xref: /freebsd/sys/kern/subr_bus.c (revision e653b48c80fb85b2a10372d664a4b55dbdc51dae)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #define __RMAN_RESOURCE_VISIBLE
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/filio.h>
36 #include <sys/lock.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 };
70 
71 /*
72  * Forward declarations
73  */
74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76 typedef TAILQ_HEAD(device_list, device) device_list_t;
77 
78 struct devclass {
79 	TAILQ_ENTRY(devclass) link;
80 	devclass_t	parent;		/* parent in devclass hierarchy */
81 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82 	char		*name;
83 	device_t	*devices;	/* array of devices indexed by unit */
84 	int		maxunit;	/* size of devices array */
85 
86 	struct sysctl_ctx_list sysctl_ctx;
87 	struct sysctl_oid *sysctl_tree;
88 };
89 
90 /**
91  * @brief Implementation of device.
92  */
93 struct device {
94 	/*
95 	 * A device is a kernel object. The first field must be the
96 	 * current ops table for the object.
97 	 */
98 	KOBJ_FIELDS;
99 
100 	/*
101 	 * Device hierarchy.
102 	 */
103 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105 	device_t	parent;		/**< parent of this device  */
106 	device_list_t	children;	/**< list of child devices */
107 
108 	/*
109 	 * Details of this device.
110 	 */
111 	driver_t	*driver;	/**< current driver */
112 	devclass_t	devclass;	/**< current device class */
113 	int		unit;		/**< current unit number */
114 	char*		nameunit;	/**< name+unit e.g. foodev0 */
115 	char*		desc;		/**< driver specific description */
116 	int		busy;		/**< count of calls to device_busy() */
117 	device_state_t	state;		/**< current device state  */
118 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119 	u_short		flags;		/**< internal device flags  */
120 #define	DF_ENABLED	1		/* device should be probed/attached */
121 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122 #define	DF_WILDCARD	4		/* unit was originally wildcard */
123 #define	DF_DESCMALLOCED	8		/* description was malloced */
124 #define	DF_QUIET	16		/* don't print verbose attach message */
125 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127 #define DF_REBID	128	/* Can rebid after attach */
128 	u_char	order;			/**< order from device_add_child_ordered() */
129 	u_char	pad;
130 	void	*ivars;			/**< instance variables  */
131 	void	*softc;			/**< current driver's variables  */
132 
133 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135 };
136 
137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139 
140 #ifdef BUS_DEBUG
141 
142 static int bus_debug = 1;
143 TUNABLE_INT("bus.debug", &bus_debug);
144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145     "Debug bus code");
146 
147 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149 #define DRIVERNAME(d)	((d)? d->name : "no driver")
150 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
151 
152 /**
153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154  * prevent syslog from deleting initial spaces
155  */
156 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157 
158 static void print_device_short(device_t dev, int indent);
159 static void print_device(device_t dev, int indent);
160 void print_device_tree_short(device_t dev, int indent);
161 void print_device_tree(device_t dev, int indent);
162 static void print_driver_short(driver_t *driver, int indent);
163 static void print_driver(driver_t *driver, int indent);
164 static void print_driver_list(driver_list_t drivers, int indent);
165 static void print_devclass_short(devclass_t dc, int indent);
166 static void print_devclass(devclass_t dc, int indent);
167 void print_devclass_list_short(void);
168 void print_devclass_list(void);
169 
170 #else
171 /* Make the compiler ignore the function calls */
172 #define PDEBUG(a)			/* nop */
173 #define DEVICENAME(d)			/* nop */
174 #define DRIVERNAME(d)			/* nop */
175 #define DEVCLANAME(d)			/* nop */
176 
177 #define print_device_short(d,i)		/* nop */
178 #define print_device(d,i)		/* nop */
179 #define print_device_tree_short(d,i)	/* nop */
180 #define print_device_tree(d,i)		/* nop */
181 #define print_driver_short(d,i)		/* nop */
182 #define print_driver(d,i)		/* nop */
183 #define print_driver_list(d,i)		/* nop */
184 #define print_devclass_short(d,i)	/* nop */
185 #define print_devclass(d,i)		/* nop */
186 #define print_devclass_list_short()	/* nop */
187 #define print_devclass_list()		/* nop */
188 #endif
189 
190 /*
191  * dev sysctl tree
192  */
193 
194 enum {
195 	DEVCLASS_SYSCTL_PARENT,
196 };
197 
198 static int
199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200 {
201 	devclass_t dc = (devclass_t)arg1;
202 	const char *value;
203 	char *buf;
204 	int error;
205 
206 	buf = NULL;
207 	switch (arg2) {
208 	case DEVCLASS_SYSCTL_PARENT:
209 		value = dc->parent ? dc->parent->name : "";
210 		break;
211 	default:
212 		return (EINVAL);
213 	}
214 	error = SYSCTL_OUT(req, value, strlen(value));
215 	if (buf != NULL)
216 		free(buf, M_BUS);
217 	return (error);
218 }
219 
220 static void
221 devclass_sysctl_init(devclass_t dc)
222 {
223 
224 	if (dc->sysctl_tree != NULL)
225 		return;
226 	sysctl_ctx_init(&dc->sysctl_ctx);
227 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
228 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
229 	    CTLFLAG_RD, 0, "");
230 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
231 	    OID_AUTO, "%parent", CTLFLAG_RD,
232 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
233 	    "parent class");
234 }
235 
236 enum {
237 	DEVICE_SYSCTL_DESC,
238 	DEVICE_SYSCTL_DRIVER,
239 	DEVICE_SYSCTL_LOCATION,
240 	DEVICE_SYSCTL_PNPINFO,
241 	DEVICE_SYSCTL_PARENT,
242 };
243 
244 static int
245 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
246 {
247 	device_t dev = (device_t)arg1;
248 	const char *value;
249 	char *buf;
250 	int error;
251 
252 	buf = NULL;
253 	switch (arg2) {
254 	case DEVICE_SYSCTL_DESC:
255 		value = dev->desc ? dev->desc : "";
256 		break;
257 	case DEVICE_SYSCTL_DRIVER:
258 		value = dev->driver ? dev->driver->name : "";
259 		break;
260 	case DEVICE_SYSCTL_LOCATION:
261 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
262 		bus_child_location_str(dev, buf, 1024);
263 		break;
264 	case DEVICE_SYSCTL_PNPINFO:
265 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266 		bus_child_pnpinfo_str(dev, buf, 1024);
267 		break;
268 	case DEVICE_SYSCTL_PARENT:
269 		value = dev->parent ? dev->parent->nameunit : "";
270 		break;
271 	default:
272 		return (EINVAL);
273 	}
274 	error = SYSCTL_OUT(req, value, strlen(value));
275 	if (buf != NULL)
276 		free(buf, M_BUS);
277 	return (error);
278 }
279 
280 static void
281 device_sysctl_init(device_t dev)
282 {
283 	devclass_t dc = dev->devclass;
284 
285 	if (dev->sysctl_tree != NULL)
286 		return;
287 	devclass_sysctl_init(dc);
288 	sysctl_ctx_init(&dev->sysctl_ctx);
289 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291 	    dev->nameunit + strlen(dc->name),
292 	    CTLFLAG_RD, 0, "");
293 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294 	    OID_AUTO, "%desc", CTLFLAG_RD,
295 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296 	    "device description");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%driver", CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300 	    "device driver name");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%location", CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304 	    "device location relative to parent");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308 	    "device identification");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%parent", CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312 	    "parent device");
313 }
314 
315 static void
316 device_sysctl_fini(device_t dev)
317 {
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_ctx_free(&dev->sysctl_ctx);
321 	dev->sysctl_tree = NULL;
322 }
323 
324 /*
325  * /dev/devctl implementation
326  */
327 
328 /*
329  * This design allows only one reader for /dev/devctl.  This is not desirable
330  * in the long run, but will get a lot of hair out of this implementation.
331  * Maybe we should make this device a clonable device.
332  *
333  * Also note: we specifically do not attach a device to the device_t tree
334  * to avoid potential chicken and egg problems.  One could argue that all
335  * of this belongs to the root node.  One could also further argue that the
336  * sysctl interface that we have not might more properly be an ioctl
337  * interface, but at this stage of the game, I'm not inclined to rock that
338  * boat.
339  *
340  * I'm also not sure that the SIGIO support is done correctly or not, as
341  * I copied it from a driver that had SIGIO support that likely hasn't been
342  * tested since 3.4 or 2.2.8!
343  */
344 
345 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
346 static int devctl_disable = 0;
347 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
348 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
349     sysctl_devctl_disable, "I", "devctl disable");
350 
351 static d_open_t		devopen;
352 static d_close_t	devclose;
353 static d_read_t		devread;
354 static d_ioctl_t	devioctl;
355 static d_poll_t		devpoll;
356 
357 #define CDEV_MAJOR 173
358 static struct cdevsw dev_cdevsw = {
359 	.d_version =	D_VERSION,
360 	.d_flags =	D_NEEDGIANT,
361 	.d_open =	devopen,
362 	.d_close =	devclose,
363 	.d_read =	devread,
364 	.d_ioctl =	devioctl,
365 	.d_poll =	devpoll,
366 	.d_name =	"devctl",
367 	.d_maj =	CDEV_MAJOR,
368 };
369 
370 struct dev_event_info
371 {
372 	char *dei_data;
373 	TAILQ_ENTRY(dev_event_info) dei_link;
374 };
375 
376 TAILQ_HEAD(devq, dev_event_info);
377 
378 static struct dev_softc
379 {
380 	int	inuse;
381 	int	nonblock;
382 	struct mtx mtx;
383 	struct cv cv;
384 	struct selinfo sel;
385 	struct devq devq;
386 	struct proc *async_proc;
387 } devsoftc;
388 
389 static struct cdev *devctl_dev;
390 
391 static void
392 devinit(void)
393 {
394 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
395 	    "devctl");
396 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
397 	cv_init(&devsoftc.cv, "dev cv");
398 	TAILQ_INIT(&devsoftc.devq);
399 }
400 
401 static int
402 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
403 {
404 	if (devsoftc.inuse)
405 		return (EBUSY);
406 	/* move to init */
407 	devsoftc.inuse = 1;
408 	devsoftc.nonblock = 0;
409 	devsoftc.async_proc = NULL;
410 	return (0);
411 }
412 
413 static int
414 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
415 {
416 	devsoftc.inuse = 0;
417 	mtx_lock(&devsoftc.mtx);
418 	cv_broadcast(&devsoftc.cv);
419 	mtx_unlock(&devsoftc.mtx);
420 
421 	return (0);
422 }
423 
424 /*
425  * The read channel for this device is used to report changes to
426  * userland in realtime.  We are required to free the data as well as
427  * the n1 object because we allocate them separately.  Also note that
428  * we return one record at a time.  If you try to read this device a
429  * character at a time, you will loose the rest of the data.  Listening
430  * programs are expected to cope.
431  */
432 static int
433 devread(struct cdev *dev, struct uio *uio, int ioflag)
434 {
435 	struct dev_event_info *n1;
436 	int rv;
437 
438 	mtx_lock(&devsoftc.mtx);
439 	while (TAILQ_EMPTY(&devsoftc.devq)) {
440 		if (devsoftc.nonblock) {
441 			mtx_unlock(&devsoftc.mtx);
442 			return (EAGAIN);
443 		}
444 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
445 		if (rv) {
446 			/*
447 			 * Need to translate ERESTART to EINTR here? -- jake
448 			 */
449 			mtx_unlock(&devsoftc.mtx);
450 			return (rv);
451 		}
452 	}
453 	n1 = TAILQ_FIRST(&devsoftc.devq);
454 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
455 	mtx_unlock(&devsoftc.mtx);
456 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
457 	free(n1->dei_data, M_BUS);
458 	free(n1, M_BUS);
459 	return (rv);
460 }
461 
462 static	int
463 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
464 {
465 	switch (cmd) {
466 
467 	case FIONBIO:
468 		if (*(int*)data)
469 			devsoftc.nonblock = 1;
470 		else
471 			devsoftc.nonblock = 0;
472 		return (0);
473 	case FIOASYNC:
474 		if (*(int*)data)
475 			devsoftc.async_proc = td->td_proc;
476 		else
477 			devsoftc.async_proc = NULL;
478 		return (0);
479 
480 		/* (un)Support for other fcntl() calls. */
481 	case FIOCLEX:
482 	case FIONCLEX:
483 	case FIONREAD:
484 	case FIOSETOWN:
485 	case FIOGETOWN:
486 	default:
487 		break;
488 	}
489 	return (ENOTTY);
490 }
491 
492 static	int
493 devpoll(struct cdev *dev, int events, d_thread_t *td)
494 {
495 	int	revents = 0;
496 
497 	mtx_lock(&devsoftc.mtx);
498 	if (events & (POLLIN | POLLRDNORM)) {
499 		if (!TAILQ_EMPTY(&devsoftc.devq))
500 			revents = events & (POLLIN | POLLRDNORM);
501 		else
502 			selrecord(td, &devsoftc.sel);
503 	}
504 	mtx_unlock(&devsoftc.mtx);
505 
506 	return (revents);
507 }
508 
509 /**
510  * @brief Queue data to be read from the devctl device
511  *
512  * Generic interface to queue data to the devctl device.  It is
513  * assumed that @p data is properly formatted.  It is further assumed
514  * that @p data is allocated using the M_BUS malloc type.
515  */
516 void
517 devctl_queue_data(char *data)
518 {
519 	struct dev_event_info *n1 = NULL;
520 	struct proc *p;
521 
522 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
523 	if (n1 == NULL)
524 		return;
525 	n1->dei_data = data;
526 	mtx_lock(&devsoftc.mtx);
527 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
528 	cv_broadcast(&devsoftc.cv);
529 	mtx_unlock(&devsoftc.mtx);
530 	selwakeup(&devsoftc.sel);
531 	p = devsoftc.async_proc;
532 	if (p != NULL) {
533 		PROC_LOCK(p);
534 		psignal(p, SIGIO);
535 		PROC_UNLOCK(p);
536 	}
537 }
538 
539 /**
540  * @brief Send a 'notification' to userland, using standard ways
541  */
542 void
543 devctl_notify(const char *system, const char *subsystem, const char *type,
544     const char *data)
545 {
546 	int len = 0;
547 	char *msg;
548 
549 	if (system == NULL)
550 		return;		/* BOGUS!  Must specify system. */
551 	if (subsystem == NULL)
552 		return;		/* BOGUS!  Must specify subsystem. */
553 	if (type == NULL)
554 		return;		/* BOGUS!  Must specify type. */
555 	len += strlen(" system=") + strlen(system);
556 	len += strlen(" subsystem=") + strlen(subsystem);
557 	len += strlen(" type=") + strlen(type);
558 	/* add in the data message plus newline. */
559 	if (data != NULL)
560 		len += strlen(data);
561 	len += 3;	/* '!', '\n', and NUL */
562 	msg = malloc(len, M_BUS, M_NOWAIT);
563 	if (msg == NULL)
564 		return;		/* Drop it on the floor */
565 	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
566 	    subsystem, type, data);
567 	devctl_queue_data(msg);
568 }
569 
570 /*
571  * Common routine that tries to make sending messages as easy as possible.
572  * We allocate memory for the data, copy strings into that, but do not
573  * free it unless there's an error.  The dequeue part of the driver should
574  * free the data.  We don't send data when the device is disabled.  We do
575  * send data, even when we have no listeners, because we wish to avoid
576  * races relating to startup and restart of listening applications.
577  *
578  * devaddq is designed to string together the type of event, with the
579  * object of that event, plus the plug and play info and location info
580  * for that event.  This is likely most useful for devices, but less
581  * useful for other consumers of this interface.  Those should use
582  * the devctl_queue_data() interface instead.
583  */
584 static void
585 devaddq(const char *type, const char *what, device_t dev)
586 {
587 	char *data = NULL;
588 	char *loc = NULL;
589 	char *pnp = NULL;
590 	const char *parstr;
591 
592 	if (devctl_disable)
593 		return;
594 	data = malloc(1024, M_BUS, M_NOWAIT);
595 	if (data == NULL)
596 		goto bad;
597 
598 	/* get the bus specific location of this device */
599 	loc = malloc(1024, M_BUS, M_NOWAIT);
600 	if (loc == NULL)
601 		goto bad;
602 	*loc = '\0';
603 	bus_child_location_str(dev, loc, 1024);
604 
605 	/* Get the bus specific pnp info of this device */
606 	pnp = malloc(1024, M_BUS, M_NOWAIT);
607 	if (pnp == NULL)
608 		goto bad;
609 	*pnp = '\0';
610 	bus_child_pnpinfo_str(dev, pnp, 1024);
611 
612 	/* Get the parent of this device, or / if high enough in the tree. */
613 	if (device_get_parent(dev) == NULL)
614 		parstr = ".";	/* Or '/' ? */
615 	else
616 		parstr = device_get_nameunit(device_get_parent(dev));
617 	/* String it all together. */
618 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
619 	  parstr);
620 	free(loc, M_BUS);
621 	free(pnp, M_BUS);
622 	devctl_queue_data(data);
623 	return;
624 bad:
625 	free(pnp, M_BUS);
626 	free(loc, M_BUS);
627 	free(data, M_BUS);
628 	return;
629 }
630 
631 /*
632  * A device was added to the tree.  We are called just after it successfully
633  * attaches (that is, probe and attach success for this device).  No call
634  * is made if a device is merely parented into the tree.  See devnomatch
635  * if probe fails.  If attach fails, no notification is sent (but maybe
636  * we should have a different message for this).
637  */
638 static void
639 devadded(device_t dev)
640 {
641 	char *pnp = NULL;
642 	char *tmp = NULL;
643 
644 	pnp = malloc(1024, M_BUS, M_NOWAIT);
645 	if (pnp == NULL)
646 		goto fail;
647 	tmp = malloc(1024, M_BUS, M_NOWAIT);
648 	if (tmp == NULL)
649 		goto fail;
650 	*pnp = '\0';
651 	bus_child_pnpinfo_str(dev, pnp, 1024);
652 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
653 	devaddq("+", tmp, dev);
654 fail:
655 	if (pnp != NULL)
656 		free(pnp, M_BUS);
657 	if (tmp != NULL)
658 		free(tmp, M_BUS);
659 	return;
660 }
661 
662 /*
663  * A device was removed from the tree.  We are called just before this
664  * happens.
665  */
666 static void
667 devremoved(device_t dev)
668 {
669 	char *pnp = NULL;
670 	char *tmp = NULL;
671 
672 	pnp = malloc(1024, M_BUS, M_NOWAIT);
673 	if (pnp == NULL)
674 		goto fail;
675 	tmp = malloc(1024, M_BUS, M_NOWAIT);
676 	if (tmp == NULL)
677 		goto fail;
678 	*pnp = '\0';
679 	bus_child_pnpinfo_str(dev, pnp, 1024);
680 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
681 	devaddq("-", tmp, dev);
682 fail:
683 	if (pnp != NULL)
684 		free(pnp, M_BUS);
685 	if (tmp != NULL)
686 		free(tmp, M_BUS);
687 	return;
688 }
689 
690 /*
691  * Called when there's no match for this device.  This is only called
692  * the first time that no match happens, so we don't keep getitng this
693  * message.  Should that prove to be undesirable, we can change it.
694  * This is called when all drivers that can attach to a given bus
695  * decline to accept this device.  Other errrors may not be detected.
696  */
697 static void
698 devnomatch(device_t dev)
699 {
700 	devaddq("?", "", dev);
701 }
702 
703 static int
704 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
705 {
706 	struct dev_event_info *n1;
707 	int dis, error;
708 
709 	dis = devctl_disable;
710 	error = sysctl_handle_int(oidp, &dis, 0, req);
711 	if (error || !req->newptr)
712 		return (error);
713 	mtx_lock(&devsoftc.mtx);
714 	devctl_disable = dis;
715 	if (dis) {
716 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
717 			n1 = TAILQ_FIRST(&devsoftc.devq);
718 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
719 			free(n1->dei_data, M_BUS);
720 			free(n1, M_BUS);
721 		}
722 	}
723 	mtx_unlock(&devsoftc.mtx);
724 	return (0);
725 }
726 
727 /* End of /dev/devctl code */
728 
729 TAILQ_HEAD(,device)	bus_data_devices;
730 static int bus_data_generation = 1;
731 
732 kobj_method_t null_methods[] = {
733 	{ 0, 0 }
734 };
735 
736 DEFINE_CLASS(null, null_methods, 0);
737 
738 /*
739  * Devclass implementation
740  */
741 
742 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
743 
744 
745 /**
746  * @internal
747  * @brief Find or create a device class
748  *
749  * If a device class with the name @p classname exists, return it,
750  * otherwise if @p create is non-zero create and return a new device
751  * class.
752  *
753  * If @p parentname is non-NULL, the parent of the devclass is set to
754  * the devclass of that name.
755  *
756  * @param classname	the devclass name to find or create
757  * @param parentname	the parent devclass name or @c NULL
758  * @param create	non-zero to create a devclass
759  */
760 static devclass_t
761 devclass_find_internal(const char *classname, const char *parentname,
762 		       int create)
763 {
764 	devclass_t dc;
765 
766 	PDEBUG(("looking for %s", classname));
767 	if (!classname)
768 		return (NULL);
769 
770 	TAILQ_FOREACH(dc, &devclasses, link) {
771 		if (!strcmp(dc->name, classname))
772 			break;
773 	}
774 
775 	if (create && !dc) {
776 		PDEBUG(("creating %s", classname));
777 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
778 		    M_BUS, M_NOWAIT|M_ZERO);
779 		if (!dc)
780 			return (NULL);
781 		dc->parent = NULL;
782 		dc->name = (char*) (dc + 1);
783 		strcpy(dc->name, classname);
784 		TAILQ_INIT(&dc->drivers);
785 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
786 
787 		bus_data_generation_update();
788 	}
789 	if (parentname && dc && !dc->parent) {
790 		dc->parent = devclass_find_internal(parentname, 0, FALSE);
791 	}
792 
793 	return (dc);
794 }
795 
796 /**
797  * @brief Create a device class
798  *
799  * If a device class with the name @p classname exists, return it,
800  * otherwise create and return a new device class.
801  *
802  * @param classname	the devclass name to find or create
803  */
804 devclass_t
805 devclass_create(const char *classname)
806 {
807 	return (devclass_find_internal(classname, 0, TRUE));
808 }
809 
810 /**
811  * @brief Find a device class
812  *
813  * If a device class with the name @p classname exists, return it,
814  * otherwise return @c NULL.
815  *
816  * @param classname	the devclass name to find
817  */
818 devclass_t
819 devclass_find(const char *classname)
820 {
821 	return (devclass_find_internal(classname, 0, FALSE));
822 }
823 
824 /**
825  * @brief Add a device driver to a device class
826  *
827  * Add a device driver to a devclass. This is normally called
828  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
829  * all devices in the devclass will be called to allow them to attempt
830  * to re-probe any unmatched children.
831  *
832  * @param dc		the devclass to edit
833  * @param driver	the driver to register
834  */
835 int
836 devclass_add_driver(devclass_t dc, driver_t *driver)
837 {
838 	driverlink_t dl;
839 	int i;
840 
841 	PDEBUG(("%s", DRIVERNAME(driver)));
842 
843 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
844 	if (!dl)
845 		return (ENOMEM);
846 
847 	/*
848 	 * Compile the driver's methods. Also increase the reference count
849 	 * so that the class doesn't get freed when the last instance
850 	 * goes. This means we can safely use static methods and avoids a
851 	 * double-free in devclass_delete_driver.
852 	 */
853 	kobj_class_compile((kobj_class_t) driver);
854 
855 	/*
856 	 * Make sure the devclass which the driver is implementing exists.
857 	 */
858 	devclass_find_internal(driver->name, 0, TRUE);
859 
860 	dl->driver = driver;
861 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
862 	driver->refs++;
863 
864 	/*
865 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
866 	 */
867 	for (i = 0; i < dc->maxunit; i++)
868 		if (dc->devices[i])
869 			BUS_DRIVER_ADDED(dc->devices[i], driver);
870 
871 	bus_data_generation_update();
872 	return (0);
873 }
874 
875 /**
876  * @brief Delete a device driver from a device class
877  *
878  * Delete a device driver from a devclass. This is normally called
879  * automatically by DRIVER_MODULE().
880  *
881  * If the driver is currently attached to any devices,
882  * devclass_delete_driver() will first attempt to detach from each
883  * device. If one of the detach calls fails, the driver will not be
884  * deleted.
885  *
886  * @param dc		the devclass to edit
887  * @param driver	the driver to unregister
888  */
889 int
890 devclass_delete_driver(devclass_t busclass, driver_t *driver)
891 {
892 	devclass_t dc = devclass_find(driver->name);
893 	driverlink_t dl;
894 	device_t dev;
895 	int i;
896 	int error;
897 
898 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
899 
900 	if (!dc)
901 		return (0);
902 
903 	/*
904 	 * Find the link structure in the bus' list of drivers.
905 	 */
906 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
907 		if (dl->driver == driver)
908 			break;
909 	}
910 
911 	if (!dl) {
912 		PDEBUG(("%s not found in %s list", driver->name,
913 		    busclass->name));
914 		return (ENOENT);
915 	}
916 
917 	/*
918 	 * Disassociate from any devices.  We iterate through all the
919 	 * devices in the devclass of the driver and detach any which are
920 	 * using the driver and which have a parent in the devclass which
921 	 * we are deleting from.
922 	 *
923 	 * Note that since a driver can be in multiple devclasses, we
924 	 * should not detach devices which are not children of devices in
925 	 * the affected devclass.
926 	 */
927 	for (i = 0; i < dc->maxunit; i++) {
928 		if (dc->devices[i]) {
929 			dev = dc->devices[i];
930 			if (dev->driver == driver && dev->parent &&
931 			    dev->parent->devclass == busclass) {
932 				if ((error = device_detach(dev)) != 0)
933 					return (error);
934 				device_set_driver(dev, NULL);
935 			}
936 		}
937 	}
938 
939 	TAILQ_REMOVE(&busclass->drivers, dl, link);
940 	free(dl, M_BUS);
941 
942 	driver->refs--;
943 	if (driver->refs == 0)
944 		kobj_class_free((kobj_class_t) driver);
945 
946 	bus_data_generation_update();
947 	return (0);
948 }
949 
950 /**
951  * @internal
952  */
953 static driverlink_t
954 devclass_find_driver_internal(devclass_t dc, const char *classname)
955 {
956 	driverlink_t dl;
957 
958 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
959 
960 	TAILQ_FOREACH(dl, &dc->drivers, link) {
961 		if (!strcmp(dl->driver->name, classname))
962 			return (dl);
963 	}
964 
965 	PDEBUG(("not found"));
966 	return (NULL);
967 }
968 
969 /**
970  * @brief Search a devclass for a driver
971  *
972  * This function searches the devclass's list of drivers and returns
973  * the first driver whose name is @p classname or @c NULL if there is
974  * no driver of that name.
975  *
976  * @param dc		the devclass to search
977  * @param classname	the driver name to search for
978  */
979 kobj_class_t
980 devclass_find_driver(devclass_t dc, const char *classname)
981 {
982 	driverlink_t dl;
983 
984 	dl = devclass_find_driver_internal(dc, classname);
985 	if (dl)
986 		return (dl->driver);
987 	return (NULL);
988 }
989 
990 /**
991  * @brief Return the name of the devclass
992  */
993 const char *
994 devclass_get_name(devclass_t dc)
995 {
996 	return (dc->name);
997 }
998 
999 /**
1000  * @brief Find a device given a unit number
1001  *
1002  * @param dc		the devclass to search
1003  * @param unit		the unit number to search for
1004  *
1005  * @returns		the device with the given unit number or @c
1006  *			NULL if there is no such device
1007  */
1008 device_t
1009 devclass_get_device(devclass_t dc, int unit)
1010 {
1011 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1012 		return (NULL);
1013 	return (dc->devices[unit]);
1014 }
1015 
1016 /**
1017  * @brief Find the softc field of a device given a unit number
1018  *
1019  * @param dc		the devclass to search
1020  * @param unit		the unit number to search for
1021  *
1022  * @returns		the softc field of the device with the given
1023  *			unit number or @c NULL if there is no such
1024  *			device
1025  */
1026 void *
1027 devclass_get_softc(devclass_t dc, int unit)
1028 {
1029 	device_t dev;
1030 
1031 	dev = devclass_get_device(dc, unit);
1032 	if (!dev)
1033 		return (NULL);
1034 
1035 	return (device_get_softc(dev));
1036 }
1037 
1038 /**
1039  * @brief Get a list of devices in the devclass
1040  *
1041  * An array containing a list of all the devices in the given devclass
1042  * is allocated and returned in @p *devlistp. The number of devices
1043  * in the array is returned in @p *devcountp. The caller should free
1044  * the array using @c free(p, M_TEMP).
1045  *
1046  * @param dc		the devclass to examine
1047  * @param devlistp	points at location for array pointer return
1048  *			value
1049  * @param devcountp	points at location for array size return value
1050  *
1051  * @retval 0		success
1052  * @retval ENOMEM	the array allocation failed
1053  */
1054 int
1055 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1056 {
1057 	int count, i;
1058 	device_t *list;
1059 
1060 	count = devclass_get_count(dc);
1061 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1062 	if (!list)
1063 		return (ENOMEM);
1064 
1065 	count = 0;
1066 	for (i = 0; i < dc->maxunit; i++) {
1067 		if (dc->devices[i]) {
1068 			list[count] = dc->devices[i];
1069 			count++;
1070 		}
1071 	}
1072 
1073 	*devlistp = list;
1074 	*devcountp = count;
1075 
1076 	return (0);
1077 }
1078 
1079 /**
1080  * @brief Get the number of devices in a devclass
1081  *
1082  * @param dc		the devclass to examine
1083  */
1084 int
1085 devclass_get_count(devclass_t dc)
1086 {
1087 	int count, i;
1088 
1089 	count = 0;
1090 	for (i = 0; i < dc->maxunit; i++)
1091 		if (dc->devices[i])
1092 			count++;
1093 	return (count);
1094 }
1095 
1096 /**
1097  * @brief Get the maximum unit number used in a devclass
1098  *
1099  * @param dc		the devclass to examine
1100  */
1101 int
1102 devclass_get_maxunit(devclass_t dc)
1103 {
1104 	return (dc->maxunit);
1105 }
1106 
1107 /**
1108  * @brief Find a free unit number in a devclass
1109  *
1110  * This function searches for the first unused unit number greater
1111  * that or equal to @p unit.
1112  *
1113  * @param dc		the devclass to examine
1114  * @param unit		the first unit number to check
1115  */
1116 int
1117 devclass_find_free_unit(devclass_t dc, int unit)
1118 {
1119 	if (dc == NULL)
1120 		return (unit);
1121 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1122 		unit++;
1123 	return (unit);
1124 }
1125 
1126 /**
1127  * @brief Set the parent of a devclass
1128  *
1129  * The parent class is normally initialised automatically by
1130  * DRIVER_MODULE().
1131  *
1132  * @param dc		the devclass to edit
1133  * @param pdc		the new parent devclass
1134  */
1135 void
1136 devclass_set_parent(devclass_t dc, devclass_t pdc)
1137 {
1138 	dc->parent = pdc;
1139 }
1140 
1141 /**
1142  * @brief Get the parent of a devclass
1143  *
1144  * @param dc		the devclass to examine
1145  */
1146 devclass_t
1147 devclass_get_parent(devclass_t dc)
1148 {
1149 	return (dc->parent);
1150 }
1151 
1152 struct sysctl_ctx_list *
1153 devclass_get_sysctl_ctx(devclass_t dc)
1154 {
1155 	return (&dc->sysctl_ctx);
1156 }
1157 
1158 struct sysctl_oid *
1159 devclass_get_sysctl_tree(devclass_t dc)
1160 {
1161 	return (dc->sysctl_tree);
1162 }
1163 
1164 /**
1165  * @internal
1166  * @brief Allocate a unit number
1167  *
1168  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1169  * will do). The allocated unit number is returned in @p *unitp.
1170 
1171  * @param dc		the devclass to allocate from
1172  * @param unitp		points at the location for the allocated unit
1173  *			number
1174  *
1175  * @retval 0		success
1176  * @retval EEXIST	the requested unit number is already allocated
1177  * @retval ENOMEM	memory allocation failure
1178  */
1179 static int
1180 devclass_alloc_unit(devclass_t dc, int *unitp)
1181 {
1182 	int unit = *unitp;
1183 
1184 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1185 
1186 	/* If we were given a wired unit number, check for existing device */
1187 	/* XXX imp XXX */
1188 	if (unit != -1) {
1189 		if (unit >= 0 && unit < dc->maxunit &&
1190 		    dc->devices[unit] != NULL) {
1191 			if (bootverbose)
1192 				printf("%s: %s%d already exists; skipping it\n",
1193 				    dc->name, dc->name, *unitp);
1194 			return (EEXIST);
1195 		}
1196 	} else {
1197 		/* Unwired device, find the next available slot for it */
1198 		unit = 0;
1199 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1200 			unit++;
1201 	}
1202 
1203 	/*
1204 	 * We've selected a unit beyond the length of the table, so let's
1205 	 * extend the table to make room for all units up to and including
1206 	 * this one.
1207 	 */
1208 	if (unit >= dc->maxunit) {
1209 		device_t *newlist;
1210 		int newsize;
1211 
1212 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1213 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1214 		if (!newlist)
1215 			return (ENOMEM);
1216 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1217 		bzero(newlist + dc->maxunit,
1218 		    sizeof(device_t) * (newsize - dc->maxunit));
1219 		if (dc->devices)
1220 			free(dc->devices, M_BUS);
1221 		dc->devices = newlist;
1222 		dc->maxunit = newsize;
1223 	}
1224 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1225 
1226 	*unitp = unit;
1227 	return (0);
1228 }
1229 
1230 /**
1231  * @internal
1232  * @brief Add a device to a devclass
1233  *
1234  * A unit number is allocated for the device (using the device's
1235  * preferred unit number if any) and the device is registered in the
1236  * devclass. This allows the device to be looked up by its unit
1237  * number, e.g. by decoding a dev_t minor number.
1238  *
1239  * @param dc		the devclass to add to
1240  * @param dev		the device to add
1241  *
1242  * @retval 0		success
1243  * @retval EEXIST	the requested unit number is already allocated
1244  * @retval ENOMEM	memory allocation failure
1245  */
1246 static int
1247 devclass_add_device(devclass_t dc, device_t dev)
1248 {
1249 	int buflen, error;
1250 
1251 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1252 
1253 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1254 	if (buflen < 0)
1255 		return (ENOMEM);
1256 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1257 	if (!dev->nameunit)
1258 		return (ENOMEM);
1259 
1260 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1261 		free(dev->nameunit, M_BUS);
1262 		dev->nameunit = NULL;
1263 		return (error);
1264 	}
1265 	dc->devices[dev->unit] = dev;
1266 	dev->devclass = dc;
1267 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1268 
1269 	return (0);
1270 }
1271 
1272 /**
1273  * @internal
1274  * @brief Delete a device from a devclass
1275  *
1276  * The device is removed from the devclass's device list and its unit
1277  * number is freed.
1278 
1279  * @param dc		the devclass to delete from
1280  * @param dev		the device to delete
1281  *
1282  * @retval 0		success
1283  */
1284 static int
1285 devclass_delete_device(devclass_t dc, device_t dev)
1286 {
1287 	if (!dc || !dev)
1288 		return (0);
1289 
1290 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1291 
1292 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1293 		panic("devclass_delete_device: inconsistent device class");
1294 	dc->devices[dev->unit] = NULL;
1295 	if (dev->flags & DF_WILDCARD)
1296 		dev->unit = -1;
1297 	dev->devclass = NULL;
1298 	free(dev->nameunit, M_BUS);
1299 	dev->nameunit = NULL;
1300 
1301 	return (0);
1302 }
1303 
1304 /**
1305  * @internal
1306  * @brief Make a new device and add it as a child of @p parent
1307  *
1308  * @param parent	the parent of the new device
1309  * @param name		the devclass name of the new device or @c NULL
1310  *			to leave the devclass unspecified
1311  * @parem unit		the unit number of the new device of @c -1 to
1312  *			leave the unit number unspecified
1313  *
1314  * @returns the new device
1315  */
1316 static device_t
1317 make_device(device_t parent, const char *name, int unit)
1318 {
1319 	device_t dev;
1320 	devclass_t dc;
1321 
1322 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1323 
1324 	if (name) {
1325 		dc = devclass_find_internal(name, 0, TRUE);
1326 		if (!dc) {
1327 			printf("make_device: can't find device class %s\n",
1328 			    name);
1329 			return (NULL);
1330 		}
1331 	} else {
1332 		dc = NULL;
1333 	}
1334 
1335 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1336 	if (!dev)
1337 		return (NULL);
1338 
1339 	dev->parent = parent;
1340 	TAILQ_INIT(&dev->children);
1341 	kobj_init((kobj_t) dev, &null_class);
1342 	dev->driver = NULL;
1343 	dev->devclass = NULL;
1344 	dev->unit = unit;
1345 	dev->nameunit = NULL;
1346 	dev->desc = NULL;
1347 	dev->busy = 0;
1348 	dev->devflags = 0;
1349 	dev->flags = DF_ENABLED;
1350 	dev->order = 0;
1351 	if (unit == -1)
1352 		dev->flags |= DF_WILDCARD;
1353 	if (name) {
1354 		dev->flags |= DF_FIXEDCLASS;
1355 		if (devclass_add_device(dc, dev)) {
1356 			kobj_delete((kobj_t) dev, M_BUS);
1357 			return (NULL);
1358 		}
1359 	}
1360 	dev->ivars = NULL;
1361 	dev->softc = NULL;
1362 
1363 	dev->state = DS_NOTPRESENT;
1364 
1365 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1366 	bus_data_generation_update();
1367 
1368 	return (dev);
1369 }
1370 
1371 /**
1372  * @internal
1373  * @brief Print a description of a device.
1374  */
1375 static int
1376 device_print_child(device_t dev, device_t child)
1377 {
1378 	int retval = 0;
1379 
1380 	if (device_is_alive(child))
1381 		retval += BUS_PRINT_CHILD(dev, child);
1382 	else
1383 		retval += device_printf(child, " not found\n");
1384 
1385 	return (retval);
1386 }
1387 
1388 /**
1389  * @brief Create a new device
1390  *
1391  * This creates a new device and adds it as a child of an existing
1392  * parent device. The new device will be added after the last existing
1393  * child with order zero.
1394  *
1395  * @param dev		the device which will be the parent of the
1396  *			new child device
1397  * @param name		devclass name for new device or @c NULL if not
1398  *			specified
1399  * @param unit		unit number for new device or @c -1 if not
1400  *			specified
1401  *
1402  * @returns		the new device
1403  */
1404 device_t
1405 device_add_child(device_t dev, const char *name, int unit)
1406 {
1407 	return (device_add_child_ordered(dev, 0, name, unit));
1408 }
1409 
1410 /**
1411  * @brief Create a new device
1412  *
1413  * This creates a new device and adds it as a child of an existing
1414  * parent device. The new device will be added after the last existing
1415  * child with the same order.
1416  *
1417  * @param dev		the device which will be the parent of the
1418  *			new child device
1419  * @param order		a value which is used to partially sort the
1420  *			children of @p dev - devices created using
1421  *			lower values of @p order appear first in @p
1422  *			dev's list of children
1423  * @param name		devclass name for new device or @c NULL if not
1424  *			specified
1425  * @param unit		unit number for new device or @c -1 if not
1426  *			specified
1427  *
1428  * @returns		the new device
1429  */
1430 device_t
1431 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1432 {
1433 	device_t child;
1434 	device_t place;
1435 
1436 	PDEBUG(("%s at %s with order %d as unit %d",
1437 	    name, DEVICENAME(dev), order, unit));
1438 
1439 	child = make_device(dev, name, unit);
1440 	if (child == NULL)
1441 		return (child);
1442 	child->order = order;
1443 
1444 	TAILQ_FOREACH(place, &dev->children, link) {
1445 		if (place->order > order)
1446 			break;
1447 	}
1448 
1449 	if (place) {
1450 		/*
1451 		 * The device 'place' is the first device whose order is
1452 		 * greater than the new child.
1453 		 */
1454 		TAILQ_INSERT_BEFORE(place, child, link);
1455 	} else {
1456 		/*
1457 		 * The new child's order is greater or equal to the order of
1458 		 * any existing device. Add the child to the tail of the list.
1459 		 */
1460 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1461 	}
1462 
1463 	bus_data_generation_update();
1464 	return (child);
1465 }
1466 
1467 /**
1468  * @brief Delete a device
1469  *
1470  * This function deletes a device along with all of its children. If
1471  * the device currently has a driver attached to it, the device is
1472  * detached first using device_detach().
1473  *
1474  * @param dev		the parent device
1475  * @param child		the device to delete
1476  *
1477  * @retval 0		success
1478  * @retval non-zero	a unit error code describing the error
1479  */
1480 int
1481 device_delete_child(device_t dev, device_t child)
1482 {
1483 	int error;
1484 	device_t grandchild;
1485 
1486 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1487 
1488 	/* remove children first */
1489 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1490 		error = device_delete_child(child, grandchild);
1491 		if (error)
1492 			return (error);
1493 	}
1494 
1495 	if ((error = device_detach(child)) != 0)
1496 		return (error);
1497 	if (child->devclass)
1498 		devclass_delete_device(child->devclass, child);
1499 	TAILQ_REMOVE(&dev->children, child, link);
1500 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1501 	kobj_delete((kobj_t) child, M_BUS);
1502 
1503 	bus_data_generation_update();
1504 	return (0);
1505 }
1506 
1507 /**
1508  * @brief Find a device given a unit number
1509  *
1510  * This is similar to devclass_get_devices() but only searches for
1511  * devices which have @p dev as a parent.
1512  *
1513  * @param dev		the parent device to search
1514  * @param unit		the unit number to search for
1515  *
1516  * @returns		the device with the given unit number or @c
1517  *			NULL if there is no such device
1518  */
1519 device_t
1520 device_find_child(device_t dev, const char *classname, int unit)
1521 {
1522 	devclass_t dc;
1523 	device_t child;
1524 
1525 	dc = devclass_find(classname);
1526 	if (!dc)
1527 		return (NULL);
1528 
1529 	child = devclass_get_device(dc, unit);
1530 	if (child && child->parent == dev)
1531 		return (child);
1532 	return (NULL);
1533 }
1534 
1535 /**
1536  * @internal
1537  */
1538 static driverlink_t
1539 first_matching_driver(devclass_t dc, device_t dev)
1540 {
1541 	if (dev->devclass)
1542 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1543 	return (TAILQ_FIRST(&dc->drivers));
1544 }
1545 
1546 /**
1547  * @internal
1548  */
1549 static driverlink_t
1550 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1551 {
1552 	if (dev->devclass) {
1553 		driverlink_t dl;
1554 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1555 			if (!strcmp(dev->devclass->name, dl->driver->name))
1556 				return (dl);
1557 		return (NULL);
1558 	}
1559 	return (TAILQ_NEXT(last, link));
1560 }
1561 
1562 /**
1563  * @internal
1564  */
1565 static int
1566 device_probe_child(device_t dev, device_t child)
1567 {
1568 	devclass_t dc;
1569 	driverlink_t best = 0;
1570 	driverlink_t dl;
1571 	int result, pri = 0;
1572 	int hasclass = (child->devclass != 0);
1573 
1574 	GIANT_REQUIRED;
1575 
1576 	dc = dev->devclass;
1577 	if (!dc)
1578 		panic("device_probe_child: parent device has no devclass");
1579 
1580 	/*
1581 	 * If the state is already probed, then return.  However, don't
1582 	 * return if we can rebid this object.
1583 	 */
1584 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1585 		return (0);
1586 
1587 	for (; dc; dc = dc->parent) {
1588 		for (dl = first_matching_driver(dc, child);
1589 		     dl;
1590 		     dl = next_matching_driver(dc, child, dl)) {
1591 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1592 			device_set_driver(child, dl->driver);
1593 			if (!hasclass)
1594 				device_set_devclass(child, dl->driver->name);
1595 
1596 			/* Fetch any flags for the device before probing. */
1597 			resource_int_value(dl->driver->name, child->unit,
1598 			    "flags", &child->devflags);
1599 
1600 			result = DEVICE_PROBE(child);
1601 
1602 			/* Reset flags and devclass before the next probe. */
1603 			child->devflags = 0;
1604 			if (!hasclass)
1605 				device_set_devclass(child, 0);
1606 
1607 			/*
1608 			 * If the driver returns SUCCESS, there can be
1609 			 * no higher match for this device.
1610 			 */
1611 			if (result == 0) {
1612 				best = dl;
1613 				pri = 0;
1614 				break;
1615 			}
1616 
1617 			/*
1618 			 * The driver returned an error so it
1619 			 * certainly doesn't match.
1620 			 */
1621 			if (result > 0) {
1622 				device_set_driver(child, 0);
1623 				continue;
1624 			}
1625 
1626 			/*
1627 			 * A priority lower than SUCCESS, remember the
1628 			 * best matching driver. Initialise the value
1629 			 * of pri for the first match.
1630 			 */
1631 			if (best == 0 || result > pri) {
1632 				best = dl;
1633 				pri = result;
1634 				continue;
1635 			}
1636 		}
1637 		/*
1638 		 * If we have an unambiguous match in this devclass,
1639 		 * don't look in the parent.
1640 		 */
1641 		if (best && pri == 0)
1642 			break;
1643 	}
1644 
1645 	/*
1646 	 * If we found a driver, change state and initialise the devclass.
1647 	 */
1648 	/* XXX What happens if we rebid and got no best? */
1649 	if (best) {
1650 		/*
1651 		 * If this device was atached, and we were asked to
1652 		 * rescan, and it is a different driver, then we have
1653 		 * to detach the old driver and reattach this new one.
1654 		 * Note, we don't have to check for DF_REBID here
1655 		 * because if the state is > DS_ALIVE, we know it must
1656 		 * be.
1657 		 *
1658 		 * This assumes that all DF_REBID drivers can have
1659 		 * their probe routine called at any time and that
1660 		 * they are idempotent as well as completely benign in
1661 		 * normal operations.
1662 		 *
1663 		 * We also have to make sure that the detach
1664 		 * succeeded, otherwise we fail the operation (or
1665 		 * maybe it should just fail silently?  I'm torn).
1666 		 */
1667 		if (child->state > DS_ALIVE && best->driver != child->driver)
1668 			if ((result = device_detach(dev)) != 0)
1669 				return (result);
1670 
1671 		/* Set the winning driver, devclass, and flags. */
1672 		if (!child->devclass)
1673 			device_set_devclass(child, best->driver->name);
1674 		device_set_driver(child, best->driver);
1675 		resource_int_value(best->driver->name, child->unit,
1676 		    "flags", &child->devflags);
1677 
1678 		if (pri < 0) {
1679 			/*
1680 			 * A bit bogus. Call the probe method again to make
1681 			 * sure that we have the right description.
1682 			 */
1683 			DEVICE_PROBE(child);
1684 #if 0
1685 			child->flags |= DF_REBID;
1686 #endif
1687 		} else
1688 			child->flags &= ~DF_REBID;
1689 		child->state = DS_ALIVE;
1690 
1691 		bus_data_generation_update();
1692 		return (0);
1693 	}
1694 
1695 	return (ENXIO);
1696 }
1697 
1698 /**
1699  * @brief Return the parent of a device
1700  */
1701 device_t
1702 device_get_parent(device_t dev)
1703 {
1704 	return (dev->parent);
1705 }
1706 
1707 /**
1708  * @brief Get a list of children of a device
1709  *
1710  * An array containing a list of all the children of the given device
1711  * is allocated and returned in @p *devlistp. The number of devices
1712  * in the array is returned in @p *devcountp. The caller should free
1713  * the array using @c free(p, M_TEMP).
1714  *
1715  * @param dev		the device to examine
1716  * @param devlistp	points at location for array pointer return
1717  *			value
1718  * @param devcountp	points at location for array size return value
1719  *
1720  * @retval 0		success
1721  * @retval ENOMEM	the array allocation failed
1722  */
1723 int
1724 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1725 {
1726 	int count;
1727 	device_t child;
1728 	device_t *list;
1729 
1730 	count = 0;
1731 	TAILQ_FOREACH(child, &dev->children, link) {
1732 		count++;
1733 	}
1734 
1735 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1736 	if (!list)
1737 		return (ENOMEM);
1738 
1739 	count = 0;
1740 	TAILQ_FOREACH(child, &dev->children, link) {
1741 		list[count] = child;
1742 		count++;
1743 	}
1744 
1745 	*devlistp = list;
1746 	*devcountp = count;
1747 
1748 	return (0);
1749 }
1750 
1751 /**
1752  * @brief Return the current driver for the device or @c NULL if there
1753  * is no driver currently attached
1754  */
1755 driver_t *
1756 device_get_driver(device_t dev)
1757 {
1758 	return (dev->driver);
1759 }
1760 
1761 /**
1762  * @brief Return the current devclass for the device or @c NULL if
1763  * there is none.
1764  */
1765 devclass_t
1766 device_get_devclass(device_t dev)
1767 {
1768 	return (dev->devclass);
1769 }
1770 
1771 /**
1772  * @brief Return the name of the device's devclass or @c NULL if there
1773  * is none.
1774  */
1775 const char *
1776 device_get_name(device_t dev)
1777 {
1778 	if (dev != NULL && dev->devclass)
1779 		return (devclass_get_name(dev->devclass));
1780 	return (NULL);
1781 }
1782 
1783 /**
1784  * @brief Return a string containing the device's devclass name
1785  * followed by an ascii representation of the device's unit number
1786  * (e.g. @c "foo2").
1787  */
1788 const char *
1789 device_get_nameunit(device_t dev)
1790 {
1791 	return (dev->nameunit);
1792 }
1793 
1794 /**
1795  * @brief Return the device's unit number.
1796  */
1797 int
1798 device_get_unit(device_t dev)
1799 {
1800 	return (dev->unit);
1801 }
1802 
1803 /**
1804  * @brief Return the device's description string
1805  */
1806 const char *
1807 device_get_desc(device_t dev)
1808 {
1809 	return (dev->desc);
1810 }
1811 
1812 /**
1813  * @brief Return the device's flags
1814  */
1815 u_int32_t
1816 device_get_flags(device_t dev)
1817 {
1818 	return (dev->devflags);
1819 }
1820 
1821 struct sysctl_ctx_list *
1822 device_get_sysctl_ctx(device_t dev)
1823 {
1824 	return (&dev->sysctl_ctx);
1825 }
1826 
1827 struct sysctl_oid *
1828 device_get_sysctl_tree(device_t dev)
1829 {
1830 	return (dev->sysctl_tree);
1831 }
1832 
1833 /**
1834  * @brief Print the name of the device followed by a colon and a space
1835  *
1836  * @returns the number of characters printed
1837  */
1838 int
1839 device_print_prettyname(device_t dev)
1840 {
1841 	const char *name = device_get_name(dev);
1842 
1843 	if (name == 0)
1844 		return (printf("unknown: "));
1845 	return (printf("%s%d: ", name, device_get_unit(dev)));
1846 }
1847 
1848 /**
1849  * @brief Print the name of the device followed by a colon, a space
1850  * and the result of calling vprintf() with the value of @p fmt and
1851  * the following arguments.
1852  *
1853  * @returns the number of characters printed
1854  */
1855 int
1856 device_printf(device_t dev, const char * fmt, ...)
1857 {
1858 	va_list ap;
1859 	int retval;
1860 
1861 	retval = device_print_prettyname(dev);
1862 	va_start(ap, fmt);
1863 	retval += vprintf(fmt, ap);
1864 	va_end(ap);
1865 	return (retval);
1866 }
1867 
1868 /**
1869  * @internal
1870  */
1871 static void
1872 device_set_desc_internal(device_t dev, const char* desc, int copy)
1873 {
1874 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1875 		free(dev->desc, M_BUS);
1876 		dev->flags &= ~DF_DESCMALLOCED;
1877 		dev->desc = NULL;
1878 	}
1879 
1880 	if (copy && desc) {
1881 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1882 		if (dev->desc) {
1883 			strcpy(dev->desc, desc);
1884 			dev->flags |= DF_DESCMALLOCED;
1885 		}
1886 	} else {
1887 		/* Avoid a -Wcast-qual warning */
1888 		dev->desc = (char *)(uintptr_t) desc;
1889 	}
1890 
1891 	bus_data_generation_update();
1892 }
1893 
1894 /**
1895  * @brief Set the device's description
1896  *
1897  * The value of @c desc should be a string constant that will not
1898  * change (at least until the description is changed in a subsequent
1899  * call to device_set_desc() or device_set_desc_copy()).
1900  */
1901 void
1902 device_set_desc(device_t dev, const char* desc)
1903 {
1904 	device_set_desc_internal(dev, desc, FALSE);
1905 }
1906 
1907 /**
1908  * @brief Set the device's description
1909  *
1910  * The string pointed to by @c desc is copied. Use this function if
1911  * the device description is generated, (e.g. with sprintf()).
1912  */
1913 void
1914 device_set_desc_copy(device_t dev, const char* desc)
1915 {
1916 	device_set_desc_internal(dev, desc, TRUE);
1917 }
1918 
1919 /**
1920  * @brief Set the device's flags
1921  */
1922 void
1923 device_set_flags(device_t dev, u_int32_t flags)
1924 {
1925 	dev->devflags = flags;
1926 }
1927 
1928 /**
1929  * @brief Return the device's softc field
1930  *
1931  * The softc is allocated and zeroed when a driver is attached, based
1932  * on the size field of the driver.
1933  */
1934 void *
1935 device_get_softc(device_t dev)
1936 {
1937 	return (dev->softc);
1938 }
1939 
1940 /**
1941  * @brief Set the device's softc field
1942  *
1943  * Most drivers do not need to use this since the softc is allocated
1944  * automatically when the driver is attached.
1945  */
1946 void
1947 device_set_softc(device_t dev, void *softc)
1948 {
1949 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1950 		free(dev->softc, M_BUS_SC);
1951 	dev->softc = softc;
1952 	if (dev->softc)
1953 		dev->flags |= DF_EXTERNALSOFTC;
1954 	else
1955 		dev->flags &= ~DF_EXTERNALSOFTC;
1956 }
1957 
1958 /**
1959  * @brief Get the device's ivars field
1960  *
1961  * The ivars field is used by the parent device to store per-device
1962  * state (e.g. the physical location of the device or a list of
1963  * resources).
1964  */
1965 void *
1966 device_get_ivars(device_t dev)
1967 {
1968 
1969 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
1970 	return (dev->ivars);
1971 }
1972 
1973 /**
1974  * @brief Set the device's ivars field
1975  */
1976 void
1977 device_set_ivars(device_t dev, void * ivars)
1978 {
1979 
1980 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
1981 	dev->ivars = ivars;
1982 }
1983 
1984 /**
1985  * @brief Return the device's state
1986  */
1987 device_state_t
1988 device_get_state(device_t dev)
1989 {
1990 	return (dev->state);
1991 }
1992 
1993 /**
1994  * @brief Set the DF_ENABLED flag for the device
1995  */
1996 void
1997 device_enable(device_t dev)
1998 {
1999 	dev->flags |= DF_ENABLED;
2000 }
2001 
2002 /**
2003  * @brief Clear the DF_ENABLED flag for the device
2004  */
2005 void
2006 device_disable(device_t dev)
2007 {
2008 	dev->flags &= ~DF_ENABLED;
2009 }
2010 
2011 /**
2012  * @brief Increment the busy counter for the device
2013  */
2014 void
2015 device_busy(device_t dev)
2016 {
2017 	if (dev->state < DS_ATTACHED)
2018 		panic("device_busy: called for unattached device");
2019 	if (dev->busy == 0 && dev->parent)
2020 		device_busy(dev->parent);
2021 	dev->busy++;
2022 	dev->state = DS_BUSY;
2023 }
2024 
2025 /**
2026  * @brief Decrement the busy counter for the device
2027  */
2028 void
2029 device_unbusy(device_t dev)
2030 {
2031 	if (dev->state != DS_BUSY)
2032 		panic("device_unbusy: called for non-busy device %s",
2033 		    device_get_nameunit(dev));
2034 	dev->busy--;
2035 	if (dev->busy == 0) {
2036 		if (dev->parent)
2037 			device_unbusy(dev->parent);
2038 		dev->state = DS_ATTACHED;
2039 	}
2040 }
2041 
2042 /**
2043  * @brief Set the DF_QUIET flag for the device
2044  */
2045 void
2046 device_quiet(device_t dev)
2047 {
2048 	dev->flags |= DF_QUIET;
2049 }
2050 
2051 /**
2052  * @brief Clear the DF_QUIET flag for the device
2053  */
2054 void
2055 device_verbose(device_t dev)
2056 {
2057 	dev->flags &= ~DF_QUIET;
2058 }
2059 
2060 /**
2061  * @brief Return non-zero if the DF_QUIET flag is set on the device
2062  */
2063 int
2064 device_is_quiet(device_t dev)
2065 {
2066 	return ((dev->flags & DF_QUIET) != 0);
2067 }
2068 
2069 /**
2070  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2071  */
2072 int
2073 device_is_enabled(device_t dev)
2074 {
2075 	return ((dev->flags & DF_ENABLED) != 0);
2076 }
2077 
2078 /**
2079  * @brief Return non-zero if the device was successfully probed
2080  */
2081 int
2082 device_is_alive(device_t dev)
2083 {
2084 	return (dev->state >= DS_ALIVE);
2085 }
2086 
2087 /**
2088  * @brief Return non-zero if the device currently has a driver
2089  * attached to it
2090  */
2091 int
2092 device_is_attached(device_t dev)
2093 {
2094 	return (dev->state >= DS_ATTACHED);
2095 }
2096 
2097 /**
2098  * @brief Set the devclass of a device
2099  * @see devclass_add_device().
2100  */
2101 int
2102 device_set_devclass(device_t dev, const char *classname)
2103 {
2104 	devclass_t dc;
2105 	int error;
2106 
2107 	if (!classname) {
2108 		if (dev->devclass)
2109 			devclass_delete_device(dev->devclass, dev);
2110 		return (0);
2111 	}
2112 
2113 	if (dev->devclass) {
2114 		printf("device_set_devclass: device class already set\n");
2115 		return (EINVAL);
2116 	}
2117 
2118 	dc = devclass_find_internal(classname, 0, TRUE);
2119 	if (!dc)
2120 		return (ENOMEM);
2121 
2122 	error = devclass_add_device(dc, dev);
2123 
2124 	bus_data_generation_update();
2125 	return (error);
2126 }
2127 
2128 /**
2129  * @brief Set the driver of a device
2130  *
2131  * @retval 0		success
2132  * @retval EBUSY	the device already has a driver attached
2133  * @retval ENOMEM	a memory allocation failure occurred
2134  */
2135 int
2136 device_set_driver(device_t dev, driver_t *driver)
2137 {
2138 	if (dev->state >= DS_ATTACHED)
2139 		return (EBUSY);
2140 
2141 	if (dev->driver == driver)
2142 		return (0);
2143 
2144 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2145 		free(dev->softc, M_BUS_SC);
2146 		dev->softc = NULL;
2147 	}
2148 	kobj_delete((kobj_t) dev, 0);
2149 	dev->driver = driver;
2150 	if (driver) {
2151 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2152 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2153 			dev->softc = malloc(driver->size, M_BUS_SC,
2154 			    M_NOWAIT | M_ZERO);
2155 			if (!dev->softc) {
2156 				kobj_delete((kobj_t) dev, 0);
2157 				kobj_init((kobj_t) dev, &null_class);
2158 				dev->driver = NULL;
2159 				return (ENOMEM);
2160 			}
2161 		}
2162 	} else {
2163 		kobj_init((kobj_t) dev, &null_class);
2164 	}
2165 
2166 	bus_data_generation_update();
2167 	return (0);
2168 }
2169 
2170 /**
2171  * @brief Probe a device and attach a driver if possible
2172  *
2173  * This function is the core of the device autoconfiguration
2174  * system. Its purpose is to select a suitable driver for a device and
2175  * then call that driver to initialise the hardware appropriately. The
2176  * driver is selected by calling the DEVICE_PROBE() method of a set of
2177  * candidate drivers and then choosing the driver which returned the
2178  * best value. This driver is then attached to the device using
2179  * device_attach().
2180  *
2181  * The set of suitable drivers is taken from the list of drivers in
2182  * the parent device's devclass. If the device was originally created
2183  * with a specific class name (see device_add_child()), only drivers
2184  * with that name are probed, otherwise all drivers in the devclass
2185  * are probed. If no drivers return successful probe values in the
2186  * parent devclass, the search continues in the parent of that
2187  * devclass (see devclass_get_parent()) if any.
2188  *
2189  * @param dev		the device to initialise
2190  *
2191  * @retval 0		success
2192  * @retval ENXIO	no driver was found
2193  * @retval ENOMEM	memory allocation failure
2194  * @retval non-zero	some other unix error code
2195  */
2196 int
2197 device_probe_and_attach(device_t dev)
2198 {
2199 	int error;
2200 
2201 	GIANT_REQUIRED;
2202 
2203 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2204 		return (0);
2205 
2206 	if (!(dev->flags & DF_ENABLED)) {
2207 		if (bootverbose && device_get_name(dev) != NULL) {
2208 			device_print_prettyname(dev);
2209 			printf("not probed (disabled)\n");
2210 		}
2211 		return (0);
2212 	}
2213 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2214 		if (!(dev->flags & DF_DONENOMATCH)) {
2215 			BUS_PROBE_NOMATCH(dev->parent, dev);
2216 			devnomatch(dev);
2217 			dev->flags |= DF_DONENOMATCH;
2218 		}
2219 		return (error);
2220 	}
2221 	error = device_attach(dev);
2222 
2223 	return (error);
2224 }
2225 
2226 /**
2227  * @brief Attach a device driver to a device
2228  *
2229  * This function is a wrapper around the DEVICE_ATTACH() driver
2230  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2231  * device's sysctl tree, optionally prints a description of the device
2232  * and queues a notification event for user-based device management
2233  * services.
2234  *
2235  * Normally this function is only called internally from
2236  * device_probe_and_attach().
2237  *
2238  * @param dev		the device to initialise
2239  *
2240  * @retval 0		success
2241  * @retval ENXIO	no driver was found
2242  * @retval ENOMEM	memory allocation failure
2243  * @retval non-zero	some other unix error code
2244  */
2245 int
2246 device_attach(device_t dev)
2247 {
2248 	int error;
2249 
2250 	device_sysctl_init(dev);
2251 	if (!device_is_quiet(dev))
2252 		device_print_child(dev->parent, dev);
2253 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2254 		printf("device_attach: %s%d attach returned %d\n",
2255 		    dev->driver->name, dev->unit, error);
2256 		/* Unset the class; set in device_probe_child */
2257 		if (dev->devclass == 0)
2258 			device_set_devclass(dev, 0);
2259 		device_set_driver(dev, NULL);
2260 		device_sysctl_fini(dev);
2261 		dev->state = DS_NOTPRESENT;
2262 		return (error);
2263 	}
2264 	dev->state = DS_ATTACHED;
2265 	devadded(dev);
2266 	return (0);
2267 }
2268 
2269 /**
2270  * @brief Detach a driver from a device
2271  *
2272  * This function is a wrapper around the DEVICE_DETACH() driver
2273  * method. If the call to DEVICE_DETACH() succeeds, it calls
2274  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2275  * notification event for user-based device management services and
2276  * cleans up the device's sysctl tree.
2277  *
2278  * @param dev		the device to un-initialise
2279  *
2280  * @retval 0		success
2281  * @retval ENXIO	no driver was found
2282  * @retval ENOMEM	memory allocation failure
2283  * @retval non-zero	some other unix error code
2284  */
2285 int
2286 device_detach(device_t dev)
2287 {
2288 	int error;
2289 
2290 	GIANT_REQUIRED;
2291 
2292 	PDEBUG(("%s", DEVICENAME(dev)));
2293 	if (dev->state == DS_BUSY)
2294 		return (EBUSY);
2295 	if (dev->state != DS_ATTACHED)
2296 		return (0);
2297 
2298 	if ((error = DEVICE_DETACH(dev)) != 0)
2299 		return (error);
2300 	devremoved(dev);
2301 	device_printf(dev, "detached\n");
2302 	if (dev->parent)
2303 		BUS_CHILD_DETACHED(dev->parent, dev);
2304 
2305 	if (!(dev->flags & DF_FIXEDCLASS))
2306 		devclass_delete_device(dev->devclass, dev);
2307 
2308 	dev->state = DS_NOTPRESENT;
2309 	device_set_driver(dev, NULL);
2310 	device_set_desc(dev, NULL);
2311 	device_sysctl_fini(dev);
2312 
2313 	return (0);
2314 }
2315 
2316 /**
2317  * @brief Notify a device of system shutdown
2318  *
2319  * This function calls the DEVICE_SHUTDOWN() driver method if the
2320  * device currently has an attached driver.
2321  *
2322  * @returns the value returned by DEVICE_SHUTDOWN()
2323  */
2324 int
2325 device_shutdown(device_t dev)
2326 {
2327 	if (dev->state < DS_ATTACHED)
2328 		return (0);
2329 	return (DEVICE_SHUTDOWN(dev));
2330 }
2331 
2332 /**
2333  * @brief Set the unit number of a device
2334  *
2335  * This function can be used to override the unit number used for a
2336  * device (e.g. to wire a device to a pre-configured unit number).
2337  */
2338 int
2339 device_set_unit(device_t dev, int unit)
2340 {
2341 	devclass_t dc;
2342 	int err;
2343 
2344 	dc = device_get_devclass(dev);
2345 	if (unit < dc->maxunit && dc->devices[unit])
2346 		return (EBUSY);
2347 	err = devclass_delete_device(dc, dev);
2348 	if (err)
2349 		return (err);
2350 	dev->unit = unit;
2351 	err = devclass_add_device(dc, dev);
2352 	if (err)
2353 		return (err);
2354 
2355 	bus_data_generation_update();
2356 	return (0);
2357 }
2358 
2359 /*======================================*/
2360 /*
2361  * Some useful method implementations to make life easier for bus drivers.
2362  */
2363 
2364 /**
2365  * @brief Initialise a resource list.
2366  *
2367  * @param rl		the resource list to initialise
2368  */
2369 void
2370 resource_list_init(struct resource_list *rl)
2371 {
2372 	SLIST_INIT(rl);
2373 }
2374 
2375 /**
2376  * @brief Reclaim memory used by a resource list.
2377  *
2378  * This function frees the memory for all resource entries on the list
2379  * (if any).
2380  *
2381  * @param rl		the resource list to free
2382  */
2383 void
2384 resource_list_free(struct resource_list *rl)
2385 {
2386 	struct resource_list_entry *rle;
2387 
2388 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2389 		if (rle->res)
2390 			panic("resource_list_free: resource entry is busy");
2391 		SLIST_REMOVE_HEAD(rl, link);
2392 		free(rle, M_BUS);
2393 	}
2394 }
2395 
2396 /**
2397  * @brief Add a resource entry.
2398  *
2399  * This function adds a resource entry using the given @p type, @p
2400  * start, @p end and @p count values. A rid value is chosen by
2401  * searching sequentially for the first unused rid starting at zero.
2402  *
2403  * @param rl		the resource list to edit
2404  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2405  * @param start		the start address of the resource
2406  * @param end		the end address of the resource
2407  * @param count		XXX end-start+1
2408  */
2409 int
2410 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2411     u_long end, u_long count)
2412 {
2413 	int rid;
2414 
2415 	rid = 0;
2416 	while (resource_list_find(rl, type, rid) != NULL)
2417 		rid++;
2418 	resource_list_add(rl, type, rid, start, end, count);
2419 	return (rid);
2420 }
2421 
2422 /**
2423  * @brief Add or modify a resource entry.
2424  *
2425  * If an existing entry exists with the same type and rid, it will be
2426  * modified using the given values of @p start, @p end and @p
2427  * count. If no entry exists, a new one will be created using the
2428  * given values.
2429  *
2430  * @param rl		the resource list to edit
2431  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2432  * @param rid		the resource identifier
2433  * @param start		the start address of the resource
2434  * @param end		the end address of the resource
2435  * @param count		XXX end-start+1
2436  */
2437 void
2438 resource_list_add(struct resource_list *rl, int type, int rid,
2439     u_long start, u_long end, u_long count)
2440 {
2441 	struct resource_list_entry *rle;
2442 
2443 	rle = resource_list_find(rl, type, rid);
2444 	if (!rle) {
2445 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2446 		    M_NOWAIT);
2447 		if (!rle)
2448 			panic("resource_list_add: can't record entry");
2449 		SLIST_INSERT_HEAD(rl, rle, link);
2450 		rle->type = type;
2451 		rle->rid = rid;
2452 		rle->res = NULL;
2453 	}
2454 
2455 	if (rle->res)
2456 		panic("resource_list_add: resource entry is busy");
2457 
2458 	rle->start = start;
2459 	rle->end = end;
2460 	rle->count = count;
2461 }
2462 
2463 /**
2464  * @brief Find a resource entry by type and rid.
2465  *
2466  * @param rl		the resource list to search
2467  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2468  * @param rid		the resource identifier
2469  *
2470  * @returns the resource entry pointer or NULL if there is no such
2471  * entry.
2472  */
2473 struct resource_list_entry *
2474 resource_list_find(struct resource_list *rl, int type, int rid)
2475 {
2476 	struct resource_list_entry *rle;
2477 
2478 	SLIST_FOREACH(rle, rl, link) {
2479 		if (rle->type == type && rle->rid == rid)
2480 			return (rle);
2481 	}
2482 	return (NULL);
2483 }
2484 
2485 /**
2486  * @brief Delete a resource entry.
2487  *
2488  * @param rl		the resource list to edit
2489  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2490  * @param rid		the resource identifier
2491  */
2492 void
2493 resource_list_delete(struct resource_list *rl, int type, int rid)
2494 {
2495 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2496 
2497 	if (rle) {
2498 		if (rle->res != NULL)
2499 			panic("resource_list_delete: resource has not been released");
2500 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2501 		free(rle, M_BUS);
2502 	}
2503 }
2504 
2505 /**
2506  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2507  *
2508  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2509  * and passing the allocation up to the parent of @p bus. This assumes
2510  * that the first entry of @c device_get_ivars(child) is a struct
2511  * resource_list. This also handles 'passthrough' allocations where a
2512  * child is a remote descendant of bus by passing the allocation up to
2513  * the parent of bus.
2514  *
2515  * Typically, a bus driver would store a list of child resources
2516  * somewhere in the child device's ivars (see device_get_ivars()) and
2517  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2518  * then call resource_list_alloc() to perform the allocation.
2519  *
2520  * @param rl		the resource list to allocate from
2521  * @param bus		the parent device of @p child
2522  * @param child		the device which is requesting an allocation
2523  * @param type		the type of resource to allocate
2524  * @param rid		a pointer to the resource identifier
2525  * @param start		hint at the start of the resource range - pass
2526  *			@c 0UL for any start address
2527  * @param end		hint at the end of the resource range - pass
2528  *			@c ~0UL for any end address
2529  * @param count		hint at the size of range required - pass @c 1
2530  *			for any size
2531  * @param flags		any extra flags to control the resource
2532  *			allocation - see @c RF_XXX flags in
2533  *			<sys/rman.h> for details
2534  *
2535  * @returns		the resource which was allocated or @c NULL if no
2536  *			resource could be allocated
2537  */
2538 struct resource *
2539 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2540     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2541 {
2542 	struct resource_list_entry *rle = 0;
2543 	int passthrough = (device_get_parent(child) != bus);
2544 	int isdefault = (start == 0UL && end == ~0UL);
2545 
2546 	if (passthrough) {
2547 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2548 		    type, rid, start, end, count, flags));
2549 	}
2550 
2551 	rle = resource_list_find(rl, type, *rid);
2552 
2553 	if (!rle)
2554 		return (NULL);		/* no resource of that type/rid */
2555 
2556 	if (rle->res)
2557 		panic("resource_list_alloc: resource entry is busy");
2558 
2559 	if (isdefault) {
2560 		start = rle->start;
2561 		count = ulmax(count, rle->count);
2562 		end = ulmax(rle->end, start + count - 1);
2563 	}
2564 
2565 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2566 	    type, rid, start, end, count, flags);
2567 
2568 	/*
2569 	 * Record the new range.
2570 	 */
2571 	if (rle->res) {
2572 		rle->start = rman_get_start(rle->res);
2573 		rle->end = rman_get_end(rle->res);
2574 		rle->count = count;
2575 	}
2576 
2577 	return (rle->res);
2578 }
2579 
2580 /**
2581  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2582  *
2583  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2584  * used with resource_list_alloc().
2585  *
2586  * @param rl		the resource list which was allocated from
2587  * @param bus		the parent device of @p child
2588  * @param child		the device which is requesting a release
2589  * @param type		the type of resource to allocate
2590  * @param rid		the resource identifier
2591  * @param res		the resource to release
2592  *
2593  * @retval 0		success
2594  * @retval non-zero	a standard unix error code indicating what
2595  *			error condition prevented the operation
2596  */
2597 int
2598 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2599     int type, int rid, struct resource *res)
2600 {
2601 	struct resource_list_entry *rle = 0;
2602 	int passthrough = (device_get_parent(child) != bus);
2603 	int error;
2604 
2605 	if (passthrough) {
2606 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2607 		    type, rid, res));
2608 	}
2609 
2610 	rle = resource_list_find(rl, type, rid);
2611 
2612 	if (!rle)
2613 		panic("resource_list_release: can't find resource");
2614 	if (!rle->res)
2615 		panic("resource_list_release: resource entry is not busy");
2616 
2617 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2618 	    type, rid, res);
2619 	if (error)
2620 		return (error);
2621 
2622 	rle->res = NULL;
2623 	return (0);
2624 }
2625 
2626 /**
2627  * @brief Print a description of resources in a resource list
2628  *
2629  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2630  * The name is printed if at least one resource of the given type is available.
2631  * The format is used to print resource start and end.
2632  *
2633  * @param rl		the resource list to print
2634  * @param name		the name of @p type, e.g. @c "memory"
2635  * @param type		type type of resource entry to print
2636  * @param format	printf(9) format string to print resource
2637  *			start and end values
2638  *
2639  * @returns		the number of characters printed
2640  */
2641 int
2642 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2643     const char *format)
2644 {
2645 	struct resource_list_entry *rle;
2646 	int printed, retval;
2647 
2648 	printed = 0;
2649 	retval = 0;
2650 	/* Yes, this is kinda cheating */
2651 	SLIST_FOREACH(rle, rl, link) {
2652 		if (rle->type == type) {
2653 			if (printed == 0)
2654 				retval += printf(" %s ", name);
2655 			else
2656 				retval += printf(",");
2657 			printed++;
2658 			retval += printf(format, rle->start);
2659 			if (rle->count > 1) {
2660 				retval += printf("-");
2661 				retval += printf(format, rle->start +
2662 						 rle->count - 1);
2663 			}
2664 		}
2665 	}
2666 	return (retval);
2667 }
2668 
2669 /**
2670  * @brief Helper function for implementing DEVICE_PROBE()
2671  *
2672  * This function can be used to help implement the DEVICE_PROBE() for
2673  * a bus (i.e. a device which has other devices attached to it). It
2674  * calls the DEVICE_IDENTIFY() method of each driver in the device's
2675  * devclass.
2676  */
2677 int
2678 bus_generic_probe(device_t dev)
2679 {
2680 	devclass_t dc = dev->devclass;
2681 	driverlink_t dl;
2682 
2683 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2684 		DEVICE_IDENTIFY(dl->driver, dev);
2685 	}
2686 
2687 	return (0);
2688 }
2689 
2690 /**
2691  * @brief Helper function for implementing DEVICE_ATTACH()
2692  *
2693  * This function can be used to help implement the DEVICE_ATTACH() for
2694  * a bus. It calls device_probe_and_attach() for each of the device's
2695  * children.
2696  */
2697 int
2698 bus_generic_attach(device_t dev)
2699 {
2700 	device_t child;
2701 
2702 	TAILQ_FOREACH(child, &dev->children, link) {
2703 		device_probe_and_attach(child);
2704 	}
2705 
2706 	return (0);
2707 }
2708 
2709 /**
2710  * @brief Helper function for implementing DEVICE_DETACH()
2711  *
2712  * This function can be used to help implement the DEVICE_DETACH() for
2713  * a bus. It calls device_detach() for each of the device's
2714  * children.
2715  */
2716 int
2717 bus_generic_detach(device_t dev)
2718 {
2719 	device_t child;
2720 	int error;
2721 
2722 	if (dev->state != DS_ATTACHED)
2723 		return (EBUSY);
2724 
2725 	TAILQ_FOREACH(child, &dev->children, link) {
2726 		if ((error = device_detach(child)) != 0)
2727 			return (error);
2728 	}
2729 
2730 	return (0);
2731 }
2732 
2733 /**
2734  * @brief Helper function for implementing DEVICE_SHUTDOWN()
2735  *
2736  * This function can be used to help implement the DEVICE_SHUTDOWN()
2737  * for a bus. It calls device_shutdown() for each of the device's
2738  * children.
2739  */
2740 int
2741 bus_generic_shutdown(device_t dev)
2742 {
2743 	device_t child;
2744 
2745 	TAILQ_FOREACH(child, &dev->children, link) {
2746 		device_shutdown(child);
2747 	}
2748 
2749 	return (0);
2750 }
2751 
2752 /**
2753  * @brief Helper function for implementing DEVICE_SUSPEND()
2754  *
2755  * This function can be used to help implement the DEVICE_SUSPEND()
2756  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2757  * children. If any call to DEVICE_SUSPEND() fails, the suspend
2758  * operation is aborted and any devices which were suspended are
2759  * resumed immediately by calling their DEVICE_RESUME() methods.
2760  */
2761 int
2762 bus_generic_suspend(device_t dev)
2763 {
2764 	int		error;
2765 	device_t	child, child2;
2766 
2767 	TAILQ_FOREACH(child, &dev->children, link) {
2768 		error = DEVICE_SUSPEND(child);
2769 		if (error) {
2770 			for (child2 = TAILQ_FIRST(&dev->children);
2771 			     child2 && child2 != child;
2772 			     child2 = TAILQ_NEXT(child2, link))
2773 				DEVICE_RESUME(child2);
2774 			return (error);
2775 		}
2776 	}
2777 	return (0);
2778 }
2779 
2780 /**
2781  * @brief Helper function for implementing DEVICE_RESUME()
2782  *
2783  * This function can be used to help implement the DEVICE_RESUME() for
2784  * a bus. It calls DEVICE_RESUME() on each of the device's children.
2785  */
2786 int
2787 bus_generic_resume(device_t dev)
2788 {
2789 	device_t	child;
2790 
2791 	TAILQ_FOREACH(child, &dev->children, link) {
2792 		DEVICE_RESUME(child);
2793 		/* if resume fails, there's nothing we can usefully do... */
2794 	}
2795 	return (0);
2796 }
2797 
2798 /**
2799  * @brief Helper function for implementing BUS_PRINT_CHILD().
2800  *
2801  * This function prints the first part of the ascii representation of
2802  * @p child, including its name, unit and description (if any - see
2803  * device_set_desc()).
2804  *
2805  * @returns the number of characters printed
2806  */
2807 int
2808 bus_print_child_header(device_t dev, device_t child)
2809 {
2810 	int	retval = 0;
2811 
2812 	if (device_get_desc(child)) {
2813 		retval += device_printf(child, "<%s>", device_get_desc(child));
2814 	} else {
2815 		retval += printf("%s", device_get_nameunit(child));
2816 	}
2817 
2818 	return (retval);
2819 }
2820 
2821 /**
2822  * @brief Helper function for implementing BUS_PRINT_CHILD().
2823  *
2824  * This function prints the last part of the ascii representation of
2825  * @p child, which consists of the string @c " on " followed by the
2826  * name and unit of the @p dev.
2827  *
2828  * @returns the number of characters printed
2829  */
2830 int
2831 bus_print_child_footer(device_t dev, device_t child)
2832 {
2833 	return (printf(" on %s\n", device_get_nameunit(dev)));
2834 }
2835 
2836 /**
2837  * @brief Helper function for implementing BUS_PRINT_CHILD().
2838  *
2839  * This function simply calls bus_print_child_header() followed by
2840  * bus_print_child_footer().
2841  *
2842  * @returns the number of characters printed
2843  */
2844 int
2845 bus_generic_print_child(device_t dev, device_t child)
2846 {
2847 	int	retval = 0;
2848 
2849 	retval += bus_print_child_header(dev, child);
2850 	retval += bus_print_child_footer(dev, child);
2851 
2852 	return (retval);
2853 }
2854 
2855 /**
2856  * @brief Stub function for implementing BUS_READ_IVAR().
2857  *
2858  * @returns ENOENT
2859  */
2860 int
2861 bus_generic_read_ivar(device_t dev, device_t child, int index,
2862     uintptr_t * result)
2863 {
2864 	return (ENOENT);
2865 }
2866 
2867 /**
2868  * @brief Stub function for implementing BUS_WRITE_IVAR().
2869  *
2870  * @returns ENOENT
2871  */
2872 int
2873 bus_generic_write_ivar(device_t dev, device_t child, int index,
2874     uintptr_t value)
2875 {
2876 	return (ENOENT);
2877 }
2878 
2879 /**
2880  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
2881  *
2882  * @returns NULL
2883  */
2884 struct resource_list *
2885 bus_generic_get_resource_list(device_t dev, device_t child)
2886 {
2887 	return (NULL);
2888 }
2889 
2890 /**
2891  * @brief Helper function for implementing BUS_DRIVER_ADDED().
2892  *
2893  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2894  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2895  * and then calls device_probe_and_attach() for each unattached child.
2896  */
2897 void
2898 bus_generic_driver_added(device_t dev, driver_t *driver)
2899 {
2900 	device_t child;
2901 
2902 	DEVICE_IDENTIFY(driver, dev);
2903 	TAILQ_FOREACH(child, &dev->children, link) {
2904 		if (child->state == DS_NOTPRESENT ||
2905 		    (child->flags & DF_REBID))
2906 			device_probe_and_attach(child);
2907 	}
2908 }
2909 
2910 /**
2911  * @brief Helper function for implementing BUS_SETUP_INTR().
2912  *
2913  * This simple implementation of BUS_SETUP_INTR() simply calls the
2914  * BUS_SETUP_INTR() method of the parent of @p dev.
2915  */
2916 int
2917 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2918     int flags, driver_intr_t *intr, void *arg, void **cookiep)
2919 {
2920 	/* Propagate up the bus hierarchy until someone handles it. */
2921 	if (dev->parent)
2922 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
2923 		    intr, arg, cookiep));
2924 	return (EINVAL);
2925 }
2926 
2927 /**
2928  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
2929  *
2930  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
2931  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
2932  */
2933 int
2934 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2935     void *cookie)
2936 {
2937 	/* Propagate up the bus hierarchy until someone handles it. */
2938 	if (dev->parent)
2939 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2940 	return (EINVAL);
2941 }
2942 
2943 /**
2944  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
2945  *
2946  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
2947  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
2948  */
2949 struct resource *
2950 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2951     u_long start, u_long end, u_long count, u_int flags)
2952 {
2953 	/* Propagate up the bus hierarchy until someone handles it. */
2954 	if (dev->parent)
2955 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2956 		    start, end, count, flags));
2957 	return (NULL);
2958 }
2959 
2960 /**
2961  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
2962  *
2963  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
2964  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
2965  */
2966 int
2967 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2968     struct resource *r)
2969 {
2970 	/* Propagate up the bus hierarchy until someone handles it. */
2971 	if (dev->parent)
2972 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
2973 		    r));
2974 	return (EINVAL);
2975 }
2976 
2977 /**
2978  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
2979  *
2980  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
2981  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
2982  */
2983 int
2984 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2985     struct resource *r)
2986 {
2987 	/* Propagate up the bus hierarchy until someone handles it. */
2988 	if (dev->parent)
2989 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
2990 		    r));
2991 	return (EINVAL);
2992 }
2993 
2994 /**
2995  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
2996  *
2997  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
2998  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
2999  */
3000 int
3001 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3002     int rid, struct resource *r)
3003 {
3004 	/* Propagate up the bus hierarchy until someone handles it. */
3005 	if (dev->parent)
3006 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3007 		    r));
3008 	return (EINVAL);
3009 }
3010 
3011 /**
3012  * @brief Helper function for implementing BUS_CONFIG_INTR().
3013  *
3014  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3015  * BUS_CONFIG_INTR() method of the parent of @p dev.
3016  */
3017 int
3018 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3019     enum intr_polarity pol)
3020 {
3021 
3022 	/* Propagate up the bus hierarchy until someone handles it. */
3023 	if (dev->parent)
3024 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3025 	return (EINVAL);
3026 }
3027 
3028 /**
3029  * @brief Helper function for implementing BUS_GET_RESOURCE().
3030  *
3031  * This implementation of BUS_GET_RESOURCE() uses the
3032  * resource_list_find() function to do most of the work. It calls
3033  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3034  * search.
3035  */
3036 int
3037 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3038     u_long *startp, u_long *countp)
3039 {
3040 	struct resource_list *		rl = NULL;
3041 	struct resource_list_entry *	rle = NULL;
3042 
3043 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3044 	if (!rl)
3045 		return (EINVAL);
3046 
3047 	rle = resource_list_find(rl, type, rid);
3048 	if (!rle)
3049 		return (ENOENT);
3050 
3051 	if (startp)
3052 		*startp = rle->start;
3053 	if (countp)
3054 		*countp = rle->count;
3055 
3056 	return (0);
3057 }
3058 
3059 /**
3060  * @brief Helper function for implementing BUS_SET_RESOURCE().
3061  *
3062  * This implementation of BUS_SET_RESOURCE() uses the
3063  * resource_list_add() function to do most of the work. It calls
3064  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3065  * edit.
3066  */
3067 int
3068 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3069     u_long start, u_long count)
3070 {
3071 	struct resource_list *		rl = NULL;
3072 
3073 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3074 	if (!rl)
3075 		return (EINVAL);
3076 
3077 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3078 
3079 	return (0);
3080 }
3081 
3082 /**
3083  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3084  *
3085  * This implementation of BUS_DELETE_RESOURCE() uses the
3086  * resource_list_delete() function to do most of the work. It calls
3087  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3088  * edit.
3089  */
3090 void
3091 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3092 {
3093 	struct resource_list *		rl = NULL;
3094 
3095 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3096 	if (!rl)
3097 		return;
3098 
3099 	resource_list_delete(rl, type, rid);
3100 
3101 	return;
3102 }
3103 
3104 /**
3105  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3106  *
3107  * This implementation of BUS_RELEASE_RESOURCE() uses the
3108  * resource_list_release() function to do most of the work. It calls
3109  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3110  */
3111 int
3112 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3113     int rid, struct resource *r)
3114 {
3115 	struct resource_list *		rl = NULL;
3116 
3117 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3118 	if (!rl)
3119 		return (EINVAL);
3120 
3121 	return (resource_list_release(rl, dev, child, type, rid, r));
3122 }
3123 
3124 /**
3125  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3126  *
3127  * This implementation of BUS_ALLOC_RESOURCE() uses the
3128  * resource_list_alloc() function to do most of the work. It calls
3129  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3130  */
3131 struct resource *
3132 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3133     int *rid, u_long start, u_long end, u_long count, u_int flags)
3134 {
3135 	struct resource_list *		rl = NULL;
3136 
3137 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3138 	if (!rl)
3139 		return (NULL);
3140 
3141 	return (resource_list_alloc(rl, dev, child, type, rid,
3142 	    start, end, count, flags));
3143 }
3144 
3145 /**
3146  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3147  *
3148  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3149  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3150  */
3151 int
3152 bus_generic_child_present(device_t dev, device_t child)
3153 {
3154 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3155 }
3156 
3157 /*
3158  * Some convenience functions to make it easier for drivers to use the
3159  * resource-management functions.  All these really do is hide the
3160  * indirection through the parent's method table, making for slightly
3161  * less-wordy code.  In the future, it might make sense for this code
3162  * to maintain some sort of a list of resources allocated by each device.
3163  */
3164 
3165 /**
3166  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3167  *
3168  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3169  * parent of @p dev.
3170  */
3171 struct resource *
3172 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3173     u_long count, u_int flags)
3174 {
3175 	if (dev->parent == 0)
3176 		return (0);
3177 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3178 	    count, flags));
3179 }
3180 
3181 /**
3182  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3183  *
3184  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3185  * parent of @p dev.
3186  */
3187 int
3188 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3189 {
3190 	if (dev->parent == 0)
3191 		return (EINVAL);
3192 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3193 }
3194 
3195 /**
3196  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3197  *
3198  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3199  * parent of @p dev.
3200  */
3201 int
3202 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3203 {
3204 	if (dev->parent == 0)
3205 		return (EINVAL);
3206 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3207 }
3208 
3209 /**
3210  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3211  *
3212  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3213  * parent of @p dev.
3214  */
3215 int
3216 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3217 {
3218 	if (dev->parent == 0)
3219 		return (EINVAL);
3220 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3221 }
3222 
3223 /**
3224  * @brief Wrapper function for BUS_SETUP_INTR().
3225  *
3226  * This function simply calls the BUS_SETUP_INTR() method of the
3227  * parent of @p dev.
3228  */
3229 int
3230 bus_setup_intr(device_t dev, struct resource *r, int flags,
3231     driver_intr_t handler, void *arg, void **cookiep)
3232 {
3233 	int error;
3234 
3235 	if (dev->parent != 0) {
3236 		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3237 		    !debug_mpsafenet)
3238 			flags &= ~INTR_MPSAFE;
3239 		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3240 		    handler, arg, cookiep);
3241 		if (error == 0) {
3242 			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3243 				device_printf(dev, "[GIANT-LOCKED]\n");
3244 			if (bootverbose && (flags & INTR_MPSAFE))
3245 				device_printf(dev, "[MPSAFE]\n");
3246 			if (flags & INTR_FAST)
3247 				device_printf(dev, "[FAST]\n");
3248 		}
3249 	} else
3250 		error = EINVAL;
3251 	return (error);
3252 }
3253 
3254 /**
3255  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3256  *
3257  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3258  * parent of @p dev.
3259  */
3260 int
3261 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3262 {
3263 	if (dev->parent == 0)
3264 		return (EINVAL);
3265 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3266 }
3267 
3268 /**
3269  * @brief Wrapper function for BUS_SET_RESOURCE().
3270  *
3271  * This function simply calls the BUS_SET_RESOURCE() method of the
3272  * parent of @p dev.
3273  */
3274 int
3275 bus_set_resource(device_t dev, int type, int rid,
3276     u_long start, u_long count)
3277 {
3278 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3279 	    start, count));
3280 }
3281 
3282 /**
3283  * @brief Wrapper function for BUS_GET_RESOURCE().
3284  *
3285  * This function simply calls the BUS_GET_RESOURCE() method of the
3286  * parent of @p dev.
3287  */
3288 int
3289 bus_get_resource(device_t dev, int type, int rid,
3290     u_long *startp, u_long *countp)
3291 {
3292 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3293 	    startp, countp));
3294 }
3295 
3296 /**
3297  * @brief Wrapper function for BUS_GET_RESOURCE().
3298  *
3299  * This function simply calls the BUS_GET_RESOURCE() method of the
3300  * parent of @p dev and returns the start value.
3301  */
3302 u_long
3303 bus_get_resource_start(device_t dev, int type, int rid)
3304 {
3305 	u_long start, count;
3306 	int error;
3307 
3308 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3309 	    &start, &count);
3310 	if (error)
3311 		return (0);
3312 	return (start);
3313 }
3314 
3315 /**
3316  * @brief Wrapper function for BUS_GET_RESOURCE().
3317  *
3318  * This function simply calls the BUS_GET_RESOURCE() method of the
3319  * parent of @p dev and returns the count value.
3320  */
3321 u_long
3322 bus_get_resource_count(device_t dev, int type, int rid)
3323 {
3324 	u_long start, count;
3325 	int error;
3326 
3327 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3328 	    &start, &count);
3329 	if (error)
3330 		return (0);
3331 	return (count);
3332 }
3333 
3334 /**
3335  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3336  *
3337  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3338  * parent of @p dev.
3339  */
3340 void
3341 bus_delete_resource(device_t dev, int type, int rid)
3342 {
3343 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3344 }
3345 
3346 /**
3347  * @brief Wrapper function for BUS_CHILD_PRESENT().
3348  *
3349  * This function simply calls the BUS_CHILD_PRESENT() method of the
3350  * parent of @p dev.
3351  */
3352 int
3353 bus_child_present(device_t child)
3354 {
3355 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3356 }
3357 
3358 /**
3359  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3360  *
3361  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3362  * parent of @p dev.
3363  */
3364 int
3365 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3366 {
3367 	device_t parent;
3368 
3369 	parent = device_get_parent(child);
3370 	if (parent == NULL) {
3371 		*buf = '\0';
3372 		return (0);
3373 	}
3374 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3375 }
3376 
3377 /**
3378  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3379  *
3380  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3381  * parent of @p dev.
3382  */
3383 int
3384 bus_child_location_str(device_t child, char *buf, size_t buflen)
3385 {
3386 	device_t parent;
3387 
3388 	parent = device_get_parent(child);
3389 	if (parent == NULL) {
3390 		*buf = '\0';
3391 		return (0);
3392 	}
3393 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3394 }
3395 
3396 static int
3397 root_print_child(device_t dev, device_t child)
3398 {
3399 	int	retval = 0;
3400 
3401 	retval += bus_print_child_header(dev, child);
3402 	retval += printf("\n");
3403 
3404 	return (retval);
3405 }
3406 
3407 static int
3408 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3409     void **cookiep)
3410 {
3411 	/*
3412 	 * If an interrupt mapping gets to here something bad has happened.
3413 	 */
3414 	panic("root_setup_intr");
3415 }
3416 
3417 /*
3418  * If we get here, assume that the device is permanant and really is
3419  * present in the system.  Removable bus drivers are expected to intercept
3420  * this call long before it gets here.  We return -1 so that drivers that
3421  * really care can check vs -1 or some ERRNO returned higher in the food
3422  * chain.
3423  */
3424 static int
3425 root_child_present(device_t dev, device_t child)
3426 {
3427 	return (-1);
3428 }
3429 
3430 static kobj_method_t root_methods[] = {
3431 	/* Device interface */
3432 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3433 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3434 	KOBJMETHOD(device_resume,	bus_generic_resume),
3435 
3436 	/* Bus interface */
3437 	KOBJMETHOD(bus_print_child,	root_print_child),
3438 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3439 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3440 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3441 	KOBJMETHOD(bus_child_present,	root_child_present),
3442 
3443 	{ 0, 0 }
3444 };
3445 
3446 static driver_t root_driver = {
3447 	"root",
3448 	root_methods,
3449 	1,			/* no softc */
3450 };
3451 
3452 device_t	root_bus;
3453 devclass_t	root_devclass;
3454 
3455 static int
3456 root_bus_module_handler(module_t mod, int what, void* arg)
3457 {
3458 	switch (what) {
3459 	case MOD_LOAD:
3460 		TAILQ_INIT(&bus_data_devices);
3461 		kobj_class_compile((kobj_class_t) &root_driver);
3462 		root_bus = make_device(NULL, "root", 0);
3463 		root_bus->desc = "System root bus";
3464 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3465 		root_bus->driver = &root_driver;
3466 		root_bus->state = DS_ATTACHED;
3467 		root_devclass = devclass_find_internal("root", 0, FALSE);
3468 		devinit();
3469 		return (0);
3470 
3471 	case MOD_SHUTDOWN:
3472 		device_shutdown(root_bus);
3473 		return (0);
3474 	default:
3475 		return (EOPNOTSUPP);
3476 	}
3477 
3478 	return (0);
3479 }
3480 
3481 static moduledata_t root_bus_mod = {
3482 	"rootbus",
3483 	root_bus_module_handler,
3484 	0
3485 };
3486 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3487 
3488 /**
3489  * @brief Automatically configure devices
3490  *
3491  * This function begins the autoconfiguration process by calling
3492  * device_probe_and_attach() for each child of the @c root0 device.
3493  */
3494 void
3495 root_bus_configure(void)
3496 {
3497 	device_t dev;
3498 
3499 	PDEBUG(("."));
3500 
3501 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3502 		device_probe_and_attach(dev);
3503 	}
3504 }
3505 
3506 /**
3507  * @brief Module handler for registering device drivers
3508  *
3509  * This module handler is used to automatically register device
3510  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3511  * devclass_add_driver() for the driver described by the
3512  * driver_module_data structure pointed to by @p arg
3513  */
3514 int
3515 driver_module_handler(module_t mod, int what, void *arg)
3516 {
3517 	int error;
3518 	struct driver_module_data *dmd;
3519 	devclass_t bus_devclass;
3520 	kobj_class_t driver;
3521 
3522 	dmd = (struct driver_module_data *)arg;
3523 	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3524 	error = 0;
3525 
3526 	switch (what) {
3527 	case MOD_LOAD:
3528 		if (dmd->dmd_chainevh)
3529 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3530 
3531 		driver = dmd->dmd_driver;
3532 		PDEBUG(("Loading module: driver %s on bus %s",
3533 		    DRIVERNAME(driver), dmd->dmd_busname));
3534 		error = devclass_add_driver(bus_devclass, driver);
3535 		if (error)
3536 			break;
3537 
3538 		/*
3539 		 * If the driver has any base classes, make the
3540 		 * devclass inherit from the devclass of the driver's
3541 		 * first base class. This will allow the system to
3542 		 * search for drivers in both devclasses for children
3543 		 * of a device using this driver.
3544 		 */
3545 		if (driver->baseclasses) {
3546 			const char *parentname;
3547 			parentname = driver->baseclasses[0]->name;
3548 			*dmd->dmd_devclass =
3549 				devclass_find_internal(driver->name,
3550 				    parentname, TRUE);
3551 		} else {
3552 			*dmd->dmd_devclass =
3553 				devclass_find_internal(driver->name, 0, TRUE);
3554 		}
3555 		break;
3556 
3557 	case MOD_UNLOAD:
3558 		PDEBUG(("Unloading module: driver %s from bus %s",
3559 		    DRIVERNAME(dmd->dmd_driver),
3560 		    dmd->dmd_busname));
3561 		error = devclass_delete_driver(bus_devclass,
3562 		    dmd->dmd_driver);
3563 
3564 		if (!error && dmd->dmd_chainevh)
3565 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3566 		break;
3567 	default:
3568 		error = EOPNOTSUPP;
3569 		break;
3570 	}
3571 
3572 	return (error);
3573 }
3574 
3575 #ifdef BUS_DEBUG
3576 
3577 /* the _short versions avoid iteration by not calling anything that prints
3578  * more than oneliners. I love oneliners.
3579  */
3580 
3581 static void
3582 print_device_short(device_t dev, int indent)
3583 {
3584 	if (!dev)
3585 		return;
3586 
3587 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3588 	    dev->unit, dev->desc,
3589 	    (dev->parent? "":"no "),
3590 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3591 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3592 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3593 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3594 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3595 	    (dev->flags&DF_REBID? "rebiddable,":""),
3596 	    (dev->ivars? "":"no "),
3597 	    (dev->softc? "":"no "),
3598 	    dev->busy));
3599 }
3600 
3601 static void
3602 print_device(device_t dev, int indent)
3603 {
3604 	if (!dev)
3605 		return;
3606 
3607 	print_device_short(dev, indent);
3608 
3609 	indentprintf(("Parent:\n"));
3610 	print_device_short(dev->parent, indent+1);
3611 	indentprintf(("Driver:\n"));
3612 	print_driver_short(dev->driver, indent+1);
3613 	indentprintf(("Devclass:\n"));
3614 	print_devclass_short(dev->devclass, indent+1);
3615 }
3616 
3617 void
3618 print_device_tree_short(device_t dev, int indent)
3619 /* print the device and all its children (indented) */
3620 {
3621 	device_t child;
3622 
3623 	if (!dev)
3624 		return;
3625 
3626 	print_device_short(dev, indent);
3627 
3628 	TAILQ_FOREACH(child, &dev->children, link) {
3629 		print_device_tree_short(child, indent+1);
3630 	}
3631 }
3632 
3633 void
3634 print_device_tree(device_t dev, int indent)
3635 /* print the device and all its children (indented) */
3636 {
3637 	device_t child;
3638 
3639 	if (!dev)
3640 		return;
3641 
3642 	print_device(dev, indent);
3643 
3644 	TAILQ_FOREACH(child, &dev->children, link) {
3645 		print_device_tree(child, indent+1);
3646 	}
3647 }
3648 
3649 static void
3650 print_driver_short(driver_t *driver, int indent)
3651 {
3652 	if (!driver)
3653 		return;
3654 
3655 	indentprintf(("driver %s: softc size = %zd\n",
3656 	    driver->name, driver->size));
3657 }
3658 
3659 static void
3660 print_driver(driver_t *driver, int indent)
3661 {
3662 	if (!driver)
3663 		return;
3664 
3665 	print_driver_short(driver, indent);
3666 }
3667 
3668 
3669 static void
3670 print_driver_list(driver_list_t drivers, int indent)
3671 {
3672 	driverlink_t driver;
3673 
3674 	TAILQ_FOREACH(driver, &drivers, link) {
3675 		print_driver(driver->driver, indent);
3676 	}
3677 }
3678 
3679 static void
3680 print_devclass_short(devclass_t dc, int indent)
3681 {
3682 	if ( !dc )
3683 		return;
3684 
3685 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3686 }
3687 
3688 static void
3689 print_devclass(devclass_t dc, int indent)
3690 {
3691 	int i;
3692 
3693 	if ( !dc )
3694 		return;
3695 
3696 	print_devclass_short(dc, indent);
3697 	indentprintf(("Drivers:\n"));
3698 	print_driver_list(dc->drivers, indent+1);
3699 
3700 	indentprintf(("Devices:\n"));
3701 	for (i = 0; i < dc->maxunit; i++)
3702 		if (dc->devices[i])
3703 			print_device(dc->devices[i], indent+1);
3704 }
3705 
3706 void
3707 print_devclass_list_short(void)
3708 {
3709 	devclass_t dc;
3710 
3711 	printf("Short listing of devclasses, drivers & devices:\n");
3712 	TAILQ_FOREACH(dc, &devclasses, link) {
3713 		print_devclass_short(dc, 0);
3714 	}
3715 }
3716 
3717 void
3718 print_devclass_list(void)
3719 {
3720 	devclass_t dc;
3721 
3722 	printf("Full listing of devclasses, drivers & devices:\n");
3723 	TAILQ_FOREACH(dc, &devclasses, link) {
3724 		print_devclass(dc, 0);
3725 	}
3726 }
3727 
3728 #endif
3729 
3730 /*
3731  * User-space access to the device tree.
3732  *
3733  * We implement a small set of nodes:
3734  *
3735  * hw.bus			Single integer read method to obtain the
3736  *				current generation count.
3737  * hw.bus.devices		Reads the entire device tree in flat space.
3738  * hw.bus.rman			Resource manager interface
3739  *
3740  * We might like to add the ability to scan devclasses and/or drivers to
3741  * determine what else is currently loaded/available.
3742  */
3743 
3744 static int
3745 sysctl_bus(SYSCTL_HANDLER_ARGS)
3746 {
3747 	struct u_businfo	ubus;
3748 
3749 	ubus.ub_version = BUS_USER_VERSION;
3750 	ubus.ub_generation = bus_data_generation;
3751 
3752 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3753 }
3754 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3755     "bus-related data");
3756 
3757 static int
3758 sysctl_devices(SYSCTL_HANDLER_ARGS)
3759 {
3760 	int			*name = (int *)arg1;
3761 	u_int			namelen = arg2;
3762 	int			index;
3763 	struct device		*dev;
3764 	struct u_device		udev;	/* XXX this is a bit big */
3765 	int			error;
3766 
3767 	if (namelen != 2)
3768 		return (EINVAL);
3769 
3770 	if (bus_data_generation_check(name[0]))
3771 		return (EINVAL);
3772 
3773 	index = name[1];
3774 
3775 	/*
3776 	 * Scan the list of devices, looking for the requested index.
3777 	 */
3778 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3779 		if (index-- == 0)
3780 			break;
3781 	}
3782 	if (dev == NULL)
3783 		return (ENOENT);
3784 
3785 	/*
3786 	 * Populate the return array.
3787 	 */
3788 	udev.dv_handle = (uintptr_t)dev;
3789 	udev.dv_parent = (uintptr_t)dev->parent;
3790 	if (dev->nameunit == NULL)
3791 		udev.dv_name[0] = '\0';
3792 	else
3793 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3794 
3795 	if (dev->desc == NULL)
3796 		udev.dv_desc[0] = '\0';
3797 	else
3798 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3799 	if (dev->driver == NULL || dev->driver->name == NULL)
3800 		udev.dv_drivername[0] = '\0';
3801 	else
3802 		strlcpy(udev.dv_drivername, dev->driver->name,
3803 		    sizeof(udev.dv_drivername));
3804 	udev.dv_pnpinfo[0] = '\0';
3805 	udev.dv_location[0] = '\0';
3806 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3807 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3808 	udev.dv_devflags = dev->devflags;
3809 	udev.dv_flags = dev->flags;
3810 	udev.dv_state = dev->state;
3811 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3812 	return (error);
3813 }
3814 
3815 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3816     "system device tree");
3817 
3818 /*
3819  * Sysctl interface for scanning the resource lists.
3820  *
3821  * We take two input parameters; the index into the list of resource
3822  * managers, and the resource offset into the list.
3823  */
3824 static int
3825 sysctl_rman(SYSCTL_HANDLER_ARGS)
3826 {
3827 	int			*name = (int *)arg1;
3828 	u_int			namelen = arg2;
3829 	int			rman_idx, res_idx;
3830 	struct rman		*rm;
3831 	struct resource		*res;
3832 	struct u_rman		urm;
3833 	struct u_resource	ures;
3834 	int			error;
3835 
3836 	if (namelen != 3)
3837 		return (EINVAL);
3838 
3839 	if (bus_data_generation_check(name[0]))
3840 		return (EINVAL);
3841 	rman_idx = name[1];
3842 	res_idx = name[2];
3843 
3844 	/*
3845 	 * Find the indexed resource manager
3846 	 */
3847 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
3848 		if (rman_idx-- == 0)
3849 			break;
3850 	}
3851 	if (rm == NULL)
3852 		return (ENOENT);
3853 
3854 	/*
3855 	 * If the resource index is -1, we want details on the
3856 	 * resource manager.
3857 	 */
3858 	if (res_idx == -1) {
3859 		urm.rm_handle = (uintptr_t)rm;
3860 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
3861 		urm.rm_start = rm->rm_start;
3862 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
3863 		urm.rm_type = rm->rm_type;
3864 
3865 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
3866 		return (error);
3867 	}
3868 
3869 	/*
3870 	 * Find the indexed resource and return it.
3871 	 */
3872 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
3873 		if (res_idx-- == 0) {
3874 			ures.r_handle = (uintptr_t)res;
3875 			ures.r_parent = (uintptr_t)res->r_rm;
3876 			ures.r_device = (uintptr_t)res->r_dev;
3877 			if (res->r_dev != NULL) {
3878 				if (device_get_name(res->r_dev) != NULL) {
3879 					snprintf(ures.r_devname, RM_TEXTLEN,
3880 					    "%s%d",
3881 					    device_get_name(res->r_dev),
3882 					    device_get_unit(res->r_dev));
3883 				} else {
3884 					strlcpy(ures.r_devname, "nomatch",
3885 					    RM_TEXTLEN);
3886 				}
3887 			} else {
3888 				ures.r_devname[0] = '\0';
3889 			}
3890 			ures.r_start = res->r_start;
3891 			ures.r_size = res->r_end - res->r_start + 1;
3892 			ures.r_flags = res->r_flags;
3893 
3894 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
3895 			return (error);
3896 		}
3897 	}
3898 	return (ENOENT);
3899 }
3900 
3901 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
3902     "kernel resource manager");
3903 
3904 int
3905 bus_data_generation_check(int generation)
3906 {
3907 	if (generation != bus_data_generation)
3908 		return (1);
3909 
3910 	/* XXX generate optimised lists here? */
3911 	return (0);
3912 }
3913 
3914 void
3915 bus_data_generation_update(void)
3916 {
3917 	bus_data_generation++;
3918 }
3919