, sizeof(attachtime),
2928 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2929 	device_sysctl_update(dev);
2930 	if (dev->busy)
2931 		dev->state = DS_BUSY;
2932 	else
2933 		dev->state = DS_ATTACHED;
2934 	dev->flags &= ~DF_DONENOMATCH;
2935 	devadded(dev);
2936 	return (0);
2937 }
2938 
2939 /**
2940  * @brief Detach a driver from a device
2941  *
2942  * This function is a wrapper around the DEVICE_DETACH() driver
2943  * method. If the call to DEVICE_DETACH() succeeds, it calls
2944  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2945  * notification event for user-based device management services and
2946  * cleans up the device's sysctl tree.
2947  *
2948  * @param dev		the device to un-initialise
2949  *
2950  * @retval 0		success
2951  * @retval ENXIO	no driver was found
2952  * @retval ENOMEM	memory allocation failure
2953  * @retval non-zero	some other unix error code
2954  */
2955 int
2956 device_detach(device_t dev)
2957 {
2958 	int error;
2959 
2960 	GIANT_REQUIRED;
2961 
2962 	PDEBUG(("%s", DEVICENAME(dev)));
2963 	if (dev->state == DS_BUSY)
2964 		return (EBUSY);
2965 	if (dev->state != DS_ATTACHED)
2966 		return (0);
2967 
2968 	if ((error = DEVICE_DETACH(dev)) != 0)
2969 		return (error);
2970 	devremoved(dev);
2971 	if (!device_is_quiet(dev))
2972 		device_printf(dev, "detached\n");
2973 	if (dev->parent)
2974 		BUS_CHILD_DETACHED(dev->parent, dev);
2975 
2976 	if (!(dev->flags & DF_FIXEDCLASS))
2977 		devclass_delete_device(dev->devclass, dev);
2978 
2979 	device_verbose(dev);
2980 	dev->state = DS_NOTPRESENT;
2981 	(void)device_set_driver(dev, NULL);
2982 	device_sysctl_fini(dev);
2983 
2984 	return (0);
2985 }
2986 
2987 /**
2988  * @brief Tells a driver to quiesce itself.
2989  *
2990  * This function is a wrapper around the DEVICE_QUIESCE() driver
2991  * method. If the call to DEVICE_QUIESCE() succeeds.
2992  *
2993  * @param dev		the device to quiesce
2994  *
2995  * @retval 0		success
2996  * @retval ENXIO	no driver was found
2997  * @retval ENOMEM	memory allocation failure
2998  * @retval non-zero	some other unix error code
2999  */
3000 int
3001 device_quiesce(device_t dev)
3002 {
3003 
3004 	PDEBUG(("%s", DEVICENAME(dev)));
3005 	if (dev->state == DS_BUSY)
3006 		return (EBUSY);
3007 	if (dev->state != DS_ATTACHED)
3008 		return (0);
3009 
3010 	return (DEVICE_QUIESCE(dev));
3011 }
3012 
3013 /**
3014  * @brief Notify a device of system shutdown
3015  *
3016  * This function calls the DEVICE_SHUTDOWN() driver method if the
3017  * device currently has an attached driver.
3018  *
3019  * @returns the value returned by DEVICE_SHUTDOWN()
3020  */
3021 int
3022 device_shutdown(device_t dev)
3023 {
3024 	if (dev->state < DS_ATTACHED)
3025 		return (0);
3026 	return (DEVICE_SHUTDOWN(dev));
3027 }
3028 
3029 /**
3030  * @brief Set the unit number of a device
3031  *
3032  * This function can be used to override the unit number used for a
3033  * device (e.g. to wire a device to a pre-configured unit number).
3034  */
3035 int
3036 device_set_unit(device_t dev, int unit)
3037 {
3038 	devclass_t dc;
3039 	int err;
3040 
3041 	dc = device_get_devclass(dev);
3042 	if (unit < dc->maxunit && dc->devices[unit])
3043 		return (EBUSY);
3044 	err = devclass_delete_device(dc, dev);
3045 	if (err)
3046 		return (err);
3047 	dev->unit = unit;
3048 	err = devclass_add_device(dc, dev);
3049 	if (err)
3050 		return (err);
3051 
3052 	bus_data_generation_update();
3053 	return (0);
3054 }
3055 
3056 /*======================================*/
3057 /*
3058  * Some useful method implementations to make life easier for bus drivers.
3059  */
3060 
3061 void
3062 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3063 {
3064 
3065 	bzero(args, sz);
3066 	args->size = sz;
3067 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3068 }
3069 
3070 /**
3071  * @brief Initialise a resource list.
3072  *
3073  * @param rl		the resource list to initialise
3074  */
3075 void
3076 resource_list_init(struct resource_list *rl)
3077 {
3078 	STAILQ_INIT(rl);
3079 }
3080 
3081 /**
3082  * @brief Reclaim memory used by a resource list.
3083  *
3084  * This function frees the memory for all resource entries on the list
3085  * (if any).
3086  *
3087  * @param rl		the resource list to free
3088  */
3089 void
3090 resource_list_free(struct resource_list *rl)
3091 {
3092 	struct resource_list_entry *rle;
3093 
3094 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3095 		if (rle->res)
3096 			panic("resource_list_free: resource entry is busy");
3097 		STAILQ_REMOVE_HEAD(rl, link);
3098 		free(rle, M_BUS);
3099 	}
3100 }
3101 
3102 /**
3103  * @brief Add a resource entry.
3104  *
3105  * This function adds a resource entry using the given @p type, @p
3106  * start, @p end and @p count values. A rid value is chosen by
3107  * searching sequentially for the first unused rid starting at zero.
3108  *
3109  * @param rl		the resource list to edit
3110  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3111  * @param start		the start address of the resource
3112  * @param end		the end address of the resource
3113  * @param count		XXX end-start+1
3114  */
3115 int
3116 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3117     rman_res_t end, rman_res_t count)
3118 {
3119 	int rid;
3120 
3121 	rid = 0;
3122 	while (resource_list_find(rl, type, rid) != NULL)
3123 		rid++;
3124 	resource_list_add(rl, type, rid, start, end, count);
3125 	return (rid);
3126 }
3127 
3128 /**
3129  * @brief Add or modify a resource entry.
3130  *
3131  * If an existing entry exists with the same type and rid, it will be
3132  * modified using the given values of @p start, @p end and @p
3133  * count. If no entry exists, a new one will be created using the
3134  * given values.  The resource list entry that matches is then returned.
3135  *
3136  * @param rl		the resource list to edit
3137  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3138  * @param rid		the resource identifier
3139  * @param start		the start address of the resource
3140  * @param end		the end address of the resource
3141  * @param count		XXX end-start+1
3142  */
3143 struct resource_list_entry *
3144 resource_list_add(struct resource_list *rl, int type, int rid,
3145     rman_res_t start, rman_res_t end, rman_res_t count)
3146 {
3147 	struct resource_list_entry *rle;
3148 
3149 	rle = resource_list_find(rl, type, rid);
3150 	if (!rle) {
3151 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3152 		    M_NOWAIT);
3153 		if (!rle)
3154 			panic("resource_list_add: can't record entry");
3155 		STAILQ_INSERT_TAIL(rl, rle, link);
3156 		rle->type = type;
3157 		rle->rid = rid;
3158 		rle->res = NULL;
3159 		rle->flags = 0;
3160 	}
3161 
3162 	if (rle->res)
3163 		panic("resource_list_add: resource entry is busy");
3164 
3165 	rle->start = start;
3166 	rle->end = end;
3167 	rle->count = count;
3168 	return (rle);
3169 }
3170 
3171 /**
3172  * @brief Determine if a resource entry is busy.
3173  *
3174  * Returns true if a resource entry is busy meaning that it has an
3175  * associated resource that is not an unallocated "reserved" resource.
3176  *
3177  * @param rl		the resource list to search
3178  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3179  * @param rid		the resource identifier
3180  *
3181  * @returns Non-zero if the entry is busy, zero otherwise.
3182  */
3183 int
3184 resource_list_busy(struct resource_list *rl, int type, int rid)
3185 {
3186 	struct resource_list_entry *rle;
3187 
3188 	rle = resource_list_find(rl, type, rid);
3189 	if (rle == NULL || rle->res == NULL)
3190 		return (0);
3191 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3192 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3193 		    ("reserved resource is active"));
3194 		return (0);
3195 	}
3196 	return (1);
3197 }
3198 
3199 /**
3200  * @brief Determine if a resource entry is reserved.
3201  *
3202  * Returns true if a resource entry is reserved meaning that it has an
3203  * associated "reserved" resource.  The resource can either be
3204  * allocated or unallocated.
3205  *
3206  * @param rl		the resource list to search
3207  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3208  * @param rid		the resource identifier
3209  *
3210  * @returns Non-zero if the entry is reserved, zero otherwise.
3211  */
3212 int
3213 resource_list_reserved(struct resource_list *rl, int type, int rid)
3214 {
3215 	struct resource_list_entry *rle;
3216 
3217 	rle = resource_list_find(rl, type, rid);
3218 	if (rle != NULL && rle->flags & RLE_RESERVED)
3219 		return (1);
3220 	return (0);
3221 }
3222 
3223 /**
3224  * @brief Find a resource entry by type and rid.
3225  *
3226  * @param rl		the resource list to search
3227  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3228  * @param rid		the resource identifier
3229  *
3230  * @returns the resource entry pointer or NULL if there is no such
3231  * entry.
3232  */
3233 struct resource_list_entry *
3234 resource_list_find(struct resource_list *rl, int type, int rid)
3235 {
3236 	struct resource_list_entry *rle;
3237 
3238 	STAILQ_FOREACH(rle, rl, link) {
3239 		if (rle->type == type && rle->rid == rid)
3240 			return (rle);
3241 	}
3242 	return (NULL);
3243 }
3244 
3245 /**
3246  * @brief Delete a resource entry.
3247  *
3248  * @param rl		the resource list to edit
3249  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3250  * @param rid		the resource identifier
3251  */
3252 void
3253 resource_list_delete(struct resource_list *rl, int type, int rid)
3254 {
3255 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3256 
3257 	if (rle) {
3258 		if (rle->res != NULL)
3259 			panic("resource_list_delete: resource has not been released");
3260 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3261 		free(rle, M_BUS);
3262 	}
3263 }
3264 
3265 /**
3266  * @brief Allocate a reserved resource
3267  *
3268  * This can be used by busses to force the allocation of resources
3269  * that are always active in the system even if they are not allocated
3270  * by a driver (e.g. PCI BARs).  This function is usually called when
3271  * adding a new child to the bus.  The resource is allocated from the
3272  * parent bus when it is reserved.  The resource list entry is marked
3273  * with RLE_RESERVED to note that it is a reserved resource.
3274  *
3275  * Subsequent attempts to allocate the resource with
3276  * resource_list_alloc() will succeed the first time and will set
3277  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3278  * resource that has been allocated is released with
3279  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3280  * the actual resource remains allocated.  The resource can be released to
3281  * the parent bus by calling resource_list_unreserve().
3282  *
3283  * @param rl		the resource list to allocate from
3284  * @param bus		the parent device of @p child
3285  * @param child		the device for which the resource is being reserved
3286  * @param type		the type of resource to allocate
3287  * @param rid		a pointer to the resource identifier
3288  * @param start		hint at the start of the resource range - pass
3289  *			@c 0 for any start address
3290  * @param end		hint at the end of the resource range - pass
3291  *			@c ~0 for any end address
3292  * @param count		hint at the size of range required - pass @c 1
3293  *			for any size
3294  * @param flags		any extra flags to control the resource
3295  *			allocation - see @c RF_XXX flags in
3296  *			<sys/rman.h> for details
3297  *
3298  * @returns		the resource which was allocated or @c NULL if no
3299  *			resource could be allocated
3300  */
3301 struct resource *
3302 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3303     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3304 {
3305 	struct resource_list_entry *rle = NULL;
3306 	int passthrough = (device_get_parent(child) != bus);
3307 	struct resource *r;
3308 
3309 	if (passthrough)
3310 		panic(
3311     "resource_list_reserve() should only be called for direct children");
3312 	if (flags & RF_ACTIVE)
3313 		panic(
3314     "resource_list_reserve() should only reserve inactive resources");
3315 
3316 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3317 	    flags);
3318 	if (r != NULL) {
3319 		rle = resource_list_find(rl, type, *rid);
3320 		rle->flags |= RLE_RESERVED;
3321 	}
3322 	return (r);
3323 }
3324 
3325 /**
3326  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3327  *
3328  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3329  * and passing the allocation up to the parent of @p bus. This assumes
3330  * that the first entry of @c device_get_ivars(child) is a struct
3331  * resource_list. This also handles 'passthrough' allocations where a
3332  * child is a remote descendant of bus by passing the allocation up to
3333  * the parent of bus.
3334  *
3335  * Typically, a bus driver would store a list of child resources
3336  * somewhere in the child device's ivars (see device_get_ivars()) and
3337  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3338  * then call resource_list_alloc() to perform the allocation.
3339  *
3340  * @param rl		the resource list to allocate from
3341  * @param bus		the parent device of @p child
3342  * @param child		the device which is requesting an allocation
3343  * @param type		the type of resource to allocate
3344  * @param rid		a pointer to the resource identifier
3345  * @param start		hint at the start of the resource range - pass
3346  *			@c 0 for any start address
3347  * @param end		hint at the end of the resource range - pass
3348  *			@c ~0 for any end address
3349  * @param count		hint at the size of range required - pass @c 1
3350  *			for any size
3351  * @param flags		any extra flags to control the resource
3352  *			allocation - see @c RF_XXX flags in
3353  *			<sys/rman.h> for details
3354  *
3355  * @returns		the resource which was allocated or @c NULL if no
3356  *			resource could be allocated
3357  */
3358 struct resource *
3359 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3360     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3361 {
3362 	struct resource_list_entry *rle = NULL;
3363 	int passthrough = (device_get_parent(child) != bus);
3364 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3365 
3366 	if (passthrough) {
3367 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3368 		    type, rid, start, end, count, flags));
3369 	}
3370 
3371 	rle = resource_list_find(rl, type, *rid);
3372 
3373 	if (!rle)
3374 		return (NULL);		/* no resource of that type/rid */
3375 
3376 	if (rle->res) {
3377 		if (rle->flags & RLE_RESERVED) {
3378 			if (rle->flags & RLE_ALLOCATED)
3379 				return (NULL);
3380 			if ((flags & RF_ACTIVE) &&
3381 			    bus_activate_resource(child, type, *rid,
3382 			    rle->res) != 0)
3383 				return (NULL);
3384 			rle->flags |= RLE_ALLOCATED;
3385 			return (rle->res);
3386 		}
3387 		device_printf(bus,
3388 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3389 		    type, device_get_nameunit(child));
3390 		return (NULL);
3391 	}
3392 
3393 	if (isdefault) {
3394 		start = rle->start;
3395 		count = ulmax(count, rle->count);
3396 		end = ulmax(rle->end, start + count - 1);
3397 	}
3398 
3399 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3400 	    type, rid, start, end, count, flags);
3401 
3402 	/*
3403 	 * Record the new range.
3404 	 */
3405 	if (rle->res) {
3406 		rle->start = rman_get_start(rle->res);
3407 		rle->end = rman_get_end(rle->res);
3408 		rle->count = count;
3409 	}
3410 
3411 	return (rle->res);
3412 }
3413 
3414 /**
3415  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3416  *
3417  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3418  * used with resource_list_alloc().
3419  *
3420  * @param rl		the resource list which was allocated from
3421  * @param bus		the parent device of @p child
3422  * @param child		the device which is requesting a release
3423  * @param type		the type of resource to release
3424  * @param rid		the resource identifier
3425  * @param res		the resource to release
3426  *
3427  * @retval 0		success
3428  * @retval non-zero	a standard unix error code indicating what
3429  *			error condition prevented the operation
3430  */
3431 int
3432 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3433     int type, int rid, struct resource *res)
3434 {
3435 	struct resource_list_entry *rle = NULL;
3436 	int passthrough = (device_get_parent(child) != bus);
3437 	int error;
3438 
3439 	if (passthrough) {
3440 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3441 		    type, rid, res));
3442 	}
3443 
3444 	rle = resource_list_find(rl, type, rid);
3445 
3446 	if (!rle)
3447 		panic("resource_list_release: can't find resource");
3448 	if (!rle->res)
3449 		panic("resource_list_release: resource entry is not busy");
3450 	if (rle->flags & RLE_RESERVED) {
3451 		if (rle->flags & RLE_ALLOCATED) {
3452 			if (rman_get_flags(res) & RF_ACTIVE) {
3453 				error = bus_deactivate_resource(child, type,
3454 				    rid, res);
3455 				if (error)
3456 					return (error);
3457 			}
3458 			rle->flags &= ~RLE_ALLOCATED;
3459 			return (0);
3460 		}
3461 		return (EINVAL);
3462 	}
3463 
3464 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3465 	    type, rid, res);
3466 	if (error)
3467 		return (error);
3468 
3469 	rle->res = NULL;
3470 	return (0);
3471 }
3472 
3473 /**
3474  * @brief Release all active resources of a given type
3475  *
3476  * Release all active resources of a specified type.  This is intended
3477  * to be used to cleanup resources leaked by a driver after detach or
3478  * a failed attach.
3479  *
3480  * @param rl		the resource list which was allocated from
3481  * @param bus		the parent device of @p child
3482  * @param child		the device whose active resources are being released
3483  * @param type		the type of resources to release
3484  *
3485  * @retval 0		success
3486  * @retval EBUSY	at least one resource was active
3487  */
3488 int
3489 resource_list_release_active(struct resource_list *rl, device_t bus,
3490     device_t child, int type)
3491 {
3492 	struct resource_list_entry *rle;
3493 	int error, retval;
3494 
3495 	retval = 0;
3496 	STAILQ_FOREACH(rle, rl, link) {
3497 		if (rle->type != type)
3498 			continue;
3499 		if (rle->res == NULL)
3500 			continue;
3501 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3502 		    RLE_RESERVED)
3503 			continue;
3504 		retval = EBUSY;
3505 		error = resource_list_release(rl, bus, child, type,
3506 		    rman_get_rid(rle->res), rle->res);
3507 		if (error != 0)
3508 			device_printf(bus,
3509 			    "Failed to release active resource: %d\n", error);
3510 	}
3511 	return (retval);
3512 }
3513 
3514 
3515 /**
3516  * @brief Fully release a reserved resource
3517  *
3518  * Fully releases a resource reserved via resource_list_reserve().
3519  *
3520  * @param rl		the resource list which was allocated from
3521  * @param bus		the parent device of @p child
3522  * @param child		the device whose reserved resource is being released
3523  * @param type		the type of resource to release
3524  * @param rid		the resource identifier
3525  * @param res		the resource to release
3526  *
3527  * @retval 0		success
3528  * @retval non-zero	a standard unix error code indicating what
3529  *			error condition prevented the operation
3530  */
3531 int
3532 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3533     int type, int rid)
3534 {
3535 	struct resource_list_entry *rle = NULL;
3536 	int passthrough = (device_get_parent(child) != bus);
3537 
3538 	if (passthrough)
3539 		panic(
3540     "resource_list_unreserve() should only be called for direct children");
3541 
3542 	rle = resource_list_find(rl, type, rid);
3543 
3544 	if (!rle)
3545 		panic("resource_list_unreserve: can't find resource");
3546 	if (!(rle->flags & RLE_RESERVED))
3547 		return (EINVAL);
3548 	if (rle->flags & RLE_ALLOCATED)
3549 		return (EBUSY);
3550 	rle->flags &= ~RLE_RESERVED;
3551 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3552 }
3553 
3554 /**
3555  * @brief Print a description of resources in a resource list
3556  *
3557  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3558  * The name is printed if at least one resource of the given type is available.
3559  * The format is used to print resource start and end.
3560  *
3561  * @param rl		the resource list to print
3562  * @param name		the name of @p type, e.g. @c "memory"
3563  * @param type		type type of resource entry to print
3564  * @param format	printf(9) format string to print resource
3565  *			start and end values
3566  *
3567  * @returns		the number of characters printed
3568  */
3569 int
3570 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3571     const char *format)
3572 {
3573 	struct resource_list_entry *rle;
3574 	int printed, retval;
3575 
3576 	printed = 0;
3577 	retval = 0;
3578 	/* Yes, this is kinda cheating */
3579 	STAILQ_FOREACH(rle, rl, link) {
3580 		if (rle->type == type) {
3581 			if (printed == 0)
3582 				retval += printf(" %s ", name);
3583 			else
3584 				retval += printf(",");
3585 			printed++;
3586 			retval += printf(format, rle->start);
3587 			if (rle->count > 1) {
3588 				retval += printf("-");
3589 				retval += printf(format, rle->start +
3590 						 rle->count - 1);
3591 			}
3592 		}
3593 	}
3594 	return (retval);
3595 }
3596 
3597 /**
3598  * @brief Releases all the resources in a list.
3599  *
3600  * @param rl		The resource list to purge.
3601  *
3602  * @returns		nothing
3603  */
3604 void
3605 resource_list_purge(struct resource_list *rl)
3606 {
3607 	struct resource_list_entry *rle;
3608 
3609 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3610 		if (rle->res)
3611 			bus_release_resource(rman_get_device(rle->res),
3612 			    rle->type, rle->rid, rle->res);
3613 		STAILQ_REMOVE_HEAD(rl, link);
3614 		free(rle, M_BUS);
3615 	}
3616 }
3617 
3618 device_t
3619 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3620 {
3621 
3622 	return (device_add_child_ordered(dev, order, name, unit));
3623 }
3624 
3625 /**
3626  * @brief Helper function for implementing DEVICE_PROBE()
3627  *
3628  * This function can be used to help implement the DEVICE_PROBE() for
3629  * a bus (i.e. a device which has other devices attached to it). It
3630  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3631  * devclass.
3632  */
3633 int
3634 bus_generic_probe(device_t dev)
3635 {
3636 	devclass_t dc = dev->devclass;
3637 	driverlink_t dl;
3638 
3639 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3640 		/*
3641 		 * If this driver's pass is too high, then ignore it.
3642 		 * For most drivers in the default pass, this will
3643 		 * never be true.  For early-pass drivers they will
3644 		 * only call the identify routines of eligible drivers
3645 		 * when this routine is called.  Drivers for later
3646 		 * passes should have their identify routines called
3647 		 * on early-pass busses during BUS_NEW_PASS().
3648 		 */
3649 		if (dl->pass > bus_current_pass)
3650 			continue;
3651 		DEVICE_IDENTIFY(dl->driver, dev);
3652 	}
3653 
3654 	return (0);
3655 }
3656 
3657 /**
3658  * @brief Helper function for implementing DEVICE_ATTACH()
3659  *
3660  * This function can be used to help implement the DEVICE_ATTACH() for
3661  * a bus. It calls device_probe_and_attach() for each of the device's
3662  * children.
3663  */
3664 int
3665 bus_generic_attach(device_t dev)
3666 {
3667 	device_t child;
3668 
3669 	TAILQ_FOREACH(child, &dev->children, link) {
3670 		device_probe_and_attach(child);
3671 	}
3672 
3673 	return (0);
3674 }
3675 
3676 /**
3677  * @brief Helper function for implementing DEVICE_DETACH()
3678  *
3679  * This function can be used to help implement the DEVICE_DETACH() for
3680  * a bus. It calls device_detach() for each of the device's
3681  * children.
3682  */
3683 int
3684 bus_generic_detach(device_t dev)
3685 {
3686 	device_t child;
3687 	int error;
3688 
3689 	if (dev->state != DS_ATTACHED)
3690 		return (EBUSY);
3691 
3692 	TAILQ_FOREACH(child, &dev->children, link) {
3693 		if ((error = device_detach(child)) != 0)
3694 			return (error);
3695 	}
3696 
3697 	return (0);
3698 }
3699 
3700 /**
3701  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3702  *
3703  * This function can be used to help implement the DEVICE_SHUTDOWN()
3704  * for a bus. It calls device_shutdown() for each of the device's
3705  * children.
3706  */
3707 int
3708 bus_generic_shutdown(device_t dev)
3709 {
3710 	device_t child;
3711 
3712 	TAILQ_FOREACH(child, &dev->children, link) {
3713 		device_shutdown(child);
3714 	}
3715 
3716 	return (0);
3717 }
3718 
3719 /**
3720  * @brief Default function for suspending a child device.
3721  *
3722  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3723  */
3724 int
3725 bus_generic_suspend_child(device_t dev, device_t child)
3726 {
3727 	int	error;
3728 
3729 	error = DEVICE_SUSPEND(child);
3730 
3731 	if (error == 0)
3732 		child->flags |= DF_SUSPENDED;
3733 
3734 	return (error);
3735 }
3736 
3737 /**
3738  * @brief Default function for resuming a child device.
3739  *
3740  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3741  */
3742 int
3743 bus_generic_resume_child(device_t dev, device_t child)
3744 {
3745 
3746 	DEVICE_RESUME(child);
3747 	child->flags &= ~DF_SUSPENDED;
3748 
3749 	return (0);
3750 }
3751 
3752 /**
3753  * @brief Helper function for implementing DEVICE_SUSPEND()
3754  *
3755  * This function can be used to help implement the DEVICE_SUSPEND()
3756  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3757  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3758  * operation is aborted and any devices which were suspended are
3759  * resumed immediately by calling their DEVICE_RESUME() methods.
3760  */
3761 int
3762 bus_generic_suspend(device_t dev)
3763 {
3764 	int		error;
3765 	device_t	child, child2;
3766 
3767 	TAILQ_FOREACH(child, &dev->children, link) {
3768 		error = BUS_SUSPEND_CHILD(dev, child);
3769 		if (error) {
3770 			for (child2 = TAILQ_FIRST(&dev->children);
3771 			     child2 && child2 != child;
3772 			     child2 = TAILQ_NEXT(child2, link))
3773 				BUS_RESUME_CHILD(dev, child2);
3774 			return (error);
3775 		}
3776 	}
3777 	return (0);
3778 }
3779 
3780 /**
3781  * @brief Helper function for implementing DEVICE_RESUME()
3782  *
3783  * This function can be used to help implement the DEVICE_RESUME() for
3784  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3785  */
3786 int
3787 bus_generic_resume(device_t dev)
3788 {
3789 	device_t	child;
3790 
3791 	TAILQ_FOREACH(child, &dev->children, link) {
3792 		BUS_RESUME_CHILD(dev, child);
3793 		/* if resume fails, there's nothing we can usefully do... */
3794 	}
3795 	return (0);
3796 }
3797 
3798 /**
3799  * @brief Helper function for implementing BUS_PRINT_CHILD().
3800  *
3801  * This function prints the first part of the ascii representation of
3802  * @p child, including its name, unit and description (if any - see
3803  * device_set_desc()).
3804  *
3805  * @returns the number of characters printed
3806  */
3807 int
3808 bus_print_child_header(device_t dev, device_t child)
3809 {
3810 	int	retval = 0;
3811 
3812 	if (device_get_desc(child)) {
3813 		retval += device_printf(child, "<%s>", device_get_desc(child));
3814 	} else {
3815 		retval += printf("%s", device_get_nameunit(child));
3816 	}
3817 
3818 	return (retval);
3819 }
3820 
3821 /**
3822  * @brief Helper function for implementing BUS_PRINT_CHILD().
3823  *
3824  * This function prints the last part of the ascii representation of
3825  * @p child, which consists of the string @c " on " followed by the
3826  * name and unit of the @p dev.
3827  *
3828  * @returns the number of characters printed
3829  */
3830 int
3831 bus_print_child_footer(device_t dev, device_t child)
3832 {
3833 	return (printf(" on %s\n", device_get_nameunit(dev)));
3834 }
3835 
3836 /**
3837  * @brief Helper function for implementing BUS_PRINT_CHILD().
3838  *
3839  * This function prints out the VM domain for the given device.
3840  *
3841  * @returns the number of characters printed
3842  */
3843 int
3844 bus_print_child_domain(device_t dev, device_t child)
3845 {
3846 	int domain;
3847 
3848 	/* No domain? Don't print anything */
3849 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3850 		return (0);
3851 
3852 	return (printf(" numa-domain %d", domain));
3853 }
3854 
3855 /**
3856  * @brief Helper function for implementing BUS_PRINT_CHILD().
3857  *
3858  * This function simply calls bus_print_child_header() followed by
3859  * bus_print_child_footer().
3860  *
3861  * @returns the number of characters printed
3862  */
3863 int
3864 bus_generic_print_child(device_t dev, device_t child)
3865 {
3866 	int	retval = 0;
3867 
3868 	retval += bus_print_child_header(dev, child);
3869 	retval += bus_print_child_domain(dev, child);
3870 	retval += bus_print_child_footer(dev, child);
3871 
3872 	return (retval);
3873 }
3874 
3875 /**
3876  * @brief Stub function for implementing BUS_READ_IVAR().
3877  *
3878  * @returns ENOENT
3879  */
3880 int
3881 bus_generic_read_ivar(device_t dev, device_t child, int index,
3882     uintptr_t * result)
3883 {
3884 	return (ENOENT);
3885 }
3886 
3887 /**
3888  * @brief Stub function for implementing BUS_WRITE_IVAR().
3889  *
3890  * @returns ENOENT
3891  */
3892 int
3893 bus_generic_write_ivar(device_t dev, device_t child, int index,
3894     uintptr_t value)
3895 {
3896 	return (ENOENT);
3897 }
3898 
3899 /**
3900  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3901  *
3902  * @returns NULL
3903  */
3904 struct resource_list *
3905 bus_generic_get_resource_list(device_t dev, device_t child)
3906 {
3907 	return (NULL);
3908 }
3909 
3910 /**
3911  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3912  *
3913  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3914  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3915  * and then calls device_probe_and_attach() for each unattached child.
3916  */
3917 void
3918 bus_generic_driver_added(device_t dev, driver_t *driver)
3919 {
3920 	device_t child;
3921 
3922 	DEVICE_IDENTIFY(driver, dev);
3923 	TAILQ_FOREACH(child, &dev->children, link) {
3924 		if (child->state == DS_NOTPRESENT ||
3925 		    (child->flags & DF_REBID))
3926 			device_probe_and_attach(child);
3927 	}
3928 }
3929 
3930 /**
3931  * @brief Helper function for implementing BUS_NEW_PASS().
3932  *
3933  * This implementing of BUS_NEW_PASS() first calls the identify
3934  * routines for any drivers that probe at the current pass.  Then it
3935  * walks the list of devices for this bus.  If a device is already
3936  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3937  * device is not already attached, it attempts to attach a driver to
3938  * it.
3939  */
3940 void
3941 bus_generic_new_pass(device_t dev)
3942 {
3943 	driverlink_t dl;
3944 	devclass_t dc;
3945 	device_t child;
3946 
3947 	dc = dev->devclass;
3948 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3949 		if (dl->pass == bus_current_pass)
3950 			DEVICE_IDENTIFY(dl->driver, dev);
3951 	}
3952 	TAILQ_FOREACH(child, &dev->children, link) {
3953 		if (child->state >= DS_ATTACHED)
3954 			BUS_NEW_PASS(child);
3955 		else if (child->state == DS_NOTPRESENT)
3956 			device_probe_and_attach(child);
3957 	}
3958 }
3959 
3960 /**
3961  * @brief Helper function for implementing BUS_SETUP_INTR().
3962  *
3963  * This simple implementation of BUS_SETUP_INTR() simply calls the
3964  * BUS_SETUP_INTR() method of the parent of @p dev.
3965  */
3966 int
3967 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3968     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3969     void **cookiep)
3970 {
3971 	/* Propagate up the bus hierarchy until someone handles it. */
3972 	if (dev->parent)
3973 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3974 		    filter, intr, arg, cookiep));
3975 	return (EINVAL);
3976 }
3977 
3978 /**
3979  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3980  *
3981  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3982  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3983  */
3984 int
3985 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3986     void *cookie)
3987 {
3988 	/* Propagate up the bus hierarchy until someone handles it. */
3989 	if (dev->parent)
3990 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3991 	return (EINVAL);
3992 }
3993 
3994 /**
3995  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3996  *
3997  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3998  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3999  */
4000 int
4001 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4002     struct resource *r, rman_res_t start, rman_res_t end)
4003 {
4004 	/* Propagate up the bus hierarchy until someone handles it. */
4005 	if (dev->parent)
4006 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4007 		    end));
4008 	return (EINVAL);
4009 }
4010 
4011 /**
4012  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4013  *
4014  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4015  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4016  */
4017 struct resource *
4018 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4019     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4020 {
4021 	/* Propagate up the bus hierarchy until someone handles it. */
4022 	if (dev->parent)
4023 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4024 		    start, end, count, flags));
4025 	return (NULL);
4026 }
4027 
4028 /**
4029  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4030  *
4031  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4032  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4033  */
4034 int
4035 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4036     struct resource *r)
4037 {
4038 	/* Propagate up the bus hierarchy until someone handles it. */
4039 	if (dev->parent)
4040 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4041 		    r));
4042 	return (EINVAL);
4043 }
4044 
4045 /**
4046  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4047  *
4048  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4049  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4050  */
4051 int
4052 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4053     struct resource *r)
4054 {
4055 	/* Propagate up the bus hierarchy until someone handles it. */
4056 	if (dev->parent)
4057 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4058 		    r));
4059 	return (EINVAL);
4060 }
4061 
4062 /**
4063  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4064  *
4065  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4066  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4067  */
4068 int
4069 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4070     int rid, struct resource *r)
4071 {
4072 	/* Propagate up the bus hierarchy until someone handles it. */
4073 	if (dev->parent)
4074 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4075 		    r));
4076 	return (EINVAL);
4077 }
4078 
4079 /**
4080  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4081  *
4082  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4083  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4084  */
4085 int
4086 bus_generic_map_resource(device_t dev, device_t child, int type,
4087     struct resource *r, struct resource_map_request *args,
4088     struct resource_map *map)
4089 {
4090 	/* Propagate up the bus hierarchy until someone handles it. */
4091 	if (dev->parent)
4092 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4093 		    map));
4094 	return (EINVAL);
4095 }
4096 
4097 /**
4098  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4099  *
4100  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4101  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4102  */
4103 int
4104 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4105     struct resource *r, struct resource_map *map)
4106 {
4107 	/* Propagate up the bus hierarchy until someone handles it. */
4108 	if (dev->parent)
4109 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4110 	return (EINVAL);
4111 }
4112 
4113 /**
4114  * @brief Helper function for implementing BUS_BIND_INTR().
4115  *
4116  * This simple implementation of BUS_BIND_INTR() simply calls the
4117  * BUS_BIND_INTR() method of the parent of @p dev.
4118  */
4119 int
4120 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4121     int cpu)
4122 {
4123 
4124 	/* Propagate up the bus hierarchy until someone handles it. */
4125 	if (dev->parent)
4126 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4127 	return (EINVAL);
4128 }
4129 
4130 /**
4131  * @brief Helper function for implementing BUS_CONFIG_INTR().
4132  *
4133  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4134  * BUS_CONFIG_INTR() method of the parent of @p dev.
4135  */
4136 int
4137 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4138     enum intr_polarity pol)
4139 {
4140 
4141 	/* Propagate up the bus hierarchy until someone handles it. */
4142 	if (dev->parent)
4143 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4144 	return (EINVAL);
4145 }
4146 
4147 /**
4148  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4149  *
4150  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4151  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4152  */
4153 int
4154 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4155     void *cookie, const char *descr)
4156 {
4157 
4158 	/* Propagate up the bus hierarchy until someone handles it. */
4159 	if (dev->parent)
4160 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4161 		    descr));
4162 	return (EINVAL);
4163 }
4164 
4165 /**
4166  * @brief Helper function for implementing BUS_GET_CPUS().
4167  *
4168  * This simple implementation of BUS_GET_CPUS() simply calls the
4169  * BUS_GET_CPUS() method of the parent of @p dev.
4170  */
4171 int
4172 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4173     size_t setsize, cpuset_t *cpuset)
4174 {
4175 
4176 	/* Propagate up the bus hierarchy until someone handles it. */
4177 	if (dev->parent != NULL)
4178 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4179 	return (EINVAL);
4180 }
4181 
4182 /**
4183  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4184  *
4185  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4186  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4187  */
4188 bus_dma_tag_t
4189 bus_generic_get_dma_tag(device_t dev, device_t child)
4190 {
4191 
4192 	/* Propagate up the bus hierarchy until someone handles it. */
4193 	if (dev->parent != NULL)
4194 		return (BUS_GET_DMA_TAG(dev->parent, child));
4195 	return (NULL);
4196 }
4197 
4198 /**
4199  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4200  *
4201  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4202  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4203  */
4204 bus_space_tag_t
4205 bus_generic_get_bus_tag(device_t dev, device_t child)
4206 {
4207 
4208 	/* Propagate up the bus hierarchy until someone handles it. */
4209 	if (dev->parent != NULL)
4210 		return (BUS_GET_BUS_TAG(dev->parent, child));
4211 	return ((bus_space_tag_t)0);
4212 }
4213 
4214 /**
4215  * @brief Helper function for implementing BUS_GET_RESOURCE().
4216  *
4217  * This implementation of BUS_GET_RESOURCE() uses the
4218  * resource_list_find() function to do most of the work. It calls
4219  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4220  * search.
4221  */
4222 int
4223 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4224     rman_res_t *startp, rman_res_t *countp)
4225 {
4226 	struct resource_list *		rl = NULL;
4227 	struct resource_list_entry *	rle = NULL;
4228 
4229 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4230 	if (!rl)
4231 		return (EINVAL);
4232 
4233 	rle = resource_list_find(rl, type, rid);
4234 	if (!rle)
4235 		return (ENOENT);
4236 
4237 	if (startp)
4238 		*startp = rle->start;
4239 	if (countp)
4240 		*countp = rle->count;
4241 
4242 	return (0);
4243 }
4244 
4245 /**
4246  * @brief Helper function for implementing BUS_SET_RESOURCE().
4247  *
4248  * This implementation of BUS_SET_RESOURCE() uses the
4249  * resource_list_add() function to do most of the work. It calls
4250  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4251  * edit.
4252  */
4253 int
4254 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4255     rman_res_t start, rman_res_t count)
4256 {
4257 	struct resource_list *		rl = NULL;
4258 
4259 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4260 	if (!rl)
4261 		return (EINVAL);
4262 
4263 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4264 
4265 	return (0);
4266 }
4267 
4268 /**
4269  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4270  *
4271  * This implementation of BUS_DELETE_RESOURCE() uses the
4272  * resource_list_delete() function to do most of the work. It calls
4273  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4274  * edit.
4275  */
4276 void
4277 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4278 {
4279 	struct resource_list *		rl = NULL;
4280 
4281 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4282 	if (!rl)
4283 		return;
4284 
4285 	resource_list_delete(rl, type, rid);
4286 
4287 	return;
4288 }
4289 
4290 /**
4291  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4292  *
4293  * This implementation of BUS_RELEASE_RESOURCE() uses the
4294  * resource_list_release() function to do most of the work. It calls
4295  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4296  */
4297 int
4298 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4299     int rid, struct resource *r)
4300 {
4301 	struct resource_list *		rl = NULL;
4302 
4303 	if (device_get_parent(child) != dev)
4304 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4305 		    type, rid, r));
4306 
4307 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4308 	if (!rl)
4309 		return (EINVAL);
4310 
4311 	return (resource_list_release(rl, dev, child, type, rid, r));
4312 }
4313 
4314 /**
4315  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4316  *
4317  * This implementation of BUS_ALLOC_RESOURCE() uses the
4318  * resource_list_alloc() function to do most of the work. It calls
4319  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4320  */
4321 struct resource *
4322 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4323     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4324 {
4325 	struct resource_list *		rl = NULL;
4326 
4327 	if (device_get_parent(child) != dev)
4328 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4329 		    type, rid, start, end, count, flags));
4330 
4331 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4332 	if (!rl)
4333 		return (NULL);
4334 
4335 	return (resource_list_alloc(rl, dev, child, type, rid,
4336 	    start, end, count, flags));
4337 }
4338 
4339 /**
4340  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4341  *
4342  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4343  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4344  */
4345 int
4346 bus_generic_child_present(device_t dev, device_t child)
4347 {
4348 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4349 }
4350 
4351 int
4352 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4353 {
4354 
4355 	if (dev->parent)
4356 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4357 
4358 	return (ENOENT);
4359 }
4360 
4361 /**
4362  * @brief Helper function for implementing BUS_RESCAN().
4363  *
4364  * This null implementation of BUS_RESCAN() always fails to indicate
4365  * the bus does not support rescanning.
4366  */
4367 int
4368 bus_null_rescan(device_t dev)
4369 {
4370 
4371 	return (ENXIO);
4372 }
4373 
4374 /*
4375  * Some convenience functions to make it easier for drivers to use the
4376  * resource-management functions.  All these really do is hide the
4377  * indirection through the parent's method table, making for slightly
4378  * less-wordy code.  In the future, it might make sense for this code
4379  * to maintain some sort of a list of resources allocated by each device.
4380  */
4381 
4382 int
4383 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4384     struct resource **res)
4385 {
4386 	int i;
4387 
4388 	for (i = 0; rs[i].type != -1; i++)
4389 		res[i] = NULL;
4390 	for (i = 0; rs[i].type != -1; i++) {
4391 		res[i] = bus_alloc_resource_any(dev,
4392 		    rs[i].type, &rs[i].rid, rs[i].flags);
4393 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4394 			bus_release_resources(dev, rs, res);
4395 			return (ENXIO);
4396 		}
4397 	}
4398 	return (0);
4399 }
4400 
4401 void
4402 bus_release_resources(device_t dev, const struct resource_spec *rs,
4403     struct resource **res)
4404 {
4405 	int i;
4406 
4407 	for (i = 0; rs[i].type != -1; i++)
4408 		if (res[i] != NULL) {
4409 			bus_release_resource(
4410 			    dev, rs[i].type, rs[i].rid, res[i]);
4411 			res[i] = NULL;
4412 		}
4413 }
4414 
4415 /**
4416  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4417  *
4418  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4419  * parent of @p dev.
4420  */
4421 struct resource *
4422 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4423     rman_res_t end, rman_res_t count, u_int flags)
4424 {
4425 	struct resource *res;
4426 
4427 	if (dev->parent == NULL)
4428 		return (NULL);
4429 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4430 	    count, flags);
4431 	return (res);
4432 }
4433 
4434 /**
4435  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4436  *
4437  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4438  * parent of @p dev.
4439  */
4440 int
4441 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4442     rman_res_t end)
4443 {
4444 	if (dev->parent == NULL)
4445 		return (EINVAL);
4446 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4447 }
4448 
4449 /**
4450  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4451  *
4452  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4453  * parent of @p dev.
4454  */
4455 int
4456 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4457 {
4458 	if (dev->parent == NULL)
4459 		return (EINVAL);
4460 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4461 }
4462 
4463 /**
4464  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4465  *
4466  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4467  * parent of @p dev.
4468  */
4469 int
4470 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4471 {
4472 	if (dev->parent == NULL)
4473 		return (EINVAL);
4474 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4475 }
4476 
4477 /**
4478  * @brief Wrapper function for BUS_MAP_RESOURCE().
4479  *
4480  * This function simply calls the BUS_MAP_RESOURCE() method of the
4481  * parent of @p dev.
4482  */
4483 int
4484 bus_map_resource(device_t dev, int type, struct resource *r,
4485     struct resource_map_request *args, struct resource_map *map)
4486 {
4487 	if (dev->parent == NULL)
4488 		return (EINVAL);
4489 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4490 }
4491 
4492 /**
4493  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4494  *
4495  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4496  * parent of @p dev.
4497  */
4498 int
4499 bus_unmap_resource(device_t dev, int type, struct resource *r,
4500     struct resource_map *map)
4501 {
4502 	if (dev->parent == NULL)
4503 		return (EINVAL);
4504 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4505 }
4506 
4507 /**
4508  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4509  *
4510  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4511  * parent of @p dev.
4512  */
4513 int
4514 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4515 {
4516 	int rv;
4517 
4518 	if (dev->parent == NULL)
4519 		return (EINVAL);
4520 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4521 	return (rv);
4522 }
4523 
4524 /**
4525  * @brief Wrapper function for BUS_SETUP_INTR().
4526  *
4527  * This function simply calls the BUS_SETUP_INTR() method of the
4528  * parent of @p dev.
4529  */
4530 int
4531 bus_setup_intr(device_t dev, struct resource *r, int flags,
4532     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4533 {
4534 	int error;
4535 
4536 	if (dev->parent == NULL)
4537 		return (EINVAL);
4538 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4539 	    arg, cookiep);
4540 	if (error != 0)
4541 		return (error);
4542 	if (handler != NULL && !(flags & INTR_MPSAFE))
4543 		device_printf(dev, "[GIANT-LOCKED]\n");
4544 	return (0);
4545 }
4546 
4547 /**
4548  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4549  *
4550  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4551  * parent of @p dev.
4552  */
4553 int
4554 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4555 {
4556 	if (dev->parent == NULL)
4557 		return (EINVAL);
4558 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4559 }
4560 
4561 /**
4562  * @brief Wrapper function for BUS_BIND_INTR().
4563  *
4564  * This function simply calls the BUS_BIND_INTR() method of the
4565  * parent of @p dev.
4566  */
4567 int
4568 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4569 {
4570 	if (dev->parent == NULL)
4571 		return (EINVAL);
4572 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4573 }
4574 
4575 /**
4576  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4577  *
4578  * This function first formats the requested description into a
4579  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4580  * the parent of @p dev.
4581  */
4582 int
4583 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4584     const char *fmt, ...)
4585 {
4586 	va_list ap;
4587 	char descr[MAXCOMLEN + 1];
4588 
4589 	if (dev->parent == NULL)
4590 		return (EINVAL);
4591 	va_start(ap, fmt);
4592 	vsnprintf(descr, sizeof(descr), fmt, ap);
4593 	va_end(ap);
4594 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4595 }
4596 
4597 /**
4598  * @brief Wrapper function for BUS_SET_RESOURCE().
4599  *
4600  * This function simply calls the BUS_SET_RESOURCE() method of the
4601  * parent of @p dev.
4602  */
4603 int
4604 bus_set_resource(device_t dev, int type, int rid,
4605     rman_res_t start, rman_res_t count)
4606 {
4607 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4608 	    start, count));
4609 }
4610 
4611 /**
4612  * @brief Wrapper function for BUS_GET_RESOURCE().
4613  *
4614  * This function simply calls the BUS_GET_RESOURCE() method of the
4615  * parent of @p dev.
4616  */
4617 int
4618 bus_get_resource(device_t dev, int type, int rid,
4619     rman_res_t *startp, rman_res_t *countp)
4620 {
4621 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4622 	    startp, countp));
4623 }
4624 
4625 /**
4626  * @brief Wrapper function for BUS_GET_RESOURCE().
4627  *
4628  * This function simply calls the BUS_GET_RESOURCE() method of the
4629  * parent of @p dev and returns the start value.
4630  */
4631 rman_res_t
4632 bus_get_resource_start(device_t dev, int type, int rid)
4633 {
4634 	rman_res_t start;
4635 	rman_res_t count;
4636 	int error;
4637 
4638 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4639 	    &start, &count);
4640 	if (error)
4641 		return (0);
4642 	return (start);
4643 }
4644 
4645 /**
4646  * @brief Wrapper function for BUS_GET_RESOURCE().
4647  *
4648  * This function simply calls the BUS_GET_RESOURCE() method of the
4649  * parent of @p dev and returns the count value.
4650  */
4651 rman_res_t
4652 bus_get_resource_count(device_t dev, int type, int rid)
4653 {
4654 	rman_res_t start;
4655 	rman_res_t count;
4656 	int error;
4657 
4658 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4659 	    &start, &count);
4660 	if (error)
4661 		return (0);
4662 	return (count);
4663 }
4664 
4665 /**
4666  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4667  *
4668  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4669  * parent of @p dev.
4670  */
4671 void
4672 bus_delete_resource(device_t dev, int type, int rid)
4673 {
4674 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4675 }
4676 
4677 /**
4678  * @brief Wrapper function for BUS_CHILD_PRESENT().
4679  *
4680  * This function simply calls the BUS_CHILD_PRESENT() method of the
4681  * parent of @p dev.
4682  */
4683 int
4684 bus_child_present(device_t child)
4685 {
4686 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4687 }
4688 
4689 /**
4690  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4691  *
4692  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4693  * parent of @p dev.
4694  */
4695 int
4696 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4697 {
4698 	device_t parent;
4699 
4700 	parent = device_get_parent(child);
4701 	if (parent == NULL) {
4702 		*buf = '\0';
4703 		return (0);
4704 	}
4705 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4706 }
4707 
4708 /**
4709  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4710  *
4711  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4712  * parent of @p dev.
4713  */
4714 int
4715 bus_child_location_str(device_t child, char *buf, size_t buflen)
4716 {
4717 	device_t parent;
4718 
4719 	parent = device_get_parent(child);
4720 	if (parent == NULL) {
4721 		*buf = '\0';
4722 		return (0);
4723 	}
4724 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4725 }
4726 
4727 /**
4728  * @brief Wrapper function for BUS_GET_CPUS().
4729  *
4730  * This function simply calls the BUS_GET_CPUS() method of the
4731  * parent of @p dev.
4732  */
4733 int
4734 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4735 {
4736 	device_t parent;
4737 
4738 	parent = device_get_parent(dev);
4739 	if (parent == NULL)
4740 		return (EINVAL);
4741 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4742 }
4743 
4744 /**
4745  * @brief Wrapper function for BUS_GET_DMA_TAG().
4746  *
4747  * This function simply calls the BUS_GET_DMA_TAG() method of the
4748  * parent of @p dev.
4749  */
4750 bus_dma_tag_t
4751 bus_get_dma_tag(device_t dev)
4752 {
4753 	device_t parent;
4754 
4755 	parent = device_get_parent(dev);
4756 	if (parent == NULL)
4757 		return (NULL);
4758 	return (BUS_GET_DMA_TAG(parent, dev));
4759 }
4760 
4761 /**
4762  * @brief Wrapper function for BUS_GET_BUS_TAG().
4763  *
4764  * This function simply calls the BUS_GET_BUS_TAG() method of the
4765  * parent of @p dev.
4766  */
4767 bus_space_tag_t
4768 bus_get_bus_tag(device_t dev)
4769 {
4770 	device_t parent;
4771 
4772 	parent = device_get_parent(dev);
4773 	if (parent == NULL)
4774 		return ((bus_space_tag_t)0);
4775 	return (BUS_GET_BUS_TAG(parent, dev));
4776 }
4777 
4778 /**
4779  * @brief Wrapper function for BUS_GET_DOMAIN().
4780  *
4781  * This function simply calls the BUS_GET_DOMAIN() method of the
4782  * parent of @p dev.
4783  */
4784 int
4785 bus_get_domain(device_t dev, int *domain)
4786 {
4787 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4788 }
4789 
4790 /* Resume all devices and then notify userland that we're up again. */
4791 static int
4792 root_resume(device_t dev)
4793 {
4794 	int error;
4795 
4796 	error = bus_generic_resume(dev);
4797 	if (error == 0)
4798 		devctl_notify("kern", "power", "resume", NULL);
4799 	return (error);
4800 }
4801 
4802 static int
4803 root_print_child(device_t dev, device_t child)
4804 {
4805 	int	retval = 0;
4806 
4807 	retval += bus_print_child_header(dev, child);
4808 	retval += printf("\n");
4809 
4810 	return (retval);
4811 }
4812 
4813 static int
4814 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4815     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4816 {
4817 	/*
4818 	 * If an interrupt mapping gets to here something bad has happened.
4819 	 */
4820 	panic("root_setup_intr");
4821 }
4822 
4823 /*
4824  * If we get here, assume that the device is permanent and really is
4825  * present in the system.  Removable bus drivers are expected to intercept
4826  * this call long before it gets here.  We return -1 so that drivers that
4827  * really care can check vs -1 or some ERRNO returned higher in the food
4828  * chain.
4829  */
4830 static int
4831 root_child_present(device_t dev, device_t child)
4832 {
4833 	return (-1);
4834 }
4835 
4836 static int
4837 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4838     cpuset_t *cpuset)
4839 {
4840 
4841 	switch (op) {
4842 	case INTR_CPUS:
4843 		/* Default to returning the set of all CPUs. */
4844 		if (setsize != sizeof(cpuset_t))
4845 			return (EINVAL);
4846 		*cpuset = all_cpus;
4847 		return (0);
4848 	default:
4849 		return (EINVAL);
4850 	}
4851 }
4852 
4853 static kobj_method_t root_methods[] = {
4854 	/* Device interface */
4855 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4856 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4857 	KOBJMETHOD(device_resume,	root_resume),
4858 
4859 	/* Bus interface */
4860 	KOBJMETHOD(bus_print_child,	root_print_child),
4861 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4862 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4863 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4864 	KOBJMETHOD(bus_child_present,	root_child_present),
4865 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4866 
4867 	KOBJMETHOD_END
4868 };
4869 
4870 static driver_t root_driver = {
4871 	"root",
4872 	root_methods,
4873 	1,			/* no softc */
4874 };
4875 
4876 device_t	root_bus;
4877 devclass_t	root_devclass;
4878 
4879 static int
4880 root_bus_module_handler(module_t mod, int what, void* arg)
4881 {
4882 	switch (what) {
4883 	case MOD_LOAD:
4884 		TAILQ_INIT(&bus_data_devices);
4885 		kobj_class_compile((kobj_class_t) &root_driver);
4886 		root_bus = make_device(NULL, "root", 0);
4887 		root_bus->desc = "System root bus";
4888 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4889 		root_bus->driver = &root_driver;
4890 		root_bus->state = DS_ATTACHED;
4891 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4892 		devinit();
4893 		return (0);
4894 
4895 	case MOD_SHUTDOWN:
4896 		device_shutdown(root_bus);
4897 		return (0);
4898 	default:
4899 		return (EOPNOTSUPP);
4900 	}
4901 
4902 	return (0);
4903 }
4904 
4905 static moduledata_t root_bus_mod = {
4906 	"rootbus",
4907 	root_bus_module_handler,
4908 	NULL
4909 };
4910 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4911 
4912 /**
4913  * @brief Automatically configure devices
4914  *
4915  * This function begins the autoconfiguration process by calling
4916  * device_probe_and_attach() for each child of the @c root0 device.
4917  */
4918 void
4919 root_bus_configure(void)
4920 {
4921 
4922 	PDEBUG(("."));
4923 
4924 	/* Eventually this will be split up, but this is sufficient for now. */
4925 	bus_set_pass(BUS_PASS_DEFAULT);
4926 }
4927 
4928 /**
4929  * @brief Module handler for registering device drivers
4930  *
4931  * This module handler is used to automatically register device
4932  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4933  * devclass_add_driver() for the driver described by the
4934  * driver_module_data structure pointed to by @p arg
4935  */
4936 int
4937 driver_module_handler(module_t mod, int what, void *arg)
4938 {
4939 	struct driver_module_data *dmd;
4940 	devclass_t bus_devclass;
4941 	kobj_class_t driver;
4942 	int error, pass;
4943 
4944 	dmd = (struct driver_module_data *)arg;
4945 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4946 	error = 0;
4947 
4948 	switch (what) {
4949 	case MOD_LOAD:
4950 		if (dmd->dmd_chainevh)
4951 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4952 
4953 		pass = dmd->dmd_pass;
4954 		driver = dmd->dmd_driver;
4955 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4956 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4957 		error = devclass_add_driver(bus_devclass, driver, pass,
4958 		    dmd->dmd_devclass);
4959 		break;
4960 
4961 	case MOD_UNLOAD:
4962 		PDEBUG(("Unloading module: driver %s from bus %s",
4963 		    DRIVERNAME(dmd->dmd_driver),
4964 		    dmd->dmd_busname));
4965 		error = devclass_delete_driver(bus_devclass,
4966 		    dmd->dmd_driver);
4967 
4968 		if (!error && dmd->dmd_chainevh)
4969 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4970 		break;
4971 	case MOD_QUIESCE:
4972 		PDEBUG(("Quiesce module: driver %s from bus %s",
4973 		    DRIVERNAME(dmd->dmd_driver),
4974 		    dmd->dmd_busname));
4975 		error = devclass_quiesce_driver(bus_devclass,
4976 		    dmd->dmd_driver);
4977 
4978 		if (!error && dmd->dmd_chainevh)
4979 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4980 		break;
4981 	default:
4982 		error = EOPNOTSUPP;
4983 		break;
4984 	}
4985 
4986 	return (error);
4987 }
4988 
4989 /**
4990  * @brief Enumerate all hinted devices for this bus.
4991  *
4992  * Walks through the hints for this bus and calls the bus_hinted_child
4993  * routine for each one it fines.  It searches first for the specific
4994  * bus that's being probed for hinted children (eg isa0), and then for
4995  * generic children (eg isa).
4996  *
4997  * @param	dev	bus device to enumerate
4998  */
4999 void
5000 bus_enumerate_hinted_children(device_t bus)
5001 {
5002 	int i;
5003 	const char *dname, *busname;
5004 	int dunit;
5005 
5006 	/*
5007 	 * enumerate all devices on the specific bus
5008 	 */
5009 	busname = device_get_nameunit(bus);
5010 	i = 0;
5011 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5012 		BUS_HINTED_CHILD(bus, dname, dunit);
5013 
5014 	/*
5015 	 * and all the generic ones.
5016 	 */
5017 	busname = device_get_name(bus);
5018 	i = 0;
5019 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5020 		BUS_HINTED_CHILD(bus, dname, dunit);
5021 }
5022 
5023 #ifdef BUS_DEBUG
5024 
5025 /* the _short versions avoid iteration by not calling anything that prints
5026  * more than oneliners. I love oneliners.
5027  */
5028 
5029 static void
5030 print_device_short(device_t dev, int indent)
5031 {
5032 	if (!dev)
5033 		return;
5034 
5035 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5036 	    dev->unit, dev->desc,
5037 	    (dev->parent? "":"no "),
5038 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5039 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5040 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5041 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5042 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5043 	    (dev->flags&DF_REBID? "rebiddable,":""),
5044 	    (dev->ivars? "":"no "),
5045 	    (dev->softc? "":"no "),
5046 	    dev->busy));
5047 }
5048 
5049 static void
5050 print_device(device_t dev, int indent)
5051 {
5052 	if (!dev)
5053 		return;
5054 
5055 	print_device_short(dev, indent);
5056 
5057 	indentprintf(("Parent:\n"));
5058 	print_device_short(dev->parent, indent+1);
5059 	indentprintf(("Driver:\n"));
5060 	print_driver_short(dev->driver, indent+1);
5061 	indentprintf(("Devclass:\n"));
5062 	print_devclass_short(dev->devclass, indent+1);
5063 }
5064 
5065 void
5066 print_device_tree_short(device_t dev, int indent)
5067 /* print the device and all its children (indented) */
5068 {
5069 	device_t child;
5070 
5071 	if (!dev)
5072 		return;
5073 
5074 	print_device_short(dev, indent);
5075 
5076 	TAILQ_FOREACH(child, &dev->children, link) {
5077 		print_device_tree_short(child, indent+1);
5078 	}
5079 }
5080 
5081 void
5082 print_device_tree(device_t dev, int indent)
5083 /* print the device and all its children (indented) */
5084 {
5085 	device_t child;
5086 
5087 	if (!dev)
5088 		return;
5089 
5090 	print_device(dev, indent);
5091 
5092 	TAILQ_FOREACH(child, &dev->children, link) {
5093 		print_device_tree(child, indent+1);
5094 	}
5095 }
5096 
5097 static void
5098 print_driver_short(driver_t *driver, int indent)
5099 {
5100 	if (!driver)
5101 		return;
5102 
5103 	indentprintf(("driver %s: softc size = %zd\n",
5104 	    driver->name, driver->size));
5105 }
5106 
5107 static void
5108 print_driver(driver_t *driver, int indent)
5109 {
5110 	if (!driver)
5111 		return;
5112 
5113 	print_driver_short(driver, indent);
5114 }
5115 
5116 static void
5117 print_driver_list(driver_list_t drivers, int indent)
5118 {
5119 	driverlink_t driver;
5120 
5121 	TAILQ_FOREACH(driver, &drivers, link) {
5122 		print_driver(driver->driver, indent);
5123 	}
5124 }
5125 
5126 static void
5127 print_devclass_short(devclass_t dc, int indent)
5128 {
5129 	if ( !dc )
5130 		return;
5131 
5132 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5133 }
5134 
5135 static void
5136 print_devclass(devclass_t dc, int indent)
5137 {
5138 	int i;
5139 
5140 	if ( !dc )
5141 		return;
5142 
5143 	print_devclass_short(dc, indent);
5144 	indentprintf(("Drivers:\n"));
5145 	print_driver_list(dc->drivers, indent+1);
5146 
5147 	indentprintf(("Devices:\n"));
5148 	for (i = 0; i < dc->maxunit; i++)
5149 		if (dc->devices[i])
5150 			print_device(dc->devices[i], indent+1);
5151 }
5152 
5153 void
5154 print_devclass_list_short(void)
5155 {
5156 	devclass_t dc;
5157 
5158 	printf("Short listing of devclasses, drivers & devices:\n");
5159 	TAILQ_FOREACH(dc, &devclasses, link) {
5160 		print_devclass_short(dc, 0);
5161 	}
5162 }
5163 
5164 void
5165 print_devclass_list(void)
5166 {
5167 	devclass_t dc;
5168 
5169 	printf("Full listing of devclasses, drivers & devices:\n");
5170 	TAILQ_FOREACH(dc, &devclasses, link) {
5171 		print_devclass(dc, 0);
5172 	}
5173 }
5174 
5175 #endif
5176 
5177 /*
5178  * User-space access to the device tree.
5179  *
5180  * We implement a small set of nodes:
5181  *
5182  * hw.bus			Single integer read method to obtain the
5183  *				current generation count.
5184  * hw.bus.devices		Reads the entire device tree in flat space.
5185  * hw.bus.rman			Resource manager interface
5186  *
5187  * We might like to add the ability to scan devclasses and/or drivers to
5188  * determine what else is currently loaded/available.
5189  */
5190 
5191 static int
5192 sysctl_bus(SYSCTL_HANDLER_ARGS)
5193 {
5194 	struct u_businfo	ubus;
5195 
5196 	ubus.ub_version = BUS_USER_VERSION;
5197 	ubus.ub_generation = bus_data_generation;
5198 
5199 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5200 }
5201 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5202     "bus-related data");
5203 
5204 static int
5205 sysctl_devices(SYSCTL_HANDLER_ARGS)
5206 {
5207 	int			*name = (int *)arg1;
5208 	u_int			namelen = arg2;
5209 	int			index;
5210 	device_t		dev;
5211 	struct u_device		udev;	/* XXX this is a bit big */
5212 	int			error;
5213 
5214 	if (namelen != 2)
5215 		return (EINVAL);
5216 
5217 	if (bus_data_generation_check(name[0]))
5218 		return (EINVAL);
5219 
5220 	index = name[1];
5221 
5222 	/*
5223 	 * Scan the list of devices, looking for the requested index.
5224 	 */
5225 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5226 		if (index-- == 0)
5227 			break;
5228 	}
5229 	if (dev == NULL)
5230 		return (ENOENT);
5231 
5232 	/*
5233 	 * Populate the return array.
5234 	 */
5235 	bzero(&udev, sizeof(udev));
5236 	udev.dv_handle = (uintptr_t)dev;
5237 	udev.dv_parent = (uintptr_t)dev->parent;
5238 	if (dev->nameunit != NULL)
5239 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5240 	if (dev->desc != NULL)
5241 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5242 	if (dev->driver != NULL && dev->driver->name != NULL)
5243 		strlcpy(udev.dv_drivername, dev->driver->name,
5244 		    sizeof(udev.dv_drivername));
5245 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5246 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5247 	udev.dv_devflags = dev->devflags;
5248 	udev.dv_flags = dev->flags;
5249 	udev.dv_state = dev->state;
5250 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5251 	return (error);
5252 }
5253 
5254 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5255     "system device tree");
5256 
5257 int
5258 bus_data_generation_check(int generation)
5259 {
5260 	if (generation != bus_data_generation)
5261 		return (1);
5262 
5263 	/* XXX generate optimised lists here? */
5264 	return (0);
5265 }
5266 
5267 void
5268 bus_data_generation_update(void)
5269 {
5270 	bus_data_generation++;
5271 }
5272 
5273 int
5274 bus_free_resource(device_t dev, int type, struct resource *r)
5275 {
5276 	if (r == NULL)
5277 		return (0);
5278 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5279 }
5280 
5281 device_t
5282 device_lookup_by_name(const char *name)
5283 {
5284 	device_t dev;
5285 
5286 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5287 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5288 			return (dev);
5289 	}
5290 	return (NULL);
5291 }
5292 
5293 /*
5294  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5295  * implicit semantics on open, so it could not be reused for this.
5296  * Another option would be to call this /dev/bus?
5297  */
5298 static int
5299 find_device(struct devreq *req, device_t *devp)
5300 {
5301 	device_t dev;
5302 
5303 	/*
5304 	 * First, ensure that the name is nul terminated.
5305 	 */
5306 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5307 		return (EINVAL);
5308 
5309 	/*
5310 	 * Second, try to find an attached device whose name matches
5311 	 * 'name'.
5312 	 */
5313 	dev = device_lookup_by_name(req->dr_name);
5314 	if (dev != NULL) {
5315 		*devp = dev;
5316 		return (0);
5317 	}
5318 
5319 	/* Finally, give device enumerators a chance. */
5320 	dev = NULL;
5321 	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5322 	if (dev == NULL)
5323 		return (ENOENT);
5324 	*devp = dev;
5325 	return (0);
5326 }
5327 
5328 static bool
5329 driver_exists(device_t bus, const char *driver)
5330 {
5331 	devclass_t dc;
5332 
5333 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5334 		if (devclass_find_driver_internal(dc, driver) != NULL)
5335 			return (true);
5336 	}
5337 	return (false);
5338 }
5339 
5340 static int
5341 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5342     struct thread *td)
5343 {
5344 	struct devreq *req;
5345 	device_t dev;
5346 	int error, old;
5347 
5348 	/* Locate the device to control. */
5349 	mtx_lock(&Giant);
5350 	req = (struct devreq *)data;
5351 	switch (cmd) {
5352 	case DEV_ATTACH:
5353 	case DEV_DETACH:
5354 	case DEV_ENABLE:
5355 	case DEV_DISABLE:
5356 	case DEV_SUSPEND:
5357 	case DEV_RESUME:
5358 	case DEV_SET_DRIVER:
5359 	case DEV_CLEAR_DRIVER:
5360 	case DEV_RESCAN:
5361 	case DEV_DELETE:
5362 		error = priv_check(td, PRIV_DRIVER);
5363 		if (error == 0)
5364 			error = find_device(req, &dev);
5365 		break;
5366 	default:
5367 		error = ENOTTY;
5368 		break;
5369 	}
5370 	if (error) {
5371 		mtx_unlock(&Giant);
5372 		return (error);
5373 	}
5374 
5375 	/* Perform the requested operation. */
5376 	switch (cmd) {
5377 	case DEV_ATTACH:
5378 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5379 			error = EBUSY;
5380 		else if (!device_is_enabled(dev))
5381 			error = ENXIO;
5382 		else
5383 			error = device_probe_and_attach(dev);
5384 		break;
5385 	case DEV_DETACH:
5386 		if (!device_is_attached(dev)) {
5387 			error = ENXIO;
5388 			break;
5389 		}
5390 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5391 			error = device_quiesce(dev);
5392 			if (error)
5393 				break;
5394 		}
5395 		error = device_detach(dev);
5396 		break;
5397 	case DEV_ENABLE:
5398 		if (device_is_enabled(dev)) {
5399 			error = EBUSY;
5400 			break;
5401 		}
5402 
5403 		/*
5404 		 * If the device has been probed but not attached (e.g.
5405 		 * when it has been disabled by a loader hint), just
5406 		 * attach the device rather than doing a full probe.
5407 		 */
5408 		device_enable(dev);
5409 		if (device_is_alive(dev)) {
5410 			/*
5411 			 * If the device was disabled via a hint, clear
5412 			 * the hint.
5413 			 */
5414 			if (resource_disabled(dev->driver->name, dev->unit))
5415 				resource_unset_value(dev->driver->name,
5416 				    dev->unit, "disabled");
5417 			error = device_attach(dev);
5418 		} else
5419 			error = device_probe_and_attach(dev);
5420 		break;
5421 	case DEV_DISABLE:
5422 		if (!device_is_enabled(dev)) {
5423 			error = ENXIO;
5424 			break;
5425 		}
5426 
5427 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5428 			error = device_quiesce(dev);
5429 			if (error)
5430 				break;
5431 		}
5432 
5433 		/*
5434 		 * Force DF_FIXEDCLASS on around detach to preserve
5435 		 * the existing name.
5436 		 */
5437 		old = dev->flags;
5438 		dev->flags |= DF_FIXEDCLASS;
5439 		error = device_detach(dev);
5440 		if (!(old & DF_FIXEDCLASS))
5441 			dev->flags &= ~DF_FIXEDCLASS;
5442 		if (error == 0)
5443 			device_disable(dev);
5444 		break;
5445 	case DEV_SUSPEND:
5446 		if (device_is_suspended(dev)) {
5447 			error = EBUSY;
5448 			break;
5449 		}
5450 		if (device_get_parent(dev) == NULL) {
5451 			error = EINVAL;
5452 			break;
5453 		}
5454 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5455 		break;
5456 	case DEV_RESUME:
5457 		if (!device_is_suspended(dev)) {
5458 			error = EINVAL;
5459 			break;
5460 		}
5461 		if (device_get_parent(dev) == NULL) {
5462 			error = EINVAL;
5463 			break;
5464 		}
5465 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5466 		break;
5467 	case DEV_SET_DRIVER: {
5468 		devclass_t dc;
5469 		char driver[128];
5470 
5471 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5472 		if (error)
5473 			break;
5474 		if (driver[0] == '\0') {
5475 			error = EINVAL;
5476 			break;
5477 		}
5478 		if (dev->devclass != NULL &&
5479 		    strcmp(driver, dev->devclass->name) == 0)
5480 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5481 			break;
5482 
5483 		/*
5484 		 * Scan drivers for this device's bus looking for at
5485 		 * least one matching driver.
5486 		 */
5487 		if (dev->parent == NULL) {
5488 			error = EINVAL;
5489 			break;
5490 		}
5491 		if (!driver_exists(dev->parent, driver)) {
5492 			error = ENOENT;
5493 			break;
5494 		}
5495 		dc = devclass_create(driver);
5496 		if (dc == NULL) {
5497 			error = ENOMEM;
5498 			break;
5499 		}
5500 
5501 		/* Detach device if necessary. */
5502 		if (device_is_attached(dev)) {
5503 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5504 				error = device_detach(dev);
5505 			else
5506 				error = EBUSY;
5507 			if (error)
5508 				break;
5509 		}
5510 
5511 		/* Clear any previously-fixed device class and unit. */
5512 		if (dev->flags & DF_FIXEDCLASS)
5513 			devclass_delete_device(dev->devclass, dev);
5514 		dev->flags |= DF_WILDCARD;
5515 		dev->unit = -1;
5516 
5517 		/* Force the new device class. */
5518 		error = devclass_add_device(dc, dev);
5519 		if (error)
5520 			break;
5521 		dev->flags |= DF_FIXEDCLASS;
5522 		error = device_probe_and_attach(dev);
5523 		break;
5524 	}
5525 	case DEV_CLEAR_DRIVER:
5526 		if (!(dev->flags & DF_FIXEDCLASS)) {
5527 			error = 0;
5528 			break;
5529 		}
5530 		if (device_is_attached(dev)) {
5531 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5532 				error = device_detach(dev);
5533 			else
5534 				error = EBUSY;
5535 			if (error)
5536 				break;
5537 		}
5538 
5539 		dev->flags &= ~DF_FIXEDCLASS;
5540 		dev->flags |= DF_WILDCARD;
5541 		devclass_delete_device(dev->devclass, dev);
5542 		error = device_probe_and_attach(dev);
5543 		break;
5544 	case DEV_RESCAN:
5545 		if (!device_is_attached(dev)) {
5546 			error = ENXIO;
5547 			break;
5548 		}
5549 		error = BUS_RESCAN(dev);
5550 		break;
5551 	case DEV_DELETE: {
5552 		device_t parent;
5553 
5554 		parent = device_get_parent(dev);
5555 		if (parent == NULL) {
5556 			error = EINVAL;
5557 			break;
5558 		}
5559 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5560 			if (bus_child_present(dev) != 0) {
5561 				error = EBUSY;
5562 				break;
5563 			}
5564 		}
5565 
5566 		error = device_delete_child(parent, dev);
5567 		break;
5568 	}
5569 	}
5570 	mtx_unlock(&Giant);
5571 	return (error);
5572 }
5573 
5574 static struct cdevsw devctl2_cdevsw = {
5575 	.d_version =	D_VERSION,
5576 	.d_ioctl =	devctl2_ioctl,
5577 	.d_name =	"devctl2",
5578 };
5579 
5580 static void
5581 devctl2_init(void)
5582 {
5583 
5584 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5585 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5586 }
5587