xref: /freebsd/sys/kern/subr_bus.c (revision dcf58f92e2c19a32fc171f763698e711c719badc)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 #include "opt_random.h"
32 
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/filio.h>
36 #include <sys/lock.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/poll.h>
44 #include <sys/proc.h>
45 #include <sys/condvar.h>
46 #include <sys/queue.h>
47 #include <machine/bus.h>
48 #include <sys/random.h>
49 #include <sys/rman.h>
50 #include <sys/selinfo.h>
51 #include <sys/signalvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/uio.h>
55 #include <sys/bus.h>
56 #include <sys/interrupt.h>
57 #include <sys/cpuset.h>
58 
59 #include <sys/syslog.h>
60 
61 #include <net/vnet.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/stdarg.h>
65 
66 #include <vm/uma.h>
67 
68 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70 
71 /*
72  * Used to attach drivers to devclasses.
73  */
74 typedef struct driverlink *driverlink_t;
75 struct driverlink {
76 	kobj_class_t	driver;
77 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78 	int		pass;
79 	TAILQ_ENTRY(driverlink) passlink;
80 };
81 
82 /*
83  * Forward declarations
84  */
85 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87 typedef TAILQ_HEAD(device_list, device) device_list_t;
88 
89 struct devclass {
90 	TAILQ_ENTRY(devclass) link;
91 	devclass_t	parent;		/* parent in devclass hierarchy */
92 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93 	char		*name;
94 	device_t	*devices;	/* array of devices indexed by unit */
95 	int		maxunit;	/* size of devices array */
96 	int		flags;
97 #define DC_HAS_CHILDREN		1
98 
99 	struct sysctl_ctx_list sysctl_ctx;
100 	struct sysctl_oid *sysctl_tree;
101 };
102 
103 /**
104  * @brief Implementation of device.
105  */
106 struct device {
107 	/*
108 	 * A device is a kernel object. The first field must be the
109 	 * current ops table for the object.
110 	 */
111 	KOBJ_FIELDS;
112 
113 	/*
114 	 * Device hierarchy.
115 	 */
116 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118 	device_t	parent;		/**< parent of this device  */
119 	device_list_t	children;	/**< list of child devices */
120 
121 	/*
122 	 * Details of this device.
123 	 */
124 	driver_t	*driver;	/**< current driver */
125 	devclass_t	devclass;	/**< current device class */
126 	int		unit;		/**< current unit number */
127 	char*		nameunit;	/**< name+unit e.g. foodev0 */
128 	char*		desc;		/**< driver specific description */
129 	int		busy;		/**< count of calls to device_busy() */
130 	device_state_t	state;		/**< current device state  */
131 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132 	u_int		flags;		/**< internal device flags  */
133 #define	DF_ENABLED	0x01		/* device should be probed/attached */
134 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
135 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
136 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
137 #define	DF_QUIET	0x10		/* don't print verbose attach message */
138 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
139 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
140 #define	DF_REBID	0x80		/* Can rebid after attach */
141 #define	DF_SUSPENDED	0x100		/* Device is suspended. */
142 	u_int	order;			/**< order from device_add_child_ordered() */
143 	void	*ivars;			/**< instance variables  */
144 	void	*softc;			/**< current driver's variables  */
145 
146 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
147 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
148 };
149 
150 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
151 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
152 
153 #ifdef BUS_DEBUG
154 
155 static int bus_debug = 1;
156 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
157     "Bus debug level");
158 
159 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
160 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
161 #define DRIVERNAME(d)	((d)? d->name : "no driver")
162 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
163 
164 /**
165  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
166  * prevent syslog from deleting initial spaces
167  */
168 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
169 
170 static void print_device_short(device_t dev, int indent);
171 static void print_device(device_t dev, int indent);
172 void print_device_tree_short(device_t dev, int indent);
173 void print_device_tree(device_t dev, int indent);
174 static void print_driver_short(driver_t *driver, int indent);
175 static void print_driver(driver_t *driver, int indent);
176 static void print_driver_list(driver_list_t drivers, int indent);
177 static void print_devclass_short(devclass_t dc, int indent);
178 static void print_devclass(devclass_t dc, int indent);
179 void print_devclass_list_short(void);
180 void print_devclass_list(void);
181 
182 #else
183 /* Make the compiler ignore the function calls */
184 #define PDEBUG(a)			/* nop */
185 #define DEVICENAME(d)			/* nop */
186 #define DRIVERNAME(d)			/* nop */
187 #define DEVCLANAME(d)			/* nop */
188 
189 #define print_device_short(d,i)		/* nop */
190 #define print_device(d,i)		/* nop */
191 #define print_device_tree_short(d,i)	/* nop */
192 #define print_device_tree(d,i)		/* nop */
193 #define print_driver_short(d,i)		/* nop */
194 #define print_driver(d,i)		/* nop */
195 #define print_driver_list(d,i)		/* nop */
196 #define print_devclass_short(d,i)	/* nop */
197 #define print_devclass(d,i)		/* nop */
198 #define print_devclass_list_short()	/* nop */
199 #define print_devclass_list()		/* nop */
200 #endif
201 
202 /*
203  * dev sysctl tree
204  */
205 
206 enum {
207 	DEVCLASS_SYSCTL_PARENT,
208 };
209 
210 static int
211 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
212 {
213 	devclass_t dc = (devclass_t)arg1;
214 	const char *value;
215 
216 	switch (arg2) {
217 	case DEVCLASS_SYSCTL_PARENT:
218 		value = dc->parent ? dc->parent->name : "";
219 		break;
220 	default:
221 		return (EINVAL);
222 	}
223 	return (SYSCTL_OUT(req, value, strlen(value)));
224 }
225 
226 static void
227 devclass_sysctl_init(devclass_t dc)
228 {
229 
230 	if (dc->sysctl_tree != NULL)
231 		return;
232 	sysctl_ctx_init(&dc->sysctl_ctx);
233 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
234 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
235 	    CTLFLAG_RD, NULL, "");
236 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
237 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
238 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
239 	    "parent class");
240 }
241 
242 enum {
243 	DEVICE_SYSCTL_DESC,
244 	DEVICE_SYSCTL_DRIVER,
245 	DEVICE_SYSCTL_LOCATION,
246 	DEVICE_SYSCTL_PNPINFO,
247 	DEVICE_SYSCTL_PARENT,
248 };
249 
250 static int
251 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
252 {
253 	device_t dev = (device_t)arg1;
254 	const char *value;
255 	char *buf;
256 	int error;
257 
258 	buf = NULL;
259 	switch (arg2) {
260 	case DEVICE_SYSCTL_DESC:
261 		value = dev->desc ? dev->desc : "";
262 		break;
263 	case DEVICE_SYSCTL_DRIVER:
264 		value = dev->driver ? dev->driver->name : "";
265 		break;
266 	case DEVICE_SYSCTL_LOCATION:
267 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
268 		bus_child_location_str(dev, buf, 1024);
269 		break;
270 	case DEVICE_SYSCTL_PNPINFO:
271 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
272 		bus_child_pnpinfo_str(dev, buf, 1024);
273 		break;
274 	case DEVICE_SYSCTL_PARENT:
275 		value = dev->parent ? dev->parent->nameunit : "";
276 		break;
277 	default:
278 		return (EINVAL);
279 	}
280 	error = SYSCTL_OUT(req, value, strlen(value));
281 	if (buf != NULL)
282 		free(buf, M_BUS);
283 	return (error);
284 }
285 
286 static void
287 device_sysctl_init(device_t dev)
288 {
289 	devclass_t dc = dev->devclass;
290 	int domain;
291 
292 	if (dev->sysctl_tree != NULL)
293 		return;
294 	devclass_sysctl_init(dc);
295 	sysctl_ctx_init(&dev->sysctl_ctx);
296 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
297 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
298 	    dev->nameunit + strlen(dc->name),
299 	    CTLFLAG_RD, NULL, "");
300 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
302 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
303 	    "device description");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
306 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
307 	    "device driver name");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
310 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
311 	    "device location relative to parent");
312 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
314 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
315 	    "device identification");
316 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
317 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
318 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
319 	    "parent device");
320 	if (bus_get_domain(dev, &domain) == 0)
321 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
322 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
323 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
324 }
325 
326 static void
327 device_sysctl_update(device_t dev)
328 {
329 	devclass_t dc = dev->devclass;
330 
331 	if (dev->sysctl_tree == NULL)
332 		return;
333 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
334 }
335 
336 static void
337 device_sysctl_fini(device_t dev)
338 {
339 	if (dev->sysctl_tree == NULL)
340 		return;
341 	sysctl_ctx_free(&dev->sysctl_ctx);
342 	dev->sysctl_tree = NULL;
343 }
344 
345 /*
346  * /dev/devctl implementation
347  */
348 
349 /*
350  * This design allows only one reader for /dev/devctl.  This is not desirable
351  * in the long run, but will get a lot of hair out of this implementation.
352  * Maybe we should make this device a clonable device.
353  *
354  * Also note: we specifically do not attach a device to the device_t tree
355  * to avoid potential chicken and egg problems.  One could argue that all
356  * of this belongs to the root node.  One could also further argue that the
357  * sysctl interface that we have not might more properly be an ioctl
358  * interface, but at this stage of the game, I'm not inclined to rock that
359  * boat.
360  *
361  * I'm also not sure that the SIGIO support is done correctly or not, as
362  * I copied it from a driver that had SIGIO support that likely hasn't been
363  * tested since 3.4 or 2.2.8!
364  */
365 
366 /* Deprecated way to adjust queue length */
367 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
369     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
370     "devctl disable -- deprecated");
371 
372 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
373 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
374 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
375 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
376     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
377 
378 static d_open_t		devopen;
379 static d_close_t	devclose;
380 static d_read_t		devread;
381 static d_ioctl_t	devioctl;
382 static d_poll_t		devpoll;
383 static d_kqfilter_t	devkqfilter;
384 
385 static struct cdevsw dev_cdevsw = {
386 	.d_version =	D_VERSION,
387 	.d_open =	devopen,
388 	.d_close =	devclose,
389 	.d_read =	devread,
390 	.d_ioctl =	devioctl,
391 	.d_poll =	devpoll,
392 	.d_kqfilter =	devkqfilter,
393 	.d_name =	"devctl",
394 };
395 
396 struct dev_event_info
397 {
398 	char *dei_data;
399 	TAILQ_ENTRY(dev_event_info) dei_link;
400 };
401 
402 TAILQ_HEAD(devq, dev_event_info);
403 
404 static struct dev_softc
405 {
406 	int	inuse;
407 	int	nonblock;
408 	int	queued;
409 	int	async;
410 	struct mtx mtx;
411 	struct cv cv;
412 	struct selinfo sel;
413 	struct devq devq;
414 	struct sigio *sigio;
415 } devsoftc;
416 
417 static void	filt_devctl_detach(struct knote *kn);
418 static int	filt_devctl_read(struct knote *kn, long hint);
419 
420 struct filterops devctl_rfiltops = {
421 	.f_isfd = 1,
422 	.f_detach = filt_devctl_detach,
423 	.f_event = filt_devctl_read,
424 };
425 
426 static struct cdev *devctl_dev;
427 
428 static void
429 devinit(void)
430 {
431 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
432 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
433 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
434 	cv_init(&devsoftc.cv, "dev cv");
435 	TAILQ_INIT(&devsoftc.devq);
436 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
437 }
438 
439 static int
440 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
441 {
442 
443 	mtx_lock(&devsoftc.mtx);
444 	if (devsoftc.inuse) {
445 		mtx_unlock(&devsoftc.mtx);
446 		return (EBUSY);
447 	}
448 	/* move to init */
449 	devsoftc.inuse = 1;
450 	mtx_unlock(&devsoftc.mtx);
451 	return (0);
452 }
453 
454 static int
455 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
456 {
457 
458 	mtx_lock(&devsoftc.mtx);
459 	devsoftc.inuse = 0;
460 	devsoftc.nonblock = 0;
461 	devsoftc.async = 0;
462 	cv_broadcast(&devsoftc.cv);
463 	funsetown(&devsoftc.sigio);
464 	mtx_unlock(&devsoftc.mtx);
465 	return (0);
466 }
467 
468 /*
469  * The read channel for this device is used to report changes to
470  * userland in realtime.  We are required to free the data as well as
471  * the n1 object because we allocate them separately.  Also note that
472  * we return one record at a time.  If you try to read this device a
473  * character at a time, you will lose the rest of the data.  Listening
474  * programs are expected to cope.
475  */
476 static int
477 devread(struct cdev *dev, struct uio *uio, int ioflag)
478 {
479 	struct dev_event_info *n1;
480 	int rv;
481 
482 	mtx_lock(&devsoftc.mtx);
483 	while (TAILQ_EMPTY(&devsoftc.devq)) {
484 		if (devsoftc.nonblock) {
485 			mtx_unlock(&devsoftc.mtx);
486 			return (EAGAIN);
487 		}
488 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
489 		if (rv) {
490 			/*
491 			 * Need to translate ERESTART to EINTR here? -- jake
492 			 */
493 			mtx_unlock(&devsoftc.mtx);
494 			return (rv);
495 		}
496 	}
497 	n1 = TAILQ_FIRST(&devsoftc.devq);
498 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
499 	devsoftc.queued--;
500 	mtx_unlock(&devsoftc.mtx);
501 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
502 	free(n1->dei_data, M_BUS);
503 	free(n1, M_BUS);
504 	return (rv);
505 }
506 
507 static	int
508 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
509 {
510 	switch (cmd) {
511 
512 	case FIONBIO:
513 		if (*(int*)data)
514 			devsoftc.nonblock = 1;
515 		else
516 			devsoftc.nonblock = 0;
517 		return (0);
518 	case FIOASYNC:
519 		if (*(int*)data)
520 			devsoftc.async = 1;
521 		else
522 			devsoftc.async = 0;
523 		return (0);
524 	case FIOSETOWN:
525 		return fsetown(*(int *)data, &devsoftc.sigio);
526 	case FIOGETOWN:
527 		*(int *)data = fgetown(&devsoftc.sigio);
528 		return (0);
529 
530 		/* (un)Support for other fcntl() calls. */
531 	case FIOCLEX:
532 	case FIONCLEX:
533 	case FIONREAD:
534 	default:
535 		break;
536 	}
537 	return (ENOTTY);
538 }
539 
540 static	int
541 devpoll(struct cdev *dev, int events, struct thread *td)
542 {
543 	int	revents = 0;
544 
545 	mtx_lock(&devsoftc.mtx);
546 	if (events & (POLLIN | POLLRDNORM)) {
547 		if (!TAILQ_EMPTY(&devsoftc.devq))
548 			revents = events & (POLLIN | POLLRDNORM);
549 		else
550 			selrecord(td, &devsoftc.sel);
551 	}
552 	mtx_unlock(&devsoftc.mtx);
553 
554 	return (revents);
555 }
556 
557 static int
558 devkqfilter(struct cdev *dev, struct knote *kn)
559 {
560 	int error;
561 
562 	if (kn->kn_filter == EVFILT_READ) {
563 		kn->kn_fop = &devctl_rfiltops;
564 		knlist_add(&devsoftc.sel.si_note, kn, 0);
565 		error = 0;
566 	} else
567 		error = EINVAL;
568 	return (error);
569 }
570 
571 static void
572 filt_devctl_detach(struct knote *kn)
573 {
574 
575 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
576 }
577 
578 static int
579 filt_devctl_read(struct knote *kn, long hint)
580 {
581 	kn->kn_data = devsoftc.queued;
582 	return (kn->kn_data != 0);
583 }
584 
585 /**
586  * @brief Return whether the userland process is running
587  */
588 boolean_t
589 devctl_process_running(void)
590 {
591 	return (devsoftc.inuse == 1);
592 }
593 
594 /**
595  * @brief Queue data to be read from the devctl device
596  *
597  * Generic interface to queue data to the devctl device.  It is
598  * assumed that @p data is properly formatted.  It is further assumed
599  * that @p data is allocated using the M_BUS malloc type.
600  */
601 void
602 devctl_queue_data_f(char *data, int flags)
603 {
604 	struct dev_event_info *n1 = NULL, *n2 = NULL;
605 
606 	if (strlen(data) == 0)
607 		goto out;
608 	if (devctl_queue_length == 0)
609 		goto out;
610 	n1 = malloc(sizeof(*n1), M_BUS, flags);
611 	if (n1 == NULL)
612 		goto out;
613 	n1->dei_data = data;
614 	mtx_lock(&devsoftc.mtx);
615 	if (devctl_queue_length == 0) {
616 		mtx_unlock(&devsoftc.mtx);
617 		free(n1->dei_data, M_BUS);
618 		free(n1, M_BUS);
619 		return;
620 	}
621 	/* Leave at least one spot in the queue... */
622 	while (devsoftc.queued > devctl_queue_length - 1) {
623 		n2 = TAILQ_FIRST(&devsoftc.devq);
624 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
625 		free(n2->dei_data, M_BUS);
626 		free(n2, M_BUS);
627 		devsoftc.queued--;
628 	}
629 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
630 	devsoftc.queued++;
631 	cv_broadcast(&devsoftc.cv);
632 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
633 	mtx_unlock(&devsoftc.mtx);
634 	selwakeup(&devsoftc.sel);
635 	if (devsoftc.async && devsoftc.sigio != NULL)
636 		pgsigio(&devsoftc.sigio, SIGIO, 0);
637 	return;
638 out:
639 	/*
640 	 * We have to free data on all error paths since the caller
641 	 * assumes it will be free'd when this item is dequeued.
642 	 */
643 	free(data, M_BUS);
644 	return;
645 }
646 
647 void
648 devctl_queue_data(char *data)
649 {
650 
651 	devctl_queue_data_f(data, M_NOWAIT);
652 }
653 
654 /**
655  * @brief Send a 'notification' to userland, using standard ways
656  */
657 void
658 devctl_notify_f(const char *system, const char *subsystem, const char *type,
659     const char *data, int flags)
660 {
661 	int len = 0;
662 	char *msg;
663 
664 	if (system == NULL)
665 		return;		/* BOGUS!  Must specify system. */
666 	if (subsystem == NULL)
667 		return;		/* BOGUS!  Must specify subsystem. */
668 	if (type == NULL)
669 		return;		/* BOGUS!  Must specify type. */
670 	len += strlen(" system=") + strlen(system);
671 	len += strlen(" subsystem=") + strlen(subsystem);
672 	len += strlen(" type=") + strlen(type);
673 	/* add in the data message plus newline. */
674 	if (data != NULL)
675 		len += strlen(data);
676 	len += 3;	/* '!', '\n', and NUL */
677 	msg = malloc(len, M_BUS, flags);
678 	if (msg == NULL)
679 		return;		/* Drop it on the floor */
680 	if (data != NULL)
681 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
682 		    system, subsystem, type, data);
683 	else
684 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
685 		    system, subsystem, type);
686 	devctl_queue_data_f(msg, flags);
687 }
688 
689 void
690 devctl_notify(const char *system, const char *subsystem, const char *type,
691     const char *data)
692 {
693 
694 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
695 }
696 
697 /*
698  * Common routine that tries to make sending messages as easy as possible.
699  * We allocate memory for the data, copy strings into that, but do not
700  * free it unless there's an error.  The dequeue part of the driver should
701  * free the data.  We don't send data when the device is disabled.  We do
702  * send data, even when we have no listeners, because we wish to avoid
703  * races relating to startup and restart of listening applications.
704  *
705  * devaddq is designed to string together the type of event, with the
706  * object of that event, plus the plug and play info and location info
707  * for that event.  This is likely most useful for devices, but less
708  * useful for other consumers of this interface.  Those should use
709  * the devctl_queue_data() interface instead.
710  */
711 static void
712 devaddq(const char *type, const char *what, device_t dev)
713 {
714 	char *data = NULL;
715 	char *loc = NULL;
716 	char *pnp = NULL;
717 	const char *parstr;
718 
719 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
720 		return;
721 	data = malloc(1024, M_BUS, M_NOWAIT);
722 	if (data == NULL)
723 		goto bad;
724 
725 	/* get the bus specific location of this device */
726 	loc = malloc(1024, M_BUS, M_NOWAIT);
727 	if (loc == NULL)
728 		goto bad;
729 	*loc = '\0';
730 	bus_child_location_str(dev, loc, 1024);
731 
732 	/* Get the bus specific pnp info of this device */
733 	pnp = malloc(1024, M_BUS, M_NOWAIT);
734 	if (pnp == NULL)
735 		goto bad;
736 	*pnp = '\0';
737 	bus_child_pnpinfo_str(dev, pnp, 1024);
738 
739 	/* Get the parent of this device, or / if high enough in the tree. */
740 	if (device_get_parent(dev) == NULL)
741 		parstr = ".";	/* Or '/' ? */
742 	else
743 		parstr = device_get_nameunit(device_get_parent(dev));
744 	/* String it all together. */
745 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
746 	  parstr);
747 	free(loc, M_BUS);
748 	free(pnp, M_BUS);
749 	devctl_queue_data(data);
750 	return;
751 bad:
752 	free(pnp, M_BUS);
753 	free(loc, M_BUS);
754 	free(data, M_BUS);
755 	return;
756 }
757 
758 /*
759  * A device was added to the tree.  We are called just after it successfully
760  * attaches (that is, probe and attach success for this device).  No call
761  * is made if a device is merely parented into the tree.  See devnomatch
762  * if probe fails.  If attach fails, no notification is sent (but maybe
763  * we should have a different message for this).
764  */
765 static void
766 devadded(device_t dev)
767 {
768 	devaddq("+", device_get_nameunit(dev), dev);
769 }
770 
771 /*
772  * A device was removed from the tree.  We are called just before this
773  * happens.
774  */
775 static void
776 devremoved(device_t dev)
777 {
778 	devaddq("-", device_get_nameunit(dev), dev);
779 }
780 
781 /*
782  * Called when there's no match for this device.  This is only called
783  * the first time that no match happens, so we don't keep getting this
784  * message.  Should that prove to be undesirable, we can change it.
785  * This is called when all drivers that can attach to a given bus
786  * decline to accept this device.  Other errors may not be detected.
787  */
788 static void
789 devnomatch(device_t dev)
790 {
791 	devaddq("?", "", dev);
792 }
793 
794 static int
795 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
796 {
797 	struct dev_event_info *n1;
798 	int dis, error;
799 
800 	dis = (devctl_queue_length == 0);
801 	error = sysctl_handle_int(oidp, &dis, 0, req);
802 	if (error || !req->newptr)
803 		return (error);
804 	if (mtx_initialized(&devsoftc.mtx))
805 		mtx_lock(&devsoftc.mtx);
806 	if (dis) {
807 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
808 			n1 = TAILQ_FIRST(&devsoftc.devq);
809 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
810 			free(n1->dei_data, M_BUS);
811 			free(n1, M_BUS);
812 		}
813 		devsoftc.queued = 0;
814 		devctl_queue_length = 0;
815 	} else {
816 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
817 	}
818 	if (mtx_initialized(&devsoftc.mtx))
819 		mtx_unlock(&devsoftc.mtx);
820 	return (0);
821 }
822 
823 static int
824 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
825 {
826 	struct dev_event_info *n1;
827 	int q, error;
828 
829 	q = devctl_queue_length;
830 	error = sysctl_handle_int(oidp, &q, 0, req);
831 	if (error || !req->newptr)
832 		return (error);
833 	if (q < 0)
834 		return (EINVAL);
835 	if (mtx_initialized(&devsoftc.mtx))
836 		mtx_lock(&devsoftc.mtx);
837 	devctl_queue_length = q;
838 	while (devsoftc.queued > devctl_queue_length) {
839 		n1 = TAILQ_FIRST(&devsoftc.devq);
840 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
841 		free(n1->dei_data, M_BUS);
842 		free(n1, M_BUS);
843 		devsoftc.queued--;
844 	}
845 	if (mtx_initialized(&devsoftc.mtx))
846 		mtx_unlock(&devsoftc.mtx);
847 	return (0);
848 }
849 
850 /* End of /dev/devctl code */
851 
852 static TAILQ_HEAD(,device)	bus_data_devices;
853 static int bus_data_generation = 1;
854 
855 static kobj_method_t null_methods[] = {
856 	KOBJMETHOD_END
857 };
858 
859 DEFINE_CLASS(null, null_methods, 0);
860 
861 /*
862  * Bus pass implementation
863  */
864 
865 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
866 int bus_current_pass = BUS_PASS_ROOT;
867 
868 /**
869  * @internal
870  * @brief Register the pass level of a new driver attachment
871  *
872  * Register a new driver attachment's pass level.  If no driver
873  * attachment with the same pass level has been added, then @p new
874  * will be added to the global passes list.
875  *
876  * @param new		the new driver attachment
877  */
878 static void
879 driver_register_pass(struct driverlink *new)
880 {
881 	struct driverlink *dl;
882 
883 	/* We only consider pass numbers during boot. */
884 	if (bus_current_pass == BUS_PASS_DEFAULT)
885 		return;
886 
887 	/*
888 	 * Walk the passes list.  If we already know about this pass
889 	 * then there is nothing to do.  If we don't, then insert this
890 	 * driver link into the list.
891 	 */
892 	TAILQ_FOREACH(dl, &passes, passlink) {
893 		if (dl->pass < new->pass)
894 			continue;
895 		if (dl->pass == new->pass)
896 			return;
897 		TAILQ_INSERT_BEFORE(dl, new, passlink);
898 		return;
899 	}
900 	TAILQ_INSERT_TAIL(&passes, new, passlink);
901 }
902 
903 /**
904  * @brief Raise the current bus pass
905  *
906  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
907  * method on the root bus to kick off a new device tree scan for each
908  * new pass level that has at least one driver.
909  */
910 void
911 bus_set_pass(int pass)
912 {
913 	struct driverlink *dl;
914 
915 	if (bus_current_pass > pass)
916 		panic("Attempt to lower bus pass level");
917 
918 	TAILQ_FOREACH(dl, &passes, passlink) {
919 		/* Skip pass values below the current pass level. */
920 		if (dl->pass <= bus_current_pass)
921 			continue;
922 
923 		/*
924 		 * Bail once we hit a driver with a pass level that is
925 		 * too high.
926 		 */
927 		if (dl->pass > pass)
928 			break;
929 
930 		/*
931 		 * Raise the pass level to the next level and rescan
932 		 * the tree.
933 		 */
934 		bus_current_pass = dl->pass;
935 		BUS_NEW_PASS(root_bus);
936 	}
937 
938 	/*
939 	 * If there isn't a driver registered for the requested pass,
940 	 * then bus_current_pass might still be less than 'pass'.  Set
941 	 * it to 'pass' in that case.
942 	 */
943 	if (bus_current_pass < pass)
944 		bus_current_pass = pass;
945 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
946 }
947 
948 /*
949  * Devclass implementation
950  */
951 
952 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
953 
954 /**
955  * @internal
956  * @brief Find or create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise if @p create is non-zero create and return a new device
960  * class.
961  *
962  * If @p parentname is non-NULL, the parent of the devclass is set to
963  * the devclass of that name.
964  *
965  * @param classname	the devclass name to find or create
966  * @param parentname	the parent devclass name or @c NULL
967  * @param create	non-zero to create a devclass
968  */
969 static devclass_t
970 devclass_find_internal(const char *classname, const char *parentname,
971 		       int create)
972 {
973 	devclass_t dc;
974 
975 	PDEBUG(("looking for %s", classname));
976 	if (!classname)
977 		return (NULL);
978 
979 	TAILQ_FOREACH(dc, &devclasses, link) {
980 		if (!strcmp(dc->name, classname))
981 			break;
982 	}
983 
984 	if (create && !dc) {
985 		PDEBUG(("creating %s", classname));
986 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
987 		    M_BUS, M_NOWAIT | M_ZERO);
988 		if (!dc)
989 			return (NULL);
990 		dc->parent = NULL;
991 		dc->name = (char*) (dc + 1);
992 		strcpy(dc->name, classname);
993 		TAILQ_INIT(&dc->drivers);
994 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
995 
996 		bus_data_generation_update();
997 	}
998 
999 	/*
1000 	 * If a parent class is specified, then set that as our parent so
1001 	 * that this devclass will support drivers for the parent class as
1002 	 * well.  If the parent class has the same name don't do this though
1003 	 * as it creates a cycle that can trigger an infinite loop in
1004 	 * device_probe_child() if a device exists for which there is no
1005 	 * suitable driver.
1006 	 */
1007 	if (parentname && dc && !dc->parent &&
1008 	    strcmp(classname, parentname) != 0) {
1009 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1010 		dc->parent->flags |= DC_HAS_CHILDREN;
1011 	}
1012 
1013 	return (dc);
1014 }
1015 
1016 /**
1017  * @brief Create a device class
1018  *
1019  * If a device class with the name @p classname exists, return it,
1020  * otherwise create and return a new device class.
1021  *
1022  * @param classname	the devclass name to find or create
1023  */
1024 devclass_t
1025 devclass_create(const char *classname)
1026 {
1027 	return (devclass_find_internal(classname, NULL, TRUE));
1028 }
1029 
1030 /**
1031  * @brief Find a device class
1032  *
1033  * If a device class with the name @p classname exists, return it,
1034  * otherwise return @c NULL.
1035  *
1036  * @param classname	the devclass name to find
1037  */
1038 devclass_t
1039 devclass_find(const char *classname)
1040 {
1041 	return (devclass_find_internal(classname, NULL, FALSE));
1042 }
1043 
1044 /**
1045  * @brief Register that a device driver has been added to a devclass
1046  *
1047  * Register that a device driver has been added to a devclass.  This
1048  * is called by devclass_add_driver to accomplish the recursive
1049  * notification of all the children classes of dc, as well as dc.
1050  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1051  * the devclass.
1052  *
1053  * We do a full search here of the devclass list at each iteration
1054  * level to save storing children-lists in the devclass structure.  If
1055  * we ever move beyond a few dozen devices doing this, we may need to
1056  * reevaluate...
1057  *
1058  * @param dc		the devclass to edit
1059  * @param driver	the driver that was just added
1060  */
1061 static void
1062 devclass_driver_added(devclass_t dc, driver_t *driver)
1063 {
1064 	devclass_t parent;
1065 	int i;
1066 
1067 	/*
1068 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1069 	 */
1070 	for (i = 0; i < dc->maxunit; i++)
1071 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1072 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1073 
1074 	/*
1075 	 * Walk through the children classes.  Since we only keep a
1076 	 * single parent pointer around, we walk the entire list of
1077 	 * devclasses looking for children.  We set the
1078 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1079 	 * the parent, so we only walk the list for those devclasses
1080 	 * that have children.
1081 	 */
1082 	if (!(dc->flags & DC_HAS_CHILDREN))
1083 		return;
1084 	parent = dc;
1085 	TAILQ_FOREACH(dc, &devclasses, link) {
1086 		if (dc->parent == parent)
1087 			devclass_driver_added(dc, driver);
1088 	}
1089 }
1090 
1091 /**
1092  * @brief Add a device driver to a device class
1093  *
1094  * Add a device driver to a devclass. This is normally called
1095  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1096  * all devices in the devclass will be called to allow them to attempt
1097  * to re-probe any unmatched children.
1098  *
1099  * @param dc		the devclass to edit
1100  * @param driver	the driver to register
1101  */
1102 int
1103 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1104 {
1105 	driverlink_t dl;
1106 	const char *parentname;
1107 
1108 	PDEBUG(("%s", DRIVERNAME(driver)));
1109 
1110 	/* Don't allow invalid pass values. */
1111 	if (pass <= BUS_PASS_ROOT)
1112 		return (EINVAL);
1113 
1114 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1115 	if (!dl)
1116 		return (ENOMEM);
1117 
1118 	/*
1119 	 * Compile the driver's methods. Also increase the reference count
1120 	 * so that the class doesn't get freed when the last instance
1121 	 * goes. This means we can safely use static methods and avoids a
1122 	 * double-free in devclass_delete_driver.
1123 	 */
1124 	kobj_class_compile((kobj_class_t) driver);
1125 
1126 	/*
1127 	 * If the driver has any base classes, make the
1128 	 * devclass inherit from the devclass of the driver's
1129 	 * first base class. This will allow the system to
1130 	 * search for drivers in both devclasses for children
1131 	 * of a device using this driver.
1132 	 */
1133 	if (driver->baseclasses)
1134 		parentname = driver->baseclasses[0]->name;
1135 	else
1136 		parentname = NULL;
1137 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1138 
1139 	dl->driver = driver;
1140 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1141 	driver->refs++;		/* XXX: kobj_mtx */
1142 	dl->pass = pass;
1143 	driver_register_pass(dl);
1144 
1145 	devclass_driver_added(dc, driver);
1146 	bus_data_generation_update();
1147 	return (0);
1148 }
1149 
1150 /**
1151  * @brief Register that a device driver has been deleted from a devclass
1152  *
1153  * Register that a device driver has been removed from a devclass.
1154  * This is called by devclass_delete_driver to accomplish the
1155  * recursive notification of all the children classes of busclass, as
1156  * well as busclass.  Each layer will attempt to detach the driver
1157  * from any devices that are children of the bus's devclass.  The function
1158  * will return an error if a device fails to detach.
1159  *
1160  * We do a full search here of the devclass list at each iteration
1161  * level to save storing children-lists in the devclass structure.  If
1162  * we ever move beyond a few dozen devices doing this, we may need to
1163  * reevaluate...
1164  *
1165  * @param busclass	the devclass of the parent bus
1166  * @param dc		the devclass of the driver being deleted
1167  * @param driver	the driver being deleted
1168  */
1169 static int
1170 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1171 {
1172 	devclass_t parent;
1173 	device_t dev;
1174 	int error, i;
1175 
1176 	/*
1177 	 * Disassociate from any devices.  We iterate through all the
1178 	 * devices in the devclass of the driver and detach any which are
1179 	 * using the driver and which have a parent in the devclass which
1180 	 * we are deleting from.
1181 	 *
1182 	 * Note that since a driver can be in multiple devclasses, we
1183 	 * should not detach devices which are not children of devices in
1184 	 * the affected devclass.
1185 	 */
1186 	for (i = 0; i < dc->maxunit; i++) {
1187 		if (dc->devices[i]) {
1188 			dev = dc->devices[i];
1189 			if (dev->driver == driver && dev->parent &&
1190 			    dev->parent->devclass == busclass) {
1191 				if ((error = device_detach(dev)) != 0)
1192 					return (error);
1193 				BUS_PROBE_NOMATCH(dev->parent, dev);
1194 				devnomatch(dev);
1195 				dev->flags |= DF_DONENOMATCH;
1196 			}
1197 		}
1198 	}
1199 
1200 	/*
1201 	 * Walk through the children classes.  Since we only keep a
1202 	 * single parent pointer around, we walk the entire list of
1203 	 * devclasses looking for children.  We set the
1204 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1205 	 * the parent, so we only walk the list for those devclasses
1206 	 * that have children.
1207 	 */
1208 	if (!(busclass->flags & DC_HAS_CHILDREN))
1209 		return (0);
1210 	parent = busclass;
1211 	TAILQ_FOREACH(busclass, &devclasses, link) {
1212 		if (busclass->parent == parent) {
1213 			error = devclass_driver_deleted(busclass, dc, driver);
1214 			if (error)
1215 				return (error);
1216 		}
1217 	}
1218 	return (0);
1219 }
1220 
1221 /**
1222  * @brief Delete a device driver from a device class
1223  *
1224  * Delete a device driver from a devclass. This is normally called
1225  * automatically by DRIVER_MODULE().
1226  *
1227  * If the driver is currently attached to any devices,
1228  * devclass_delete_driver() will first attempt to detach from each
1229  * device. If one of the detach calls fails, the driver will not be
1230  * deleted.
1231  *
1232  * @param dc		the devclass to edit
1233  * @param driver	the driver to unregister
1234  */
1235 int
1236 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1237 {
1238 	devclass_t dc = devclass_find(driver->name);
1239 	driverlink_t dl;
1240 	int error;
1241 
1242 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1243 
1244 	if (!dc)
1245 		return (0);
1246 
1247 	/*
1248 	 * Find the link structure in the bus' list of drivers.
1249 	 */
1250 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1251 		if (dl->driver == driver)
1252 			break;
1253 	}
1254 
1255 	if (!dl) {
1256 		PDEBUG(("%s not found in %s list", driver->name,
1257 		    busclass->name));
1258 		return (ENOENT);
1259 	}
1260 
1261 	error = devclass_driver_deleted(busclass, dc, driver);
1262 	if (error != 0)
1263 		return (error);
1264 
1265 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1266 	free(dl, M_BUS);
1267 
1268 	/* XXX: kobj_mtx */
1269 	driver->refs--;
1270 	if (driver->refs == 0)
1271 		kobj_class_free((kobj_class_t) driver);
1272 
1273 	bus_data_generation_update();
1274 	return (0);
1275 }
1276 
1277 /**
1278  * @brief Quiesces a set of device drivers from a device class
1279  *
1280  * Quiesce a device driver from a devclass. This is normally called
1281  * automatically by DRIVER_MODULE().
1282  *
1283  * If the driver is currently attached to any devices,
1284  * devclass_quiesece_driver() will first attempt to quiesce each
1285  * device.
1286  *
1287  * @param dc		the devclass to edit
1288  * @param driver	the driver to unregister
1289  */
1290 static int
1291 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1292 {
1293 	devclass_t dc = devclass_find(driver->name);
1294 	driverlink_t dl;
1295 	device_t dev;
1296 	int i;
1297 	int error;
1298 
1299 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1300 
1301 	if (!dc)
1302 		return (0);
1303 
1304 	/*
1305 	 * Find the link structure in the bus' list of drivers.
1306 	 */
1307 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1308 		if (dl->driver == driver)
1309 			break;
1310 	}
1311 
1312 	if (!dl) {
1313 		PDEBUG(("%s not found in %s list", driver->name,
1314 		    busclass->name));
1315 		return (ENOENT);
1316 	}
1317 
1318 	/*
1319 	 * Quiesce all devices.  We iterate through all the devices in
1320 	 * the devclass of the driver and quiesce any which are using
1321 	 * the driver and which have a parent in the devclass which we
1322 	 * are quiescing.
1323 	 *
1324 	 * Note that since a driver can be in multiple devclasses, we
1325 	 * should not quiesce devices which are not children of
1326 	 * devices in the affected devclass.
1327 	 */
1328 	for (i = 0; i < dc->maxunit; i++) {
1329 		if (dc->devices[i]) {
1330 			dev = dc->devices[i];
1331 			if (dev->driver == driver && dev->parent &&
1332 			    dev->parent->devclass == busclass) {
1333 				if ((error = device_quiesce(dev)) != 0)
1334 					return (error);
1335 			}
1336 		}
1337 	}
1338 
1339 	return (0);
1340 }
1341 
1342 /**
1343  * @internal
1344  */
1345 static driverlink_t
1346 devclass_find_driver_internal(devclass_t dc, const char *classname)
1347 {
1348 	driverlink_t dl;
1349 
1350 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1351 
1352 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1353 		if (!strcmp(dl->driver->name, classname))
1354 			return (dl);
1355 	}
1356 
1357 	PDEBUG(("not found"));
1358 	return (NULL);
1359 }
1360 
1361 /**
1362  * @brief Return the name of the devclass
1363  */
1364 const char *
1365 devclass_get_name(devclass_t dc)
1366 {
1367 	return (dc->name);
1368 }
1369 
1370 /**
1371  * @brief Find a device given a unit number
1372  *
1373  * @param dc		the devclass to search
1374  * @param unit		the unit number to search for
1375  *
1376  * @returns		the device with the given unit number or @c
1377  *			NULL if there is no such device
1378  */
1379 device_t
1380 devclass_get_device(devclass_t dc, int unit)
1381 {
1382 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1383 		return (NULL);
1384 	return (dc->devices[unit]);
1385 }
1386 
1387 /**
1388  * @brief Find the softc field of a device given a unit number
1389  *
1390  * @param dc		the devclass to search
1391  * @param unit		the unit number to search for
1392  *
1393  * @returns		the softc field of the device with the given
1394  *			unit number or @c NULL if there is no such
1395  *			device
1396  */
1397 void *
1398 devclass_get_softc(devclass_t dc, int unit)
1399 {
1400 	device_t dev;
1401 
1402 	dev = devclass_get_device(dc, unit);
1403 	if (!dev)
1404 		return (NULL);
1405 
1406 	return (device_get_softc(dev));
1407 }
1408 
1409 /**
1410  * @brief Get a list of devices in the devclass
1411  *
1412  * An array containing a list of all the devices in the given devclass
1413  * is allocated and returned in @p *devlistp. The number of devices
1414  * in the array is returned in @p *devcountp. The caller should free
1415  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1416  *
1417  * @param dc		the devclass to examine
1418  * @param devlistp	points at location for array pointer return
1419  *			value
1420  * @param devcountp	points at location for array size return value
1421  *
1422  * @retval 0		success
1423  * @retval ENOMEM	the array allocation failed
1424  */
1425 int
1426 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1427 {
1428 	int count, i;
1429 	device_t *list;
1430 
1431 	count = devclass_get_count(dc);
1432 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1433 	if (!list)
1434 		return (ENOMEM);
1435 
1436 	count = 0;
1437 	for (i = 0; i < dc->maxunit; i++) {
1438 		if (dc->devices[i]) {
1439 			list[count] = dc->devices[i];
1440 			count++;
1441 		}
1442 	}
1443 
1444 	*devlistp = list;
1445 	*devcountp = count;
1446 
1447 	return (0);
1448 }
1449 
1450 /**
1451  * @brief Get a list of drivers in the devclass
1452  *
1453  * An array containing a list of pointers to all the drivers in the
1454  * given devclass is allocated and returned in @p *listp.  The number
1455  * of drivers in the array is returned in @p *countp. The caller should
1456  * free the array using @c free(p, M_TEMP).
1457  *
1458  * @param dc		the devclass to examine
1459  * @param listp		gives location for array pointer return value
1460  * @param countp	gives location for number of array elements
1461  *			return value
1462  *
1463  * @retval 0		success
1464  * @retval ENOMEM	the array allocation failed
1465  */
1466 int
1467 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1468 {
1469 	driverlink_t dl;
1470 	driver_t **list;
1471 	int count;
1472 
1473 	count = 0;
1474 	TAILQ_FOREACH(dl, &dc->drivers, link)
1475 		count++;
1476 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1477 	if (list == NULL)
1478 		return (ENOMEM);
1479 
1480 	count = 0;
1481 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1482 		list[count] = dl->driver;
1483 		count++;
1484 	}
1485 	*listp = list;
1486 	*countp = count;
1487 
1488 	return (0);
1489 }
1490 
1491 /**
1492  * @brief Get the number of devices in a devclass
1493  *
1494  * @param dc		the devclass to examine
1495  */
1496 int
1497 devclass_get_count(devclass_t dc)
1498 {
1499 	int count, i;
1500 
1501 	count = 0;
1502 	for (i = 0; i < dc->maxunit; i++)
1503 		if (dc->devices[i])
1504 			count++;
1505 	return (count);
1506 }
1507 
1508 /**
1509  * @brief Get the maximum unit number used in a devclass
1510  *
1511  * Note that this is one greater than the highest currently-allocated
1512  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1513  * that not even the devclass has been allocated yet.
1514  *
1515  * @param dc		the devclass to examine
1516  */
1517 int
1518 devclass_get_maxunit(devclass_t dc)
1519 {
1520 	if (dc == NULL)
1521 		return (-1);
1522 	return (dc->maxunit);
1523 }
1524 
1525 /**
1526  * @brief Find a free unit number in a devclass
1527  *
1528  * This function searches for the first unused unit number greater
1529  * that or equal to @p unit.
1530  *
1531  * @param dc		the devclass to examine
1532  * @param unit		the first unit number to check
1533  */
1534 int
1535 devclass_find_free_unit(devclass_t dc, int unit)
1536 {
1537 	if (dc == NULL)
1538 		return (unit);
1539 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1540 		unit++;
1541 	return (unit);
1542 }
1543 
1544 /**
1545  * @brief Set the parent of a devclass
1546  *
1547  * The parent class is normally initialised automatically by
1548  * DRIVER_MODULE().
1549  *
1550  * @param dc		the devclass to edit
1551  * @param pdc		the new parent devclass
1552  */
1553 void
1554 devclass_set_parent(devclass_t dc, devclass_t pdc)
1555 {
1556 	dc->parent = pdc;
1557 }
1558 
1559 /**
1560  * @brief Get the parent of a devclass
1561  *
1562  * @param dc		the devclass to examine
1563  */
1564 devclass_t
1565 devclass_get_parent(devclass_t dc)
1566 {
1567 	return (dc->parent);
1568 }
1569 
1570 struct sysctl_ctx_list *
1571 devclass_get_sysctl_ctx(devclass_t dc)
1572 {
1573 	return (&dc->sysctl_ctx);
1574 }
1575 
1576 struct sysctl_oid *
1577 devclass_get_sysctl_tree(devclass_t dc)
1578 {
1579 	return (dc->sysctl_tree);
1580 }
1581 
1582 /**
1583  * @internal
1584  * @brief Allocate a unit number
1585  *
1586  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1587  * will do). The allocated unit number is returned in @p *unitp.
1588 
1589  * @param dc		the devclass to allocate from
1590  * @param unitp		points at the location for the allocated unit
1591  *			number
1592  *
1593  * @retval 0		success
1594  * @retval EEXIST	the requested unit number is already allocated
1595  * @retval ENOMEM	memory allocation failure
1596  */
1597 static int
1598 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1599 {
1600 	const char *s;
1601 	int unit = *unitp;
1602 
1603 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1604 
1605 	/* Ask the parent bus if it wants to wire this device. */
1606 	if (unit == -1)
1607 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1608 		    &unit);
1609 
1610 	/* If we were given a wired unit number, check for existing device */
1611 	/* XXX imp XXX */
1612 	if (unit != -1) {
1613 		if (unit >= 0 && unit < dc->maxunit &&
1614 		    dc->devices[unit] != NULL) {
1615 			if (bootverbose)
1616 				printf("%s: %s%d already exists; skipping it\n",
1617 				    dc->name, dc->name, *unitp);
1618 			return (EEXIST);
1619 		}
1620 	} else {
1621 		/* Unwired device, find the next available slot for it */
1622 		unit = 0;
1623 		for (unit = 0;; unit++) {
1624 			/* If there is an "at" hint for a unit then skip it. */
1625 			if (resource_string_value(dc->name, unit, "at", &s) ==
1626 			    0)
1627 				continue;
1628 
1629 			/* If this device slot is already in use, skip it. */
1630 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1631 				continue;
1632 
1633 			break;
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * We've selected a unit beyond the length of the table, so let's
1639 	 * extend the table to make room for all units up to and including
1640 	 * this one.
1641 	 */
1642 	if (unit >= dc->maxunit) {
1643 		device_t *newlist, *oldlist;
1644 		int newsize;
1645 
1646 		oldlist = dc->devices;
1647 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1648 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1649 		if (!newlist)
1650 			return (ENOMEM);
1651 		if (oldlist != NULL)
1652 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1653 		bzero(newlist + dc->maxunit,
1654 		    sizeof(device_t) * (newsize - dc->maxunit));
1655 		dc->devices = newlist;
1656 		dc->maxunit = newsize;
1657 		if (oldlist != NULL)
1658 			free(oldlist, M_BUS);
1659 	}
1660 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1661 
1662 	*unitp = unit;
1663 	return (0);
1664 }
1665 
1666 /**
1667  * @internal
1668  * @brief Add a device to a devclass
1669  *
1670  * A unit number is allocated for the device (using the device's
1671  * preferred unit number if any) and the device is registered in the
1672  * devclass. This allows the device to be looked up by its unit
1673  * number, e.g. by decoding a dev_t minor number.
1674  *
1675  * @param dc		the devclass to add to
1676  * @param dev		the device to add
1677  *
1678  * @retval 0		success
1679  * @retval EEXIST	the requested unit number is already allocated
1680  * @retval ENOMEM	memory allocation failure
1681  */
1682 static int
1683 devclass_add_device(devclass_t dc, device_t dev)
1684 {
1685 	int buflen, error;
1686 
1687 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1688 
1689 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1690 	if (buflen < 0)
1691 		return (ENOMEM);
1692 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1693 	if (!dev->nameunit)
1694 		return (ENOMEM);
1695 
1696 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1697 		free(dev->nameunit, M_BUS);
1698 		dev->nameunit = NULL;
1699 		return (error);
1700 	}
1701 	dc->devices[dev->unit] = dev;
1702 	dev->devclass = dc;
1703 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1704 
1705 	return (0);
1706 }
1707 
1708 /**
1709  * @internal
1710  * @brief Delete a device from a devclass
1711  *
1712  * The device is removed from the devclass's device list and its unit
1713  * number is freed.
1714 
1715  * @param dc		the devclass to delete from
1716  * @param dev		the device to delete
1717  *
1718  * @retval 0		success
1719  */
1720 static int
1721 devclass_delete_device(devclass_t dc, device_t dev)
1722 {
1723 	if (!dc || !dev)
1724 		return (0);
1725 
1726 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1727 
1728 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1729 		panic("devclass_delete_device: inconsistent device class");
1730 	dc->devices[dev->unit] = NULL;
1731 	if (dev->flags & DF_WILDCARD)
1732 		dev->unit = -1;
1733 	dev->devclass = NULL;
1734 	free(dev->nameunit, M_BUS);
1735 	dev->nameunit = NULL;
1736 
1737 	return (0);
1738 }
1739 
1740 /**
1741  * @internal
1742  * @brief Make a new device and add it as a child of @p parent
1743  *
1744  * @param parent	the parent of the new device
1745  * @param name		the devclass name of the new device or @c NULL
1746  *			to leave the devclass unspecified
1747  * @parem unit		the unit number of the new device of @c -1 to
1748  *			leave the unit number unspecified
1749  *
1750  * @returns the new device
1751  */
1752 static device_t
1753 make_device(device_t parent, const char *name, int unit)
1754 {
1755 	device_t dev;
1756 	devclass_t dc;
1757 
1758 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1759 
1760 	if (name) {
1761 		dc = devclass_find_internal(name, NULL, TRUE);
1762 		if (!dc) {
1763 			printf("make_device: can't find device class %s\n",
1764 			    name);
1765 			return (NULL);
1766 		}
1767 	} else {
1768 		dc = NULL;
1769 	}
1770 
1771 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1772 	if (!dev)
1773 		return (NULL);
1774 
1775 	dev->parent = parent;
1776 	TAILQ_INIT(&dev->children);
1777 	kobj_init((kobj_t) dev, &null_class);
1778 	dev->driver = NULL;
1779 	dev->devclass = NULL;
1780 	dev->unit = unit;
1781 	dev->nameunit = NULL;
1782 	dev->desc = NULL;
1783 	dev->busy = 0;
1784 	dev->devflags = 0;
1785 	dev->flags = DF_ENABLED;
1786 	dev->order = 0;
1787 	if (unit == -1)
1788 		dev->flags |= DF_WILDCARD;
1789 	if (name) {
1790 		dev->flags |= DF_FIXEDCLASS;
1791 		if (devclass_add_device(dc, dev)) {
1792 			kobj_delete((kobj_t) dev, M_BUS);
1793 			return (NULL);
1794 		}
1795 	}
1796 	dev->ivars = NULL;
1797 	dev->softc = NULL;
1798 
1799 	dev->state = DS_NOTPRESENT;
1800 
1801 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1802 	bus_data_generation_update();
1803 
1804 	return (dev);
1805 }
1806 
1807 /**
1808  * @internal
1809  * @brief Print a description of a device.
1810  */
1811 static int
1812 device_print_child(device_t dev, device_t child)
1813 {
1814 	int retval = 0;
1815 
1816 	if (device_is_alive(child))
1817 		retval += BUS_PRINT_CHILD(dev, child);
1818 	else
1819 		retval += device_printf(child, " not found\n");
1820 
1821 	return (retval);
1822 }
1823 
1824 /**
1825  * @brief Create a new device
1826  *
1827  * This creates a new device and adds it as a child of an existing
1828  * parent device. The new device will be added after the last existing
1829  * child with order zero.
1830  *
1831  * @param dev		the device which will be the parent of the
1832  *			new child device
1833  * @param name		devclass name for new device or @c NULL if not
1834  *			specified
1835  * @param unit		unit number for new device or @c -1 if not
1836  *			specified
1837  *
1838  * @returns		the new device
1839  */
1840 device_t
1841 device_add_child(device_t dev, const char *name, int unit)
1842 {
1843 	return (device_add_child_ordered(dev, 0, name, unit));
1844 }
1845 
1846 /**
1847  * @brief Create a new device
1848  *
1849  * This creates a new device and adds it as a child of an existing
1850  * parent device. The new device will be added after the last existing
1851  * child with the same order.
1852  *
1853  * @param dev		the device which will be the parent of the
1854  *			new child device
1855  * @param order		a value which is used to partially sort the
1856  *			children of @p dev - devices created using
1857  *			lower values of @p order appear first in @p
1858  *			dev's list of children
1859  * @param name		devclass name for new device or @c NULL if not
1860  *			specified
1861  * @param unit		unit number for new device or @c -1 if not
1862  *			specified
1863  *
1864  * @returns		the new device
1865  */
1866 device_t
1867 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1868 {
1869 	device_t child;
1870 	device_t place;
1871 
1872 	PDEBUG(("%s at %s with order %u as unit %d",
1873 	    name, DEVICENAME(dev), order, unit));
1874 	KASSERT(name != NULL || unit == -1,
1875 	    ("child device with wildcard name and specific unit number"));
1876 
1877 	child = make_device(dev, name, unit);
1878 	if (child == NULL)
1879 		return (child);
1880 	child->order = order;
1881 
1882 	TAILQ_FOREACH(place, &dev->children, link) {
1883 		if (place->order > order)
1884 			break;
1885 	}
1886 
1887 	if (place) {
1888 		/*
1889 		 * The device 'place' is the first device whose order is
1890 		 * greater than the new child.
1891 		 */
1892 		TAILQ_INSERT_BEFORE(place, child, link);
1893 	} else {
1894 		/*
1895 		 * The new child's order is greater or equal to the order of
1896 		 * any existing device. Add the child to the tail of the list.
1897 		 */
1898 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1899 	}
1900 
1901 	bus_data_generation_update();
1902 	return (child);
1903 }
1904 
1905 /**
1906  * @brief Delete a device
1907  *
1908  * This function deletes a device along with all of its children. If
1909  * the device currently has a driver attached to it, the device is
1910  * detached first using device_detach().
1911  *
1912  * @param dev		the parent device
1913  * @param child		the device to delete
1914  *
1915  * @retval 0		success
1916  * @retval non-zero	a unit error code describing the error
1917  */
1918 int
1919 device_delete_child(device_t dev, device_t child)
1920 {
1921 	int error;
1922 	device_t grandchild;
1923 
1924 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1925 
1926 	/* remove children first */
1927 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1928 		error = device_delete_child(child, grandchild);
1929 		if (error)
1930 			return (error);
1931 	}
1932 
1933 	if ((error = device_detach(child)) != 0)
1934 		return (error);
1935 	if (child->devclass)
1936 		devclass_delete_device(child->devclass, child);
1937 	if (child->parent)
1938 		BUS_CHILD_DELETED(dev, child);
1939 	TAILQ_REMOVE(&dev->children, child, link);
1940 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1941 	kobj_delete((kobj_t) child, M_BUS);
1942 
1943 	bus_data_generation_update();
1944 	return (0);
1945 }
1946 
1947 /**
1948  * @brief Delete all children devices of the given device, if any.
1949  *
1950  * This function deletes all children devices of the given device, if
1951  * any, using the device_delete_child() function for each device it
1952  * finds. If a child device cannot be deleted, this function will
1953  * return an error code.
1954  *
1955  * @param dev		the parent device
1956  *
1957  * @retval 0		success
1958  * @retval non-zero	a device would not detach
1959  */
1960 int
1961 device_delete_children(device_t dev)
1962 {
1963 	device_t child;
1964 	int error;
1965 
1966 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1967 
1968 	error = 0;
1969 
1970 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1971 		error = device_delete_child(dev, child);
1972 		if (error) {
1973 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1974 			break;
1975 		}
1976 	}
1977 	return (error);
1978 }
1979 
1980 /**
1981  * @brief Find a device given a unit number
1982  *
1983  * This is similar to devclass_get_devices() but only searches for
1984  * devices which have @p dev as a parent.
1985  *
1986  * @param dev		the parent device to search
1987  * @param unit		the unit number to search for.  If the unit is -1,
1988  *			return the first child of @p dev which has name
1989  *			@p classname (that is, the one with the lowest unit.)
1990  *
1991  * @returns		the device with the given unit number or @c
1992  *			NULL if there is no such device
1993  */
1994 device_t
1995 device_find_child(device_t dev, const char *classname, int unit)
1996 {
1997 	devclass_t dc;
1998 	device_t child;
1999 
2000 	dc = devclass_find(classname);
2001 	if (!dc)
2002 		return (NULL);
2003 
2004 	if (unit != -1) {
2005 		child = devclass_get_device(dc, unit);
2006 		if (child && child->parent == dev)
2007 			return (child);
2008 	} else {
2009 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2010 			child = devclass_get_device(dc, unit);
2011 			if (child && child->parent == dev)
2012 				return (child);
2013 		}
2014 	}
2015 	return (NULL);
2016 }
2017 
2018 /**
2019  * @internal
2020  */
2021 static driverlink_t
2022 first_matching_driver(devclass_t dc, device_t dev)
2023 {
2024 	if (dev->devclass)
2025 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2026 	return (TAILQ_FIRST(&dc->drivers));
2027 }
2028 
2029 /**
2030  * @internal
2031  */
2032 static driverlink_t
2033 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2034 {
2035 	if (dev->devclass) {
2036 		driverlink_t dl;
2037 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2038 			if (!strcmp(dev->devclass->name, dl->driver->name))
2039 				return (dl);
2040 		return (NULL);
2041 	}
2042 	return (TAILQ_NEXT(last, link));
2043 }
2044 
2045 /**
2046  * @internal
2047  */
2048 int
2049 device_probe_child(device_t dev, device_t child)
2050 {
2051 	devclass_t dc;
2052 	driverlink_t best = NULL;
2053 	driverlink_t dl;
2054 	int result, pri = 0;
2055 	int hasclass = (child->devclass != NULL);
2056 
2057 	GIANT_REQUIRED;
2058 
2059 	dc = dev->devclass;
2060 	if (!dc)
2061 		panic("device_probe_child: parent device has no devclass");
2062 
2063 	/*
2064 	 * If the state is already probed, then return.  However, don't
2065 	 * return if we can rebid this object.
2066 	 */
2067 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2068 		return (0);
2069 
2070 	for (; dc; dc = dc->parent) {
2071 		for (dl = first_matching_driver(dc, child);
2072 		     dl;
2073 		     dl = next_matching_driver(dc, child, dl)) {
2074 			/* If this driver's pass is too high, then ignore it. */
2075 			if (dl->pass > bus_current_pass)
2076 				continue;
2077 
2078 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2079 			result = device_set_driver(child, dl->driver);
2080 			if (result == ENOMEM)
2081 				return (result);
2082 			else if (result != 0)
2083 				continue;
2084 			if (!hasclass) {
2085 				if (device_set_devclass(child,
2086 				    dl->driver->name) != 0) {
2087 					char const * devname =
2088 					    device_get_name(child);
2089 					if (devname == NULL)
2090 						devname = "(unknown)";
2091 					printf("driver bug: Unable to set "
2092 					    "devclass (class: %s "
2093 					    "devname: %s)\n",
2094 					    dl->driver->name,
2095 					    devname);
2096 					(void)device_set_driver(child, NULL);
2097 					continue;
2098 				}
2099 			}
2100 
2101 			/* Fetch any flags for the device before probing. */
2102 			resource_int_value(dl->driver->name, child->unit,
2103 			    "flags", &child->devflags);
2104 
2105 			result = DEVICE_PROBE(child);
2106 
2107 			/* Reset flags and devclass before the next probe. */
2108 			child->devflags = 0;
2109 			if (!hasclass)
2110 				(void)device_set_devclass(child, NULL);
2111 
2112 			/*
2113 			 * If the driver returns SUCCESS, there can be
2114 			 * no higher match for this device.
2115 			 */
2116 			if (result == 0) {
2117 				best = dl;
2118 				pri = 0;
2119 				break;
2120 			}
2121 
2122 			/*
2123 			 * The driver returned an error so it
2124 			 * certainly doesn't match.
2125 			 */
2126 			if (result > 0) {
2127 				(void)device_set_driver(child, NULL);
2128 				continue;
2129 			}
2130 
2131 			/*
2132 			 * A priority lower than SUCCESS, remember the
2133 			 * best matching driver. Initialise the value
2134 			 * of pri for the first match.
2135 			 */
2136 			if (best == NULL || result > pri) {
2137 				/*
2138 				 * Probes that return BUS_PROBE_NOWILDCARD
2139 				 * or lower only match on devices whose
2140 				 * driver was explicitly specified.
2141 				 */
2142 				if (result <= BUS_PROBE_NOWILDCARD &&
2143 				    !(child->flags & DF_FIXEDCLASS))
2144 					continue;
2145 				best = dl;
2146 				pri = result;
2147 				continue;
2148 			}
2149 		}
2150 		/*
2151 		 * If we have an unambiguous match in this devclass,
2152 		 * don't look in the parent.
2153 		 */
2154 		if (best && pri == 0)
2155 			break;
2156 	}
2157 
2158 	/*
2159 	 * If we found a driver, change state and initialise the devclass.
2160 	 */
2161 	/* XXX What happens if we rebid and got no best? */
2162 	if (best) {
2163 		/*
2164 		 * If this device was attached, and we were asked to
2165 		 * rescan, and it is a different driver, then we have
2166 		 * to detach the old driver and reattach this new one.
2167 		 * Note, we don't have to check for DF_REBID here
2168 		 * because if the state is > DS_ALIVE, we know it must
2169 		 * be.
2170 		 *
2171 		 * This assumes that all DF_REBID drivers can have
2172 		 * their probe routine called at any time and that
2173 		 * they are idempotent as well as completely benign in
2174 		 * normal operations.
2175 		 *
2176 		 * We also have to make sure that the detach
2177 		 * succeeded, otherwise we fail the operation (or
2178 		 * maybe it should just fail silently?  I'm torn).
2179 		 */
2180 		if (child->state > DS_ALIVE && best->driver != child->driver)
2181 			if ((result = device_detach(dev)) != 0)
2182 				return (result);
2183 
2184 		/* Set the winning driver, devclass, and flags. */
2185 		if (!child->devclass) {
2186 			result = device_set_devclass(child, best->driver->name);
2187 			if (result != 0)
2188 				return (result);
2189 		}
2190 		result = device_set_driver(child, best->driver);
2191 		if (result != 0)
2192 			return (result);
2193 		resource_int_value(best->driver->name, child->unit,
2194 		    "flags", &child->devflags);
2195 
2196 		if (pri < 0) {
2197 			/*
2198 			 * A bit bogus. Call the probe method again to make
2199 			 * sure that we have the right description.
2200 			 */
2201 			DEVICE_PROBE(child);
2202 #if 0
2203 			child->flags |= DF_REBID;
2204 #endif
2205 		} else
2206 			child->flags &= ~DF_REBID;
2207 		child->state = DS_ALIVE;
2208 
2209 		bus_data_generation_update();
2210 		return (0);
2211 	}
2212 
2213 	return (ENXIO);
2214 }
2215 
2216 /**
2217  * @brief Return the parent of a device
2218  */
2219 device_t
2220 device_get_parent(device_t dev)
2221 {
2222 	return (dev->parent);
2223 }
2224 
2225 /**
2226  * @brief Get a list of children of a device
2227  *
2228  * An array containing a list of all the children of the given device
2229  * is allocated and returned in @p *devlistp. The number of devices
2230  * in the array is returned in @p *devcountp. The caller should free
2231  * the array using @c free(p, M_TEMP).
2232  *
2233  * @param dev		the device to examine
2234  * @param devlistp	points at location for array pointer return
2235  *			value
2236  * @param devcountp	points at location for array size return value
2237  *
2238  * @retval 0		success
2239  * @retval ENOMEM	the array allocation failed
2240  */
2241 int
2242 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2243 {
2244 	int count;
2245 	device_t child;
2246 	device_t *list;
2247 
2248 	count = 0;
2249 	TAILQ_FOREACH(child, &dev->children, link) {
2250 		count++;
2251 	}
2252 	if (count == 0) {
2253 		*devlistp = NULL;
2254 		*devcountp = 0;
2255 		return (0);
2256 	}
2257 
2258 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2259 	if (!list)
2260 		return (ENOMEM);
2261 
2262 	count = 0;
2263 	TAILQ_FOREACH(child, &dev->children, link) {
2264 		list[count] = child;
2265 		count++;
2266 	}
2267 
2268 	*devlistp = list;
2269 	*devcountp = count;
2270 
2271 	return (0);
2272 }
2273 
2274 /**
2275  * @brief Return the current driver for the device or @c NULL if there
2276  * is no driver currently attached
2277  */
2278 driver_t *
2279 device_get_driver(device_t dev)
2280 {
2281 	return (dev->driver);
2282 }
2283 
2284 /**
2285  * @brief Return the current devclass for the device or @c NULL if
2286  * there is none.
2287  */
2288 devclass_t
2289 device_get_devclass(device_t dev)
2290 {
2291 	return (dev->devclass);
2292 }
2293 
2294 /**
2295  * @brief Return the name of the device's devclass or @c NULL if there
2296  * is none.
2297  */
2298 const char *
2299 device_get_name(device_t dev)
2300 {
2301 	if (dev != NULL && dev->devclass)
2302 		return (devclass_get_name(dev->devclass));
2303 	return (NULL);
2304 }
2305 
2306 /**
2307  * @brief Return a string containing the device's devclass name
2308  * followed by an ascii representation of the device's unit number
2309  * (e.g. @c "foo2").
2310  */
2311 const char *
2312 device_get_nameunit(device_t dev)
2313 {
2314 	return (dev->nameunit);
2315 }
2316 
2317 /**
2318  * @brief Return the device's unit number.
2319  */
2320 int
2321 device_get_unit(device_t dev)
2322 {
2323 	return (dev->unit);
2324 }
2325 
2326 /**
2327  * @brief Return the device's description string
2328  */
2329 const char *
2330 device_get_desc(device_t dev)
2331 {
2332 	return (dev->desc);
2333 }
2334 
2335 /**
2336  * @brief Return the device's flags
2337  */
2338 uint32_t
2339 device_get_flags(device_t dev)
2340 {
2341 	return (dev->devflags);
2342 }
2343 
2344 struct sysctl_ctx_list *
2345 device_get_sysctl_ctx(device_t dev)
2346 {
2347 	return (&dev->sysctl_ctx);
2348 }
2349 
2350 struct sysctl_oid *
2351 device_get_sysctl_tree(device_t dev)
2352 {
2353 	return (dev->sysctl_tree);
2354 }
2355 
2356 /**
2357  * @brief Print the name of the device followed by a colon and a space
2358  *
2359  * @returns the number of characters printed
2360  */
2361 int
2362 device_print_prettyname(device_t dev)
2363 {
2364 	const char *name = device_get_name(dev);
2365 
2366 	if (name == NULL)
2367 		return (printf("unknown: "));
2368 	return (printf("%s%d: ", name, device_get_unit(dev)));
2369 }
2370 
2371 /**
2372  * @brief Print the name of the device followed by a colon, a space
2373  * and the result of calling vprintf() with the value of @p fmt and
2374  * the following arguments.
2375  *
2376  * @returns the number of characters printed
2377  */
2378 int
2379 device_printf(device_t dev, const char * fmt, ...)
2380 {
2381 	va_list ap;
2382 	int retval;
2383 
2384 	retval = device_print_prettyname(dev);
2385 	va_start(ap, fmt);
2386 	retval += vprintf(fmt, ap);
2387 	va_end(ap);
2388 	return (retval);
2389 }
2390 
2391 /**
2392  * @internal
2393  */
2394 static void
2395 device_set_desc_internal(device_t dev, const char* desc, int copy)
2396 {
2397 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2398 		free(dev->desc, M_BUS);
2399 		dev->flags &= ~DF_DESCMALLOCED;
2400 		dev->desc = NULL;
2401 	}
2402 
2403 	if (copy && desc) {
2404 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2405 		if (dev->desc) {
2406 			strcpy(dev->desc, desc);
2407 			dev->flags |= DF_DESCMALLOCED;
2408 		}
2409 	} else {
2410 		/* Avoid a -Wcast-qual warning */
2411 		dev->desc = (char *)(uintptr_t) desc;
2412 	}
2413 
2414 	bus_data_generation_update();
2415 }
2416 
2417 /**
2418  * @brief Set the device's description
2419  *
2420  * The value of @c desc should be a string constant that will not
2421  * change (at least until the description is changed in a subsequent
2422  * call to device_set_desc() or device_set_desc_copy()).
2423  */
2424 void
2425 device_set_desc(device_t dev, const char* desc)
2426 {
2427 	device_set_desc_internal(dev, desc, FALSE);
2428 }
2429 
2430 /**
2431  * @brief Set the device's description
2432  *
2433  * The string pointed to by @c desc is copied. Use this function if
2434  * the device description is generated, (e.g. with sprintf()).
2435  */
2436 void
2437 device_set_desc_copy(device_t dev, const char* desc)
2438 {
2439 	device_set_desc_internal(dev, desc, TRUE);
2440 }
2441 
2442 /**
2443  * @brief Set the device's flags
2444  */
2445 void
2446 device_set_flags(device_t dev, uint32_t flags)
2447 {
2448 	dev->devflags = flags;
2449 }
2450 
2451 /**
2452  * @brief Return the device's softc field
2453  *
2454  * The softc is allocated and zeroed when a driver is attached, based
2455  * on the size field of the driver.
2456  */
2457 void *
2458 device_get_softc(device_t dev)
2459 {
2460 	return (dev->softc);
2461 }
2462 
2463 /**
2464  * @brief Set the device's softc field
2465  *
2466  * Most drivers do not need to use this since the softc is allocated
2467  * automatically when the driver is attached.
2468  */
2469 void
2470 device_set_softc(device_t dev, void *softc)
2471 {
2472 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2473 		free(dev->softc, M_BUS_SC);
2474 	dev->softc = softc;
2475 	if (dev->softc)
2476 		dev->flags |= DF_EXTERNALSOFTC;
2477 	else
2478 		dev->flags &= ~DF_EXTERNALSOFTC;
2479 }
2480 
2481 /**
2482  * @brief Free claimed softc
2483  *
2484  * Most drivers do not need to use this since the softc is freed
2485  * automatically when the driver is detached.
2486  */
2487 void
2488 device_free_softc(void *softc)
2489 {
2490 	free(softc, M_BUS_SC);
2491 }
2492 
2493 /**
2494  * @brief Claim softc
2495  *
2496  * This function can be used to let the driver free the automatically
2497  * allocated softc using "device_free_softc()". This function is
2498  * useful when the driver is refcounting the softc and the softc
2499  * cannot be freed when the "device_detach" method is called.
2500  */
2501 void
2502 device_claim_softc(device_t dev)
2503 {
2504 	if (dev->softc)
2505 		dev->flags |= DF_EXTERNALSOFTC;
2506 	else
2507 		dev->flags &= ~DF_EXTERNALSOFTC;
2508 }
2509 
2510 /**
2511  * @brief Get the device's ivars field
2512  *
2513  * The ivars field is used by the parent device to store per-device
2514  * state (e.g. the physical location of the device or a list of
2515  * resources).
2516  */
2517 void *
2518 device_get_ivars(device_t dev)
2519 {
2520 
2521 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2522 	return (dev->ivars);
2523 }
2524 
2525 /**
2526  * @brief Set the device's ivars field
2527  */
2528 void
2529 device_set_ivars(device_t dev, void * ivars)
2530 {
2531 
2532 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2533 	dev->ivars = ivars;
2534 }
2535 
2536 /**
2537  * @brief Return the device's state
2538  */
2539 device_state_t
2540 device_get_state(device_t dev)
2541 {
2542 	return (dev->state);
2543 }
2544 
2545 /**
2546  * @brief Set the DF_ENABLED flag for the device
2547  */
2548 void
2549 device_enable(device_t dev)
2550 {
2551 	dev->flags |= DF_ENABLED;
2552 }
2553 
2554 /**
2555  * @brief Clear the DF_ENABLED flag for the device
2556  */
2557 void
2558 device_disable(device_t dev)
2559 {
2560 	dev->flags &= ~DF_ENABLED;
2561 }
2562 
2563 /**
2564  * @brief Increment the busy counter for the device
2565  */
2566 void
2567 device_busy(device_t dev)
2568 {
2569 	if (dev->state < DS_ATTACHING)
2570 		panic("device_busy: called for unattached device");
2571 	if (dev->busy == 0 && dev->parent)
2572 		device_busy(dev->parent);
2573 	dev->busy++;
2574 	if (dev->state == DS_ATTACHED)
2575 		dev->state = DS_BUSY;
2576 }
2577 
2578 /**
2579  * @brief Decrement the busy counter for the device
2580  */
2581 void
2582 device_unbusy(device_t dev)
2583 {
2584 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2585 	    dev->state != DS_ATTACHING)
2586 		panic("device_unbusy: called for non-busy device %s",
2587 		    device_get_nameunit(dev));
2588 	dev->busy--;
2589 	if (dev->busy == 0) {
2590 		if (dev->parent)
2591 			device_unbusy(dev->parent);
2592 		if (dev->state == DS_BUSY)
2593 			dev->state = DS_ATTACHED;
2594 	}
2595 }
2596 
2597 /**
2598  * @brief Set the DF_QUIET flag for the device
2599  */
2600 void
2601 device_quiet(device_t dev)
2602 {
2603 	dev->flags |= DF_QUIET;
2604 }
2605 
2606 /**
2607  * @brief Clear the DF_QUIET flag for the device
2608  */
2609 void
2610 device_verbose(device_t dev)
2611 {
2612 	dev->flags &= ~DF_QUIET;
2613 }
2614 
2615 /**
2616  * @brief Return non-zero if the DF_QUIET flag is set on the device
2617  */
2618 int
2619 device_is_quiet(device_t dev)
2620 {
2621 	return ((dev->flags & DF_QUIET) != 0);
2622 }
2623 
2624 /**
2625  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2626  */
2627 int
2628 device_is_enabled(device_t dev)
2629 {
2630 	return ((dev->flags & DF_ENABLED) != 0);
2631 }
2632 
2633 /**
2634  * @brief Return non-zero if the device was successfully probed
2635  */
2636 int
2637 device_is_alive(device_t dev)
2638 {
2639 	return (dev->state >= DS_ALIVE);
2640 }
2641 
2642 /**
2643  * @brief Return non-zero if the device currently has a driver
2644  * attached to it
2645  */
2646 int
2647 device_is_attached(device_t dev)
2648 {
2649 	return (dev->state >= DS_ATTACHED);
2650 }
2651 
2652 /**
2653  * @brief Set the devclass of a device
2654  * @see devclass_add_device().
2655  */
2656 int
2657 device_set_devclass(device_t dev, const char *classname)
2658 {
2659 	devclass_t dc;
2660 	int error;
2661 
2662 	if (!classname) {
2663 		if (dev->devclass)
2664 			devclass_delete_device(dev->devclass, dev);
2665 		return (0);
2666 	}
2667 
2668 	if (dev->devclass) {
2669 		printf("device_set_devclass: device class already set\n");
2670 		return (EINVAL);
2671 	}
2672 
2673 	dc = devclass_find_internal(classname, NULL, TRUE);
2674 	if (!dc)
2675 		return (ENOMEM);
2676 
2677 	error = devclass_add_device(dc, dev);
2678 
2679 	bus_data_generation_update();
2680 	return (error);
2681 }
2682 
2683 /**
2684  * @brief Set the driver of a device
2685  *
2686  * @retval 0		success
2687  * @retval EBUSY	the device already has a driver attached
2688  * @retval ENOMEM	a memory allocation failure occurred
2689  */
2690 int
2691 device_set_driver(device_t dev, driver_t *driver)
2692 {
2693 	if (dev->state >= DS_ATTACHED)
2694 		return (EBUSY);
2695 
2696 	if (dev->driver == driver)
2697 		return (0);
2698 
2699 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2700 		free(dev->softc, M_BUS_SC);
2701 		dev->softc = NULL;
2702 	}
2703 	device_set_desc(dev, NULL);
2704 	kobj_delete((kobj_t) dev, NULL);
2705 	dev->driver = driver;
2706 	if (driver) {
2707 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2708 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2709 			dev->softc = malloc(driver->size, M_BUS_SC,
2710 			    M_NOWAIT | M_ZERO);
2711 			if (!dev->softc) {
2712 				kobj_delete((kobj_t) dev, NULL);
2713 				kobj_init((kobj_t) dev, &null_class);
2714 				dev->driver = NULL;
2715 				return (ENOMEM);
2716 			}
2717 		}
2718 	} else {
2719 		kobj_init((kobj_t) dev, &null_class);
2720 	}
2721 
2722 	bus_data_generation_update();
2723 	return (0);
2724 }
2725 
2726 /**
2727  * @brief Probe a device, and return this status.
2728  *
2729  * This function is the core of the device autoconfiguration
2730  * system. Its purpose is to select a suitable driver for a device and
2731  * then call that driver to initialise the hardware appropriately. The
2732  * driver is selected by calling the DEVICE_PROBE() method of a set of
2733  * candidate drivers and then choosing the driver which returned the
2734  * best value. This driver is then attached to the device using
2735  * device_attach().
2736  *
2737  * The set of suitable drivers is taken from the list of drivers in
2738  * the parent device's devclass. If the device was originally created
2739  * with a specific class name (see device_add_child()), only drivers
2740  * with that name are probed, otherwise all drivers in the devclass
2741  * are probed. If no drivers return successful probe values in the
2742  * parent devclass, the search continues in the parent of that
2743  * devclass (see devclass_get_parent()) if any.
2744  *
2745  * @param dev		the device to initialise
2746  *
2747  * @retval 0		success
2748  * @retval ENXIO	no driver was found
2749  * @retval ENOMEM	memory allocation failure
2750  * @retval non-zero	some other unix error code
2751  * @retval -1		Device already attached
2752  */
2753 int
2754 device_probe(device_t dev)
2755 {
2756 	int error;
2757 
2758 	GIANT_REQUIRED;
2759 
2760 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2761 		return (-1);
2762 
2763 	if (!(dev->flags & DF_ENABLED)) {
2764 		if (bootverbose && device_get_name(dev) != NULL) {
2765 			device_print_prettyname(dev);
2766 			printf("not probed (disabled)\n");
2767 		}
2768 		return (-1);
2769 	}
2770 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2771 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2772 		    !(dev->flags & DF_DONENOMATCH)) {
2773 			BUS_PROBE_NOMATCH(dev->parent, dev);
2774 			devnomatch(dev);
2775 			dev->flags |= DF_DONENOMATCH;
2776 		}
2777 		return (error);
2778 	}
2779 	return (0);
2780 }
2781 
2782 /**
2783  * @brief Probe a device and attach a driver if possible
2784  *
2785  * calls device_probe() and attaches if that was successful.
2786  */
2787 int
2788 device_probe_and_attach(device_t dev)
2789 {
2790 	int error;
2791 
2792 	GIANT_REQUIRED;
2793 
2794 	error = device_probe(dev);
2795 	if (error == -1)
2796 		return (0);
2797 	else if (error != 0)
2798 		return (error);
2799 
2800 	CURVNET_SET_QUIET(vnet0);
2801 	error = device_attach(dev);
2802 	CURVNET_RESTORE();
2803 	return error;
2804 }
2805 
2806 /**
2807  * @brief Attach a device driver to a device
2808  *
2809  * This function is a wrapper around the DEVICE_ATTACH() driver
2810  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2811  * device's sysctl tree, optionally prints a description of the device
2812  * and queues a notification event for user-based device management
2813  * services.
2814  *
2815  * Normally this function is only called internally from
2816  * device_probe_and_attach().
2817  *
2818  * @param dev		the device to initialise
2819  *
2820  * @retval 0		success
2821  * @retval ENXIO	no driver was found
2822  * @retval ENOMEM	memory allocation failure
2823  * @retval non-zero	some other unix error code
2824  */
2825 int
2826 device_attach(device_t dev)
2827 {
2828 	uint64_t attachtime;
2829 	int error;
2830 
2831 	if (resource_disabled(dev->driver->name, dev->unit)) {
2832 		device_disable(dev);
2833 		if (bootverbose)
2834 			 device_printf(dev, "disabled via hints entry\n");
2835 		return (ENXIO);
2836 	}
2837 
2838 	device_sysctl_init(dev);
2839 	if (!device_is_quiet(dev))
2840 		device_print_child(dev->parent, dev);
2841 	attachtime = get_cyclecount();
2842 	dev->state = DS_ATTACHING;
2843 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2844 		printf("device_attach: %s%d attach returned %d\n",
2845 		    dev->driver->name, dev->unit, error);
2846 		if (!(dev->flags & DF_FIXEDCLASS))
2847 			devclass_delete_device(dev->devclass, dev);
2848 		(void)device_set_driver(dev, NULL);
2849 		device_sysctl_fini(dev);
2850 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2851 		dev->state = DS_NOTPRESENT;
2852 		return (error);
2853 	}
2854 	attachtime = get_cyclecount() - attachtime;
2855 	/*
2856 	 * 4 bits per device is a reasonable value for desktop and server
2857 	 * hardware with good get_cyclecount() implementations, but may
2858 	 * need to be adjusted on other platforms.
2859 	 */
2860 #ifdef RANDOM_DEBUG
2861 	printf("random: %s(): feeding %d bit(s) of entropy from %s%d\n",
2862 	    __func__, 4, dev->driver->name, dev->unit);
2863 #endif
2864 	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2865 	device_sysctl_update(dev);
2866 	if (dev->busy)
2867 		dev->state = DS_BUSY;
2868 	else
2869 		dev->state = DS_ATTACHED;
2870 	dev->flags &= ~DF_DONENOMATCH;
2871 	devadded(dev);
2872 	return (0);
2873 }
2874 
2875 /**
2876  * @brief Detach a driver from a device
2877  *
2878  * This function is a wrapper around the DEVICE_DETACH() driver
2879  * method. If the call to DEVICE_DETACH() succeeds, it calls
2880  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2881  * notification event for user-based device management services and
2882  * cleans up the device's sysctl tree.
2883  *
2884  * @param dev		the device to un-initialise
2885  *
2886  * @retval 0		success
2887  * @retval ENXIO	no driver was found
2888  * @retval ENOMEM	memory allocation failure
2889  * @retval non-zero	some other unix error code
2890  */
2891 int
2892 device_detach(device_t dev)
2893 {
2894 	int error;
2895 
2896 	GIANT_REQUIRED;
2897 
2898 	PDEBUG(("%s", DEVICENAME(dev)));
2899 	if (dev->state == DS_BUSY)
2900 		return (EBUSY);
2901 	if (dev->state != DS_ATTACHED)
2902 		return (0);
2903 
2904 	if ((error = DEVICE_DETACH(dev)) != 0)
2905 		return (error);
2906 	devremoved(dev);
2907 	if (!device_is_quiet(dev))
2908 		device_printf(dev, "detached\n");
2909 	if (dev->parent)
2910 		BUS_CHILD_DETACHED(dev->parent, dev);
2911 
2912 	if (!(dev->flags & DF_FIXEDCLASS))
2913 		devclass_delete_device(dev->devclass, dev);
2914 
2915 	dev->state = DS_NOTPRESENT;
2916 	(void)device_set_driver(dev, NULL);
2917 	device_sysctl_fini(dev);
2918 
2919 	return (0);
2920 }
2921 
2922 /**
2923  * @brief Tells a driver to quiesce itself.
2924  *
2925  * This function is a wrapper around the DEVICE_QUIESCE() driver
2926  * method. If the call to DEVICE_QUIESCE() succeeds.
2927  *
2928  * @param dev		the device to quiesce
2929  *
2930  * @retval 0		success
2931  * @retval ENXIO	no driver was found
2932  * @retval ENOMEM	memory allocation failure
2933  * @retval non-zero	some other unix error code
2934  */
2935 int
2936 device_quiesce(device_t dev)
2937 {
2938 
2939 	PDEBUG(("%s", DEVICENAME(dev)));
2940 	if (dev->state == DS_BUSY)
2941 		return (EBUSY);
2942 	if (dev->state != DS_ATTACHED)
2943 		return (0);
2944 
2945 	return (DEVICE_QUIESCE(dev));
2946 }
2947 
2948 /**
2949  * @brief Notify a device of system shutdown
2950  *
2951  * This function calls the DEVICE_SHUTDOWN() driver method if the
2952  * device currently has an attached driver.
2953  *
2954  * @returns the value returned by DEVICE_SHUTDOWN()
2955  */
2956 int
2957 device_shutdown(device_t dev)
2958 {
2959 	if (dev->state < DS_ATTACHED)
2960 		return (0);
2961 	return (DEVICE_SHUTDOWN(dev));
2962 }
2963 
2964 /**
2965  * @brief Set the unit number of a device
2966  *
2967  * This function can be used to override the unit number used for a
2968  * device (e.g. to wire a device to a pre-configured unit number).
2969  */
2970 int
2971 device_set_unit(device_t dev, int unit)
2972 {
2973 	devclass_t dc;
2974 	int err;
2975 
2976 	dc = device_get_devclass(dev);
2977 	if (unit < dc->maxunit && dc->devices[unit])
2978 		return (EBUSY);
2979 	err = devclass_delete_device(dc, dev);
2980 	if (err)
2981 		return (err);
2982 	dev->unit = unit;
2983 	err = devclass_add_device(dc, dev);
2984 	if (err)
2985 		return (err);
2986 
2987 	bus_data_generation_update();
2988 	return (0);
2989 }
2990 
2991 /*======================================*/
2992 /*
2993  * Some useful method implementations to make life easier for bus drivers.
2994  */
2995 
2996 /**
2997  * @brief Initialise a resource list.
2998  *
2999  * @param rl		the resource list to initialise
3000  */
3001 void
3002 resource_list_init(struct resource_list *rl)
3003 {
3004 	STAILQ_INIT(rl);
3005 }
3006 
3007 /**
3008  * @brief Reclaim memory used by a resource list.
3009  *
3010  * This function frees the memory for all resource entries on the list
3011  * (if any).
3012  *
3013  * @param rl		the resource list to free
3014  */
3015 void
3016 resource_list_free(struct resource_list *rl)
3017 {
3018 	struct resource_list_entry *rle;
3019 
3020 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3021 		if (rle->res)
3022 			panic("resource_list_free: resource entry is busy");
3023 		STAILQ_REMOVE_HEAD(rl, link);
3024 		free(rle, M_BUS);
3025 	}
3026 }
3027 
3028 /**
3029  * @brief Add a resource entry.
3030  *
3031  * This function adds a resource entry using the given @p type, @p
3032  * start, @p end and @p count values. A rid value is chosen by
3033  * searching sequentially for the first unused rid starting at zero.
3034  *
3035  * @param rl		the resource list to edit
3036  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3037  * @param start		the start address of the resource
3038  * @param end		the end address of the resource
3039  * @param count		XXX end-start+1
3040  */
3041 int
3042 resource_list_add_next(struct resource_list *rl, int type, u_long start,
3043     u_long end, u_long count)
3044 {
3045 	int rid;
3046 
3047 	rid = 0;
3048 	while (resource_list_find(rl, type, rid) != NULL)
3049 		rid++;
3050 	resource_list_add(rl, type, rid, start, end, count);
3051 	return (rid);
3052 }
3053 
3054 /**
3055  * @brief Add or modify a resource entry.
3056  *
3057  * If an existing entry exists with the same type and rid, it will be
3058  * modified using the given values of @p start, @p end and @p
3059  * count. If no entry exists, a new one will be created using the
3060  * given values.  The resource list entry that matches is then returned.
3061  *
3062  * @param rl		the resource list to edit
3063  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3064  * @param rid		the resource identifier
3065  * @param start		the start address of the resource
3066  * @param end		the end address of the resource
3067  * @param count		XXX end-start+1
3068  */
3069 struct resource_list_entry *
3070 resource_list_add(struct resource_list *rl, int type, int rid,
3071     u_long start, u_long end, u_long count)
3072 {
3073 	struct resource_list_entry *rle;
3074 
3075 	rle = resource_list_find(rl, type, rid);
3076 	if (!rle) {
3077 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3078 		    M_NOWAIT);
3079 		if (!rle)
3080 			panic("resource_list_add: can't record entry");
3081 		STAILQ_INSERT_TAIL(rl, rle, link);
3082 		rle->type = type;
3083 		rle->rid = rid;
3084 		rle->res = NULL;
3085 		rle->flags = 0;
3086 	}
3087 
3088 	if (rle->res)
3089 		panic("resource_list_add: resource entry is busy");
3090 
3091 	rle->start = start;
3092 	rle->end = end;
3093 	rle->count = count;
3094 	return (rle);
3095 }
3096 
3097 /**
3098  * @brief Determine if a resource entry is busy.
3099  *
3100  * Returns true if a resource entry is busy meaning that it has an
3101  * associated resource that is not an unallocated "reserved" resource.
3102  *
3103  * @param rl		the resource list to search
3104  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3105  * @param rid		the resource identifier
3106  *
3107  * @returns Non-zero if the entry is busy, zero otherwise.
3108  */
3109 int
3110 resource_list_busy(struct resource_list *rl, int type, int rid)
3111 {
3112 	struct resource_list_entry *rle;
3113 
3114 	rle = resource_list_find(rl, type, rid);
3115 	if (rle == NULL || rle->res == NULL)
3116 		return (0);
3117 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3118 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3119 		    ("reserved resource is active"));
3120 		return (0);
3121 	}
3122 	return (1);
3123 }
3124 
3125 /**
3126  * @brief Determine if a resource entry is reserved.
3127  *
3128  * Returns true if a resource entry is reserved meaning that it has an
3129  * associated "reserved" resource.  The resource can either be
3130  * allocated or unallocated.
3131  *
3132  * @param rl		the resource list to search
3133  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3134  * @param rid		the resource identifier
3135  *
3136  * @returns Non-zero if the entry is reserved, zero otherwise.
3137  */
3138 int
3139 resource_list_reserved(struct resource_list *rl, int type, int rid)
3140 {
3141 	struct resource_list_entry *rle;
3142 
3143 	rle = resource_list_find(rl, type, rid);
3144 	if (rle != NULL && rle->flags & RLE_RESERVED)
3145 		return (1);
3146 	return (0);
3147 }
3148 
3149 /**
3150  * @brief Find a resource entry by type and rid.
3151  *
3152  * @param rl		the resource list to search
3153  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3154  * @param rid		the resource identifier
3155  *
3156  * @returns the resource entry pointer or NULL if there is no such
3157  * entry.
3158  */
3159 struct resource_list_entry *
3160 resource_list_find(struct resource_list *rl, int type, int rid)
3161 {
3162 	struct resource_list_entry *rle;
3163 
3164 	STAILQ_FOREACH(rle, rl, link) {
3165 		if (rle->type == type && rle->rid == rid)
3166 			return (rle);
3167 	}
3168 	return (NULL);
3169 }
3170 
3171 /**
3172  * @brief Delete a resource entry.
3173  *
3174  * @param rl		the resource list to edit
3175  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3176  * @param rid		the resource identifier
3177  */
3178 void
3179 resource_list_delete(struct resource_list *rl, int type, int rid)
3180 {
3181 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3182 
3183 	if (rle) {
3184 		if (rle->res != NULL)
3185 			panic("resource_list_delete: resource has not been released");
3186 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3187 		free(rle, M_BUS);
3188 	}
3189 }
3190 
3191 /**
3192  * @brief Allocate a reserved resource
3193  *
3194  * This can be used by busses to force the allocation of resources
3195  * that are always active in the system even if they are not allocated
3196  * by a driver (e.g. PCI BARs).  This function is usually called when
3197  * adding a new child to the bus.  The resource is allocated from the
3198  * parent bus when it is reserved.  The resource list entry is marked
3199  * with RLE_RESERVED to note that it is a reserved resource.
3200  *
3201  * Subsequent attempts to allocate the resource with
3202  * resource_list_alloc() will succeed the first time and will set
3203  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3204  * resource that has been allocated is released with
3205  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3206  * the actual resource remains allocated.  The resource can be released to
3207  * the parent bus by calling resource_list_unreserve().
3208  *
3209  * @param rl		the resource list to allocate from
3210  * @param bus		the parent device of @p child
3211  * @param child		the device for which the resource is being reserved
3212  * @param type		the type of resource to allocate
3213  * @param rid		a pointer to the resource identifier
3214  * @param start		hint at the start of the resource range - pass
3215  *			@c 0UL for any start address
3216  * @param end		hint at the end of the resource range - pass
3217  *			@c ~0UL for any end address
3218  * @param count		hint at the size of range required - pass @c 1
3219  *			for any size
3220  * @param flags		any extra flags to control the resource
3221  *			allocation - see @c RF_XXX flags in
3222  *			<sys/rman.h> for details
3223  *
3224  * @returns		the resource which was allocated or @c NULL if no
3225  *			resource could be allocated
3226  */
3227 struct resource *
3228 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3229     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3230 {
3231 	struct resource_list_entry *rle = NULL;
3232 	int passthrough = (device_get_parent(child) != bus);
3233 	struct resource *r;
3234 
3235 	if (passthrough)
3236 		panic(
3237     "resource_list_reserve() should only be called for direct children");
3238 	if (flags & RF_ACTIVE)
3239 		panic(
3240     "resource_list_reserve() should only reserve inactive resources");
3241 
3242 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3243 	    flags);
3244 	if (r != NULL) {
3245 		rle = resource_list_find(rl, type, *rid);
3246 		rle->flags |= RLE_RESERVED;
3247 	}
3248 	return (r);
3249 }
3250 
3251 /**
3252  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3253  *
3254  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3255  * and passing the allocation up to the parent of @p bus. This assumes
3256  * that the first entry of @c device_get_ivars(child) is a struct
3257  * resource_list. This also handles 'passthrough' allocations where a
3258  * child is a remote descendant of bus by passing the allocation up to
3259  * the parent of bus.
3260  *
3261  * Typically, a bus driver would store a list of child resources
3262  * somewhere in the child device's ivars (see device_get_ivars()) and
3263  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3264  * then call resource_list_alloc() to perform the allocation.
3265  *
3266  * @param rl		the resource list to allocate from
3267  * @param bus		the parent device of @p child
3268  * @param child		the device which is requesting an allocation
3269  * @param type		the type of resource to allocate
3270  * @param rid		a pointer to the resource identifier
3271  * @param start		hint at the start of the resource range - pass
3272  *			@c 0UL for any start address
3273  * @param end		hint at the end of the resource range - pass
3274  *			@c ~0UL for any end address
3275  * @param count		hint at the size of range required - pass @c 1
3276  *			for any size
3277  * @param flags		any extra flags to control the resource
3278  *			allocation - see @c RF_XXX flags in
3279  *			<sys/rman.h> for details
3280  *
3281  * @returns		the resource which was allocated or @c NULL if no
3282  *			resource could be allocated
3283  */
3284 struct resource *
3285 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3286     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3287 {
3288 	struct resource_list_entry *rle = NULL;
3289 	int passthrough = (device_get_parent(child) != bus);
3290 	int isdefault = (start == 0UL && end == ~0UL);
3291 
3292 	if (passthrough) {
3293 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3294 		    type, rid, start, end, count, flags));
3295 	}
3296 
3297 	rle = resource_list_find(rl, type, *rid);
3298 
3299 	if (!rle)
3300 		return (NULL);		/* no resource of that type/rid */
3301 
3302 	if (rle->res) {
3303 		if (rle->flags & RLE_RESERVED) {
3304 			if (rle->flags & RLE_ALLOCATED)
3305 				return (NULL);
3306 			if ((flags & RF_ACTIVE) &&
3307 			    bus_activate_resource(child, type, *rid,
3308 			    rle->res) != 0)
3309 				return (NULL);
3310 			rle->flags |= RLE_ALLOCATED;
3311 			return (rle->res);
3312 		}
3313 		device_printf(bus,
3314 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3315 		    type, device_get_nameunit(child));
3316 		return (NULL);
3317 	}
3318 
3319 	if (isdefault) {
3320 		start = rle->start;
3321 		count = ulmax(count, rle->count);
3322 		end = ulmax(rle->end, start + count - 1);
3323 	}
3324 
3325 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3326 	    type, rid, start, end, count, flags);
3327 
3328 	/*
3329 	 * Record the new range.
3330 	 */
3331 	if (rle->res) {
3332 		rle->start = rman_get_start(rle->res);
3333 		rle->end = rman_get_end(rle->res);
3334 		rle->count = count;
3335 	}
3336 
3337 	return (rle->res);
3338 }
3339 
3340 /**
3341  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3342  *
3343  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3344  * used with resource_list_alloc().
3345  *
3346  * @param rl		the resource list which was allocated from
3347  * @param bus		the parent device of @p child
3348  * @param child		the device which is requesting a release
3349  * @param type		the type of resource to release
3350  * @param rid		the resource identifier
3351  * @param res		the resource to release
3352  *
3353  * @retval 0		success
3354  * @retval non-zero	a standard unix error code indicating what
3355  *			error condition prevented the operation
3356  */
3357 int
3358 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3359     int type, int rid, struct resource *res)
3360 {
3361 	struct resource_list_entry *rle = NULL;
3362 	int passthrough = (device_get_parent(child) != bus);
3363 	int error;
3364 
3365 	if (passthrough) {
3366 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3367 		    type, rid, res));
3368 	}
3369 
3370 	rle = resource_list_find(rl, type, rid);
3371 
3372 	if (!rle)
3373 		panic("resource_list_release: can't find resource");
3374 	if (!rle->res)
3375 		panic("resource_list_release: resource entry is not busy");
3376 	if (rle->flags & RLE_RESERVED) {
3377 		if (rle->flags & RLE_ALLOCATED) {
3378 			if (rman_get_flags(res) & RF_ACTIVE) {
3379 				error = bus_deactivate_resource(child, type,
3380 				    rid, res);
3381 				if (error)
3382 					return (error);
3383 			}
3384 			rle->flags &= ~RLE_ALLOCATED;
3385 			return (0);
3386 		}
3387 		return (EINVAL);
3388 	}
3389 
3390 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3391 	    type, rid, res);
3392 	if (error)
3393 		return (error);
3394 
3395 	rle->res = NULL;
3396 	return (0);
3397 }
3398 
3399 /**
3400  * @brief Release all active resources of a given type
3401  *
3402  * Release all active resources of a specified type.  This is intended
3403  * to be used to cleanup resources leaked by a driver after detach or
3404  * a failed attach.
3405  *
3406  * @param rl		the resource list which was allocated from
3407  * @param bus		the parent device of @p child
3408  * @param child		the device whose active resources are being released
3409  * @param type		the type of resources to release
3410  *
3411  * @retval 0		success
3412  * @retval EBUSY	at least one resource was active
3413  */
3414 int
3415 resource_list_release_active(struct resource_list *rl, device_t bus,
3416     device_t child, int type)
3417 {
3418 	struct resource_list_entry *rle;
3419 	int error, retval;
3420 
3421 	retval = 0;
3422 	STAILQ_FOREACH(rle, rl, link) {
3423 		if (rle->type != type)
3424 			continue;
3425 		if (rle->res == NULL)
3426 			continue;
3427 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3428 		    RLE_RESERVED)
3429 			continue;
3430 		retval = EBUSY;
3431 		error = resource_list_release(rl, bus, child, type,
3432 		    rman_get_rid(rle->res), rle->res);
3433 		if (error != 0)
3434 			device_printf(bus,
3435 			    "Failed to release active resource: %d\n", error);
3436 	}
3437 	return (retval);
3438 }
3439 
3440 
3441 /**
3442  * @brief Fully release a reserved resource
3443  *
3444  * Fully releases a resource reserved via resource_list_reserve().
3445  *
3446  * @param rl		the resource list which was allocated from
3447  * @param bus		the parent device of @p child
3448  * @param child		the device whose reserved resource is being released
3449  * @param type		the type of resource to release
3450  * @param rid		the resource identifier
3451  * @param res		the resource to release
3452  *
3453  * @retval 0		success
3454  * @retval non-zero	a standard unix error code indicating what
3455  *			error condition prevented the operation
3456  */
3457 int
3458 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3459     int type, int rid)
3460 {
3461 	struct resource_list_entry *rle = NULL;
3462 	int passthrough = (device_get_parent(child) != bus);
3463 
3464 	if (passthrough)
3465 		panic(
3466     "resource_list_unreserve() should only be called for direct children");
3467 
3468 	rle = resource_list_find(rl, type, rid);
3469 
3470 	if (!rle)
3471 		panic("resource_list_unreserve: can't find resource");
3472 	if (!(rle->flags & RLE_RESERVED))
3473 		return (EINVAL);
3474 	if (rle->flags & RLE_ALLOCATED)
3475 		return (EBUSY);
3476 	rle->flags &= ~RLE_RESERVED;
3477 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3478 }
3479 
3480 /**
3481  * @brief Print a description of resources in a resource list
3482  *
3483  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3484  * The name is printed if at least one resource of the given type is available.
3485  * The format is used to print resource start and end.
3486  *
3487  * @param rl		the resource list to print
3488  * @param name		the name of @p type, e.g. @c "memory"
3489  * @param type		type type of resource entry to print
3490  * @param format	printf(9) format string to print resource
3491  *			start and end values
3492  *
3493  * @returns		the number of characters printed
3494  */
3495 int
3496 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3497     const char *format)
3498 {
3499 	struct resource_list_entry *rle;
3500 	int printed, retval;
3501 
3502 	printed = 0;
3503 	retval = 0;
3504 	/* Yes, this is kinda cheating */
3505 	STAILQ_FOREACH(rle, rl, link) {
3506 		if (rle->type == type) {
3507 			if (printed == 0)
3508 				retval += printf(" %s ", name);
3509 			else
3510 				retval += printf(",");
3511 			printed++;
3512 			retval += printf(format, rle->start);
3513 			if (rle->count > 1) {
3514 				retval += printf("-");
3515 				retval += printf(format, rle->start +
3516 						 rle->count - 1);
3517 			}
3518 		}
3519 	}
3520 	return (retval);
3521 }
3522 
3523 /**
3524  * @brief Releases all the resources in a list.
3525  *
3526  * @param rl		The resource list to purge.
3527  *
3528  * @returns		nothing
3529  */
3530 void
3531 resource_list_purge(struct resource_list *rl)
3532 {
3533 	struct resource_list_entry *rle;
3534 
3535 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3536 		if (rle->res)
3537 			bus_release_resource(rman_get_device(rle->res),
3538 			    rle->type, rle->rid, rle->res);
3539 		STAILQ_REMOVE_HEAD(rl, link);
3540 		free(rle, M_BUS);
3541 	}
3542 }
3543 
3544 device_t
3545 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3546 {
3547 
3548 	return (device_add_child_ordered(dev, order, name, unit));
3549 }
3550 
3551 /**
3552  * @brief Helper function for implementing DEVICE_PROBE()
3553  *
3554  * This function can be used to help implement the DEVICE_PROBE() for
3555  * a bus (i.e. a device which has other devices attached to it). It
3556  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3557  * devclass.
3558  */
3559 int
3560 bus_generic_probe(device_t dev)
3561 {
3562 	devclass_t dc = dev->devclass;
3563 	driverlink_t dl;
3564 
3565 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3566 		/*
3567 		 * If this driver's pass is too high, then ignore it.
3568 		 * For most drivers in the default pass, this will
3569 		 * never be true.  For early-pass drivers they will
3570 		 * only call the identify routines of eligible drivers
3571 		 * when this routine is called.  Drivers for later
3572 		 * passes should have their identify routines called
3573 		 * on early-pass busses during BUS_NEW_PASS().
3574 		 */
3575 		if (dl->pass > bus_current_pass)
3576 			continue;
3577 		DEVICE_IDENTIFY(dl->driver, dev);
3578 	}
3579 
3580 	return (0);
3581 }
3582 
3583 /**
3584  * @brief Helper function for implementing DEVICE_ATTACH()
3585  *
3586  * This function can be used to help implement the DEVICE_ATTACH() for
3587  * a bus. It calls device_probe_and_attach() for each of the device's
3588  * children.
3589  */
3590 int
3591 bus_generic_attach(device_t dev)
3592 {
3593 	device_t child;
3594 
3595 	TAILQ_FOREACH(child, &dev->children, link) {
3596 		device_probe_and_attach(child);
3597 	}
3598 
3599 	return (0);
3600 }
3601 
3602 /**
3603  * @brief Helper function for implementing DEVICE_DETACH()
3604  *
3605  * This function can be used to help implement the DEVICE_DETACH() for
3606  * a bus. It calls device_detach() for each of the device's
3607  * children.
3608  */
3609 int
3610 bus_generic_detach(device_t dev)
3611 {
3612 	device_t child;
3613 	int error;
3614 
3615 	if (dev->state != DS_ATTACHED)
3616 		return (EBUSY);
3617 
3618 	TAILQ_FOREACH(child, &dev->children, link) {
3619 		if ((error = device_detach(child)) != 0)
3620 			return (error);
3621 	}
3622 
3623 	return (0);
3624 }
3625 
3626 /**
3627  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3628  *
3629  * This function can be used to help implement the DEVICE_SHUTDOWN()
3630  * for a bus. It calls device_shutdown() for each of the device's
3631  * children.
3632  */
3633 int
3634 bus_generic_shutdown(device_t dev)
3635 {
3636 	device_t child;
3637 
3638 	TAILQ_FOREACH(child, &dev->children, link) {
3639 		device_shutdown(child);
3640 	}
3641 
3642 	return (0);
3643 }
3644 
3645 /**
3646  * @brief Default function for suspending a child device.
3647  *
3648  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3649  */
3650 int
3651 bus_generic_suspend_child(device_t dev, device_t child)
3652 {
3653 	int	error;
3654 
3655 	error = DEVICE_SUSPEND(child);
3656 
3657 	if (error == 0)
3658 		dev->flags |= DF_SUSPENDED;
3659 
3660 	return (error);
3661 }
3662 
3663 /**
3664  * @brief Default function for resuming a child device.
3665  *
3666  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3667  */
3668 int
3669 bus_generic_resume_child(device_t dev, device_t child)
3670 {
3671 
3672 	DEVICE_RESUME(child);
3673 	dev->flags &= ~DF_SUSPENDED;
3674 
3675 	return (0);
3676 }
3677 
3678 /**
3679  * @brief Helper function for implementing DEVICE_SUSPEND()
3680  *
3681  * This function can be used to help implement the DEVICE_SUSPEND()
3682  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3683  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3684  * operation is aborted and any devices which were suspended are
3685  * resumed immediately by calling their DEVICE_RESUME() methods.
3686  */
3687 int
3688 bus_generic_suspend(device_t dev)
3689 {
3690 	int		error;
3691 	device_t	child, child2;
3692 
3693 	TAILQ_FOREACH(child, &dev->children, link) {
3694 		error = BUS_SUSPEND_CHILD(dev, child);
3695 		if (error) {
3696 			for (child2 = TAILQ_FIRST(&dev->children);
3697 			     child2 && child2 != child;
3698 			     child2 = TAILQ_NEXT(child2, link))
3699 				BUS_RESUME_CHILD(dev, child2);
3700 			return (error);
3701 		}
3702 	}
3703 	return (0);
3704 }
3705 
3706 /**
3707  * @brief Helper function for implementing DEVICE_RESUME()
3708  *
3709  * This function can be used to help implement the DEVICE_RESUME() for
3710  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3711  */
3712 int
3713 bus_generic_resume(device_t dev)
3714 {
3715 	device_t	child;
3716 
3717 	TAILQ_FOREACH(child, &dev->children, link) {
3718 		BUS_RESUME_CHILD(dev, child);
3719 		/* if resume fails, there's nothing we can usefully do... */
3720 	}
3721 	return (0);
3722 }
3723 
3724 /**
3725  * @brief Helper function for implementing BUS_PRINT_CHILD().
3726  *
3727  * This function prints the first part of the ascii representation of
3728  * @p child, including its name, unit and description (if any - see
3729  * device_set_desc()).
3730  *
3731  * @returns the number of characters printed
3732  */
3733 int
3734 bus_print_child_header(device_t dev, device_t child)
3735 {
3736 	int	retval = 0;
3737 
3738 	if (device_get_desc(child)) {
3739 		retval += device_printf(child, "<%s>", device_get_desc(child));
3740 	} else {
3741 		retval += printf("%s", device_get_nameunit(child));
3742 	}
3743 
3744 	return (retval);
3745 }
3746 
3747 /**
3748  * @brief Helper function for implementing BUS_PRINT_CHILD().
3749  *
3750  * This function prints the last part of the ascii representation of
3751  * @p child, which consists of the string @c " on " followed by the
3752  * name and unit of the @p dev.
3753  *
3754  * @returns the number of characters printed
3755  */
3756 int
3757 bus_print_child_footer(device_t dev, device_t child)
3758 {
3759 	return (printf(" on %s\n", device_get_nameunit(dev)));
3760 }
3761 
3762 /**
3763  * @brief Helper function for implementing BUS_PRINT_CHILD().
3764  *
3765  * This function prints out the VM domain for the given device.
3766  *
3767  * @returns the number of characters printed
3768  */
3769 int
3770 bus_print_child_domain(device_t dev, device_t child)
3771 {
3772 	int domain;
3773 
3774 	/* No domain? Don't print anything */
3775 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3776 		return (0);
3777 
3778 	return (printf(" numa-domain %d", domain));
3779 }
3780 
3781 /**
3782  * @brief Helper function for implementing BUS_PRINT_CHILD().
3783  *
3784  * This function simply calls bus_print_child_header() followed by
3785  * bus_print_child_footer().
3786  *
3787  * @returns the number of characters printed
3788  */
3789 int
3790 bus_generic_print_child(device_t dev, device_t child)
3791 {
3792 	int	retval = 0;
3793 
3794 	retval += bus_print_child_header(dev, child);
3795 	retval += bus_print_child_domain(dev, child);
3796 	retval += bus_print_child_footer(dev, child);
3797 
3798 	return (retval);
3799 }
3800 
3801 /**
3802  * @brief Stub function for implementing BUS_READ_IVAR().
3803  *
3804  * @returns ENOENT
3805  */
3806 int
3807 bus_generic_read_ivar(device_t dev, device_t child, int index,
3808     uintptr_t * result)
3809 {
3810 	return (ENOENT);
3811 }
3812 
3813 /**
3814  * @brief Stub function for implementing BUS_WRITE_IVAR().
3815  *
3816  * @returns ENOENT
3817  */
3818 int
3819 bus_generic_write_ivar(device_t dev, device_t child, int index,
3820     uintptr_t value)
3821 {
3822 	return (ENOENT);
3823 }
3824 
3825 /**
3826  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3827  *
3828  * @returns NULL
3829  */
3830 struct resource_list *
3831 bus_generic_get_resource_list(device_t dev, device_t child)
3832 {
3833 	return (NULL);
3834 }
3835 
3836 /**
3837  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3838  *
3839  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3840  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3841  * and then calls device_probe_and_attach() for each unattached child.
3842  */
3843 void
3844 bus_generic_driver_added(device_t dev, driver_t *driver)
3845 {
3846 	device_t child;
3847 
3848 	DEVICE_IDENTIFY(driver, dev);
3849 	TAILQ_FOREACH(child, &dev->children, link) {
3850 		if (child->state == DS_NOTPRESENT ||
3851 		    (child->flags & DF_REBID))
3852 			device_probe_and_attach(child);
3853 	}
3854 }
3855 
3856 /**
3857  * @brief Helper function for implementing BUS_NEW_PASS().
3858  *
3859  * This implementing of BUS_NEW_PASS() first calls the identify
3860  * routines for any drivers that probe at the current pass.  Then it
3861  * walks the list of devices for this bus.  If a device is already
3862  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3863  * device is not already attached, it attempts to attach a driver to
3864  * it.
3865  */
3866 void
3867 bus_generic_new_pass(device_t dev)
3868 {
3869 	driverlink_t dl;
3870 	devclass_t dc;
3871 	device_t child;
3872 
3873 	dc = dev->devclass;
3874 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3875 		if (dl->pass == bus_current_pass)
3876 			DEVICE_IDENTIFY(dl->driver, dev);
3877 	}
3878 	TAILQ_FOREACH(child, &dev->children, link) {
3879 		if (child->state >= DS_ATTACHED)
3880 			BUS_NEW_PASS(child);
3881 		else if (child->state == DS_NOTPRESENT)
3882 			device_probe_and_attach(child);
3883 	}
3884 }
3885 
3886 /**
3887  * @brief Helper function for implementing BUS_SETUP_INTR().
3888  *
3889  * This simple implementation of BUS_SETUP_INTR() simply calls the
3890  * BUS_SETUP_INTR() method of the parent of @p dev.
3891  */
3892 int
3893 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3894     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3895     void **cookiep)
3896 {
3897 	/* Propagate up the bus hierarchy until someone handles it. */
3898 	if (dev->parent)
3899 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3900 		    filter, intr, arg, cookiep));
3901 	return (EINVAL);
3902 }
3903 
3904 /**
3905  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3906  *
3907  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3908  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3909  */
3910 int
3911 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3912     void *cookie)
3913 {
3914 	/* Propagate up the bus hierarchy until someone handles it. */
3915 	if (dev->parent)
3916 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3917 	return (EINVAL);
3918 }
3919 
3920 /**
3921  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3922  *
3923  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3924  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3925  */
3926 int
3927 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3928     struct resource *r, u_long start, u_long end)
3929 {
3930 	/* Propagate up the bus hierarchy until someone handles it. */
3931 	if (dev->parent)
3932 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3933 		    end));
3934 	return (EINVAL);
3935 }
3936 
3937 /**
3938  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3939  *
3940  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3941  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3942  */
3943 struct resource *
3944 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3945     u_long start, u_long end, u_long count, u_int flags)
3946 {
3947 	/* Propagate up the bus hierarchy until someone handles it. */
3948 	if (dev->parent)
3949 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3950 		    start, end, count, flags));
3951 	return (NULL);
3952 }
3953 
3954 /**
3955  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3956  *
3957  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3958  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3959  */
3960 int
3961 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3962     struct resource *r)
3963 {
3964 	/* Propagate up the bus hierarchy until someone handles it. */
3965 	if (dev->parent)
3966 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3967 		    r));
3968 	return (EINVAL);
3969 }
3970 
3971 /**
3972  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3973  *
3974  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3975  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3976  */
3977 int
3978 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3979     struct resource *r)
3980 {
3981 	/* Propagate up the bus hierarchy until someone handles it. */
3982 	if (dev->parent)
3983 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3984 		    r));
3985 	return (EINVAL);
3986 }
3987 
3988 /**
3989  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3990  *
3991  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3992  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3993  */
3994 int
3995 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3996     int rid, struct resource *r)
3997 {
3998 	/* Propagate up the bus hierarchy until someone handles it. */
3999 	if (dev->parent)
4000 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4001 		    r));
4002 	return (EINVAL);
4003 }
4004 
4005 /**
4006  * @brief Helper function for implementing BUS_BIND_INTR().
4007  *
4008  * This simple implementation of BUS_BIND_INTR() simply calls the
4009  * BUS_BIND_INTR() method of the parent of @p dev.
4010  */
4011 int
4012 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4013     int cpu)
4014 {
4015 
4016 	/* Propagate up the bus hierarchy until someone handles it. */
4017 	if (dev->parent)
4018 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4019 	return (EINVAL);
4020 }
4021 
4022 /**
4023  * @brief Helper function for implementing BUS_CONFIG_INTR().
4024  *
4025  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4026  * BUS_CONFIG_INTR() method of the parent of @p dev.
4027  */
4028 int
4029 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4030     enum intr_polarity pol)
4031 {
4032 
4033 	/* Propagate up the bus hierarchy until someone handles it. */
4034 	if (dev->parent)
4035 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4036 	return (EINVAL);
4037 }
4038 
4039 /**
4040  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4041  *
4042  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4043  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4044  */
4045 int
4046 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4047     void *cookie, const char *descr)
4048 {
4049 
4050 	/* Propagate up the bus hierarchy until someone handles it. */
4051 	if (dev->parent)
4052 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4053 		    descr));
4054 	return (EINVAL);
4055 }
4056 
4057 /**
4058  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4059  *
4060  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4061  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4062  */
4063 bus_dma_tag_t
4064 bus_generic_get_dma_tag(device_t dev, device_t child)
4065 {
4066 
4067 	/* Propagate up the bus hierarchy until someone handles it. */
4068 	if (dev->parent != NULL)
4069 		return (BUS_GET_DMA_TAG(dev->parent, child));
4070 	return (NULL);
4071 }
4072 
4073 /**
4074  * @brief Helper function for implementing BUS_GET_RESOURCE().
4075  *
4076  * This implementation of BUS_GET_RESOURCE() uses the
4077  * resource_list_find() function to do most of the work. It calls
4078  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4079  * search.
4080  */
4081 int
4082 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4083     u_long *startp, u_long *countp)
4084 {
4085 	struct resource_list *		rl = NULL;
4086 	struct resource_list_entry *	rle = NULL;
4087 
4088 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4089 	if (!rl)
4090 		return (EINVAL);
4091 
4092 	rle = resource_list_find(rl, type, rid);
4093 	if (!rle)
4094 		return (ENOENT);
4095 
4096 	if (startp)
4097 		*startp = rle->start;
4098 	if (countp)
4099 		*countp = rle->count;
4100 
4101 	return (0);
4102 }
4103 
4104 /**
4105  * @brief Helper function for implementing BUS_SET_RESOURCE().
4106  *
4107  * This implementation of BUS_SET_RESOURCE() uses the
4108  * resource_list_add() function to do most of the work. It calls
4109  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4110  * edit.
4111  */
4112 int
4113 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4114     u_long start, u_long count)
4115 {
4116 	struct resource_list *		rl = NULL;
4117 
4118 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4119 	if (!rl)
4120 		return (EINVAL);
4121 
4122 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4123 
4124 	return (0);
4125 }
4126 
4127 /**
4128  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4129  *
4130  * This implementation of BUS_DELETE_RESOURCE() uses the
4131  * resource_list_delete() function to do most of the work. It calls
4132  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4133  * edit.
4134  */
4135 void
4136 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4137 {
4138 	struct resource_list *		rl = NULL;
4139 
4140 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4141 	if (!rl)
4142 		return;
4143 
4144 	resource_list_delete(rl, type, rid);
4145 
4146 	return;
4147 }
4148 
4149 /**
4150  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4151  *
4152  * This implementation of BUS_RELEASE_RESOURCE() uses the
4153  * resource_list_release() function to do most of the work. It calls
4154  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4155  */
4156 int
4157 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4158     int rid, struct resource *r)
4159 {
4160 	struct resource_list *		rl = NULL;
4161 
4162 	if (device_get_parent(child) != dev)
4163 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4164 		    type, rid, r));
4165 
4166 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4167 	if (!rl)
4168 		return (EINVAL);
4169 
4170 	return (resource_list_release(rl, dev, child, type, rid, r));
4171 }
4172 
4173 /**
4174  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4175  *
4176  * This implementation of BUS_ALLOC_RESOURCE() uses the
4177  * resource_list_alloc() function to do most of the work. It calls
4178  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4179  */
4180 struct resource *
4181 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4182     int *rid, u_long start, u_long end, u_long count, u_int flags)
4183 {
4184 	struct resource_list *		rl = NULL;
4185 
4186 	if (device_get_parent(child) != dev)
4187 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4188 		    type, rid, start, end, count, flags));
4189 
4190 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4191 	if (!rl)
4192 		return (NULL);
4193 
4194 	return (resource_list_alloc(rl, dev, child, type, rid,
4195 	    start, end, count, flags));
4196 }
4197 
4198 /**
4199  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4200  *
4201  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4202  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4203  */
4204 int
4205 bus_generic_child_present(device_t dev, device_t child)
4206 {
4207 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4208 }
4209 
4210 int
4211 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4212 {
4213 
4214 	if (dev->parent)
4215 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4216 
4217 	return (ENOENT);
4218 }
4219 
4220 /*
4221  * Some convenience functions to make it easier for drivers to use the
4222  * resource-management functions.  All these really do is hide the
4223  * indirection through the parent's method table, making for slightly
4224  * less-wordy code.  In the future, it might make sense for this code
4225  * to maintain some sort of a list of resources allocated by each device.
4226  */
4227 
4228 int
4229 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4230     struct resource **res)
4231 {
4232 	int i;
4233 
4234 	for (i = 0; rs[i].type != -1; i++)
4235 		res[i] = NULL;
4236 	for (i = 0; rs[i].type != -1; i++) {
4237 		res[i] = bus_alloc_resource_any(dev,
4238 		    rs[i].type, &rs[i].rid, rs[i].flags);
4239 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4240 			bus_release_resources(dev, rs, res);
4241 			return (ENXIO);
4242 		}
4243 	}
4244 	return (0);
4245 }
4246 
4247 void
4248 bus_release_resources(device_t dev, const struct resource_spec *rs,
4249     struct resource **res)
4250 {
4251 	int i;
4252 
4253 	for (i = 0; rs[i].type != -1; i++)
4254 		if (res[i] != NULL) {
4255 			bus_release_resource(
4256 			    dev, rs[i].type, rs[i].rid, res[i]);
4257 			res[i] = NULL;
4258 		}
4259 }
4260 
4261 /**
4262  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4263  *
4264  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4265  * parent of @p dev.
4266  */
4267 struct resource *
4268 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4269     u_long count, u_int flags)
4270 {
4271 	if (dev->parent == NULL)
4272 		return (NULL);
4273 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4274 	    count, flags));
4275 }
4276 
4277 /**
4278  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4279  *
4280  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4281  * parent of @p dev.
4282  */
4283 int
4284 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4285     u_long end)
4286 {
4287 	if (dev->parent == NULL)
4288 		return (EINVAL);
4289 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4290 }
4291 
4292 /**
4293  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4294  *
4295  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4296  * parent of @p dev.
4297  */
4298 int
4299 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4300 {
4301 	if (dev->parent == NULL)
4302 		return (EINVAL);
4303 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4304 }
4305 
4306 /**
4307  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4308  *
4309  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4310  * parent of @p dev.
4311  */
4312 int
4313 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4314 {
4315 	if (dev->parent == NULL)
4316 		return (EINVAL);
4317 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4318 }
4319 
4320 /**
4321  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4322  *
4323  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4324  * parent of @p dev.
4325  */
4326 int
4327 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4328 {
4329 	if (dev->parent == NULL)
4330 		return (EINVAL);
4331 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4332 }
4333 
4334 /**
4335  * @brief Wrapper function for BUS_SETUP_INTR().
4336  *
4337  * This function simply calls the BUS_SETUP_INTR() method of the
4338  * parent of @p dev.
4339  */
4340 int
4341 bus_setup_intr(device_t dev, struct resource *r, int flags,
4342     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4343 {
4344 	int error;
4345 
4346 	if (dev->parent == NULL)
4347 		return (EINVAL);
4348 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4349 	    arg, cookiep);
4350 	if (error != 0)
4351 		return (error);
4352 	if (handler != NULL && !(flags & INTR_MPSAFE))
4353 		device_printf(dev, "[GIANT-LOCKED]\n");
4354 	return (0);
4355 }
4356 
4357 /**
4358  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4359  *
4360  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4361  * parent of @p dev.
4362  */
4363 int
4364 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4365 {
4366 	if (dev->parent == NULL)
4367 		return (EINVAL);
4368 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4369 }
4370 
4371 /**
4372  * @brief Wrapper function for BUS_BIND_INTR().
4373  *
4374  * This function simply calls the BUS_BIND_INTR() method of the
4375  * parent of @p dev.
4376  */
4377 int
4378 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4379 {
4380 	if (dev->parent == NULL)
4381 		return (EINVAL);
4382 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4383 }
4384 
4385 /**
4386  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4387  *
4388  * This function first formats the requested description into a
4389  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4390  * the parent of @p dev.
4391  */
4392 int
4393 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4394     const char *fmt, ...)
4395 {
4396 	va_list ap;
4397 	char descr[MAXCOMLEN + 1];
4398 
4399 	if (dev->parent == NULL)
4400 		return (EINVAL);
4401 	va_start(ap, fmt);
4402 	vsnprintf(descr, sizeof(descr), fmt, ap);
4403 	va_end(ap);
4404 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4405 }
4406 
4407 /**
4408  * @brief Wrapper function for BUS_SET_RESOURCE().
4409  *
4410  * This function simply calls the BUS_SET_RESOURCE() method of the
4411  * parent of @p dev.
4412  */
4413 int
4414 bus_set_resource(device_t dev, int type, int rid,
4415     u_long start, u_long count)
4416 {
4417 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4418 	    start, count));
4419 }
4420 
4421 /**
4422  * @brief Wrapper function for BUS_GET_RESOURCE().
4423  *
4424  * This function simply calls the BUS_GET_RESOURCE() method of the
4425  * parent of @p dev.
4426  */
4427 int
4428 bus_get_resource(device_t dev, int type, int rid,
4429     u_long *startp, u_long *countp)
4430 {
4431 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4432 	    startp, countp));
4433 }
4434 
4435 /**
4436  * @brief Wrapper function for BUS_GET_RESOURCE().
4437  *
4438  * This function simply calls the BUS_GET_RESOURCE() method of the
4439  * parent of @p dev and returns the start value.
4440  */
4441 u_long
4442 bus_get_resource_start(device_t dev, int type, int rid)
4443 {
4444 	u_long start, count;
4445 	int error;
4446 
4447 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4448 	    &start, &count);
4449 	if (error)
4450 		return (0);
4451 	return (start);
4452 }
4453 
4454 /**
4455  * @brief Wrapper function for BUS_GET_RESOURCE().
4456  *
4457  * This function simply calls the BUS_GET_RESOURCE() method of the
4458  * parent of @p dev and returns the count value.
4459  */
4460 u_long
4461 bus_get_resource_count(device_t dev, int type, int rid)
4462 {
4463 	u_long start, count;
4464 	int error;
4465 
4466 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4467 	    &start, &count);
4468 	if (error)
4469 		return (0);
4470 	return (count);
4471 }
4472 
4473 /**
4474  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4475  *
4476  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4477  * parent of @p dev.
4478  */
4479 void
4480 bus_delete_resource(device_t dev, int type, int rid)
4481 {
4482 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4483 }
4484 
4485 /**
4486  * @brief Wrapper function for BUS_CHILD_PRESENT().
4487  *
4488  * This function simply calls the BUS_CHILD_PRESENT() method of the
4489  * parent of @p dev.
4490  */
4491 int
4492 bus_child_present(device_t child)
4493 {
4494 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4495 }
4496 
4497 /**
4498  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4499  *
4500  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4501  * parent of @p dev.
4502  */
4503 int
4504 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4505 {
4506 	device_t parent;
4507 
4508 	parent = device_get_parent(child);
4509 	if (parent == NULL) {
4510 		*buf = '\0';
4511 		return (0);
4512 	}
4513 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4514 }
4515 
4516 /**
4517  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4518  *
4519  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4520  * parent of @p dev.
4521  */
4522 int
4523 bus_child_location_str(device_t child, char *buf, size_t buflen)
4524 {
4525 	device_t parent;
4526 
4527 	parent = device_get_parent(child);
4528 	if (parent == NULL) {
4529 		*buf = '\0';
4530 		return (0);
4531 	}
4532 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4533 }
4534 
4535 /**
4536  * @brief Wrapper function for BUS_GET_DMA_TAG().
4537  *
4538  * This function simply calls the BUS_GET_DMA_TAG() method of the
4539  * parent of @p dev.
4540  */
4541 bus_dma_tag_t
4542 bus_get_dma_tag(device_t dev)
4543 {
4544 	device_t parent;
4545 
4546 	parent = device_get_parent(dev);
4547 	if (parent == NULL)
4548 		return (NULL);
4549 	return (BUS_GET_DMA_TAG(parent, dev));
4550 }
4551 
4552 /**
4553  * @brief Wrapper function for BUS_GET_DOMAIN().
4554  *
4555  * This function simply calls the BUS_GET_DOMAIN() method of the
4556  * parent of @p dev.
4557  */
4558 int
4559 bus_get_domain(device_t dev, int *domain)
4560 {
4561 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4562 }
4563 
4564 /* Resume all devices and then notify userland that we're up again. */
4565 static int
4566 root_resume(device_t dev)
4567 {
4568 	int error;
4569 
4570 	error = bus_generic_resume(dev);
4571 	if (error == 0)
4572 		devctl_notify("kern", "power", "resume", NULL);
4573 	return (error);
4574 }
4575 
4576 static int
4577 root_print_child(device_t dev, device_t child)
4578 {
4579 	int	retval = 0;
4580 
4581 	retval += bus_print_child_header(dev, child);
4582 	retval += printf("\n");
4583 
4584 	return (retval);
4585 }
4586 
4587 static int
4588 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4589     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4590 {
4591 	/*
4592 	 * If an interrupt mapping gets to here something bad has happened.
4593 	 */
4594 	panic("root_setup_intr");
4595 }
4596 
4597 /*
4598  * If we get here, assume that the device is permanant and really is
4599  * present in the system.  Removable bus drivers are expected to intercept
4600  * this call long before it gets here.  We return -1 so that drivers that
4601  * really care can check vs -1 or some ERRNO returned higher in the food
4602  * chain.
4603  */
4604 static int
4605 root_child_present(device_t dev, device_t child)
4606 {
4607 	return (-1);
4608 }
4609 
4610 static kobj_method_t root_methods[] = {
4611 	/* Device interface */
4612 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4613 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4614 	KOBJMETHOD(device_resume,	root_resume),
4615 
4616 	/* Bus interface */
4617 	KOBJMETHOD(bus_print_child,	root_print_child),
4618 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4619 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4620 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4621 	KOBJMETHOD(bus_child_present,	root_child_present),
4622 
4623 	KOBJMETHOD_END
4624 };
4625 
4626 static driver_t root_driver = {
4627 	"root",
4628 	root_methods,
4629 	1,			/* no softc */
4630 };
4631 
4632 device_t	root_bus;
4633 devclass_t	root_devclass;
4634 
4635 static int
4636 root_bus_module_handler(module_t mod, int what, void* arg)
4637 {
4638 	switch (what) {
4639 	case MOD_LOAD:
4640 		TAILQ_INIT(&bus_data_devices);
4641 		kobj_class_compile((kobj_class_t) &root_driver);
4642 		root_bus = make_device(NULL, "root", 0);
4643 		root_bus->desc = "System root bus";
4644 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4645 		root_bus->driver = &root_driver;
4646 		root_bus->state = DS_ATTACHED;
4647 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4648 		devinit();
4649 		return (0);
4650 
4651 	case MOD_SHUTDOWN:
4652 		device_shutdown(root_bus);
4653 		return (0);
4654 	default:
4655 		return (EOPNOTSUPP);
4656 	}
4657 
4658 	return (0);
4659 }
4660 
4661 static moduledata_t root_bus_mod = {
4662 	"rootbus",
4663 	root_bus_module_handler,
4664 	NULL
4665 };
4666 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4667 
4668 /**
4669  * @brief Automatically configure devices
4670  *
4671  * This function begins the autoconfiguration process by calling
4672  * device_probe_and_attach() for each child of the @c root0 device.
4673  */
4674 void
4675 root_bus_configure(void)
4676 {
4677 
4678 	PDEBUG(("."));
4679 
4680 	/* Eventually this will be split up, but this is sufficient for now. */
4681 	bus_set_pass(BUS_PASS_DEFAULT);
4682 }
4683 
4684 /**
4685  * @brief Module handler for registering device drivers
4686  *
4687  * This module handler is used to automatically register device
4688  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4689  * devclass_add_driver() for the driver described by the
4690  * driver_module_data structure pointed to by @p arg
4691  */
4692 int
4693 driver_module_handler(module_t mod, int what, void *arg)
4694 {
4695 	struct driver_module_data *dmd;
4696 	devclass_t bus_devclass;
4697 	kobj_class_t driver;
4698 	int error, pass;
4699 
4700 	dmd = (struct driver_module_data *)arg;
4701 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4702 	error = 0;
4703 
4704 	switch (what) {
4705 	case MOD_LOAD:
4706 		if (dmd->dmd_chainevh)
4707 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4708 
4709 		pass = dmd->dmd_pass;
4710 		driver = dmd->dmd_driver;
4711 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4712 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4713 		error = devclass_add_driver(bus_devclass, driver, pass,
4714 		    dmd->dmd_devclass);
4715 		break;
4716 
4717 	case MOD_UNLOAD:
4718 		PDEBUG(("Unloading module: driver %s from bus %s",
4719 		    DRIVERNAME(dmd->dmd_driver),
4720 		    dmd->dmd_busname));
4721 		error = devclass_delete_driver(bus_devclass,
4722 		    dmd->dmd_driver);
4723 
4724 		if (!error && dmd->dmd_chainevh)
4725 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4726 		break;
4727 	case MOD_QUIESCE:
4728 		PDEBUG(("Quiesce module: driver %s from bus %s",
4729 		    DRIVERNAME(dmd->dmd_driver),
4730 		    dmd->dmd_busname));
4731 		error = devclass_quiesce_driver(bus_devclass,
4732 		    dmd->dmd_driver);
4733 
4734 		if (!error && dmd->dmd_chainevh)
4735 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4736 		break;
4737 	default:
4738 		error = EOPNOTSUPP;
4739 		break;
4740 	}
4741 
4742 	return (error);
4743 }
4744 
4745 /**
4746  * @brief Enumerate all hinted devices for this bus.
4747  *
4748  * Walks through the hints for this bus and calls the bus_hinted_child
4749  * routine for each one it fines.  It searches first for the specific
4750  * bus that's being probed for hinted children (eg isa0), and then for
4751  * generic children (eg isa).
4752  *
4753  * @param	dev	bus device to enumerate
4754  */
4755 void
4756 bus_enumerate_hinted_children(device_t bus)
4757 {
4758 	int i;
4759 	const char *dname, *busname;
4760 	int dunit;
4761 
4762 	/*
4763 	 * enumerate all devices on the specific bus
4764 	 */
4765 	busname = device_get_nameunit(bus);
4766 	i = 0;
4767 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4768 		BUS_HINTED_CHILD(bus, dname, dunit);
4769 
4770 	/*
4771 	 * and all the generic ones.
4772 	 */
4773 	busname = device_get_name(bus);
4774 	i = 0;
4775 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4776 		BUS_HINTED_CHILD(bus, dname, dunit);
4777 }
4778 
4779 #ifdef BUS_DEBUG
4780 
4781 /* the _short versions avoid iteration by not calling anything that prints
4782  * more than oneliners. I love oneliners.
4783  */
4784 
4785 static void
4786 print_device_short(device_t dev, int indent)
4787 {
4788 	if (!dev)
4789 		return;
4790 
4791 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4792 	    dev->unit, dev->desc,
4793 	    (dev->parent? "":"no "),
4794 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4795 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4796 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4797 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4798 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4799 	    (dev->flags&DF_REBID? "rebiddable,":""),
4800 	    (dev->ivars? "":"no "),
4801 	    (dev->softc? "":"no "),
4802 	    dev->busy));
4803 }
4804 
4805 static void
4806 print_device(device_t dev, int indent)
4807 {
4808 	if (!dev)
4809 		return;
4810 
4811 	print_device_short(dev, indent);
4812 
4813 	indentprintf(("Parent:\n"));
4814 	print_device_short(dev->parent, indent+1);
4815 	indentprintf(("Driver:\n"));
4816 	print_driver_short(dev->driver, indent+1);
4817 	indentprintf(("Devclass:\n"));
4818 	print_devclass_short(dev->devclass, indent+1);
4819 }
4820 
4821 void
4822 print_device_tree_short(device_t dev, int indent)
4823 /* print the device and all its children (indented) */
4824 {
4825 	device_t child;
4826 
4827 	if (!dev)
4828 		return;
4829 
4830 	print_device_short(dev, indent);
4831 
4832 	TAILQ_FOREACH(child, &dev->children, link) {
4833 		print_device_tree_short(child, indent+1);
4834 	}
4835 }
4836 
4837 void
4838 print_device_tree(device_t dev, int indent)
4839 /* print the device and all its children (indented) */
4840 {
4841 	device_t child;
4842 
4843 	if (!dev)
4844 		return;
4845 
4846 	print_device(dev, indent);
4847 
4848 	TAILQ_FOREACH(child, &dev->children, link) {
4849 		print_device_tree(child, indent+1);
4850 	}
4851 }
4852 
4853 static void
4854 print_driver_short(driver_t *driver, int indent)
4855 {
4856 	if (!driver)
4857 		return;
4858 
4859 	indentprintf(("driver %s: softc size = %zd\n",
4860 	    driver->name, driver->size));
4861 }
4862 
4863 static void
4864 print_driver(driver_t *driver, int indent)
4865 {
4866 	if (!driver)
4867 		return;
4868 
4869 	print_driver_short(driver, indent);
4870 }
4871 
4872 static void
4873 print_driver_list(driver_list_t drivers, int indent)
4874 {
4875 	driverlink_t driver;
4876 
4877 	TAILQ_FOREACH(driver, &drivers, link) {
4878 		print_driver(driver->driver, indent);
4879 	}
4880 }
4881 
4882 static void
4883 print_devclass_short(devclass_t dc, int indent)
4884 {
4885 	if ( !dc )
4886 		return;
4887 
4888 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4889 }
4890 
4891 static void
4892 print_devclass(devclass_t dc, int indent)
4893 {
4894 	int i;
4895 
4896 	if ( !dc )
4897 		return;
4898 
4899 	print_devclass_short(dc, indent);
4900 	indentprintf(("Drivers:\n"));
4901 	print_driver_list(dc->drivers, indent+1);
4902 
4903 	indentprintf(("Devices:\n"));
4904 	for (i = 0; i < dc->maxunit; i++)
4905 		if (dc->devices[i])
4906 			print_device(dc->devices[i], indent+1);
4907 }
4908 
4909 void
4910 print_devclass_list_short(void)
4911 {
4912 	devclass_t dc;
4913 
4914 	printf("Short listing of devclasses, drivers & devices:\n");
4915 	TAILQ_FOREACH(dc, &devclasses, link) {
4916 		print_devclass_short(dc, 0);
4917 	}
4918 }
4919 
4920 void
4921 print_devclass_list(void)
4922 {
4923 	devclass_t dc;
4924 
4925 	printf("Full listing of devclasses, drivers & devices:\n");
4926 	TAILQ_FOREACH(dc, &devclasses, link) {
4927 		print_devclass(dc, 0);
4928 	}
4929 }
4930 
4931 #endif
4932 
4933 /*
4934  * User-space access to the device tree.
4935  *
4936  * We implement a small set of nodes:
4937  *
4938  * hw.bus			Single integer read method to obtain the
4939  *				current generation count.
4940  * hw.bus.devices		Reads the entire device tree in flat space.
4941  * hw.bus.rman			Resource manager interface
4942  *
4943  * We might like to add the ability to scan devclasses and/or drivers to
4944  * determine what else is currently loaded/available.
4945  */
4946 
4947 static int
4948 sysctl_bus(SYSCTL_HANDLER_ARGS)
4949 {
4950 	struct u_businfo	ubus;
4951 
4952 	ubus.ub_version = BUS_USER_VERSION;
4953 	ubus.ub_generation = bus_data_generation;
4954 
4955 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4956 }
4957 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4958     "bus-related data");
4959 
4960 static int
4961 sysctl_devices(SYSCTL_HANDLER_ARGS)
4962 {
4963 	int			*name = (int *)arg1;
4964 	u_int			namelen = arg2;
4965 	int			index;
4966 	struct device		*dev;
4967 	struct u_device		udev;	/* XXX this is a bit big */
4968 	int			error;
4969 
4970 	if (namelen != 2)
4971 		return (EINVAL);
4972 
4973 	if (bus_data_generation_check(name[0]))
4974 		return (EINVAL);
4975 
4976 	index = name[1];
4977 
4978 	/*
4979 	 * Scan the list of devices, looking for the requested index.
4980 	 */
4981 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4982 		if (index-- == 0)
4983 			break;
4984 	}
4985 	if (dev == NULL)
4986 		return (ENOENT);
4987 
4988 	/*
4989 	 * Populate the return array.
4990 	 */
4991 	bzero(&udev, sizeof(udev));
4992 	udev.dv_handle = (uintptr_t)dev;
4993 	udev.dv_parent = (uintptr_t)dev->parent;
4994 	if (dev->nameunit != NULL)
4995 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4996 	if (dev->desc != NULL)
4997 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4998 	if (dev->driver != NULL && dev->driver->name != NULL)
4999 		strlcpy(udev.dv_drivername, dev->driver->name,
5000 		    sizeof(udev.dv_drivername));
5001 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5002 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5003 	udev.dv_devflags = dev->devflags;
5004 	udev.dv_flags = dev->flags;
5005 	udev.dv_state = dev->state;
5006 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5007 	return (error);
5008 }
5009 
5010 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5011     "system device tree");
5012 
5013 int
5014 bus_data_generation_check(int generation)
5015 {
5016 	if (generation != bus_data_generation)
5017 		return (1);
5018 
5019 	/* XXX generate optimised lists here? */
5020 	return (0);
5021 }
5022 
5023 void
5024 bus_data_generation_update(void)
5025 {
5026 	bus_data_generation++;
5027 }
5028 
5029 int
5030 bus_free_resource(device_t dev, int type, struct resource *r)
5031 {
5032 	if (r == NULL)
5033 		return (0);
5034 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5035 }
5036 
5037 int
5038 device_getenv_int(device_t dev, const char *knob, int *iptr)
5039 {
5040 	char env[128];
5041 	int sz;
5042 
5043 	sz = snprintf(env, sizeof(env), "hw.%s.%d.%s", device_get_name(dev), device_get_unit(dev), knob);
5044 	if (sz >= sizeof(env)) {
5045 		/* XXX: log? return error? bump sysctl error? */
5046 		log(LOG_ERR, "device_getenv_int: knob too long: '%s'", knob);
5047 		return 0;
5048 	}
5049 	return (getenv_int(env, iptr));
5050 }
5051