1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_random.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/uio.h> 55 #include <sys/bus.h> 56 #include <sys/interrupt.h> 57 #include <sys/cpuset.h> 58 59 #include <sys/syslog.h> 60 61 #include <net/vnet.h> 62 63 #include <machine/cpu.h> 64 #include <machine/stdarg.h> 65 66 #include <vm/uma.h> 67 68 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 70 71 /* 72 * Used to attach drivers to devclasses. 73 */ 74 typedef struct driverlink *driverlink_t; 75 struct driverlink { 76 kobj_class_t driver; 77 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 78 int pass; 79 TAILQ_ENTRY(driverlink) passlink; 80 }; 81 82 /* 83 * Forward declarations 84 */ 85 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 86 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 87 typedef TAILQ_HEAD(device_list, device) device_list_t; 88 89 struct devclass { 90 TAILQ_ENTRY(devclass) link; 91 devclass_t parent; /* parent in devclass hierarchy */ 92 driver_list_t drivers; /* bus devclasses store drivers for bus */ 93 char *name; 94 device_t *devices; /* array of devices indexed by unit */ 95 int maxunit; /* size of devices array */ 96 int flags; 97 #define DC_HAS_CHILDREN 1 98 99 struct sysctl_ctx_list sysctl_ctx; 100 struct sysctl_oid *sysctl_tree; 101 }; 102 103 /** 104 * @brief Implementation of device. 105 */ 106 struct device { 107 /* 108 * A device is a kernel object. The first field must be the 109 * current ops table for the object. 110 */ 111 KOBJ_FIELDS; 112 113 /* 114 * Device hierarchy. 115 */ 116 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 117 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 118 device_t parent; /**< parent of this device */ 119 device_list_t children; /**< list of child devices */ 120 121 /* 122 * Details of this device. 123 */ 124 driver_t *driver; /**< current driver */ 125 devclass_t devclass; /**< current device class */ 126 int unit; /**< current unit number */ 127 char* nameunit; /**< name+unit e.g. foodev0 */ 128 char* desc; /**< driver specific description */ 129 int busy; /**< count of calls to device_busy() */ 130 device_state_t state; /**< current device state */ 131 uint32_t devflags; /**< api level flags for device_get_flags() */ 132 u_int flags; /**< internal device flags */ 133 #define DF_ENABLED 0x01 /* device should be probed/attached */ 134 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 135 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 136 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 137 #define DF_QUIET 0x10 /* don't print verbose attach message */ 138 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 139 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 140 #define DF_REBID 0x80 /* Can rebid after attach */ 141 #define DF_SUSPENDED 0x100 /* Device is suspended. */ 142 u_int order; /**< order from device_add_child_ordered() */ 143 void *ivars; /**< instance variables */ 144 void *softc; /**< current driver's variables */ 145 146 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 147 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 148 }; 149 150 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 151 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 152 153 #ifdef BUS_DEBUG 154 155 static int bus_debug = 1; 156 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 157 "Bus debug level"); 158 159 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 160 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 161 #define DRIVERNAME(d) ((d)? d->name : "no driver") 162 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 163 164 /** 165 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 166 * prevent syslog from deleting initial spaces 167 */ 168 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 169 170 static void print_device_short(device_t dev, int indent); 171 static void print_device(device_t dev, int indent); 172 void print_device_tree_short(device_t dev, int indent); 173 void print_device_tree(device_t dev, int indent); 174 static void print_driver_short(driver_t *driver, int indent); 175 static void print_driver(driver_t *driver, int indent); 176 static void print_driver_list(driver_list_t drivers, int indent); 177 static void print_devclass_short(devclass_t dc, int indent); 178 static void print_devclass(devclass_t dc, int indent); 179 void print_devclass_list_short(void); 180 void print_devclass_list(void); 181 182 #else 183 /* Make the compiler ignore the function calls */ 184 #define PDEBUG(a) /* nop */ 185 #define DEVICENAME(d) /* nop */ 186 #define DRIVERNAME(d) /* nop */ 187 #define DEVCLANAME(d) /* nop */ 188 189 #define print_device_short(d,i) /* nop */ 190 #define print_device(d,i) /* nop */ 191 #define print_device_tree_short(d,i) /* nop */ 192 #define print_device_tree(d,i) /* nop */ 193 #define print_driver_short(d,i) /* nop */ 194 #define print_driver(d,i) /* nop */ 195 #define print_driver_list(d,i) /* nop */ 196 #define print_devclass_short(d,i) /* nop */ 197 #define print_devclass(d,i) /* nop */ 198 #define print_devclass_list_short() /* nop */ 199 #define print_devclass_list() /* nop */ 200 #endif 201 202 /* 203 * dev sysctl tree 204 */ 205 206 enum { 207 DEVCLASS_SYSCTL_PARENT, 208 }; 209 210 static int 211 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 212 { 213 devclass_t dc = (devclass_t)arg1; 214 const char *value; 215 216 switch (arg2) { 217 case DEVCLASS_SYSCTL_PARENT: 218 value = dc->parent ? dc->parent->name : ""; 219 break; 220 default: 221 return (EINVAL); 222 } 223 return (SYSCTL_OUT(req, value, strlen(value))); 224 } 225 226 static void 227 devclass_sysctl_init(devclass_t dc) 228 { 229 230 if (dc->sysctl_tree != NULL) 231 return; 232 sysctl_ctx_init(&dc->sysctl_ctx); 233 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 234 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 235 CTLFLAG_RD, NULL, ""); 236 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 237 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 238 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 239 "parent class"); 240 } 241 242 enum { 243 DEVICE_SYSCTL_DESC, 244 DEVICE_SYSCTL_DRIVER, 245 DEVICE_SYSCTL_LOCATION, 246 DEVICE_SYSCTL_PNPINFO, 247 DEVICE_SYSCTL_PARENT, 248 }; 249 250 static int 251 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 252 { 253 device_t dev = (device_t)arg1; 254 const char *value; 255 char *buf; 256 int error; 257 258 buf = NULL; 259 switch (arg2) { 260 case DEVICE_SYSCTL_DESC: 261 value = dev->desc ? dev->desc : ""; 262 break; 263 case DEVICE_SYSCTL_DRIVER: 264 value = dev->driver ? dev->driver->name : ""; 265 break; 266 case DEVICE_SYSCTL_LOCATION: 267 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 268 bus_child_location_str(dev, buf, 1024); 269 break; 270 case DEVICE_SYSCTL_PNPINFO: 271 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 272 bus_child_pnpinfo_str(dev, buf, 1024); 273 break; 274 case DEVICE_SYSCTL_PARENT: 275 value = dev->parent ? dev->parent->nameunit : ""; 276 break; 277 default: 278 return (EINVAL); 279 } 280 error = SYSCTL_OUT(req, value, strlen(value)); 281 if (buf != NULL) 282 free(buf, M_BUS); 283 return (error); 284 } 285 286 static void 287 device_sysctl_init(device_t dev) 288 { 289 devclass_t dc = dev->devclass; 290 int domain; 291 292 if (dev->sysctl_tree != NULL) 293 return; 294 devclass_sysctl_init(dc); 295 sysctl_ctx_init(&dev->sysctl_ctx); 296 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 297 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 298 dev->nameunit + strlen(dc->name), 299 CTLFLAG_RD, NULL, ""); 300 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 301 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 302 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 303 "device description"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 306 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 307 "device driver name"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 310 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 311 "device location relative to parent"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 314 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 315 "device identification"); 316 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 317 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 318 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 319 "parent device"); 320 if (bus_get_domain(dev, &domain) == 0) 321 SYSCTL_ADD_INT(&dev->sysctl_ctx, 322 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 323 CTLFLAG_RD, NULL, domain, "NUMA domain"); 324 } 325 326 static void 327 device_sysctl_update(device_t dev) 328 { 329 devclass_t dc = dev->devclass; 330 331 if (dev->sysctl_tree == NULL) 332 return; 333 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 334 } 335 336 static void 337 device_sysctl_fini(device_t dev) 338 { 339 if (dev->sysctl_tree == NULL) 340 return; 341 sysctl_ctx_free(&dev->sysctl_ctx); 342 dev->sysctl_tree = NULL; 343 } 344 345 /* 346 * /dev/devctl implementation 347 */ 348 349 /* 350 * This design allows only one reader for /dev/devctl. This is not desirable 351 * in the long run, but will get a lot of hair out of this implementation. 352 * Maybe we should make this device a clonable device. 353 * 354 * Also note: we specifically do not attach a device to the device_t tree 355 * to avoid potential chicken and egg problems. One could argue that all 356 * of this belongs to the root node. One could also further argue that the 357 * sysctl interface that we have not might more properly be an ioctl 358 * interface, but at this stage of the game, I'm not inclined to rock that 359 * boat. 360 * 361 * I'm also not sure that the SIGIO support is done correctly or not, as 362 * I copied it from a driver that had SIGIO support that likely hasn't been 363 * tested since 3.4 or 2.2.8! 364 */ 365 366 /* Deprecated way to adjust queue length */ 367 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 369 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 370 "devctl disable -- deprecated"); 371 372 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 373 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 374 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 375 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 376 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 377 378 static d_open_t devopen; 379 static d_close_t devclose; 380 static d_read_t devread; 381 static d_ioctl_t devioctl; 382 static d_poll_t devpoll; 383 static d_kqfilter_t devkqfilter; 384 385 static struct cdevsw dev_cdevsw = { 386 .d_version = D_VERSION, 387 .d_open = devopen, 388 .d_close = devclose, 389 .d_read = devread, 390 .d_ioctl = devioctl, 391 .d_poll = devpoll, 392 .d_kqfilter = devkqfilter, 393 .d_name = "devctl", 394 }; 395 396 struct dev_event_info 397 { 398 char *dei_data; 399 TAILQ_ENTRY(dev_event_info) dei_link; 400 }; 401 402 TAILQ_HEAD(devq, dev_event_info); 403 404 static struct dev_softc 405 { 406 int inuse; 407 int nonblock; 408 int queued; 409 int async; 410 struct mtx mtx; 411 struct cv cv; 412 struct selinfo sel; 413 struct devq devq; 414 struct sigio *sigio; 415 } devsoftc; 416 417 static void filt_devctl_detach(struct knote *kn); 418 static int filt_devctl_read(struct knote *kn, long hint); 419 420 struct filterops devctl_rfiltops = { 421 .f_isfd = 1, 422 .f_detach = filt_devctl_detach, 423 .f_event = filt_devctl_read, 424 }; 425 426 static struct cdev *devctl_dev; 427 428 static void 429 devinit(void) 430 { 431 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 432 UID_ROOT, GID_WHEEL, 0600, "devctl"); 433 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 434 cv_init(&devsoftc.cv, "dev cv"); 435 TAILQ_INIT(&devsoftc.devq); 436 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 437 } 438 439 static int 440 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 441 { 442 443 mtx_lock(&devsoftc.mtx); 444 if (devsoftc.inuse) { 445 mtx_unlock(&devsoftc.mtx); 446 return (EBUSY); 447 } 448 /* move to init */ 449 devsoftc.inuse = 1; 450 mtx_unlock(&devsoftc.mtx); 451 return (0); 452 } 453 454 static int 455 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 456 { 457 458 mtx_lock(&devsoftc.mtx); 459 devsoftc.inuse = 0; 460 devsoftc.nonblock = 0; 461 devsoftc.async = 0; 462 cv_broadcast(&devsoftc.cv); 463 funsetown(&devsoftc.sigio); 464 mtx_unlock(&devsoftc.mtx); 465 return (0); 466 } 467 468 /* 469 * The read channel for this device is used to report changes to 470 * userland in realtime. We are required to free the data as well as 471 * the n1 object because we allocate them separately. Also note that 472 * we return one record at a time. If you try to read this device a 473 * character at a time, you will lose the rest of the data. Listening 474 * programs are expected to cope. 475 */ 476 static int 477 devread(struct cdev *dev, struct uio *uio, int ioflag) 478 { 479 struct dev_event_info *n1; 480 int rv; 481 482 mtx_lock(&devsoftc.mtx); 483 while (TAILQ_EMPTY(&devsoftc.devq)) { 484 if (devsoftc.nonblock) { 485 mtx_unlock(&devsoftc.mtx); 486 return (EAGAIN); 487 } 488 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 489 if (rv) { 490 /* 491 * Need to translate ERESTART to EINTR here? -- jake 492 */ 493 mtx_unlock(&devsoftc.mtx); 494 return (rv); 495 } 496 } 497 n1 = TAILQ_FIRST(&devsoftc.devq); 498 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 499 devsoftc.queued--; 500 mtx_unlock(&devsoftc.mtx); 501 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 502 free(n1->dei_data, M_BUS); 503 free(n1, M_BUS); 504 return (rv); 505 } 506 507 static int 508 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 509 { 510 switch (cmd) { 511 512 case FIONBIO: 513 if (*(int*)data) 514 devsoftc.nonblock = 1; 515 else 516 devsoftc.nonblock = 0; 517 return (0); 518 case FIOASYNC: 519 if (*(int*)data) 520 devsoftc.async = 1; 521 else 522 devsoftc.async = 0; 523 return (0); 524 case FIOSETOWN: 525 return fsetown(*(int *)data, &devsoftc.sigio); 526 case FIOGETOWN: 527 *(int *)data = fgetown(&devsoftc.sigio); 528 return (0); 529 530 /* (un)Support for other fcntl() calls. */ 531 case FIOCLEX: 532 case FIONCLEX: 533 case FIONREAD: 534 default: 535 break; 536 } 537 return (ENOTTY); 538 } 539 540 static int 541 devpoll(struct cdev *dev, int events, struct thread *td) 542 { 543 int revents = 0; 544 545 mtx_lock(&devsoftc.mtx); 546 if (events & (POLLIN | POLLRDNORM)) { 547 if (!TAILQ_EMPTY(&devsoftc.devq)) 548 revents = events & (POLLIN | POLLRDNORM); 549 else 550 selrecord(td, &devsoftc.sel); 551 } 552 mtx_unlock(&devsoftc.mtx); 553 554 return (revents); 555 } 556 557 static int 558 devkqfilter(struct cdev *dev, struct knote *kn) 559 { 560 int error; 561 562 if (kn->kn_filter == EVFILT_READ) { 563 kn->kn_fop = &devctl_rfiltops; 564 knlist_add(&devsoftc.sel.si_note, kn, 0); 565 error = 0; 566 } else 567 error = EINVAL; 568 return (error); 569 } 570 571 static void 572 filt_devctl_detach(struct knote *kn) 573 { 574 575 knlist_remove(&devsoftc.sel.si_note, kn, 0); 576 } 577 578 static int 579 filt_devctl_read(struct knote *kn, long hint) 580 { 581 kn->kn_data = devsoftc.queued; 582 return (kn->kn_data != 0); 583 } 584 585 /** 586 * @brief Return whether the userland process is running 587 */ 588 boolean_t 589 devctl_process_running(void) 590 { 591 return (devsoftc.inuse == 1); 592 } 593 594 /** 595 * @brief Queue data to be read from the devctl device 596 * 597 * Generic interface to queue data to the devctl device. It is 598 * assumed that @p data is properly formatted. It is further assumed 599 * that @p data is allocated using the M_BUS malloc type. 600 */ 601 void 602 devctl_queue_data_f(char *data, int flags) 603 { 604 struct dev_event_info *n1 = NULL, *n2 = NULL; 605 606 if (strlen(data) == 0) 607 goto out; 608 if (devctl_queue_length == 0) 609 goto out; 610 n1 = malloc(sizeof(*n1), M_BUS, flags); 611 if (n1 == NULL) 612 goto out; 613 n1->dei_data = data; 614 mtx_lock(&devsoftc.mtx); 615 if (devctl_queue_length == 0) { 616 mtx_unlock(&devsoftc.mtx); 617 free(n1->dei_data, M_BUS); 618 free(n1, M_BUS); 619 return; 620 } 621 /* Leave at least one spot in the queue... */ 622 while (devsoftc.queued > devctl_queue_length - 1) { 623 n2 = TAILQ_FIRST(&devsoftc.devq); 624 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 625 free(n2->dei_data, M_BUS); 626 free(n2, M_BUS); 627 devsoftc.queued--; 628 } 629 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 630 devsoftc.queued++; 631 cv_broadcast(&devsoftc.cv); 632 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 633 mtx_unlock(&devsoftc.mtx); 634 selwakeup(&devsoftc.sel); 635 if (devsoftc.async && devsoftc.sigio != NULL) 636 pgsigio(&devsoftc.sigio, SIGIO, 0); 637 return; 638 out: 639 /* 640 * We have to free data on all error paths since the caller 641 * assumes it will be free'd when this item is dequeued. 642 */ 643 free(data, M_BUS); 644 return; 645 } 646 647 void 648 devctl_queue_data(char *data) 649 { 650 651 devctl_queue_data_f(data, M_NOWAIT); 652 } 653 654 /** 655 * @brief Send a 'notification' to userland, using standard ways 656 */ 657 void 658 devctl_notify_f(const char *system, const char *subsystem, const char *type, 659 const char *data, int flags) 660 { 661 int len = 0; 662 char *msg; 663 664 if (system == NULL) 665 return; /* BOGUS! Must specify system. */ 666 if (subsystem == NULL) 667 return; /* BOGUS! Must specify subsystem. */ 668 if (type == NULL) 669 return; /* BOGUS! Must specify type. */ 670 len += strlen(" system=") + strlen(system); 671 len += strlen(" subsystem=") + strlen(subsystem); 672 len += strlen(" type=") + strlen(type); 673 /* add in the data message plus newline. */ 674 if (data != NULL) 675 len += strlen(data); 676 len += 3; /* '!', '\n', and NUL */ 677 msg = malloc(len, M_BUS, flags); 678 if (msg == NULL) 679 return; /* Drop it on the floor */ 680 if (data != NULL) 681 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 682 system, subsystem, type, data); 683 else 684 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 685 system, subsystem, type); 686 devctl_queue_data_f(msg, flags); 687 } 688 689 void 690 devctl_notify(const char *system, const char *subsystem, const char *type, 691 const char *data) 692 { 693 694 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 695 } 696 697 /* 698 * Common routine that tries to make sending messages as easy as possible. 699 * We allocate memory for the data, copy strings into that, but do not 700 * free it unless there's an error. The dequeue part of the driver should 701 * free the data. We don't send data when the device is disabled. We do 702 * send data, even when we have no listeners, because we wish to avoid 703 * races relating to startup and restart of listening applications. 704 * 705 * devaddq is designed to string together the type of event, with the 706 * object of that event, plus the plug and play info and location info 707 * for that event. This is likely most useful for devices, but less 708 * useful for other consumers of this interface. Those should use 709 * the devctl_queue_data() interface instead. 710 */ 711 static void 712 devaddq(const char *type, const char *what, device_t dev) 713 { 714 char *data = NULL; 715 char *loc = NULL; 716 char *pnp = NULL; 717 const char *parstr; 718 719 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 720 return; 721 data = malloc(1024, M_BUS, M_NOWAIT); 722 if (data == NULL) 723 goto bad; 724 725 /* get the bus specific location of this device */ 726 loc = malloc(1024, M_BUS, M_NOWAIT); 727 if (loc == NULL) 728 goto bad; 729 *loc = '\0'; 730 bus_child_location_str(dev, loc, 1024); 731 732 /* Get the bus specific pnp info of this device */ 733 pnp = malloc(1024, M_BUS, M_NOWAIT); 734 if (pnp == NULL) 735 goto bad; 736 *pnp = '\0'; 737 bus_child_pnpinfo_str(dev, pnp, 1024); 738 739 /* Get the parent of this device, or / if high enough in the tree. */ 740 if (device_get_parent(dev) == NULL) 741 parstr = "."; /* Or '/' ? */ 742 else 743 parstr = device_get_nameunit(device_get_parent(dev)); 744 /* String it all together. */ 745 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 746 parstr); 747 free(loc, M_BUS); 748 free(pnp, M_BUS); 749 devctl_queue_data(data); 750 return; 751 bad: 752 free(pnp, M_BUS); 753 free(loc, M_BUS); 754 free(data, M_BUS); 755 return; 756 } 757 758 /* 759 * A device was added to the tree. We are called just after it successfully 760 * attaches (that is, probe and attach success for this device). No call 761 * is made if a device is merely parented into the tree. See devnomatch 762 * if probe fails. If attach fails, no notification is sent (but maybe 763 * we should have a different message for this). 764 */ 765 static void 766 devadded(device_t dev) 767 { 768 devaddq("+", device_get_nameunit(dev), dev); 769 } 770 771 /* 772 * A device was removed from the tree. We are called just before this 773 * happens. 774 */ 775 static void 776 devremoved(device_t dev) 777 { 778 devaddq("-", device_get_nameunit(dev), dev); 779 } 780 781 /* 782 * Called when there's no match for this device. This is only called 783 * the first time that no match happens, so we don't keep getting this 784 * message. Should that prove to be undesirable, we can change it. 785 * This is called when all drivers that can attach to a given bus 786 * decline to accept this device. Other errors may not be detected. 787 */ 788 static void 789 devnomatch(device_t dev) 790 { 791 devaddq("?", "", dev); 792 } 793 794 static int 795 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 796 { 797 struct dev_event_info *n1; 798 int dis, error; 799 800 dis = (devctl_queue_length == 0); 801 error = sysctl_handle_int(oidp, &dis, 0, req); 802 if (error || !req->newptr) 803 return (error); 804 if (mtx_initialized(&devsoftc.mtx)) 805 mtx_lock(&devsoftc.mtx); 806 if (dis) { 807 while (!TAILQ_EMPTY(&devsoftc.devq)) { 808 n1 = TAILQ_FIRST(&devsoftc.devq); 809 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 810 free(n1->dei_data, M_BUS); 811 free(n1, M_BUS); 812 } 813 devsoftc.queued = 0; 814 devctl_queue_length = 0; 815 } else { 816 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 817 } 818 if (mtx_initialized(&devsoftc.mtx)) 819 mtx_unlock(&devsoftc.mtx); 820 return (0); 821 } 822 823 static int 824 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 825 { 826 struct dev_event_info *n1; 827 int q, error; 828 829 q = devctl_queue_length; 830 error = sysctl_handle_int(oidp, &q, 0, req); 831 if (error || !req->newptr) 832 return (error); 833 if (q < 0) 834 return (EINVAL); 835 if (mtx_initialized(&devsoftc.mtx)) 836 mtx_lock(&devsoftc.mtx); 837 devctl_queue_length = q; 838 while (devsoftc.queued > devctl_queue_length) { 839 n1 = TAILQ_FIRST(&devsoftc.devq); 840 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 841 free(n1->dei_data, M_BUS); 842 free(n1, M_BUS); 843 devsoftc.queued--; 844 } 845 if (mtx_initialized(&devsoftc.mtx)) 846 mtx_unlock(&devsoftc.mtx); 847 return (0); 848 } 849 850 /* End of /dev/devctl code */ 851 852 static TAILQ_HEAD(,device) bus_data_devices; 853 static int bus_data_generation = 1; 854 855 static kobj_method_t null_methods[] = { 856 KOBJMETHOD_END 857 }; 858 859 DEFINE_CLASS(null, null_methods, 0); 860 861 /* 862 * Bus pass implementation 863 */ 864 865 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 866 int bus_current_pass = BUS_PASS_ROOT; 867 868 /** 869 * @internal 870 * @brief Register the pass level of a new driver attachment 871 * 872 * Register a new driver attachment's pass level. If no driver 873 * attachment with the same pass level has been added, then @p new 874 * will be added to the global passes list. 875 * 876 * @param new the new driver attachment 877 */ 878 static void 879 driver_register_pass(struct driverlink *new) 880 { 881 struct driverlink *dl; 882 883 /* We only consider pass numbers during boot. */ 884 if (bus_current_pass == BUS_PASS_DEFAULT) 885 return; 886 887 /* 888 * Walk the passes list. If we already know about this pass 889 * then there is nothing to do. If we don't, then insert this 890 * driver link into the list. 891 */ 892 TAILQ_FOREACH(dl, &passes, passlink) { 893 if (dl->pass < new->pass) 894 continue; 895 if (dl->pass == new->pass) 896 return; 897 TAILQ_INSERT_BEFORE(dl, new, passlink); 898 return; 899 } 900 TAILQ_INSERT_TAIL(&passes, new, passlink); 901 } 902 903 /** 904 * @brief Raise the current bus pass 905 * 906 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 907 * method on the root bus to kick off a new device tree scan for each 908 * new pass level that has at least one driver. 909 */ 910 void 911 bus_set_pass(int pass) 912 { 913 struct driverlink *dl; 914 915 if (bus_current_pass > pass) 916 panic("Attempt to lower bus pass level"); 917 918 TAILQ_FOREACH(dl, &passes, passlink) { 919 /* Skip pass values below the current pass level. */ 920 if (dl->pass <= bus_current_pass) 921 continue; 922 923 /* 924 * Bail once we hit a driver with a pass level that is 925 * too high. 926 */ 927 if (dl->pass > pass) 928 break; 929 930 /* 931 * Raise the pass level to the next level and rescan 932 * the tree. 933 */ 934 bus_current_pass = dl->pass; 935 BUS_NEW_PASS(root_bus); 936 } 937 938 /* 939 * If there isn't a driver registered for the requested pass, 940 * then bus_current_pass might still be less than 'pass'. Set 941 * it to 'pass' in that case. 942 */ 943 if (bus_current_pass < pass) 944 bus_current_pass = pass; 945 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 946 } 947 948 /* 949 * Devclass implementation 950 */ 951 952 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 953 954 /** 955 * @internal 956 * @brief Find or create a device class 957 * 958 * If a device class with the name @p classname exists, return it, 959 * otherwise if @p create is non-zero create and return a new device 960 * class. 961 * 962 * If @p parentname is non-NULL, the parent of the devclass is set to 963 * the devclass of that name. 964 * 965 * @param classname the devclass name to find or create 966 * @param parentname the parent devclass name or @c NULL 967 * @param create non-zero to create a devclass 968 */ 969 static devclass_t 970 devclass_find_internal(const char *classname, const char *parentname, 971 int create) 972 { 973 devclass_t dc; 974 975 PDEBUG(("looking for %s", classname)); 976 if (!classname) 977 return (NULL); 978 979 TAILQ_FOREACH(dc, &devclasses, link) { 980 if (!strcmp(dc->name, classname)) 981 break; 982 } 983 984 if (create && !dc) { 985 PDEBUG(("creating %s", classname)); 986 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 987 M_BUS, M_NOWAIT | M_ZERO); 988 if (!dc) 989 return (NULL); 990 dc->parent = NULL; 991 dc->name = (char*) (dc + 1); 992 strcpy(dc->name, classname); 993 TAILQ_INIT(&dc->drivers); 994 TAILQ_INSERT_TAIL(&devclasses, dc, link); 995 996 bus_data_generation_update(); 997 } 998 999 /* 1000 * If a parent class is specified, then set that as our parent so 1001 * that this devclass will support drivers for the parent class as 1002 * well. If the parent class has the same name don't do this though 1003 * as it creates a cycle that can trigger an infinite loop in 1004 * device_probe_child() if a device exists for which there is no 1005 * suitable driver. 1006 */ 1007 if (parentname && dc && !dc->parent && 1008 strcmp(classname, parentname) != 0) { 1009 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1010 dc->parent->flags |= DC_HAS_CHILDREN; 1011 } 1012 1013 return (dc); 1014 } 1015 1016 /** 1017 * @brief Create a device class 1018 * 1019 * If a device class with the name @p classname exists, return it, 1020 * otherwise create and return a new device class. 1021 * 1022 * @param classname the devclass name to find or create 1023 */ 1024 devclass_t 1025 devclass_create(const char *classname) 1026 { 1027 return (devclass_find_internal(classname, NULL, TRUE)); 1028 } 1029 1030 /** 1031 * @brief Find a device class 1032 * 1033 * If a device class with the name @p classname exists, return it, 1034 * otherwise return @c NULL. 1035 * 1036 * @param classname the devclass name to find 1037 */ 1038 devclass_t 1039 devclass_find(const char *classname) 1040 { 1041 return (devclass_find_internal(classname, NULL, FALSE)); 1042 } 1043 1044 /** 1045 * @brief Register that a device driver has been added to a devclass 1046 * 1047 * Register that a device driver has been added to a devclass. This 1048 * is called by devclass_add_driver to accomplish the recursive 1049 * notification of all the children classes of dc, as well as dc. 1050 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1051 * the devclass. 1052 * 1053 * We do a full search here of the devclass list at each iteration 1054 * level to save storing children-lists in the devclass structure. If 1055 * we ever move beyond a few dozen devices doing this, we may need to 1056 * reevaluate... 1057 * 1058 * @param dc the devclass to edit 1059 * @param driver the driver that was just added 1060 */ 1061 static void 1062 devclass_driver_added(devclass_t dc, driver_t *driver) 1063 { 1064 devclass_t parent; 1065 int i; 1066 1067 /* 1068 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1069 */ 1070 for (i = 0; i < dc->maxunit; i++) 1071 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1072 BUS_DRIVER_ADDED(dc->devices[i], driver); 1073 1074 /* 1075 * Walk through the children classes. Since we only keep a 1076 * single parent pointer around, we walk the entire list of 1077 * devclasses looking for children. We set the 1078 * DC_HAS_CHILDREN flag when a child devclass is created on 1079 * the parent, so we only walk the list for those devclasses 1080 * that have children. 1081 */ 1082 if (!(dc->flags & DC_HAS_CHILDREN)) 1083 return; 1084 parent = dc; 1085 TAILQ_FOREACH(dc, &devclasses, link) { 1086 if (dc->parent == parent) 1087 devclass_driver_added(dc, driver); 1088 } 1089 } 1090 1091 /** 1092 * @brief Add a device driver to a device class 1093 * 1094 * Add a device driver to a devclass. This is normally called 1095 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1096 * all devices in the devclass will be called to allow them to attempt 1097 * to re-probe any unmatched children. 1098 * 1099 * @param dc the devclass to edit 1100 * @param driver the driver to register 1101 */ 1102 int 1103 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1104 { 1105 driverlink_t dl; 1106 const char *parentname; 1107 1108 PDEBUG(("%s", DRIVERNAME(driver))); 1109 1110 /* Don't allow invalid pass values. */ 1111 if (pass <= BUS_PASS_ROOT) 1112 return (EINVAL); 1113 1114 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1115 if (!dl) 1116 return (ENOMEM); 1117 1118 /* 1119 * Compile the driver's methods. Also increase the reference count 1120 * so that the class doesn't get freed when the last instance 1121 * goes. This means we can safely use static methods and avoids a 1122 * double-free in devclass_delete_driver. 1123 */ 1124 kobj_class_compile((kobj_class_t) driver); 1125 1126 /* 1127 * If the driver has any base classes, make the 1128 * devclass inherit from the devclass of the driver's 1129 * first base class. This will allow the system to 1130 * search for drivers in both devclasses for children 1131 * of a device using this driver. 1132 */ 1133 if (driver->baseclasses) 1134 parentname = driver->baseclasses[0]->name; 1135 else 1136 parentname = NULL; 1137 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1138 1139 dl->driver = driver; 1140 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1141 driver->refs++; /* XXX: kobj_mtx */ 1142 dl->pass = pass; 1143 driver_register_pass(dl); 1144 1145 devclass_driver_added(dc, driver); 1146 bus_data_generation_update(); 1147 return (0); 1148 } 1149 1150 /** 1151 * @brief Register that a device driver has been deleted from a devclass 1152 * 1153 * Register that a device driver has been removed from a devclass. 1154 * This is called by devclass_delete_driver to accomplish the 1155 * recursive notification of all the children classes of busclass, as 1156 * well as busclass. Each layer will attempt to detach the driver 1157 * from any devices that are children of the bus's devclass. The function 1158 * will return an error if a device fails to detach. 1159 * 1160 * We do a full search here of the devclass list at each iteration 1161 * level to save storing children-lists in the devclass structure. If 1162 * we ever move beyond a few dozen devices doing this, we may need to 1163 * reevaluate... 1164 * 1165 * @param busclass the devclass of the parent bus 1166 * @param dc the devclass of the driver being deleted 1167 * @param driver the driver being deleted 1168 */ 1169 static int 1170 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1171 { 1172 devclass_t parent; 1173 device_t dev; 1174 int error, i; 1175 1176 /* 1177 * Disassociate from any devices. We iterate through all the 1178 * devices in the devclass of the driver and detach any which are 1179 * using the driver and which have a parent in the devclass which 1180 * we are deleting from. 1181 * 1182 * Note that since a driver can be in multiple devclasses, we 1183 * should not detach devices which are not children of devices in 1184 * the affected devclass. 1185 */ 1186 for (i = 0; i < dc->maxunit; i++) { 1187 if (dc->devices[i]) { 1188 dev = dc->devices[i]; 1189 if (dev->driver == driver && dev->parent && 1190 dev->parent->devclass == busclass) { 1191 if ((error = device_detach(dev)) != 0) 1192 return (error); 1193 BUS_PROBE_NOMATCH(dev->parent, dev); 1194 devnomatch(dev); 1195 dev->flags |= DF_DONENOMATCH; 1196 } 1197 } 1198 } 1199 1200 /* 1201 * Walk through the children classes. Since we only keep a 1202 * single parent pointer around, we walk the entire list of 1203 * devclasses looking for children. We set the 1204 * DC_HAS_CHILDREN flag when a child devclass is created on 1205 * the parent, so we only walk the list for those devclasses 1206 * that have children. 1207 */ 1208 if (!(busclass->flags & DC_HAS_CHILDREN)) 1209 return (0); 1210 parent = busclass; 1211 TAILQ_FOREACH(busclass, &devclasses, link) { 1212 if (busclass->parent == parent) { 1213 error = devclass_driver_deleted(busclass, dc, driver); 1214 if (error) 1215 return (error); 1216 } 1217 } 1218 return (0); 1219 } 1220 1221 /** 1222 * @brief Delete a device driver from a device class 1223 * 1224 * Delete a device driver from a devclass. This is normally called 1225 * automatically by DRIVER_MODULE(). 1226 * 1227 * If the driver is currently attached to any devices, 1228 * devclass_delete_driver() will first attempt to detach from each 1229 * device. If one of the detach calls fails, the driver will not be 1230 * deleted. 1231 * 1232 * @param dc the devclass to edit 1233 * @param driver the driver to unregister 1234 */ 1235 int 1236 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1237 { 1238 devclass_t dc = devclass_find(driver->name); 1239 driverlink_t dl; 1240 int error; 1241 1242 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1243 1244 if (!dc) 1245 return (0); 1246 1247 /* 1248 * Find the link structure in the bus' list of drivers. 1249 */ 1250 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1251 if (dl->driver == driver) 1252 break; 1253 } 1254 1255 if (!dl) { 1256 PDEBUG(("%s not found in %s list", driver->name, 1257 busclass->name)); 1258 return (ENOENT); 1259 } 1260 1261 error = devclass_driver_deleted(busclass, dc, driver); 1262 if (error != 0) 1263 return (error); 1264 1265 TAILQ_REMOVE(&busclass->drivers, dl, link); 1266 free(dl, M_BUS); 1267 1268 /* XXX: kobj_mtx */ 1269 driver->refs--; 1270 if (driver->refs == 0) 1271 kobj_class_free((kobj_class_t) driver); 1272 1273 bus_data_generation_update(); 1274 return (0); 1275 } 1276 1277 /** 1278 * @brief Quiesces a set of device drivers from a device class 1279 * 1280 * Quiesce a device driver from a devclass. This is normally called 1281 * automatically by DRIVER_MODULE(). 1282 * 1283 * If the driver is currently attached to any devices, 1284 * devclass_quiesece_driver() will first attempt to quiesce each 1285 * device. 1286 * 1287 * @param dc the devclass to edit 1288 * @param driver the driver to unregister 1289 */ 1290 static int 1291 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1292 { 1293 devclass_t dc = devclass_find(driver->name); 1294 driverlink_t dl; 1295 device_t dev; 1296 int i; 1297 int error; 1298 1299 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1300 1301 if (!dc) 1302 return (0); 1303 1304 /* 1305 * Find the link structure in the bus' list of drivers. 1306 */ 1307 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1308 if (dl->driver == driver) 1309 break; 1310 } 1311 1312 if (!dl) { 1313 PDEBUG(("%s not found in %s list", driver->name, 1314 busclass->name)); 1315 return (ENOENT); 1316 } 1317 1318 /* 1319 * Quiesce all devices. We iterate through all the devices in 1320 * the devclass of the driver and quiesce any which are using 1321 * the driver and which have a parent in the devclass which we 1322 * are quiescing. 1323 * 1324 * Note that since a driver can be in multiple devclasses, we 1325 * should not quiesce devices which are not children of 1326 * devices in the affected devclass. 1327 */ 1328 for (i = 0; i < dc->maxunit; i++) { 1329 if (dc->devices[i]) { 1330 dev = dc->devices[i]; 1331 if (dev->driver == driver && dev->parent && 1332 dev->parent->devclass == busclass) { 1333 if ((error = device_quiesce(dev)) != 0) 1334 return (error); 1335 } 1336 } 1337 } 1338 1339 return (0); 1340 } 1341 1342 /** 1343 * @internal 1344 */ 1345 static driverlink_t 1346 devclass_find_driver_internal(devclass_t dc, const char *classname) 1347 { 1348 driverlink_t dl; 1349 1350 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1351 1352 TAILQ_FOREACH(dl, &dc->drivers, link) { 1353 if (!strcmp(dl->driver->name, classname)) 1354 return (dl); 1355 } 1356 1357 PDEBUG(("not found")); 1358 return (NULL); 1359 } 1360 1361 /** 1362 * @brief Return the name of the devclass 1363 */ 1364 const char * 1365 devclass_get_name(devclass_t dc) 1366 { 1367 return (dc->name); 1368 } 1369 1370 /** 1371 * @brief Find a device given a unit number 1372 * 1373 * @param dc the devclass to search 1374 * @param unit the unit number to search for 1375 * 1376 * @returns the device with the given unit number or @c 1377 * NULL if there is no such device 1378 */ 1379 device_t 1380 devclass_get_device(devclass_t dc, int unit) 1381 { 1382 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1383 return (NULL); 1384 return (dc->devices[unit]); 1385 } 1386 1387 /** 1388 * @brief Find the softc field of a device given a unit number 1389 * 1390 * @param dc the devclass to search 1391 * @param unit the unit number to search for 1392 * 1393 * @returns the softc field of the device with the given 1394 * unit number or @c NULL if there is no such 1395 * device 1396 */ 1397 void * 1398 devclass_get_softc(devclass_t dc, int unit) 1399 { 1400 device_t dev; 1401 1402 dev = devclass_get_device(dc, unit); 1403 if (!dev) 1404 return (NULL); 1405 1406 return (device_get_softc(dev)); 1407 } 1408 1409 /** 1410 * @brief Get a list of devices in the devclass 1411 * 1412 * An array containing a list of all the devices in the given devclass 1413 * is allocated and returned in @p *devlistp. The number of devices 1414 * in the array is returned in @p *devcountp. The caller should free 1415 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1416 * 1417 * @param dc the devclass to examine 1418 * @param devlistp points at location for array pointer return 1419 * value 1420 * @param devcountp points at location for array size return value 1421 * 1422 * @retval 0 success 1423 * @retval ENOMEM the array allocation failed 1424 */ 1425 int 1426 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1427 { 1428 int count, i; 1429 device_t *list; 1430 1431 count = devclass_get_count(dc); 1432 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1433 if (!list) 1434 return (ENOMEM); 1435 1436 count = 0; 1437 for (i = 0; i < dc->maxunit; i++) { 1438 if (dc->devices[i]) { 1439 list[count] = dc->devices[i]; 1440 count++; 1441 } 1442 } 1443 1444 *devlistp = list; 1445 *devcountp = count; 1446 1447 return (0); 1448 } 1449 1450 /** 1451 * @brief Get a list of drivers in the devclass 1452 * 1453 * An array containing a list of pointers to all the drivers in the 1454 * given devclass is allocated and returned in @p *listp. The number 1455 * of drivers in the array is returned in @p *countp. The caller should 1456 * free the array using @c free(p, M_TEMP). 1457 * 1458 * @param dc the devclass to examine 1459 * @param listp gives location for array pointer return value 1460 * @param countp gives location for number of array elements 1461 * return value 1462 * 1463 * @retval 0 success 1464 * @retval ENOMEM the array allocation failed 1465 */ 1466 int 1467 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1468 { 1469 driverlink_t dl; 1470 driver_t **list; 1471 int count; 1472 1473 count = 0; 1474 TAILQ_FOREACH(dl, &dc->drivers, link) 1475 count++; 1476 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1477 if (list == NULL) 1478 return (ENOMEM); 1479 1480 count = 0; 1481 TAILQ_FOREACH(dl, &dc->drivers, link) { 1482 list[count] = dl->driver; 1483 count++; 1484 } 1485 *listp = list; 1486 *countp = count; 1487 1488 return (0); 1489 } 1490 1491 /** 1492 * @brief Get the number of devices in a devclass 1493 * 1494 * @param dc the devclass to examine 1495 */ 1496 int 1497 devclass_get_count(devclass_t dc) 1498 { 1499 int count, i; 1500 1501 count = 0; 1502 for (i = 0; i < dc->maxunit; i++) 1503 if (dc->devices[i]) 1504 count++; 1505 return (count); 1506 } 1507 1508 /** 1509 * @brief Get the maximum unit number used in a devclass 1510 * 1511 * Note that this is one greater than the highest currently-allocated 1512 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1513 * that not even the devclass has been allocated yet. 1514 * 1515 * @param dc the devclass to examine 1516 */ 1517 int 1518 devclass_get_maxunit(devclass_t dc) 1519 { 1520 if (dc == NULL) 1521 return (-1); 1522 return (dc->maxunit); 1523 } 1524 1525 /** 1526 * @brief Find a free unit number in a devclass 1527 * 1528 * This function searches for the first unused unit number greater 1529 * that or equal to @p unit. 1530 * 1531 * @param dc the devclass to examine 1532 * @param unit the first unit number to check 1533 */ 1534 int 1535 devclass_find_free_unit(devclass_t dc, int unit) 1536 { 1537 if (dc == NULL) 1538 return (unit); 1539 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1540 unit++; 1541 return (unit); 1542 } 1543 1544 /** 1545 * @brief Set the parent of a devclass 1546 * 1547 * The parent class is normally initialised automatically by 1548 * DRIVER_MODULE(). 1549 * 1550 * @param dc the devclass to edit 1551 * @param pdc the new parent devclass 1552 */ 1553 void 1554 devclass_set_parent(devclass_t dc, devclass_t pdc) 1555 { 1556 dc->parent = pdc; 1557 } 1558 1559 /** 1560 * @brief Get the parent of a devclass 1561 * 1562 * @param dc the devclass to examine 1563 */ 1564 devclass_t 1565 devclass_get_parent(devclass_t dc) 1566 { 1567 return (dc->parent); 1568 } 1569 1570 struct sysctl_ctx_list * 1571 devclass_get_sysctl_ctx(devclass_t dc) 1572 { 1573 return (&dc->sysctl_ctx); 1574 } 1575 1576 struct sysctl_oid * 1577 devclass_get_sysctl_tree(devclass_t dc) 1578 { 1579 return (dc->sysctl_tree); 1580 } 1581 1582 /** 1583 * @internal 1584 * @brief Allocate a unit number 1585 * 1586 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1587 * will do). The allocated unit number is returned in @p *unitp. 1588 1589 * @param dc the devclass to allocate from 1590 * @param unitp points at the location for the allocated unit 1591 * number 1592 * 1593 * @retval 0 success 1594 * @retval EEXIST the requested unit number is already allocated 1595 * @retval ENOMEM memory allocation failure 1596 */ 1597 static int 1598 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1599 { 1600 const char *s; 1601 int unit = *unitp; 1602 1603 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1604 1605 /* Ask the parent bus if it wants to wire this device. */ 1606 if (unit == -1) 1607 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1608 &unit); 1609 1610 /* If we were given a wired unit number, check for existing device */ 1611 /* XXX imp XXX */ 1612 if (unit != -1) { 1613 if (unit >= 0 && unit < dc->maxunit && 1614 dc->devices[unit] != NULL) { 1615 if (bootverbose) 1616 printf("%s: %s%d already exists; skipping it\n", 1617 dc->name, dc->name, *unitp); 1618 return (EEXIST); 1619 } 1620 } else { 1621 /* Unwired device, find the next available slot for it */ 1622 unit = 0; 1623 for (unit = 0;; unit++) { 1624 /* If there is an "at" hint for a unit then skip it. */ 1625 if (resource_string_value(dc->name, unit, "at", &s) == 1626 0) 1627 continue; 1628 1629 /* If this device slot is already in use, skip it. */ 1630 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1631 continue; 1632 1633 break; 1634 } 1635 } 1636 1637 /* 1638 * We've selected a unit beyond the length of the table, so let's 1639 * extend the table to make room for all units up to and including 1640 * this one. 1641 */ 1642 if (unit >= dc->maxunit) { 1643 device_t *newlist, *oldlist; 1644 int newsize; 1645 1646 oldlist = dc->devices; 1647 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1648 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1649 if (!newlist) 1650 return (ENOMEM); 1651 if (oldlist != NULL) 1652 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1653 bzero(newlist + dc->maxunit, 1654 sizeof(device_t) * (newsize - dc->maxunit)); 1655 dc->devices = newlist; 1656 dc->maxunit = newsize; 1657 if (oldlist != NULL) 1658 free(oldlist, M_BUS); 1659 } 1660 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1661 1662 *unitp = unit; 1663 return (0); 1664 } 1665 1666 /** 1667 * @internal 1668 * @brief Add a device to a devclass 1669 * 1670 * A unit number is allocated for the device (using the device's 1671 * preferred unit number if any) and the device is registered in the 1672 * devclass. This allows the device to be looked up by its unit 1673 * number, e.g. by decoding a dev_t minor number. 1674 * 1675 * @param dc the devclass to add to 1676 * @param dev the device to add 1677 * 1678 * @retval 0 success 1679 * @retval EEXIST the requested unit number is already allocated 1680 * @retval ENOMEM memory allocation failure 1681 */ 1682 static int 1683 devclass_add_device(devclass_t dc, device_t dev) 1684 { 1685 int buflen, error; 1686 1687 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1688 1689 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1690 if (buflen < 0) 1691 return (ENOMEM); 1692 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1693 if (!dev->nameunit) 1694 return (ENOMEM); 1695 1696 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1697 free(dev->nameunit, M_BUS); 1698 dev->nameunit = NULL; 1699 return (error); 1700 } 1701 dc->devices[dev->unit] = dev; 1702 dev->devclass = dc; 1703 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1704 1705 return (0); 1706 } 1707 1708 /** 1709 * @internal 1710 * @brief Delete a device from a devclass 1711 * 1712 * The device is removed from the devclass's device list and its unit 1713 * number is freed. 1714 1715 * @param dc the devclass to delete from 1716 * @param dev the device to delete 1717 * 1718 * @retval 0 success 1719 */ 1720 static int 1721 devclass_delete_device(devclass_t dc, device_t dev) 1722 { 1723 if (!dc || !dev) 1724 return (0); 1725 1726 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1727 1728 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1729 panic("devclass_delete_device: inconsistent device class"); 1730 dc->devices[dev->unit] = NULL; 1731 if (dev->flags & DF_WILDCARD) 1732 dev->unit = -1; 1733 dev->devclass = NULL; 1734 free(dev->nameunit, M_BUS); 1735 dev->nameunit = NULL; 1736 1737 return (0); 1738 } 1739 1740 /** 1741 * @internal 1742 * @brief Make a new device and add it as a child of @p parent 1743 * 1744 * @param parent the parent of the new device 1745 * @param name the devclass name of the new device or @c NULL 1746 * to leave the devclass unspecified 1747 * @parem unit the unit number of the new device of @c -1 to 1748 * leave the unit number unspecified 1749 * 1750 * @returns the new device 1751 */ 1752 static device_t 1753 make_device(device_t parent, const char *name, int unit) 1754 { 1755 device_t dev; 1756 devclass_t dc; 1757 1758 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1759 1760 if (name) { 1761 dc = devclass_find_internal(name, NULL, TRUE); 1762 if (!dc) { 1763 printf("make_device: can't find device class %s\n", 1764 name); 1765 return (NULL); 1766 } 1767 } else { 1768 dc = NULL; 1769 } 1770 1771 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1772 if (!dev) 1773 return (NULL); 1774 1775 dev->parent = parent; 1776 TAILQ_INIT(&dev->children); 1777 kobj_init((kobj_t) dev, &null_class); 1778 dev->driver = NULL; 1779 dev->devclass = NULL; 1780 dev->unit = unit; 1781 dev->nameunit = NULL; 1782 dev->desc = NULL; 1783 dev->busy = 0; 1784 dev->devflags = 0; 1785 dev->flags = DF_ENABLED; 1786 dev->order = 0; 1787 if (unit == -1) 1788 dev->flags |= DF_WILDCARD; 1789 if (name) { 1790 dev->flags |= DF_FIXEDCLASS; 1791 if (devclass_add_device(dc, dev)) { 1792 kobj_delete((kobj_t) dev, M_BUS); 1793 return (NULL); 1794 } 1795 } 1796 dev->ivars = NULL; 1797 dev->softc = NULL; 1798 1799 dev->state = DS_NOTPRESENT; 1800 1801 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1802 bus_data_generation_update(); 1803 1804 return (dev); 1805 } 1806 1807 /** 1808 * @internal 1809 * @brief Print a description of a device. 1810 */ 1811 static int 1812 device_print_child(device_t dev, device_t child) 1813 { 1814 int retval = 0; 1815 1816 if (device_is_alive(child)) 1817 retval += BUS_PRINT_CHILD(dev, child); 1818 else 1819 retval += device_printf(child, " not found\n"); 1820 1821 return (retval); 1822 } 1823 1824 /** 1825 * @brief Create a new device 1826 * 1827 * This creates a new device and adds it as a child of an existing 1828 * parent device. The new device will be added after the last existing 1829 * child with order zero. 1830 * 1831 * @param dev the device which will be the parent of the 1832 * new child device 1833 * @param name devclass name for new device or @c NULL if not 1834 * specified 1835 * @param unit unit number for new device or @c -1 if not 1836 * specified 1837 * 1838 * @returns the new device 1839 */ 1840 device_t 1841 device_add_child(device_t dev, const char *name, int unit) 1842 { 1843 return (device_add_child_ordered(dev, 0, name, unit)); 1844 } 1845 1846 /** 1847 * @brief Create a new device 1848 * 1849 * This creates a new device and adds it as a child of an existing 1850 * parent device. The new device will be added after the last existing 1851 * child with the same order. 1852 * 1853 * @param dev the device which will be the parent of the 1854 * new child device 1855 * @param order a value which is used to partially sort the 1856 * children of @p dev - devices created using 1857 * lower values of @p order appear first in @p 1858 * dev's list of children 1859 * @param name devclass name for new device or @c NULL if not 1860 * specified 1861 * @param unit unit number for new device or @c -1 if not 1862 * specified 1863 * 1864 * @returns the new device 1865 */ 1866 device_t 1867 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1868 { 1869 device_t child; 1870 device_t place; 1871 1872 PDEBUG(("%s at %s with order %u as unit %d", 1873 name, DEVICENAME(dev), order, unit)); 1874 KASSERT(name != NULL || unit == -1, 1875 ("child device with wildcard name and specific unit number")); 1876 1877 child = make_device(dev, name, unit); 1878 if (child == NULL) 1879 return (child); 1880 child->order = order; 1881 1882 TAILQ_FOREACH(place, &dev->children, link) { 1883 if (place->order > order) 1884 break; 1885 } 1886 1887 if (place) { 1888 /* 1889 * The device 'place' is the first device whose order is 1890 * greater than the new child. 1891 */ 1892 TAILQ_INSERT_BEFORE(place, child, link); 1893 } else { 1894 /* 1895 * The new child's order is greater or equal to the order of 1896 * any existing device. Add the child to the tail of the list. 1897 */ 1898 TAILQ_INSERT_TAIL(&dev->children, child, link); 1899 } 1900 1901 bus_data_generation_update(); 1902 return (child); 1903 } 1904 1905 /** 1906 * @brief Delete a device 1907 * 1908 * This function deletes a device along with all of its children. If 1909 * the device currently has a driver attached to it, the device is 1910 * detached first using device_detach(). 1911 * 1912 * @param dev the parent device 1913 * @param child the device to delete 1914 * 1915 * @retval 0 success 1916 * @retval non-zero a unit error code describing the error 1917 */ 1918 int 1919 device_delete_child(device_t dev, device_t child) 1920 { 1921 int error; 1922 device_t grandchild; 1923 1924 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1925 1926 /* remove children first */ 1927 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1928 error = device_delete_child(child, grandchild); 1929 if (error) 1930 return (error); 1931 } 1932 1933 if ((error = device_detach(child)) != 0) 1934 return (error); 1935 if (child->devclass) 1936 devclass_delete_device(child->devclass, child); 1937 if (child->parent) 1938 BUS_CHILD_DELETED(dev, child); 1939 TAILQ_REMOVE(&dev->children, child, link); 1940 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1941 kobj_delete((kobj_t) child, M_BUS); 1942 1943 bus_data_generation_update(); 1944 return (0); 1945 } 1946 1947 /** 1948 * @brief Delete all children devices of the given device, if any. 1949 * 1950 * This function deletes all children devices of the given device, if 1951 * any, using the device_delete_child() function for each device it 1952 * finds. If a child device cannot be deleted, this function will 1953 * return an error code. 1954 * 1955 * @param dev the parent device 1956 * 1957 * @retval 0 success 1958 * @retval non-zero a device would not detach 1959 */ 1960 int 1961 device_delete_children(device_t dev) 1962 { 1963 device_t child; 1964 int error; 1965 1966 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1967 1968 error = 0; 1969 1970 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1971 error = device_delete_child(dev, child); 1972 if (error) { 1973 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1974 break; 1975 } 1976 } 1977 return (error); 1978 } 1979 1980 /** 1981 * @brief Find a device given a unit number 1982 * 1983 * This is similar to devclass_get_devices() but only searches for 1984 * devices which have @p dev as a parent. 1985 * 1986 * @param dev the parent device to search 1987 * @param unit the unit number to search for. If the unit is -1, 1988 * return the first child of @p dev which has name 1989 * @p classname (that is, the one with the lowest unit.) 1990 * 1991 * @returns the device with the given unit number or @c 1992 * NULL if there is no such device 1993 */ 1994 device_t 1995 device_find_child(device_t dev, const char *classname, int unit) 1996 { 1997 devclass_t dc; 1998 device_t child; 1999 2000 dc = devclass_find(classname); 2001 if (!dc) 2002 return (NULL); 2003 2004 if (unit != -1) { 2005 child = devclass_get_device(dc, unit); 2006 if (child && child->parent == dev) 2007 return (child); 2008 } else { 2009 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2010 child = devclass_get_device(dc, unit); 2011 if (child && child->parent == dev) 2012 return (child); 2013 } 2014 } 2015 return (NULL); 2016 } 2017 2018 /** 2019 * @internal 2020 */ 2021 static driverlink_t 2022 first_matching_driver(devclass_t dc, device_t dev) 2023 { 2024 if (dev->devclass) 2025 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2026 return (TAILQ_FIRST(&dc->drivers)); 2027 } 2028 2029 /** 2030 * @internal 2031 */ 2032 static driverlink_t 2033 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2034 { 2035 if (dev->devclass) { 2036 driverlink_t dl; 2037 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2038 if (!strcmp(dev->devclass->name, dl->driver->name)) 2039 return (dl); 2040 return (NULL); 2041 } 2042 return (TAILQ_NEXT(last, link)); 2043 } 2044 2045 /** 2046 * @internal 2047 */ 2048 int 2049 device_probe_child(device_t dev, device_t child) 2050 { 2051 devclass_t dc; 2052 driverlink_t best = NULL; 2053 driverlink_t dl; 2054 int result, pri = 0; 2055 int hasclass = (child->devclass != NULL); 2056 2057 GIANT_REQUIRED; 2058 2059 dc = dev->devclass; 2060 if (!dc) 2061 panic("device_probe_child: parent device has no devclass"); 2062 2063 /* 2064 * If the state is already probed, then return. However, don't 2065 * return if we can rebid this object. 2066 */ 2067 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2068 return (0); 2069 2070 for (; dc; dc = dc->parent) { 2071 for (dl = first_matching_driver(dc, child); 2072 dl; 2073 dl = next_matching_driver(dc, child, dl)) { 2074 /* If this driver's pass is too high, then ignore it. */ 2075 if (dl->pass > bus_current_pass) 2076 continue; 2077 2078 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2079 result = device_set_driver(child, dl->driver); 2080 if (result == ENOMEM) 2081 return (result); 2082 else if (result != 0) 2083 continue; 2084 if (!hasclass) { 2085 if (device_set_devclass(child, 2086 dl->driver->name) != 0) { 2087 char const * devname = 2088 device_get_name(child); 2089 if (devname == NULL) 2090 devname = "(unknown)"; 2091 printf("driver bug: Unable to set " 2092 "devclass (class: %s " 2093 "devname: %s)\n", 2094 dl->driver->name, 2095 devname); 2096 (void)device_set_driver(child, NULL); 2097 continue; 2098 } 2099 } 2100 2101 /* Fetch any flags for the device before probing. */ 2102 resource_int_value(dl->driver->name, child->unit, 2103 "flags", &child->devflags); 2104 2105 result = DEVICE_PROBE(child); 2106 2107 /* Reset flags and devclass before the next probe. */ 2108 child->devflags = 0; 2109 if (!hasclass) 2110 (void)device_set_devclass(child, NULL); 2111 2112 /* 2113 * If the driver returns SUCCESS, there can be 2114 * no higher match for this device. 2115 */ 2116 if (result == 0) { 2117 best = dl; 2118 pri = 0; 2119 break; 2120 } 2121 2122 /* 2123 * The driver returned an error so it 2124 * certainly doesn't match. 2125 */ 2126 if (result > 0) { 2127 (void)device_set_driver(child, NULL); 2128 continue; 2129 } 2130 2131 /* 2132 * A priority lower than SUCCESS, remember the 2133 * best matching driver. Initialise the value 2134 * of pri for the first match. 2135 */ 2136 if (best == NULL || result > pri) { 2137 /* 2138 * Probes that return BUS_PROBE_NOWILDCARD 2139 * or lower only match on devices whose 2140 * driver was explicitly specified. 2141 */ 2142 if (result <= BUS_PROBE_NOWILDCARD && 2143 !(child->flags & DF_FIXEDCLASS)) 2144 continue; 2145 best = dl; 2146 pri = result; 2147 continue; 2148 } 2149 } 2150 /* 2151 * If we have an unambiguous match in this devclass, 2152 * don't look in the parent. 2153 */ 2154 if (best && pri == 0) 2155 break; 2156 } 2157 2158 /* 2159 * If we found a driver, change state and initialise the devclass. 2160 */ 2161 /* XXX What happens if we rebid and got no best? */ 2162 if (best) { 2163 /* 2164 * If this device was attached, and we were asked to 2165 * rescan, and it is a different driver, then we have 2166 * to detach the old driver and reattach this new one. 2167 * Note, we don't have to check for DF_REBID here 2168 * because if the state is > DS_ALIVE, we know it must 2169 * be. 2170 * 2171 * This assumes that all DF_REBID drivers can have 2172 * their probe routine called at any time and that 2173 * they are idempotent as well as completely benign in 2174 * normal operations. 2175 * 2176 * We also have to make sure that the detach 2177 * succeeded, otherwise we fail the operation (or 2178 * maybe it should just fail silently? I'm torn). 2179 */ 2180 if (child->state > DS_ALIVE && best->driver != child->driver) 2181 if ((result = device_detach(dev)) != 0) 2182 return (result); 2183 2184 /* Set the winning driver, devclass, and flags. */ 2185 if (!child->devclass) { 2186 result = device_set_devclass(child, best->driver->name); 2187 if (result != 0) 2188 return (result); 2189 } 2190 result = device_set_driver(child, best->driver); 2191 if (result != 0) 2192 return (result); 2193 resource_int_value(best->driver->name, child->unit, 2194 "flags", &child->devflags); 2195 2196 if (pri < 0) { 2197 /* 2198 * A bit bogus. Call the probe method again to make 2199 * sure that we have the right description. 2200 */ 2201 DEVICE_PROBE(child); 2202 #if 0 2203 child->flags |= DF_REBID; 2204 #endif 2205 } else 2206 child->flags &= ~DF_REBID; 2207 child->state = DS_ALIVE; 2208 2209 bus_data_generation_update(); 2210 return (0); 2211 } 2212 2213 return (ENXIO); 2214 } 2215 2216 /** 2217 * @brief Return the parent of a device 2218 */ 2219 device_t 2220 device_get_parent(device_t dev) 2221 { 2222 return (dev->parent); 2223 } 2224 2225 /** 2226 * @brief Get a list of children of a device 2227 * 2228 * An array containing a list of all the children of the given device 2229 * is allocated and returned in @p *devlistp. The number of devices 2230 * in the array is returned in @p *devcountp. The caller should free 2231 * the array using @c free(p, M_TEMP). 2232 * 2233 * @param dev the device to examine 2234 * @param devlistp points at location for array pointer return 2235 * value 2236 * @param devcountp points at location for array size return value 2237 * 2238 * @retval 0 success 2239 * @retval ENOMEM the array allocation failed 2240 */ 2241 int 2242 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2243 { 2244 int count; 2245 device_t child; 2246 device_t *list; 2247 2248 count = 0; 2249 TAILQ_FOREACH(child, &dev->children, link) { 2250 count++; 2251 } 2252 if (count == 0) { 2253 *devlistp = NULL; 2254 *devcountp = 0; 2255 return (0); 2256 } 2257 2258 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2259 if (!list) 2260 return (ENOMEM); 2261 2262 count = 0; 2263 TAILQ_FOREACH(child, &dev->children, link) { 2264 list[count] = child; 2265 count++; 2266 } 2267 2268 *devlistp = list; 2269 *devcountp = count; 2270 2271 return (0); 2272 } 2273 2274 /** 2275 * @brief Return the current driver for the device or @c NULL if there 2276 * is no driver currently attached 2277 */ 2278 driver_t * 2279 device_get_driver(device_t dev) 2280 { 2281 return (dev->driver); 2282 } 2283 2284 /** 2285 * @brief Return the current devclass for the device or @c NULL if 2286 * there is none. 2287 */ 2288 devclass_t 2289 device_get_devclass(device_t dev) 2290 { 2291 return (dev->devclass); 2292 } 2293 2294 /** 2295 * @brief Return the name of the device's devclass or @c NULL if there 2296 * is none. 2297 */ 2298 const char * 2299 device_get_name(device_t dev) 2300 { 2301 if (dev != NULL && dev->devclass) 2302 return (devclass_get_name(dev->devclass)); 2303 return (NULL); 2304 } 2305 2306 /** 2307 * @brief Return a string containing the device's devclass name 2308 * followed by an ascii representation of the device's unit number 2309 * (e.g. @c "foo2"). 2310 */ 2311 const char * 2312 device_get_nameunit(device_t dev) 2313 { 2314 return (dev->nameunit); 2315 } 2316 2317 /** 2318 * @brief Return the device's unit number. 2319 */ 2320 int 2321 device_get_unit(device_t dev) 2322 { 2323 return (dev->unit); 2324 } 2325 2326 /** 2327 * @brief Return the device's description string 2328 */ 2329 const char * 2330 device_get_desc(device_t dev) 2331 { 2332 return (dev->desc); 2333 } 2334 2335 /** 2336 * @brief Return the device's flags 2337 */ 2338 uint32_t 2339 device_get_flags(device_t dev) 2340 { 2341 return (dev->devflags); 2342 } 2343 2344 struct sysctl_ctx_list * 2345 device_get_sysctl_ctx(device_t dev) 2346 { 2347 return (&dev->sysctl_ctx); 2348 } 2349 2350 struct sysctl_oid * 2351 device_get_sysctl_tree(device_t dev) 2352 { 2353 return (dev->sysctl_tree); 2354 } 2355 2356 /** 2357 * @brief Print the name of the device followed by a colon and a space 2358 * 2359 * @returns the number of characters printed 2360 */ 2361 int 2362 device_print_prettyname(device_t dev) 2363 { 2364 const char *name = device_get_name(dev); 2365 2366 if (name == NULL) 2367 return (printf("unknown: ")); 2368 return (printf("%s%d: ", name, device_get_unit(dev))); 2369 } 2370 2371 /** 2372 * @brief Print the name of the device followed by a colon, a space 2373 * and the result of calling vprintf() with the value of @p fmt and 2374 * the following arguments. 2375 * 2376 * @returns the number of characters printed 2377 */ 2378 int 2379 device_printf(device_t dev, const char * fmt, ...) 2380 { 2381 va_list ap; 2382 int retval; 2383 2384 retval = device_print_prettyname(dev); 2385 va_start(ap, fmt); 2386 retval += vprintf(fmt, ap); 2387 va_end(ap); 2388 return (retval); 2389 } 2390 2391 /** 2392 * @internal 2393 */ 2394 static void 2395 device_set_desc_internal(device_t dev, const char* desc, int copy) 2396 { 2397 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2398 free(dev->desc, M_BUS); 2399 dev->flags &= ~DF_DESCMALLOCED; 2400 dev->desc = NULL; 2401 } 2402 2403 if (copy && desc) { 2404 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2405 if (dev->desc) { 2406 strcpy(dev->desc, desc); 2407 dev->flags |= DF_DESCMALLOCED; 2408 } 2409 } else { 2410 /* Avoid a -Wcast-qual warning */ 2411 dev->desc = (char *)(uintptr_t) desc; 2412 } 2413 2414 bus_data_generation_update(); 2415 } 2416 2417 /** 2418 * @brief Set the device's description 2419 * 2420 * The value of @c desc should be a string constant that will not 2421 * change (at least until the description is changed in a subsequent 2422 * call to device_set_desc() or device_set_desc_copy()). 2423 */ 2424 void 2425 device_set_desc(device_t dev, const char* desc) 2426 { 2427 device_set_desc_internal(dev, desc, FALSE); 2428 } 2429 2430 /** 2431 * @brief Set the device's description 2432 * 2433 * The string pointed to by @c desc is copied. Use this function if 2434 * the device description is generated, (e.g. with sprintf()). 2435 */ 2436 void 2437 device_set_desc_copy(device_t dev, const char* desc) 2438 { 2439 device_set_desc_internal(dev, desc, TRUE); 2440 } 2441 2442 /** 2443 * @brief Set the device's flags 2444 */ 2445 void 2446 device_set_flags(device_t dev, uint32_t flags) 2447 { 2448 dev->devflags = flags; 2449 } 2450 2451 /** 2452 * @brief Return the device's softc field 2453 * 2454 * The softc is allocated and zeroed when a driver is attached, based 2455 * on the size field of the driver. 2456 */ 2457 void * 2458 device_get_softc(device_t dev) 2459 { 2460 return (dev->softc); 2461 } 2462 2463 /** 2464 * @brief Set the device's softc field 2465 * 2466 * Most drivers do not need to use this since the softc is allocated 2467 * automatically when the driver is attached. 2468 */ 2469 void 2470 device_set_softc(device_t dev, void *softc) 2471 { 2472 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2473 free(dev->softc, M_BUS_SC); 2474 dev->softc = softc; 2475 if (dev->softc) 2476 dev->flags |= DF_EXTERNALSOFTC; 2477 else 2478 dev->flags &= ~DF_EXTERNALSOFTC; 2479 } 2480 2481 /** 2482 * @brief Free claimed softc 2483 * 2484 * Most drivers do not need to use this since the softc is freed 2485 * automatically when the driver is detached. 2486 */ 2487 void 2488 device_free_softc(void *softc) 2489 { 2490 free(softc, M_BUS_SC); 2491 } 2492 2493 /** 2494 * @brief Claim softc 2495 * 2496 * This function can be used to let the driver free the automatically 2497 * allocated softc using "device_free_softc()". This function is 2498 * useful when the driver is refcounting the softc and the softc 2499 * cannot be freed when the "device_detach" method is called. 2500 */ 2501 void 2502 device_claim_softc(device_t dev) 2503 { 2504 if (dev->softc) 2505 dev->flags |= DF_EXTERNALSOFTC; 2506 else 2507 dev->flags &= ~DF_EXTERNALSOFTC; 2508 } 2509 2510 /** 2511 * @brief Get the device's ivars field 2512 * 2513 * The ivars field is used by the parent device to store per-device 2514 * state (e.g. the physical location of the device or a list of 2515 * resources). 2516 */ 2517 void * 2518 device_get_ivars(device_t dev) 2519 { 2520 2521 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2522 return (dev->ivars); 2523 } 2524 2525 /** 2526 * @brief Set the device's ivars field 2527 */ 2528 void 2529 device_set_ivars(device_t dev, void * ivars) 2530 { 2531 2532 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2533 dev->ivars = ivars; 2534 } 2535 2536 /** 2537 * @brief Return the device's state 2538 */ 2539 device_state_t 2540 device_get_state(device_t dev) 2541 { 2542 return (dev->state); 2543 } 2544 2545 /** 2546 * @brief Set the DF_ENABLED flag for the device 2547 */ 2548 void 2549 device_enable(device_t dev) 2550 { 2551 dev->flags |= DF_ENABLED; 2552 } 2553 2554 /** 2555 * @brief Clear the DF_ENABLED flag for the device 2556 */ 2557 void 2558 device_disable(device_t dev) 2559 { 2560 dev->flags &= ~DF_ENABLED; 2561 } 2562 2563 /** 2564 * @brief Increment the busy counter for the device 2565 */ 2566 void 2567 device_busy(device_t dev) 2568 { 2569 if (dev->state < DS_ATTACHING) 2570 panic("device_busy: called for unattached device"); 2571 if (dev->busy == 0 && dev->parent) 2572 device_busy(dev->parent); 2573 dev->busy++; 2574 if (dev->state == DS_ATTACHED) 2575 dev->state = DS_BUSY; 2576 } 2577 2578 /** 2579 * @brief Decrement the busy counter for the device 2580 */ 2581 void 2582 device_unbusy(device_t dev) 2583 { 2584 if (dev->busy != 0 && dev->state != DS_BUSY && 2585 dev->state != DS_ATTACHING) 2586 panic("device_unbusy: called for non-busy device %s", 2587 device_get_nameunit(dev)); 2588 dev->busy--; 2589 if (dev->busy == 0) { 2590 if (dev->parent) 2591 device_unbusy(dev->parent); 2592 if (dev->state == DS_BUSY) 2593 dev->state = DS_ATTACHED; 2594 } 2595 } 2596 2597 /** 2598 * @brief Set the DF_QUIET flag for the device 2599 */ 2600 void 2601 device_quiet(device_t dev) 2602 { 2603 dev->flags |= DF_QUIET; 2604 } 2605 2606 /** 2607 * @brief Clear the DF_QUIET flag for the device 2608 */ 2609 void 2610 device_verbose(device_t dev) 2611 { 2612 dev->flags &= ~DF_QUIET; 2613 } 2614 2615 /** 2616 * @brief Return non-zero if the DF_QUIET flag is set on the device 2617 */ 2618 int 2619 device_is_quiet(device_t dev) 2620 { 2621 return ((dev->flags & DF_QUIET) != 0); 2622 } 2623 2624 /** 2625 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2626 */ 2627 int 2628 device_is_enabled(device_t dev) 2629 { 2630 return ((dev->flags & DF_ENABLED) != 0); 2631 } 2632 2633 /** 2634 * @brief Return non-zero if the device was successfully probed 2635 */ 2636 int 2637 device_is_alive(device_t dev) 2638 { 2639 return (dev->state >= DS_ALIVE); 2640 } 2641 2642 /** 2643 * @brief Return non-zero if the device currently has a driver 2644 * attached to it 2645 */ 2646 int 2647 device_is_attached(device_t dev) 2648 { 2649 return (dev->state >= DS_ATTACHED); 2650 } 2651 2652 /** 2653 * @brief Set the devclass of a device 2654 * @see devclass_add_device(). 2655 */ 2656 int 2657 device_set_devclass(device_t dev, const char *classname) 2658 { 2659 devclass_t dc; 2660 int error; 2661 2662 if (!classname) { 2663 if (dev->devclass) 2664 devclass_delete_device(dev->devclass, dev); 2665 return (0); 2666 } 2667 2668 if (dev->devclass) { 2669 printf("device_set_devclass: device class already set\n"); 2670 return (EINVAL); 2671 } 2672 2673 dc = devclass_find_internal(classname, NULL, TRUE); 2674 if (!dc) 2675 return (ENOMEM); 2676 2677 error = devclass_add_device(dc, dev); 2678 2679 bus_data_generation_update(); 2680 return (error); 2681 } 2682 2683 /** 2684 * @brief Set the driver of a device 2685 * 2686 * @retval 0 success 2687 * @retval EBUSY the device already has a driver attached 2688 * @retval ENOMEM a memory allocation failure occurred 2689 */ 2690 int 2691 device_set_driver(device_t dev, driver_t *driver) 2692 { 2693 if (dev->state >= DS_ATTACHED) 2694 return (EBUSY); 2695 2696 if (dev->driver == driver) 2697 return (0); 2698 2699 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2700 free(dev->softc, M_BUS_SC); 2701 dev->softc = NULL; 2702 } 2703 device_set_desc(dev, NULL); 2704 kobj_delete((kobj_t) dev, NULL); 2705 dev->driver = driver; 2706 if (driver) { 2707 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2708 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2709 dev->softc = malloc(driver->size, M_BUS_SC, 2710 M_NOWAIT | M_ZERO); 2711 if (!dev->softc) { 2712 kobj_delete((kobj_t) dev, NULL); 2713 kobj_init((kobj_t) dev, &null_class); 2714 dev->driver = NULL; 2715 return (ENOMEM); 2716 } 2717 } 2718 } else { 2719 kobj_init((kobj_t) dev, &null_class); 2720 } 2721 2722 bus_data_generation_update(); 2723 return (0); 2724 } 2725 2726 /** 2727 * @brief Probe a device, and return this status. 2728 * 2729 * This function is the core of the device autoconfiguration 2730 * system. Its purpose is to select a suitable driver for a device and 2731 * then call that driver to initialise the hardware appropriately. The 2732 * driver is selected by calling the DEVICE_PROBE() method of a set of 2733 * candidate drivers and then choosing the driver which returned the 2734 * best value. This driver is then attached to the device using 2735 * device_attach(). 2736 * 2737 * The set of suitable drivers is taken from the list of drivers in 2738 * the parent device's devclass. If the device was originally created 2739 * with a specific class name (see device_add_child()), only drivers 2740 * with that name are probed, otherwise all drivers in the devclass 2741 * are probed. If no drivers return successful probe values in the 2742 * parent devclass, the search continues in the parent of that 2743 * devclass (see devclass_get_parent()) if any. 2744 * 2745 * @param dev the device to initialise 2746 * 2747 * @retval 0 success 2748 * @retval ENXIO no driver was found 2749 * @retval ENOMEM memory allocation failure 2750 * @retval non-zero some other unix error code 2751 * @retval -1 Device already attached 2752 */ 2753 int 2754 device_probe(device_t dev) 2755 { 2756 int error; 2757 2758 GIANT_REQUIRED; 2759 2760 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2761 return (-1); 2762 2763 if (!(dev->flags & DF_ENABLED)) { 2764 if (bootverbose && device_get_name(dev) != NULL) { 2765 device_print_prettyname(dev); 2766 printf("not probed (disabled)\n"); 2767 } 2768 return (-1); 2769 } 2770 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2771 if (bus_current_pass == BUS_PASS_DEFAULT && 2772 !(dev->flags & DF_DONENOMATCH)) { 2773 BUS_PROBE_NOMATCH(dev->parent, dev); 2774 devnomatch(dev); 2775 dev->flags |= DF_DONENOMATCH; 2776 } 2777 return (error); 2778 } 2779 return (0); 2780 } 2781 2782 /** 2783 * @brief Probe a device and attach a driver if possible 2784 * 2785 * calls device_probe() and attaches if that was successful. 2786 */ 2787 int 2788 device_probe_and_attach(device_t dev) 2789 { 2790 int error; 2791 2792 GIANT_REQUIRED; 2793 2794 error = device_probe(dev); 2795 if (error == -1) 2796 return (0); 2797 else if (error != 0) 2798 return (error); 2799 2800 CURVNET_SET_QUIET(vnet0); 2801 error = device_attach(dev); 2802 CURVNET_RESTORE(); 2803 return error; 2804 } 2805 2806 /** 2807 * @brief Attach a device driver to a device 2808 * 2809 * This function is a wrapper around the DEVICE_ATTACH() driver 2810 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2811 * device's sysctl tree, optionally prints a description of the device 2812 * and queues a notification event for user-based device management 2813 * services. 2814 * 2815 * Normally this function is only called internally from 2816 * device_probe_and_attach(). 2817 * 2818 * @param dev the device to initialise 2819 * 2820 * @retval 0 success 2821 * @retval ENXIO no driver was found 2822 * @retval ENOMEM memory allocation failure 2823 * @retval non-zero some other unix error code 2824 */ 2825 int 2826 device_attach(device_t dev) 2827 { 2828 uint64_t attachtime; 2829 int error; 2830 2831 if (resource_disabled(dev->driver->name, dev->unit)) { 2832 device_disable(dev); 2833 if (bootverbose) 2834 device_printf(dev, "disabled via hints entry\n"); 2835 return (ENXIO); 2836 } 2837 2838 device_sysctl_init(dev); 2839 if (!device_is_quiet(dev)) 2840 device_print_child(dev->parent, dev); 2841 attachtime = get_cyclecount(); 2842 dev->state = DS_ATTACHING; 2843 if ((error = DEVICE_ATTACH(dev)) != 0) { 2844 printf("device_attach: %s%d attach returned %d\n", 2845 dev->driver->name, dev->unit, error); 2846 if (!(dev->flags & DF_FIXEDCLASS)) 2847 devclass_delete_device(dev->devclass, dev); 2848 (void)device_set_driver(dev, NULL); 2849 device_sysctl_fini(dev); 2850 KASSERT(dev->busy == 0, ("attach failed but busy")); 2851 dev->state = DS_NOTPRESENT; 2852 return (error); 2853 } 2854 attachtime = get_cyclecount() - attachtime; 2855 /* 2856 * 4 bits per device is a reasonable value for desktop and server 2857 * hardware with good get_cyclecount() implementations, but may 2858 * need to be adjusted on other platforms. 2859 */ 2860 #ifdef RANDOM_DEBUG 2861 printf("random: %s(): feeding %d bit(s) of entropy from %s%d\n", 2862 __func__, 4, dev->driver->name, dev->unit); 2863 #endif 2864 random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH); 2865 device_sysctl_update(dev); 2866 if (dev->busy) 2867 dev->state = DS_BUSY; 2868 else 2869 dev->state = DS_ATTACHED; 2870 dev->flags &= ~DF_DONENOMATCH; 2871 devadded(dev); 2872 return (0); 2873 } 2874 2875 /** 2876 * @brief Detach a driver from a device 2877 * 2878 * This function is a wrapper around the DEVICE_DETACH() driver 2879 * method. If the call to DEVICE_DETACH() succeeds, it calls 2880 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2881 * notification event for user-based device management services and 2882 * cleans up the device's sysctl tree. 2883 * 2884 * @param dev the device to un-initialise 2885 * 2886 * @retval 0 success 2887 * @retval ENXIO no driver was found 2888 * @retval ENOMEM memory allocation failure 2889 * @retval non-zero some other unix error code 2890 */ 2891 int 2892 device_detach(device_t dev) 2893 { 2894 int error; 2895 2896 GIANT_REQUIRED; 2897 2898 PDEBUG(("%s", DEVICENAME(dev))); 2899 if (dev->state == DS_BUSY) 2900 return (EBUSY); 2901 if (dev->state != DS_ATTACHED) 2902 return (0); 2903 2904 if ((error = DEVICE_DETACH(dev)) != 0) 2905 return (error); 2906 devremoved(dev); 2907 if (!device_is_quiet(dev)) 2908 device_printf(dev, "detached\n"); 2909 if (dev->parent) 2910 BUS_CHILD_DETACHED(dev->parent, dev); 2911 2912 if (!(dev->flags & DF_FIXEDCLASS)) 2913 devclass_delete_device(dev->devclass, dev); 2914 2915 dev->state = DS_NOTPRESENT; 2916 (void)device_set_driver(dev, NULL); 2917 device_sysctl_fini(dev); 2918 2919 return (0); 2920 } 2921 2922 /** 2923 * @brief Tells a driver to quiesce itself. 2924 * 2925 * This function is a wrapper around the DEVICE_QUIESCE() driver 2926 * method. If the call to DEVICE_QUIESCE() succeeds. 2927 * 2928 * @param dev the device to quiesce 2929 * 2930 * @retval 0 success 2931 * @retval ENXIO no driver was found 2932 * @retval ENOMEM memory allocation failure 2933 * @retval non-zero some other unix error code 2934 */ 2935 int 2936 device_quiesce(device_t dev) 2937 { 2938 2939 PDEBUG(("%s", DEVICENAME(dev))); 2940 if (dev->state == DS_BUSY) 2941 return (EBUSY); 2942 if (dev->state != DS_ATTACHED) 2943 return (0); 2944 2945 return (DEVICE_QUIESCE(dev)); 2946 } 2947 2948 /** 2949 * @brief Notify a device of system shutdown 2950 * 2951 * This function calls the DEVICE_SHUTDOWN() driver method if the 2952 * device currently has an attached driver. 2953 * 2954 * @returns the value returned by DEVICE_SHUTDOWN() 2955 */ 2956 int 2957 device_shutdown(device_t dev) 2958 { 2959 if (dev->state < DS_ATTACHED) 2960 return (0); 2961 return (DEVICE_SHUTDOWN(dev)); 2962 } 2963 2964 /** 2965 * @brief Set the unit number of a device 2966 * 2967 * This function can be used to override the unit number used for a 2968 * device (e.g. to wire a device to a pre-configured unit number). 2969 */ 2970 int 2971 device_set_unit(device_t dev, int unit) 2972 { 2973 devclass_t dc; 2974 int err; 2975 2976 dc = device_get_devclass(dev); 2977 if (unit < dc->maxunit && dc->devices[unit]) 2978 return (EBUSY); 2979 err = devclass_delete_device(dc, dev); 2980 if (err) 2981 return (err); 2982 dev->unit = unit; 2983 err = devclass_add_device(dc, dev); 2984 if (err) 2985 return (err); 2986 2987 bus_data_generation_update(); 2988 return (0); 2989 } 2990 2991 /*======================================*/ 2992 /* 2993 * Some useful method implementations to make life easier for bus drivers. 2994 */ 2995 2996 /** 2997 * @brief Initialise a resource list. 2998 * 2999 * @param rl the resource list to initialise 3000 */ 3001 void 3002 resource_list_init(struct resource_list *rl) 3003 { 3004 STAILQ_INIT(rl); 3005 } 3006 3007 /** 3008 * @brief Reclaim memory used by a resource list. 3009 * 3010 * This function frees the memory for all resource entries on the list 3011 * (if any). 3012 * 3013 * @param rl the resource list to free 3014 */ 3015 void 3016 resource_list_free(struct resource_list *rl) 3017 { 3018 struct resource_list_entry *rle; 3019 3020 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3021 if (rle->res) 3022 panic("resource_list_free: resource entry is busy"); 3023 STAILQ_REMOVE_HEAD(rl, link); 3024 free(rle, M_BUS); 3025 } 3026 } 3027 3028 /** 3029 * @brief Add a resource entry. 3030 * 3031 * This function adds a resource entry using the given @p type, @p 3032 * start, @p end and @p count values. A rid value is chosen by 3033 * searching sequentially for the first unused rid starting at zero. 3034 * 3035 * @param rl the resource list to edit 3036 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3037 * @param start the start address of the resource 3038 * @param end the end address of the resource 3039 * @param count XXX end-start+1 3040 */ 3041 int 3042 resource_list_add_next(struct resource_list *rl, int type, u_long start, 3043 u_long end, u_long count) 3044 { 3045 int rid; 3046 3047 rid = 0; 3048 while (resource_list_find(rl, type, rid) != NULL) 3049 rid++; 3050 resource_list_add(rl, type, rid, start, end, count); 3051 return (rid); 3052 } 3053 3054 /** 3055 * @brief Add or modify a resource entry. 3056 * 3057 * If an existing entry exists with the same type and rid, it will be 3058 * modified using the given values of @p start, @p end and @p 3059 * count. If no entry exists, a new one will be created using the 3060 * given values. The resource list entry that matches is then returned. 3061 * 3062 * @param rl the resource list to edit 3063 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3064 * @param rid the resource identifier 3065 * @param start the start address of the resource 3066 * @param end the end address of the resource 3067 * @param count XXX end-start+1 3068 */ 3069 struct resource_list_entry * 3070 resource_list_add(struct resource_list *rl, int type, int rid, 3071 u_long start, u_long end, u_long count) 3072 { 3073 struct resource_list_entry *rle; 3074 3075 rle = resource_list_find(rl, type, rid); 3076 if (!rle) { 3077 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3078 M_NOWAIT); 3079 if (!rle) 3080 panic("resource_list_add: can't record entry"); 3081 STAILQ_INSERT_TAIL(rl, rle, link); 3082 rle->type = type; 3083 rle->rid = rid; 3084 rle->res = NULL; 3085 rle->flags = 0; 3086 } 3087 3088 if (rle->res) 3089 panic("resource_list_add: resource entry is busy"); 3090 3091 rle->start = start; 3092 rle->end = end; 3093 rle->count = count; 3094 return (rle); 3095 } 3096 3097 /** 3098 * @brief Determine if a resource entry is busy. 3099 * 3100 * Returns true if a resource entry is busy meaning that it has an 3101 * associated resource that is not an unallocated "reserved" resource. 3102 * 3103 * @param rl the resource list to search 3104 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3105 * @param rid the resource identifier 3106 * 3107 * @returns Non-zero if the entry is busy, zero otherwise. 3108 */ 3109 int 3110 resource_list_busy(struct resource_list *rl, int type, int rid) 3111 { 3112 struct resource_list_entry *rle; 3113 3114 rle = resource_list_find(rl, type, rid); 3115 if (rle == NULL || rle->res == NULL) 3116 return (0); 3117 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3118 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3119 ("reserved resource is active")); 3120 return (0); 3121 } 3122 return (1); 3123 } 3124 3125 /** 3126 * @brief Determine if a resource entry is reserved. 3127 * 3128 * Returns true if a resource entry is reserved meaning that it has an 3129 * associated "reserved" resource. The resource can either be 3130 * allocated or unallocated. 3131 * 3132 * @param rl the resource list to search 3133 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3134 * @param rid the resource identifier 3135 * 3136 * @returns Non-zero if the entry is reserved, zero otherwise. 3137 */ 3138 int 3139 resource_list_reserved(struct resource_list *rl, int type, int rid) 3140 { 3141 struct resource_list_entry *rle; 3142 3143 rle = resource_list_find(rl, type, rid); 3144 if (rle != NULL && rle->flags & RLE_RESERVED) 3145 return (1); 3146 return (0); 3147 } 3148 3149 /** 3150 * @brief Find a resource entry by type and rid. 3151 * 3152 * @param rl the resource list to search 3153 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3154 * @param rid the resource identifier 3155 * 3156 * @returns the resource entry pointer or NULL if there is no such 3157 * entry. 3158 */ 3159 struct resource_list_entry * 3160 resource_list_find(struct resource_list *rl, int type, int rid) 3161 { 3162 struct resource_list_entry *rle; 3163 3164 STAILQ_FOREACH(rle, rl, link) { 3165 if (rle->type == type && rle->rid == rid) 3166 return (rle); 3167 } 3168 return (NULL); 3169 } 3170 3171 /** 3172 * @brief Delete a resource entry. 3173 * 3174 * @param rl the resource list to edit 3175 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3176 * @param rid the resource identifier 3177 */ 3178 void 3179 resource_list_delete(struct resource_list *rl, int type, int rid) 3180 { 3181 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3182 3183 if (rle) { 3184 if (rle->res != NULL) 3185 panic("resource_list_delete: resource has not been released"); 3186 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3187 free(rle, M_BUS); 3188 } 3189 } 3190 3191 /** 3192 * @brief Allocate a reserved resource 3193 * 3194 * This can be used by busses to force the allocation of resources 3195 * that are always active in the system even if they are not allocated 3196 * by a driver (e.g. PCI BARs). This function is usually called when 3197 * adding a new child to the bus. The resource is allocated from the 3198 * parent bus when it is reserved. The resource list entry is marked 3199 * with RLE_RESERVED to note that it is a reserved resource. 3200 * 3201 * Subsequent attempts to allocate the resource with 3202 * resource_list_alloc() will succeed the first time and will set 3203 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3204 * resource that has been allocated is released with 3205 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3206 * the actual resource remains allocated. The resource can be released to 3207 * the parent bus by calling resource_list_unreserve(). 3208 * 3209 * @param rl the resource list to allocate from 3210 * @param bus the parent device of @p child 3211 * @param child the device for which the resource is being reserved 3212 * @param type the type of resource to allocate 3213 * @param rid a pointer to the resource identifier 3214 * @param start hint at the start of the resource range - pass 3215 * @c 0UL for any start address 3216 * @param end hint at the end of the resource range - pass 3217 * @c ~0UL for any end address 3218 * @param count hint at the size of range required - pass @c 1 3219 * for any size 3220 * @param flags any extra flags to control the resource 3221 * allocation - see @c RF_XXX flags in 3222 * <sys/rman.h> for details 3223 * 3224 * @returns the resource which was allocated or @c NULL if no 3225 * resource could be allocated 3226 */ 3227 struct resource * 3228 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3229 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3230 { 3231 struct resource_list_entry *rle = NULL; 3232 int passthrough = (device_get_parent(child) != bus); 3233 struct resource *r; 3234 3235 if (passthrough) 3236 panic( 3237 "resource_list_reserve() should only be called for direct children"); 3238 if (flags & RF_ACTIVE) 3239 panic( 3240 "resource_list_reserve() should only reserve inactive resources"); 3241 3242 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3243 flags); 3244 if (r != NULL) { 3245 rle = resource_list_find(rl, type, *rid); 3246 rle->flags |= RLE_RESERVED; 3247 } 3248 return (r); 3249 } 3250 3251 /** 3252 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3253 * 3254 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3255 * and passing the allocation up to the parent of @p bus. This assumes 3256 * that the first entry of @c device_get_ivars(child) is a struct 3257 * resource_list. This also handles 'passthrough' allocations where a 3258 * child is a remote descendant of bus by passing the allocation up to 3259 * the parent of bus. 3260 * 3261 * Typically, a bus driver would store a list of child resources 3262 * somewhere in the child device's ivars (see device_get_ivars()) and 3263 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3264 * then call resource_list_alloc() to perform the allocation. 3265 * 3266 * @param rl the resource list to allocate from 3267 * @param bus the parent device of @p child 3268 * @param child the device which is requesting an allocation 3269 * @param type the type of resource to allocate 3270 * @param rid a pointer to the resource identifier 3271 * @param start hint at the start of the resource range - pass 3272 * @c 0UL for any start address 3273 * @param end hint at the end of the resource range - pass 3274 * @c ~0UL for any end address 3275 * @param count hint at the size of range required - pass @c 1 3276 * for any size 3277 * @param flags any extra flags to control the resource 3278 * allocation - see @c RF_XXX flags in 3279 * <sys/rman.h> for details 3280 * 3281 * @returns the resource which was allocated or @c NULL if no 3282 * resource could be allocated 3283 */ 3284 struct resource * 3285 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3286 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3287 { 3288 struct resource_list_entry *rle = NULL; 3289 int passthrough = (device_get_parent(child) != bus); 3290 int isdefault = (start == 0UL && end == ~0UL); 3291 3292 if (passthrough) { 3293 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3294 type, rid, start, end, count, flags)); 3295 } 3296 3297 rle = resource_list_find(rl, type, *rid); 3298 3299 if (!rle) 3300 return (NULL); /* no resource of that type/rid */ 3301 3302 if (rle->res) { 3303 if (rle->flags & RLE_RESERVED) { 3304 if (rle->flags & RLE_ALLOCATED) 3305 return (NULL); 3306 if ((flags & RF_ACTIVE) && 3307 bus_activate_resource(child, type, *rid, 3308 rle->res) != 0) 3309 return (NULL); 3310 rle->flags |= RLE_ALLOCATED; 3311 return (rle->res); 3312 } 3313 device_printf(bus, 3314 "resource entry %#x type %d for child %s is busy\n", *rid, 3315 type, device_get_nameunit(child)); 3316 return (NULL); 3317 } 3318 3319 if (isdefault) { 3320 start = rle->start; 3321 count = ulmax(count, rle->count); 3322 end = ulmax(rle->end, start + count - 1); 3323 } 3324 3325 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3326 type, rid, start, end, count, flags); 3327 3328 /* 3329 * Record the new range. 3330 */ 3331 if (rle->res) { 3332 rle->start = rman_get_start(rle->res); 3333 rle->end = rman_get_end(rle->res); 3334 rle->count = count; 3335 } 3336 3337 return (rle->res); 3338 } 3339 3340 /** 3341 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3342 * 3343 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3344 * used with resource_list_alloc(). 3345 * 3346 * @param rl the resource list which was allocated from 3347 * @param bus the parent device of @p child 3348 * @param child the device which is requesting a release 3349 * @param type the type of resource to release 3350 * @param rid the resource identifier 3351 * @param res the resource to release 3352 * 3353 * @retval 0 success 3354 * @retval non-zero a standard unix error code indicating what 3355 * error condition prevented the operation 3356 */ 3357 int 3358 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3359 int type, int rid, struct resource *res) 3360 { 3361 struct resource_list_entry *rle = NULL; 3362 int passthrough = (device_get_parent(child) != bus); 3363 int error; 3364 3365 if (passthrough) { 3366 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3367 type, rid, res)); 3368 } 3369 3370 rle = resource_list_find(rl, type, rid); 3371 3372 if (!rle) 3373 panic("resource_list_release: can't find resource"); 3374 if (!rle->res) 3375 panic("resource_list_release: resource entry is not busy"); 3376 if (rle->flags & RLE_RESERVED) { 3377 if (rle->flags & RLE_ALLOCATED) { 3378 if (rman_get_flags(res) & RF_ACTIVE) { 3379 error = bus_deactivate_resource(child, type, 3380 rid, res); 3381 if (error) 3382 return (error); 3383 } 3384 rle->flags &= ~RLE_ALLOCATED; 3385 return (0); 3386 } 3387 return (EINVAL); 3388 } 3389 3390 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3391 type, rid, res); 3392 if (error) 3393 return (error); 3394 3395 rle->res = NULL; 3396 return (0); 3397 } 3398 3399 /** 3400 * @brief Release all active resources of a given type 3401 * 3402 * Release all active resources of a specified type. This is intended 3403 * to be used to cleanup resources leaked by a driver after detach or 3404 * a failed attach. 3405 * 3406 * @param rl the resource list which was allocated from 3407 * @param bus the parent device of @p child 3408 * @param child the device whose active resources are being released 3409 * @param type the type of resources to release 3410 * 3411 * @retval 0 success 3412 * @retval EBUSY at least one resource was active 3413 */ 3414 int 3415 resource_list_release_active(struct resource_list *rl, device_t bus, 3416 device_t child, int type) 3417 { 3418 struct resource_list_entry *rle; 3419 int error, retval; 3420 3421 retval = 0; 3422 STAILQ_FOREACH(rle, rl, link) { 3423 if (rle->type != type) 3424 continue; 3425 if (rle->res == NULL) 3426 continue; 3427 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3428 RLE_RESERVED) 3429 continue; 3430 retval = EBUSY; 3431 error = resource_list_release(rl, bus, child, type, 3432 rman_get_rid(rle->res), rle->res); 3433 if (error != 0) 3434 device_printf(bus, 3435 "Failed to release active resource: %d\n", error); 3436 } 3437 return (retval); 3438 } 3439 3440 3441 /** 3442 * @brief Fully release a reserved resource 3443 * 3444 * Fully releases a resource reserved via resource_list_reserve(). 3445 * 3446 * @param rl the resource list which was allocated from 3447 * @param bus the parent device of @p child 3448 * @param child the device whose reserved resource is being released 3449 * @param type the type of resource to release 3450 * @param rid the resource identifier 3451 * @param res the resource to release 3452 * 3453 * @retval 0 success 3454 * @retval non-zero a standard unix error code indicating what 3455 * error condition prevented the operation 3456 */ 3457 int 3458 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3459 int type, int rid) 3460 { 3461 struct resource_list_entry *rle = NULL; 3462 int passthrough = (device_get_parent(child) != bus); 3463 3464 if (passthrough) 3465 panic( 3466 "resource_list_unreserve() should only be called for direct children"); 3467 3468 rle = resource_list_find(rl, type, rid); 3469 3470 if (!rle) 3471 panic("resource_list_unreserve: can't find resource"); 3472 if (!(rle->flags & RLE_RESERVED)) 3473 return (EINVAL); 3474 if (rle->flags & RLE_ALLOCATED) 3475 return (EBUSY); 3476 rle->flags &= ~RLE_RESERVED; 3477 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3478 } 3479 3480 /** 3481 * @brief Print a description of resources in a resource list 3482 * 3483 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3484 * The name is printed if at least one resource of the given type is available. 3485 * The format is used to print resource start and end. 3486 * 3487 * @param rl the resource list to print 3488 * @param name the name of @p type, e.g. @c "memory" 3489 * @param type type type of resource entry to print 3490 * @param format printf(9) format string to print resource 3491 * start and end values 3492 * 3493 * @returns the number of characters printed 3494 */ 3495 int 3496 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3497 const char *format) 3498 { 3499 struct resource_list_entry *rle; 3500 int printed, retval; 3501 3502 printed = 0; 3503 retval = 0; 3504 /* Yes, this is kinda cheating */ 3505 STAILQ_FOREACH(rle, rl, link) { 3506 if (rle->type == type) { 3507 if (printed == 0) 3508 retval += printf(" %s ", name); 3509 else 3510 retval += printf(","); 3511 printed++; 3512 retval += printf(format, rle->start); 3513 if (rle->count > 1) { 3514 retval += printf("-"); 3515 retval += printf(format, rle->start + 3516 rle->count - 1); 3517 } 3518 } 3519 } 3520 return (retval); 3521 } 3522 3523 /** 3524 * @brief Releases all the resources in a list. 3525 * 3526 * @param rl The resource list to purge. 3527 * 3528 * @returns nothing 3529 */ 3530 void 3531 resource_list_purge(struct resource_list *rl) 3532 { 3533 struct resource_list_entry *rle; 3534 3535 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3536 if (rle->res) 3537 bus_release_resource(rman_get_device(rle->res), 3538 rle->type, rle->rid, rle->res); 3539 STAILQ_REMOVE_HEAD(rl, link); 3540 free(rle, M_BUS); 3541 } 3542 } 3543 3544 device_t 3545 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3546 { 3547 3548 return (device_add_child_ordered(dev, order, name, unit)); 3549 } 3550 3551 /** 3552 * @brief Helper function for implementing DEVICE_PROBE() 3553 * 3554 * This function can be used to help implement the DEVICE_PROBE() for 3555 * a bus (i.e. a device which has other devices attached to it). It 3556 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3557 * devclass. 3558 */ 3559 int 3560 bus_generic_probe(device_t dev) 3561 { 3562 devclass_t dc = dev->devclass; 3563 driverlink_t dl; 3564 3565 TAILQ_FOREACH(dl, &dc->drivers, link) { 3566 /* 3567 * If this driver's pass is too high, then ignore it. 3568 * For most drivers in the default pass, this will 3569 * never be true. For early-pass drivers they will 3570 * only call the identify routines of eligible drivers 3571 * when this routine is called. Drivers for later 3572 * passes should have their identify routines called 3573 * on early-pass busses during BUS_NEW_PASS(). 3574 */ 3575 if (dl->pass > bus_current_pass) 3576 continue; 3577 DEVICE_IDENTIFY(dl->driver, dev); 3578 } 3579 3580 return (0); 3581 } 3582 3583 /** 3584 * @brief Helper function for implementing DEVICE_ATTACH() 3585 * 3586 * This function can be used to help implement the DEVICE_ATTACH() for 3587 * a bus. It calls device_probe_and_attach() for each of the device's 3588 * children. 3589 */ 3590 int 3591 bus_generic_attach(device_t dev) 3592 { 3593 device_t child; 3594 3595 TAILQ_FOREACH(child, &dev->children, link) { 3596 device_probe_and_attach(child); 3597 } 3598 3599 return (0); 3600 } 3601 3602 /** 3603 * @brief Helper function for implementing DEVICE_DETACH() 3604 * 3605 * This function can be used to help implement the DEVICE_DETACH() for 3606 * a bus. It calls device_detach() for each of the device's 3607 * children. 3608 */ 3609 int 3610 bus_generic_detach(device_t dev) 3611 { 3612 device_t child; 3613 int error; 3614 3615 if (dev->state != DS_ATTACHED) 3616 return (EBUSY); 3617 3618 TAILQ_FOREACH(child, &dev->children, link) { 3619 if ((error = device_detach(child)) != 0) 3620 return (error); 3621 } 3622 3623 return (0); 3624 } 3625 3626 /** 3627 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3628 * 3629 * This function can be used to help implement the DEVICE_SHUTDOWN() 3630 * for a bus. It calls device_shutdown() for each of the device's 3631 * children. 3632 */ 3633 int 3634 bus_generic_shutdown(device_t dev) 3635 { 3636 device_t child; 3637 3638 TAILQ_FOREACH(child, &dev->children, link) { 3639 device_shutdown(child); 3640 } 3641 3642 return (0); 3643 } 3644 3645 /** 3646 * @brief Default function for suspending a child device. 3647 * 3648 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3649 */ 3650 int 3651 bus_generic_suspend_child(device_t dev, device_t child) 3652 { 3653 int error; 3654 3655 error = DEVICE_SUSPEND(child); 3656 3657 if (error == 0) 3658 dev->flags |= DF_SUSPENDED; 3659 3660 return (error); 3661 } 3662 3663 /** 3664 * @brief Default function for resuming a child device. 3665 * 3666 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3667 */ 3668 int 3669 bus_generic_resume_child(device_t dev, device_t child) 3670 { 3671 3672 DEVICE_RESUME(child); 3673 dev->flags &= ~DF_SUSPENDED; 3674 3675 return (0); 3676 } 3677 3678 /** 3679 * @brief Helper function for implementing DEVICE_SUSPEND() 3680 * 3681 * This function can be used to help implement the DEVICE_SUSPEND() 3682 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3683 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3684 * operation is aborted and any devices which were suspended are 3685 * resumed immediately by calling their DEVICE_RESUME() methods. 3686 */ 3687 int 3688 bus_generic_suspend(device_t dev) 3689 { 3690 int error; 3691 device_t child, child2; 3692 3693 TAILQ_FOREACH(child, &dev->children, link) { 3694 error = BUS_SUSPEND_CHILD(dev, child); 3695 if (error) { 3696 for (child2 = TAILQ_FIRST(&dev->children); 3697 child2 && child2 != child; 3698 child2 = TAILQ_NEXT(child2, link)) 3699 BUS_RESUME_CHILD(dev, child2); 3700 return (error); 3701 } 3702 } 3703 return (0); 3704 } 3705 3706 /** 3707 * @brief Helper function for implementing DEVICE_RESUME() 3708 * 3709 * This function can be used to help implement the DEVICE_RESUME() for 3710 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3711 */ 3712 int 3713 bus_generic_resume(device_t dev) 3714 { 3715 device_t child; 3716 3717 TAILQ_FOREACH(child, &dev->children, link) { 3718 BUS_RESUME_CHILD(dev, child); 3719 /* if resume fails, there's nothing we can usefully do... */ 3720 } 3721 return (0); 3722 } 3723 3724 /** 3725 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3726 * 3727 * This function prints the first part of the ascii representation of 3728 * @p child, including its name, unit and description (if any - see 3729 * device_set_desc()). 3730 * 3731 * @returns the number of characters printed 3732 */ 3733 int 3734 bus_print_child_header(device_t dev, device_t child) 3735 { 3736 int retval = 0; 3737 3738 if (device_get_desc(child)) { 3739 retval += device_printf(child, "<%s>", device_get_desc(child)); 3740 } else { 3741 retval += printf("%s", device_get_nameunit(child)); 3742 } 3743 3744 return (retval); 3745 } 3746 3747 /** 3748 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3749 * 3750 * This function prints the last part of the ascii representation of 3751 * @p child, which consists of the string @c " on " followed by the 3752 * name and unit of the @p dev. 3753 * 3754 * @returns the number of characters printed 3755 */ 3756 int 3757 bus_print_child_footer(device_t dev, device_t child) 3758 { 3759 return (printf(" on %s\n", device_get_nameunit(dev))); 3760 } 3761 3762 /** 3763 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3764 * 3765 * This function prints out the VM domain for the given device. 3766 * 3767 * @returns the number of characters printed 3768 */ 3769 int 3770 bus_print_child_domain(device_t dev, device_t child) 3771 { 3772 int domain; 3773 3774 /* No domain? Don't print anything */ 3775 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3776 return (0); 3777 3778 return (printf(" numa-domain %d", domain)); 3779 } 3780 3781 /** 3782 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3783 * 3784 * This function simply calls bus_print_child_header() followed by 3785 * bus_print_child_footer(). 3786 * 3787 * @returns the number of characters printed 3788 */ 3789 int 3790 bus_generic_print_child(device_t dev, device_t child) 3791 { 3792 int retval = 0; 3793 3794 retval += bus_print_child_header(dev, child); 3795 retval += bus_print_child_domain(dev, child); 3796 retval += bus_print_child_footer(dev, child); 3797 3798 return (retval); 3799 } 3800 3801 /** 3802 * @brief Stub function for implementing BUS_READ_IVAR(). 3803 * 3804 * @returns ENOENT 3805 */ 3806 int 3807 bus_generic_read_ivar(device_t dev, device_t child, int index, 3808 uintptr_t * result) 3809 { 3810 return (ENOENT); 3811 } 3812 3813 /** 3814 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3815 * 3816 * @returns ENOENT 3817 */ 3818 int 3819 bus_generic_write_ivar(device_t dev, device_t child, int index, 3820 uintptr_t value) 3821 { 3822 return (ENOENT); 3823 } 3824 3825 /** 3826 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3827 * 3828 * @returns NULL 3829 */ 3830 struct resource_list * 3831 bus_generic_get_resource_list(device_t dev, device_t child) 3832 { 3833 return (NULL); 3834 } 3835 3836 /** 3837 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3838 * 3839 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3840 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3841 * and then calls device_probe_and_attach() for each unattached child. 3842 */ 3843 void 3844 bus_generic_driver_added(device_t dev, driver_t *driver) 3845 { 3846 device_t child; 3847 3848 DEVICE_IDENTIFY(driver, dev); 3849 TAILQ_FOREACH(child, &dev->children, link) { 3850 if (child->state == DS_NOTPRESENT || 3851 (child->flags & DF_REBID)) 3852 device_probe_and_attach(child); 3853 } 3854 } 3855 3856 /** 3857 * @brief Helper function for implementing BUS_NEW_PASS(). 3858 * 3859 * This implementing of BUS_NEW_PASS() first calls the identify 3860 * routines for any drivers that probe at the current pass. Then it 3861 * walks the list of devices for this bus. If a device is already 3862 * attached, then it calls BUS_NEW_PASS() on that device. If the 3863 * device is not already attached, it attempts to attach a driver to 3864 * it. 3865 */ 3866 void 3867 bus_generic_new_pass(device_t dev) 3868 { 3869 driverlink_t dl; 3870 devclass_t dc; 3871 device_t child; 3872 3873 dc = dev->devclass; 3874 TAILQ_FOREACH(dl, &dc->drivers, link) { 3875 if (dl->pass == bus_current_pass) 3876 DEVICE_IDENTIFY(dl->driver, dev); 3877 } 3878 TAILQ_FOREACH(child, &dev->children, link) { 3879 if (child->state >= DS_ATTACHED) 3880 BUS_NEW_PASS(child); 3881 else if (child->state == DS_NOTPRESENT) 3882 device_probe_and_attach(child); 3883 } 3884 } 3885 3886 /** 3887 * @brief Helper function for implementing BUS_SETUP_INTR(). 3888 * 3889 * This simple implementation of BUS_SETUP_INTR() simply calls the 3890 * BUS_SETUP_INTR() method of the parent of @p dev. 3891 */ 3892 int 3893 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3894 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3895 void **cookiep) 3896 { 3897 /* Propagate up the bus hierarchy until someone handles it. */ 3898 if (dev->parent) 3899 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3900 filter, intr, arg, cookiep)); 3901 return (EINVAL); 3902 } 3903 3904 /** 3905 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3906 * 3907 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3908 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3909 */ 3910 int 3911 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3912 void *cookie) 3913 { 3914 /* Propagate up the bus hierarchy until someone handles it. */ 3915 if (dev->parent) 3916 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3917 return (EINVAL); 3918 } 3919 3920 /** 3921 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3922 * 3923 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3924 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3925 */ 3926 int 3927 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3928 struct resource *r, u_long start, u_long end) 3929 { 3930 /* Propagate up the bus hierarchy until someone handles it. */ 3931 if (dev->parent) 3932 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3933 end)); 3934 return (EINVAL); 3935 } 3936 3937 /** 3938 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3939 * 3940 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3941 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3942 */ 3943 struct resource * 3944 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3945 u_long start, u_long end, u_long count, u_int flags) 3946 { 3947 /* Propagate up the bus hierarchy until someone handles it. */ 3948 if (dev->parent) 3949 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3950 start, end, count, flags)); 3951 return (NULL); 3952 } 3953 3954 /** 3955 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3956 * 3957 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3958 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3959 */ 3960 int 3961 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3962 struct resource *r) 3963 { 3964 /* Propagate up the bus hierarchy until someone handles it. */ 3965 if (dev->parent) 3966 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3967 r)); 3968 return (EINVAL); 3969 } 3970 3971 /** 3972 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3973 * 3974 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3975 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3976 */ 3977 int 3978 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3979 struct resource *r) 3980 { 3981 /* Propagate up the bus hierarchy until someone handles it. */ 3982 if (dev->parent) 3983 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3984 r)); 3985 return (EINVAL); 3986 } 3987 3988 /** 3989 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3990 * 3991 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3992 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3993 */ 3994 int 3995 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3996 int rid, struct resource *r) 3997 { 3998 /* Propagate up the bus hierarchy until someone handles it. */ 3999 if (dev->parent) 4000 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4001 r)); 4002 return (EINVAL); 4003 } 4004 4005 /** 4006 * @brief Helper function for implementing BUS_BIND_INTR(). 4007 * 4008 * This simple implementation of BUS_BIND_INTR() simply calls the 4009 * BUS_BIND_INTR() method of the parent of @p dev. 4010 */ 4011 int 4012 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4013 int cpu) 4014 { 4015 4016 /* Propagate up the bus hierarchy until someone handles it. */ 4017 if (dev->parent) 4018 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4019 return (EINVAL); 4020 } 4021 4022 /** 4023 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4024 * 4025 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4026 * BUS_CONFIG_INTR() method of the parent of @p dev. 4027 */ 4028 int 4029 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4030 enum intr_polarity pol) 4031 { 4032 4033 /* Propagate up the bus hierarchy until someone handles it. */ 4034 if (dev->parent) 4035 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4036 return (EINVAL); 4037 } 4038 4039 /** 4040 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4041 * 4042 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4043 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4044 */ 4045 int 4046 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4047 void *cookie, const char *descr) 4048 { 4049 4050 /* Propagate up the bus hierarchy until someone handles it. */ 4051 if (dev->parent) 4052 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4053 descr)); 4054 return (EINVAL); 4055 } 4056 4057 /** 4058 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4059 * 4060 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4061 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4062 */ 4063 bus_dma_tag_t 4064 bus_generic_get_dma_tag(device_t dev, device_t child) 4065 { 4066 4067 /* Propagate up the bus hierarchy until someone handles it. */ 4068 if (dev->parent != NULL) 4069 return (BUS_GET_DMA_TAG(dev->parent, child)); 4070 return (NULL); 4071 } 4072 4073 /** 4074 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4075 * 4076 * This implementation of BUS_GET_RESOURCE() uses the 4077 * resource_list_find() function to do most of the work. It calls 4078 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4079 * search. 4080 */ 4081 int 4082 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4083 u_long *startp, u_long *countp) 4084 { 4085 struct resource_list * rl = NULL; 4086 struct resource_list_entry * rle = NULL; 4087 4088 rl = BUS_GET_RESOURCE_LIST(dev, child); 4089 if (!rl) 4090 return (EINVAL); 4091 4092 rle = resource_list_find(rl, type, rid); 4093 if (!rle) 4094 return (ENOENT); 4095 4096 if (startp) 4097 *startp = rle->start; 4098 if (countp) 4099 *countp = rle->count; 4100 4101 return (0); 4102 } 4103 4104 /** 4105 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4106 * 4107 * This implementation of BUS_SET_RESOURCE() uses the 4108 * resource_list_add() function to do most of the work. It calls 4109 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4110 * edit. 4111 */ 4112 int 4113 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4114 u_long start, u_long count) 4115 { 4116 struct resource_list * rl = NULL; 4117 4118 rl = BUS_GET_RESOURCE_LIST(dev, child); 4119 if (!rl) 4120 return (EINVAL); 4121 4122 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4123 4124 return (0); 4125 } 4126 4127 /** 4128 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4129 * 4130 * This implementation of BUS_DELETE_RESOURCE() uses the 4131 * resource_list_delete() function to do most of the work. It calls 4132 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4133 * edit. 4134 */ 4135 void 4136 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4137 { 4138 struct resource_list * rl = NULL; 4139 4140 rl = BUS_GET_RESOURCE_LIST(dev, child); 4141 if (!rl) 4142 return; 4143 4144 resource_list_delete(rl, type, rid); 4145 4146 return; 4147 } 4148 4149 /** 4150 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4151 * 4152 * This implementation of BUS_RELEASE_RESOURCE() uses the 4153 * resource_list_release() function to do most of the work. It calls 4154 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4155 */ 4156 int 4157 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4158 int rid, struct resource *r) 4159 { 4160 struct resource_list * rl = NULL; 4161 4162 if (device_get_parent(child) != dev) 4163 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4164 type, rid, r)); 4165 4166 rl = BUS_GET_RESOURCE_LIST(dev, child); 4167 if (!rl) 4168 return (EINVAL); 4169 4170 return (resource_list_release(rl, dev, child, type, rid, r)); 4171 } 4172 4173 /** 4174 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4175 * 4176 * This implementation of BUS_ALLOC_RESOURCE() uses the 4177 * resource_list_alloc() function to do most of the work. It calls 4178 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4179 */ 4180 struct resource * 4181 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4182 int *rid, u_long start, u_long end, u_long count, u_int flags) 4183 { 4184 struct resource_list * rl = NULL; 4185 4186 if (device_get_parent(child) != dev) 4187 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4188 type, rid, start, end, count, flags)); 4189 4190 rl = BUS_GET_RESOURCE_LIST(dev, child); 4191 if (!rl) 4192 return (NULL); 4193 4194 return (resource_list_alloc(rl, dev, child, type, rid, 4195 start, end, count, flags)); 4196 } 4197 4198 /** 4199 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4200 * 4201 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4202 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4203 */ 4204 int 4205 bus_generic_child_present(device_t dev, device_t child) 4206 { 4207 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4208 } 4209 4210 int 4211 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4212 { 4213 4214 if (dev->parent) 4215 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4216 4217 return (ENOENT); 4218 } 4219 4220 /* 4221 * Some convenience functions to make it easier for drivers to use the 4222 * resource-management functions. All these really do is hide the 4223 * indirection through the parent's method table, making for slightly 4224 * less-wordy code. In the future, it might make sense for this code 4225 * to maintain some sort of a list of resources allocated by each device. 4226 */ 4227 4228 int 4229 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4230 struct resource **res) 4231 { 4232 int i; 4233 4234 for (i = 0; rs[i].type != -1; i++) 4235 res[i] = NULL; 4236 for (i = 0; rs[i].type != -1; i++) { 4237 res[i] = bus_alloc_resource_any(dev, 4238 rs[i].type, &rs[i].rid, rs[i].flags); 4239 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4240 bus_release_resources(dev, rs, res); 4241 return (ENXIO); 4242 } 4243 } 4244 return (0); 4245 } 4246 4247 void 4248 bus_release_resources(device_t dev, const struct resource_spec *rs, 4249 struct resource **res) 4250 { 4251 int i; 4252 4253 for (i = 0; rs[i].type != -1; i++) 4254 if (res[i] != NULL) { 4255 bus_release_resource( 4256 dev, rs[i].type, rs[i].rid, res[i]); 4257 res[i] = NULL; 4258 } 4259 } 4260 4261 /** 4262 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4263 * 4264 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4265 * parent of @p dev. 4266 */ 4267 struct resource * 4268 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4269 u_long count, u_int flags) 4270 { 4271 if (dev->parent == NULL) 4272 return (NULL); 4273 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4274 count, flags)); 4275 } 4276 4277 /** 4278 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4279 * 4280 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4281 * parent of @p dev. 4282 */ 4283 int 4284 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4285 u_long end) 4286 { 4287 if (dev->parent == NULL) 4288 return (EINVAL); 4289 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4290 } 4291 4292 /** 4293 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4294 * 4295 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4296 * parent of @p dev. 4297 */ 4298 int 4299 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4300 { 4301 if (dev->parent == NULL) 4302 return (EINVAL); 4303 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4304 } 4305 4306 /** 4307 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4308 * 4309 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4310 * parent of @p dev. 4311 */ 4312 int 4313 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4314 { 4315 if (dev->parent == NULL) 4316 return (EINVAL); 4317 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4318 } 4319 4320 /** 4321 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4322 * 4323 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4324 * parent of @p dev. 4325 */ 4326 int 4327 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4328 { 4329 if (dev->parent == NULL) 4330 return (EINVAL); 4331 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4332 } 4333 4334 /** 4335 * @brief Wrapper function for BUS_SETUP_INTR(). 4336 * 4337 * This function simply calls the BUS_SETUP_INTR() method of the 4338 * parent of @p dev. 4339 */ 4340 int 4341 bus_setup_intr(device_t dev, struct resource *r, int flags, 4342 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4343 { 4344 int error; 4345 4346 if (dev->parent == NULL) 4347 return (EINVAL); 4348 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4349 arg, cookiep); 4350 if (error != 0) 4351 return (error); 4352 if (handler != NULL && !(flags & INTR_MPSAFE)) 4353 device_printf(dev, "[GIANT-LOCKED]\n"); 4354 return (0); 4355 } 4356 4357 /** 4358 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4359 * 4360 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4361 * parent of @p dev. 4362 */ 4363 int 4364 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4365 { 4366 if (dev->parent == NULL) 4367 return (EINVAL); 4368 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4369 } 4370 4371 /** 4372 * @brief Wrapper function for BUS_BIND_INTR(). 4373 * 4374 * This function simply calls the BUS_BIND_INTR() method of the 4375 * parent of @p dev. 4376 */ 4377 int 4378 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4379 { 4380 if (dev->parent == NULL) 4381 return (EINVAL); 4382 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4383 } 4384 4385 /** 4386 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4387 * 4388 * This function first formats the requested description into a 4389 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4390 * the parent of @p dev. 4391 */ 4392 int 4393 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4394 const char *fmt, ...) 4395 { 4396 va_list ap; 4397 char descr[MAXCOMLEN + 1]; 4398 4399 if (dev->parent == NULL) 4400 return (EINVAL); 4401 va_start(ap, fmt); 4402 vsnprintf(descr, sizeof(descr), fmt, ap); 4403 va_end(ap); 4404 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4405 } 4406 4407 /** 4408 * @brief Wrapper function for BUS_SET_RESOURCE(). 4409 * 4410 * This function simply calls the BUS_SET_RESOURCE() method of the 4411 * parent of @p dev. 4412 */ 4413 int 4414 bus_set_resource(device_t dev, int type, int rid, 4415 u_long start, u_long count) 4416 { 4417 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4418 start, count)); 4419 } 4420 4421 /** 4422 * @brief Wrapper function for BUS_GET_RESOURCE(). 4423 * 4424 * This function simply calls the BUS_GET_RESOURCE() method of the 4425 * parent of @p dev. 4426 */ 4427 int 4428 bus_get_resource(device_t dev, int type, int rid, 4429 u_long *startp, u_long *countp) 4430 { 4431 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4432 startp, countp)); 4433 } 4434 4435 /** 4436 * @brief Wrapper function for BUS_GET_RESOURCE(). 4437 * 4438 * This function simply calls the BUS_GET_RESOURCE() method of the 4439 * parent of @p dev and returns the start value. 4440 */ 4441 u_long 4442 bus_get_resource_start(device_t dev, int type, int rid) 4443 { 4444 u_long start, count; 4445 int error; 4446 4447 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4448 &start, &count); 4449 if (error) 4450 return (0); 4451 return (start); 4452 } 4453 4454 /** 4455 * @brief Wrapper function for BUS_GET_RESOURCE(). 4456 * 4457 * This function simply calls the BUS_GET_RESOURCE() method of the 4458 * parent of @p dev and returns the count value. 4459 */ 4460 u_long 4461 bus_get_resource_count(device_t dev, int type, int rid) 4462 { 4463 u_long start, count; 4464 int error; 4465 4466 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4467 &start, &count); 4468 if (error) 4469 return (0); 4470 return (count); 4471 } 4472 4473 /** 4474 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4475 * 4476 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4477 * parent of @p dev. 4478 */ 4479 void 4480 bus_delete_resource(device_t dev, int type, int rid) 4481 { 4482 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4483 } 4484 4485 /** 4486 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4487 * 4488 * This function simply calls the BUS_CHILD_PRESENT() method of the 4489 * parent of @p dev. 4490 */ 4491 int 4492 bus_child_present(device_t child) 4493 { 4494 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4495 } 4496 4497 /** 4498 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4499 * 4500 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4501 * parent of @p dev. 4502 */ 4503 int 4504 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4505 { 4506 device_t parent; 4507 4508 parent = device_get_parent(child); 4509 if (parent == NULL) { 4510 *buf = '\0'; 4511 return (0); 4512 } 4513 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4514 } 4515 4516 /** 4517 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4518 * 4519 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4520 * parent of @p dev. 4521 */ 4522 int 4523 bus_child_location_str(device_t child, char *buf, size_t buflen) 4524 { 4525 device_t parent; 4526 4527 parent = device_get_parent(child); 4528 if (parent == NULL) { 4529 *buf = '\0'; 4530 return (0); 4531 } 4532 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4533 } 4534 4535 /** 4536 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4537 * 4538 * This function simply calls the BUS_GET_DMA_TAG() method of the 4539 * parent of @p dev. 4540 */ 4541 bus_dma_tag_t 4542 bus_get_dma_tag(device_t dev) 4543 { 4544 device_t parent; 4545 4546 parent = device_get_parent(dev); 4547 if (parent == NULL) 4548 return (NULL); 4549 return (BUS_GET_DMA_TAG(parent, dev)); 4550 } 4551 4552 /** 4553 * @brief Wrapper function for BUS_GET_DOMAIN(). 4554 * 4555 * This function simply calls the BUS_GET_DOMAIN() method of the 4556 * parent of @p dev. 4557 */ 4558 int 4559 bus_get_domain(device_t dev, int *domain) 4560 { 4561 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4562 } 4563 4564 /* Resume all devices and then notify userland that we're up again. */ 4565 static int 4566 root_resume(device_t dev) 4567 { 4568 int error; 4569 4570 error = bus_generic_resume(dev); 4571 if (error == 0) 4572 devctl_notify("kern", "power", "resume", NULL); 4573 return (error); 4574 } 4575 4576 static int 4577 root_print_child(device_t dev, device_t child) 4578 { 4579 int retval = 0; 4580 4581 retval += bus_print_child_header(dev, child); 4582 retval += printf("\n"); 4583 4584 return (retval); 4585 } 4586 4587 static int 4588 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4589 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4590 { 4591 /* 4592 * If an interrupt mapping gets to here something bad has happened. 4593 */ 4594 panic("root_setup_intr"); 4595 } 4596 4597 /* 4598 * If we get here, assume that the device is permanant and really is 4599 * present in the system. Removable bus drivers are expected to intercept 4600 * this call long before it gets here. We return -1 so that drivers that 4601 * really care can check vs -1 or some ERRNO returned higher in the food 4602 * chain. 4603 */ 4604 static int 4605 root_child_present(device_t dev, device_t child) 4606 { 4607 return (-1); 4608 } 4609 4610 static kobj_method_t root_methods[] = { 4611 /* Device interface */ 4612 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4613 KOBJMETHOD(device_suspend, bus_generic_suspend), 4614 KOBJMETHOD(device_resume, root_resume), 4615 4616 /* Bus interface */ 4617 KOBJMETHOD(bus_print_child, root_print_child), 4618 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4619 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4620 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4621 KOBJMETHOD(bus_child_present, root_child_present), 4622 4623 KOBJMETHOD_END 4624 }; 4625 4626 static driver_t root_driver = { 4627 "root", 4628 root_methods, 4629 1, /* no softc */ 4630 }; 4631 4632 device_t root_bus; 4633 devclass_t root_devclass; 4634 4635 static int 4636 root_bus_module_handler(module_t mod, int what, void* arg) 4637 { 4638 switch (what) { 4639 case MOD_LOAD: 4640 TAILQ_INIT(&bus_data_devices); 4641 kobj_class_compile((kobj_class_t) &root_driver); 4642 root_bus = make_device(NULL, "root", 0); 4643 root_bus->desc = "System root bus"; 4644 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4645 root_bus->driver = &root_driver; 4646 root_bus->state = DS_ATTACHED; 4647 root_devclass = devclass_find_internal("root", NULL, FALSE); 4648 devinit(); 4649 return (0); 4650 4651 case MOD_SHUTDOWN: 4652 device_shutdown(root_bus); 4653 return (0); 4654 default: 4655 return (EOPNOTSUPP); 4656 } 4657 4658 return (0); 4659 } 4660 4661 static moduledata_t root_bus_mod = { 4662 "rootbus", 4663 root_bus_module_handler, 4664 NULL 4665 }; 4666 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4667 4668 /** 4669 * @brief Automatically configure devices 4670 * 4671 * This function begins the autoconfiguration process by calling 4672 * device_probe_and_attach() for each child of the @c root0 device. 4673 */ 4674 void 4675 root_bus_configure(void) 4676 { 4677 4678 PDEBUG((".")); 4679 4680 /* Eventually this will be split up, but this is sufficient for now. */ 4681 bus_set_pass(BUS_PASS_DEFAULT); 4682 } 4683 4684 /** 4685 * @brief Module handler for registering device drivers 4686 * 4687 * This module handler is used to automatically register device 4688 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4689 * devclass_add_driver() for the driver described by the 4690 * driver_module_data structure pointed to by @p arg 4691 */ 4692 int 4693 driver_module_handler(module_t mod, int what, void *arg) 4694 { 4695 struct driver_module_data *dmd; 4696 devclass_t bus_devclass; 4697 kobj_class_t driver; 4698 int error, pass; 4699 4700 dmd = (struct driver_module_data *)arg; 4701 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4702 error = 0; 4703 4704 switch (what) { 4705 case MOD_LOAD: 4706 if (dmd->dmd_chainevh) 4707 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4708 4709 pass = dmd->dmd_pass; 4710 driver = dmd->dmd_driver; 4711 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4712 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4713 error = devclass_add_driver(bus_devclass, driver, pass, 4714 dmd->dmd_devclass); 4715 break; 4716 4717 case MOD_UNLOAD: 4718 PDEBUG(("Unloading module: driver %s from bus %s", 4719 DRIVERNAME(dmd->dmd_driver), 4720 dmd->dmd_busname)); 4721 error = devclass_delete_driver(bus_devclass, 4722 dmd->dmd_driver); 4723 4724 if (!error && dmd->dmd_chainevh) 4725 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4726 break; 4727 case MOD_QUIESCE: 4728 PDEBUG(("Quiesce module: driver %s from bus %s", 4729 DRIVERNAME(dmd->dmd_driver), 4730 dmd->dmd_busname)); 4731 error = devclass_quiesce_driver(bus_devclass, 4732 dmd->dmd_driver); 4733 4734 if (!error && dmd->dmd_chainevh) 4735 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4736 break; 4737 default: 4738 error = EOPNOTSUPP; 4739 break; 4740 } 4741 4742 return (error); 4743 } 4744 4745 /** 4746 * @brief Enumerate all hinted devices for this bus. 4747 * 4748 * Walks through the hints for this bus and calls the bus_hinted_child 4749 * routine for each one it fines. It searches first for the specific 4750 * bus that's being probed for hinted children (eg isa0), and then for 4751 * generic children (eg isa). 4752 * 4753 * @param dev bus device to enumerate 4754 */ 4755 void 4756 bus_enumerate_hinted_children(device_t bus) 4757 { 4758 int i; 4759 const char *dname, *busname; 4760 int dunit; 4761 4762 /* 4763 * enumerate all devices on the specific bus 4764 */ 4765 busname = device_get_nameunit(bus); 4766 i = 0; 4767 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4768 BUS_HINTED_CHILD(bus, dname, dunit); 4769 4770 /* 4771 * and all the generic ones. 4772 */ 4773 busname = device_get_name(bus); 4774 i = 0; 4775 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4776 BUS_HINTED_CHILD(bus, dname, dunit); 4777 } 4778 4779 #ifdef BUS_DEBUG 4780 4781 /* the _short versions avoid iteration by not calling anything that prints 4782 * more than oneliners. I love oneliners. 4783 */ 4784 4785 static void 4786 print_device_short(device_t dev, int indent) 4787 { 4788 if (!dev) 4789 return; 4790 4791 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4792 dev->unit, dev->desc, 4793 (dev->parent? "":"no "), 4794 (TAILQ_EMPTY(&dev->children)? "no ":""), 4795 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4796 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4797 (dev->flags&DF_WILDCARD? "wildcard,":""), 4798 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4799 (dev->flags&DF_REBID? "rebiddable,":""), 4800 (dev->ivars? "":"no "), 4801 (dev->softc? "":"no "), 4802 dev->busy)); 4803 } 4804 4805 static void 4806 print_device(device_t dev, int indent) 4807 { 4808 if (!dev) 4809 return; 4810 4811 print_device_short(dev, indent); 4812 4813 indentprintf(("Parent:\n")); 4814 print_device_short(dev->parent, indent+1); 4815 indentprintf(("Driver:\n")); 4816 print_driver_short(dev->driver, indent+1); 4817 indentprintf(("Devclass:\n")); 4818 print_devclass_short(dev->devclass, indent+1); 4819 } 4820 4821 void 4822 print_device_tree_short(device_t dev, int indent) 4823 /* print the device and all its children (indented) */ 4824 { 4825 device_t child; 4826 4827 if (!dev) 4828 return; 4829 4830 print_device_short(dev, indent); 4831 4832 TAILQ_FOREACH(child, &dev->children, link) { 4833 print_device_tree_short(child, indent+1); 4834 } 4835 } 4836 4837 void 4838 print_device_tree(device_t dev, int indent) 4839 /* print the device and all its children (indented) */ 4840 { 4841 device_t child; 4842 4843 if (!dev) 4844 return; 4845 4846 print_device(dev, indent); 4847 4848 TAILQ_FOREACH(child, &dev->children, link) { 4849 print_device_tree(child, indent+1); 4850 } 4851 } 4852 4853 static void 4854 print_driver_short(driver_t *driver, int indent) 4855 { 4856 if (!driver) 4857 return; 4858 4859 indentprintf(("driver %s: softc size = %zd\n", 4860 driver->name, driver->size)); 4861 } 4862 4863 static void 4864 print_driver(driver_t *driver, int indent) 4865 { 4866 if (!driver) 4867 return; 4868 4869 print_driver_short(driver, indent); 4870 } 4871 4872 static void 4873 print_driver_list(driver_list_t drivers, int indent) 4874 { 4875 driverlink_t driver; 4876 4877 TAILQ_FOREACH(driver, &drivers, link) { 4878 print_driver(driver->driver, indent); 4879 } 4880 } 4881 4882 static void 4883 print_devclass_short(devclass_t dc, int indent) 4884 { 4885 if ( !dc ) 4886 return; 4887 4888 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4889 } 4890 4891 static void 4892 print_devclass(devclass_t dc, int indent) 4893 { 4894 int i; 4895 4896 if ( !dc ) 4897 return; 4898 4899 print_devclass_short(dc, indent); 4900 indentprintf(("Drivers:\n")); 4901 print_driver_list(dc->drivers, indent+1); 4902 4903 indentprintf(("Devices:\n")); 4904 for (i = 0; i < dc->maxunit; i++) 4905 if (dc->devices[i]) 4906 print_device(dc->devices[i], indent+1); 4907 } 4908 4909 void 4910 print_devclass_list_short(void) 4911 { 4912 devclass_t dc; 4913 4914 printf("Short listing of devclasses, drivers & devices:\n"); 4915 TAILQ_FOREACH(dc, &devclasses, link) { 4916 print_devclass_short(dc, 0); 4917 } 4918 } 4919 4920 void 4921 print_devclass_list(void) 4922 { 4923 devclass_t dc; 4924 4925 printf("Full listing of devclasses, drivers & devices:\n"); 4926 TAILQ_FOREACH(dc, &devclasses, link) { 4927 print_devclass(dc, 0); 4928 } 4929 } 4930 4931 #endif 4932 4933 /* 4934 * User-space access to the device tree. 4935 * 4936 * We implement a small set of nodes: 4937 * 4938 * hw.bus Single integer read method to obtain the 4939 * current generation count. 4940 * hw.bus.devices Reads the entire device tree in flat space. 4941 * hw.bus.rman Resource manager interface 4942 * 4943 * We might like to add the ability to scan devclasses and/or drivers to 4944 * determine what else is currently loaded/available. 4945 */ 4946 4947 static int 4948 sysctl_bus(SYSCTL_HANDLER_ARGS) 4949 { 4950 struct u_businfo ubus; 4951 4952 ubus.ub_version = BUS_USER_VERSION; 4953 ubus.ub_generation = bus_data_generation; 4954 4955 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4956 } 4957 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4958 "bus-related data"); 4959 4960 static int 4961 sysctl_devices(SYSCTL_HANDLER_ARGS) 4962 { 4963 int *name = (int *)arg1; 4964 u_int namelen = arg2; 4965 int index; 4966 struct device *dev; 4967 struct u_device udev; /* XXX this is a bit big */ 4968 int error; 4969 4970 if (namelen != 2) 4971 return (EINVAL); 4972 4973 if (bus_data_generation_check(name[0])) 4974 return (EINVAL); 4975 4976 index = name[1]; 4977 4978 /* 4979 * Scan the list of devices, looking for the requested index. 4980 */ 4981 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4982 if (index-- == 0) 4983 break; 4984 } 4985 if (dev == NULL) 4986 return (ENOENT); 4987 4988 /* 4989 * Populate the return array. 4990 */ 4991 bzero(&udev, sizeof(udev)); 4992 udev.dv_handle = (uintptr_t)dev; 4993 udev.dv_parent = (uintptr_t)dev->parent; 4994 if (dev->nameunit != NULL) 4995 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4996 if (dev->desc != NULL) 4997 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4998 if (dev->driver != NULL && dev->driver->name != NULL) 4999 strlcpy(udev.dv_drivername, dev->driver->name, 5000 sizeof(udev.dv_drivername)); 5001 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5002 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5003 udev.dv_devflags = dev->devflags; 5004 udev.dv_flags = dev->flags; 5005 udev.dv_state = dev->state; 5006 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5007 return (error); 5008 } 5009 5010 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5011 "system device tree"); 5012 5013 int 5014 bus_data_generation_check(int generation) 5015 { 5016 if (generation != bus_data_generation) 5017 return (1); 5018 5019 /* XXX generate optimised lists here? */ 5020 return (0); 5021 } 5022 5023 void 5024 bus_data_generation_update(void) 5025 { 5026 bus_data_generation++; 5027 } 5028 5029 int 5030 bus_free_resource(device_t dev, int type, struct resource *r) 5031 { 5032 if (r == NULL) 5033 return (0); 5034 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5035 } 5036 5037 int 5038 device_getenv_int(device_t dev, const char *knob, int *iptr) 5039 { 5040 char env[128]; 5041 int sz; 5042 5043 sz = snprintf(env, sizeof(env), "hw.%s.%d.%s", device_get_name(dev), device_get_unit(dev), knob); 5044 if (sz >= sizeof(env)) { 5045 /* XXX: log? return error? bump sysctl error? */ 5046 log(LOG_ERR, "device_getenv_int: knob too long: '%s'", knob); 5047 return 0; 5048 } 5049 return (getenv_int(env, iptr)); 5050 } 5051