xref: /freebsd/sys/kern/subr_bus.c (revision e5ecee7440496904939e936501d0db93bed15415)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/filio.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/kobj.h>
43 #include <sys/limits.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/poll.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/queue.h>
52 #include <machine/bus.h>
53 #include <sys/random.h>
54 #include <sys/rman.h>
55 #include <sys/sbuf.h>
56 #include <sys/selinfo.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/uio.h>
62 #include <sys/bus.h>
63 #include <sys/cpuset.h>
64 
65 #include <net/vnet.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/stdarg.h>
69 
70 #include <vm/uma.h>
71 #include <vm/vm.h>
72 
73 #include <ddb/ddb.h>
74 
75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
78     NULL);
79 
80 /*
81  * Used to attach drivers to devclasses.
82  */
83 typedef struct driverlink *driverlink_t;
84 struct driverlink {
85 	kobj_class_t	driver;
86 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
87 	int		pass;
88 	int		flags;
89 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
90 	TAILQ_ENTRY(driverlink) passlink;
91 };
92 
93 /*
94  * Forward declarations
95  */
96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
98 typedef TAILQ_HEAD(device_list, device) device_list_t;
99 
100 struct devclass {
101 	TAILQ_ENTRY(devclass) link;
102 	devclass_t	parent;		/* parent in devclass hierarchy */
103 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
104 	char		*name;
105 	device_t	*devices;	/* array of devices indexed by unit */
106 	int		maxunit;	/* size of devices array */
107 	int		flags;
108 #define DC_HAS_CHILDREN		1
109 
110 	struct sysctl_ctx_list sysctl_ctx;
111 	struct sysctl_oid *sysctl_tree;
112 };
113 
114 /**
115  * @brief Implementation of device.
116  */
117 struct device {
118 	/*
119 	 * A device is a kernel object. The first field must be the
120 	 * current ops table for the object.
121 	 */
122 	KOBJ_FIELDS;
123 
124 	/*
125 	 * Device hierarchy.
126 	 */
127 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
128 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
129 	device_t	parent;		/**< parent of this device  */
130 	device_list_t	children;	/**< list of child devices */
131 
132 	/*
133 	 * Details of this device.
134 	 */
135 	driver_t	*driver;	/**< current driver */
136 	devclass_t	devclass;	/**< current device class */
137 	int		unit;		/**< current unit number */
138 	char*		nameunit;	/**< name+unit e.g. foodev0 */
139 	char*		desc;		/**< driver specific description */
140 	int		busy;		/**< count of calls to device_busy() */
141 	device_state_t	state;		/**< current device state  */
142 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
143 	u_int		flags;		/**< internal device flags  */
144 	u_int	order;			/**< order from device_add_child_ordered() */
145 	void	*ivars;			/**< instance variables  */
146 	void	*softc;			/**< current driver's variables  */
147 
148 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
149 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
150 };
151 
152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
154 
155 EVENTHANDLER_LIST_DEFINE(device_attach);
156 EVENTHANDLER_LIST_DEFINE(device_detach);
157 EVENTHANDLER_LIST_DEFINE(dev_lookup);
158 
159 static int bus_child_location_sb(device_t child, struct sbuf *sb);
160 static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb);
161 static void devctl2_init(void);
162 static bool device_frozen;
163 
164 #define DRIVERNAME(d)	((d)? d->name : "no driver")
165 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
166 
167 #ifdef BUS_DEBUG
168 
169 static int bus_debug = 1;
170 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
171     "Bus debug level");
172 
173 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
174 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
175 
176 /**
177  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
178  * prevent syslog from deleting initial spaces
179  */
180 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
181 
182 static void print_device_short(device_t dev, int indent);
183 static void print_device(device_t dev, int indent);
184 void print_device_tree_short(device_t dev, int indent);
185 void print_device_tree(device_t dev, int indent);
186 static void print_driver_short(driver_t *driver, int indent);
187 static void print_driver(driver_t *driver, int indent);
188 static void print_driver_list(driver_list_t drivers, int indent);
189 static void print_devclass_short(devclass_t dc, int indent);
190 static void print_devclass(devclass_t dc, int indent);
191 void print_devclass_list_short(void);
192 void print_devclass_list(void);
193 
194 #else
195 /* Make the compiler ignore the function calls */
196 #define PDEBUG(a)			/* nop */
197 #define DEVICENAME(d)			/* nop */
198 
199 #define print_device_short(d,i)		/* nop */
200 #define print_device(d,i)		/* nop */
201 #define print_device_tree_short(d,i)	/* nop */
202 #define print_device_tree(d,i)		/* nop */
203 #define print_driver_short(d,i)		/* nop */
204 #define print_driver(d,i)		/* nop */
205 #define print_driver_list(d,i)		/* nop */
206 #define print_devclass_short(d,i)	/* nop */
207 #define print_devclass(d,i)		/* nop */
208 #define print_devclass_list_short()	/* nop */
209 #define print_devclass_list()		/* nop */
210 #endif
211 
212 /*
213  * dev sysctl tree
214  */
215 
216 enum {
217 	DEVCLASS_SYSCTL_PARENT,
218 };
219 
220 static int
221 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
222 {
223 	devclass_t dc = (devclass_t)arg1;
224 	const char *value;
225 
226 	switch (arg2) {
227 	case DEVCLASS_SYSCTL_PARENT:
228 		value = dc->parent ? dc->parent->name : "";
229 		break;
230 	default:
231 		return (EINVAL);
232 	}
233 	return (SYSCTL_OUT_STR(req, value));
234 }
235 
236 static void
237 devclass_sysctl_init(devclass_t dc)
238 {
239 	if (dc->sysctl_tree != NULL)
240 		return;
241 	sysctl_ctx_init(&dc->sysctl_ctx);
242 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
243 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
244 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
245 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
246 	    OID_AUTO, "%parent",
247 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
248 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
249 	    "parent class");
250 }
251 
252 enum {
253 	DEVICE_SYSCTL_DESC,
254 	DEVICE_SYSCTL_DRIVER,
255 	DEVICE_SYSCTL_LOCATION,
256 	DEVICE_SYSCTL_PNPINFO,
257 	DEVICE_SYSCTL_PARENT,
258 };
259 
260 static int
261 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
262 {
263 	struct sbuf sb;
264 	device_t dev = (device_t)arg1;
265 	int error;
266 
267 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
268 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
269 	switch (arg2) {
270 	case DEVICE_SYSCTL_DESC:
271 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
272 		break;
273 	case DEVICE_SYSCTL_DRIVER:
274 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
275 		break;
276 	case DEVICE_SYSCTL_LOCATION:
277 		bus_child_location_sb(dev, &sb);
278 		break;
279 	case DEVICE_SYSCTL_PNPINFO:
280 		bus_child_pnpinfo_sb(dev, &sb);
281 		break;
282 	case DEVICE_SYSCTL_PARENT:
283 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
284 		break;
285 	default:
286 		sbuf_delete(&sb);
287 		return (EINVAL);
288 	}
289 	error = sbuf_finish(&sb);
290 	sbuf_delete(&sb);
291 	return (error);
292 }
293 
294 static void
295 device_sysctl_init(device_t dev)
296 {
297 	devclass_t dc = dev->devclass;
298 	int domain;
299 
300 	if (dev->sysctl_tree != NULL)
301 		return;
302 	devclass_sysctl_init(dc);
303 	sysctl_ctx_init(&dev->sysctl_ctx);
304 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
305 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
306 	    dev->nameunit + strlen(dc->name),
307 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
310 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
311 	    "device description");
312 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313 	    OID_AUTO, "%driver",
314 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
315 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
316 	    "device driver name");
317 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
318 	    OID_AUTO, "%location",
319 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
320 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
321 	    "device location relative to parent");
322 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
323 	    OID_AUTO, "%pnpinfo",
324 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
325 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
326 	    "device identification");
327 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
328 	    OID_AUTO, "%parent",
329 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
330 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
331 	    "parent device");
332 	if (bus_get_domain(dev, &domain) == 0)
333 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
334 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
335 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
336 }
337 
338 static void
339 device_sysctl_update(device_t dev)
340 {
341 	devclass_t dc = dev->devclass;
342 
343 	if (dev->sysctl_tree == NULL)
344 		return;
345 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
346 }
347 
348 static void
349 device_sysctl_fini(device_t dev)
350 {
351 	if (dev->sysctl_tree == NULL)
352 		return;
353 	sysctl_ctx_free(&dev->sysctl_ctx);
354 	dev->sysctl_tree = NULL;
355 }
356 
357 /*
358  * /dev/devctl implementation
359  */
360 
361 /*
362  * This design allows only one reader for /dev/devctl.  This is not desirable
363  * in the long run, but will get a lot of hair out of this implementation.
364  * Maybe we should make this device a clonable device.
365  *
366  * Also note: we specifically do not attach a device to the device_t tree
367  * to avoid potential chicken and egg problems.  One could argue that all
368  * of this belongs to the root node.
369  */
370 
371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
374 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
375     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
376 
377 static d_open_t		devopen;
378 static d_close_t	devclose;
379 static d_read_t		devread;
380 static d_ioctl_t	devioctl;
381 static d_poll_t		devpoll;
382 static d_kqfilter_t	devkqfilter;
383 
384 static struct cdevsw dev_cdevsw = {
385 	.d_version =	D_VERSION,
386 	.d_open =	devopen,
387 	.d_close =	devclose,
388 	.d_read =	devread,
389 	.d_ioctl =	devioctl,
390 	.d_poll =	devpoll,
391 	.d_kqfilter =	devkqfilter,
392 	.d_name =	"devctl",
393 };
394 
395 #define DEVCTL_BUFFER (1024 - sizeof(void *))
396 struct dev_event_info {
397 	STAILQ_ENTRY(dev_event_info) dei_link;
398 	char dei_data[DEVCTL_BUFFER];
399 };
400 
401 STAILQ_HEAD(devq, dev_event_info);
402 
403 static struct dev_softc {
404 	int		inuse;
405 	int		nonblock;
406 	int		queued;
407 	int		async;
408 	struct mtx	mtx;
409 	struct cv	cv;
410 	struct selinfo	sel;
411 	struct devq	devq;
412 	struct sigio	*sigio;
413 	uma_zone_t	zone;
414 } devsoftc;
415 
416 static void	filt_devctl_detach(struct knote *kn);
417 static int	filt_devctl_read(struct knote *kn, long hint);
418 
419 struct filterops devctl_rfiltops = {
420 	.f_isfd = 1,
421 	.f_detach = filt_devctl_detach,
422 	.f_event = filt_devctl_read,
423 };
424 
425 static struct cdev *devctl_dev;
426 
427 static void
428 devinit(void)
429 {
430 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
431 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
432 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
433 	cv_init(&devsoftc.cv, "dev cv");
434 	STAILQ_INIT(&devsoftc.devq);
435 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
436 	if (devctl_queue_length > 0) {
437 		devsoftc.zone = uma_zcreate("DEVCTL", sizeof(struct dev_event_info),
438 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
439 		uma_prealloc(devsoftc.zone, devctl_queue_length);
440 	}
441 	devctl2_init();
442 }
443 
444 static int
445 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
446 {
447 	mtx_lock(&devsoftc.mtx);
448 	if (devsoftc.inuse) {
449 		mtx_unlock(&devsoftc.mtx);
450 		return (EBUSY);
451 	}
452 	/* move to init */
453 	devsoftc.inuse = 1;
454 	mtx_unlock(&devsoftc.mtx);
455 	return (0);
456 }
457 
458 static int
459 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
460 {
461 	mtx_lock(&devsoftc.mtx);
462 	devsoftc.inuse = 0;
463 	devsoftc.nonblock = 0;
464 	devsoftc.async = 0;
465 	cv_broadcast(&devsoftc.cv);
466 	funsetown(&devsoftc.sigio);
467 	mtx_unlock(&devsoftc.mtx);
468 	return (0);
469 }
470 
471 /*
472  * The read channel for this device is used to report changes to
473  * userland in realtime.  We are required to free the data as well as
474  * the n1 object because we allocate them separately.  Also note that
475  * we return one record at a time.  If you try to read this device a
476  * character at a time, you will lose the rest of the data.  Listening
477  * programs are expected to cope.
478  */
479 static int
480 devread(struct cdev *dev, struct uio *uio, int ioflag)
481 {
482 	struct dev_event_info *n1;
483 	int rv;
484 
485 	mtx_lock(&devsoftc.mtx);
486 	while (STAILQ_EMPTY(&devsoftc.devq)) {
487 		if (devsoftc.nonblock) {
488 			mtx_unlock(&devsoftc.mtx);
489 			return (EAGAIN);
490 		}
491 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
492 		if (rv) {
493 			/*
494 			 * Need to translate ERESTART to EINTR here? -- jake
495 			 */
496 			mtx_unlock(&devsoftc.mtx);
497 			return (rv);
498 		}
499 	}
500 	n1 = STAILQ_FIRST(&devsoftc.devq);
501 	STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
502 	devsoftc.queued--;
503 	mtx_unlock(&devsoftc.mtx);
504 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
505 	uma_zfree(devsoftc.zone, n1);
506 	return (rv);
507 }
508 
509 static	int
510 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
511 {
512 	switch (cmd) {
513 	case FIONBIO:
514 		if (*(int*)data)
515 			devsoftc.nonblock = 1;
516 		else
517 			devsoftc.nonblock = 0;
518 		return (0);
519 	case FIOASYNC:
520 		if (*(int*)data)
521 			devsoftc.async = 1;
522 		else
523 			devsoftc.async = 0;
524 		return (0);
525 	case FIOSETOWN:
526 		return fsetown(*(int *)data, &devsoftc.sigio);
527 	case FIOGETOWN:
528 		*(int *)data = fgetown(&devsoftc.sigio);
529 		return (0);
530 
531 		/* (un)Support for other fcntl() calls. */
532 	case FIOCLEX:
533 	case FIONCLEX:
534 	case FIONREAD:
535 	default:
536 		break;
537 	}
538 	return (ENOTTY);
539 }
540 
541 static	int
542 devpoll(struct cdev *dev, int events, struct thread *td)
543 {
544 	int	revents = 0;
545 
546 	mtx_lock(&devsoftc.mtx);
547 	if (events & (POLLIN | POLLRDNORM)) {
548 		if (!STAILQ_EMPTY(&devsoftc.devq))
549 			revents = events & (POLLIN | POLLRDNORM);
550 		else
551 			selrecord(td, &devsoftc.sel);
552 	}
553 	mtx_unlock(&devsoftc.mtx);
554 
555 	return (revents);
556 }
557 
558 static int
559 devkqfilter(struct cdev *dev, struct knote *kn)
560 {
561 	int error;
562 
563 	if (kn->kn_filter == EVFILT_READ) {
564 		kn->kn_fop = &devctl_rfiltops;
565 		knlist_add(&devsoftc.sel.si_note, kn, 0);
566 		error = 0;
567 	} else
568 		error = EINVAL;
569 	return (error);
570 }
571 
572 static void
573 filt_devctl_detach(struct knote *kn)
574 {
575 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
576 }
577 
578 static int
579 filt_devctl_read(struct knote *kn, long hint)
580 {
581 	kn->kn_data = devsoftc.queued;
582 	return (kn->kn_data != 0);
583 }
584 
585 /**
586  * @brief Return whether the userland process is running
587  */
588 boolean_t
589 devctl_process_running(void)
590 {
591 	return (devsoftc.inuse == 1);
592 }
593 
594 static struct dev_event_info *
595 devctl_alloc_dei(void)
596 {
597 	struct dev_event_info *dei = NULL;
598 
599 	mtx_lock(&devsoftc.mtx);
600 	if (devctl_queue_length == 0)
601 		goto out;
602 	if (devctl_queue_length == devsoftc.queued) {
603 		dei = STAILQ_FIRST(&devsoftc.devq);
604 		STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
605 		devsoftc.queued--;
606 	} else {
607 		/* dei can't be NULL -- we know we have at least one in the zone */
608 		dei = uma_zalloc(devsoftc.zone, M_NOWAIT);
609 		MPASS(dei != NULL);
610 	}
611 	*dei->dei_data = '\0';
612 out:
613 	mtx_unlock(&devsoftc.mtx);
614 	return (dei);
615 }
616 
617 static struct dev_event_info *
618 devctl_alloc_dei_sb(struct sbuf *sb)
619 {
620 	struct dev_event_info *dei;
621 
622 	dei = devctl_alloc_dei();
623 	if (dei != NULL)
624 		sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN);
625 	return (dei);
626 }
627 
628 static void
629 devctl_free_dei(struct dev_event_info *dei)
630 {
631 	uma_zfree(devsoftc.zone, dei);
632 }
633 
634 static void
635 devctl_queue(struct dev_event_info *dei)
636 {
637 	mtx_lock(&devsoftc.mtx);
638 	STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link);
639 	devsoftc.queued++;
640 	cv_broadcast(&devsoftc.cv);
641 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
642 	mtx_unlock(&devsoftc.mtx);
643 	selwakeup(&devsoftc.sel);
644 	if (devsoftc.async && devsoftc.sigio != NULL)
645 		pgsigio(&devsoftc.sigio, SIGIO, 0);
646 }
647 
648 /**
649  * @brief Send a 'notification' to userland, using standard ways
650  */
651 void
652 devctl_notify(const char *system, const char *subsystem, const char *type,
653     const char *data)
654 {
655 	struct dev_event_info *dei;
656 	struct sbuf sb;
657 
658 	if (system == NULL || subsystem == NULL || type == NULL)
659 		return;
660 	dei = devctl_alloc_dei_sb(&sb);
661 	if (dei == NULL)
662 		return;
663 	sbuf_cpy(&sb, "!system=");
664 	sbuf_cat(&sb, system);
665 	sbuf_cat(&sb, " subsystem=");
666 	sbuf_cat(&sb, subsystem);
667 	sbuf_cat(&sb, " type=");
668 	sbuf_cat(&sb, type);
669 	if (data != NULL) {
670 		sbuf_putc(&sb, ' ');
671 		sbuf_cat(&sb, data);
672 	}
673 	sbuf_putc(&sb, '\n');
674 	if (sbuf_finish(&sb) != 0)
675 		devctl_free_dei(dei);	/* overflow -> drop it */
676 	else
677 		devctl_queue(dei);
678 }
679 
680 /*
681  * Common routine that tries to make sending messages as easy as possible.
682  * We allocate memory for the data, copy strings into that, but do not
683  * free it unless there's an error.  The dequeue part of the driver should
684  * free the data.  We don't send data when the device is disabled.  We do
685  * send data, even when we have no listeners, because we wish to avoid
686  * races relating to startup and restart of listening applications.
687  *
688  * devaddq is designed to string together the type of event, with the
689  * object of that event, plus the plug and play info and location info
690  * for that event.  This is likely most useful for devices, but less
691  * useful for other consumers of this interface.  Those should use
692  * the devctl_notify() interface instead.
693  *
694  * Output:
695  *	${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev)
696  */
697 static void
698 devaddq(const char *type, const char *what, device_t dev)
699 {
700 	struct dev_event_info *dei;
701 	const char *parstr;
702 	struct sbuf sb;
703 
704 	dei = devctl_alloc_dei_sb(&sb);
705 	if (dei == NULL)
706 		return;
707 	sbuf_cpy(&sb, type);
708 	sbuf_cat(&sb, what);
709 	sbuf_cat(&sb, " at ");
710 
711 	/* Add in the location */
712 	bus_child_location_sb(dev, &sb);
713 	sbuf_putc(&sb, ' ');
714 
715 	/* Add in pnpinfo */
716 	bus_child_pnpinfo_sb(dev, &sb);
717 
718 	/* Get the parent of this device, or / if high enough in the tree. */
719 	if (device_get_parent(dev) == NULL)
720 		parstr = ".";	/* Or '/' ? */
721 	else
722 		parstr = device_get_nameunit(device_get_parent(dev));
723 	sbuf_cat(&sb, " on ");
724 	sbuf_cat(&sb, parstr);
725 	sbuf_putc(&sb, '\n');
726 	if (sbuf_finish(&sb) != 0)
727 		goto bad;
728 	devctl_queue(dei);
729 	return;
730 bad:
731 	devctl_free_dei(dei);
732 }
733 
734 /*
735  * A device was added to the tree.  We are called just after it successfully
736  * attaches (that is, probe and attach success for this device).  No call
737  * is made if a device is merely parented into the tree.  See devnomatch
738  * if probe fails.  If attach fails, no notification is sent (but maybe
739  * we should have a different message for this).
740  */
741 static void
742 devadded(device_t dev)
743 {
744 	devaddq("+", device_get_nameunit(dev), dev);
745 }
746 
747 /*
748  * A device was removed from the tree.  We are called just before this
749  * happens.
750  */
751 static void
752 devremoved(device_t dev)
753 {
754 	devaddq("-", device_get_nameunit(dev), dev);
755 }
756 
757 /*
758  * Called when there's no match for this device.  This is only called
759  * the first time that no match happens, so we don't keep getting this
760  * message.  Should that prove to be undesirable, we can change it.
761  * This is called when all drivers that can attach to a given bus
762  * decline to accept this device.  Other errors may not be detected.
763  */
764 static void
765 devnomatch(device_t dev)
766 {
767 	devaddq("?", "", dev);
768 }
769 
770 static int
771 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
772 {
773 	int q, error;
774 
775 	q = devctl_queue_length;
776 	error = sysctl_handle_int(oidp, &q, 0, req);
777 	if (error || !req->newptr)
778 		return (error);
779 	if (q < 0)
780 		return (EINVAL);
781 
782 	/*
783 	 * When set as a tunable, we've not yet initialized the mutex.
784 	 * It is safe to just assign to devctl_queue_length and return
785 	 * as we're racing no one. We'll use whatever value set in
786 	 * devinit.
787 	 */
788 	if (!mtx_initialized(&devsoftc.mtx)) {
789 		devctl_queue_length = q;
790 		return (0);
791 	}
792 
793 	/*
794 	 * XXX It's hard to grow or shrink the UMA zone. Only allow
795 	 * disabling the queue size for the moment until underlying
796 	 * UMA issues can be sorted out.
797 	 */
798 	if (q != 0)
799 		return (EINVAL);
800 	if (q == devctl_queue_length)
801 		return (0);
802 	mtx_lock(&devsoftc.mtx);
803 	devctl_queue_length = 0;
804 	uma_zdestroy(devsoftc.zone);
805 	devsoftc.zone = 0;
806 	mtx_unlock(&devsoftc.mtx);
807 	return (0);
808 }
809 
810 /**
811  * @brief safely quotes strings that might have double quotes in them.
812  *
813  * The devctl protocol relies on quoted strings having matching quotes.
814  * This routine quotes any internal quotes so the resulting string
815  * is safe to pass to snprintf to construct, for example pnp info strings.
816  *
817  * @param sb	sbuf to place the characters into
818  * @param src	Original buffer.
819  */
820 void
821 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
822 {
823 	while (*src != '\0') {
824 		if (*src == '"' || *src == '\\')
825 			sbuf_putc(sb, '\\');
826 		sbuf_putc(sb, *src++);
827 	}
828 }
829 
830 /* End of /dev/devctl code */
831 
832 static TAILQ_HEAD(,device)	bus_data_devices;
833 static int bus_data_generation = 1;
834 
835 static kobj_method_t null_methods[] = {
836 	KOBJMETHOD_END
837 };
838 
839 DEFINE_CLASS(null, null_methods, 0);
840 
841 /*
842  * Bus pass implementation
843  */
844 
845 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
846 int bus_current_pass = BUS_PASS_ROOT;
847 
848 /**
849  * @internal
850  * @brief Register the pass level of a new driver attachment
851  *
852  * Register a new driver attachment's pass level.  If no driver
853  * attachment with the same pass level has been added, then @p new
854  * will be added to the global passes list.
855  *
856  * @param new		the new driver attachment
857  */
858 static void
859 driver_register_pass(struct driverlink *new)
860 {
861 	struct driverlink *dl;
862 
863 	/* We only consider pass numbers during boot. */
864 	if (bus_current_pass == BUS_PASS_DEFAULT)
865 		return;
866 
867 	/*
868 	 * Walk the passes list.  If we already know about this pass
869 	 * then there is nothing to do.  If we don't, then insert this
870 	 * driver link into the list.
871 	 */
872 	TAILQ_FOREACH(dl, &passes, passlink) {
873 		if (dl->pass < new->pass)
874 			continue;
875 		if (dl->pass == new->pass)
876 			return;
877 		TAILQ_INSERT_BEFORE(dl, new, passlink);
878 		return;
879 	}
880 	TAILQ_INSERT_TAIL(&passes, new, passlink);
881 }
882 
883 /**
884  * @brief Raise the current bus pass
885  *
886  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
887  * method on the root bus to kick off a new device tree scan for each
888  * new pass level that has at least one driver.
889  */
890 void
891 bus_set_pass(int pass)
892 {
893 	struct driverlink *dl;
894 
895 	if (bus_current_pass > pass)
896 		panic("Attempt to lower bus pass level");
897 
898 	TAILQ_FOREACH(dl, &passes, passlink) {
899 		/* Skip pass values below the current pass level. */
900 		if (dl->pass <= bus_current_pass)
901 			continue;
902 
903 		/*
904 		 * Bail once we hit a driver with a pass level that is
905 		 * too high.
906 		 */
907 		if (dl->pass > pass)
908 			break;
909 
910 		/*
911 		 * Raise the pass level to the next level and rescan
912 		 * the tree.
913 		 */
914 		bus_current_pass = dl->pass;
915 		BUS_NEW_PASS(root_bus);
916 	}
917 
918 	/*
919 	 * If there isn't a driver registered for the requested pass,
920 	 * then bus_current_pass might still be less than 'pass'.  Set
921 	 * it to 'pass' in that case.
922 	 */
923 	if (bus_current_pass < pass)
924 		bus_current_pass = pass;
925 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
926 }
927 
928 /*
929  * Devclass implementation
930  */
931 
932 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
933 
934 /**
935  * @internal
936  * @brief Find or create a device class
937  *
938  * If a device class with the name @p classname exists, return it,
939  * otherwise if @p create is non-zero create and return a new device
940  * class.
941  *
942  * If @p parentname is non-NULL, the parent of the devclass is set to
943  * the devclass of that name.
944  *
945  * @param classname	the devclass name to find or create
946  * @param parentname	the parent devclass name or @c NULL
947  * @param create	non-zero to create a devclass
948  */
949 static devclass_t
950 devclass_find_internal(const char *classname, const char *parentname,
951 		       int create)
952 {
953 	devclass_t dc;
954 
955 	PDEBUG(("looking for %s", classname));
956 	if (!classname)
957 		return (NULL);
958 
959 	TAILQ_FOREACH(dc, &devclasses, link) {
960 		if (!strcmp(dc->name, classname))
961 			break;
962 	}
963 
964 	if (create && !dc) {
965 		PDEBUG(("creating %s", classname));
966 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
967 		    M_BUS, M_NOWAIT | M_ZERO);
968 		if (!dc)
969 			return (NULL);
970 		dc->parent = NULL;
971 		dc->name = (char*) (dc + 1);
972 		strcpy(dc->name, classname);
973 		TAILQ_INIT(&dc->drivers);
974 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
975 
976 		bus_data_generation_update();
977 	}
978 
979 	/*
980 	 * If a parent class is specified, then set that as our parent so
981 	 * that this devclass will support drivers for the parent class as
982 	 * well.  If the parent class has the same name don't do this though
983 	 * as it creates a cycle that can trigger an infinite loop in
984 	 * device_probe_child() if a device exists for which there is no
985 	 * suitable driver.
986 	 */
987 	if (parentname && dc && !dc->parent &&
988 	    strcmp(classname, parentname) != 0) {
989 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
990 		dc->parent->flags |= DC_HAS_CHILDREN;
991 	}
992 
993 	return (dc);
994 }
995 
996 /**
997  * @brief Create a device class
998  *
999  * If a device class with the name @p classname exists, return it,
1000  * otherwise create and return a new device class.
1001  *
1002  * @param classname	the devclass name to find or create
1003  */
1004 devclass_t
1005 devclass_create(const char *classname)
1006 {
1007 	return (devclass_find_internal(classname, NULL, TRUE));
1008 }
1009 
1010 /**
1011  * @brief Find a device class
1012  *
1013  * If a device class with the name @p classname exists, return it,
1014  * otherwise return @c NULL.
1015  *
1016  * @param classname	the devclass name to find
1017  */
1018 devclass_t
1019 devclass_find(const char *classname)
1020 {
1021 	return (devclass_find_internal(classname, NULL, FALSE));
1022 }
1023 
1024 /**
1025  * @brief Register that a device driver has been added to a devclass
1026  *
1027  * Register that a device driver has been added to a devclass.  This
1028  * is called by devclass_add_driver to accomplish the recursive
1029  * notification of all the children classes of dc, as well as dc.
1030  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1031  * the devclass.
1032  *
1033  * We do a full search here of the devclass list at each iteration
1034  * level to save storing children-lists in the devclass structure.  If
1035  * we ever move beyond a few dozen devices doing this, we may need to
1036  * reevaluate...
1037  *
1038  * @param dc		the devclass to edit
1039  * @param driver	the driver that was just added
1040  */
1041 static void
1042 devclass_driver_added(devclass_t dc, driver_t *driver)
1043 {
1044 	devclass_t parent;
1045 	int i;
1046 
1047 	/*
1048 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1049 	 */
1050 	for (i = 0; i < dc->maxunit; i++)
1051 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1052 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1053 
1054 	/*
1055 	 * Walk through the children classes.  Since we only keep a
1056 	 * single parent pointer around, we walk the entire list of
1057 	 * devclasses looking for children.  We set the
1058 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1059 	 * the parent, so we only walk the list for those devclasses
1060 	 * that have children.
1061 	 */
1062 	if (!(dc->flags & DC_HAS_CHILDREN))
1063 		return;
1064 	parent = dc;
1065 	TAILQ_FOREACH(dc, &devclasses, link) {
1066 		if (dc->parent == parent)
1067 			devclass_driver_added(dc, driver);
1068 	}
1069 }
1070 
1071 /**
1072  * @brief Add a device driver to a device class
1073  *
1074  * Add a device driver to a devclass. This is normally called
1075  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1076  * all devices in the devclass will be called to allow them to attempt
1077  * to re-probe any unmatched children.
1078  *
1079  * @param dc		the devclass to edit
1080  * @param driver	the driver to register
1081  */
1082 int
1083 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1084 {
1085 	driverlink_t dl;
1086 	const char *parentname;
1087 
1088 	PDEBUG(("%s", DRIVERNAME(driver)));
1089 
1090 	/* Don't allow invalid pass values. */
1091 	if (pass <= BUS_PASS_ROOT)
1092 		return (EINVAL);
1093 
1094 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1095 	if (!dl)
1096 		return (ENOMEM);
1097 
1098 	/*
1099 	 * Compile the driver's methods. Also increase the reference count
1100 	 * so that the class doesn't get freed when the last instance
1101 	 * goes. This means we can safely use static methods and avoids a
1102 	 * double-free in devclass_delete_driver.
1103 	 */
1104 	kobj_class_compile((kobj_class_t) driver);
1105 
1106 	/*
1107 	 * If the driver has any base classes, make the
1108 	 * devclass inherit from the devclass of the driver's
1109 	 * first base class. This will allow the system to
1110 	 * search for drivers in both devclasses for children
1111 	 * of a device using this driver.
1112 	 */
1113 	if (driver->baseclasses)
1114 		parentname = driver->baseclasses[0]->name;
1115 	else
1116 		parentname = NULL;
1117 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1118 
1119 	dl->driver = driver;
1120 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1121 	driver->refs++;		/* XXX: kobj_mtx */
1122 	dl->pass = pass;
1123 	driver_register_pass(dl);
1124 
1125 	if (device_frozen) {
1126 		dl->flags |= DL_DEFERRED_PROBE;
1127 	} else {
1128 		devclass_driver_added(dc, driver);
1129 	}
1130 	bus_data_generation_update();
1131 	return (0);
1132 }
1133 
1134 /**
1135  * @brief Register that a device driver has been deleted from a devclass
1136  *
1137  * Register that a device driver has been removed from a devclass.
1138  * This is called by devclass_delete_driver to accomplish the
1139  * recursive notification of all the children classes of busclass, as
1140  * well as busclass.  Each layer will attempt to detach the driver
1141  * from any devices that are children of the bus's devclass.  The function
1142  * will return an error if a device fails to detach.
1143  *
1144  * We do a full search here of the devclass list at each iteration
1145  * level to save storing children-lists in the devclass structure.  If
1146  * we ever move beyond a few dozen devices doing this, we may need to
1147  * reevaluate...
1148  *
1149  * @param busclass	the devclass of the parent bus
1150  * @param dc		the devclass of the driver being deleted
1151  * @param driver	the driver being deleted
1152  */
1153 static int
1154 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1155 {
1156 	devclass_t parent;
1157 	device_t dev;
1158 	int error, i;
1159 
1160 	/*
1161 	 * Disassociate from any devices.  We iterate through all the
1162 	 * devices in the devclass of the driver and detach any which are
1163 	 * using the driver and which have a parent in the devclass which
1164 	 * we are deleting from.
1165 	 *
1166 	 * Note that since a driver can be in multiple devclasses, we
1167 	 * should not detach devices which are not children of devices in
1168 	 * the affected devclass.
1169 	 *
1170 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1171 	 * generate later.
1172 	 */
1173 	for (i = 0; i < dc->maxunit; i++) {
1174 		if (dc->devices[i]) {
1175 			dev = dc->devices[i];
1176 			if (dev->driver == driver && dev->parent &&
1177 			    dev->parent->devclass == busclass) {
1178 				if ((error = device_detach(dev)) != 0)
1179 					return (error);
1180 				if (device_frozen) {
1181 					dev->flags &= ~DF_DONENOMATCH;
1182 					dev->flags |= DF_NEEDNOMATCH;
1183 				} else {
1184 					BUS_PROBE_NOMATCH(dev->parent, dev);
1185 					devnomatch(dev);
1186 					dev->flags |= DF_DONENOMATCH;
1187 				}
1188 			}
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * Walk through the children classes.  Since we only keep a
1194 	 * single parent pointer around, we walk the entire list of
1195 	 * devclasses looking for children.  We set the
1196 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1197 	 * the parent, so we only walk the list for those devclasses
1198 	 * that have children.
1199 	 */
1200 	if (!(busclass->flags & DC_HAS_CHILDREN))
1201 		return (0);
1202 	parent = busclass;
1203 	TAILQ_FOREACH(busclass, &devclasses, link) {
1204 		if (busclass->parent == parent) {
1205 			error = devclass_driver_deleted(busclass, dc, driver);
1206 			if (error)
1207 				return (error);
1208 		}
1209 	}
1210 	return (0);
1211 }
1212 
1213 /**
1214  * @brief Delete a device driver from a device class
1215  *
1216  * Delete a device driver from a devclass. This is normally called
1217  * automatically by DRIVER_MODULE().
1218  *
1219  * If the driver is currently attached to any devices,
1220  * devclass_delete_driver() will first attempt to detach from each
1221  * device. If one of the detach calls fails, the driver will not be
1222  * deleted.
1223  *
1224  * @param dc		the devclass to edit
1225  * @param driver	the driver to unregister
1226  */
1227 int
1228 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1229 {
1230 	devclass_t dc = devclass_find(driver->name);
1231 	driverlink_t dl;
1232 	int error;
1233 
1234 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1235 
1236 	if (!dc)
1237 		return (0);
1238 
1239 	/*
1240 	 * Find the link structure in the bus' list of drivers.
1241 	 */
1242 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1243 		if (dl->driver == driver)
1244 			break;
1245 	}
1246 
1247 	if (!dl) {
1248 		PDEBUG(("%s not found in %s list", driver->name,
1249 		    busclass->name));
1250 		return (ENOENT);
1251 	}
1252 
1253 	error = devclass_driver_deleted(busclass, dc, driver);
1254 	if (error != 0)
1255 		return (error);
1256 
1257 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1258 	free(dl, M_BUS);
1259 
1260 	/* XXX: kobj_mtx */
1261 	driver->refs--;
1262 	if (driver->refs == 0)
1263 		kobj_class_free((kobj_class_t) driver);
1264 
1265 	bus_data_generation_update();
1266 	return (0);
1267 }
1268 
1269 /**
1270  * @brief Quiesces a set of device drivers from a device class
1271  *
1272  * Quiesce a device driver from a devclass. This is normally called
1273  * automatically by DRIVER_MODULE().
1274  *
1275  * If the driver is currently attached to any devices,
1276  * devclass_quiesece_driver() will first attempt to quiesce each
1277  * device.
1278  *
1279  * @param dc		the devclass to edit
1280  * @param driver	the driver to unregister
1281  */
1282 static int
1283 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1284 {
1285 	devclass_t dc = devclass_find(driver->name);
1286 	driverlink_t dl;
1287 	device_t dev;
1288 	int i;
1289 	int error;
1290 
1291 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1292 
1293 	if (!dc)
1294 		return (0);
1295 
1296 	/*
1297 	 * Find the link structure in the bus' list of drivers.
1298 	 */
1299 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1300 		if (dl->driver == driver)
1301 			break;
1302 	}
1303 
1304 	if (!dl) {
1305 		PDEBUG(("%s not found in %s list", driver->name,
1306 		    busclass->name));
1307 		return (ENOENT);
1308 	}
1309 
1310 	/*
1311 	 * Quiesce all devices.  We iterate through all the devices in
1312 	 * the devclass of the driver and quiesce any which are using
1313 	 * the driver and which have a parent in the devclass which we
1314 	 * are quiescing.
1315 	 *
1316 	 * Note that since a driver can be in multiple devclasses, we
1317 	 * should not quiesce devices which are not children of
1318 	 * devices in the affected devclass.
1319 	 */
1320 	for (i = 0; i < dc->maxunit; i++) {
1321 		if (dc->devices[i]) {
1322 			dev = dc->devices[i];
1323 			if (dev->driver == driver && dev->parent &&
1324 			    dev->parent->devclass == busclass) {
1325 				if ((error = device_quiesce(dev)) != 0)
1326 					return (error);
1327 			}
1328 		}
1329 	}
1330 
1331 	return (0);
1332 }
1333 
1334 /**
1335  * @internal
1336  */
1337 static driverlink_t
1338 devclass_find_driver_internal(devclass_t dc, const char *classname)
1339 {
1340 	driverlink_t dl;
1341 
1342 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1343 
1344 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1345 		if (!strcmp(dl->driver->name, classname))
1346 			return (dl);
1347 	}
1348 
1349 	PDEBUG(("not found"));
1350 	return (NULL);
1351 }
1352 
1353 /**
1354  * @brief Return the name of the devclass
1355  */
1356 const char *
1357 devclass_get_name(devclass_t dc)
1358 {
1359 	return (dc->name);
1360 }
1361 
1362 /**
1363  * @brief Find a device given a unit number
1364  *
1365  * @param dc		the devclass to search
1366  * @param unit		the unit number to search for
1367  *
1368  * @returns		the device with the given unit number or @c
1369  *			NULL if there is no such device
1370  */
1371 device_t
1372 devclass_get_device(devclass_t dc, int unit)
1373 {
1374 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1375 		return (NULL);
1376 	return (dc->devices[unit]);
1377 }
1378 
1379 /**
1380  * @brief Find the softc field of a device given a unit number
1381  *
1382  * @param dc		the devclass to search
1383  * @param unit		the unit number to search for
1384  *
1385  * @returns		the softc field of the device with the given
1386  *			unit number or @c NULL if there is no such
1387  *			device
1388  */
1389 void *
1390 devclass_get_softc(devclass_t dc, int unit)
1391 {
1392 	device_t dev;
1393 
1394 	dev = devclass_get_device(dc, unit);
1395 	if (!dev)
1396 		return (NULL);
1397 
1398 	return (device_get_softc(dev));
1399 }
1400 
1401 /**
1402  * @brief Get a list of devices in the devclass
1403  *
1404  * An array containing a list of all the devices in the given devclass
1405  * is allocated and returned in @p *devlistp. The number of devices
1406  * in the array is returned in @p *devcountp. The caller should free
1407  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1408  *
1409  * @param dc		the devclass to examine
1410  * @param devlistp	points at location for array pointer return
1411  *			value
1412  * @param devcountp	points at location for array size return value
1413  *
1414  * @retval 0		success
1415  * @retval ENOMEM	the array allocation failed
1416  */
1417 int
1418 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1419 {
1420 	int count, i;
1421 	device_t *list;
1422 
1423 	count = devclass_get_count(dc);
1424 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1425 	if (!list)
1426 		return (ENOMEM);
1427 
1428 	count = 0;
1429 	for (i = 0; i < dc->maxunit; i++) {
1430 		if (dc->devices[i]) {
1431 			list[count] = dc->devices[i];
1432 			count++;
1433 		}
1434 	}
1435 
1436 	*devlistp = list;
1437 	*devcountp = count;
1438 
1439 	return (0);
1440 }
1441 
1442 /**
1443  * @brief Get a list of drivers in the devclass
1444  *
1445  * An array containing a list of pointers to all the drivers in the
1446  * given devclass is allocated and returned in @p *listp.  The number
1447  * of drivers in the array is returned in @p *countp. The caller should
1448  * free the array using @c free(p, M_TEMP).
1449  *
1450  * @param dc		the devclass to examine
1451  * @param listp		gives location for array pointer return value
1452  * @param countp	gives location for number of array elements
1453  *			return value
1454  *
1455  * @retval 0		success
1456  * @retval ENOMEM	the array allocation failed
1457  */
1458 int
1459 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1460 {
1461 	driverlink_t dl;
1462 	driver_t **list;
1463 	int count;
1464 
1465 	count = 0;
1466 	TAILQ_FOREACH(dl, &dc->drivers, link)
1467 		count++;
1468 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1469 	if (list == NULL)
1470 		return (ENOMEM);
1471 
1472 	count = 0;
1473 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1474 		list[count] = dl->driver;
1475 		count++;
1476 	}
1477 	*listp = list;
1478 	*countp = count;
1479 
1480 	return (0);
1481 }
1482 
1483 /**
1484  * @brief Get the number of devices in a devclass
1485  *
1486  * @param dc		the devclass to examine
1487  */
1488 int
1489 devclass_get_count(devclass_t dc)
1490 {
1491 	int count, i;
1492 
1493 	count = 0;
1494 	for (i = 0; i < dc->maxunit; i++)
1495 		if (dc->devices[i])
1496 			count++;
1497 	return (count);
1498 }
1499 
1500 /**
1501  * @brief Get the maximum unit number used in a devclass
1502  *
1503  * Note that this is one greater than the highest currently-allocated
1504  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1505  * that not even the devclass has been allocated yet.
1506  *
1507  * @param dc		the devclass to examine
1508  */
1509 int
1510 devclass_get_maxunit(devclass_t dc)
1511 {
1512 	if (dc == NULL)
1513 		return (-1);
1514 	return (dc->maxunit);
1515 }
1516 
1517 /**
1518  * @brief Find a free unit number in a devclass
1519  *
1520  * This function searches for the first unused unit number greater
1521  * that or equal to @p unit.
1522  *
1523  * @param dc		the devclass to examine
1524  * @param unit		the first unit number to check
1525  */
1526 int
1527 devclass_find_free_unit(devclass_t dc, int unit)
1528 {
1529 	if (dc == NULL)
1530 		return (unit);
1531 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1532 		unit++;
1533 	return (unit);
1534 }
1535 
1536 /**
1537  * @brief Set the parent of a devclass
1538  *
1539  * The parent class is normally initialised automatically by
1540  * DRIVER_MODULE().
1541  *
1542  * @param dc		the devclass to edit
1543  * @param pdc		the new parent devclass
1544  */
1545 void
1546 devclass_set_parent(devclass_t dc, devclass_t pdc)
1547 {
1548 	dc->parent = pdc;
1549 }
1550 
1551 /**
1552  * @brief Get the parent of a devclass
1553  *
1554  * @param dc		the devclass to examine
1555  */
1556 devclass_t
1557 devclass_get_parent(devclass_t dc)
1558 {
1559 	return (dc->parent);
1560 }
1561 
1562 struct sysctl_ctx_list *
1563 devclass_get_sysctl_ctx(devclass_t dc)
1564 {
1565 	return (&dc->sysctl_ctx);
1566 }
1567 
1568 struct sysctl_oid *
1569 devclass_get_sysctl_tree(devclass_t dc)
1570 {
1571 	return (dc->sysctl_tree);
1572 }
1573 
1574 /**
1575  * @internal
1576  * @brief Allocate a unit number
1577  *
1578  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1579  * will do). The allocated unit number is returned in @p *unitp.
1580 
1581  * @param dc		the devclass to allocate from
1582  * @param unitp		points at the location for the allocated unit
1583  *			number
1584  *
1585  * @retval 0		success
1586  * @retval EEXIST	the requested unit number is already allocated
1587  * @retval ENOMEM	memory allocation failure
1588  */
1589 static int
1590 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1591 {
1592 	const char *s;
1593 	int unit = *unitp;
1594 
1595 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1596 
1597 	/* Ask the parent bus if it wants to wire this device. */
1598 	if (unit == -1)
1599 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1600 		    &unit);
1601 
1602 	/* If we were given a wired unit number, check for existing device */
1603 	/* XXX imp XXX */
1604 	if (unit != -1) {
1605 		if (unit >= 0 && unit < dc->maxunit &&
1606 		    dc->devices[unit] != NULL) {
1607 			if (bootverbose)
1608 				printf("%s: %s%d already exists; skipping it\n",
1609 				    dc->name, dc->name, *unitp);
1610 			return (EEXIST);
1611 		}
1612 	} else {
1613 		/* Unwired device, find the next available slot for it */
1614 		unit = 0;
1615 		for (unit = 0;; unit++) {
1616 			/* If there is an "at" hint for a unit then skip it. */
1617 			if (resource_string_value(dc->name, unit, "at", &s) ==
1618 			    0)
1619 				continue;
1620 
1621 			/* If this device slot is already in use, skip it. */
1622 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1623 				continue;
1624 
1625 			break;
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * We've selected a unit beyond the length of the table, so let's
1631 	 * extend the table to make room for all units up to and including
1632 	 * this one.
1633 	 */
1634 	if (unit >= dc->maxunit) {
1635 		device_t *newlist, *oldlist;
1636 		int newsize;
1637 
1638 		oldlist = dc->devices;
1639 		newsize = roundup((unit + 1),
1640 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1641 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1642 		if (!newlist)
1643 			return (ENOMEM);
1644 		if (oldlist != NULL)
1645 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1646 		bzero(newlist + dc->maxunit,
1647 		    sizeof(device_t) * (newsize - dc->maxunit));
1648 		dc->devices = newlist;
1649 		dc->maxunit = newsize;
1650 		if (oldlist != NULL)
1651 			free(oldlist, M_BUS);
1652 	}
1653 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1654 
1655 	*unitp = unit;
1656 	return (0);
1657 }
1658 
1659 /**
1660  * @internal
1661  * @brief Add a device to a devclass
1662  *
1663  * A unit number is allocated for the device (using the device's
1664  * preferred unit number if any) and the device is registered in the
1665  * devclass. This allows the device to be looked up by its unit
1666  * number, e.g. by decoding a dev_t minor number.
1667  *
1668  * @param dc		the devclass to add to
1669  * @param dev		the device to add
1670  *
1671  * @retval 0		success
1672  * @retval EEXIST	the requested unit number is already allocated
1673  * @retval ENOMEM	memory allocation failure
1674  */
1675 static int
1676 devclass_add_device(devclass_t dc, device_t dev)
1677 {
1678 	int buflen, error;
1679 
1680 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1681 
1682 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1683 	if (buflen < 0)
1684 		return (ENOMEM);
1685 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1686 	if (!dev->nameunit)
1687 		return (ENOMEM);
1688 
1689 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1690 		free(dev->nameunit, M_BUS);
1691 		dev->nameunit = NULL;
1692 		return (error);
1693 	}
1694 	dc->devices[dev->unit] = dev;
1695 	dev->devclass = dc;
1696 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1697 
1698 	return (0);
1699 }
1700 
1701 /**
1702  * @internal
1703  * @brief Delete a device from a devclass
1704  *
1705  * The device is removed from the devclass's device list and its unit
1706  * number is freed.
1707 
1708  * @param dc		the devclass to delete from
1709  * @param dev		the device to delete
1710  *
1711  * @retval 0		success
1712  */
1713 static int
1714 devclass_delete_device(devclass_t dc, device_t dev)
1715 {
1716 	if (!dc || !dev)
1717 		return (0);
1718 
1719 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1720 
1721 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1722 		panic("devclass_delete_device: inconsistent device class");
1723 	dc->devices[dev->unit] = NULL;
1724 	if (dev->flags & DF_WILDCARD)
1725 		dev->unit = -1;
1726 	dev->devclass = NULL;
1727 	free(dev->nameunit, M_BUS);
1728 	dev->nameunit = NULL;
1729 
1730 	return (0);
1731 }
1732 
1733 /**
1734  * @internal
1735  * @brief Make a new device and add it as a child of @p parent
1736  *
1737  * @param parent	the parent of the new device
1738  * @param name		the devclass name of the new device or @c NULL
1739  *			to leave the devclass unspecified
1740  * @parem unit		the unit number of the new device of @c -1 to
1741  *			leave the unit number unspecified
1742  *
1743  * @returns the new device
1744  */
1745 static device_t
1746 make_device(device_t parent, const char *name, int unit)
1747 {
1748 	device_t dev;
1749 	devclass_t dc;
1750 
1751 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1752 
1753 	if (name) {
1754 		dc = devclass_find_internal(name, NULL, TRUE);
1755 		if (!dc) {
1756 			printf("make_device: can't find device class %s\n",
1757 			    name);
1758 			return (NULL);
1759 		}
1760 	} else {
1761 		dc = NULL;
1762 	}
1763 
1764 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1765 	if (!dev)
1766 		return (NULL);
1767 
1768 	dev->parent = parent;
1769 	TAILQ_INIT(&dev->children);
1770 	kobj_init((kobj_t) dev, &null_class);
1771 	dev->driver = NULL;
1772 	dev->devclass = NULL;
1773 	dev->unit = unit;
1774 	dev->nameunit = NULL;
1775 	dev->desc = NULL;
1776 	dev->busy = 0;
1777 	dev->devflags = 0;
1778 	dev->flags = DF_ENABLED;
1779 	dev->order = 0;
1780 	if (unit == -1)
1781 		dev->flags |= DF_WILDCARD;
1782 	if (name) {
1783 		dev->flags |= DF_FIXEDCLASS;
1784 		if (devclass_add_device(dc, dev)) {
1785 			kobj_delete((kobj_t) dev, M_BUS);
1786 			return (NULL);
1787 		}
1788 	}
1789 	if (parent != NULL && device_has_quiet_children(parent))
1790 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1791 	dev->ivars = NULL;
1792 	dev->softc = NULL;
1793 
1794 	dev->state = DS_NOTPRESENT;
1795 
1796 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1797 	bus_data_generation_update();
1798 
1799 	return (dev);
1800 }
1801 
1802 /**
1803  * @internal
1804  * @brief Print a description of a device.
1805  */
1806 static int
1807 device_print_child(device_t dev, device_t child)
1808 {
1809 	int retval = 0;
1810 
1811 	if (device_is_alive(child))
1812 		retval += BUS_PRINT_CHILD(dev, child);
1813 	else
1814 		retval += device_printf(child, " not found\n");
1815 
1816 	return (retval);
1817 }
1818 
1819 /**
1820  * @brief Create a new device
1821  *
1822  * This creates a new device and adds it as a child of an existing
1823  * parent device. The new device will be added after the last existing
1824  * child with order zero.
1825  *
1826  * @param dev		the device which will be the parent of the
1827  *			new child device
1828  * @param name		devclass name for new device or @c NULL if not
1829  *			specified
1830  * @param unit		unit number for new device or @c -1 if not
1831  *			specified
1832  *
1833  * @returns		the new device
1834  */
1835 device_t
1836 device_add_child(device_t dev, const char *name, int unit)
1837 {
1838 	return (device_add_child_ordered(dev, 0, name, unit));
1839 }
1840 
1841 /**
1842  * @brief Create a new device
1843  *
1844  * This creates a new device and adds it as a child of an existing
1845  * parent device. The new device will be added after the last existing
1846  * child with the same order.
1847  *
1848  * @param dev		the device which will be the parent of the
1849  *			new child device
1850  * @param order		a value which is used to partially sort the
1851  *			children of @p dev - devices created using
1852  *			lower values of @p order appear first in @p
1853  *			dev's list of children
1854  * @param name		devclass name for new device or @c NULL if not
1855  *			specified
1856  * @param unit		unit number for new device or @c -1 if not
1857  *			specified
1858  *
1859  * @returns		the new device
1860  */
1861 device_t
1862 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1863 {
1864 	device_t child;
1865 	device_t place;
1866 
1867 	PDEBUG(("%s at %s with order %u as unit %d",
1868 	    name, DEVICENAME(dev), order, unit));
1869 	KASSERT(name != NULL || unit == -1,
1870 	    ("child device with wildcard name and specific unit number"));
1871 
1872 	child = make_device(dev, name, unit);
1873 	if (child == NULL)
1874 		return (child);
1875 	child->order = order;
1876 
1877 	TAILQ_FOREACH(place, &dev->children, link) {
1878 		if (place->order > order)
1879 			break;
1880 	}
1881 
1882 	if (place) {
1883 		/*
1884 		 * The device 'place' is the first device whose order is
1885 		 * greater than the new child.
1886 		 */
1887 		TAILQ_INSERT_BEFORE(place, child, link);
1888 	} else {
1889 		/*
1890 		 * The new child's order is greater or equal to the order of
1891 		 * any existing device. Add the child to the tail of the list.
1892 		 */
1893 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1894 	}
1895 
1896 	bus_data_generation_update();
1897 	return (child);
1898 }
1899 
1900 /**
1901  * @brief Delete a device
1902  *
1903  * This function deletes a device along with all of its children. If
1904  * the device currently has a driver attached to it, the device is
1905  * detached first using device_detach().
1906  *
1907  * @param dev		the parent device
1908  * @param child		the device to delete
1909  *
1910  * @retval 0		success
1911  * @retval non-zero	a unit error code describing the error
1912  */
1913 int
1914 device_delete_child(device_t dev, device_t child)
1915 {
1916 	int error;
1917 	device_t grandchild;
1918 
1919 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1920 
1921 	/* detach parent before deleting children, if any */
1922 	if ((error = device_detach(child)) != 0)
1923 		return (error);
1924 
1925 	/* remove children second */
1926 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1927 		error = device_delete_child(child, grandchild);
1928 		if (error)
1929 			return (error);
1930 	}
1931 
1932 	if (child->devclass)
1933 		devclass_delete_device(child->devclass, child);
1934 	if (child->parent)
1935 		BUS_CHILD_DELETED(dev, child);
1936 	TAILQ_REMOVE(&dev->children, child, link);
1937 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1938 	kobj_delete((kobj_t) child, M_BUS);
1939 
1940 	bus_data_generation_update();
1941 	return (0);
1942 }
1943 
1944 /**
1945  * @brief Delete all children devices of the given device, if any.
1946  *
1947  * This function deletes all children devices of the given device, if
1948  * any, using the device_delete_child() function for each device it
1949  * finds. If a child device cannot be deleted, this function will
1950  * return an error code.
1951  *
1952  * @param dev		the parent device
1953  *
1954  * @retval 0		success
1955  * @retval non-zero	a device would not detach
1956  */
1957 int
1958 device_delete_children(device_t dev)
1959 {
1960 	device_t child;
1961 	int error;
1962 
1963 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1964 
1965 	error = 0;
1966 
1967 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1968 		error = device_delete_child(dev, child);
1969 		if (error) {
1970 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1971 			break;
1972 		}
1973 	}
1974 	return (error);
1975 }
1976 
1977 /**
1978  * @brief Find a device given a unit number
1979  *
1980  * This is similar to devclass_get_devices() but only searches for
1981  * devices which have @p dev as a parent.
1982  *
1983  * @param dev		the parent device to search
1984  * @param unit		the unit number to search for.  If the unit is -1,
1985  *			return the first child of @p dev which has name
1986  *			@p classname (that is, the one with the lowest unit.)
1987  *
1988  * @returns		the device with the given unit number or @c
1989  *			NULL if there is no such device
1990  */
1991 device_t
1992 device_find_child(device_t dev, const char *classname, int unit)
1993 {
1994 	devclass_t dc;
1995 	device_t child;
1996 
1997 	dc = devclass_find(classname);
1998 	if (!dc)
1999 		return (NULL);
2000 
2001 	if (unit != -1) {
2002 		child = devclass_get_device(dc, unit);
2003 		if (child && child->parent == dev)
2004 			return (child);
2005 	} else {
2006 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2007 			child = devclass_get_device(dc, unit);
2008 			if (child && child->parent == dev)
2009 				return (child);
2010 		}
2011 	}
2012 	return (NULL);
2013 }
2014 
2015 /**
2016  * @internal
2017  */
2018 static driverlink_t
2019 first_matching_driver(devclass_t dc, device_t dev)
2020 {
2021 	if (dev->devclass)
2022 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2023 	return (TAILQ_FIRST(&dc->drivers));
2024 }
2025 
2026 /**
2027  * @internal
2028  */
2029 static driverlink_t
2030 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2031 {
2032 	if (dev->devclass) {
2033 		driverlink_t dl;
2034 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2035 			if (!strcmp(dev->devclass->name, dl->driver->name))
2036 				return (dl);
2037 		return (NULL);
2038 	}
2039 	return (TAILQ_NEXT(last, link));
2040 }
2041 
2042 /**
2043  * @internal
2044  */
2045 int
2046 device_probe_child(device_t dev, device_t child)
2047 {
2048 	devclass_t dc;
2049 	driverlink_t best = NULL;
2050 	driverlink_t dl;
2051 	int result, pri = 0;
2052 	int hasclass = (child->devclass != NULL);
2053 
2054 	GIANT_REQUIRED;
2055 
2056 	dc = dev->devclass;
2057 	if (!dc)
2058 		panic("device_probe_child: parent device has no devclass");
2059 
2060 	/*
2061 	 * If the state is already probed, then return.  However, don't
2062 	 * return if we can rebid this object.
2063 	 */
2064 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2065 		return (0);
2066 
2067 	for (; dc; dc = dc->parent) {
2068 		for (dl = first_matching_driver(dc, child);
2069 		     dl;
2070 		     dl = next_matching_driver(dc, child, dl)) {
2071 			/* If this driver's pass is too high, then ignore it. */
2072 			if (dl->pass > bus_current_pass)
2073 				continue;
2074 
2075 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2076 			result = device_set_driver(child, dl->driver);
2077 			if (result == ENOMEM)
2078 				return (result);
2079 			else if (result != 0)
2080 				continue;
2081 			if (!hasclass) {
2082 				if (device_set_devclass(child,
2083 				    dl->driver->name) != 0) {
2084 					char const * devname =
2085 					    device_get_name(child);
2086 					if (devname == NULL)
2087 						devname = "(unknown)";
2088 					printf("driver bug: Unable to set "
2089 					    "devclass (class: %s "
2090 					    "devname: %s)\n",
2091 					    dl->driver->name,
2092 					    devname);
2093 					(void)device_set_driver(child, NULL);
2094 					continue;
2095 				}
2096 			}
2097 
2098 			/* Fetch any flags for the device before probing. */
2099 			resource_int_value(dl->driver->name, child->unit,
2100 			    "flags", &child->devflags);
2101 
2102 			result = DEVICE_PROBE(child);
2103 
2104 			/* Reset flags and devclass before the next probe. */
2105 			child->devflags = 0;
2106 			if (!hasclass)
2107 				(void)device_set_devclass(child, NULL);
2108 
2109 			/*
2110 			 * If the driver returns SUCCESS, there can be
2111 			 * no higher match for this device.
2112 			 */
2113 			if (result == 0) {
2114 				best = dl;
2115 				pri = 0;
2116 				break;
2117 			}
2118 
2119 			/*
2120 			 * Reset DF_QUIET in case this driver doesn't
2121 			 * end up as the best driver.
2122 			 */
2123 			device_verbose(child);
2124 
2125 			/*
2126 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2127 			 * only match on devices whose driver was explicitly
2128 			 * specified.
2129 			 */
2130 			if (result <= BUS_PROBE_NOWILDCARD &&
2131 			    !(child->flags & DF_FIXEDCLASS)) {
2132 				result = ENXIO;
2133 			}
2134 
2135 			/*
2136 			 * The driver returned an error so it
2137 			 * certainly doesn't match.
2138 			 */
2139 			if (result > 0) {
2140 				(void)device_set_driver(child, NULL);
2141 				continue;
2142 			}
2143 
2144 			/*
2145 			 * A priority lower than SUCCESS, remember the
2146 			 * best matching driver. Initialise the value
2147 			 * of pri for the first match.
2148 			 */
2149 			if (best == NULL || result > pri) {
2150 				best = dl;
2151 				pri = result;
2152 				continue;
2153 			}
2154 		}
2155 		/*
2156 		 * If we have an unambiguous match in this devclass,
2157 		 * don't look in the parent.
2158 		 */
2159 		if (best && pri == 0)
2160 			break;
2161 	}
2162 
2163 	/*
2164 	 * If we found a driver, change state and initialise the devclass.
2165 	 */
2166 	/* XXX What happens if we rebid and got no best? */
2167 	if (best) {
2168 		/*
2169 		 * If this device was attached, and we were asked to
2170 		 * rescan, and it is a different driver, then we have
2171 		 * to detach the old driver and reattach this new one.
2172 		 * Note, we don't have to check for DF_REBID here
2173 		 * because if the state is > DS_ALIVE, we know it must
2174 		 * be.
2175 		 *
2176 		 * This assumes that all DF_REBID drivers can have
2177 		 * their probe routine called at any time and that
2178 		 * they are idempotent as well as completely benign in
2179 		 * normal operations.
2180 		 *
2181 		 * We also have to make sure that the detach
2182 		 * succeeded, otherwise we fail the operation (or
2183 		 * maybe it should just fail silently?  I'm torn).
2184 		 */
2185 		if (child->state > DS_ALIVE && best->driver != child->driver)
2186 			if ((result = device_detach(dev)) != 0)
2187 				return (result);
2188 
2189 		/* Set the winning driver, devclass, and flags. */
2190 		if (!child->devclass) {
2191 			result = device_set_devclass(child, best->driver->name);
2192 			if (result != 0)
2193 				return (result);
2194 		}
2195 		result = device_set_driver(child, best->driver);
2196 		if (result != 0)
2197 			return (result);
2198 		resource_int_value(best->driver->name, child->unit,
2199 		    "flags", &child->devflags);
2200 
2201 		if (pri < 0) {
2202 			/*
2203 			 * A bit bogus. Call the probe method again to make
2204 			 * sure that we have the right description.
2205 			 */
2206 			DEVICE_PROBE(child);
2207 #if 0
2208 			child->flags |= DF_REBID;
2209 #endif
2210 		} else
2211 			child->flags &= ~DF_REBID;
2212 		child->state = DS_ALIVE;
2213 
2214 		bus_data_generation_update();
2215 		return (0);
2216 	}
2217 
2218 	return (ENXIO);
2219 }
2220 
2221 /**
2222  * @brief Return the parent of a device
2223  */
2224 device_t
2225 device_get_parent(device_t dev)
2226 {
2227 	return (dev->parent);
2228 }
2229 
2230 /**
2231  * @brief Get a list of children of a device
2232  *
2233  * An array containing a list of all the children of the given device
2234  * is allocated and returned in @p *devlistp. The number of devices
2235  * in the array is returned in @p *devcountp. The caller should free
2236  * the array using @c free(p, M_TEMP).
2237  *
2238  * @param dev		the device to examine
2239  * @param devlistp	points at location for array pointer return
2240  *			value
2241  * @param devcountp	points at location for array size return value
2242  *
2243  * @retval 0		success
2244  * @retval ENOMEM	the array allocation failed
2245  */
2246 int
2247 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2248 {
2249 	int count;
2250 	device_t child;
2251 	device_t *list;
2252 
2253 	count = 0;
2254 	TAILQ_FOREACH(child, &dev->children, link) {
2255 		count++;
2256 	}
2257 	if (count == 0) {
2258 		*devlistp = NULL;
2259 		*devcountp = 0;
2260 		return (0);
2261 	}
2262 
2263 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2264 	if (!list)
2265 		return (ENOMEM);
2266 
2267 	count = 0;
2268 	TAILQ_FOREACH(child, &dev->children, link) {
2269 		list[count] = child;
2270 		count++;
2271 	}
2272 
2273 	*devlistp = list;
2274 	*devcountp = count;
2275 
2276 	return (0);
2277 }
2278 
2279 /**
2280  * @brief Return the current driver for the device or @c NULL if there
2281  * is no driver currently attached
2282  */
2283 driver_t *
2284 device_get_driver(device_t dev)
2285 {
2286 	return (dev->driver);
2287 }
2288 
2289 /**
2290  * @brief Return the current devclass for the device or @c NULL if
2291  * there is none.
2292  */
2293 devclass_t
2294 device_get_devclass(device_t dev)
2295 {
2296 	return (dev->devclass);
2297 }
2298 
2299 /**
2300  * @brief Return the name of the device's devclass or @c NULL if there
2301  * is none.
2302  */
2303 const char *
2304 device_get_name(device_t dev)
2305 {
2306 	if (dev != NULL && dev->devclass)
2307 		return (devclass_get_name(dev->devclass));
2308 	return (NULL);
2309 }
2310 
2311 /**
2312  * @brief Return a string containing the device's devclass name
2313  * followed by an ascii representation of the device's unit number
2314  * (e.g. @c "foo2").
2315  */
2316 const char *
2317 device_get_nameunit(device_t dev)
2318 {
2319 	return (dev->nameunit);
2320 }
2321 
2322 /**
2323  * @brief Return the device's unit number.
2324  */
2325 int
2326 device_get_unit(device_t dev)
2327 {
2328 	return (dev->unit);
2329 }
2330 
2331 /**
2332  * @brief Return the device's description string
2333  */
2334 const char *
2335 device_get_desc(device_t dev)
2336 {
2337 	return (dev->desc);
2338 }
2339 
2340 /**
2341  * @brief Return the device's flags
2342  */
2343 uint32_t
2344 device_get_flags(device_t dev)
2345 {
2346 	return (dev->devflags);
2347 }
2348 
2349 struct sysctl_ctx_list *
2350 device_get_sysctl_ctx(device_t dev)
2351 {
2352 	return (&dev->sysctl_ctx);
2353 }
2354 
2355 struct sysctl_oid *
2356 device_get_sysctl_tree(device_t dev)
2357 {
2358 	return (dev->sysctl_tree);
2359 }
2360 
2361 /**
2362  * @brief Print the name of the device followed by a colon and a space
2363  *
2364  * @returns the number of characters printed
2365  */
2366 int
2367 device_print_prettyname(device_t dev)
2368 {
2369 	const char *name = device_get_name(dev);
2370 
2371 	if (name == NULL)
2372 		return (printf("unknown: "));
2373 	return (printf("%s%d: ", name, device_get_unit(dev)));
2374 }
2375 
2376 /**
2377  * @brief Print the name of the device followed by a colon, a space
2378  * and the result of calling vprintf() with the value of @p fmt and
2379  * the following arguments.
2380  *
2381  * @returns the number of characters printed
2382  */
2383 int
2384 device_printf(device_t dev, const char * fmt, ...)
2385 {
2386 	char buf[128];
2387 	struct sbuf sb;
2388 	const char *name;
2389 	va_list ap;
2390 	size_t retval;
2391 
2392 	retval = 0;
2393 
2394 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2395 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2396 
2397 	name = device_get_name(dev);
2398 
2399 	if (name == NULL)
2400 		sbuf_cat(&sb, "unknown: ");
2401 	else
2402 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2403 
2404 	va_start(ap, fmt);
2405 	sbuf_vprintf(&sb, fmt, ap);
2406 	va_end(ap);
2407 
2408 	sbuf_finish(&sb);
2409 	sbuf_delete(&sb);
2410 
2411 	return (retval);
2412 }
2413 
2414 /**
2415  * @internal
2416  */
2417 static void
2418 device_set_desc_internal(device_t dev, const char* desc, int copy)
2419 {
2420 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2421 		free(dev->desc, M_BUS);
2422 		dev->flags &= ~DF_DESCMALLOCED;
2423 		dev->desc = NULL;
2424 	}
2425 
2426 	if (copy && desc) {
2427 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2428 		if (dev->desc) {
2429 			strcpy(dev->desc, desc);
2430 			dev->flags |= DF_DESCMALLOCED;
2431 		}
2432 	} else {
2433 		/* Avoid a -Wcast-qual warning */
2434 		dev->desc = (char *)(uintptr_t) desc;
2435 	}
2436 
2437 	bus_data_generation_update();
2438 }
2439 
2440 /**
2441  * @brief Set the device's description
2442  *
2443  * The value of @c desc should be a string constant that will not
2444  * change (at least until the description is changed in a subsequent
2445  * call to device_set_desc() or device_set_desc_copy()).
2446  */
2447 void
2448 device_set_desc(device_t dev, const char* desc)
2449 {
2450 	device_set_desc_internal(dev, desc, FALSE);
2451 }
2452 
2453 /**
2454  * @brief Set the device's description
2455  *
2456  * The string pointed to by @c desc is copied. Use this function if
2457  * the device description is generated, (e.g. with sprintf()).
2458  */
2459 void
2460 device_set_desc_copy(device_t dev, const char* desc)
2461 {
2462 	device_set_desc_internal(dev, desc, TRUE);
2463 }
2464 
2465 /**
2466  * @brief Set the device's flags
2467  */
2468 void
2469 device_set_flags(device_t dev, uint32_t flags)
2470 {
2471 	dev->devflags = flags;
2472 }
2473 
2474 /**
2475  * @brief Return the device's softc field
2476  *
2477  * The softc is allocated and zeroed when a driver is attached, based
2478  * on the size field of the driver.
2479  */
2480 void *
2481 device_get_softc(device_t dev)
2482 {
2483 	return (dev->softc);
2484 }
2485 
2486 /**
2487  * @brief Set the device's softc field
2488  *
2489  * Most drivers do not need to use this since the softc is allocated
2490  * automatically when the driver is attached.
2491  */
2492 void
2493 device_set_softc(device_t dev, void *softc)
2494 {
2495 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2496 		free(dev->softc, M_BUS_SC);
2497 	dev->softc = softc;
2498 	if (dev->softc)
2499 		dev->flags |= DF_EXTERNALSOFTC;
2500 	else
2501 		dev->flags &= ~DF_EXTERNALSOFTC;
2502 }
2503 
2504 /**
2505  * @brief Free claimed softc
2506  *
2507  * Most drivers do not need to use this since the softc is freed
2508  * automatically when the driver is detached.
2509  */
2510 void
2511 device_free_softc(void *softc)
2512 {
2513 	free(softc, M_BUS_SC);
2514 }
2515 
2516 /**
2517  * @brief Claim softc
2518  *
2519  * This function can be used to let the driver free the automatically
2520  * allocated softc using "device_free_softc()". This function is
2521  * useful when the driver is refcounting the softc and the softc
2522  * cannot be freed when the "device_detach" method is called.
2523  */
2524 void
2525 device_claim_softc(device_t dev)
2526 {
2527 	if (dev->softc)
2528 		dev->flags |= DF_EXTERNALSOFTC;
2529 	else
2530 		dev->flags &= ~DF_EXTERNALSOFTC;
2531 }
2532 
2533 /**
2534  * @brief Get the device's ivars field
2535  *
2536  * The ivars field is used by the parent device to store per-device
2537  * state (e.g. the physical location of the device or a list of
2538  * resources).
2539  */
2540 void *
2541 device_get_ivars(device_t dev)
2542 {
2543 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2544 	return (dev->ivars);
2545 }
2546 
2547 /**
2548  * @brief Set the device's ivars field
2549  */
2550 void
2551 device_set_ivars(device_t dev, void * ivars)
2552 {
2553 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2554 	dev->ivars = ivars;
2555 }
2556 
2557 /**
2558  * @brief Return the device's state
2559  */
2560 device_state_t
2561 device_get_state(device_t dev)
2562 {
2563 	return (dev->state);
2564 }
2565 
2566 /**
2567  * @brief Set the DF_ENABLED flag for the device
2568  */
2569 void
2570 device_enable(device_t dev)
2571 {
2572 	dev->flags |= DF_ENABLED;
2573 }
2574 
2575 /**
2576  * @brief Clear the DF_ENABLED flag for the device
2577  */
2578 void
2579 device_disable(device_t dev)
2580 {
2581 	dev->flags &= ~DF_ENABLED;
2582 }
2583 
2584 /**
2585  * @brief Increment the busy counter for the device
2586  */
2587 void
2588 device_busy(device_t dev)
2589 {
2590 	if (dev->state < DS_ATTACHING)
2591 		panic("device_busy: called for unattached device");
2592 	if (dev->busy == 0 && dev->parent)
2593 		device_busy(dev->parent);
2594 	dev->busy++;
2595 	if (dev->state == DS_ATTACHED)
2596 		dev->state = DS_BUSY;
2597 }
2598 
2599 /**
2600  * @brief Decrement the busy counter for the device
2601  */
2602 void
2603 device_unbusy(device_t dev)
2604 {
2605 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2606 	    dev->state != DS_ATTACHING)
2607 		panic("device_unbusy: called for non-busy device %s",
2608 		    device_get_nameunit(dev));
2609 	dev->busy--;
2610 	if (dev->busy == 0) {
2611 		if (dev->parent)
2612 			device_unbusy(dev->parent);
2613 		if (dev->state == DS_BUSY)
2614 			dev->state = DS_ATTACHED;
2615 	}
2616 }
2617 
2618 /**
2619  * @brief Set the DF_QUIET flag for the device
2620  */
2621 void
2622 device_quiet(device_t dev)
2623 {
2624 	dev->flags |= DF_QUIET;
2625 }
2626 
2627 /**
2628  * @brief Set the DF_QUIET_CHILDREN flag for the device
2629  */
2630 void
2631 device_quiet_children(device_t dev)
2632 {
2633 	dev->flags |= DF_QUIET_CHILDREN;
2634 }
2635 
2636 /**
2637  * @brief Clear the DF_QUIET flag for the device
2638  */
2639 void
2640 device_verbose(device_t dev)
2641 {
2642 	dev->flags &= ~DF_QUIET;
2643 }
2644 
2645 /**
2646  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2647  */
2648 int
2649 device_has_quiet_children(device_t dev)
2650 {
2651 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2652 }
2653 
2654 /**
2655  * @brief Return non-zero if the DF_QUIET flag is set on the device
2656  */
2657 int
2658 device_is_quiet(device_t dev)
2659 {
2660 	return ((dev->flags & DF_QUIET) != 0);
2661 }
2662 
2663 /**
2664  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2665  */
2666 int
2667 device_is_enabled(device_t dev)
2668 {
2669 	return ((dev->flags & DF_ENABLED) != 0);
2670 }
2671 
2672 /**
2673  * @brief Return non-zero if the device was successfully probed
2674  */
2675 int
2676 device_is_alive(device_t dev)
2677 {
2678 	return (dev->state >= DS_ALIVE);
2679 }
2680 
2681 /**
2682  * @brief Return non-zero if the device currently has a driver
2683  * attached to it
2684  */
2685 int
2686 device_is_attached(device_t dev)
2687 {
2688 	return (dev->state >= DS_ATTACHED);
2689 }
2690 
2691 /**
2692  * @brief Return non-zero if the device is currently suspended.
2693  */
2694 int
2695 device_is_suspended(device_t dev)
2696 {
2697 	return ((dev->flags & DF_SUSPENDED) != 0);
2698 }
2699 
2700 /**
2701  * @brief Set the devclass of a device
2702  * @see devclass_add_device().
2703  */
2704 int
2705 device_set_devclass(device_t dev, const char *classname)
2706 {
2707 	devclass_t dc;
2708 	int error;
2709 
2710 	if (!classname) {
2711 		if (dev->devclass)
2712 			devclass_delete_device(dev->devclass, dev);
2713 		return (0);
2714 	}
2715 
2716 	if (dev->devclass) {
2717 		printf("device_set_devclass: device class already set\n");
2718 		return (EINVAL);
2719 	}
2720 
2721 	dc = devclass_find_internal(classname, NULL, TRUE);
2722 	if (!dc)
2723 		return (ENOMEM);
2724 
2725 	error = devclass_add_device(dc, dev);
2726 
2727 	bus_data_generation_update();
2728 	return (error);
2729 }
2730 
2731 /**
2732  * @brief Set the devclass of a device and mark the devclass fixed.
2733  * @see device_set_devclass()
2734  */
2735 int
2736 device_set_devclass_fixed(device_t dev, const char *classname)
2737 {
2738 	int error;
2739 
2740 	if (classname == NULL)
2741 		return (EINVAL);
2742 
2743 	error = device_set_devclass(dev, classname);
2744 	if (error)
2745 		return (error);
2746 	dev->flags |= DF_FIXEDCLASS;
2747 	return (0);
2748 }
2749 
2750 /**
2751  * @brief Query the device to determine if it's of a fixed devclass
2752  * @see device_set_devclass_fixed()
2753  */
2754 bool
2755 device_is_devclass_fixed(device_t dev)
2756 {
2757 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2758 }
2759 
2760 /**
2761  * @brief Set the driver of a device
2762  *
2763  * @retval 0		success
2764  * @retval EBUSY	the device already has a driver attached
2765  * @retval ENOMEM	a memory allocation failure occurred
2766  */
2767 int
2768 device_set_driver(device_t dev, driver_t *driver)
2769 {
2770 	int domain;
2771 	struct domainset *policy;
2772 
2773 	if (dev->state >= DS_ATTACHED)
2774 		return (EBUSY);
2775 
2776 	if (dev->driver == driver)
2777 		return (0);
2778 
2779 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2780 		free(dev->softc, M_BUS_SC);
2781 		dev->softc = NULL;
2782 	}
2783 	device_set_desc(dev, NULL);
2784 	kobj_delete((kobj_t) dev, NULL);
2785 	dev->driver = driver;
2786 	if (driver) {
2787 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2788 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2789 			if (bus_get_domain(dev, &domain) == 0)
2790 				policy = DOMAINSET_PREF(domain);
2791 			else
2792 				policy = DOMAINSET_RR();
2793 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2794 			    policy, M_NOWAIT | M_ZERO);
2795 			if (!dev->softc) {
2796 				kobj_delete((kobj_t) dev, NULL);
2797 				kobj_init((kobj_t) dev, &null_class);
2798 				dev->driver = NULL;
2799 				return (ENOMEM);
2800 			}
2801 		}
2802 	} else {
2803 		kobj_init((kobj_t) dev, &null_class);
2804 	}
2805 
2806 	bus_data_generation_update();
2807 	return (0);
2808 }
2809 
2810 /**
2811  * @brief Probe a device, and return this status.
2812  *
2813  * This function is the core of the device autoconfiguration
2814  * system. Its purpose is to select a suitable driver for a device and
2815  * then call that driver to initialise the hardware appropriately. The
2816  * driver is selected by calling the DEVICE_PROBE() method of a set of
2817  * candidate drivers and then choosing the driver which returned the
2818  * best value. This driver is then attached to the device using
2819  * device_attach().
2820  *
2821  * The set of suitable drivers is taken from the list of drivers in
2822  * the parent device's devclass. If the device was originally created
2823  * with a specific class name (see device_add_child()), only drivers
2824  * with that name are probed, otherwise all drivers in the devclass
2825  * are probed. If no drivers return successful probe values in the
2826  * parent devclass, the search continues in the parent of that
2827  * devclass (see devclass_get_parent()) if any.
2828  *
2829  * @param dev		the device to initialise
2830  *
2831  * @retval 0		success
2832  * @retval ENXIO	no driver was found
2833  * @retval ENOMEM	memory allocation failure
2834  * @retval non-zero	some other unix error code
2835  * @retval -1		Device already attached
2836  */
2837 int
2838 device_probe(device_t dev)
2839 {
2840 	int error;
2841 
2842 	GIANT_REQUIRED;
2843 
2844 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2845 		return (-1);
2846 
2847 	if (!(dev->flags & DF_ENABLED)) {
2848 		if (bootverbose && device_get_name(dev) != NULL) {
2849 			device_print_prettyname(dev);
2850 			printf("not probed (disabled)\n");
2851 		}
2852 		return (-1);
2853 	}
2854 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2855 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2856 		    !(dev->flags & DF_DONENOMATCH)) {
2857 			BUS_PROBE_NOMATCH(dev->parent, dev);
2858 			devnomatch(dev);
2859 			dev->flags |= DF_DONENOMATCH;
2860 		}
2861 		return (error);
2862 	}
2863 	return (0);
2864 }
2865 
2866 /**
2867  * @brief Probe a device and attach a driver if possible
2868  *
2869  * calls device_probe() and attaches if that was successful.
2870  */
2871 int
2872 device_probe_and_attach(device_t dev)
2873 {
2874 	int error;
2875 
2876 	GIANT_REQUIRED;
2877 
2878 	error = device_probe(dev);
2879 	if (error == -1)
2880 		return (0);
2881 	else if (error != 0)
2882 		return (error);
2883 
2884 	CURVNET_SET_QUIET(vnet0);
2885 	error = device_attach(dev);
2886 	CURVNET_RESTORE();
2887 	return error;
2888 }
2889 
2890 /**
2891  * @brief Attach a device driver to a device
2892  *
2893  * This function is a wrapper around the DEVICE_ATTACH() driver
2894  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2895  * device's sysctl tree, optionally prints a description of the device
2896  * and queues a notification event for user-based device management
2897  * services.
2898  *
2899  * Normally this function is only called internally from
2900  * device_probe_and_attach().
2901  *
2902  * @param dev		the device to initialise
2903  *
2904  * @retval 0		success
2905  * @retval ENXIO	no driver was found
2906  * @retval ENOMEM	memory allocation failure
2907  * @retval non-zero	some other unix error code
2908  */
2909 int
2910 device_attach(device_t dev)
2911 {
2912 	uint64_t attachtime;
2913 	uint16_t attachentropy;
2914 	int error;
2915 
2916 	if (resource_disabled(dev->driver->name, dev->unit)) {
2917 		device_disable(dev);
2918 		if (bootverbose)
2919 			 device_printf(dev, "disabled via hints entry\n");
2920 		return (ENXIO);
2921 	}
2922 
2923 	device_sysctl_init(dev);
2924 	if (!device_is_quiet(dev))
2925 		device_print_child(dev->parent, dev);
2926 	attachtime = get_cyclecount();
2927 	dev->state = DS_ATTACHING;
2928 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2929 		printf("device_attach: %s%d attach returned %d\n",
2930 		    dev->driver->name, dev->unit, error);
2931 		if (!(dev->flags & DF_FIXEDCLASS))
2932 			devclass_delete_device(dev->devclass, dev);
2933 		(void)device_set_driver(dev, NULL);
2934 		device_sysctl_fini(dev);
2935 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2936 		dev->state = DS_NOTPRESENT;
2937 		return (error);
2938 	}
2939 	dev->flags |= DF_ATTACHED_ONCE;
2940 	/* We only need the low bits of this time, but ranges from tens to thousands
2941 	 * have been seen, so keep 2 bytes' worth.
2942 	 */
2943 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2944 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2945 	device_sysctl_update(dev);
2946 	if (dev->busy)
2947 		dev->state = DS_BUSY;
2948 	else
2949 		dev->state = DS_ATTACHED;
2950 	dev->flags &= ~DF_DONENOMATCH;
2951 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2952 	devadded(dev);
2953 	return (0);
2954 }
2955 
2956 /**
2957  * @brief Detach a driver from a device
2958  *
2959  * This function is a wrapper around the DEVICE_DETACH() driver
2960  * method. If the call to DEVICE_DETACH() succeeds, it calls
2961  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2962  * notification event for user-based device management services and
2963  * cleans up the device's sysctl tree.
2964  *
2965  * @param dev		the device to un-initialise
2966  *
2967  * @retval 0		success
2968  * @retval ENXIO	no driver was found
2969  * @retval ENOMEM	memory allocation failure
2970  * @retval non-zero	some other unix error code
2971  */
2972 int
2973 device_detach(device_t dev)
2974 {
2975 	int error;
2976 
2977 	GIANT_REQUIRED;
2978 
2979 	PDEBUG(("%s", DEVICENAME(dev)));
2980 	if (dev->state == DS_BUSY)
2981 		return (EBUSY);
2982 	if (dev->state == DS_ATTACHING) {
2983 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2984 		return (EBUSY);
2985 	}
2986 	if (dev->state != DS_ATTACHED)
2987 		return (0);
2988 
2989 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2990 	if ((error = DEVICE_DETACH(dev)) != 0) {
2991 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2992 		    EVHDEV_DETACH_FAILED);
2993 		return (error);
2994 	} else {
2995 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2996 		    EVHDEV_DETACH_COMPLETE);
2997 	}
2998 	devremoved(dev);
2999 	if (!device_is_quiet(dev))
3000 		device_printf(dev, "detached\n");
3001 	if (dev->parent)
3002 		BUS_CHILD_DETACHED(dev->parent, dev);
3003 
3004 	if (!(dev->flags & DF_FIXEDCLASS))
3005 		devclass_delete_device(dev->devclass, dev);
3006 
3007 	device_verbose(dev);
3008 	dev->state = DS_NOTPRESENT;
3009 	(void)device_set_driver(dev, NULL);
3010 	device_sysctl_fini(dev);
3011 
3012 	return (0);
3013 }
3014 
3015 /**
3016  * @brief Tells a driver to quiesce itself.
3017  *
3018  * This function is a wrapper around the DEVICE_QUIESCE() driver
3019  * method. If the call to DEVICE_QUIESCE() succeeds.
3020  *
3021  * @param dev		the device to quiesce
3022  *
3023  * @retval 0		success
3024  * @retval ENXIO	no driver was found
3025  * @retval ENOMEM	memory allocation failure
3026  * @retval non-zero	some other unix error code
3027  */
3028 int
3029 device_quiesce(device_t dev)
3030 {
3031 	PDEBUG(("%s", DEVICENAME(dev)));
3032 	if (dev->state == DS_BUSY)
3033 		return (EBUSY);
3034 	if (dev->state != DS_ATTACHED)
3035 		return (0);
3036 
3037 	return (DEVICE_QUIESCE(dev));
3038 }
3039 
3040 /**
3041  * @brief Notify a device of system shutdown
3042  *
3043  * This function calls the DEVICE_SHUTDOWN() driver method if the
3044  * device currently has an attached driver.
3045  *
3046  * @returns the value returned by DEVICE_SHUTDOWN()
3047  */
3048 int
3049 device_shutdown(device_t dev)
3050 {
3051 	if (dev->state < DS_ATTACHED)
3052 		return (0);
3053 	return (DEVICE_SHUTDOWN(dev));
3054 }
3055 
3056 /**
3057  * @brief Set the unit number of a device
3058  *
3059  * This function can be used to override the unit number used for a
3060  * device (e.g. to wire a device to a pre-configured unit number).
3061  */
3062 int
3063 device_set_unit(device_t dev, int unit)
3064 {
3065 	devclass_t dc;
3066 	int err;
3067 
3068 	dc = device_get_devclass(dev);
3069 	if (unit < dc->maxunit && dc->devices[unit])
3070 		return (EBUSY);
3071 	err = devclass_delete_device(dc, dev);
3072 	if (err)
3073 		return (err);
3074 	dev->unit = unit;
3075 	err = devclass_add_device(dc, dev);
3076 	if (err)
3077 		return (err);
3078 
3079 	bus_data_generation_update();
3080 	return (0);
3081 }
3082 
3083 /*======================================*/
3084 /*
3085  * Some useful method implementations to make life easier for bus drivers.
3086  */
3087 
3088 void
3089 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3090 {
3091 	bzero(args, sz);
3092 	args->size = sz;
3093 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3094 }
3095 
3096 /**
3097  * @brief Initialise a resource list.
3098  *
3099  * @param rl		the resource list to initialise
3100  */
3101 void
3102 resource_list_init(struct resource_list *rl)
3103 {
3104 	STAILQ_INIT(rl);
3105 }
3106 
3107 /**
3108  * @brief Reclaim memory used by a resource list.
3109  *
3110  * This function frees the memory for all resource entries on the list
3111  * (if any).
3112  *
3113  * @param rl		the resource list to free
3114  */
3115 void
3116 resource_list_free(struct resource_list *rl)
3117 {
3118 	struct resource_list_entry *rle;
3119 
3120 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3121 		if (rle->res)
3122 			panic("resource_list_free: resource entry is busy");
3123 		STAILQ_REMOVE_HEAD(rl, link);
3124 		free(rle, M_BUS);
3125 	}
3126 }
3127 
3128 /**
3129  * @brief Add a resource entry.
3130  *
3131  * This function adds a resource entry using the given @p type, @p
3132  * start, @p end and @p count values. A rid value is chosen by
3133  * searching sequentially for the first unused rid starting at zero.
3134  *
3135  * @param rl		the resource list to edit
3136  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3137  * @param start		the start address of the resource
3138  * @param end		the end address of the resource
3139  * @param count		XXX end-start+1
3140  */
3141 int
3142 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3143     rman_res_t end, rman_res_t count)
3144 {
3145 	int rid;
3146 
3147 	rid = 0;
3148 	while (resource_list_find(rl, type, rid) != NULL)
3149 		rid++;
3150 	resource_list_add(rl, type, rid, start, end, count);
3151 	return (rid);
3152 }
3153 
3154 /**
3155  * @brief Add or modify a resource entry.
3156  *
3157  * If an existing entry exists with the same type and rid, it will be
3158  * modified using the given values of @p start, @p end and @p
3159  * count. If no entry exists, a new one will be created using the
3160  * given values.  The resource list entry that matches is then returned.
3161  *
3162  * @param rl		the resource list to edit
3163  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3164  * @param rid		the resource identifier
3165  * @param start		the start address of the resource
3166  * @param end		the end address of the resource
3167  * @param count		XXX end-start+1
3168  */
3169 struct resource_list_entry *
3170 resource_list_add(struct resource_list *rl, int type, int rid,
3171     rman_res_t start, rman_res_t end, rman_res_t count)
3172 {
3173 	struct resource_list_entry *rle;
3174 
3175 	rle = resource_list_find(rl, type, rid);
3176 	if (!rle) {
3177 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3178 		    M_NOWAIT);
3179 		if (!rle)
3180 			panic("resource_list_add: can't record entry");
3181 		STAILQ_INSERT_TAIL(rl, rle, link);
3182 		rle->type = type;
3183 		rle->rid = rid;
3184 		rle->res = NULL;
3185 		rle->flags = 0;
3186 	}
3187 
3188 	if (rle->res)
3189 		panic("resource_list_add: resource entry is busy");
3190 
3191 	rle->start = start;
3192 	rle->end = end;
3193 	rle->count = count;
3194 	return (rle);
3195 }
3196 
3197 /**
3198  * @brief Determine if a resource entry is busy.
3199  *
3200  * Returns true if a resource entry is busy meaning that it has an
3201  * associated resource that is not an unallocated "reserved" resource.
3202  *
3203  * @param rl		the resource list to search
3204  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3205  * @param rid		the resource identifier
3206  *
3207  * @returns Non-zero if the entry is busy, zero otherwise.
3208  */
3209 int
3210 resource_list_busy(struct resource_list *rl, int type, int rid)
3211 {
3212 	struct resource_list_entry *rle;
3213 
3214 	rle = resource_list_find(rl, type, rid);
3215 	if (rle == NULL || rle->res == NULL)
3216 		return (0);
3217 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3218 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3219 		    ("reserved resource is active"));
3220 		return (0);
3221 	}
3222 	return (1);
3223 }
3224 
3225 /**
3226  * @brief Determine if a resource entry is reserved.
3227  *
3228  * Returns true if a resource entry is reserved meaning that it has an
3229  * associated "reserved" resource.  The resource can either be
3230  * allocated or unallocated.
3231  *
3232  * @param rl		the resource list to search
3233  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3234  * @param rid		the resource identifier
3235  *
3236  * @returns Non-zero if the entry is reserved, zero otherwise.
3237  */
3238 int
3239 resource_list_reserved(struct resource_list *rl, int type, int rid)
3240 {
3241 	struct resource_list_entry *rle;
3242 
3243 	rle = resource_list_find(rl, type, rid);
3244 	if (rle != NULL && rle->flags & RLE_RESERVED)
3245 		return (1);
3246 	return (0);
3247 }
3248 
3249 /**
3250  * @brief Find a resource entry by type and rid.
3251  *
3252  * @param rl		the resource list to search
3253  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3254  * @param rid		the resource identifier
3255  *
3256  * @returns the resource entry pointer or NULL if there is no such
3257  * entry.
3258  */
3259 struct resource_list_entry *
3260 resource_list_find(struct resource_list *rl, int type, int rid)
3261 {
3262 	struct resource_list_entry *rle;
3263 
3264 	STAILQ_FOREACH(rle, rl, link) {
3265 		if (rle->type == type && rle->rid == rid)
3266 			return (rle);
3267 	}
3268 	return (NULL);
3269 }
3270 
3271 /**
3272  * @brief Delete a resource entry.
3273  *
3274  * @param rl		the resource list to edit
3275  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3276  * @param rid		the resource identifier
3277  */
3278 void
3279 resource_list_delete(struct resource_list *rl, int type, int rid)
3280 {
3281 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3282 
3283 	if (rle) {
3284 		if (rle->res != NULL)
3285 			panic("resource_list_delete: resource has not been released");
3286 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3287 		free(rle, M_BUS);
3288 	}
3289 }
3290 
3291 /**
3292  * @brief Allocate a reserved resource
3293  *
3294  * This can be used by buses to force the allocation of resources
3295  * that are always active in the system even if they are not allocated
3296  * by a driver (e.g. PCI BARs).  This function is usually called when
3297  * adding a new child to the bus.  The resource is allocated from the
3298  * parent bus when it is reserved.  The resource list entry is marked
3299  * with RLE_RESERVED to note that it is a reserved resource.
3300  *
3301  * Subsequent attempts to allocate the resource with
3302  * resource_list_alloc() will succeed the first time and will set
3303  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3304  * resource that has been allocated is released with
3305  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3306  * the actual resource remains allocated.  The resource can be released to
3307  * the parent bus by calling resource_list_unreserve().
3308  *
3309  * @param rl		the resource list to allocate from
3310  * @param bus		the parent device of @p child
3311  * @param child		the device for which the resource is being reserved
3312  * @param type		the type of resource to allocate
3313  * @param rid		a pointer to the resource identifier
3314  * @param start		hint at the start of the resource range - pass
3315  *			@c 0 for any start address
3316  * @param end		hint at the end of the resource range - pass
3317  *			@c ~0 for any end address
3318  * @param count		hint at the size of range required - pass @c 1
3319  *			for any size
3320  * @param flags		any extra flags to control the resource
3321  *			allocation - see @c RF_XXX flags in
3322  *			<sys/rman.h> for details
3323  *
3324  * @returns		the resource which was allocated or @c NULL if no
3325  *			resource could be allocated
3326  */
3327 struct resource *
3328 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3329     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3330 {
3331 	struct resource_list_entry *rle = NULL;
3332 	int passthrough = (device_get_parent(child) != bus);
3333 	struct resource *r;
3334 
3335 	if (passthrough)
3336 		panic(
3337     "resource_list_reserve() should only be called for direct children");
3338 	if (flags & RF_ACTIVE)
3339 		panic(
3340     "resource_list_reserve() should only reserve inactive resources");
3341 
3342 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3343 	    flags);
3344 	if (r != NULL) {
3345 		rle = resource_list_find(rl, type, *rid);
3346 		rle->flags |= RLE_RESERVED;
3347 	}
3348 	return (r);
3349 }
3350 
3351 /**
3352  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3353  *
3354  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3355  * and passing the allocation up to the parent of @p bus. This assumes
3356  * that the first entry of @c device_get_ivars(child) is a struct
3357  * resource_list. This also handles 'passthrough' allocations where a
3358  * child is a remote descendant of bus by passing the allocation up to
3359  * the parent of bus.
3360  *
3361  * Typically, a bus driver would store a list of child resources
3362  * somewhere in the child device's ivars (see device_get_ivars()) and
3363  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3364  * then call resource_list_alloc() to perform the allocation.
3365  *
3366  * @param rl		the resource list to allocate from
3367  * @param bus		the parent device of @p child
3368  * @param child		the device which is requesting an allocation
3369  * @param type		the type of resource to allocate
3370  * @param rid		a pointer to the resource identifier
3371  * @param start		hint at the start of the resource range - pass
3372  *			@c 0 for any start address
3373  * @param end		hint at the end of the resource range - pass
3374  *			@c ~0 for any end address
3375  * @param count		hint at the size of range required - pass @c 1
3376  *			for any size
3377  * @param flags		any extra flags to control the resource
3378  *			allocation - see @c RF_XXX flags in
3379  *			<sys/rman.h> for details
3380  *
3381  * @returns		the resource which was allocated or @c NULL if no
3382  *			resource could be allocated
3383  */
3384 struct resource *
3385 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3386     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3387 {
3388 	struct resource_list_entry *rle = NULL;
3389 	int passthrough = (device_get_parent(child) != bus);
3390 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3391 
3392 	if (passthrough) {
3393 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3394 		    type, rid, start, end, count, flags));
3395 	}
3396 
3397 	rle = resource_list_find(rl, type, *rid);
3398 
3399 	if (!rle)
3400 		return (NULL);		/* no resource of that type/rid */
3401 
3402 	if (rle->res) {
3403 		if (rle->flags & RLE_RESERVED) {
3404 			if (rle->flags & RLE_ALLOCATED)
3405 				return (NULL);
3406 			if ((flags & RF_ACTIVE) &&
3407 			    bus_activate_resource(child, type, *rid,
3408 			    rle->res) != 0)
3409 				return (NULL);
3410 			rle->flags |= RLE_ALLOCATED;
3411 			return (rle->res);
3412 		}
3413 		device_printf(bus,
3414 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3415 		    type, device_get_nameunit(child));
3416 		return (NULL);
3417 	}
3418 
3419 	if (isdefault) {
3420 		start = rle->start;
3421 		count = ulmax(count, rle->count);
3422 		end = ulmax(rle->end, start + count - 1);
3423 	}
3424 
3425 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3426 	    type, rid, start, end, count, flags);
3427 
3428 	/*
3429 	 * Record the new range.
3430 	 */
3431 	if (rle->res) {
3432 		rle->start = rman_get_start(rle->res);
3433 		rle->end = rman_get_end(rle->res);
3434 		rle->count = count;
3435 	}
3436 
3437 	return (rle->res);
3438 }
3439 
3440 /**
3441  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3442  *
3443  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3444  * used with resource_list_alloc().
3445  *
3446  * @param rl		the resource list which was allocated from
3447  * @param bus		the parent device of @p child
3448  * @param child		the device which is requesting a release
3449  * @param type		the type of resource to release
3450  * @param rid		the resource identifier
3451  * @param res		the resource to release
3452  *
3453  * @retval 0		success
3454  * @retval non-zero	a standard unix error code indicating what
3455  *			error condition prevented the operation
3456  */
3457 int
3458 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3459     int type, int rid, struct resource *res)
3460 {
3461 	struct resource_list_entry *rle = NULL;
3462 	int passthrough = (device_get_parent(child) != bus);
3463 	int error;
3464 
3465 	if (passthrough) {
3466 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3467 		    type, rid, res));
3468 	}
3469 
3470 	rle = resource_list_find(rl, type, rid);
3471 
3472 	if (!rle)
3473 		panic("resource_list_release: can't find resource");
3474 	if (!rle->res)
3475 		panic("resource_list_release: resource entry is not busy");
3476 	if (rle->flags & RLE_RESERVED) {
3477 		if (rle->flags & RLE_ALLOCATED) {
3478 			if (rman_get_flags(res) & RF_ACTIVE) {
3479 				error = bus_deactivate_resource(child, type,
3480 				    rid, res);
3481 				if (error)
3482 					return (error);
3483 			}
3484 			rle->flags &= ~RLE_ALLOCATED;
3485 			return (0);
3486 		}
3487 		return (EINVAL);
3488 	}
3489 
3490 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3491 	    type, rid, res);
3492 	if (error)
3493 		return (error);
3494 
3495 	rle->res = NULL;
3496 	return (0);
3497 }
3498 
3499 /**
3500  * @brief Release all active resources of a given type
3501  *
3502  * Release all active resources of a specified type.  This is intended
3503  * to be used to cleanup resources leaked by a driver after detach or
3504  * a failed attach.
3505  *
3506  * @param rl		the resource list which was allocated from
3507  * @param bus		the parent device of @p child
3508  * @param child		the device whose active resources are being released
3509  * @param type		the type of resources to release
3510  *
3511  * @retval 0		success
3512  * @retval EBUSY	at least one resource was active
3513  */
3514 int
3515 resource_list_release_active(struct resource_list *rl, device_t bus,
3516     device_t child, int type)
3517 {
3518 	struct resource_list_entry *rle;
3519 	int error, retval;
3520 
3521 	retval = 0;
3522 	STAILQ_FOREACH(rle, rl, link) {
3523 		if (rle->type != type)
3524 			continue;
3525 		if (rle->res == NULL)
3526 			continue;
3527 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3528 		    RLE_RESERVED)
3529 			continue;
3530 		retval = EBUSY;
3531 		error = resource_list_release(rl, bus, child, type,
3532 		    rman_get_rid(rle->res), rle->res);
3533 		if (error != 0)
3534 			device_printf(bus,
3535 			    "Failed to release active resource: %d\n", error);
3536 	}
3537 	return (retval);
3538 }
3539 
3540 /**
3541  * @brief Fully release a reserved resource
3542  *
3543  * Fully releases a resource reserved via resource_list_reserve().
3544  *
3545  * @param rl		the resource list which was allocated from
3546  * @param bus		the parent device of @p child
3547  * @param child		the device whose reserved resource is being released
3548  * @param type		the type of resource to release
3549  * @param rid		the resource identifier
3550  * @param res		the resource to release
3551  *
3552  * @retval 0		success
3553  * @retval non-zero	a standard unix error code indicating what
3554  *			error condition prevented the operation
3555  */
3556 int
3557 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3558     int type, int rid)
3559 {
3560 	struct resource_list_entry *rle = NULL;
3561 	int passthrough = (device_get_parent(child) != bus);
3562 
3563 	if (passthrough)
3564 		panic(
3565     "resource_list_unreserve() should only be called for direct children");
3566 
3567 	rle = resource_list_find(rl, type, rid);
3568 
3569 	if (!rle)
3570 		panic("resource_list_unreserve: can't find resource");
3571 	if (!(rle->flags & RLE_RESERVED))
3572 		return (EINVAL);
3573 	if (rle->flags & RLE_ALLOCATED)
3574 		return (EBUSY);
3575 	rle->flags &= ~RLE_RESERVED;
3576 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3577 }
3578 
3579 /**
3580  * @brief Print a description of resources in a resource list
3581  *
3582  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3583  * The name is printed if at least one resource of the given type is available.
3584  * The format is used to print resource start and end.
3585  *
3586  * @param rl		the resource list to print
3587  * @param name		the name of @p type, e.g. @c "memory"
3588  * @param type		type type of resource entry to print
3589  * @param format	printf(9) format string to print resource
3590  *			start and end values
3591  *
3592  * @returns		the number of characters printed
3593  */
3594 int
3595 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3596     const char *format)
3597 {
3598 	struct resource_list_entry *rle;
3599 	int printed, retval;
3600 
3601 	printed = 0;
3602 	retval = 0;
3603 	/* Yes, this is kinda cheating */
3604 	STAILQ_FOREACH(rle, rl, link) {
3605 		if (rle->type == type) {
3606 			if (printed == 0)
3607 				retval += printf(" %s ", name);
3608 			else
3609 				retval += printf(",");
3610 			printed++;
3611 			retval += printf(format, rle->start);
3612 			if (rle->count > 1) {
3613 				retval += printf("-");
3614 				retval += printf(format, rle->start +
3615 						 rle->count - 1);
3616 			}
3617 		}
3618 	}
3619 	return (retval);
3620 }
3621 
3622 /**
3623  * @brief Releases all the resources in a list.
3624  *
3625  * @param rl		The resource list to purge.
3626  *
3627  * @returns		nothing
3628  */
3629 void
3630 resource_list_purge(struct resource_list *rl)
3631 {
3632 	struct resource_list_entry *rle;
3633 
3634 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3635 		if (rle->res)
3636 			bus_release_resource(rman_get_device(rle->res),
3637 			    rle->type, rle->rid, rle->res);
3638 		STAILQ_REMOVE_HEAD(rl, link);
3639 		free(rle, M_BUS);
3640 	}
3641 }
3642 
3643 device_t
3644 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3645 {
3646 	return (device_add_child_ordered(dev, order, name, unit));
3647 }
3648 
3649 /**
3650  * @brief Helper function for implementing DEVICE_PROBE()
3651  *
3652  * This function can be used to help implement the DEVICE_PROBE() for
3653  * a bus (i.e. a device which has other devices attached to it). It
3654  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3655  * devclass.
3656  */
3657 int
3658 bus_generic_probe(device_t dev)
3659 {
3660 	devclass_t dc = dev->devclass;
3661 	driverlink_t dl;
3662 
3663 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3664 		/*
3665 		 * If this driver's pass is too high, then ignore it.
3666 		 * For most drivers in the default pass, this will
3667 		 * never be true.  For early-pass drivers they will
3668 		 * only call the identify routines of eligible drivers
3669 		 * when this routine is called.  Drivers for later
3670 		 * passes should have their identify routines called
3671 		 * on early-pass buses during BUS_NEW_PASS().
3672 		 */
3673 		if (dl->pass > bus_current_pass)
3674 			continue;
3675 		DEVICE_IDENTIFY(dl->driver, dev);
3676 	}
3677 
3678 	return (0);
3679 }
3680 
3681 /**
3682  * @brief Helper function for implementing DEVICE_ATTACH()
3683  *
3684  * This function can be used to help implement the DEVICE_ATTACH() for
3685  * a bus. It calls device_probe_and_attach() for each of the device's
3686  * children.
3687  */
3688 int
3689 bus_generic_attach(device_t dev)
3690 {
3691 	device_t child;
3692 
3693 	TAILQ_FOREACH(child, &dev->children, link) {
3694 		device_probe_and_attach(child);
3695 	}
3696 
3697 	return (0);
3698 }
3699 
3700 /**
3701  * @brief Helper function for delaying attaching children
3702  *
3703  * Many buses can't run transactions on the bus which children need to probe and
3704  * attach until after interrupts and/or timers are running.  This function
3705  * delays their attach until interrupts and timers are enabled.
3706  */
3707 int
3708 bus_delayed_attach_children(device_t dev)
3709 {
3710 	/* Probe and attach the bus children when interrupts are available */
3711 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3712 
3713 	return (0);
3714 }
3715 
3716 /**
3717  * @brief Helper function for implementing DEVICE_DETACH()
3718  *
3719  * This function can be used to help implement the DEVICE_DETACH() for
3720  * a bus. It calls device_detach() for each of the device's
3721  * children.
3722  */
3723 int
3724 bus_generic_detach(device_t dev)
3725 {
3726 	device_t child;
3727 	int error;
3728 
3729 	if (dev->state != DS_ATTACHED)
3730 		return (EBUSY);
3731 
3732 	/*
3733 	 * Detach children in the reverse order.
3734 	 * See bus_generic_suspend for details.
3735 	 */
3736 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3737 		if ((error = device_detach(child)) != 0)
3738 			return (error);
3739 	}
3740 
3741 	return (0);
3742 }
3743 
3744 /**
3745  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3746  *
3747  * This function can be used to help implement the DEVICE_SHUTDOWN()
3748  * for a bus. It calls device_shutdown() for each of the device's
3749  * children.
3750  */
3751 int
3752 bus_generic_shutdown(device_t dev)
3753 {
3754 	device_t child;
3755 
3756 	/*
3757 	 * Shut down children in the reverse order.
3758 	 * See bus_generic_suspend for details.
3759 	 */
3760 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3761 		device_shutdown(child);
3762 	}
3763 
3764 	return (0);
3765 }
3766 
3767 /**
3768  * @brief Default function for suspending a child device.
3769  *
3770  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3771  */
3772 int
3773 bus_generic_suspend_child(device_t dev, device_t child)
3774 {
3775 	int	error;
3776 
3777 	error = DEVICE_SUSPEND(child);
3778 
3779 	if (error == 0)
3780 		child->flags |= DF_SUSPENDED;
3781 
3782 	return (error);
3783 }
3784 
3785 /**
3786  * @brief Default function for resuming a child device.
3787  *
3788  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3789  */
3790 int
3791 bus_generic_resume_child(device_t dev, device_t child)
3792 {
3793 	DEVICE_RESUME(child);
3794 	child->flags &= ~DF_SUSPENDED;
3795 
3796 	return (0);
3797 }
3798 
3799 /**
3800  * @brief Helper function for implementing DEVICE_SUSPEND()
3801  *
3802  * This function can be used to help implement the DEVICE_SUSPEND()
3803  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3804  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3805  * operation is aborted and any devices which were suspended are
3806  * resumed immediately by calling their DEVICE_RESUME() methods.
3807  */
3808 int
3809 bus_generic_suspend(device_t dev)
3810 {
3811 	int		error;
3812 	device_t	child;
3813 
3814 	/*
3815 	 * Suspend children in the reverse order.
3816 	 * For most buses all children are equal, so the order does not matter.
3817 	 * Other buses, such as acpi, carefully order their child devices to
3818 	 * express implicit dependencies between them.  For such buses it is
3819 	 * safer to bring down devices in the reverse order.
3820 	 */
3821 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3822 		error = BUS_SUSPEND_CHILD(dev, child);
3823 		if (error != 0) {
3824 			child = TAILQ_NEXT(child, link);
3825 			if (child != NULL) {
3826 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3827 					BUS_RESUME_CHILD(dev, child);
3828 			}
3829 			return (error);
3830 		}
3831 	}
3832 	return (0);
3833 }
3834 
3835 /**
3836  * @brief Helper function for implementing DEVICE_RESUME()
3837  *
3838  * This function can be used to help implement the DEVICE_RESUME() for
3839  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3840  */
3841 int
3842 bus_generic_resume(device_t dev)
3843 {
3844 	device_t	child;
3845 
3846 	TAILQ_FOREACH(child, &dev->children, link) {
3847 		BUS_RESUME_CHILD(dev, child);
3848 		/* if resume fails, there's nothing we can usefully do... */
3849 	}
3850 	return (0);
3851 }
3852 
3853 /**
3854  * @brief Helper function for implementing BUS_RESET_POST
3855  *
3856  * Bus can use this function to implement common operations of
3857  * re-attaching or resuming the children after the bus itself was
3858  * reset, and after restoring bus-unique state of children.
3859  *
3860  * @param dev	The bus
3861  * #param flags	DEVF_RESET_*
3862  */
3863 int
3864 bus_helper_reset_post(device_t dev, int flags)
3865 {
3866 	device_t child;
3867 	int error, error1;
3868 
3869 	error = 0;
3870 	TAILQ_FOREACH(child, &dev->children,link) {
3871 		BUS_RESET_POST(dev, child);
3872 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3873 		    device_probe_and_attach(child) :
3874 		    BUS_RESUME_CHILD(dev, child);
3875 		if (error == 0 && error1 != 0)
3876 			error = error1;
3877 	}
3878 	return (error);
3879 }
3880 
3881 static void
3882 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3883 {
3884 	child = TAILQ_NEXT(child, link);
3885 	if (child == NULL)
3886 		return;
3887 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3888 		BUS_RESET_POST(dev, child);
3889 		if ((flags & DEVF_RESET_DETACH) != 0)
3890 			device_probe_and_attach(child);
3891 		else
3892 			BUS_RESUME_CHILD(dev, child);
3893 	}
3894 }
3895 
3896 /**
3897  * @brief Helper function for implementing BUS_RESET_PREPARE
3898  *
3899  * Bus can use this function to implement common operations of
3900  * detaching or suspending the children before the bus itself is
3901  * reset, and then save bus-unique state of children that must
3902  * persists around reset.
3903  *
3904  * @param dev	The bus
3905  * #param flags	DEVF_RESET_*
3906  */
3907 int
3908 bus_helper_reset_prepare(device_t dev, int flags)
3909 {
3910 	device_t child;
3911 	int error;
3912 
3913 	if (dev->state != DS_ATTACHED)
3914 		return (EBUSY);
3915 
3916 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3917 		if ((flags & DEVF_RESET_DETACH) != 0) {
3918 			error = device_get_state(child) == DS_ATTACHED ?
3919 			    device_detach(child) : 0;
3920 		} else {
3921 			error = BUS_SUSPEND_CHILD(dev, child);
3922 		}
3923 		if (error == 0) {
3924 			error = BUS_RESET_PREPARE(dev, child);
3925 			if (error != 0) {
3926 				if ((flags & DEVF_RESET_DETACH) != 0)
3927 					device_probe_and_attach(child);
3928 				else
3929 					BUS_RESUME_CHILD(dev, child);
3930 			}
3931 		}
3932 		if (error != 0) {
3933 			bus_helper_reset_prepare_rollback(dev, child, flags);
3934 			return (error);
3935 		}
3936 	}
3937 	return (0);
3938 }
3939 
3940 /**
3941  * @brief Helper function for implementing BUS_PRINT_CHILD().
3942  *
3943  * This function prints the first part of the ascii representation of
3944  * @p child, including its name, unit and description (if any - see
3945  * device_set_desc()).
3946  *
3947  * @returns the number of characters printed
3948  */
3949 int
3950 bus_print_child_header(device_t dev, device_t child)
3951 {
3952 	int	retval = 0;
3953 
3954 	if (device_get_desc(child)) {
3955 		retval += device_printf(child, "<%s>", device_get_desc(child));
3956 	} else {
3957 		retval += printf("%s", device_get_nameunit(child));
3958 	}
3959 
3960 	return (retval);
3961 }
3962 
3963 /**
3964  * @brief Helper function for implementing BUS_PRINT_CHILD().
3965  *
3966  * This function prints the last part of the ascii representation of
3967  * @p child, which consists of the string @c " on " followed by the
3968  * name and unit of the @p dev.
3969  *
3970  * @returns the number of characters printed
3971  */
3972 int
3973 bus_print_child_footer(device_t dev, device_t child)
3974 {
3975 	return (printf(" on %s\n", device_get_nameunit(dev)));
3976 }
3977 
3978 /**
3979  * @brief Helper function for implementing BUS_PRINT_CHILD().
3980  *
3981  * This function prints out the VM domain for the given device.
3982  *
3983  * @returns the number of characters printed
3984  */
3985 int
3986 bus_print_child_domain(device_t dev, device_t child)
3987 {
3988 	int domain;
3989 
3990 	/* No domain? Don't print anything */
3991 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3992 		return (0);
3993 
3994 	return (printf(" numa-domain %d", domain));
3995 }
3996 
3997 /**
3998  * @brief Helper function for implementing BUS_PRINT_CHILD().
3999  *
4000  * This function simply calls bus_print_child_header() followed by
4001  * bus_print_child_footer().
4002  *
4003  * @returns the number of characters printed
4004  */
4005 int
4006 bus_generic_print_child(device_t dev, device_t child)
4007 {
4008 	int	retval = 0;
4009 
4010 	retval += bus_print_child_header(dev, child);
4011 	retval += bus_print_child_domain(dev, child);
4012 	retval += bus_print_child_footer(dev, child);
4013 
4014 	return (retval);
4015 }
4016 
4017 /**
4018  * @brief Stub function for implementing BUS_READ_IVAR().
4019  *
4020  * @returns ENOENT
4021  */
4022 int
4023 bus_generic_read_ivar(device_t dev, device_t child, int index,
4024     uintptr_t * result)
4025 {
4026 	return (ENOENT);
4027 }
4028 
4029 /**
4030  * @brief Stub function for implementing BUS_WRITE_IVAR().
4031  *
4032  * @returns ENOENT
4033  */
4034 int
4035 bus_generic_write_ivar(device_t dev, device_t child, int index,
4036     uintptr_t value)
4037 {
4038 	return (ENOENT);
4039 }
4040 
4041 /**
4042  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4043  *
4044  * @returns NULL
4045  */
4046 struct resource_list *
4047 bus_generic_get_resource_list(device_t dev, device_t child)
4048 {
4049 	return (NULL);
4050 }
4051 
4052 /**
4053  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4054  *
4055  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4056  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4057  * and then calls device_probe_and_attach() for each unattached child.
4058  */
4059 void
4060 bus_generic_driver_added(device_t dev, driver_t *driver)
4061 {
4062 	device_t child;
4063 
4064 	DEVICE_IDENTIFY(driver, dev);
4065 	TAILQ_FOREACH(child, &dev->children, link) {
4066 		if (child->state == DS_NOTPRESENT ||
4067 		    (child->flags & DF_REBID))
4068 			device_probe_and_attach(child);
4069 	}
4070 }
4071 
4072 /**
4073  * @brief Helper function for implementing BUS_NEW_PASS().
4074  *
4075  * This implementing of BUS_NEW_PASS() first calls the identify
4076  * routines for any drivers that probe at the current pass.  Then it
4077  * walks the list of devices for this bus.  If a device is already
4078  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4079  * device is not already attached, it attempts to attach a driver to
4080  * it.
4081  */
4082 void
4083 bus_generic_new_pass(device_t dev)
4084 {
4085 	driverlink_t dl;
4086 	devclass_t dc;
4087 	device_t child;
4088 
4089 	dc = dev->devclass;
4090 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4091 		if (dl->pass == bus_current_pass)
4092 			DEVICE_IDENTIFY(dl->driver, dev);
4093 	}
4094 	TAILQ_FOREACH(child, &dev->children, link) {
4095 		if (child->state >= DS_ATTACHED)
4096 			BUS_NEW_PASS(child);
4097 		else if (child->state == DS_NOTPRESENT)
4098 			device_probe_and_attach(child);
4099 	}
4100 }
4101 
4102 /**
4103  * @brief Helper function for implementing BUS_SETUP_INTR().
4104  *
4105  * This simple implementation of BUS_SETUP_INTR() simply calls the
4106  * BUS_SETUP_INTR() method of the parent of @p dev.
4107  */
4108 int
4109 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4110     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4111     void **cookiep)
4112 {
4113 	/* Propagate up the bus hierarchy until someone handles it. */
4114 	if (dev->parent)
4115 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4116 		    filter, intr, arg, cookiep));
4117 	return (EINVAL);
4118 }
4119 
4120 /**
4121  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4122  *
4123  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4124  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4125  */
4126 int
4127 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4128     void *cookie)
4129 {
4130 	/* Propagate up the bus hierarchy until someone handles it. */
4131 	if (dev->parent)
4132 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4133 	return (EINVAL);
4134 }
4135 
4136 /**
4137  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4138  *
4139  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4140  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4141  */
4142 int
4143 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4144 {
4145 	/* Propagate up the bus hierarchy until someone handles it. */
4146 	if (dev->parent)
4147 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4148 	return (EINVAL);
4149 }
4150 
4151 /**
4152  * @brief Helper function for implementing BUS_RESUME_INTR().
4153  *
4154  * This simple implementation of BUS_RESUME_INTR() simply calls the
4155  * BUS_RESUME_INTR() method of the parent of @p dev.
4156  */
4157 int
4158 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4159 {
4160 	/* Propagate up the bus hierarchy until someone handles it. */
4161 	if (dev->parent)
4162 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4163 	return (EINVAL);
4164 }
4165 
4166 /**
4167  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4168  *
4169  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4170  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4171  */
4172 int
4173 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4174     struct resource *r, rman_res_t start, rman_res_t end)
4175 {
4176 	/* Propagate up the bus hierarchy until someone handles it. */
4177 	if (dev->parent)
4178 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4179 		    end));
4180 	return (EINVAL);
4181 }
4182 
4183 /**
4184  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4185  *
4186  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4187  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4188  */
4189 struct resource *
4190 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4191     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4192 {
4193 	/* Propagate up the bus hierarchy until someone handles it. */
4194 	if (dev->parent)
4195 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4196 		    start, end, count, flags));
4197 	return (NULL);
4198 }
4199 
4200 /**
4201  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4202  *
4203  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4204  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4205  */
4206 int
4207 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4208     struct resource *r)
4209 {
4210 	/* Propagate up the bus hierarchy until someone handles it. */
4211 	if (dev->parent)
4212 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4213 		    r));
4214 	return (EINVAL);
4215 }
4216 
4217 /**
4218  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4219  *
4220  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4221  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4222  */
4223 int
4224 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4225     struct resource *r)
4226 {
4227 	/* Propagate up the bus hierarchy until someone handles it. */
4228 	if (dev->parent)
4229 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4230 		    r));
4231 	return (EINVAL);
4232 }
4233 
4234 /**
4235  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4236  *
4237  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4238  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4239  */
4240 int
4241 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4242     int rid, struct resource *r)
4243 {
4244 	/* Propagate up the bus hierarchy until someone handles it. */
4245 	if (dev->parent)
4246 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4247 		    r));
4248 	return (EINVAL);
4249 }
4250 
4251 /**
4252  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4253  *
4254  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4255  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4256  */
4257 int
4258 bus_generic_map_resource(device_t dev, device_t child, int type,
4259     struct resource *r, struct resource_map_request *args,
4260     struct resource_map *map)
4261 {
4262 	/* Propagate up the bus hierarchy until someone handles it. */
4263 	if (dev->parent)
4264 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4265 		    map));
4266 	return (EINVAL);
4267 }
4268 
4269 /**
4270  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4271  *
4272  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4273  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4274  */
4275 int
4276 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4277     struct resource *r, struct resource_map *map)
4278 {
4279 	/* Propagate up the bus hierarchy until someone handles it. */
4280 	if (dev->parent)
4281 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4282 	return (EINVAL);
4283 }
4284 
4285 /**
4286  * @brief Helper function for implementing BUS_BIND_INTR().
4287  *
4288  * This simple implementation of BUS_BIND_INTR() simply calls the
4289  * BUS_BIND_INTR() method of the parent of @p dev.
4290  */
4291 int
4292 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4293     int cpu)
4294 {
4295 	/* Propagate up the bus hierarchy until someone handles it. */
4296 	if (dev->parent)
4297 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4298 	return (EINVAL);
4299 }
4300 
4301 /**
4302  * @brief Helper function for implementing BUS_CONFIG_INTR().
4303  *
4304  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4305  * BUS_CONFIG_INTR() method of the parent of @p dev.
4306  */
4307 int
4308 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4309     enum intr_polarity pol)
4310 {
4311 	/* Propagate up the bus hierarchy until someone handles it. */
4312 	if (dev->parent)
4313 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4314 	return (EINVAL);
4315 }
4316 
4317 /**
4318  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4319  *
4320  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4321  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4322  */
4323 int
4324 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4325     void *cookie, const char *descr)
4326 {
4327 	/* Propagate up the bus hierarchy until someone handles it. */
4328 	if (dev->parent)
4329 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4330 		    descr));
4331 	return (EINVAL);
4332 }
4333 
4334 /**
4335  * @brief Helper function for implementing BUS_GET_CPUS().
4336  *
4337  * This simple implementation of BUS_GET_CPUS() simply calls the
4338  * BUS_GET_CPUS() method of the parent of @p dev.
4339  */
4340 int
4341 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4342     size_t setsize, cpuset_t *cpuset)
4343 {
4344 	/* Propagate up the bus hierarchy until someone handles it. */
4345 	if (dev->parent != NULL)
4346 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4347 	return (EINVAL);
4348 }
4349 
4350 /**
4351  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4352  *
4353  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4354  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4355  */
4356 bus_dma_tag_t
4357 bus_generic_get_dma_tag(device_t dev, device_t child)
4358 {
4359 	/* Propagate up the bus hierarchy until someone handles it. */
4360 	if (dev->parent != NULL)
4361 		return (BUS_GET_DMA_TAG(dev->parent, child));
4362 	return (NULL);
4363 }
4364 
4365 /**
4366  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4367  *
4368  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4369  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4370  */
4371 bus_space_tag_t
4372 bus_generic_get_bus_tag(device_t dev, device_t child)
4373 {
4374 	/* Propagate up the bus hierarchy until someone handles it. */
4375 	if (dev->parent != NULL)
4376 		return (BUS_GET_BUS_TAG(dev->parent, child));
4377 	return ((bus_space_tag_t)0);
4378 }
4379 
4380 /**
4381  * @brief Helper function for implementing BUS_GET_RESOURCE().
4382  *
4383  * This implementation of BUS_GET_RESOURCE() uses the
4384  * resource_list_find() function to do most of the work. It calls
4385  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4386  * search.
4387  */
4388 int
4389 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4390     rman_res_t *startp, rman_res_t *countp)
4391 {
4392 	struct resource_list *		rl = NULL;
4393 	struct resource_list_entry *	rle = NULL;
4394 
4395 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4396 	if (!rl)
4397 		return (EINVAL);
4398 
4399 	rle = resource_list_find(rl, type, rid);
4400 	if (!rle)
4401 		return (ENOENT);
4402 
4403 	if (startp)
4404 		*startp = rle->start;
4405 	if (countp)
4406 		*countp = rle->count;
4407 
4408 	return (0);
4409 }
4410 
4411 /**
4412  * @brief Helper function for implementing BUS_SET_RESOURCE().
4413  *
4414  * This implementation of BUS_SET_RESOURCE() uses the
4415  * resource_list_add() function to do most of the work. It calls
4416  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4417  * edit.
4418  */
4419 int
4420 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4421     rman_res_t start, rman_res_t count)
4422 {
4423 	struct resource_list *		rl = NULL;
4424 
4425 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4426 	if (!rl)
4427 		return (EINVAL);
4428 
4429 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4430 
4431 	return (0);
4432 }
4433 
4434 /**
4435  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4436  *
4437  * This implementation of BUS_DELETE_RESOURCE() uses the
4438  * resource_list_delete() function to do most of the work. It calls
4439  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4440  * edit.
4441  */
4442 void
4443 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4444 {
4445 	struct resource_list *		rl = NULL;
4446 
4447 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4448 	if (!rl)
4449 		return;
4450 
4451 	resource_list_delete(rl, type, rid);
4452 
4453 	return;
4454 }
4455 
4456 /**
4457  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4458  *
4459  * This implementation of BUS_RELEASE_RESOURCE() uses the
4460  * resource_list_release() function to do most of the work. It calls
4461  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4462  */
4463 int
4464 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4465     int rid, struct resource *r)
4466 {
4467 	struct resource_list *		rl = NULL;
4468 
4469 	if (device_get_parent(child) != dev)
4470 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4471 		    type, rid, r));
4472 
4473 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4474 	if (!rl)
4475 		return (EINVAL);
4476 
4477 	return (resource_list_release(rl, dev, child, type, rid, r));
4478 }
4479 
4480 /**
4481  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4482  *
4483  * This implementation of BUS_ALLOC_RESOURCE() uses the
4484  * resource_list_alloc() function to do most of the work. It calls
4485  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4486  */
4487 struct resource *
4488 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4489     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4490 {
4491 	struct resource_list *		rl = NULL;
4492 
4493 	if (device_get_parent(child) != dev)
4494 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4495 		    type, rid, start, end, count, flags));
4496 
4497 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4498 	if (!rl)
4499 		return (NULL);
4500 
4501 	return (resource_list_alloc(rl, dev, child, type, rid,
4502 	    start, end, count, flags));
4503 }
4504 
4505 /**
4506  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4507  *
4508  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4509  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4510  */
4511 int
4512 bus_generic_child_present(device_t dev, device_t child)
4513 {
4514 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4515 }
4516 
4517 int
4518 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4519 {
4520 	if (dev->parent)
4521 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4522 
4523 	return (ENOENT);
4524 }
4525 
4526 /**
4527  * @brief Helper function for implementing BUS_RESCAN().
4528  *
4529  * This null implementation of BUS_RESCAN() always fails to indicate
4530  * the bus does not support rescanning.
4531  */
4532 int
4533 bus_null_rescan(device_t dev)
4534 {
4535 	return (ENXIO);
4536 }
4537 
4538 /*
4539  * Some convenience functions to make it easier for drivers to use the
4540  * resource-management functions.  All these really do is hide the
4541  * indirection through the parent's method table, making for slightly
4542  * less-wordy code.  In the future, it might make sense for this code
4543  * to maintain some sort of a list of resources allocated by each device.
4544  */
4545 
4546 int
4547 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4548     struct resource **res)
4549 {
4550 	int i;
4551 
4552 	for (i = 0; rs[i].type != -1; i++)
4553 		res[i] = NULL;
4554 	for (i = 0; rs[i].type != -1; i++) {
4555 		res[i] = bus_alloc_resource_any(dev,
4556 		    rs[i].type, &rs[i].rid, rs[i].flags);
4557 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4558 			bus_release_resources(dev, rs, res);
4559 			return (ENXIO);
4560 		}
4561 	}
4562 	return (0);
4563 }
4564 
4565 void
4566 bus_release_resources(device_t dev, const struct resource_spec *rs,
4567     struct resource **res)
4568 {
4569 	int i;
4570 
4571 	for (i = 0; rs[i].type != -1; i++)
4572 		if (res[i] != NULL) {
4573 			bus_release_resource(
4574 			    dev, rs[i].type, rs[i].rid, res[i]);
4575 			res[i] = NULL;
4576 		}
4577 }
4578 
4579 /**
4580  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4581  *
4582  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4583  * parent of @p dev.
4584  */
4585 struct resource *
4586 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4587     rman_res_t end, rman_res_t count, u_int flags)
4588 {
4589 	struct resource *res;
4590 
4591 	if (dev->parent == NULL)
4592 		return (NULL);
4593 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4594 	    count, flags);
4595 	return (res);
4596 }
4597 
4598 /**
4599  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4600  *
4601  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4602  * parent of @p dev.
4603  */
4604 int
4605 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4606     rman_res_t end)
4607 {
4608 	if (dev->parent == NULL)
4609 		return (EINVAL);
4610 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4611 }
4612 
4613 /**
4614  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4615  *
4616  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4617  * parent of @p dev.
4618  */
4619 int
4620 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4621 {
4622 	if (dev->parent == NULL)
4623 		return (EINVAL);
4624 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4625 }
4626 
4627 /**
4628  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4629  *
4630  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4631  * parent of @p dev.
4632  */
4633 int
4634 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4635 {
4636 	if (dev->parent == NULL)
4637 		return (EINVAL);
4638 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4639 }
4640 
4641 /**
4642  * @brief Wrapper function for BUS_MAP_RESOURCE().
4643  *
4644  * This function simply calls the BUS_MAP_RESOURCE() method of the
4645  * parent of @p dev.
4646  */
4647 int
4648 bus_map_resource(device_t dev, int type, struct resource *r,
4649     struct resource_map_request *args, struct resource_map *map)
4650 {
4651 	if (dev->parent == NULL)
4652 		return (EINVAL);
4653 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4654 }
4655 
4656 /**
4657  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4658  *
4659  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4660  * parent of @p dev.
4661  */
4662 int
4663 bus_unmap_resource(device_t dev, int type, struct resource *r,
4664     struct resource_map *map)
4665 {
4666 	if (dev->parent == NULL)
4667 		return (EINVAL);
4668 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4669 }
4670 
4671 /**
4672  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4673  *
4674  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4675  * parent of @p dev.
4676  */
4677 int
4678 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4679 {
4680 	int rv;
4681 
4682 	if (dev->parent == NULL)
4683 		return (EINVAL);
4684 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4685 	return (rv);
4686 }
4687 
4688 /**
4689  * @brief Wrapper function for BUS_SETUP_INTR().
4690  *
4691  * This function simply calls the BUS_SETUP_INTR() method of the
4692  * parent of @p dev.
4693  */
4694 int
4695 bus_setup_intr(device_t dev, struct resource *r, int flags,
4696     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4697 {
4698 	int error;
4699 
4700 	if (dev->parent == NULL)
4701 		return (EINVAL);
4702 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4703 	    arg, cookiep);
4704 	if (error != 0)
4705 		return (error);
4706 	if (handler != NULL && !(flags & INTR_MPSAFE))
4707 		device_printf(dev, "[GIANT-LOCKED]\n");
4708 	return (0);
4709 }
4710 
4711 /**
4712  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4713  *
4714  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4715  * parent of @p dev.
4716  */
4717 int
4718 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4719 {
4720 	if (dev->parent == NULL)
4721 		return (EINVAL);
4722 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4723 }
4724 
4725 /**
4726  * @brief Wrapper function for BUS_SUSPEND_INTR().
4727  *
4728  * This function simply calls the BUS_SUSPEND_INTR() method of the
4729  * parent of @p dev.
4730  */
4731 int
4732 bus_suspend_intr(device_t dev, struct resource *r)
4733 {
4734 	if (dev->parent == NULL)
4735 		return (EINVAL);
4736 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4737 }
4738 
4739 /**
4740  * @brief Wrapper function for BUS_RESUME_INTR().
4741  *
4742  * This function simply calls the BUS_RESUME_INTR() method of the
4743  * parent of @p dev.
4744  */
4745 int
4746 bus_resume_intr(device_t dev, struct resource *r)
4747 {
4748 	if (dev->parent == NULL)
4749 		return (EINVAL);
4750 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4751 }
4752 
4753 /**
4754  * @brief Wrapper function for BUS_BIND_INTR().
4755  *
4756  * This function simply calls the BUS_BIND_INTR() method of the
4757  * parent of @p dev.
4758  */
4759 int
4760 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4761 {
4762 	if (dev->parent == NULL)
4763 		return (EINVAL);
4764 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4765 }
4766 
4767 /**
4768  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4769  *
4770  * This function first formats the requested description into a
4771  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4772  * the parent of @p dev.
4773  */
4774 int
4775 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4776     const char *fmt, ...)
4777 {
4778 	va_list ap;
4779 	char descr[MAXCOMLEN + 1];
4780 
4781 	if (dev->parent == NULL)
4782 		return (EINVAL);
4783 	va_start(ap, fmt);
4784 	vsnprintf(descr, sizeof(descr), fmt, ap);
4785 	va_end(ap);
4786 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4787 }
4788 
4789 /**
4790  * @brief Wrapper function for BUS_SET_RESOURCE().
4791  *
4792  * This function simply calls the BUS_SET_RESOURCE() method of the
4793  * parent of @p dev.
4794  */
4795 int
4796 bus_set_resource(device_t dev, int type, int rid,
4797     rman_res_t start, rman_res_t count)
4798 {
4799 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4800 	    start, count));
4801 }
4802 
4803 /**
4804  * @brief Wrapper function for BUS_GET_RESOURCE().
4805  *
4806  * This function simply calls the BUS_GET_RESOURCE() method of the
4807  * parent of @p dev.
4808  */
4809 int
4810 bus_get_resource(device_t dev, int type, int rid,
4811     rman_res_t *startp, rman_res_t *countp)
4812 {
4813 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4814 	    startp, countp));
4815 }
4816 
4817 /**
4818  * @brief Wrapper function for BUS_GET_RESOURCE().
4819  *
4820  * This function simply calls the BUS_GET_RESOURCE() method of the
4821  * parent of @p dev and returns the start value.
4822  */
4823 rman_res_t
4824 bus_get_resource_start(device_t dev, int type, int rid)
4825 {
4826 	rman_res_t start;
4827 	rman_res_t count;
4828 	int error;
4829 
4830 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4831 	    &start, &count);
4832 	if (error)
4833 		return (0);
4834 	return (start);
4835 }
4836 
4837 /**
4838  * @brief Wrapper function for BUS_GET_RESOURCE().
4839  *
4840  * This function simply calls the BUS_GET_RESOURCE() method of the
4841  * parent of @p dev and returns the count value.
4842  */
4843 rman_res_t
4844 bus_get_resource_count(device_t dev, int type, int rid)
4845 {
4846 	rman_res_t start;
4847 	rman_res_t count;
4848 	int error;
4849 
4850 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4851 	    &start, &count);
4852 	if (error)
4853 		return (0);
4854 	return (count);
4855 }
4856 
4857 /**
4858  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4859  *
4860  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4861  * parent of @p dev.
4862  */
4863 void
4864 bus_delete_resource(device_t dev, int type, int rid)
4865 {
4866 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4867 }
4868 
4869 /**
4870  * @brief Wrapper function for BUS_CHILD_PRESENT().
4871  *
4872  * This function simply calls the BUS_CHILD_PRESENT() method of the
4873  * parent of @p dev.
4874  */
4875 int
4876 bus_child_present(device_t child)
4877 {
4878 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4879 }
4880 
4881 /**
4882  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4883  *
4884  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4885  * parent of @p dev.
4886  */
4887 int
4888 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4889 {
4890 	device_t parent;
4891 
4892 	parent = device_get_parent(child);
4893 	if (parent == NULL) {
4894 		*buf = '\0';
4895 		return (0);
4896 	}
4897 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4898 }
4899 
4900 /**
4901  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4902  *
4903  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4904  * parent of @p dev.
4905  */
4906 int
4907 bus_child_location_str(device_t child, char *buf, size_t buflen)
4908 {
4909 	device_t parent;
4910 
4911 	parent = device_get_parent(child);
4912 	if (parent == NULL) {
4913 		*buf = '\0';
4914 		return (0);
4915 	}
4916 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4917 }
4918 
4919 /**
4920  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4921  *
4922  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4923  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4924  * accomplish this, however. It is an interim function until we can convert
4925  * this interface more fully.
4926  */
4927 /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */
4928 #define	SPACE(s)	((s)->s_size - (s)->s_len)
4929 #define EOB(s)		((s)->s_buf + (s)->s_len)
4930 
4931 static int
4932 bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb)
4933 {
4934 	char *p;
4935 	size_t space;
4936 
4937 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
4938 	if (sb->s_error != 0)
4939 		return (-1);
4940 	p = EOB(sb);
4941 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
4942 	space = SPACE(sb);
4943 	if (space <= 1) {
4944 		sb->s_error = ENOMEM;
4945 		return (-1);
4946 	}
4947 	bus_child_pnpinfo_str(dev, p, space);
4948 	sb->s_len += strlen(p);
4949 	return (0);
4950 }
4951 
4952 /**
4953  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4954  *
4955  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4956  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4957  * accomplish this, however. It is an interim function until we can convert
4958  * this interface more fully.
4959  */
4960 static int
4961 bus_child_location_sb(device_t dev, struct sbuf *sb)
4962 {
4963 	char *p;
4964 	size_t space;
4965 
4966 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
4967 	if (sb->s_error != 0)
4968 		return (-1);
4969 	p = EOB(sb);
4970 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
4971 	space = SPACE(sb);
4972 	if (space <= 1) {
4973 		sb->s_error = ENOMEM;
4974 		return (-1);
4975 	}
4976 	bus_child_location_str(dev, p, space);
4977 	sb->s_len += strlen(p);
4978 	return (0);
4979 }
4980 #undef SPACE
4981 #undef EOB
4982 
4983 /**
4984  * @brief Wrapper function for BUS_GET_CPUS().
4985  *
4986  * This function simply calls the BUS_GET_CPUS() method of the
4987  * parent of @p dev.
4988  */
4989 int
4990 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4991 {
4992 	device_t parent;
4993 
4994 	parent = device_get_parent(dev);
4995 	if (parent == NULL)
4996 		return (EINVAL);
4997 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4998 }
4999 
5000 /**
5001  * @brief Wrapper function for BUS_GET_DMA_TAG().
5002  *
5003  * This function simply calls the BUS_GET_DMA_TAG() method of the
5004  * parent of @p dev.
5005  */
5006 bus_dma_tag_t
5007 bus_get_dma_tag(device_t dev)
5008 {
5009 	device_t parent;
5010 
5011 	parent = device_get_parent(dev);
5012 	if (parent == NULL)
5013 		return (NULL);
5014 	return (BUS_GET_DMA_TAG(parent, dev));
5015 }
5016 
5017 /**
5018  * @brief Wrapper function for BUS_GET_BUS_TAG().
5019  *
5020  * This function simply calls the BUS_GET_BUS_TAG() method of the
5021  * parent of @p dev.
5022  */
5023 bus_space_tag_t
5024 bus_get_bus_tag(device_t dev)
5025 {
5026 	device_t parent;
5027 
5028 	parent = device_get_parent(dev);
5029 	if (parent == NULL)
5030 		return ((bus_space_tag_t)0);
5031 	return (BUS_GET_BUS_TAG(parent, dev));
5032 }
5033 
5034 /**
5035  * @brief Wrapper function for BUS_GET_DOMAIN().
5036  *
5037  * This function simply calls the BUS_GET_DOMAIN() method of the
5038  * parent of @p dev.
5039  */
5040 int
5041 bus_get_domain(device_t dev, int *domain)
5042 {
5043 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5044 }
5045 
5046 /* Resume all devices and then notify userland that we're up again. */
5047 static int
5048 root_resume(device_t dev)
5049 {
5050 	int error;
5051 
5052 	error = bus_generic_resume(dev);
5053 	if (error == 0) {
5054 		devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */
5055 		devctl_notify("kernel", "power", "resume", NULL);
5056 	}
5057 	return (error);
5058 }
5059 
5060 static int
5061 root_print_child(device_t dev, device_t child)
5062 {
5063 	int	retval = 0;
5064 
5065 	retval += bus_print_child_header(dev, child);
5066 	retval += printf("\n");
5067 
5068 	return (retval);
5069 }
5070 
5071 static int
5072 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5073     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5074 {
5075 	/*
5076 	 * If an interrupt mapping gets to here something bad has happened.
5077 	 */
5078 	panic("root_setup_intr");
5079 }
5080 
5081 /*
5082  * If we get here, assume that the device is permanent and really is
5083  * present in the system.  Removable bus drivers are expected to intercept
5084  * this call long before it gets here.  We return -1 so that drivers that
5085  * really care can check vs -1 or some ERRNO returned higher in the food
5086  * chain.
5087  */
5088 static int
5089 root_child_present(device_t dev, device_t child)
5090 {
5091 	return (-1);
5092 }
5093 
5094 static int
5095 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5096     cpuset_t *cpuset)
5097 {
5098 	switch (op) {
5099 	case INTR_CPUS:
5100 		/* Default to returning the set of all CPUs. */
5101 		if (setsize != sizeof(cpuset_t))
5102 			return (EINVAL);
5103 		*cpuset = all_cpus;
5104 		return (0);
5105 	default:
5106 		return (EINVAL);
5107 	}
5108 }
5109 
5110 static kobj_method_t root_methods[] = {
5111 	/* Device interface */
5112 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5113 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5114 	KOBJMETHOD(device_resume,	root_resume),
5115 
5116 	/* Bus interface */
5117 	KOBJMETHOD(bus_print_child,	root_print_child),
5118 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5119 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5120 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5121 	KOBJMETHOD(bus_child_present,	root_child_present),
5122 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5123 
5124 	KOBJMETHOD_END
5125 };
5126 
5127 static driver_t root_driver = {
5128 	"root",
5129 	root_methods,
5130 	1,			/* no softc */
5131 };
5132 
5133 device_t	root_bus;
5134 devclass_t	root_devclass;
5135 
5136 static int
5137 root_bus_module_handler(module_t mod, int what, void* arg)
5138 {
5139 	switch (what) {
5140 	case MOD_LOAD:
5141 		TAILQ_INIT(&bus_data_devices);
5142 		kobj_class_compile((kobj_class_t) &root_driver);
5143 		root_bus = make_device(NULL, "root", 0);
5144 		root_bus->desc = "System root bus";
5145 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5146 		root_bus->driver = &root_driver;
5147 		root_bus->state = DS_ATTACHED;
5148 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5149 		devinit();
5150 		return (0);
5151 
5152 	case MOD_SHUTDOWN:
5153 		device_shutdown(root_bus);
5154 		return (0);
5155 	default:
5156 		return (EOPNOTSUPP);
5157 	}
5158 
5159 	return (0);
5160 }
5161 
5162 static moduledata_t root_bus_mod = {
5163 	"rootbus",
5164 	root_bus_module_handler,
5165 	NULL
5166 };
5167 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5168 
5169 /**
5170  * @brief Automatically configure devices
5171  *
5172  * This function begins the autoconfiguration process by calling
5173  * device_probe_and_attach() for each child of the @c root0 device.
5174  */
5175 void
5176 root_bus_configure(void)
5177 {
5178 	PDEBUG(("."));
5179 
5180 	/* Eventually this will be split up, but this is sufficient for now. */
5181 	bus_set_pass(BUS_PASS_DEFAULT);
5182 }
5183 
5184 /**
5185  * @brief Module handler for registering device drivers
5186  *
5187  * This module handler is used to automatically register device
5188  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5189  * devclass_add_driver() for the driver described by the
5190  * driver_module_data structure pointed to by @p arg
5191  */
5192 int
5193 driver_module_handler(module_t mod, int what, void *arg)
5194 {
5195 	struct driver_module_data *dmd;
5196 	devclass_t bus_devclass;
5197 	kobj_class_t driver;
5198 	int error, pass;
5199 
5200 	dmd = (struct driver_module_data *)arg;
5201 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5202 	error = 0;
5203 
5204 	switch (what) {
5205 	case MOD_LOAD:
5206 		if (dmd->dmd_chainevh)
5207 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5208 
5209 		pass = dmd->dmd_pass;
5210 		driver = dmd->dmd_driver;
5211 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5212 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5213 		error = devclass_add_driver(bus_devclass, driver, pass,
5214 		    dmd->dmd_devclass);
5215 		break;
5216 
5217 	case MOD_UNLOAD:
5218 		PDEBUG(("Unloading module: driver %s from bus %s",
5219 		    DRIVERNAME(dmd->dmd_driver),
5220 		    dmd->dmd_busname));
5221 		error = devclass_delete_driver(bus_devclass,
5222 		    dmd->dmd_driver);
5223 
5224 		if (!error && dmd->dmd_chainevh)
5225 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5226 		break;
5227 	case MOD_QUIESCE:
5228 		PDEBUG(("Quiesce module: driver %s from bus %s",
5229 		    DRIVERNAME(dmd->dmd_driver),
5230 		    dmd->dmd_busname));
5231 		error = devclass_quiesce_driver(bus_devclass,
5232 		    dmd->dmd_driver);
5233 
5234 		if (!error && dmd->dmd_chainevh)
5235 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5236 		break;
5237 	default:
5238 		error = EOPNOTSUPP;
5239 		break;
5240 	}
5241 
5242 	return (error);
5243 }
5244 
5245 /**
5246  * @brief Enumerate all hinted devices for this bus.
5247  *
5248  * Walks through the hints for this bus and calls the bus_hinted_child
5249  * routine for each one it fines.  It searches first for the specific
5250  * bus that's being probed for hinted children (eg isa0), and then for
5251  * generic children (eg isa).
5252  *
5253  * @param	dev	bus device to enumerate
5254  */
5255 void
5256 bus_enumerate_hinted_children(device_t bus)
5257 {
5258 	int i;
5259 	const char *dname, *busname;
5260 	int dunit;
5261 
5262 	/*
5263 	 * enumerate all devices on the specific bus
5264 	 */
5265 	busname = device_get_nameunit(bus);
5266 	i = 0;
5267 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5268 		BUS_HINTED_CHILD(bus, dname, dunit);
5269 
5270 	/*
5271 	 * and all the generic ones.
5272 	 */
5273 	busname = device_get_name(bus);
5274 	i = 0;
5275 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5276 		BUS_HINTED_CHILD(bus, dname, dunit);
5277 }
5278 
5279 #ifdef BUS_DEBUG
5280 
5281 /* the _short versions avoid iteration by not calling anything that prints
5282  * more than oneliners. I love oneliners.
5283  */
5284 
5285 static void
5286 print_device_short(device_t dev, int indent)
5287 {
5288 	if (!dev)
5289 		return;
5290 
5291 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5292 	    dev->unit, dev->desc,
5293 	    (dev->parent? "":"no "),
5294 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5295 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5296 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5297 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5298 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5299 	    (dev->flags&DF_REBID? "rebiddable,":""),
5300 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5301 	    (dev->ivars? "":"no "),
5302 	    (dev->softc? "":"no "),
5303 	    dev->busy));
5304 }
5305 
5306 static void
5307 print_device(device_t dev, int indent)
5308 {
5309 	if (!dev)
5310 		return;
5311 
5312 	print_device_short(dev, indent);
5313 
5314 	indentprintf(("Parent:\n"));
5315 	print_device_short(dev->parent, indent+1);
5316 	indentprintf(("Driver:\n"));
5317 	print_driver_short(dev->driver, indent+1);
5318 	indentprintf(("Devclass:\n"));
5319 	print_devclass_short(dev->devclass, indent+1);
5320 }
5321 
5322 void
5323 print_device_tree_short(device_t dev, int indent)
5324 /* print the device and all its children (indented) */
5325 {
5326 	device_t child;
5327 
5328 	if (!dev)
5329 		return;
5330 
5331 	print_device_short(dev, indent);
5332 
5333 	TAILQ_FOREACH(child, &dev->children, link) {
5334 		print_device_tree_short(child, indent+1);
5335 	}
5336 }
5337 
5338 void
5339 print_device_tree(device_t dev, int indent)
5340 /* print the device and all its children (indented) */
5341 {
5342 	device_t child;
5343 
5344 	if (!dev)
5345 		return;
5346 
5347 	print_device(dev, indent);
5348 
5349 	TAILQ_FOREACH(child, &dev->children, link) {
5350 		print_device_tree(child, indent+1);
5351 	}
5352 }
5353 
5354 static void
5355 print_driver_short(driver_t *driver, int indent)
5356 {
5357 	if (!driver)
5358 		return;
5359 
5360 	indentprintf(("driver %s: softc size = %zd\n",
5361 	    driver->name, driver->size));
5362 }
5363 
5364 static void
5365 print_driver(driver_t *driver, int indent)
5366 {
5367 	if (!driver)
5368 		return;
5369 
5370 	print_driver_short(driver, indent);
5371 }
5372 
5373 static void
5374 print_driver_list(driver_list_t drivers, int indent)
5375 {
5376 	driverlink_t driver;
5377 
5378 	TAILQ_FOREACH(driver, &drivers, link) {
5379 		print_driver(driver->driver, indent);
5380 	}
5381 }
5382 
5383 static void
5384 print_devclass_short(devclass_t dc, int indent)
5385 {
5386 	if ( !dc )
5387 		return;
5388 
5389 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5390 }
5391 
5392 static void
5393 print_devclass(devclass_t dc, int indent)
5394 {
5395 	int i;
5396 
5397 	if ( !dc )
5398 		return;
5399 
5400 	print_devclass_short(dc, indent);
5401 	indentprintf(("Drivers:\n"));
5402 	print_driver_list(dc->drivers, indent+1);
5403 
5404 	indentprintf(("Devices:\n"));
5405 	for (i = 0; i < dc->maxunit; i++)
5406 		if (dc->devices[i])
5407 			print_device(dc->devices[i], indent+1);
5408 }
5409 
5410 void
5411 print_devclass_list_short(void)
5412 {
5413 	devclass_t dc;
5414 
5415 	printf("Short listing of devclasses, drivers & devices:\n");
5416 	TAILQ_FOREACH(dc, &devclasses, link) {
5417 		print_devclass_short(dc, 0);
5418 	}
5419 }
5420 
5421 void
5422 print_devclass_list(void)
5423 {
5424 	devclass_t dc;
5425 
5426 	printf("Full listing of devclasses, drivers & devices:\n");
5427 	TAILQ_FOREACH(dc, &devclasses, link) {
5428 		print_devclass(dc, 0);
5429 	}
5430 }
5431 
5432 #endif
5433 
5434 /*
5435  * User-space access to the device tree.
5436  *
5437  * We implement a small set of nodes:
5438  *
5439  * hw.bus			Single integer read method to obtain the
5440  *				current generation count.
5441  * hw.bus.devices		Reads the entire device tree in flat space.
5442  * hw.bus.rman			Resource manager interface
5443  *
5444  * We might like to add the ability to scan devclasses and/or drivers to
5445  * determine what else is currently loaded/available.
5446  */
5447 
5448 static int
5449 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5450 {
5451 	struct u_businfo	ubus;
5452 
5453 	ubus.ub_version = BUS_USER_VERSION;
5454 	ubus.ub_generation = bus_data_generation;
5455 
5456 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5457 }
5458 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5459     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5460     "bus-related data");
5461 
5462 static int
5463 sysctl_devices(SYSCTL_HANDLER_ARGS)
5464 {
5465 	struct sbuf		sb;
5466 	int			*name = (int *)arg1;
5467 	u_int			namelen = arg2;
5468 	int			index;
5469 	device_t		dev;
5470 	struct u_device		*udev;
5471 	int			error;
5472 
5473 	if (namelen != 2)
5474 		return (EINVAL);
5475 
5476 	if (bus_data_generation_check(name[0]))
5477 		return (EINVAL);
5478 
5479 	index = name[1];
5480 
5481 	/*
5482 	 * Scan the list of devices, looking for the requested index.
5483 	 */
5484 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5485 		if (index-- == 0)
5486 			break;
5487 	}
5488 	if (dev == NULL)
5489 		return (ENOENT);
5490 
5491 	/*
5492 	 * Populate the return item, careful not to overflow the buffer.
5493 	 */
5494 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5495 	if (udev == NULL)
5496 		return (ENOMEM);
5497 	udev->dv_handle = (uintptr_t)dev;
5498 	udev->dv_parent = (uintptr_t)dev->parent;
5499 	udev->dv_devflags = dev->devflags;
5500 	udev->dv_flags = dev->flags;
5501 	udev->dv_state = dev->state;
5502 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5503 	if (dev->nameunit != NULL)
5504 		sbuf_cat(&sb, dev->nameunit);
5505 	else
5506 		sbuf_putc(&sb, '\0');
5507 	sbuf_putc(&sb, '\0');
5508 	if (dev->desc != NULL)
5509 		sbuf_cat(&sb, dev->desc);
5510 	else
5511 		sbuf_putc(&sb, '\0');
5512 	sbuf_putc(&sb, '\0');
5513 	if (dev->driver != NULL)
5514 		sbuf_cat(&sb, dev->driver->name);
5515 	else
5516 		sbuf_putc(&sb, '\0');
5517 	sbuf_putc(&sb, '\0');
5518 	bus_child_pnpinfo_sb(dev, &sb);
5519 	sbuf_putc(&sb, '\0');
5520 	bus_child_location_sb(dev, &sb);
5521 	sbuf_putc(&sb, '\0');
5522 	error = sbuf_finish(&sb);
5523 	if (error == 0)
5524 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5525 	sbuf_delete(&sb);
5526 	free(udev, M_BUS);
5527 	return (error);
5528 }
5529 
5530 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5531     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5532     "system device tree");
5533 
5534 int
5535 bus_data_generation_check(int generation)
5536 {
5537 	if (generation != bus_data_generation)
5538 		return (1);
5539 
5540 	/* XXX generate optimised lists here? */
5541 	return (0);
5542 }
5543 
5544 void
5545 bus_data_generation_update(void)
5546 {
5547 	atomic_add_int(&bus_data_generation, 1);
5548 }
5549 
5550 int
5551 bus_free_resource(device_t dev, int type, struct resource *r)
5552 {
5553 	if (r == NULL)
5554 		return (0);
5555 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5556 }
5557 
5558 device_t
5559 device_lookup_by_name(const char *name)
5560 {
5561 	device_t dev;
5562 
5563 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5564 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5565 			return (dev);
5566 	}
5567 	return (NULL);
5568 }
5569 
5570 /*
5571  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5572  * implicit semantics on open, so it could not be reused for this.
5573  * Another option would be to call this /dev/bus?
5574  */
5575 static int
5576 find_device(struct devreq *req, device_t *devp)
5577 {
5578 	device_t dev;
5579 
5580 	/*
5581 	 * First, ensure that the name is nul terminated.
5582 	 */
5583 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5584 		return (EINVAL);
5585 
5586 	/*
5587 	 * Second, try to find an attached device whose name matches
5588 	 * 'name'.
5589 	 */
5590 	dev = device_lookup_by_name(req->dr_name);
5591 	if (dev != NULL) {
5592 		*devp = dev;
5593 		return (0);
5594 	}
5595 
5596 	/* Finally, give device enumerators a chance. */
5597 	dev = NULL;
5598 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5599 	if (dev == NULL)
5600 		return (ENOENT);
5601 	*devp = dev;
5602 	return (0);
5603 }
5604 
5605 static bool
5606 driver_exists(device_t bus, const char *driver)
5607 {
5608 	devclass_t dc;
5609 
5610 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5611 		if (devclass_find_driver_internal(dc, driver) != NULL)
5612 			return (true);
5613 	}
5614 	return (false);
5615 }
5616 
5617 static void
5618 device_gen_nomatch(device_t dev)
5619 {
5620 	device_t child;
5621 
5622 	if (dev->flags & DF_NEEDNOMATCH &&
5623 	    dev->state == DS_NOTPRESENT) {
5624 		BUS_PROBE_NOMATCH(dev->parent, dev);
5625 		devnomatch(dev);
5626 		dev->flags |= DF_DONENOMATCH;
5627 	}
5628 	dev->flags &= ~DF_NEEDNOMATCH;
5629 	TAILQ_FOREACH(child, &dev->children, link) {
5630 		device_gen_nomatch(child);
5631 	}
5632 }
5633 
5634 static void
5635 device_do_deferred_actions(void)
5636 {
5637 	devclass_t dc;
5638 	driverlink_t dl;
5639 
5640 	/*
5641 	 * Walk through the devclasses to find all the drivers we've tagged as
5642 	 * deferred during the freeze and call the driver added routines. They
5643 	 * have already been added to the lists in the background, so the driver
5644 	 * added routines that trigger a probe will have all the right bidders
5645 	 * for the probe auction.
5646 	 */
5647 	TAILQ_FOREACH(dc, &devclasses, link) {
5648 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5649 			if (dl->flags & DL_DEFERRED_PROBE) {
5650 				devclass_driver_added(dc, dl->driver);
5651 				dl->flags &= ~DL_DEFERRED_PROBE;
5652 			}
5653 		}
5654 	}
5655 
5656 	/*
5657 	 * We also defer no-match events during a freeze. Walk the tree and
5658 	 * generate all the pent-up events that are still relevant.
5659 	 */
5660 	device_gen_nomatch(root_bus);
5661 	bus_data_generation_update();
5662 }
5663 
5664 static int
5665 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5666     struct thread *td)
5667 {
5668 	struct devreq *req;
5669 	device_t dev;
5670 	int error, old;
5671 
5672 	/* Locate the device to control. */
5673 	mtx_lock(&Giant);
5674 	req = (struct devreq *)data;
5675 	switch (cmd) {
5676 	case DEV_ATTACH:
5677 	case DEV_DETACH:
5678 	case DEV_ENABLE:
5679 	case DEV_DISABLE:
5680 	case DEV_SUSPEND:
5681 	case DEV_RESUME:
5682 	case DEV_SET_DRIVER:
5683 	case DEV_CLEAR_DRIVER:
5684 	case DEV_RESCAN:
5685 	case DEV_DELETE:
5686 	case DEV_RESET:
5687 		error = priv_check(td, PRIV_DRIVER);
5688 		if (error == 0)
5689 			error = find_device(req, &dev);
5690 		break;
5691 	case DEV_FREEZE:
5692 	case DEV_THAW:
5693 		error = priv_check(td, PRIV_DRIVER);
5694 		break;
5695 	default:
5696 		error = ENOTTY;
5697 		break;
5698 	}
5699 	if (error) {
5700 		mtx_unlock(&Giant);
5701 		return (error);
5702 	}
5703 
5704 	/* Perform the requested operation. */
5705 	switch (cmd) {
5706 	case DEV_ATTACH:
5707 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5708 			error = EBUSY;
5709 		else if (!device_is_enabled(dev))
5710 			error = ENXIO;
5711 		else
5712 			error = device_probe_and_attach(dev);
5713 		break;
5714 	case DEV_DETACH:
5715 		if (!device_is_attached(dev)) {
5716 			error = ENXIO;
5717 			break;
5718 		}
5719 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5720 			error = device_quiesce(dev);
5721 			if (error)
5722 				break;
5723 		}
5724 		error = device_detach(dev);
5725 		break;
5726 	case DEV_ENABLE:
5727 		if (device_is_enabled(dev)) {
5728 			error = EBUSY;
5729 			break;
5730 		}
5731 
5732 		/*
5733 		 * If the device has been probed but not attached (e.g.
5734 		 * when it has been disabled by a loader hint), just
5735 		 * attach the device rather than doing a full probe.
5736 		 */
5737 		device_enable(dev);
5738 		if (device_is_alive(dev)) {
5739 			/*
5740 			 * If the device was disabled via a hint, clear
5741 			 * the hint.
5742 			 */
5743 			if (resource_disabled(dev->driver->name, dev->unit))
5744 				resource_unset_value(dev->driver->name,
5745 				    dev->unit, "disabled");
5746 			error = device_attach(dev);
5747 		} else
5748 			error = device_probe_and_attach(dev);
5749 		break;
5750 	case DEV_DISABLE:
5751 		if (!device_is_enabled(dev)) {
5752 			error = ENXIO;
5753 			break;
5754 		}
5755 
5756 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5757 			error = device_quiesce(dev);
5758 			if (error)
5759 				break;
5760 		}
5761 
5762 		/*
5763 		 * Force DF_FIXEDCLASS on around detach to preserve
5764 		 * the existing name.
5765 		 */
5766 		old = dev->flags;
5767 		dev->flags |= DF_FIXEDCLASS;
5768 		error = device_detach(dev);
5769 		if (!(old & DF_FIXEDCLASS))
5770 			dev->flags &= ~DF_FIXEDCLASS;
5771 		if (error == 0)
5772 			device_disable(dev);
5773 		break;
5774 	case DEV_SUSPEND:
5775 		if (device_is_suspended(dev)) {
5776 			error = EBUSY;
5777 			break;
5778 		}
5779 		if (device_get_parent(dev) == NULL) {
5780 			error = EINVAL;
5781 			break;
5782 		}
5783 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5784 		break;
5785 	case DEV_RESUME:
5786 		if (!device_is_suspended(dev)) {
5787 			error = EINVAL;
5788 			break;
5789 		}
5790 		if (device_get_parent(dev) == NULL) {
5791 			error = EINVAL;
5792 			break;
5793 		}
5794 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5795 		break;
5796 	case DEV_SET_DRIVER: {
5797 		devclass_t dc;
5798 		char driver[128];
5799 
5800 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5801 		if (error)
5802 			break;
5803 		if (driver[0] == '\0') {
5804 			error = EINVAL;
5805 			break;
5806 		}
5807 		if (dev->devclass != NULL &&
5808 		    strcmp(driver, dev->devclass->name) == 0)
5809 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5810 			break;
5811 
5812 		/*
5813 		 * Scan drivers for this device's bus looking for at
5814 		 * least one matching driver.
5815 		 */
5816 		if (dev->parent == NULL) {
5817 			error = EINVAL;
5818 			break;
5819 		}
5820 		if (!driver_exists(dev->parent, driver)) {
5821 			error = ENOENT;
5822 			break;
5823 		}
5824 		dc = devclass_create(driver);
5825 		if (dc == NULL) {
5826 			error = ENOMEM;
5827 			break;
5828 		}
5829 
5830 		/* Detach device if necessary. */
5831 		if (device_is_attached(dev)) {
5832 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5833 				error = device_detach(dev);
5834 			else
5835 				error = EBUSY;
5836 			if (error)
5837 				break;
5838 		}
5839 
5840 		/* Clear any previously-fixed device class and unit. */
5841 		if (dev->flags & DF_FIXEDCLASS)
5842 			devclass_delete_device(dev->devclass, dev);
5843 		dev->flags |= DF_WILDCARD;
5844 		dev->unit = -1;
5845 
5846 		/* Force the new device class. */
5847 		error = devclass_add_device(dc, dev);
5848 		if (error)
5849 			break;
5850 		dev->flags |= DF_FIXEDCLASS;
5851 		error = device_probe_and_attach(dev);
5852 		break;
5853 	}
5854 	case DEV_CLEAR_DRIVER:
5855 		if (!(dev->flags & DF_FIXEDCLASS)) {
5856 			error = 0;
5857 			break;
5858 		}
5859 		if (device_is_attached(dev)) {
5860 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5861 				error = device_detach(dev);
5862 			else
5863 				error = EBUSY;
5864 			if (error)
5865 				break;
5866 		}
5867 
5868 		dev->flags &= ~DF_FIXEDCLASS;
5869 		dev->flags |= DF_WILDCARD;
5870 		devclass_delete_device(dev->devclass, dev);
5871 		error = device_probe_and_attach(dev);
5872 		break;
5873 	case DEV_RESCAN:
5874 		if (!device_is_attached(dev)) {
5875 			error = ENXIO;
5876 			break;
5877 		}
5878 		error = BUS_RESCAN(dev);
5879 		break;
5880 	case DEV_DELETE: {
5881 		device_t parent;
5882 
5883 		parent = device_get_parent(dev);
5884 		if (parent == NULL) {
5885 			error = EINVAL;
5886 			break;
5887 		}
5888 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5889 			if (bus_child_present(dev) != 0) {
5890 				error = EBUSY;
5891 				break;
5892 			}
5893 		}
5894 
5895 		error = device_delete_child(parent, dev);
5896 		break;
5897 	}
5898 	case DEV_FREEZE:
5899 		if (device_frozen)
5900 			error = EBUSY;
5901 		else
5902 			device_frozen = true;
5903 		break;
5904 	case DEV_THAW:
5905 		if (!device_frozen)
5906 			error = EBUSY;
5907 		else {
5908 			device_do_deferred_actions();
5909 			device_frozen = false;
5910 		}
5911 		break;
5912 	case DEV_RESET:
5913 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5914 			error = EINVAL;
5915 			break;
5916 		}
5917 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5918 		    req->dr_flags);
5919 		break;
5920 	}
5921 	mtx_unlock(&Giant);
5922 	return (error);
5923 }
5924 
5925 static struct cdevsw devctl2_cdevsw = {
5926 	.d_version =	D_VERSION,
5927 	.d_ioctl =	devctl2_ioctl,
5928 	.d_name =	"devctl2",
5929 };
5930 
5931 static void
5932 devctl2_init(void)
5933 {
5934 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5935 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5936 }
5937 
5938 /*
5939  * APIs to manage deprecation and obsolescence.
5940  */
5941 static int obsolete_panic = 0;
5942 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5943     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
5944     "2 = if deprecated)");
5945 
5946 static void
5947 gone_panic(int major, int running, const char *msg)
5948 {
5949 	switch (obsolete_panic)
5950 	{
5951 	case 0:
5952 		return;
5953 	case 1:
5954 		if (running < major)
5955 			return;
5956 		/* FALLTHROUGH */
5957 	default:
5958 		panic("%s", msg);
5959 	}
5960 }
5961 
5962 void
5963 _gone_in(int major, const char *msg)
5964 {
5965 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5966 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5967 		printf("Obsolete code will be removed soon: %s\n", msg);
5968 	else
5969 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5970 		    major, msg);
5971 }
5972 
5973 void
5974 _gone_in_dev(device_t dev, int major, const char *msg)
5975 {
5976 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5977 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5978 		device_printf(dev,
5979 		    "Obsolete code will be removed soon: %s\n", msg);
5980 	else
5981 		device_printf(dev,
5982 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5983 		    major, msg);
5984 }
5985 
5986 #ifdef DDB
5987 DB_SHOW_COMMAND(device, db_show_device)
5988 {
5989 	device_t dev;
5990 
5991 	if (!have_addr)
5992 		return;
5993 
5994 	dev = (device_t)addr;
5995 
5996 	db_printf("name:    %s\n", device_get_nameunit(dev));
5997 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5998 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5999 	db_printf("  addr:    %p\n", dev);
6000 	db_printf("  parent:  %p\n", dev->parent);
6001 	db_printf("  softc:   %p\n", dev->softc);
6002 	db_printf("  ivars:   %p\n", dev->ivars);
6003 }
6004 
6005 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6006 {
6007 	device_t dev;
6008 
6009 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6010 		db_show_device((db_expr_t)dev, true, count, modif);
6011 	}
6012 }
6013 #endif
6014