xref: /freebsd/sys/kern/subr_bus.c (revision dcc3a33188bceb5b6e819efdb9c5f72d059084b6)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/proc.h>
43 #include <sys/condvar.h>
44 #include <sys/queue.h>
45 #include <machine/bus.h>
46 #include <sys/rman.h>
47 #include <sys/selinfo.h>
48 #include <sys/signalvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/uio.h>
52 #include <sys/bus.h>
53 #include <sys/interrupt.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 	int		pass;
70 	TAILQ_ENTRY(driverlink) passlink;
71 };
72 
73 /*
74  * Forward declarations
75  */
76 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
77 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
78 typedef TAILQ_HEAD(device_list, device) device_list_t;
79 
80 struct devclass {
81 	TAILQ_ENTRY(devclass) link;
82 	devclass_t	parent;		/* parent in devclass hierarchy */
83 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
84 	char		*name;
85 	device_t	*devices;	/* array of devices indexed by unit */
86 	int		maxunit;	/* size of devices array */
87 	int		flags;
88 #define DC_HAS_CHILDREN		1
89 
90 	struct sysctl_ctx_list sysctl_ctx;
91 	struct sysctl_oid *sysctl_tree;
92 };
93 
94 /**
95  * @brief Implementation of device.
96  */
97 struct device {
98 	/*
99 	 * A device is a kernel object. The first field must be the
100 	 * current ops table for the object.
101 	 */
102 	KOBJ_FIELDS;
103 
104 	/*
105 	 * Device hierarchy.
106 	 */
107 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
108 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
109 	device_t	parent;		/**< parent of this device  */
110 	device_list_t	children;	/**< list of child devices */
111 
112 	/*
113 	 * Details of this device.
114 	 */
115 	driver_t	*driver;	/**< current driver */
116 	devclass_t	devclass;	/**< current device class */
117 	int		unit;		/**< current unit number */
118 	char*		nameunit;	/**< name+unit e.g. foodev0 */
119 	char*		desc;		/**< driver specific description */
120 	int		busy;		/**< count of calls to device_busy() */
121 	device_state_t	state;		/**< current device state  */
122 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
123 	u_short		flags;		/**< internal device flags  */
124 #define	DF_ENABLED	1		/* device should be probed/attached */
125 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
126 #define	DF_WILDCARD	4		/* unit was originally wildcard */
127 #define	DF_DESCMALLOCED	8		/* description was malloced */
128 #define	DF_QUIET	16		/* don't print verbose attach message */
129 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
130 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
131 #define	DF_REBID	128		/* Can rebid after attach */
132 	u_char	order;			/**< order from device_add_child_ordered() */
133 	u_char	pad;
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
409 	    "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data(char *data)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		return;
548 	if (devctl_queue_length == 0)
549 		return;
550 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
551 	if (n1 == NULL)
552 		return;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		free(n1->dei_data, M_BUS);
557 		free(n1, M_BUS);
558 		return;
559 	}
560 	/* Leave at least one spot in the queue... */
561 	while (devsoftc.queued > devctl_queue_length - 1) {
562 		n2 = TAILQ_FIRST(&devsoftc.devq);
563 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
564 		free(n2->dei_data, M_BUS);
565 		free(n2, M_BUS);
566 		devsoftc.queued--;
567 	}
568 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
569 	devsoftc.queued++;
570 	cv_broadcast(&devsoftc.cv);
571 	mtx_unlock(&devsoftc.mtx);
572 	selwakeup(&devsoftc.sel);
573 	p = devsoftc.async_proc;
574 	if (p != NULL) {
575 		PROC_LOCK(p);
576 		psignal(p, SIGIO);
577 		PROC_UNLOCK(p);
578 	}
579 }
580 
581 /**
582  * @brief Send a 'notification' to userland, using standard ways
583  */
584 void
585 devctl_notify(const char *system, const char *subsystem, const char *type,
586     const char *data)
587 {
588 	int len = 0;
589 	char *msg;
590 
591 	if (system == NULL)
592 		return;		/* BOGUS!  Must specify system. */
593 	if (subsystem == NULL)
594 		return;		/* BOGUS!  Must specify subsystem. */
595 	if (type == NULL)
596 		return;		/* BOGUS!  Must specify type. */
597 	len += strlen(" system=") + strlen(system);
598 	len += strlen(" subsystem=") + strlen(subsystem);
599 	len += strlen(" type=") + strlen(type);
600 	/* add in the data message plus newline. */
601 	if (data != NULL)
602 		len += strlen(data);
603 	len += 3;	/* '!', '\n', and NUL */
604 	msg = malloc(len, M_BUS, M_NOWAIT);
605 	if (msg == NULL)
606 		return;		/* Drop it on the floor */
607 	if (data != NULL)
608 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
609 		    system, subsystem, type, data);
610 	else
611 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
612 		    system, subsystem, type);
613 	devctl_queue_data(msg);
614 }
615 
616 /*
617  * Common routine that tries to make sending messages as easy as possible.
618  * We allocate memory for the data, copy strings into that, but do not
619  * free it unless there's an error.  The dequeue part of the driver should
620  * free the data.  We don't send data when the device is disabled.  We do
621  * send data, even when we have no listeners, because we wish to avoid
622  * races relating to startup and restart of listening applications.
623  *
624  * devaddq is designed to string together the type of event, with the
625  * object of that event, plus the plug and play info and location info
626  * for that event.  This is likely most useful for devices, but less
627  * useful for other consumers of this interface.  Those should use
628  * the devctl_queue_data() interface instead.
629  */
630 static void
631 devaddq(const char *type, const char *what, device_t dev)
632 {
633 	char *data = NULL;
634 	char *loc = NULL;
635 	char *pnp = NULL;
636 	const char *parstr;
637 
638 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
639 		return;
640 	data = malloc(1024, M_BUS, M_NOWAIT);
641 	if (data == NULL)
642 		goto bad;
643 
644 	/* get the bus specific location of this device */
645 	loc = malloc(1024, M_BUS, M_NOWAIT);
646 	if (loc == NULL)
647 		goto bad;
648 	*loc = '\0';
649 	bus_child_location_str(dev, loc, 1024);
650 
651 	/* Get the bus specific pnp info of this device */
652 	pnp = malloc(1024, M_BUS, M_NOWAIT);
653 	if (pnp == NULL)
654 		goto bad;
655 	*pnp = '\0';
656 	bus_child_pnpinfo_str(dev, pnp, 1024);
657 
658 	/* Get the parent of this device, or / if high enough in the tree. */
659 	if (device_get_parent(dev) == NULL)
660 		parstr = ".";	/* Or '/' ? */
661 	else
662 		parstr = device_get_nameunit(device_get_parent(dev));
663 	/* String it all together. */
664 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
665 	  parstr);
666 	free(loc, M_BUS);
667 	free(pnp, M_BUS);
668 	devctl_queue_data(data);
669 	return;
670 bad:
671 	free(pnp, M_BUS);
672 	free(loc, M_BUS);
673 	free(data, M_BUS);
674 	return;
675 }
676 
677 /*
678  * A device was added to the tree.  We are called just after it successfully
679  * attaches (that is, probe and attach success for this device).  No call
680  * is made if a device is merely parented into the tree.  See devnomatch
681  * if probe fails.  If attach fails, no notification is sent (but maybe
682  * we should have a different message for this).
683  */
684 static void
685 devadded(device_t dev)
686 {
687 	char *pnp = NULL;
688 	char *tmp = NULL;
689 
690 	pnp = malloc(1024, M_BUS, M_NOWAIT);
691 	if (pnp == NULL)
692 		goto fail;
693 	tmp = malloc(1024, M_BUS, M_NOWAIT);
694 	if (tmp == NULL)
695 		goto fail;
696 	*pnp = '\0';
697 	bus_child_pnpinfo_str(dev, pnp, 1024);
698 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
699 	devaddq("+", tmp, dev);
700 fail:
701 	if (pnp != NULL)
702 		free(pnp, M_BUS);
703 	if (tmp != NULL)
704 		free(tmp, M_BUS);
705 	return;
706 }
707 
708 /*
709  * A device was removed from the tree.  We are called just before this
710  * happens.
711  */
712 static void
713 devremoved(device_t dev)
714 {
715 	char *pnp = NULL;
716 	char *tmp = NULL;
717 
718 	pnp = malloc(1024, M_BUS, M_NOWAIT);
719 	if (pnp == NULL)
720 		goto fail;
721 	tmp = malloc(1024, M_BUS, M_NOWAIT);
722 	if (tmp == NULL)
723 		goto fail;
724 	*pnp = '\0';
725 	bus_child_pnpinfo_str(dev, pnp, 1024);
726 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
727 	devaddq("-", tmp, dev);
728 fail:
729 	if (pnp != NULL)
730 		free(pnp, M_BUS);
731 	if (tmp != NULL)
732 		free(tmp, M_BUS);
733 	return;
734 }
735 
736 /*
737  * Called when there's no match for this device.  This is only called
738  * the first time that no match happens, so we don't keep getting this
739  * message.  Should that prove to be undesirable, we can change it.
740  * This is called when all drivers that can attach to a given bus
741  * decline to accept this device.  Other errrors may not be detected.
742  */
743 static void
744 devnomatch(device_t dev)
745 {
746 	devaddq("?", "", dev);
747 }
748 
749 static int
750 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
751 {
752 	struct dev_event_info *n1;
753 	int dis, error;
754 
755 	dis = devctl_queue_length == 0;
756 	error = sysctl_handle_int(oidp, &dis, 0, req);
757 	if (error || !req->newptr)
758 		return (error);
759 	mtx_lock(&devsoftc.mtx);
760 	if (dis) {
761 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
762 			n1 = TAILQ_FIRST(&devsoftc.devq);
763 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
764 			free(n1->dei_data, M_BUS);
765 			free(n1, M_BUS);
766 		}
767 		devsoftc.queued = 0;
768 		devctl_queue_length = 0;
769 	} else {
770 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
771 	}
772 	mtx_unlock(&devsoftc.mtx);
773 	return (0);
774 }
775 
776 static int
777 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
778 {
779 	struct dev_event_info *n1;
780 	int q, error;
781 
782 	q = devctl_queue_length;
783 	error = sysctl_handle_int(oidp, &q, 0, req);
784 	if (error || !req->newptr)
785 		return (error);
786 	if (q < 0)
787 		return (EINVAL);
788 	mtx_lock(&devsoftc.mtx);
789 	devctl_queue_length = q;
790 	while (devsoftc.queued > devctl_queue_length) {
791 		n1 = TAILQ_FIRST(&devsoftc.devq);
792 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
793 		free(n1->dei_data, M_BUS);
794 		free(n1, M_BUS);
795 		devsoftc.queued--;
796 	}
797 	mtx_unlock(&devsoftc.mtx);
798 	return (0);
799 }
800 
801 /* End of /dev/devctl code */
802 
803 static TAILQ_HEAD(,device)	bus_data_devices;
804 static int bus_data_generation = 1;
805 
806 static kobj_method_t null_methods[] = {
807 	KOBJMETHOD_END
808 };
809 
810 DEFINE_CLASS(null, null_methods, 0);
811 
812 /*
813  * Bus pass implementation
814  */
815 
816 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
817 int bus_current_pass = BUS_PASS_ROOT;
818 
819 /**
820  * @internal
821  * @brief Register the pass level of a new driver attachment
822  *
823  * Register a new driver attachment's pass level.  If no driver
824  * attachment with the same pass level has been added, then @p new
825  * will be added to the global passes list.
826  *
827  * @param new		the new driver attachment
828  */
829 static void
830 driver_register_pass(struct driverlink *new)
831 {
832 	struct driverlink *dl;
833 
834 	/* We only consider pass numbers during boot. */
835 	if (bus_current_pass == BUS_PASS_DEFAULT)
836 		return;
837 
838 	/*
839 	 * Walk the passes list.  If we already know about this pass
840 	 * then there is nothing to do.  If we don't, then insert this
841 	 * driver link into the list.
842 	 */
843 	TAILQ_FOREACH(dl, &passes, passlink) {
844 		if (dl->pass < new->pass)
845 			continue;
846 		if (dl->pass == new->pass)
847 			return;
848 		TAILQ_INSERT_BEFORE(dl, new, passlink);
849 		return;
850 	}
851 	TAILQ_INSERT_TAIL(&passes, new, passlink);
852 }
853 
854 /**
855  * @brief Raise the current bus pass
856  *
857  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
858  * method on the root bus to kick off a new device tree scan for each
859  * new pass level that has at least one driver.
860  */
861 void
862 bus_set_pass(int pass)
863 {
864 	struct driverlink *dl;
865 
866 	if (bus_current_pass > pass)
867 		panic("Attempt to lower bus pass level");
868 
869 	TAILQ_FOREACH(dl, &passes, passlink) {
870 		/* Skip pass values below the current pass level. */
871 		if (dl->pass <= bus_current_pass)
872 			continue;
873 
874 		/*
875 		 * Bail once we hit a driver with a pass level that is
876 		 * too high.
877 		 */
878 		if (dl->pass > pass)
879 			break;
880 
881 		/*
882 		 * Raise the pass level to the next level and rescan
883 		 * the tree.
884 		 */
885 		bus_current_pass = dl->pass;
886 		BUS_NEW_PASS(root_bus);
887 	}
888 
889 	/*
890 	 * If there isn't a driver registered for the requested pass,
891 	 * then bus_current_pass might still be less than 'pass'.  Set
892 	 * it to 'pass' in that case.
893 	 */
894 	if (bus_current_pass < pass)
895 		bus_current_pass = pass;
896 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
897 }
898 
899 /*
900  * Devclass implementation
901  */
902 
903 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
904 
905 /**
906  * @internal
907  * @brief Find or create a device class
908  *
909  * If a device class with the name @p classname exists, return it,
910  * otherwise if @p create is non-zero create and return a new device
911  * class.
912  *
913  * If @p parentname is non-NULL, the parent of the devclass is set to
914  * the devclass of that name.
915  *
916  * @param classname	the devclass name to find or create
917  * @param parentname	the parent devclass name or @c NULL
918  * @param create	non-zero to create a devclass
919  */
920 static devclass_t
921 devclass_find_internal(const char *classname, const char *parentname,
922 		       int create)
923 {
924 	devclass_t dc;
925 
926 	PDEBUG(("looking for %s", classname));
927 	if (!classname)
928 		return (NULL);
929 
930 	TAILQ_FOREACH(dc, &devclasses, link) {
931 		if (!strcmp(dc->name, classname))
932 			break;
933 	}
934 
935 	if (create && !dc) {
936 		PDEBUG(("creating %s", classname));
937 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
938 		    M_BUS, M_NOWAIT | M_ZERO);
939 		if (!dc)
940 			return (NULL);
941 		dc->parent = NULL;
942 		dc->name = (char*) (dc + 1);
943 		strcpy(dc->name, classname);
944 		TAILQ_INIT(&dc->drivers);
945 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
946 
947 		bus_data_generation_update();
948 	}
949 
950 	/*
951 	 * If a parent class is specified, then set that as our parent so
952 	 * that this devclass will support drivers for the parent class as
953 	 * well.  If the parent class has the same name don't do this though
954 	 * as it creates a cycle that can trigger an infinite loop in
955 	 * device_probe_child() if a device exists for which there is no
956 	 * suitable driver.
957 	 */
958 	if (parentname && dc && !dc->parent &&
959 	    strcmp(classname, parentname) != 0) {
960 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
961 		dc->parent->flags |= DC_HAS_CHILDREN;
962 	}
963 
964 	return (dc);
965 }
966 
967 /**
968  * @brief Create a device class
969  *
970  * If a device class with the name @p classname exists, return it,
971  * otherwise create and return a new device class.
972  *
973  * @param classname	the devclass name to find or create
974  */
975 devclass_t
976 devclass_create(const char *classname)
977 {
978 	return (devclass_find_internal(classname, NULL, TRUE));
979 }
980 
981 /**
982  * @brief Find a device class
983  *
984  * If a device class with the name @p classname exists, return it,
985  * otherwise return @c NULL.
986  *
987  * @param classname	the devclass name to find
988  */
989 devclass_t
990 devclass_find(const char *classname)
991 {
992 	return (devclass_find_internal(classname, NULL, FALSE));
993 }
994 
995 /**
996  * @brief Register that a device driver has been added to a devclass
997  *
998  * Register that a device driver has been added to a devclass.  This
999  * is called by devclass_add_driver to accomplish the recursive
1000  * notification of all the children classes of dc, as well as dc.
1001  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1002  * the devclass.  We do a full search here of the devclass list at
1003  * each iteration level to save storing children-lists in the devclass
1004  * structure.  If we ever move beyond a few dozen devices doing this,
1005  * we may need to reevaluate...
1006  *
1007  * @param dc		the devclass to edit
1008  * @param driver	the driver that was just added
1009  */
1010 static void
1011 devclass_driver_added(devclass_t dc, driver_t *driver)
1012 {
1013 	devclass_t parent;
1014 	int i;
1015 
1016 	/*
1017 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1018 	 */
1019 	for (i = 0; i < dc->maxunit; i++)
1020 		if (dc->devices[i])
1021 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1022 
1023 	/*
1024 	 * Walk through the children classes.  Since we only keep a
1025 	 * single parent pointer around, we walk the entire list of
1026 	 * devclasses looking for children.  We set the
1027 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1028 	 * the parent, so we only walk the list for those devclasses
1029 	 * that have children.
1030 	 */
1031 	if (!(dc->flags & DC_HAS_CHILDREN))
1032 		return;
1033 	parent = dc;
1034 	TAILQ_FOREACH(dc, &devclasses, link) {
1035 		if (dc->parent == parent)
1036 			devclass_driver_added(dc, driver);
1037 	}
1038 }
1039 
1040 /**
1041  * @brief Add a device driver to a device class
1042  *
1043  * Add a device driver to a devclass. This is normally called
1044  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1045  * all devices in the devclass will be called to allow them to attempt
1046  * to re-probe any unmatched children.
1047  *
1048  * @param dc		the devclass to edit
1049  * @param driver	the driver to register
1050  */
1051 static int
1052 devclass_add_driver(devclass_t dc, driver_t *driver, int pass)
1053 {
1054 	driverlink_t dl;
1055 
1056 	PDEBUG(("%s", DRIVERNAME(driver)));
1057 
1058 	/* Don't allow invalid pass values. */
1059 	if (pass <= BUS_PASS_ROOT)
1060 		return (EINVAL);
1061 
1062 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1063 	if (!dl)
1064 		return (ENOMEM);
1065 
1066 	/*
1067 	 * Compile the driver's methods. Also increase the reference count
1068 	 * so that the class doesn't get freed when the last instance
1069 	 * goes. This means we can safely use static methods and avoids a
1070 	 * double-free in devclass_delete_driver.
1071 	 */
1072 	kobj_class_compile((kobj_class_t) driver);
1073 
1074 	/*
1075 	 * Make sure the devclass which the driver is implementing exists.
1076 	 */
1077 	devclass_find_internal(driver->name, NULL, TRUE);
1078 
1079 	dl->driver = driver;
1080 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1081 	driver->refs++;		/* XXX: kobj_mtx */
1082 	dl->pass = pass;
1083 	driver_register_pass(dl);
1084 
1085 	devclass_driver_added(dc, driver);
1086 	bus_data_generation_update();
1087 	return (0);
1088 }
1089 
1090 /**
1091  * @brief Delete a device driver from a device class
1092  *
1093  * Delete a device driver from a devclass. This is normally called
1094  * automatically by DRIVER_MODULE().
1095  *
1096  * If the driver is currently attached to any devices,
1097  * devclass_delete_driver() will first attempt to detach from each
1098  * device. If one of the detach calls fails, the driver will not be
1099  * deleted.
1100  *
1101  * @param dc		the devclass to edit
1102  * @param driver	the driver to unregister
1103  */
1104 static int
1105 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1106 {
1107 	devclass_t dc = devclass_find(driver->name);
1108 	driverlink_t dl;
1109 	device_t dev;
1110 	int i;
1111 	int error;
1112 
1113 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1114 
1115 	if (!dc)
1116 		return (0);
1117 
1118 	/*
1119 	 * Find the link structure in the bus' list of drivers.
1120 	 */
1121 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1122 		if (dl->driver == driver)
1123 			break;
1124 	}
1125 
1126 	if (!dl) {
1127 		PDEBUG(("%s not found in %s list", driver->name,
1128 		    busclass->name));
1129 		return (ENOENT);
1130 	}
1131 
1132 	/*
1133 	 * Disassociate from any devices.  We iterate through all the
1134 	 * devices in the devclass of the driver and detach any which are
1135 	 * using the driver and which have a parent in the devclass which
1136 	 * we are deleting from.
1137 	 *
1138 	 * Note that since a driver can be in multiple devclasses, we
1139 	 * should not detach devices which are not children of devices in
1140 	 * the affected devclass.
1141 	 */
1142 	for (i = 0; i < dc->maxunit; i++) {
1143 		if (dc->devices[i]) {
1144 			dev = dc->devices[i];
1145 			if (dev->driver == driver && dev->parent &&
1146 			    dev->parent->devclass == busclass) {
1147 				if ((error = device_detach(dev)) != 0)
1148 					return (error);
1149 				device_set_driver(dev, NULL);
1150 			}
1151 		}
1152 	}
1153 
1154 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1155 	free(dl, M_BUS);
1156 
1157 	/* XXX: kobj_mtx */
1158 	driver->refs--;
1159 	if (driver->refs == 0)
1160 		kobj_class_free((kobj_class_t) driver);
1161 
1162 	bus_data_generation_update();
1163 	return (0);
1164 }
1165 
1166 /**
1167  * @brief Quiesces a set of device drivers from a device class
1168  *
1169  * Quiesce a device driver from a devclass. This is normally called
1170  * automatically by DRIVER_MODULE().
1171  *
1172  * If the driver is currently attached to any devices,
1173  * devclass_quiesece_driver() will first attempt to quiesce each
1174  * device.
1175  *
1176  * @param dc		the devclass to edit
1177  * @param driver	the driver to unregister
1178  */
1179 static int
1180 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1181 {
1182 	devclass_t dc = devclass_find(driver->name);
1183 	driverlink_t dl;
1184 	device_t dev;
1185 	int i;
1186 	int error;
1187 
1188 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1189 
1190 	if (!dc)
1191 		return (0);
1192 
1193 	/*
1194 	 * Find the link structure in the bus' list of drivers.
1195 	 */
1196 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1197 		if (dl->driver == driver)
1198 			break;
1199 	}
1200 
1201 	if (!dl) {
1202 		PDEBUG(("%s not found in %s list", driver->name,
1203 		    busclass->name));
1204 		return (ENOENT);
1205 	}
1206 
1207 	/*
1208 	 * Quiesce all devices.  We iterate through all the devices in
1209 	 * the devclass of the driver and quiesce any which are using
1210 	 * the driver and which have a parent in the devclass which we
1211 	 * are quiescing.
1212 	 *
1213 	 * Note that since a driver can be in multiple devclasses, we
1214 	 * should not quiesce devices which are not children of
1215 	 * devices in the affected devclass.
1216 	 */
1217 	for (i = 0; i < dc->maxunit; i++) {
1218 		if (dc->devices[i]) {
1219 			dev = dc->devices[i];
1220 			if (dev->driver == driver && dev->parent &&
1221 			    dev->parent->devclass == busclass) {
1222 				if ((error = device_quiesce(dev)) != 0)
1223 					return (error);
1224 			}
1225 		}
1226 	}
1227 
1228 	return (0);
1229 }
1230 
1231 /**
1232  * @internal
1233  */
1234 static driverlink_t
1235 devclass_find_driver_internal(devclass_t dc, const char *classname)
1236 {
1237 	driverlink_t dl;
1238 
1239 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1240 
1241 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1242 		if (!strcmp(dl->driver->name, classname))
1243 			return (dl);
1244 	}
1245 
1246 	PDEBUG(("not found"));
1247 	return (NULL);
1248 }
1249 
1250 /**
1251  * @brief Return the name of the devclass
1252  */
1253 const char *
1254 devclass_get_name(devclass_t dc)
1255 {
1256 	return (dc->name);
1257 }
1258 
1259 /**
1260  * @brief Find a device given a unit number
1261  *
1262  * @param dc		the devclass to search
1263  * @param unit		the unit number to search for
1264  *
1265  * @returns		the device with the given unit number or @c
1266  *			NULL if there is no such device
1267  */
1268 device_t
1269 devclass_get_device(devclass_t dc, int unit)
1270 {
1271 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1272 		return (NULL);
1273 	return (dc->devices[unit]);
1274 }
1275 
1276 /**
1277  * @brief Find the softc field of a device given a unit number
1278  *
1279  * @param dc		the devclass to search
1280  * @param unit		the unit number to search for
1281  *
1282  * @returns		the softc field of the device with the given
1283  *			unit number or @c NULL if there is no such
1284  *			device
1285  */
1286 void *
1287 devclass_get_softc(devclass_t dc, int unit)
1288 {
1289 	device_t dev;
1290 
1291 	dev = devclass_get_device(dc, unit);
1292 	if (!dev)
1293 		return (NULL);
1294 
1295 	return (device_get_softc(dev));
1296 }
1297 
1298 /**
1299  * @brief Get a list of devices in the devclass
1300  *
1301  * An array containing a list of all the devices in the given devclass
1302  * is allocated and returned in @p *devlistp. The number of devices
1303  * in the array is returned in @p *devcountp. The caller should free
1304  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1305  *
1306  * @param dc		the devclass to examine
1307  * @param devlistp	points at location for array pointer return
1308  *			value
1309  * @param devcountp	points at location for array size return value
1310  *
1311  * @retval 0		success
1312  * @retval ENOMEM	the array allocation failed
1313  */
1314 int
1315 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1316 {
1317 	int count, i;
1318 	device_t *list;
1319 
1320 	count = devclass_get_count(dc);
1321 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1322 	if (!list)
1323 		return (ENOMEM);
1324 
1325 	count = 0;
1326 	for (i = 0; i < dc->maxunit; i++) {
1327 		if (dc->devices[i]) {
1328 			list[count] = dc->devices[i];
1329 			count++;
1330 		}
1331 	}
1332 
1333 	*devlistp = list;
1334 	*devcountp = count;
1335 
1336 	return (0);
1337 }
1338 
1339 /**
1340  * @brief Get a list of drivers in the devclass
1341  *
1342  * An array containing a list of pointers to all the drivers in the
1343  * given devclass is allocated and returned in @p *listp.  The number
1344  * of drivers in the array is returned in @p *countp. The caller should
1345  * free the array using @c free(p, M_TEMP).
1346  *
1347  * @param dc		the devclass to examine
1348  * @param listp		gives location for array pointer return value
1349  * @param countp	gives location for number of array elements
1350  *			return value
1351  *
1352  * @retval 0		success
1353  * @retval ENOMEM	the array allocation failed
1354  */
1355 int
1356 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1357 {
1358 	driverlink_t dl;
1359 	driver_t **list;
1360 	int count;
1361 
1362 	count = 0;
1363 	TAILQ_FOREACH(dl, &dc->drivers, link)
1364 		count++;
1365 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1366 	if (list == NULL)
1367 		return (ENOMEM);
1368 
1369 	count = 0;
1370 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1371 		list[count] = dl->driver;
1372 		count++;
1373 	}
1374 	*listp = list;
1375 	*countp = count;
1376 
1377 	return (0);
1378 }
1379 
1380 /**
1381  * @brief Get the number of devices in a devclass
1382  *
1383  * @param dc		the devclass to examine
1384  */
1385 int
1386 devclass_get_count(devclass_t dc)
1387 {
1388 	int count, i;
1389 
1390 	count = 0;
1391 	for (i = 0; i < dc->maxunit; i++)
1392 		if (dc->devices[i])
1393 			count++;
1394 	return (count);
1395 }
1396 
1397 /**
1398  * @brief Get the maximum unit number used in a devclass
1399  *
1400  * Note that this is one greater than the highest currently-allocated
1401  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1402  * that not even the devclass has been allocated yet.
1403  *
1404  * @param dc		the devclass to examine
1405  */
1406 int
1407 devclass_get_maxunit(devclass_t dc)
1408 {
1409 	if (dc == NULL)
1410 		return (-1);
1411 	return (dc->maxunit);
1412 }
1413 
1414 /**
1415  * @brief Find a free unit number in a devclass
1416  *
1417  * This function searches for the first unused unit number greater
1418  * that or equal to @p unit.
1419  *
1420  * @param dc		the devclass to examine
1421  * @param unit		the first unit number to check
1422  */
1423 int
1424 devclass_find_free_unit(devclass_t dc, int unit)
1425 {
1426 	if (dc == NULL)
1427 		return (unit);
1428 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1429 		unit++;
1430 	return (unit);
1431 }
1432 
1433 /**
1434  * @brief Set the parent of a devclass
1435  *
1436  * The parent class is normally initialised automatically by
1437  * DRIVER_MODULE().
1438  *
1439  * @param dc		the devclass to edit
1440  * @param pdc		the new parent devclass
1441  */
1442 void
1443 devclass_set_parent(devclass_t dc, devclass_t pdc)
1444 {
1445 	dc->parent = pdc;
1446 }
1447 
1448 /**
1449  * @brief Get the parent of a devclass
1450  *
1451  * @param dc		the devclass to examine
1452  */
1453 devclass_t
1454 devclass_get_parent(devclass_t dc)
1455 {
1456 	return (dc->parent);
1457 }
1458 
1459 struct sysctl_ctx_list *
1460 devclass_get_sysctl_ctx(devclass_t dc)
1461 {
1462 	return (&dc->sysctl_ctx);
1463 }
1464 
1465 struct sysctl_oid *
1466 devclass_get_sysctl_tree(devclass_t dc)
1467 {
1468 	return (dc->sysctl_tree);
1469 }
1470 
1471 /**
1472  * @internal
1473  * @brief Allocate a unit number
1474  *
1475  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1476  * will do). The allocated unit number is returned in @p *unitp.
1477 
1478  * @param dc		the devclass to allocate from
1479  * @param unitp		points at the location for the allocated unit
1480  *			number
1481  *
1482  * @retval 0		success
1483  * @retval EEXIST	the requested unit number is already allocated
1484  * @retval ENOMEM	memory allocation failure
1485  */
1486 static int
1487 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1488 {
1489 	const char *s;
1490 	int unit = *unitp;
1491 
1492 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1493 
1494 	/* Ask the parent bus if it wants to wire this device. */
1495 	if (unit == -1)
1496 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1497 		    &unit);
1498 
1499 	/* If we were given a wired unit number, check for existing device */
1500 	/* XXX imp XXX */
1501 	if (unit != -1) {
1502 		if (unit >= 0 && unit < dc->maxunit &&
1503 		    dc->devices[unit] != NULL) {
1504 			if (bootverbose)
1505 				printf("%s: %s%d already exists; skipping it\n",
1506 				    dc->name, dc->name, *unitp);
1507 			return (EEXIST);
1508 		}
1509 	} else {
1510 		/* Unwired device, find the next available slot for it */
1511 		unit = 0;
1512 		for (unit = 0;; unit++) {
1513 			/* If there is an "at" hint for a unit then skip it. */
1514 			if (resource_string_value(dc->name, unit, "at", &s) ==
1515 			    0)
1516 				continue;
1517 
1518 			/* If this device slot is already in use, skip it. */
1519 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1520 				continue;
1521 
1522 			break;
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * We've selected a unit beyond the length of the table, so let's
1528 	 * extend the table to make room for all units up to and including
1529 	 * this one.
1530 	 */
1531 	if (unit >= dc->maxunit) {
1532 		device_t *newlist, *oldlist;
1533 		int newsize;
1534 
1535 		oldlist = dc->devices;
1536 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1537 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1538 		if (!newlist)
1539 			return (ENOMEM);
1540 		if (oldlist != NULL)
1541 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1542 		bzero(newlist + dc->maxunit,
1543 		    sizeof(device_t) * (newsize - dc->maxunit));
1544 		dc->devices = newlist;
1545 		dc->maxunit = newsize;
1546 		if (oldlist != NULL)
1547 			free(oldlist, M_BUS);
1548 	}
1549 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1550 
1551 	*unitp = unit;
1552 	return (0);
1553 }
1554 
1555 /**
1556  * @internal
1557  * @brief Add a device to a devclass
1558  *
1559  * A unit number is allocated for the device (using the device's
1560  * preferred unit number if any) and the device is registered in the
1561  * devclass. This allows the device to be looked up by its unit
1562  * number, e.g. by decoding a dev_t minor number.
1563  *
1564  * @param dc		the devclass to add to
1565  * @param dev		the device to add
1566  *
1567  * @retval 0		success
1568  * @retval EEXIST	the requested unit number is already allocated
1569  * @retval ENOMEM	memory allocation failure
1570  */
1571 static int
1572 devclass_add_device(devclass_t dc, device_t dev)
1573 {
1574 	int buflen, error;
1575 
1576 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1577 
1578 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1579 	if (buflen < 0)
1580 		return (ENOMEM);
1581 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1582 	if (!dev->nameunit)
1583 		return (ENOMEM);
1584 
1585 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1586 		free(dev->nameunit, M_BUS);
1587 		dev->nameunit = NULL;
1588 		return (error);
1589 	}
1590 	dc->devices[dev->unit] = dev;
1591 	dev->devclass = dc;
1592 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1593 
1594 	return (0);
1595 }
1596 
1597 /**
1598  * @internal
1599  * @brief Delete a device from a devclass
1600  *
1601  * The device is removed from the devclass's device list and its unit
1602  * number is freed.
1603 
1604  * @param dc		the devclass to delete from
1605  * @param dev		the device to delete
1606  *
1607  * @retval 0		success
1608  */
1609 static int
1610 devclass_delete_device(devclass_t dc, device_t dev)
1611 {
1612 	if (!dc || !dev)
1613 		return (0);
1614 
1615 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1616 
1617 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1618 		panic("devclass_delete_device: inconsistent device class");
1619 	dc->devices[dev->unit] = NULL;
1620 	if (dev->flags & DF_WILDCARD)
1621 		dev->unit = -1;
1622 	dev->devclass = NULL;
1623 	free(dev->nameunit, M_BUS);
1624 	dev->nameunit = NULL;
1625 
1626 	return (0);
1627 }
1628 
1629 /**
1630  * @internal
1631  * @brief Make a new device and add it as a child of @p parent
1632  *
1633  * @param parent	the parent of the new device
1634  * @param name		the devclass name of the new device or @c NULL
1635  *			to leave the devclass unspecified
1636  * @parem unit		the unit number of the new device of @c -1 to
1637  *			leave the unit number unspecified
1638  *
1639  * @returns the new device
1640  */
1641 static device_t
1642 make_device(device_t parent, const char *name, int unit)
1643 {
1644 	device_t dev;
1645 	devclass_t dc;
1646 
1647 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1648 
1649 	if (name) {
1650 		dc = devclass_find_internal(name, NULL, TRUE);
1651 		if (!dc) {
1652 			printf("make_device: can't find device class %s\n",
1653 			    name);
1654 			return (NULL);
1655 		}
1656 	} else {
1657 		dc = NULL;
1658 	}
1659 
1660 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1661 	if (!dev)
1662 		return (NULL);
1663 
1664 	dev->parent = parent;
1665 	TAILQ_INIT(&dev->children);
1666 	kobj_init((kobj_t) dev, &null_class);
1667 	dev->driver = NULL;
1668 	dev->devclass = NULL;
1669 	dev->unit = unit;
1670 	dev->nameunit = NULL;
1671 	dev->desc = NULL;
1672 	dev->busy = 0;
1673 	dev->devflags = 0;
1674 	dev->flags = DF_ENABLED;
1675 	dev->order = 0;
1676 	if (unit == -1)
1677 		dev->flags |= DF_WILDCARD;
1678 	if (name) {
1679 		dev->flags |= DF_FIXEDCLASS;
1680 		if (devclass_add_device(dc, dev)) {
1681 			kobj_delete((kobj_t) dev, M_BUS);
1682 			return (NULL);
1683 		}
1684 	}
1685 	dev->ivars = NULL;
1686 	dev->softc = NULL;
1687 
1688 	dev->state = DS_NOTPRESENT;
1689 
1690 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1691 	bus_data_generation_update();
1692 
1693 	return (dev);
1694 }
1695 
1696 /**
1697  * @internal
1698  * @brief Print a description of a device.
1699  */
1700 static int
1701 device_print_child(device_t dev, device_t child)
1702 {
1703 	int retval = 0;
1704 
1705 	if (device_is_alive(child))
1706 		retval += BUS_PRINT_CHILD(dev, child);
1707 	else
1708 		retval += device_printf(child, " not found\n");
1709 
1710 	return (retval);
1711 }
1712 
1713 /**
1714  * @brief Create a new device
1715  *
1716  * This creates a new device and adds it as a child of an existing
1717  * parent device. The new device will be added after the last existing
1718  * child with order zero.
1719  *
1720  * @param dev		the device which will be the parent of the
1721  *			new child device
1722  * @param name		devclass name for new device or @c NULL if not
1723  *			specified
1724  * @param unit		unit number for new device or @c -1 if not
1725  *			specified
1726  *
1727  * @returns		the new device
1728  */
1729 device_t
1730 device_add_child(device_t dev, const char *name, int unit)
1731 {
1732 	return (device_add_child_ordered(dev, 0, name, unit));
1733 }
1734 
1735 /**
1736  * @brief Create a new device
1737  *
1738  * This creates a new device and adds it as a child of an existing
1739  * parent device. The new device will be added after the last existing
1740  * child with the same order.
1741  *
1742  * @param dev		the device which will be the parent of the
1743  *			new child device
1744  * @param order		a value which is used to partially sort the
1745  *			children of @p dev - devices created using
1746  *			lower values of @p order appear first in @p
1747  *			dev's list of children
1748  * @param name		devclass name for new device or @c NULL if not
1749  *			specified
1750  * @param unit		unit number for new device or @c -1 if not
1751  *			specified
1752  *
1753  * @returns		the new device
1754  */
1755 device_t
1756 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1757 {
1758 	device_t child;
1759 	device_t place;
1760 
1761 	PDEBUG(("%s at %s with order %d as unit %d",
1762 	    name, DEVICENAME(dev), order, unit));
1763 
1764 	child = make_device(dev, name, unit);
1765 	if (child == NULL)
1766 		return (child);
1767 	child->order = order;
1768 
1769 	TAILQ_FOREACH(place, &dev->children, link) {
1770 		if (place->order > order)
1771 			break;
1772 	}
1773 
1774 	if (place) {
1775 		/*
1776 		 * The device 'place' is the first device whose order is
1777 		 * greater than the new child.
1778 		 */
1779 		TAILQ_INSERT_BEFORE(place, child, link);
1780 	} else {
1781 		/*
1782 		 * The new child's order is greater or equal to the order of
1783 		 * any existing device. Add the child to the tail of the list.
1784 		 */
1785 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1786 	}
1787 
1788 	bus_data_generation_update();
1789 	return (child);
1790 }
1791 
1792 /**
1793  * @brief Delete a device
1794  *
1795  * This function deletes a device along with all of its children. If
1796  * the device currently has a driver attached to it, the device is
1797  * detached first using device_detach().
1798  *
1799  * @param dev		the parent device
1800  * @param child		the device to delete
1801  *
1802  * @retval 0		success
1803  * @retval non-zero	a unit error code describing the error
1804  */
1805 int
1806 device_delete_child(device_t dev, device_t child)
1807 {
1808 	int error;
1809 	device_t grandchild;
1810 
1811 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1812 
1813 	/* remove children first */
1814 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1815 		error = device_delete_child(child, grandchild);
1816 		if (error)
1817 			return (error);
1818 	}
1819 
1820 	if ((error = device_detach(child)) != 0)
1821 		return (error);
1822 	if (child->devclass)
1823 		devclass_delete_device(child->devclass, child);
1824 	TAILQ_REMOVE(&dev->children, child, link);
1825 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1826 	kobj_delete((kobj_t) child, M_BUS);
1827 
1828 	bus_data_generation_update();
1829 	return (0);
1830 }
1831 
1832 /**
1833  * @brief Find a device given a unit number
1834  *
1835  * This is similar to devclass_get_devices() but only searches for
1836  * devices which have @p dev as a parent.
1837  *
1838  * @param dev		the parent device to search
1839  * @param unit		the unit number to search for.  If the unit is -1,
1840  *			return the first child of @p dev which has name
1841  *			@p classname (that is, the one with the lowest unit.)
1842  *
1843  * @returns		the device with the given unit number or @c
1844  *			NULL if there is no such device
1845  */
1846 device_t
1847 device_find_child(device_t dev, const char *classname, int unit)
1848 {
1849 	devclass_t dc;
1850 	device_t child;
1851 
1852 	dc = devclass_find(classname);
1853 	if (!dc)
1854 		return (NULL);
1855 
1856 	if (unit != -1) {
1857 		child = devclass_get_device(dc, unit);
1858 		if (child && child->parent == dev)
1859 			return (child);
1860 	} else {
1861 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1862 			child = devclass_get_device(dc, unit);
1863 			if (child && child->parent == dev)
1864 				return (child);
1865 		}
1866 	}
1867 	return (NULL);
1868 }
1869 
1870 /**
1871  * @internal
1872  */
1873 static driverlink_t
1874 first_matching_driver(devclass_t dc, device_t dev)
1875 {
1876 	if (dev->devclass)
1877 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1878 	return (TAILQ_FIRST(&dc->drivers));
1879 }
1880 
1881 /**
1882  * @internal
1883  */
1884 static driverlink_t
1885 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1886 {
1887 	if (dev->devclass) {
1888 		driverlink_t dl;
1889 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1890 			if (!strcmp(dev->devclass->name, dl->driver->name))
1891 				return (dl);
1892 		return (NULL);
1893 	}
1894 	return (TAILQ_NEXT(last, link));
1895 }
1896 
1897 /**
1898  * @internal
1899  */
1900 int
1901 device_probe_child(device_t dev, device_t child)
1902 {
1903 	devclass_t dc;
1904 	driverlink_t best = NULL;
1905 	driverlink_t dl;
1906 	int result, pri = 0;
1907 	int hasclass = (child->devclass != NULL);
1908 
1909 	GIANT_REQUIRED;
1910 
1911 	dc = dev->devclass;
1912 	if (!dc)
1913 		panic("device_probe_child: parent device has no devclass");
1914 
1915 	/*
1916 	 * If the state is already probed, then return.  However, don't
1917 	 * return if we can rebid this object.
1918 	 */
1919 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1920 		return (0);
1921 
1922 	for (; dc; dc = dc->parent) {
1923 		for (dl = first_matching_driver(dc, child);
1924 		     dl;
1925 		     dl = next_matching_driver(dc, child, dl)) {
1926 
1927 			/* If this driver's pass is too high, then ignore it. */
1928 			if (dl->pass > bus_current_pass)
1929 				continue;
1930 
1931 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1932 			device_set_driver(child, dl->driver);
1933 			if (!hasclass) {
1934 				if (device_set_devclass(child, dl->driver->name)) {
1935 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1936 					    (child ? device_get_name(child) :
1937 						"no device"));
1938 					device_set_driver(child, NULL);
1939 					continue;
1940 				}
1941 			}
1942 
1943 			/* Fetch any flags for the device before probing. */
1944 			resource_int_value(dl->driver->name, child->unit,
1945 			    "flags", &child->devflags);
1946 
1947 			result = DEVICE_PROBE(child);
1948 
1949 			/* Reset flags and devclass before the next probe. */
1950 			child->devflags = 0;
1951 			if (!hasclass)
1952 				device_set_devclass(child, NULL);
1953 
1954 			/*
1955 			 * If the driver returns SUCCESS, there can be
1956 			 * no higher match for this device.
1957 			 */
1958 			if (result == 0) {
1959 				best = dl;
1960 				pri = 0;
1961 				break;
1962 			}
1963 
1964 			/*
1965 			 * The driver returned an error so it
1966 			 * certainly doesn't match.
1967 			 */
1968 			if (result > 0) {
1969 				device_set_driver(child, NULL);
1970 				continue;
1971 			}
1972 
1973 			/*
1974 			 * A priority lower than SUCCESS, remember the
1975 			 * best matching driver. Initialise the value
1976 			 * of pri for the first match.
1977 			 */
1978 			if (best == NULL || result > pri) {
1979 				/*
1980 				 * Probes that return BUS_PROBE_NOWILDCARD
1981 				 * or lower only match when they are set
1982 				 * in stone by the parent bus.
1983 				 */
1984 				if (result <= BUS_PROBE_NOWILDCARD &&
1985 				    child->flags & DF_WILDCARD)
1986 					continue;
1987 				best = dl;
1988 				pri = result;
1989 				continue;
1990 			}
1991 		}
1992 		/*
1993 		 * If we have an unambiguous match in this devclass,
1994 		 * don't look in the parent.
1995 		 */
1996 		if (best && pri == 0)
1997 			break;
1998 	}
1999 
2000 	/*
2001 	 * If we found a driver, change state and initialise the devclass.
2002 	 */
2003 	/* XXX What happens if we rebid and got no best? */
2004 	if (best) {
2005 		/*
2006 		 * If this device was atached, and we were asked to
2007 		 * rescan, and it is a different driver, then we have
2008 		 * to detach the old driver and reattach this new one.
2009 		 * Note, we don't have to check for DF_REBID here
2010 		 * because if the state is > DS_ALIVE, we know it must
2011 		 * be.
2012 		 *
2013 		 * This assumes that all DF_REBID drivers can have
2014 		 * their probe routine called at any time and that
2015 		 * they are idempotent as well as completely benign in
2016 		 * normal operations.
2017 		 *
2018 		 * We also have to make sure that the detach
2019 		 * succeeded, otherwise we fail the operation (or
2020 		 * maybe it should just fail silently?  I'm torn).
2021 		 */
2022 		if (child->state > DS_ALIVE && best->driver != child->driver)
2023 			if ((result = device_detach(dev)) != 0)
2024 				return (result);
2025 
2026 		/* Set the winning driver, devclass, and flags. */
2027 		if (!child->devclass) {
2028 			result = device_set_devclass(child, best->driver->name);
2029 			if (result != 0)
2030 				return (result);
2031 		}
2032 		device_set_driver(child, best->driver);
2033 		resource_int_value(best->driver->name, child->unit,
2034 		    "flags", &child->devflags);
2035 
2036 		if (pri < 0) {
2037 			/*
2038 			 * A bit bogus. Call the probe method again to make
2039 			 * sure that we have the right description.
2040 			 */
2041 			DEVICE_PROBE(child);
2042 #if 0
2043 			child->flags |= DF_REBID;
2044 #endif
2045 		} else
2046 			child->flags &= ~DF_REBID;
2047 		child->state = DS_ALIVE;
2048 
2049 		bus_data_generation_update();
2050 		return (0);
2051 	}
2052 
2053 	return (ENXIO);
2054 }
2055 
2056 /**
2057  * @brief Return the parent of a device
2058  */
2059 device_t
2060 device_get_parent(device_t dev)
2061 {
2062 	return (dev->parent);
2063 }
2064 
2065 /**
2066  * @brief Get a list of children of a device
2067  *
2068  * An array containing a list of all the children of the given device
2069  * is allocated and returned in @p *devlistp. The number of devices
2070  * in the array is returned in @p *devcountp. The caller should free
2071  * the array using @c free(p, M_TEMP).
2072  *
2073  * @param dev		the device to examine
2074  * @param devlistp	points at location for array pointer return
2075  *			value
2076  * @param devcountp	points at location for array size return value
2077  *
2078  * @retval 0		success
2079  * @retval ENOMEM	the array allocation failed
2080  */
2081 int
2082 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2083 {
2084 	int count;
2085 	device_t child;
2086 	device_t *list;
2087 
2088 	count = 0;
2089 	TAILQ_FOREACH(child, &dev->children, link) {
2090 		count++;
2091 	}
2092 
2093 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2094 	if (!list)
2095 		return (ENOMEM);
2096 
2097 	count = 0;
2098 	TAILQ_FOREACH(child, &dev->children, link) {
2099 		list[count] = child;
2100 		count++;
2101 	}
2102 
2103 	*devlistp = list;
2104 	*devcountp = count;
2105 
2106 	return (0);
2107 }
2108 
2109 /**
2110  * @brief Return the current driver for the device or @c NULL if there
2111  * is no driver currently attached
2112  */
2113 driver_t *
2114 device_get_driver(device_t dev)
2115 {
2116 	return (dev->driver);
2117 }
2118 
2119 /**
2120  * @brief Return the current devclass for the device or @c NULL if
2121  * there is none.
2122  */
2123 devclass_t
2124 device_get_devclass(device_t dev)
2125 {
2126 	return (dev->devclass);
2127 }
2128 
2129 /**
2130  * @brief Return the name of the device's devclass or @c NULL if there
2131  * is none.
2132  */
2133 const char *
2134 device_get_name(device_t dev)
2135 {
2136 	if (dev != NULL && dev->devclass)
2137 		return (devclass_get_name(dev->devclass));
2138 	return (NULL);
2139 }
2140 
2141 /**
2142  * @brief Return a string containing the device's devclass name
2143  * followed by an ascii representation of the device's unit number
2144  * (e.g. @c "foo2").
2145  */
2146 const char *
2147 device_get_nameunit(device_t dev)
2148 {
2149 	return (dev->nameunit);
2150 }
2151 
2152 /**
2153  * @brief Return the device's unit number.
2154  */
2155 int
2156 device_get_unit(device_t dev)
2157 {
2158 	return (dev->unit);
2159 }
2160 
2161 /**
2162  * @brief Return the device's description string
2163  */
2164 const char *
2165 device_get_desc(device_t dev)
2166 {
2167 	return (dev->desc);
2168 }
2169 
2170 /**
2171  * @brief Return the device's flags
2172  */
2173 u_int32_t
2174 device_get_flags(device_t dev)
2175 {
2176 	return (dev->devflags);
2177 }
2178 
2179 struct sysctl_ctx_list *
2180 device_get_sysctl_ctx(device_t dev)
2181 {
2182 	return (&dev->sysctl_ctx);
2183 }
2184 
2185 struct sysctl_oid *
2186 device_get_sysctl_tree(device_t dev)
2187 {
2188 	return (dev->sysctl_tree);
2189 }
2190 
2191 /**
2192  * @brief Print the name of the device followed by a colon and a space
2193  *
2194  * @returns the number of characters printed
2195  */
2196 int
2197 device_print_prettyname(device_t dev)
2198 {
2199 	const char *name = device_get_name(dev);
2200 
2201 	if (name == NULL)
2202 		return (printf("unknown: "));
2203 	return (printf("%s%d: ", name, device_get_unit(dev)));
2204 }
2205 
2206 /**
2207  * @brief Print the name of the device followed by a colon, a space
2208  * and the result of calling vprintf() with the value of @p fmt and
2209  * the following arguments.
2210  *
2211  * @returns the number of characters printed
2212  */
2213 int
2214 device_printf(device_t dev, const char * fmt, ...)
2215 {
2216 	va_list ap;
2217 	int retval;
2218 
2219 	retval = device_print_prettyname(dev);
2220 	va_start(ap, fmt);
2221 	retval += vprintf(fmt, ap);
2222 	va_end(ap);
2223 	return (retval);
2224 }
2225 
2226 /**
2227  * @internal
2228  */
2229 static void
2230 device_set_desc_internal(device_t dev, const char* desc, int copy)
2231 {
2232 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2233 		free(dev->desc, M_BUS);
2234 		dev->flags &= ~DF_DESCMALLOCED;
2235 		dev->desc = NULL;
2236 	}
2237 
2238 	if (copy && desc) {
2239 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2240 		if (dev->desc) {
2241 			strcpy(dev->desc, desc);
2242 			dev->flags |= DF_DESCMALLOCED;
2243 		}
2244 	} else {
2245 		/* Avoid a -Wcast-qual warning */
2246 		dev->desc = (char *)(uintptr_t) desc;
2247 	}
2248 
2249 	bus_data_generation_update();
2250 }
2251 
2252 /**
2253  * @brief Set the device's description
2254  *
2255  * The value of @c desc should be a string constant that will not
2256  * change (at least until the description is changed in a subsequent
2257  * call to device_set_desc() or device_set_desc_copy()).
2258  */
2259 void
2260 device_set_desc(device_t dev, const char* desc)
2261 {
2262 	device_set_desc_internal(dev, desc, FALSE);
2263 }
2264 
2265 /**
2266  * @brief Set the device's description
2267  *
2268  * The string pointed to by @c desc is copied. Use this function if
2269  * the device description is generated, (e.g. with sprintf()).
2270  */
2271 void
2272 device_set_desc_copy(device_t dev, const char* desc)
2273 {
2274 	device_set_desc_internal(dev, desc, TRUE);
2275 }
2276 
2277 /**
2278  * @brief Set the device's flags
2279  */
2280 void
2281 device_set_flags(device_t dev, u_int32_t flags)
2282 {
2283 	dev->devflags = flags;
2284 }
2285 
2286 /**
2287  * @brief Return the device's softc field
2288  *
2289  * The softc is allocated and zeroed when a driver is attached, based
2290  * on the size field of the driver.
2291  */
2292 void *
2293 device_get_softc(device_t dev)
2294 {
2295 	return (dev->softc);
2296 }
2297 
2298 /**
2299  * @brief Set the device's softc field
2300  *
2301  * Most drivers do not need to use this since the softc is allocated
2302  * automatically when the driver is attached.
2303  */
2304 void
2305 device_set_softc(device_t dev, void *softc)
2306 {
2307 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2308 		free(dev->softc, M_BUS_SC);
2309 	dev->softc = softc;
2310 	if (dev->softc)
2311 		dev->flags |= DF_EXTERNALSOFTC;
2312 	else
2313 		dev->flags &= ~DF_EXTERNALSOFTC;
2314 }
2315 
2316 /**
2317  * @brief Get the device's ivars field
2318  *
2319  * The ivars field is used by the parent device to store per-device
2320  * state (e.g. the physical location of the device or a list of
2321  * resources).
2322  */
2323 void *
2324 device_get_ivars(device_t dev)
2325 {
2326 
2327 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2328 	return (dev->ivars);
2329 }
2330 
2331 /**
2332  * @brief Set the device's ivars field
2333  */
2334 void
2335 device_set_ivars(device_t dev, void * ivars)
2336 {
2337 
2338 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2339 	dev->ivars = ivars;
2340 }
2341 
2342 /**
2343  * @brief Return the device's state
2344  */
2345 device_state_t
2346 device_get_state(device_t dev)
2347 {
2348 	return (dev->state);
2349 }
2350 
2351 /**
2352  * @brief Set the DF_ENABLED flag for the device
2353  */
2354 void
2355 device_enable(device_t dev)
2356 {
2357 	dev->flags |= DF_ENABLED;
2358 }
2359 
2360 /**
2361  * @brief Clear the DF_ENABLED flag for the device
2362  */
2363 void
2364 device_disable(device_t dev)
2365 {
2366 	dev->flags &= ~DF_ENABLED;
2367 }
2368 
2369 /**
2370  * @brief Increment the busy counter for the device
2371  */
2372 void
2373 device_busy(device_t dev)
2374 {
2375 	if (dev->state < DS_ATTACHED)
2376 		panic("device_busy: called for unattached device");
2377 	if (dev->busy == 0 && dev->parent)
2378 		device_busy(dev->parent);
2379 	dev->busy++;
2380 	dev->state = DS_BUSY;
2381 }
2382 
2383 /**
2384  * @brief Decrement the busy counter for the device
2385  */
2386 void
2387 device_unbusy(device_t dev)
2388 {
2389 	if (dev->state != DS_BUSY)
2390 		panic("device_unbusy: called for non-busy device %s",
2391 		    device_get_nameunit(dev));
2392 	dev->busy--;
2393 	if (dev->busy == 0) {
2394 		if (dev->parent)
2395 			device_unbusy(dev->parent);
2396 		dev->state = DS_ATTACHED;
2397 	}
2398 }
2399 
2400 /**
2401  * @brief Set the DF_QUIET flag for the device
2402  */
2403 void
2404 device_quiet(device_t dev)
2405 {
2406 	dev->flags |= DF_QUIET;
2407 }
2408 
2409 /**
2410  * @brief Clear the DF_QUIET flag for the device
2411  */
2412 void
2413 device_verbose(device_t dev)
2414 {
2415 	dev->flags &= ~DF_QUIET;
2416 }
2417 
2418 /**
2419  * @brief Return non-zero if the DF_QUIET flag is set on the device
2420  */
2421 int
2422 device_is_quiet(device_t dev)
2423 {
2424 	return ((dev->flags & DF_QUIET) != 0);
2425 }
2426 
2427 /**
2428  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2429  */
2430 int
2431 device_is_enabled(device_t dev)
2432 {
2433 	return ((dev->flags & DF_ENABLED) != 0);
2434 }
2435 
2436 /**
2437  * @brief Return non-zero if the device was successfully probed
2438  */
2439 int
2440 device_is_alive(device_t dev)
2441 {
2442 	return (dev->state >= DS_ALIVE);
2443 }
2444 
2445 /**
2446  * @brief Return non-zero if the device currently has a driver
2447  * attached to it
2448  */
2449 int
2450 device_is_attached(device_t dev)
2451 {
2452 	return (dev->state >= DS_ATTACHED);
2453 }
2454 
2455 /**
2456  * @brief Set the devclass of a device
2457  * @see devclass_add_device().
2458  */
2459 int
2460 device_set_devclass(device_t dev, const char *classname)
2461 {
2462 	devclass_t dc;
2463 	int error;
2464 
2465 	if (!classname) {
2466 		if (dev->devclass)
2467 			devclass_delete_device(dev->devclass, dev);
2468 		return (0);
2469 	}
2470 
2471 	if (dev->devclass) {
2472 		printf("device_set_devclass: device class already set\n");
2473 		return (EINVAL);
2474 	}
2475 
2476 	dc = devclass_find_internal(classname, NULL, TRUE);
2477 	if (!dc)
2478 		return (ENOMEM);
2479 
2480 	error = devclass_add_device(dc, dev);
2481 
2482 	bus_data_generation_update();
2483 	return (error);
2484 }
2485 
2486 /**
2487  * @brief Set the driver of a device
2488  *
2489  * @retval 0		success
2490  * @retval EBUSY	the device already has a driver attached
2491  * @retval ENOMEM	a memory allocation failure occurred
2492  */
2493 int
2494 device_set_driver(device_t dev, driver_t *driver)
2495 {
2496 	if (dev->state >= DS_ATTACHED)
2497 		return (EBUSY);
2498 
2499 	if (dev->driver == driver)
2500 		return (0);
2501 
2502 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2503 		free(dev->softc, M_BUS_SC);
2504 		dev->softc = NULL;
2505 	}
2506 	kobj_delete((kobj_t) dev, NULL);
2507 	dev->driver = driver;
2508 	if (driver) {
2509 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2510 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2511 			dev->softc = malloc(driver->size, M_BUS_SC,
2512 			    M_NOWAIT | M_ZERO);
2513 			if (!dev->softc) {
2514 				kobj_delete((kobj_t) dev, NULL);
2515 				kobj_init((kobj_t) dev, &null_class);
2516 				dev->driver = NULL;
2517 				return (ENOMEM);
2518 			}
2519 		}
2520 	} else {
2521 		kobj_init((kobj_t) dev, &null_class);
2522 	}
2523 
2524 	bus_data_generation_update();
2525 	return (0);
2526 }
2527 
2528 /**
2529  * @brief Probe a device, and return this status.
2530  *
2531  * This function is the core of the device autoconfiguration
2532  * system. Its purpose is to select a suitable driver for a device and
2533  * then call that driver to initialise the hardware appropriately. The
2534  * driver is selected by calling the DEVICE_PROBE() method of a set of
2535  * candidate drivers and then choosing the driver which returned the
2536  * best value. This driver is then attached to the device using
2537  * device_attach().
2538  *
2539  * The set of suitable drivers is taken from the list of drivers in
2540  * the parent device's devclass. If the device was originally created
2541  * with a specific class name (see device_add_child()), only drivers
2542  * with that name are probed, otherwise all drivers in the devclass
2543  * are probed. If no drivers return successful probe values in the
2544  * parent devclass, the search continues in the parent of that
2545  * devclass (see devclass_get_parent()) if any.
2546  *
2547  * @param dev		the device to initialise
2548  *
2549  * @retval 0		success
2550  * @retval ENXIO	no driver was found
2551  * @retval ENOMEM	memory allocation failure
2552  * @retval non-zero	some other unix error code
2553  * @retval -1		Device already attached
2554  */
2555 int
2556 device_probe(device_t dev)
2557 {
2558 	int error;
2559 
2560 	GIANT_REQUIRED;
2561 
2562 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2563 		return (-1);
2564 
2565 	if (!(dev->flags & DF_ENABLED)) {
2566 		if (bootverbose && device_get_name(dev) != NULL) {
2567 			device_print_prettyname(dev);
2568 			printf("not probed (disabled)\n");
2569 		}
2570 		return (-1);
2571 	}
2572 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2573 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2574 		    !(dev->flags & DF_DONENOMATCH)) {
2575 			BUS_PROBE_NOMATCH(dev->parent, dev);
2576 			devnomatch(dev);
2577 			dev->flags |= DF_DONENOMATCH;
2578 		}
2579 		return (error);
2580 	}
2581 	return (0);
2582 }
2583 
2584 /**
2585  * @brief Probe a device and attach a driver if possible
2586  *
2587  * calls device_probe() and attaches if that was successful.
2588  */
2589 int
2590 device_probe_and_attach(device_t dev)
2591 {
2592 	int error;
2593 
2594 	GIANT_REQUIRED;
2595 
2596 	error = device_probe(dev);
2597 	if (error == -1)
2598 		return (0);
2599 	else if (error != 0)
2600 		return (error);
2601 	return (device_attach(dev));
2602 }
2603 
2604 /**
2605  * @brief Attach a device driver to a device
2606  *
2607  * This function is a wrapper around the DEVICE_ATTACH() driver
2608  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2609  * device's sysctl tree, optionally prints a description of the device
2610  * and queues a notification event for user-based device management
2611  * services.
2612  *
2613  * Normally this function is only called internally from
2614  * device_probe_and_attach().
2615  *
2616  * @param dev		the device to initialise
2617  *
2618  * @retval 0		success
2619  * @retval ENXIO	no driver was found
2620  * @retval ENOMEM	memory allocation failure
2621  * @retval non-zero	some other unix error code
2622  */
2623 int
2624 device_attach(device_t dev)
2625 {
2626 	int error;
2627 
2628 	if (dev->state >= DS_ATTACHING)
2629 		return (0);
2630 	device_sysctl_init(dev);
2631 	if (!device_is_quiet(dev))
2632 		device_print_child(dev->parent, dev);
2633 	dev->state = DS_ATTACHING;
2634 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2635 		KASSERT(dev->state == DS_ATTACHING,
2636 		    ("%s: %p device state must not been changing", __func__,
2637 		    dev));
2638 		printf("device_attach: %s%d attach returned %d\n",
2639 		    dev->driver->name, dev->unit, error);
2640 		/* Unset the class; set in device_probe_child */
2641 		if (dev->devclass == NULL)
2642 			device_set_devclass(dev, NULL);
2643 		device_set_driver(dev, NULL);
2644 		device_sysctl_fini(dev);
2645 		dev->state = DS_NOTPRESENT;
2646 		return (error);
2647 	}
2648 	KASSERT(dev->state == DS_ATTACHING,
2649 	    ("%s: %p device state must not been changing", __func__, dev));
2650 	device_sysctl_update(dev);
2651 	dev->state = DS_ATTACHED;
2652 	devadded(dev);
2653 	return (0);
2654 }
2655 
2656 /**
2657  * @brief Detach a driver from a device
2658  *
2659  * This function is a wrapper around the DEVICE_DETACH() driver
2660  * method. If the call to DEVICE_DETACH() succeeds, it calls
2661  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2662  * notification event for user-based device management services and
2663  * cleans up the device's sysctl tree.
2664  *
2665  * @param dev		the device to un-initialise
2666  *
2667  * @retval 0		success
2668  * @retval ENXIO	no driver was found
2669  * @retval ENOMEM	memory allocation failure
2670  * @retval non-zero	some other unix error code
2671  */
2672 int
2673 device_detach(device_t dev)
2674 {
2675 	int error;
2676 
2677 	GIANT_REQUIRED;
2678 
2679 	PDEBUG(("%s", DEVICENAME(dev)));
2680 	if (dev->state == DS_BUSY)
2681 		return (EBUSY);
2682 	if (dev->state != DS_ATTACHED)
2683 		return (0);
2684 
2685 	dev->state = DS_DETACHING;
2686 	if ((error = DEVICE_DETACH(dev)) != 0) {
2687 		KASSERT(dev->state == DS_DETACHING,
2688 		    ("%s: %p device state must not been changing", __func__,
2689 		    dev));
2690 		dev->state = DS_ATTACHED;
2691 		return (error);
2692 	}
2693 	KASSERT(dev->state == DS_DETACHING,
2694 	    ("%s: %p device state must not been changing", __func__, dev));
2695 	devremoved(dev);
2696 	if (!device_is_quiet(dev))
2697 		device_printf(dev, "detached\n");
2698 	if (dev->parent)
2699 		BUS_CHILD_DETACHED(dev->parent, dev);
2700 
2701 	if (!(dev->flags & DF_FIXEDCLASS))
2702 		devclass_delete_device(dev->devclass, dev);
2703 
2704 	dev->state = DS_NOTPRESENT;
2705 	device_set_driver(dev, NULL);
2706 	device_set_desc(dev, NULL);
2707 	device_sysctl_fini(dev);
2708 
2709 	return (0);
2710 }
2711 
2712 /**
2713  * @brief Tells a driver to quiesce itself.
2714  *
2715  * This function is a wrapper around the DEVICE_QUIESCE() driver
2716  * method. If the call to DEVICE_QUIESCE() succeeds.
2717  *
2718  * @param dev		the device to quiesce
2719  *
2720  * @retval 0		success
2721  * @retval ENXIO	no driver was found
2722  * @retval ENOMEM	memory allocation failure
2723  * @retval non-zero	some other unix error code
2724  */
2725 int
2726 device_quiesce(device_t dev)
2727 {
2728 
2729 	PDEBUG(("%s", DEVICENAME(dev)));
2730 	if (dev->state == DS_BUSY)
2731 		return (EBUSY);
2732 	if (dev->state != DS_ATTACHED)
2733 		return (0);
2734 
2735 	return (DEVICE_QUIESCE(dev));
2736 }
2737 
2738 /**
2739  * @brief Notify a device of system shutdown
2740  *
2741  * This function calls the DEVICE_SHUTDOWN() driver method if the
2742  * device currently has an attached driver.
2743  *
2744  * @returns the value returned by DEVICE_SHUTDOWN()
2745  */
2746 int
2747 device_shutdown(device_t dev)
2748 {
2749 	if (dev->state < DS_ATTACHED || dev->state == DS_DETACHING)
2750 		return (0);
2751 	return (DEVICE_SHUTDOWN(dev));
2752 }
2753 
2754 /**
2755  * @brief Set the unit number of a device
2756  *
2757  * This function can be used to override the unit number used for a
2758  * device (e.g. to wire a device to a pre-configured unit number).
2759  */
2760 int
2761 device_set_unit(device_t dev, int unit)
2762 {
2763 	devclass_t dc;
2764 	int err;
2765 
2766 	dc = device_get_devclass(dev);
2767 	if (unit < dc->maxunit && dc->devices[unit])
2768 		return (EBUSY);
2769 	err = devclass_delete_device(dc, dev);
2770 	if (err)
2771 		return (err);
2772 	dev->unit = unit;
2773 	err = devclass_add_device(dc, dev);
2774 	if (err)
2775 		return (err);
2776 
2777 	bus_data_generation_update();
2778 	return (0);
2779 }
2780 
2781 /*======================================*/
2782 /*
2783  * Some useful method implementations to make life easier for bus drivers.
2784  */
2785 
2786 /**
2787  * @brief Initialise a resource list.
2788  *
2789  * @param rl		the resource list to initialise
2790  */
2791 void
2792 resource_list_init(struct resource_list *rl)
2793 {
2794 	STAILQ_INIT(rl);
2795 }
2796 
2797 /**
2798  * @brief Reclaim memory used by a resource list.
2799  *
2800  * This function frees the memory for all resource entries on the list
2801  * (if any).
2802  *
2803  * @param rl		the resource list to free
2804  */
2805 void
2806 resource_list_free(struct resource_list *rl)
2807 {
2808 	struct resource_list_entry *rle;
2809 
2810 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2811 		if (rle->res)
2812 			panic("resource_list_free: resource entry is busy");
2813 		STAILQ_REMOVE_HEAD(rl, link);
2814 		free(rle, M_BUS);
2815 	}
2816 }
2817 
2818 /**
2819  * @brief Add a resource entry.
2820  *
2821  * This function adds a resource entry using the given @p type, @p
2822  * start, @p end and @p count values. A rid value is chosen by
2823  * searching sequentially for the first unused rid starting at zero.
2824  *
2825  * @param rl		the resource list to edit
2826  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2827  * @param start		the start address of the resource
2828  * @param end		the end address of the resource
2829  * @param count		XXX end-start+1
2830  */
2831 int
2832 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2833     u_long end, u_long count)
2834 {
2835 	int rid;
2836 
2837 	rid = 0;
2838 	while (resource_list_find(rl, type, rid) != NULL)
2839 		rid++;
2840 	resource_list_add(rl, type, rid, start, end, count);
2841 	return (rid);
2842 }
2843 
2844 /**
2845  * @brief Add or modify a resource entry.
2846  *
2847  * If an existing entry exists with the same type and rid, it will be
2848  * modified using the given values of @p start, @p end and @p
2849  * count. If no entry exists, a new one will be created using the
2850  * given values.  The resource list entry that matches is then returned.
2851  *
2852  * @param rl		the resource list to edit
2853  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2854  * @param rid		the resource identifier
2855  * @param start		the start address of the resource
2856  * @param end		the end address of the resource
2857  * @param count		XXX end-start+1
2858  */
2859 struct resource_list_entry *
2860 resource_list_add(struct resource_list *rl, int type, int rid,
2861     u_long start, u_long end, u_long count)
2862 {
2863 	struct resource_list_entry *rle;
2864 
2865 	rle = resource_list_find(rl, type, rid);
2866 	if (!rle) {
2867 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2868 		    M_NOWAIT);
2869 		if (!rle)
2870 			panic("resource_list_add: can't record entry");
2871 		STAILQ_INSERT_TAIL(rl, rle, link);
2872 		rle->type = type;
2873 		rle->rid = rid;
2874 		rle->res = NULL;
2875 	}
2876 
2877 	if (rle->res)
2878 		panic("resource_list_add: resource entry is busy");
2879 
2880 	rle->start = start;
2881 	rle->end = end;
2882 	rle->count = count;
2883 	return (rle);
2884 }
2885 
2886 /**
2887  * @brief Find a resource entry by type and rid.
2888  *
2889  * @param rl		the resource list to search
2890  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2891  * @param rid		the resource identifier
2892  *
2893  * @returns the resource entry pointer or NULL if there is no such
2894  * entry.
2895  */
2896 struct resource_list_entry *
2897 resource_list_find(struct resource_list *rl, int type, int rid)
2898 {
2899 	struct resource_list_entry *rle;
2900 
2901 	STAILQ_FOREACH(rle, rl, link) {
2902 		if (rle->type == type && rle->rid == rid)
2903 			return (rle);
2904 	}
2905 	return (NULL);
2906 }
2907 
2908 /**
2909  * @brief Delete a resource entry.
2910  *
2911  * @param rl		the resource list to edit
2912  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2913  * @param rid		the resource identifier
2914  */
2915 void
2916 resource_list_delete(struct resource_list *rl, int type, int rid)
2917 {
2918 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2919 
2920 	if (rle) {
2921 		if (rle->res != NULL)
2922 			panic("resource_list_delete: resource has not been released");
2923 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2924 		free(rle, M_BUS);
2925 	}
2926 }
2927 
2928 /**
2929  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2930  *
2931  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2932  * and passing the allocation up to the parent of @p bus. This assumes
2933  * that the first entry of @c device_get_ivars(child) is a struct
2934  * resource_list. This also handles 'passthrough' allocations where a
2935  * child is a remote descendant of bus by passing the allocation up to
2936  * the parent of bus.
2937  *
2938  * Typically, a bus driver would store a list of child resources
2939  * somewhere in the child device's ivars (see device_get_ivars()) and
2940  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2941  * then call resource_list_alloc() to perform the allocation.
2942  *
2943  * @param rl		the resource list to allocate from
2944  * @param bus		the parent device of @p child
2945  * @param child		the device which is requesting an allocation
2946  * @param type		the type of resource to allocate
2947  * @param rid		a pointer to the resource identifier
2948  * @param start		hint at the start of the resource range - pass
2949  *			@c 0UL for any start address
2950  * @param end		hint at the end of the resource range - pass
2951  *			@c ~0UL for any end address
2952  * @param count		hint at the size of range required - pass @c 1
2953  *			for any size
2954  * @param flags		any extra flags to control the resource
2955  *			allocation - see @c RF_XXX flags in
2956  *			<sys/rman.h> for details
2957  *
2958  * @returns		the resource which was allocated or @c NULL if no
2959  *			resource could be allocated
2960  */
2961 struct resource *
2962 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2963     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2964 {
2965 	struct resource_list_entry *rle = NULL;
2966 	int passthrough = (device_get_parent(child) != bus);
2967 	int isdefault = (start == 0UL && end == ~0UL);
2968 
2969 	if (passthrough) {
2970 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2971 		    type, rid, start, end, count, flags));
2972 	}
2973 
2974 	rle = resource_list_find(rl, type, *rid);
2975 
2976 	if (!rle)
2977 		return (NULL);		/* no resource of that type/rid */
2978 
2979 	if (rle->res)
2980 		panic("resource_list_alloc: resource entry is busy");
2981 
2982 	if (isdefault) {
2983 		start = rle->start;
2984 		count = ulmax(count, rle->count);
2985 		end = ulmax(rle->end, start + count - 1);
2986 	}
2987 
2988 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2989 	    type, rid, start, end, count, flags);
2990 
2991 	/*
2992 	 * Record the new range.
2993 	 */
2994 	if (rle->res) {
2995 		rle->start = rman_get_start(rle->res);
2996 		rle->end = rman_get_end(rle->res);
2997 		rle->count = count;
2998 	}
2999 
3000 	return (rle->res);
3001 }
3002 
3003 /**
3004  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3005  *
3006  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3007  * used with resource_list_alloc().
3008  *
3009  * @param rl		the resource list which was allocated from
3010  * @param bus		the parent device of @p child
3011  * @param child		the device which is requesting a release
3012  * @param type		the type of resource to allocate
3013  * @param rid		the resource identifier
3014  * @param res		the resource to release
3015  *
3016  * @retval 0		success
3017  * @retval non-zero	a standard unix error code indicating what
3018  *			error condition prevented the operation
3019  */
3020 int
3021 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3022     int type, int rid, struct resource *res)
3023 {
3024 	struct resource_list_entry *rle = NULL;
3025 	int passthrough = (device_get_parent(child) != bus);
3026 	int error;
3027 
3028 	if (passthrough) {
3029 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3030 		    type, rid, res));
3031 	}
3032 
3033 	rle = resource_list_find(rl, type, rid);
3034 
3035 	if (!rle)
3036 		panic("resource_list_release: can't find resource");
3037 	if (!rle->res)
3038 		panic("resource_list_release: resource entry is not busy");
3039 
3040 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3041 	    type, rid, res);
3042 	if (error)
3043 		return (error);
3044 
3045 	rle->res = NULL;
3046 	return (0);
3047 }
3048 
3049 /**
3050  * @brief Print a description of resources in a resource list
3051  *
3052  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3053  * The name is printed if at least one resource of the given type is available.
3054  * The format is used to print resource start and end.
3055  *
3056  * @param rl		the resource list to print
3057  * @param name		the name of @p type, e.g. @c "memory"
3058  * @param type		type type of resource entry to print
3059  * @param format	printf(9) format string to print resource
3060  *			start and end values
3061  *
3062  * @returns		the number of characters printed
3063  */
3064 int
3065 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3066     const char *format)
3067 {
3068 	struct resource_list_entry *rle;
3069 	int printed, retval;
3070 
3071 	printed = 0;
3072 	retval = 0;
3073 	/* Yes, this is kinda cheating */
3074 	STAILQ_FOREACH(rle, rl, link) {
3075 		if (rle->type == type) {
3076 			if (printed == 0)
3077 				retval += printf(" %s ", name);
3078 			else
3079 				retval += printf(",");
3080 			printed++;
3081 			retval += printf(format, rle->start);
3082 			if (rle->count > 1) {
3083 				retval += printf("-");
3084 				retval += printf(format, rle->start +
3085 						 rle->count - 1);
3086 			}
3087 		}
3088 	}
3089 	return (retval);
3090 }
3091 
3092 /**
3093  * @brief Releases all the resources in a list.
3094  *
3095  * @param rl		The resource list to purge.
3096  *
3097  * @returns		nothing
3098  */
3099 void
3100 resource_list_purge(struct resource_list *rl)
3101 {
3102 	struct resource_list_entry *rle;
3103 
3104 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3105 		if (rle->res)
3106 			bus_release_resource(rman_get_device(rle->res),
3107 			    rle->type, rle->rid, rle->res);
3108 		STAILQ_REMOVE_HEAD(rl, link);
3109 		free(rle, M_BUS);
3110 	}
3111 }
3112 
3113 device_t
3114 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3115 {
3116 
3117 	return (device_add_child_ordered(dev, order, name, unit));
3118 }
3119 
3120 /**
3121  * @brief Helper function for implementing DEVICE_PROBE()
3122  *
3123  * This function can be used to help implement the DEVICE_PROBE() for
3124  * a bus (i.e. a device which has other devices attached to it). It
3125  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3126  * devclass.
3127  */
3128 int
3129 bus_generic_probe(device_t dev)
3130 {
3131 	devclass_t dc = dev->devclass;
3132 	driverlink_t dl;
3133 
3134 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3135 		/*
3136 		 * If this driver's pass is too high, then ignore it.
3137 		 * For most drivers in the default pass, this will
3138 		 * never be true.  For early-pass drivers they will
3139 		 * only call the identify routines of eligible drivers
3140 		 * when this routine is called.  Drivers for later
3141 		 * passes should have their identify routines called
3142 		 * on early-pass busses during BUS_NEW_PASS().
3143 		 */
3144 		if (dl->pass > bus_current_pass)
3145 				continue;
3146 		DEVICE_IDENTIFY(dl->driver, dev);
3147 	}
3148 
3149 	return (0);
3150 }
3151 
3152 /**
3153  * @brief Helper function for implementing DEVICE_ATTACH()
3154  *
3155  * This function can be used to help implement the DEVICE_ATTACH() for
3156  * a bus. It calls device_probe_and_attach() for each of the device's
3157  * children.
3158  */
3159 int
3160 bus_generic_attach(device_t dev)
3161 {
3162 	device_t child;
3163 
3164 	TAILQ_FOREACH(child, &dev->children, link) {
3165 		device_probe_and_attach(child);
3166 	}
3167 
3168 	return (0);
3169 }
3170 
3171 /**
3172  * @brief Helper function for implementing DEVICE_DETACH()
3173  *
3174  * This function can be used to help implement the DEVICE_DETACH() for
3175  * a bus. It calls device_detach() for each of the device's
3176  * children.
3177  */
3178 int
3179 bus_generic_detach(device_t dev)
3180 {
3181 	device_t child;
3182 	int error;
3183 
3184 	if (dev->state != DS_ATTACHED)
3185 		return (EBUSY);
3186 
3187 	TAILQ_FOREACH(child, &dev->children, link) {
3188 		if ((error = device_detach(child)) != 0)
3189 			return (error);
3190 	}
3191 
3192 	return (0);
3193 }
3194 
3195 /**
3196  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3197  *
3198  * This function can be used to help implement the DEVICE_SHUTDOWN()
3199  * for a bus. It calls device_shutdown() for each of the device's
3200  * children.
3201  */
3202 int
3203 bus_generic_shutdown(device_t dev)
3204 {
3205 	device_t child;
3206 
3207 	TAILQ_FOREACH(child, &dev->children, link) {
3208 		device_shutdown(child);
3209 	}
3210 
3211 	return (0);
3212 }
3213 
3214 /**
3215  * @brief Helper function for implementing DEVICE_SUSPEND()
3216  *
3217  * This function can be used to help implement the DEVICE_SUSPEND()
3218  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3219  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3220  * operation is aborted and any devices which were suspended are
3221  * resumed immediately by calling their DEVICE_RESUME() methods.
3222  */
3223 int
3224 bus_generic_suspend(device_t dev)
3225 {
3226 	int		error;
3227 	device_t	child, child2;
3228 
3229 	TAILQ_FOREACH(child, &dev->children, link) {
3230 		error = DEVICE_SUSPEND(child);
3231 		if (error) {
3232 			for (child2 = TAILQ_FIRST(&dev->children);
3233 			     child2 && child2 != child;
3234 			     child2 = TAILQ_NEXT(child2, link))
3235 				DEVICE_RESUME(child2);
3236 			return (error);
3237 		}
3238 	}
3239 	return (0);
3240 }
3241 
3242 /**
3243  * @brief Helper function for implementing DEVICE_RESUME()
3244  *
3245  * This function can be used to help implement the DEVICE_RESUME() for
3246  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3247  */
3248 int
3249 bus_generic_resume(device_t dev)
3250 {
3251 	device_t	child;
3252 
3253 	TAILQ_FOREACH(child, &dev->children, link) {
3254 		DEVICE_RESUME(child);
3255 		/* if resume fails, there's nothing we can usefully do... */
3256 	}
3257 	return (0);
3258 }
3259 
3260 /**
3261  * @brief Helper function for implementing BUS_PRINT_CHILD().
3262  *
3263  * This function prints the first part of the ascii representation of
3264  * @p child, including its name, unit and description (if any - see
3265  * device_set_desc()).
3266  *
3267  * @returns the number of characters printed
3268  */
3269 int
3270 bus_print_child_header(device_t dev, device_t child)
3271 {
3272 	int	retval = 0;
3273 
3274 	if (device_get_desc(child)) {
3275 		retval += device_printf(child, "<%s>", device_get_desc(child));
3276 	} else {
3277 		retval += printf("%s", device_get_nameunit(child));
3278 	}
3279 
3280 	return (retval);
3281 }
3282 
3283 /**
3284  * @brief Helper function for implementing BUS_PRINT_CHILD().
3285  *
3286  * This function prints the last part of the ascii representation of
3287  * @p child, which consists of the string @c " on " followed by the
3288  * name and unit of the @p dev.
3289  *
3290  * @returns the number of characters printed
3291  */
3292 int
3293 bus_print_child_footer(device_t dev, device_t child)
3294 {
3295 	return (printf(" on %s\n", device_get_nameunit(dev)));
3296 }
3297 
3298 /**
3299  * @brief Helper function for implementing BUS_PRINT_CHILD().
3300  *
3301  * This function simply calls bus_print_child_header() followed by
3302  * bus_print_child_footer().
3303  *
3304  * @returns the number of characters printed
3305  */
3306 int
3307 bus_generic_print_child(device_t dev, device_t child)
3308 {
3309 	int	retval = 0;
3310 
3311 	retval += bus_print_child_header(dev, child);
3312 	retval += bus_print_child_footer(dev, child);
3313 
3314 	return (retval);
3315 }
3316 
3317 /**
3318  * @brief Stub function for implementing BUS_READ_IVAR().
3319  *
3320  * @returns ENOENT
3321  */
3322 int
3323 bus_generic_read_ivar(device_t dev, device_t child, int index,
3324     uintptr_t * result)
3325 {
3326 	return (ENOENT);
3327 }
3328 
3329 /**
3330  * @brief Stub function for implementing BUS_WRITE_IVAR().
3331  *
3332  * @returns ENOENT
3333  */
3334 int
3335 bus_generic_write_ivar(device_t dev, device_t child, int index,
3336     uintptr_t value)
3337 {
3338 	return (ENOENT);
3339 }
3340 
3341 /**
3342  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3343  *
3344  * @returns NULL
3345  */
3346 struct resource_list *
3347 bus_generic_get_resource_list(device_t dev, device_t child)
3348 {
3349 	return (NULL);
3350 }
3351 
3352 /**
3353  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3354  *
3355  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3356  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3357  * and then calls device_probe_and_attach() for each unattached child.
3358  */
3359 void
3360 bus_generic_driver_added(device_t dev, driver_t *driver)
3361 {
3362 	device_t child;
3363 
3364 	DEVICE_IDENTIFY(driver, dev);
3365 	TAILQ_FOREACH(child, &dev->children, link) {
3366 		if (child->state == DS_NOTPRESENT ||
3367 		    (child->flags & DF_REBID))
3368 			device_probe_and_attach(child);
3369 	}
3370 }
3371 
3372 /**
3373  * @brief Helper function for implementing BUS_NEW_PASS().
3374  *
3375  * This implementing of BUS_NEW_PASS() first calls the identify
3376  * routines for any drivers that probe at the current pass.  Then it
3377  * walks the list of devices for this bus.  If a device is already
3378  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3379  * device is not already attached, it attempts to attach a driver to
3380  * it.
3381  */
3382 void
3383 bus_generic_new_pass(device_t dev)
3384 {
3385 	driverlink_t dl;
3386 	devclass_t dc;
3387 	device_t child;
3388 
3389 	dc = dev->devclass;
3390 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3391 		if (dl->pass == bus_current_pass)
3392 			DEVICE_IDENTIFY(dl->driver, dev);
3393 	}
3394 	TAILQ_FOREACH(child, &dev->children, link) {
3395 		if (child->state >= DS_ATTACHED)
3396 			BUS_NEW_PASS(child);
3397 		else if (child->state == DS_NOTPRESENT)
3398 			device_probe_and_attach(child);
3399 	}
3400 }
3401 
3402 /**
3403  * @brief Helper function for implementing BUS_SETUP_INTR().
3404  *
3405  * This simple implementation of BUS_SETUP_INTR() simply calls the
3406  * BUS_SETUP_INTR() method of the parent of @p dev.
3407  */
3408 int
3409 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3410     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3411     void **cookiep)
3412 {
3413 	/* Propagate up the bus hierarchy until someone handles it. */
3414 	if (dev->parent)
3415 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3416 		    filter, intr, arg, cookiep));
3417 	return (EINVAL);
3418 }
3419 
3420 /**
3421  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3422  *
3423  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3424  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3425  */
3426 int
3427 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3428     void *cookie)
3429 {
3430 	/* Propagate up the bus hierarchy until someone handles it. */
3431 	if (dev->parent)
3432 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3433 	return (EINVAL);
3434 }
3435 
3436 /**
3437  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3438  *
3439  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3440  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3441  */
3442 struct resource *
3443 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3444     u_long start, u_long end, u_long count, u_int flags)
3445 {
3446 	/* Propagate up the bus hierarchy until someone handles it. */
3447 	if (dev->parent)
3448 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3449 		    start, end, count, flags));
3450 	return (NULL);
3451 }
3452 
3453 /**
3454  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3455  *
3456  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3457  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3458  */
3459 int
3460 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3461     struct resource *r)
3462 {
3463 	/* Propagate up the bus hierarchy until someone handles it. */
3464 	if (dev->parent)
3465 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3466 		    r));
3467 	return (EINVAL);
3468 }
3469 
3470 /**
3471  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3472  *
3473  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3474  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3475  */
3476 int
3477 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3478     struct resource *r)
3479 {
3480 	/* Propagate up the bus hierarchy until someone handles it. */
3481 	if (dev->parent)
3482 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3483 		    r));
3484 	return (EINVAL);
3485 }
3486 
3487 /**
3488  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3489  *
3490  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3491  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3492  */
3493 int
3494 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3495     int rid, struct resource *r)
3496 {
3497 	/* Propagate up the bus hierarchy until someone handles it. */
3498 	if (dev->parent)
3499 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3500 		    r));
3501 	return (EINVAL);
3502 }
3503 
3504 /**
3505  * @brief Helper function for implementing BUS_BIND_INTR().
3506  *
3507  * This simple implementation of BUS_BIND_INTR() simply calls the
3508  * BUS_BIND_INTR() method of the parent of @p dev.
3509  */
3510 int
3511 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3512     int cpu)
3513 {
3514 
3515 	/* Propagate up the bus hierarchy until someone handles it. */
3516 	if (dev->parent)
3517 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3518 	return (EINVAL);
3519 }
3520 
3521 /**
3522  * @brief Helper function for implementing BUS_CONFIG_INTR().
3523  *
3524  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3525  * BUS_CONFIG_INTR() method of the parent of @p dev.
3526  */
3527 int
3528 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3529     enum intr_polarity pol)
3530 {
3531 
3532 	/* Propagate up the bus hierarchy until someone handles it. */
3533 	if (dev->parent)
3534 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3535 	return (EINVAL);
3536 }
3537 
3538 /**
3539  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3540  *
3541  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3542  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3543  */
3544 bus_dma_tag_t
3545 bus_generic_get_dma_tag(device_t dev, device_t child)
3546 {
3547 
3548 	/* Propagate up the bus hierarchy until someone handles it. */
3549 	if (dev->parent != NULL)
3550 		return (BUS_GET_DMA_TAG(dev->parent, child));
3551 	return (NULL);
3552 }
3553 
3554 /**
3555  * @brief Helper function for implementing BUS_GET_RESOURCE().
3556  *
3557  * This implementation of BUS_GET_RESOURCE() uses the
3558  * resource_list_find() function to do most of the work. It calls
3559  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3560  * search.
3561  */
3562 int
3563 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3564     u_long *startp, u_long *countp)
3565 {
3566 	struct resource_list *		rl = NULL;
3567 	struct resource_list_entry *	rle = NULL;
3568 
3569 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3570 	if (!rl)
3571 		return (EINVAL);
3572 
3573 	rle = resource_list_find(rl, type, rid);
3574 	if (!rle)
3575 		return (ENOENT);
3576 
3577 	if (startp)
3578 		*startp = rle->start;
3579 	if (countp)
3580 		*countp = rle->count;
3581 
3582 	return (0);
3583 }
3584 
3585 /**
3586  * @brief Helper function for implementing BUS_SET_RESOURCE().
3587  *
3588  * This implementation of BUS_SET_RESOURCE() uses the
3589  * resource_list_add() function to do most of the work. It calls
3590  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3591  * edit.
3592  */
3593 int
3594 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3595     u_long start, u_long count)
3596 {
3597 	struct resource_list *		rl = NULL;
3598 
3599 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3600 	if (!rl)
3601 		return (EINVAL);
3602 
3603 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3604 
3605 	return (0);
3606 }
3607 
3608 /**
3609  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3610  *
3611  * This implementation of BUS_DELETE_RESOURCE() uses the
3612  * resource_list_delete() function to do most of the work. It calls
3613  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3614  * edit.
3615  */
3616 void
3617 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3618 {
3619 	struct resource_list *		rl = NULL;
3620 
3621 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3622 	if (!rl)
3623 		return;
3624 
3625 	resource_list_delete(rl, type, rid);
3626 
3627 	return;
3628 }
3629 
3630 /**
3631  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3632  *
3633  * This implementation of BUS_RELEASE_RESOURCE() uses the
3634  * resource_list_release() function to do most of the work. It calls
3635  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3636  */
3637 int
3638 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3639     int rid, struct resource *r)
3640 {
3641 	struct resource_list *		rl = NULL;
3642 
3643 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3644 	if (!rl)
3645 		return (EINVAL);
3646 
3647 	return (resource_list_release(rl, dev, child, type, rid, r));
3648 }
3649 
3650 /**
3651  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3652  *
3653  * This implementation of BUS_ALLOC_RESOURCE() uses the
3654  * resource_list_alloc() function to do most of the work. It calls
3655  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3656  */
3657 struct resource *
3658 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3659     int *rid, u_long start, u_long end, u_long count, u_int flags)
3660 {
3661 	struct resource_list *		rl = NULL;
3662 
3663 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3664 	if (!rl)
3665 		return (NULL);
3666 
3667 	return (resource_list_alloc(rl, dev, child, type, rid,
3668 	    start, end, count, flags));
3669 }
3670 
3671 /**
3672  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3673  *
3674  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3675  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3676  */
3677 int
3678 bus_generic_child_present(device_t dev, device_t child)
3679 {
3680 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3681 }
3682 
3683 /*
3684  * Some convenience functions to make it easier for drivers to use the
3685  * resource-management functions.  All these really do is hide the
3686  * indirection through the parent's method table, making for slightly
3687  * less-wordy code.  In the future, it might make sense for this code
3688  * to maintain some sort of a list of resources allocated by each device.
3689  */
3690 
3691 int
3692 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3693     struct resource **res)
3694 {
3695 	int i;
3696 
3697 	for (i = 0; rs[i].type != -1; i++)
3698 		res[i] = NULL;
3699 	for (i = 0; rs[i].type != -1; i++) {
3700 		res[i] = bus_alloc_resource_any(dev,
3701 		    rs[i].type, &rs[i].rid, rs[i].flags);
3702 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3703 			bus_release_resources(dev, rs, res);
3704 			return (ENXIO);
3705 		}
3706 	}
3707 	return (0);
3708 }
3709 
3710 void
3711 bus_release_resources(device_t dev, const struct resource_spec *rs,
3712     struct resource **res)
3713 {
3714 	int i;
3715 
3716 	for (i = 0; rs[i].type != -1; i++)
3717 		if (res[i] != NULL) {
3718 			bus_release_resource(
3719 			    dev, rs[i].type, rs[i].rid, res[i]);
3720 			res[i] = NULL;
3721 		}
3722 }
3723 
3724 /**
3725  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3726  *
3727  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3728  * parent of @p dev.
3729  */
3730 struct resource *
3731 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3732     u_long count, u_int flags)
3733 {
3734 	if (dev->parent == NULL)
3735 		return (NULL);
3736 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3737 	    count, flags));
3738 }
3739 
3740 /**
3741  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3742  *
3743  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3744  * parent of @p dev.
3745  */
3746 int
3747 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3748 {
3749 	if (dev->parent == NULL)
3750 		return (EINVAL);
3751 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3752 }
3753 
3754 /**
3755  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3756  *
3757  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3758  * parent of @p dev.
3759  */
3760 int
3761 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3762 {
3763 	if (dev->parent == NULL)
3764 		return (EINVAL);
3765 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3766 }
3767 
3768 /**
3769  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3770  *
3771  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3772  * parent of @p dev.
3773  */
3774 int
3775 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3776 {
3777 	if (dev->parent == NULL)
3778 		return (EINVAL);
3779 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3780 }
3781 
3782 /**
3783  * @brief Wrapper function for BUS_SETUP_INTR().
3784  *
3785  * This function simply calls the BUS_SETUP_INTR() method of the
3786  * parent of @p dev.
3787  */
3788 int
3789 bus_setup_intr(device_t dev, struct resource *r, int flags,
3790     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3791 {
3792 	int error;
3793 
3794 	if (dev->parent == NULL)
3795 		return (EINVAL);
3796 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3797 	    arg, cookiep);
3798 	if (error != 0)
3799 		return (error);
3800 	if (handler != NULL && !(flags & INTR_MPSAFE))
3801 		device_printf(dev, "[GIANT-LOCKED]\n");
3802 	if (bootverbose && (flags & INTR_MPSAFE))
3803 		device_printf(dev, "[MPSAFE]\n");
3804 	if (filter != NULL) {
3805 		if (handler == NULL)
3806 			device_printf(dev, "[FILTER]\n");
3807 		else
3808 			device_printf(dev, "[FILTER+ITHREAD]\n");
3809 	} else
3810 		device_printf(dev, "[ITHREAD]\n");
3811 	return (0);
3812 }
3813 
3814 /**
3815  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3816  *
3817  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3818  * parent of @p dev.
3819  */
3820 int
3821 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3822 {
3823 	if (dev->parent == NULL)
3824 		return (EINVAL);
3825 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3826 }
3827 
3828 /**
3829  * @brief Wrapper function for BUS_BIND_INTR().
3830  *
3831  * This function simply calls the BUS_BIND_INTR() method of the
3832  * parent of @p dev.
3833  */
3834 int
3835 bus_bind_intr(device_t dev, struct resource *r, int cpu)
3836 {
3837 	if (dev->parent == NULL)
3838 		return (EINVAL);
3839 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
3840 }
3841 
3842 /**
3843  * @brief Wrapper function for BUS_SET_RESOURCE().
3844  *
3845  * This function simply calls the BUS_SET_RESOURCE() method of the
3846  * parent of @p dev.
3847  */
3848 int
3849 bus_set_resource(device_t dev, int type, int rid,
3850     u_long start, u_long count)
3851 {
3852 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3853 	    start, count));
3854 }
3855 
3856 /**
3857  * @brief Wrapper function for BUS_GET_RESOURCE().
3858  *
3859  * This function simply calls the BUS_GET_RESOURCE() method of the
3860  * parent of @p dev.
3861  */
3862 int
3863 bus_get_resource(device_t dev, int type, int rid,
3864     u_long *startp, u_long *countp)
3865 {
3866 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3867 	    startp, countp));
3868 }
3869 
3870 /**
3871  * @brief Wrapper function for BUS_GET_RESOURCE().
3872  *
3873  * This function simply calls the BUS_GET_RESOURCE() method of the
3874  * parent of @p dev and returns the start value.
3875  */
3876 u_long
3877 bus_get_resource_start(device_t dev, int type, int rid)
3878 {
3879 	u_long start, count;
3880 	int error;
3881 
3882 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3883 	    &start, &count);
3884 	if (error)
3885 		return (0);
3886 	return (start);
3887 }
3888 
3889 /**
3890  * @brief Wrapper function for BUS_GET_RESOURCE().
3891  *
3892  * This function simply calls the BUS_GET_RESOURCE() method of the
3893  * parent of @p dev and returns the count value.
3894  */
3895 u_long
3896 bus_get_resource_count(device_t dev, int type, int rid)
3897 {
3898 	u_long start, count;
3899 	int error;
3900 
3901 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3902 	    &start, &count);
3903 	if (error)
3904 		return (0);
3905 	return (count);
3906 }
3907 
3908 /**
3909  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3910  *
3911  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3912  * parent of @p dev.
3913  */
3914 void
3915 bus_delete_resource(device_t dev, int type, int rid)
3916 {
3917 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3918 }
3919 
3920 /**
3921  * @brief Wrapper function for BUS_CHILD_PRESENT().
3922  *
3923  * This function simply calls the BUS_CHILD_PRESENT() method of the
3924  * parent of @p dev.
3925  */
3926 int
3927 bus_child_present(device_t child)
3928 {
3929 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3930 }
3931 
3932 /**
3933  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3934  *
3935  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3936  * parent of @p dev.
3937  */
3938 int
3939 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3940 {
3941 	device_t parent;
3942 
3943 	parent = device_get_parent(child);
3944 	if (parent == NULL) {
3945 		*buf = '\0';
3946 		return (0);
3947 	}
3948 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3949 }
3950 
3951 /**
3952  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3953  *
3954  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3955  * parent of @p dev.
3956  */
3957 int
3958 bus_child_location_str(device_t child, char *buf, size_t buflen)
3959 {
3960 	device_t parent;
3961 
3962 	parent = device_get_parent(child);
3963 	if (parent == NULL) {
3964 		*buf = '\0';
3965 		return (0);
3966 	}
3967 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3968 }
3969 
3970 /**
3971  * @brief Wrapper function for BUS_GET_DMA_TAG().
3972  *
3973  * This function simply calls the BUS_GET_DMA_TAG() method of the
3974  * parent of @p dev.
3975  */
3976 bus_dma_tag_t
3977 bus_get_dma_tag(device_t dev)
3978 {
3979 	device_t parent;
3980 
3981 	parent = device_get_parent(dev);
3982 	if (parent == NULL)
3983 		return (NULL);
3984 	return (BUS_GET_DMA_TAG(parent, dev));
3985 }
3986 
3987 /* Resume all devices and then notify userland that we're up again. */
3988 static int
3989 root_resume(device_t dev)
3990 {
3991 	int error;
3992 
3993 	error = bus_generic_resume(dev);
3994 	if (error == 0)
3995 		devctl_notify("kern", "power", "resume", NULL);
3996 	return (error);
3997 }
3998 
3999 static int
4000 root_print_child(device_t dev, device_t child)
4001 {
4002 	int	retval = 0;
4003 
4004 	retval += bus_print_child_header(dev, child);
4005 	retval += printf("\n");
4006 
4007 	return (retval);
4008 }
4009 
4010 static int
4011 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4012     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4013 {
4014 	/*
4015 	 * If an interrupt mapping gets to here something bad has happened.
4016 	 */
4017 	panic("root_setup_intr");
4018 }
4019 
4020 /*
4021  * If we get here, assume that the device is permanant and really is
4022  * present in the system.  Removable bus drivers are expected to intercept
4023  * this call long before it gets here.  We return -1 so that drivers that
4024  * really care can check vs -1 or some ERRNO returned higher in the food
4025  * chain.
4026  */
4027 static int
4028 root_child_present(device_t dev, device_t child)
4029 {
4030 	return (-1);
4031 }
4032 
4033 static kobj_method_t root_methods[] = {
4034 	/* Device interface */
4035 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4036 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4037 	KOBJMETHOD(device_resume,	root_resume),
4038 
4039 	/* Bus interface */
4040 	KOBJMETHOD(bus_print_child,	root_print_child),
4041 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4042 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4043 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4044 	KOBJMETHOD(bus_child_present,	root_child_present),
4045 
4046 	KOBJMETHOD_END
4047 };
4048 
4049 static driver_t root_driver = {
4050 	"root",
4051 	root_methods,
4052 	1,			/* no softc */
4053 };
4054 
4055 device_t	root_bus;
4056 devclass_t	root_devclass;
4057 
4058 static int
4059 root_bus_module_handler(module_t mod, int what, void* arg)
4060 {
4061 	switch (what) {
4062 	case MOD_LOAD:
4063 		TAILQ_INIT(&bus_data_devices);
4064 		kobj_class_compile((kobj_class_t) &root_driver);
4065 		root_bus = make_device(NULL, "root", 0);
4066 		root_bus->desc = "System root bus";
4067 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4068 		root_bus->driver = &root_driver;
4069 		root_bus->state = DS_ATTACHED;
4070 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4071 		devinit();
4072 		return (0);
4073 
4074 	case MOD_SHUTDOWN:
4075 		device_shutdown(root_bus);
4076 		return (0);
4077 	default:
4078 		return (EOPNOTSUPP);
4079 	}
4080 
4081 	return (0);
4082 }
4083 
4084 static moduledata_t root_bus_mod = {
4085 	"rootbus",
4086 	root_bus_module_handler,
4087 	NULL
4088 };
4089 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4090 
4091 /**
4092  * @brief Automatically configure devices
4093  *
4094  * This function begins the autoconfiguration process by calling
4095  * device_probe_and_attach() for each child of the @c root0 device.
4096  */
4097 void
4098 root_bus_configure(void)
4099 {
4100 
4101 	PDEBUG(("."));
4102 
4103 	/* Eventually this will be split up, but this is sufficient for now. */
4104 	bus_set_pass(BUS_PASS_DEFAULT);
4105 }
4106 
4107 /**
4108  * @brief Module handler for registering device drivers
4109  *
4110  * This module handler is used to automatically register device
4111  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4112  * devclass_add_driver() for the driver described by the
4113  * driver_module_data structure pointed to by @p arg
4114  */
4115 int
4116 driver_module_handler(module_t mod, int what, void *arg)
4117 {
4118 	struct driver_module_data *dmd;
4119 	devclass_t bus_devclass;
4120 	kobj_class_t driver;
4121 	int error, pass;
4122 
4123 	dmd = (struct driver_module_data *)arg;
4124 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4125 	error = 0;
4126 
4127 	switch (what) {
4128 	case MOD_LOAD:
4129 		if (dmd->dmd_chainevh)
4130 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4131 
4132 		pass = dmd->dmd_pass;
4133 		driver = dmd->dmd_driver;
4134 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4135 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4136 		error = devclass_add_driver(bus_devclass, driver, pass);
4137 		if (error)
4138 			break;
4139 
4140 		/*
4141 		 * If the driver has any base classes, make the
4142 		 * devclass inherit from the devclass of the driver's
4143 		 * first base class. This will allow the system to
4144 		 * search for drivers in both devclasses for children
4145 		 * of a device using this driver.
4146 		 */
4147 		if (driver->baseclasses) {
4148 			const char *parentname;
4149 			parentname = driver->baseclasses[0]->name;
4150 			*dmd->dmd_devclass =
4151 				devclass_find_internal(driver->name,
4152 				    parentname, TRUE);
4153 		} else {
4154 			*dmd->dmd_devclass =
4155 				devclass_find_internal(driver->name, NULL, TRUE);
4156 		}
4157 		break;
4158 
4159 	case MOD_UNLOAD:
4160 		PDEBUG(("Unloading module: driver %s from bus %s",
4161 		    DRIVERNAME(dmd->dmd_driver),
4162 		    dmd->dmd_busname));
4163 		error = devclass_delete_driver(bus_devclass,
4164 		    dmd->dmd_driver);
4165 
4166 		if (!error && dmd->dmd_chainevh)
4167 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4168 		break;
4169 	case MOD_QUIESCE:
4170 		PDEBUG(("Quiesce module: driver %s from bus %s",
4171 		    DRIVERNAME(dmd->dmd_driver),
4172 		    dmd->dmd_busname));
4173 		error = devclass_quiesce_driver(bus_devclass,
4174 		    dmd->dmd_driver);
4175 
4176 		if (!error && dmd->dmd_chainevh)
4177 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4178 		break;
4179 	default:
4180 		error = EOPNOTSUPP;
4181 		break;
4182 	}
4183 
4184 	return (error);
4185 }
4186 
4187 /**
4188  * @brief Enumerate all hinted devices for this bus.
4189  *
4190  * Walks through the hints for this bus and calls the bus_hinted_child
4191  * routine for each one it fines.  It searches first for the specific
4192  * bus that's being probed for hinted children (eg isa0), and then for
4193  * generic children (eg isa).
4194  *
4195  * @param	dev	bus device to enumerate
4196  */
4197 void
4198 bus_enumerate_hinted_children(device_t bus)
4199 {
4200 	int i;
4201 	const char *dname, *busname;
4202 	int dunit;
4203 
4204 	/*
4205 	 * enumerate all devices on the specific bus
4206 	 */
4207 	busname = device_get_nameunit(bus);
4208 	i = 0;
4209 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4210 		BUS_HINTED_CHILD(bus, dname, dunit);
4211 
4212 	/*
4213 	 * and all the generic ones.
4214 	 */
4215 	busname = device_get_name(bus);
4216 	i = 0;
4217 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4218 		BUS_HINTED_CHILD(bus, dname, dunit);
4219 }
4220 
4221 #ifdef BUS_DEBUG
4222 
4223 /* the _short versions avoid iteration by not calling anything that prints
4224  * more than oneliners. I love oneliners.
4225  */
4226 
4227 static void
4228 print_device_short(device_t dev, int indent)
4229 {
4230 	if (!dev)
4231 		return;
4232 
4233 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4234 	    dev->unit, dev->desc,
4235 	    (dev->parent? "":"no "),
4236 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4237 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4238 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4239 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4240 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4241 	    (dev->flags&DF_REBID? "rebiddable,":""),
4242 	    (dev->ivars? "":"no "),
4243 	    (dev->softc? "":"no "),
4244 	    dev->busy));
4245 }
4246 
4247 static void
4248 print_device(device_t dev, int indent)
4249 {
4250 	if (!dev)
4251 		return;
4252 
4253 	print_device_short(dev, indent);
4254 
4255 	indentprintf(("Parent:\n"));
4256 	print_device_short(dev->parent, indent+1);
4257 	indentprintf(("Driver:\n"));
4258 	print_driver_short(dev->driver, indent+1);
4259 	indentprintf(("Devclass:\n"));
4260 	print_devclass_short(dev->devclass, indent+1);
4261 }
4262 
4263 void
4264 print_device_tree_short(device_t dev, int indent)
4265 /* print the device and all its children (indented) */
4266 {
4267 	device_t child;
4268 
4269 	if (!dev)
4270 		return;
4271 
4272 	print_device_short(dev, indent);
4273 
4274 	TAILQ_FOREACH(child, &dev->children, link) {
4275 		print_device_tree_short(child, indent+1);
4276 	}
4277 }
4278 
4279 void
4280 print_device_tree(device_t dev, int indent)
4281 /* print the device and all its children (indented) */
4282 {
4283 	device_t child;
4284 
4285 	if (!dev)
4286 		return;
4287 
4288 	print_device(dev, indent);
4289 
4290 	TAILQ_FOREACH(child, &dev->children, link) {
4291 		print_device_tree(child, indent+1);
4292 	}
4293 }
4294 
4295 static void
4296 print_driver_short(driver_t *driver, int indent)
4297 {
4298 	if (!driver)
4299 		return;
4300 
4301 	indentprintf(("driver %s: softc size = %zd\n",
4302 	    driver->name, driver->size));
4303 }
4304 
4305 static void
4306 print_driver(driver_t *driver, int indent)
4307 {
4308 	if (!driver)
4309 		return;
4310 
4311 	print_driver_short(driver, indent);
4312 }
4313 
4314 
4315 static void
4316 print_driver_list(driver_list_t drivers, int indent)
4317 {
4318 	driverlink_t driver;
4319 
4320 	TAILQ_FOREACH(driver, &drivers, link) {
4321 		print_driver(driver->driver, indent);
4322 	}
4323 }
4324 
4325 static void
4326 print_devclass_short(devclass_t dc, int indent)
4327 {
4328 	if ( !dc )
4329 		return;
4330 
4331 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4332 }
4333 
4334 static void
4335 print_devclass(devclass_t dc, int indent)
4336 {
4337 	int i;
4338 
4339 	if ( !dc )
4340 		return;
4341 
4342 	print_devclass_short(dc, indent);
4343 	indentprintf(("Drivers:\n"));
4344 	print_driver_list(dc->drivers, indent+1);
4345 
4346 	indentprintf(("Devices:\n"));
4347 	for (i = 0; i < dc->maxunit; i++)
4348 		if (dc->devices[i])
4349 			print_device(dc->devices[i], indent+1);
4350 }
4351 
4352 void
4353 print_devclass_list_short(void)
4354 {
4355 	devclass_t dc;
4356 
4357 	printf("Short listing of devclasses, drivers & devices:\n");
4358 	TAILQ_FOREACH(dc, &devclasses, link) {
4359 		print_devclass_short(dc, 0);
4360 	}
4361 }
4362 
4363 void
4364 print_devclass_list(void)
4365 {
4366 	devclass_t dc;
4367 
4368 	printf("Full listing of devclasses, drivers & devices:\n");
4369 	TAILQ_FOREACH(dc, &devclasses, link) {
4370 		print_devclass(dc, 0);
4371 	}
4372 }
4373 
4374 #endif
4375 
4376 /*
4377  * User-space access to the device tree.
4378  *
4379  * We implement a small set of nodes:
4380  *
4381  * hw.bus			Single integer read method to obtain the
4382  *				current generation count.
4383  * hw.bus.devices		Reads the entire device tree in flat space.
4384  * hw.bus.rman			Resource manager interface
4385  *
4386  * We might like to add the ability to scan devclasses and/or drivers to
4387  * determine what else is currently loaded/available.
4388  */
4389 
4390 static int
4391 sysctl_bus(SYSCTL_HANDLER_ARGS)
4392 {
4393 	struct u_businfo	ubus;
4394 
4395 	ubus.ub_version = BUS_USER_VERSION;
4396 	ubus.ub_generation = bus_data_generation;
4397 
4398 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4399 }
4400 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4401     "bus-related data");
4402 
4403 static int
4404 sysctl_devices(SYSCTL_HANDLER_ARGS)
4405 {
4406 	int			*name = (int *)arg1;
4407 	u_int			namelen = arg2;
4408 	int			index;
4409 	struct device		*dev;
4410 	struct u_device		udev;	/* XXX this is a bit big */
4411 	int			error;
4412 
4413 	if (namelen != 2)
4414 		return (EINVAL);
4415 
4416 	if (bus_data_generation_check(name[0]))
4417 		return (EINVAL);
4418 
4419 	index = name[1];
4420 
4421 	/*
4422 	 * Scan the list of devices, looking for the requested index.
4423 	 */
4424 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4425 		if (index-- == 0)
4426 			break;
4427 	}
4428 	if (dev == NULL)
4429 		return (ENOENT);
4430 
4431 	/*
4432 	 * Populate the return array.
4433 	 */
4434 	bzero(&udev, sizeof(udev));
4435 	udev.dv_handle = (uintptr_t)dev;
4436 	udev.dv_parent = (uintptr_t)dev->parent;
4437 	if (dev->nameunit != NULL)
4438 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4439 	if (dev->desc != NULL)
4440 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4441 	if (dev->driver != NULL && dev->driver->name != NULL)
4442 		strlcpy(udev.dv_drivername, dev->driver->name,
4443 		    sizeof(udev.dv_drivername));
4444 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4445 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4446 	udev.dv_devflags = dev->devflags;
4447 	udev.dv_flags = dev->flags;
4448 	udev.dv_state = dev->state;
4449 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4450 	return (error);
4451 }
4452 
4453 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4454     "system device tree");
4455 
4456 int
4457 bus_data_generation_check(int generation)
4458 {
4459 	if (generation != bus_data_generation)
4460 		return (1);
4461 
4462 	/* XXX generate optimised lists here? */
4463 	return (0);
4464 }
4465 
4466 void
4467 bus_data_generation_update(void)
4468 {
4469 	bus_data_generation++;
4470 }
4471 
4472 int
4473 bus_free_resource(device_t dev, int type, struct resource *r)
4474 {
4475 	if (r == NULL)
4476 		return (0);
4477 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4478 }
4479