xref: /freebsd/sys/kern/subr_bus.c (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33 
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/cpuset.h>
56 #ifdef INTRNG
57 #include <sys/intr.h>
58 #endif
59 
60 #include <net/vnet.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64 
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67 
68 #include <dev/iommu/iommu.h>
69 
70 #include <ddb/ddb.h>
71 
72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
73     NULL);
74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75     NULL);
76 
77 static bool disable_failed_devs = false;
78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
79     0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
80 
81 /*
82  * Used to attach drivers to devclasses.
83  */
84 typedef struct driverlink *driverlink_t;
85 struct driverlink {
86 	kobj_class_t	driver;
87 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
88 	int		pass;
89 	int		flags;
90 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
91 	TAILQ_ENTRY(driverlink) passlink;
92 };
93 
94 /*
95  * Forward declarations
96  */
97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
99 typedef TAILQ_HEAD(device_list, _device) device_list_t;
100 
101 struct devclass {
102 	TAILQ_ENTRY(devclass) link;
103 	devclass_t	parent;		/* parent in devclass hierarchy */
104 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
105 	char		*name;
106 	device_t	*devices;	/* array of devices indexed by unit */
107 	int		maxunit;	/* size of devices array */
108 	int		flags;
109 #define DC_HAS_CHILDREN		1
110 
111 	struct sysctl_ctx_list sysctl_ctx;
112 	struct sysctl_oid *sysctl_tree;
113 };
114 
115 struct device_prop_elm {
116 	const char *name;
117 	void *val;
118 	void *dtr_ctx;
119 	device_prop_dtr_t dtr;
120 	LIST_ENTRY(device_prop_elm) link;
121 };
122 
123 static void device_destroy_props(device_t dev);
124 
125 /**
126  * @brief Implementation of _device.
127  *
128  * The structure is named "_device" instead of "device" to avoid type confusion
129  * caused by other subsystems defining a (struct device).
130  */
131 struct _device {
132 	/*
133 	 * A device is a kernel object. The first field must be the
134 	 * current ops table for the object.
135 	 */
136 	KOBJ_FIELDS;
137 
138 	/*
139 	 * Device hierarchy.
140 	 */
141 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
142 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
143 	device_t	parent;		/**< parent of this device  */
144 	device_list_t	children;	/**< list of child devices */
145 
146 	/*
147 	 * Details of this device.
148 	 */
149 	driver_t	*driver;	/**< current driver */
150 	devclass_t	devclass;	/**< current device class */
151 	int		unit;		/**< current unit number */
152 	char*		nameunit;	/**< name+unit e.g. foodev0 */
153 	char*		desc;		/**< driver specific description */
154 	u_int		busy;		/**< count of calls to device_busy() */
155 	device_state_t	state;		/**< current device state  */
156 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
157 	u_int		flags;		/**< internal device flags  */
158 	u_int	order;			/**< order from device_add_child_ordered() */
159 	void	*ivars;			/**< instance variables  */
160 	void	*softc;			/**< current driver's variables  */
161 	LIST_HEAD(, device_prop_elm) props;
162 
163 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
164 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
165 };
166 
167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
169 
170 EVENTHANDLER_LIST_DEFINE(device_attach);
171 EVENTHANDLER_LIST_DEFINE(device_detach);
172 EVENTHANDLER_LIST_DEFINE(device_nomatch);
173 EVENTHANDLER_LIST_DEFINE(dev_lookup);
174 
175 static void devctl2_init(void);
176 static bool device_frozen;
177 
178 #define DRIVERNAME(d)	((d)? d->name : "no driver")
179 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
180 
181 #ifdef BUS_DEBUG
182 
183 static int bus_debug = 1;
184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
185     "Bus debug level");
186 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
187 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
188 
189 /**
190  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
191  * prevent syslog from deleting initial spaces
192  */
193 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
194 
195 static void print_device_short(device_t dev, int indent);
196 static void print_device(device_t dev, int indent);
197 void print_device_tree_short(device_t dev, int indent);
198 void print_device_tree(device_t dev, int indent);
199 static void print_driver_short(driver_t *driver, int indent);
200 static void print_driver(driver_t *driver, int indent);
201 static void print_driver_list(driver_list_t drivers, int indent);
202 static void print_devclass_short(devclass_t dc, int indent);
203 static void print_devclass(devclass_t dc, int indent);
204 void print_devclass_list_short(void);
205 void print_devclass_list(void);
206 
207 #else
208 /* Make the compiler ignore the function calls */
209 #define PDEBUG(a)			/* nop */
210 #define DEVICENAME(d)			/* nop */
211 
212 #define print_device_short(d,i)		/* nop */
213 #define print_device(d,i)		/* nop */
214 #define print_device_tree_short(d,i)	/* nop */
215 #define print_device_tree(d,i)		/* nop */
216 #define print_driver_short(d,i)		/* nop */
217 #define print_driver(d,i)		/* nop */
218 #define print_driver_list(d,i)		/* nop */
219 #define print_devclass_short(d,i)	/* nop */
220 #define print_devclass(d,i)		/* nop */
221 #define print_devclass_list_short()	/* nop */
222 #define print_devclass_list()		/* nop */
223 #endif
224 
225 /*
226  * dev sysctl tree
227  */
228 
229 enum {
230 	DEVCLASS_SYSCTL_PARENT,
231 };
232 
233 static int
234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
235 {
236 	devclass_t dc = (devclass_t)arg1;
237 	const char *value;
238 
239 	switch (arg2) {
240 	case DEVCLASS_SYSCTL_PARENT:
241 		value = dc->parent ? dc->parent->name : "";
242 		break;
243 	default:
244 		return (EINVAL);
245 	}
246 	return (SYSCTL_OUT_STR(req, value));
247 }
248 
249 static void
250 devclass_sysctl_init(devclass_t dc)
251 {
252 	if (dc->sysctl_tree != NULL)
253 		return;
254 	sysctl_ctx_init(&dc->sysctl_ctx);
255 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
256 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
257 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
258 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
259 	    OID_AUTO, "%parent",
260 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
261 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
262 	    "parent class");
263 }
264 
265 enum {
266 	DEVICE_SYSCTL_DESC,
267 	DEVICE_SYSCTL_DRIVER,
268 	DEVICE_SYSCTL_LOCATION,
269 	DEVICE_SYSCTL_PNPINFO,
270 	DEVICE_SYSCTL_PARENT,
271 	DEVICE_SYSCTL_IOMMU,
272 };
273 
274 static int
275 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
276 {
277 	struct sbuf sb;
278 	device_t dev = (device_t)arg1;
279 	device_t iommu;
280 	int error;
281 	uint16_t rid;
282 	const char *c;
283 
284 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
285 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
286 	bus_topo_lock();
287 	switch (arg2) {
288 	case DEVICE_SYSCTL_DESC:
289 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
290 		break;
291 	case DEVICE_SYSCTL_DRIVER:
292 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
293 		break;
294 	case DEVICE_SYSCTL_LOCATION:
295 		bus_child_location(dev, &sb);
296 		break;
297 	case DEVICE_SYSCTL_PNPINFO:
298 		bus_child_pnpinfo(dev, &sb);
299 		break;
300 	case DEVICE_SYSCTL_PARENT:
301 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
302 		break;
303 	case DEVICE_SYSCTL_IOMMU:
304 		iommu = NULL;
305 		error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
306 		    (void **)&iommu);
307 		c = "";
308 		if (error == 0 && iommu != NULL) {
309 			sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
310 			c = " ";
311 		}
312 		rid = 0;
313 #ifdef IOMMU
314 		iommu_get_requester(dev, &rid);
315 #endif
316 		if (rid != 0)
317 			sbuf_printf(&sb, "%srid=%#x", c, rid);
318 		break;
319 	default:
320 		error = EINVAL;
321 		goto out;
322 	}
323 	error = sbuf_finish(&sb);
324 out:
325 	bus_topo_unlock();
326 	sbuf_delete(&sb);
327 	return (error);
328 }
329 
330 static void
331 device_sysctl_init(device_t dev)
332 {
333 	devclass_t dc = dev->devclass;
334 	int domain;
335 
336 	if (dev->sysctl_tree != NULL)
337 		return;
338 	devclass_sysctl_init(dc);
339 	sysctl_ctx_init(&dev->sysctl_ctx);
340 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
341 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
342 	    dev->nameunit + strlen(dc->name),
343 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
344 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
345 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
346 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
347 	    "device description");
348 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
349 	    OID_AUTO, "%driver",
350 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
351 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
352 	    "device driver name");
353 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
354 	    OID_AUTO, "%location",
355 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
356 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
357 	    "device location relative to parent");
358 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
359 	    OID_AUTO, "%pnpinfo",
360 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
361 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
362 	    "device identification");
363 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
364 	    OID_AUTO, "%parent",
365 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
366 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
367 	    "parent device");
368 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
369 	    OID_AUTO, "%iommu",
370 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
371 	    dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
372 	    "iommu unit handling the device requests");
373 	if (bus_get_domain(dev, &domain) == 0)
374 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
375 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
376 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
377 }
378 
379 static void
380 device_sysctl_update(device_t dev)
381 {
382 	devclass_t dc = dev->devclass;
383 
384 	if (dev->sysctl_tree == NULL)
385 		return;
386 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
387 }
388 
389 static void
390 device_sysctl_fini(device_t dev)
391 {
392 	if (dev->sysctl_tree == NULL)
393 		return;
394 	sysctl_ctx_free(&dev->sysctl_ctx);
395 	dev->sysctl_tree = NULL;
396 }
397 
398 static struct device_list bus_data_devices;
399 static int bus_data_generation = 1;
400 
401 static kobj_method_t null_methods[] = {
402 	KOBJMETHOD_END
403 };
404 
405 DEFINE_CLASS(null, null_methods, 0);
406 
407 void
408 bus_topo_assert(void)
409 {
410 
411 	GIANT_REQUIRED;
412 }
413 
414 struct mtx *
415 bus_topo_mtx(void)
416 {
417 
418 	return (&Giant);
419 }
420 
421 void
422 bus_topo_lock(void)
423 {
424 
425 	mtx_lock(bus_topo_mtx());
426 }
427 
428 void
429 bus_topo_unlock(void)
430 {
431 
432 	mtx_unlock(bus_topo_mtx());
433 }
434 
435 /*
436  * Bus pass implementation
437  */
438 
439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
440 static int bus_current_pass = BUS_PASS_ROOT;
441 
442 /**
443  * @internal
444  * @brief Register the pass level of a new driver attachment
445  *
446  * Register a new driver attachment's pass level.  If no driver
447  * attachment with the same pass level has been added, then @p new
448  * will be added to the global passes list.
449  *
450  * @param new		the new driver attachment
451  */
452 static void
453 driver_register_pass(struct driverlink *new)
454 {
455 	struct driverlink *dl;
456 
457 	/* We only consider pass numbers during boot. */
458 	if (bus_current_pass == BUS_PASS_DEFAULT)
459 		return;
460 
461 	/*
462 	 * Walk the passes list.  If we already know about this pass
463 	 * then there is nothing to do.  If we don't, then insert this
464 	 * driver link into the list.
465 	 */
466 	TAILQ_FOREACH(dl, &passes, passlink) {
467 		if (dl->pass < new->pass)
468 			continue;
469 		if (dl->pass == new->pass)
470 			return;
471 		TAILQ_INSERT_BEFORE(dl, new, passlink);
472 		return;
473 	}
474 	TAILQ_INSERT_TAIL(&passes, new, passlink);
475 }
476 
477 /**
478  * @brief Retrieve the current bus pass
479  *
480  * Retrieves the current bus pass level.  Call the BUS_NEW_PASS()
481  * method on the root bus to kick off a new device tree scan for each
482  * new pass level that has at least one driver.
483  */
484 int
485 bus_get_pass(void)
486 {
487 
488 	return (bus_current_pass);
489 }
490 
491 /**
492  * @brief Raise the current bus pass
493  *
494  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
495  * method on the root bus to kick off a new device tree scan for each
496  * new pass level that has at least one driver.
497  */
498 static void
499 bus_set_pass(int pass)
500 {
501 	struct driverlink *dl;
502 
503 	if (bus_current_pass > pass)
504 		panic("Attempt to lower bus pass level");
505 
506 	TAILQ_FOREACH(dl, &passes, passlink) {
507 		/* Skip pass values below the current pass level. */
508 		if (dl->pass <= bus_current_pass)
509 			continue;
510 
511 		/*
512 		 * Bail once we hit a driver with a pass level that is
513 		 * too high.
514 		 */
515 		if (dl->pass > pass)
516 			break;
517 
518 		/*
519 		 * Raise the pass level to the next level and rescan
520 		 * the tree.
521 		 */
522 		bus_current_pass = dl->pass;
523 		BUS_NEW_PASS(root_bus);
524 	}
525 
526 	/*
527 	 * If there isn't a driver registered for the requested pass,
528 	 * then bus_current_pass might still be less than 'pass'.  Set
529 	 * it to 'pass' in that case.
530 	 */
531 	if (bus_current_pass < pass)
532 		bus_current_pass = pass;
533 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
534 }
535 
536 /*
537  * Devclass implementation
538  */
539 
540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
541 
542 /**
543  * @internal
544  * @brief Find or create a device class
545  *
546  * If a device class with the name @p classname exists, return it,
547  * otherwise if @p create is non-zero create and return a new device
548  * class.
549  *
550  * If @p parentname is non-NULL, the parent of the devclass is set to
551  * the devclass of that name.
552  *
553  * @param classname	the devclass name to find or create
554  * @param parentname	the parent devclass name or @c NULL
555  * @param create	non-zero to create a devclass
556  */
557 static devclass_t
558 devclass_find_internal(const char *classname, const char *parentname,
559 		       int create)
560 {
561 	devclass_t dc;
562 
563 	PDEBUG(("looking for %s", classname));
564 	if (!classname)
565 		return (NULL);
566 
567 	TAILQ_FOREACH(dc, &devclasses, link) {
568 		if (!strcmp(dc->name, classname))
569 			break;
570 	}
571 
572 	if (create && !dc) {
573 		PDEBUG(("creating %s", classname));
574 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
575 		    M_BUS, M_NOWAIT | M_ZERO);
576 		if (!dc)
577 			return (NULL);
578 		dc->parent = NULL;
579 		dc->name = (char*) (dc + 1);
580 		strcpy(dc->name, classname);
581 		TAILQ_INIT(&dc->drivers);
582 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
583 
584 		bus_data_generation_update();
585 	}
586 
587 	/*
588 	 * If a parent class is specified, then set that as our parent so
589 	 * that this devclass will support drivers for the parent class as
590 	 * well.  If the parent class has the same name don't do this though
591 	 * as it creates a cycle that can trigger an infinite loop in
592 	 * device_probe_child() if a device exists for which there is no
593 	 * suitable driver.
594 	 */
595 	if (parentname && dc && !dc->parent &&
596 	    strcmp(classname, parentname) != 0) {
597 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
598 		dc->parent->flags |= DC_HAS_CHILDREN;
599 	}
600 
601 	return (dc);
602 }
603 
604 /**
605  * @brief Create a device class
606  *
607  * If a device class with the name @p classname exists, return it,
608  * otherwise create and return a new device class.
609  *
610  * @param classname	the devclass name to find or create
611  */
612 devclass_t
613 devclass_create(const char *classname)
614 {
615 	return (devclass_find_internal(classname, NULL, TRUE));
616 }
617 
618 /**
619  * @brief Find a device class
620  *
621  * If a device class with the name @p classname exists, return it,
622  * otherwise return @c NULL.
623  *
624  * @param classname	the devclass name to find
625  */
626 devclass_t
627 devclass_find(const char *classname)
628 {
629 	return (devclass_find_internal(classname, NULL, FALSE));
630 }
631 
632 /**
633  * @brief Register that a device driver has been added to a devclass
634  *
635  * Register that a device driver has been added to a devclass.  This
636  * is called by devclass_add_driver to accomplish the recursive
637  * notification of all the children classes of dc, as well as dc.
638  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
639  * the devclass.
640  *
641  * We do a full search here of the devclass list at each iteration
642  * level to save storing children-lists in the devclass structure.  If
643  * we ever move beyond a few dozen devices doing this, we may need to
644  * reevaluate...
645  *
646  * @param dc		the devclass to edit
647  * @param driver	the driver that was just added
648  */
649 static void
650 devclass_driver_added(devclass_t dc, driver_t *driver)
651 {
652 	devclass_t parent;
653 	int i;
654 
655 	/*
656 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
657 	 */
658 	for (i = 0; i < dc->maxunit; i++)
659 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
660 			BUS_DRIVER_ADDED(dc->devices[i], driver);
661 
662 	/*
663 	 * Walk through the children classes.  Since we only keep a
664 	 * single parent pointer around, we walk the entire list of
665 	 * devclasses looking for children.  We set the
666 	 * DC_HAS_CHILDREN flag when a child devclass is created on
667 	 * the parent, so we only walk the list for those devclasses
668 	 * that have children.
669 	 */
670 	if (!(dc->flags & DC_HAS_CHILDREN))
671 		return;
672 	parent = dc;
673 	TAILQ_FOREACH(dc, &devclasses, link) {
674 		if (dc->parent == parent)
675 			devclass_driver_added(dc, driver);
676 	}
677 }
678 
679 static void
680 device_handle_nomatch(device_t dev)
681 {
682 	BUS_PROBE_NOMATCH(dev->parent, dev);
683 	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
684 	dev->flags |= DF_DONENOMATCH;
685 }
686 
687 /**
688  * @brief Add a device driver to a device class
689  *
690  * Add a device driver to a devclass. This is normally called
691  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
692  * all devices in the devclass will be called to allow them to attempt
693  * to re-probe any unmatched children.
694  *
695  * @param dc		the devclass to edit
696  * @param driver	the driver to register
697  */
698 int
699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
700 {
701 	driverlink_t dl;
702 	devclass_t child_dc;
703 	const char *parentname;
704 
705 	PDEBUG(("%s", DRIVERNAME(driver)));
706 
707 	/* Don't allow invalid pass values. */
708 	if (pass <= BUS_PASS_ROOT)
709 		return (EINVAL);
710 
711 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
712 	if (!dl)
713 		return (ENOMEM);
714 
715 	/*
716 	 * Compile the driver's methods. Also increase the reference count
717 	 * so that the class doesn't get freed when the last instance
718 	 * goes. This means we can safely use static methods and avoids a
719 	 * double-free in devclass_delete_driver.
720 	 */
721 	kobj_class_compile((kobj_class_t) driver);
722 
723 	/*
724 	 * If the driver has any base classes, make the
725 	 * devclass inherit from the devclass of the driver's
726 	 * first base class. This will allow the system to
727 	 * search for drivers in both devclasses for children
728 	 * of a device using this driver.
729 	 */
730 	if (driver->baseclasses)
731 		parentname = driver->baseclasses[0]->name;
732 	else
733 		parentname = NULL;
734 	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
735 	if (dcp != NULL)
736 		*dcp = child_dc;
737 
738 	dl->driver = driver;
739 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
740 	driver->refs++;		/* XXX: kobj_mtx */
741 	dl->pass = pass;
742 	driver_register_pass(dl);
743 
744 	if (device_frozen) {
745 		dl->flags |= DL_DEFERRED_PROBE;
746 	} else {
747 		devclass_driver_added(dc, driver);
748 	}
749 	bus_data_generation_update();
750 	return (0);
751 }
752 
753 /**
754  * @brief Register that a device driver has been deleted from a devclass
755  *
756  * Register that a device driver has been removed from a devclass.
757  * This is called by devclass_delete_driver to accomplish the
758  * recursive notification of all the children classes of busclass, as
759  * well as busclass.  Each layer will attempt to detach the driver
760  * from any devices that are children of the bus's devclass.  The function
761  * will return an error if a device fails to detach.
762  *
763  * We do a full search here of the devclass list at each iteration
764  * level to save storing children-lists in the devclass structure.  If
765  * we ever move beyond a few dozen devices doing this, we may need to
766  * reevaluate...
767  *
768  * @param busclass	the devclass of the parent bus
769  * @param dc		the devclass of the driver being deleted
770  * @param driver	the driver being deleted
771  */
772 static int
773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
774 {
775 	devclass_t parent;
776 	device_t dev;
777 	int error, i;
778 
779 	/*
780 	 * Disassociate from any devices.  We iterate through all the
781 	 * devices in the devclass of the driver and detach any which are
782 	 * using the driver and which have a parent in the devclass which
783 	 * we are deleting from.
784 	 *
785 	 * Note that since a driver can be in multiple devclasses, we
786 	 * should not detach devices which are not children of devices in
787 	 * the affected devclass.
788 	 *
789 	 * If we're frozen, we don't generate NOMATCH events. Mark to
790 	 * generate later.
791 	 */
792 	for (i = 0; i < dc->maxunit; i++) {
793 		if (dc->devices[i]) {
794 			dev = dc->devices[i];
795 			if (dev->driver == driver && dev->parent &&
796 			    dev->parent->devclass == busclass) {
797 				if ((error = device_detach(dev)) != 0)
798 					return (error);
799 				if (device_frozen) {
800 					dev->flags &= ~DF_DONENOMATCH;
801 					dev->flags |= DF_NEEDNOMATCH;
802 				} else {
803 					device_handle_nomatch(dev);
804 				}
805 			}
806 		}
807 	}
808 
809 	/*
810 	 * Walk through the children classes.  Since we only keep a
811 	 * single parent pointer around, we walk the entire list of
812 	 * devclasses looking for children.  We set the
813 	 * DC_HAS_CHILDREN flag when a child devclass is created on
814 	 * the parent, so we only walk the list for those devclasses
815 	 * that have children.
816 	 */
817 	if (!(busclass->flags & DC_HAS_CHILDREN))
818 		return (0);
819 	parent = busclass;
820 	TAILQ_FOREACH(busclass, &devclasses, link) {
821 		if (busclass->parent == parent) {
822 			error = devclass_driver_deleted(busclass, dc, driver);
823 			if (error)
824 				return (error);
825 		}
826 	}
827 	return (0);
828 }
829 
830 /**
831  * @brief Delete a device driver from a device class
832  *
833  * Delete a device driver from a devclass. This is normally called
834  * automatically by DRIVER_MODULE().
835  *
836  * If the driver is currently attached to any devices,
837  * devclass_delete_driver() will first attempt to detach from each
838  * device. If one of the detach calls fails, the driver will not be
839  * deleted.
840  *
841  * @param dc		the devclass to edit
842  * @param driver	the driver to unregister
843  */
844 int
845 devclass_delete_driver(devclass_t busclass, driver_t *driver)
846 {
847 	devclass_t dc = devclass_find(driver->name);
848 	driverlink_t dl;
849 	int error;
850 
851 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852 
853 	if (!dc)
854 		return (0);
855 
856 	/*
857 	 * Find the link structure in the bus' list of drivers.
858 	 */
859 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 		if (dl->driver == driver)
861 			break;
862 	}
863 
864 	if (!dl) {
865 		PDEBUG(("%s not found in %s list", driver->name,
866 		    busclass->name));
867 		return (ENOENT);
868 	}
869 
870 	error = devclass_driver_deleted(busclass, dc, driver);
871 	if (error != 0)
872 		return (error);
873 
874 	TAILQ_REMOVE(&busclass->drivers, dl, link);
875 	free(dl, M_BUS);
876 
877 	/* XXX: kobj_mtx */
878 	driver->refs--;
879 	if (driver->refs == 0)
880 		kobj_class_free((kobj_class_t) driver);
881 
882 	bus_data_generation_update();
883 	return (0);
884 }
885 
886 /**
887  * @brief Quiesces a set of device drivers from a device class
888  *
889  * Quiesce a device driver from a devclass. This is normally called
890  * automatically by DRIVER_MODULE().
891  *
892  * If the driver is currently attached to any devices,
893  * devclass_quiesece_driver() will first attempt to quiesce each
894  * device.
895  *
896  * @param dc		the devclass to edit
897  * @param driver	the driver to unregister
898  */
899 static int
900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
901 {
902 	devclass_t dc = devclass_find(driver->name);
903 	driverlink_t dl;
904 	device_t dev;
905 	int i;
906 	int error;
907 
908 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
909 
910 	if (!dc)
911 		return (0);
912 
913 	/*
914 	 * Find the link structure in the bus' list of drivers.
915 	 */
916 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
917 		if (dl->driver == driver)
918 			break;
919 	}
920 
921 	if (!dl) {
922 		PDEBUG(("%s not found in %s list", driver->name,
923 		    busclass->name));
924 		return (ENOENT);
925 	}
926 
927 	/*
928 	 * Quiesce all devices.  We iterate through all the devices in
929 	 * the devclass of the driver and quiesce any which are using
930 	 * the driver and which have a parent in the devclass which we
931 	 * are quiescing.
932 	 *
933 	 * Note that since a driver can be in multiple devclasses, we
934 	 * should not quiesce devices which are not children of
935 	 * devices in the affected devclass.
936 	 */
937 	for (i = 0; i < dc->maxunit; i++) {
938 		if (dc->devices[i]) {
939 			dev = dc->devices[i];
940 			if (dev->driver == driver && dev->parent &&
941 			    dev->parent->devclass == busclass) {
942 				if ((error = device_quiesce(dev)) != 0)
943 					return (error);
944 			}
945 		}
946 	}
947 
948 	return (0);
949 }
950 
951 /**
952  * @internal
953  */
954 static driverlink_t
955 devclass_find_driver_internal(devclass_t dc, const char *classname)
956 {
957 	driverlink_t dl;
958 
959 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
960 
961 	TAILQ_FOREACH(dl, &dc->drivers, link) {
962 		if (!strcmp(dl->driver->name, classname))
963 			return (dl);
964 	}
965 
966 	PDEBUG(("not found"));
967 	return (NULL);
968 }
969 
970 /**
971  * @brief Return the name of the devclass
972  */
973 const char *
974 devclass_get_name(devclass_t dc)
975 {
976 	return (dc->name);
977 }
978 
979 /**
980  * @brief Find a device given a unit number
981  *
982  * @param dc		the devclass to search
983  * @param unit		the unit number to search for
984  *
985  * @returns		the device with the given unit number or @c
986  *			NULL if there is no such device
987  */
988 device_t
989 devclass_get_device(devclass_t dc, int unit)
990 {
991 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
992 		return (NULL);
993 	return (dc->devices[unit]);
994 }
995 
996 /**
997  * @brief Find the softc field of a device given a unit number
998  *
999  * @param dc		the devclass to search
1000  * @param unit		the unit number to search for
1001  *
1002  * @returns		the softc field of the device with the given
1003  *			unit number or @c NULL if there is no such
1004  *			device
1005  */
1006 void *
1007 devclass_get_softc(devclass_t dc, int unit)
1008 {
1009 	device_t dev;
1010 
1011 	dev = devclass_get_device(dc, unit);
1012 	if (!dev)
1013 		return (NULL);
1014 
1015 	return (device_get_softc(dev));
1016 }
1017 
1018 /**
1019  * @brief Get a list of devices in the devclass
1020  *
1021  * An array containing a list of all the devices in the given devclass
1022  * is allocated and returned in @p *devlistp. The number of devices
1023  * in the array is returned in @p *devcountp. The caller should free
1024  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1025  *
1026  * @param dc		the devclass to examine
1027  * @param devlistp	points at location for array pointer return
1028  *			value
1029  * @param devcountp	points at location for array size return value
1030  *
1031  * @retval 0		success
1032  * @retval ENOMEM	the array allocation failed
1033  */
1034 int
1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1036 {
1037 	int count, i;
1038 	device_t *list;
1039 
1040 	count = devclass_get_count(dc);
1041 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1042 	if (!list)
1043 		return (ENOMEM);
1044 
1045 	count = 0;
1046 	for (i = 0; i < dc->maxunit; i++) {
1047 		if (dc->devices[i]) {
1048 			list[count] = dc->devices[i];
1049 			count++;
1050 		}
1051 	}
1052 
1053 	*devlistp = list;
1054 	*devcountp = count;
1055 
1056 	return (0);
1057 }
1058 
1059 /**
1060  * @brief Get a list of drivers in the devclass
1061  *
1062  * An array containing a list of pointers to all the drivers in the
1063  * given devclass is allocated and returned in @p *listp.  The number
1064  * of drivers in the array is returned in @p *countp. The caller should
1065  * free the array using @c free(p, M_TEMP).
1066  *
1067  * @param dc		the devclass to examine
1068  * @param listp		gives location for array pointer return value
1069  * @param countp	gives location for number of array elements
1070  *			return value
1071  *
1072  * @retval 0		success
1073  * @retval ENOMEM	the array allocation failed
1074  */
1075 int
1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1077 {
1078 	driverlink_t dl;
1079 	driver_t **list;
1080 	int count;
1081 
1082 	count = 0;
1083 	TAILQ_FOREACH(dl, &dc->drivers, link)
1084 		count++;
1085 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1086 	if (list == NULL)
1087 		return (ENOMEM);
1088 
1089 	count = 0;
1090 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1091 		list[count] = dl->driver;
1092 		count++;
1093 	}
1094 	*listp = list;
1095 	*countp = count;
1096 
1097 	return (0);
1098 }
1099 
1100 /**
1101  * @brief Get the number of devices in a devclass
1102  *
1103  * @param dc		the devclass to examine
1104  */
1105 int
1106 devclass_get_count(devclass_t dc)
1107 {
1108 	int count, i;
1109 
1110 	count = 0;
1111 	for (i = 0; i < dc->maxunit; i++)
1112 		if (dc->devices[i])
1113 			count++;
1114 	return (count);
1115 }
1116 
1117 /**
1118  * @brief Get the maximum unit number used in a devclass
1119  *
1120  * Note that this is one greater than the highest currently-allocated unit.  If
1121  * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1122  * been allocated yet.
1123  *
1124  * @param dc		the devclass to examine
1125  */
1126 int
1127 devclass_get_maxunit(devclass_t dc)
1128 {
1129 	if (dc == NULL)
1130 		return (-1);
1131 	return (dc->maxunit);
1132 }
1133 
1134 /**
1135  * @brief Find a free unit number in a devclass
1136  *
1137  * This function searches for the first unused unit number greater
1138  * that or equal to @p unit. Note: This can return INT_MAX which
1139  * may be rejected elsewhere.
1140  *
1141  * @param dc		the devclass to examine
1142  * @param unit		the first unit number to check
1143  */
1144 int
1145 devclass_find_free_unit(devclass_t dc, int unit)
1146 {
1147 	if (dc == NULL)
1148 		return (unit);
1149 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1150 		unit++;
1151 	return (unit);
1152 }
1153 
1154 /**
1155  * @brief Set the parent of a devclass
1156  *
1157  * The parent class is normally initialised automatically by
1158  * DRIVER_MODULE().
1159  *
1160  * @param dc		the devclass to edit
1161  * @param pdc		the new parent devclass
1162  */
1163 void
1164 devclass_set_parent(devclass_t dc, devclass_t pdc)
1165 {
1166 	dc->parent = pdc;
1167 }
1168 
1169 /**
1170  * @brief Get the parent of a devclass
1171  *
1172  * @param dc		the devclass to examine
1173  */
1174 devclass_t
1175 devclass_get_parent(devclass_t dc)
1176 {
1177 	return (dc->parent);
1178 }
1179 
1180 struct sysctl_ctx_list *
1181 devclass_get_sysctl_ctx(devclass_t dc)
1182 {
1183 	return (&dc->sysctl_ctx);
1184 }
1185 
1186 struct sysctl_oid *
1187 devclass_get_sysctl_tree(devclass_t dc)
1188 {
1189 	return (dc->sysctl_tree);
1190 }
1191 
1192 /**
1193  * @internal
1194  * @brief Allocate a unit number
1195  *
1196  * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1197  * will do). The allocated unit number is returned in @p *unitp.
1198  *
1199  * @param dc		the devclass to allocate from
1200  * @param unitp		points at the location for the allocated unit
1201  *			number
1202  *
1203  * @retval 0		success
1204  * @retval EEXIST	the requested unit number is already allocated
1205  * @retval ENOMEM	memory allocation failure
1206  * @retval EINVAL	unit is negative or we've run out of units
1207  */
1208 static int
1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1210 {
1211 	const char *s;
1212 	int unit = *unitp;
1213 
1214 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1215 
1216 	/* Ask the parent bus if it wants to wire this device. */
1217 	if (unit == DEVICE_UNIT_ANY)
1218 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1219 		    &unit);
1220 
1221 	/* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1222 	if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1223 		return (EINVAL);
1224 
1225 	/* If we were given a wired unit number, check for existing device */
1226 	if (unit != DEVICE_UNIT_ANY) {
1227 		if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1228 			if (bootverbose)
1229 				printf("%s: %s%d already exists; skipping it\n",
1230 				    dc->name, dc->name, *unitp);
1231 			return (EEXIST);
1232 		}
1233 	} else {
1234 		/* Unwired device, find the next available slot for it */
1235 		unit = 0;
1236 		for (unit = 0; unit < INT_MAX; unit++) {
1237 			/* If this device slot is already in use, skip it. */
1238 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1239 				continue;
1240 
1241 			/* If there is an "at" hint for a unit then skip it. */
1242 			if (resource_string_value(dc->name, unit, "at", &s) ==
1243 			    0)
1244 				continue;
1245 
1246 			break;
1247 		}
1248 	}
1249 
1250 	/*
1251 	 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1252 	 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1253 	 * can treat unit and maxunit as normal integers with normal math
1254 	 * everywhere and we only have to flag INT_MAX as invalid.
1255 	 */
1256 	if (unit == INT_MAX)
1257 		return (EINVAL);
1258 
1259 	/*
1260 	 * We've selected a unit beyond the length of the table, so let's extend
1261 	 * the table to make room for all units up to and including this one.
1262 	 */
1263 	if (unit >= dc->maxunit) {
1264 		int newsize;
1265 
1266 		newsize = unit + 1;
1267 		dc->devices = reallocf(dc->devices,
1268 		    newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1269 		memset(dc->devices + dc->maxunit, 0,
1270 		    sizeof(device_t) * (newsize - dc->maxunit));
1271 		dc->maxunit = newsize;
1272 	}
1273 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1274 
1275 	*unitp = unit;
1276 	return (0);
1277 }
1278 
1279 /**
1280  * @internal
1281  * @brief Add a device to a devclass
1282  *
1283  * A unit number is allocated for the device (using the device's
1284  * preferred unit number if any) and the device is registered in the
1285  * devclass. This allows the device to be looked up by its unit
1286  * number, e.g. by decoding a dev_t minor number.
1287  *
1288  * @param dc		the devclass to add to
1289  * @param dev		the device to add
1290  *
1291  * @retval 0		success
1292  * @retval EEXIST	the requested unit number is already allocated
1293  * @retval ENOMEM	memory allocation failure
1294  * @retval EINVAL	Unit number invalid or too many units
1295  */
1296 static int
1297 devclass_add_device(devclass_t dc, device_t dev)
1298 {
1299 	int buflen, error;
1300 
1301 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1302 
1303 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1304 	if (buflen < 0)
1305 		return (ENOMEM);
1306 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1307 	if (!dev->nameunit)
1308 		return (ENOMEM);
1309 
1310 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1311 		free(dev->nameunit, M_BUS);
1312 		dev->nameunit = NULL;
1313 		return (error);
1314 	}
1315 	dc->devices[dev->unit] = dev;
1316 	dev->devclass = dc;
1317 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1318 
1319 	return (0);
1320 }
1321 
1322 /**
1323  * @internal
1324  * @brief Delete a device from a devclass
1325  *
1326  * The device is removed from the devclass's device list and its unit
1327  * number is freed.
1328 
1329  * @param dc		the devclass to delete from
1330  * @param dev		the device to delete
1331  *
1332  * @retval 0		success
1333  */
1334 static int
1335 devclass_delete_device(devclass_t dc, device_t dev)
1336 {
1337 	if (!dc || !dev)
1338 		return (0);
1339 
1340 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1341 
1342 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1343 		panic("devclass_delete_device: inconsistent device class");
1344 	dc->devices[dev->unit] = NULL;
1345 	if (dev->flags & DF_WILDCARD)
1346 		dev->unit = DEVICE_UNIT_ANY;
1347 	dev->devclass = NULL;
1348 	free(dev->nameunit, M_BUS);
1349 	dev->nameunit = NULL;
1350 
1351 	return (0);
1352 }
1353 
1354 /**
1355  * @internal
1356  * @brief Make a new device and add it as a child of @p parent
1357  *
1358  * @param parent	the parent of the new device
1359  * @param name		the devclass name of the new device or @c NULL
1360  *			to leave the devclass unspecified
1361  * @parem unit		the unit number of the new device of @c DEVICE_UNIT_ANY
1362  *			to leave the unit number unspecified
1363  *
1364  * @returns the new device
1365  */
1366 static device_t
1367 make_device(device_t parent, const char *name, int unit)
1368 {
1369 	device_t dev;
1370 	devclass_t dc;
1371 
1372 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1373 
1374 	if (name) {
1375 		dc = devclass_find_internal(name, NULL, TRUE);
1376 		if (!dc) {
1377 			printf("make_device: can't find device class %s\n",
1378 			    name);
1379 			return (NULL);
1380 		}
1381 	} else {
1382 		dc = NULL;
1383 	}
1384 
1385 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1386 	if (!dev)
1387 		return (NULL);
1388 
1389 	dev->parent = parent;
1390 	TAILQ_INIT(&dev->children);
1391 	kobj_init((kobj_t) dev, &null_class);
1392 	dev->driver = NULL;
1393 	dev->devclass = NULL;
1394 	dev->unit = unit;
1395 	dev->nameunit = NULL;
1396 	dev->desc = NULL;
1397 	dev->busy = 0;
1398 	dev->devflags = 0;
1399 	dev->flags = DF_ENABLED;
1400 	dev->order = 0;
1401 	if (unit == DEVICE_UNIT_ANY)
1402 		dev->flags |= DF_WILDCARD;
1403 	if (name) {
1404 		dev->flags |= DF_FIXEDCLASS;
1405 		if (devclass_add_device(dc, dev)) {
1406 			kobj_delete((kobj_t) dev, M_BUS);
1407 			return (NULL);
1408 		}
1409 	}
1410 	if (parent != NULL && device_has_quiet_children(parent))
1411 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1412 	dev->ivars = NULL;
1413 	dev->softc = NULL;
1414 	LIST_INIT(&dev->props);
1415 
1416 	dev->state = DS_NOTPRESENT;
1417 
1418 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1419 	bus_data_generation_update();
1420 
1421 	return (dev);
1422 }
1423 
1424 /**
1425  * @internal
1426  * @brief Print a description of a device.
1427  */
1428 static int
1429 device_print_child(device_t dev, device_t child)
1430 {
1431 	int retval = 0;
1432 
1433 	if (device_is_alive(child))
1434 		retval += BUS_PRINT_CHILD(dev, child);
1435 	else
1436 		retval += device_printf(child, " not found\n");
1437 
1438 	return (retval);
1439 }
1440 
1441 /**
1442  * @brief Create a new device
1443  *
1444  * This creates a new device and adds it as a child of an existing
1445  * parent device. The new device will be added after the last existing
1446  * child with order zero.
1447  *
1448  * @param dev		the device which will be the parent of the
1449  *			new child device
1450  * @param name		devclass name for new device or @c NULL if not
1451  *			specified
1452  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1453  *			specified
1454  *
1455  * @returns		the new device
1456  */
1457 device_t
1458 device_add_child(device_t dev, const char *name, int unit)
1459 {
1460 	return (device_add_child_ordered(dev, 0, name, unit));
1461 }
1462 
1463 /**
1464  * @brief Create a new device
1465  *
1466  * This creates a new device and adds it as a child of an existing
1467  * parent device. The new device will be added after the last existing
1468  * child with the same order.
1469  *
1470  * @param dev		the device which will be the parent of the
1471  *			new child device
1472  * @param order		a value which is used to partially sort the
1473  *			children of @p dev - devices created using
1474  *			lower values of @p order appear first in @p
1475  *			dev's list of children
1476  * @param name		devclass name for new device or @c NULL if not
1477  *			specified
1478  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1479  *			specified
1480  *
1481  * @returns		the new device
1482  */
1483 device_t
1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1485 {
1486 	device_t child;
1487 	device_t place;
1488 
1489 	PDEBUG(("%s at %s with order %u as unit %d",
1490 	    name, DEVICENAME(dev), order, unit));
1491 	KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1492 	    ("child device with wildcard name and specific unit number"));
1493 
1494 	child = make_device(dev, name, unit);
1495 	if (child == NULL)
1496 		return (child);
1497 	child->order = order;
1498 
1499 	TAILQ_FOREACH(place, &dev->children, link) {
1500 		if (place->order > order)
1501 			break;
1502 	}
1503 
1504 	if (place) {
1505 		/*
1506 		 * The device 'place' is the first device whose order is
1507 		 * greater than the new child.
1508 		 */
1509 		TAILQ_INSERT_BEFORE(place, child, link);
1510 	} else {
1511 		/*
1512 		 * The new child's order is greater or equal to the order of
1513 		 * any existing device. Add the child to the tail of the list.
1514 		 */
1515 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1516 	}
1517 
1518 	bus_data_generation_update();
1519 	return (child);
1520 }
1521 
1522 /**
1523  * @brief Delete a device
1524  *
1525  * This function deletes a device along with all of its children. If
1526  * the device currently has a driver attached to it, the device is
1527  * detached first using device_detach().
1528  *
1529  * @param dev		the parent device
1530  * @param child		the device to delete
1531  *
1532  * @retval 0		success
1533  * @retval non-zero	a unit error code describing the error
1534  */
1535 int
1536 device_delete_child(device_t dev, device_t child)
1537 {
1538 	int error;
1539 	device_t grandchild;
1540 
1541 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1542 
1543 	/*
1544 	 * Detach child.  Ideally this cleans up any grandchild
1545 	 * devices.
1546 	 */
1547 	if ((error = device_detach(child)) != 0)
1548 		return (error);
1549 
1550 	/* Delete any grandchildren left after detach. */
1551 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1552 		error = device_delete_child(child, grandchild);
1553 		if (error)
1554 			return (error);
1555 	}
1556 
1557 	device_destroy_props(dev);
1558 	if (child->devclass)
1559 		devclass_delete_device(child->devclass, child);
1560 	if (child->parent)
1561 		BUS_CHILD_DELETED(dev, child);
1562 	TAILQ_REMOVE(&dev->children, child, link);
1563 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1564 	kobj_delete((kobj_t) child, M_BUS);
1565 
1566 	bus_data_generation_update();
1567 	return (0);
1568 }
1569 
1570 /**
1571  * @brief Delete all children devices of the given device, if any.
1572  *
1573  * This function deletes all children devices of the given device, if
1574  * any, using the device_delete_child() function for each device it
1575  * finds. If a child device cannot be deleted, this function will
1576  * return an error code.
1577  *
1578  * @param dev		the parent device
1579  *
1580  * @retval 0		success
1581  * @retval non-zero	a device would not detach
1582  */
1583 int
1584 device_delete_children(device_t dev)
1585 {
1586 	device_t child;
1587 	int error;
1588 
1589 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1590 
1591 	error = 0;
1592 
1593 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1594 		error = device_delete_child(dev, child);
1595 		if (error) {
1596 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1597 			break;
1598 		}
1599 	}
1600 	return (error);
1601 }
1602 
1603 /**
1604  * @brief Find a device given a unit number
1605  *
1606  * This is similar to devclass_get_devices() but only searches for
1607  * devices which have @p dev as a parent.
1608  *
1609  * @param dev		the parent device to search
1610  * @param unit		the unit number to search for.  If the unit is
1611  *			@c DEVICE_UNIT_ANY, return the first child of @p dev
1612  *			which has name @p classname (that is, the one with the
1613  *			lowest unit.)
1614  *
1615  * @returns		the device with the given unit number or @c
1616  *			NULL if there is no such device
1617  */
1618 device_t
1619 device_find_child(device_t dev, const char *classname, int unit)
1620 {
1621 	devclass_t dc;
1622 	device_t child;
1623 
1624 	dc = devclass_find(classname);
1625 	if (!dc)
1626 		return (NULL);
1627 
1628 	if (unit != DEVICE_UNIT_ANY) {
1629 		child = devclass_get_device(dc, unit);
1630 		if (child && child->parent == dev)
1631 			return (child);
1632 	} else {
1633 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1634 			child = devclass_get_device(dc, unit);
1635 			if (child && child->parent == dev)
1636 				return (child);
1637 		}
1638 	}
1639 	return (NULL);
1640 }
1641 
1642 /**
1643  * @internal
1644  */
1645 static driverlink_t
1646 first_matching_driver(devclass_t dc, device_t dev)
1647 {
1648 	if (dev->devclass)
1649 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1650 	return (TAILQ_FIRST(&dc->drivers));
1651 }
1652 
1653 /**
1654  * @internal
1655  */
1656 static driverlink_t
1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1658 {
1659 	if (dev->devclass) {
1660 		driverlink_t dl;
1661 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1662 			if (!strcmp(dev->devclass->name, dl->driver->name))
1663 				return (dl);
1664 		return (NULL);
1665 	}
1666 	return (TAILQ_NEXT(last, link));
1667 }
1668 
1669 /**
1670  * @internal
1671  */
1672 int
1673 device_probe_child(device_t dev, device_t child)
1674 {
1675 	devclass_t dc;
1676 	driverlink_t best = NULL;
1677 	driverlink_t dl;
1678 	int result, pri = 0;
1679 	/* We should preserve the devclass (or lack of) set by the bus. */
1680 	int hasclass = (child->devclass != NULL);
1681 
1682 	bus_topo_assert();
1683 
1684 	dc = dev->devclass;
1685 	if (!dc)
1686 		panic("device_probe_child: parent device has no devclass");
1687 
1688 	/*
1689 	 * If the state is already probed, then return.
1690 	 */
1691 	if (child->state == DS_ALIVE)
1692 		return (0);
1693 
1694 	for (; dc; dc = dc->parent) {
1695 		for (dl = first_matching_driver(dc, child);
1696 		     dl;
1697 		     dl = next_matching_driver(dc, child, dl)) {
1698 			/* If this driver's pass is too high, then ignore it. */
1699 			if (dl->pass > bus_current_pass)
1700 				continue;
1701 
1702 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1703 			result = device_set_driver(child, dl->driver);
1704 			if (result == ENOMEM)
1705 				return (result);
1706 			else if (result != 0)
1707 				continue;
1708 			if (!hasclass) {
1709 				if (device_set_devclass(child,
1710 				    dl->driver->name) != 0) {
1711 					char const * devname =
1712 					    device_get_name(child);
1713 					if (devname == NULL)
1714 						devname = "(unknown)";
1715 					printf("driver bug: Unable to set "
1716 					    "devclass (class: %s "
1717 					    "devname: %s)\n",
1718 					    dl->driver->name,
1719 					    devname);
1720 					(void)device_set_driver(child, NULL);
1721 					continue;
1722 				}
1723 			}
1724 
1725 			/* Fetch any flags for the device before probing. */
1726 			resource_int_value(dl->driver->name, child->unit,
1727 			    "flags", &child->devflags);
1728 
1729 			result = DEVICE_PROBE(child);
1730 
1731 			/*
1732 			 * If probe returns 0, this is the driver that wins this
1733 			 * device.
1734 			 */
1735 			if (result == 0) {
1736 				best = dl;
1737 				pri = 0;
1738 				goto exact_match;	/* C doesn't have break 2 */
1739 			}
1740 
1741 			/* Reset flags and devclass before the next probe. */
1742 			child->devflags = 0;
1743 			if (!hasclass)
1744 				(void)device_set_devclass(child, NULL);
1745 
1746 			/*
1747 			 * Reset DF_QUIET in case this driver doesn't
1748 			 * end up as the best driver.
1749 			 */
1750 			device_verbose(child);
1751 
1752 			/*
1753 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1754 			 * only match on devices whose driver was explicitly
1755 			 * specified.
1756 			 */
1757 			if (result <= BUS_PROBE_NOWILDCARD &&
1758 			    !(child->flags & DF_FIXEDCLASS)) {
1759 				result = ENXIO;
1760 			}
1761 
1762 			/*
1763 			 * The driver returned an error so it
1764 			 * certainly doesn't match.
1765 			 */
1766 			if (result > 0) {
1767 				(void)device_set_driver(child, NULL);
1768 				continue;
1769 			}
1770 
1771 			/*
1772 			 * A priority lower than SUCCESS, remember the
1773 			 * best matching driver. Initialise the value
1774 			 * of pri for the first match.
1775 			 */
1776 			if (best == NULL || result > pri) {
1777 				best = dl;
1778 				pri = result;
1779 				continue;
1780 			}
1781 		}
1782 	}
1783 
1784 	if (best == NULL)
1785 		return (ENXIO);
1786 
1787 	/*
1788 	 * If we found a driver, change state and initialise the devclass.
1789 	 * Set the winning driver, devclass, and flags.
1790 	 */
1791 	result = device_set_driver(child, best->driver);
1792 	if (result != 0)
1793 		return (result);
1794 	if (!child->devclass) {
1795 		result = device_set_devclass(child, best->driver->name);
1796 		if (result != 0) {
1797 			(void)device_set_driver(child, NULL);
1798 			return (result);
1799 		}
1800 	}
1801 	resource_int_value(best->driver->name, child->unit,
1802 	    "flags", &child->devflags);
1803 
1804 	/*
1805 	 * A bit bogus. Call the probe method again to make sure that we have
1806 	 * the right description for the device.
1807 	 */
1808 	result = DEVICE_PROBE(child);
1809 	if (result > 0) {
1810 		if (!hasclass)
1811 			(void)device_set_devclass(child, NULL);
1812 		(void)device_set_driver(child, NULL);
1813 		return (result);
1814 	}
1815 
1816 exact_match:
1817 	child->state = DS_ALIVE;
1818 	bus_data_generation_update();
1819 	return (0);
1820 }
1821 
1822 /**
1823  * @brief Return the parent of a device
1824  */
1825 device_t
1826 device_get_parent(device_t dev)
1827 {
1828 	return (dev->parent);
1829 }
1830 
1831 /**
1832  * @brief Get a list of children of a device
1833  *
1834  * An array containing a list of all the children of the given device
1835  * is allocated and returned in @p *devlistp. The number of devices
1836  * in the array is returned in @p *devcountp. The caller should free
1837  * the array using @c free(p, M_TEMP).
1838  *
1839  * @param dev		the device to examine
1840  * @param devlistp	points at location for array pointer return
1841  *			value
1842  * @param devcountp	points at location for array size return value
1843  *
1844  * @retval 0		success
1845  * @retval ENOMEM	the array allocation failed
1846  */
1847 int
1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1849 {
1850 	int count;
1851 	device_t child;
1852 	device_t *list;
1853 
1854 	count = 0;
1855 	TAILQ_FOREACH(child, &dev->children, link) {
1856 		count++;
1857 	}
1858 	if (count == 0) {
1859 		*devlistp = NULL;
1860 		*devcountp = 0;
1861 		return (0);
1862 	}
1863 
1864 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1865 	if (!list)
1866 		return (ENOMEM);
1867 
1868 	count = 0;
1869 	TAILQ_FOREACH(child, &dev->children, link) {
1870 		list[count] = child;
1871 		count++;
1872 	}
1873 
1874 	*devlistp = list;
1875 	*devcountp = count;
1876 
1877 	return (0);
1878 }
1879 
1880 /**
1881  * @brief Return the current driver for the device or @c NULL if there
1882  * is no driver currently attached
1883  */
1884 driver_t *
1885 device_get_driver(device_t dev)
1886 {
1887 	return (dev->driver);
1888 }
1889 
1890 /**
1891  * @brief Return the current devclass for the device or @c NULL if
1892  * there is none.
1893  */
1894 devclass_t
1895 device_get_devclass(device_t dev)
1896 {
1897 	return (dev->devclass);
1898 }
1899 
1900 /**
1901  * @brief Return the name of the device's devclass or @c NULL if there
1902  * is none.
1903  */
1904 const char *
1905 device_get_name(device_t dev)
1906 {
1907 	if (dev != NULL && dev->devclass)
1908 		return (devclass_get_name(dev->devclass));
1909 	return (NULL);
1910 }
1911 
1912 /**
1913  * @brief Return a string containing the device's devclass name
1914  * followed by an ascii representation of the device's unit number
1915  * (e.g. @c "foo2").
1916  */
1917 const char *
1918 device_get_nameunit(device_t dev)
1919 {
1920 	return (dev->nameunit);
1921 }
1922 
1923 /**
1924  * @brief Return the device's unit number.
1925  */
1926 int
1927 device_get_unit(device_t dev)
1928 {
1929 	return (dev->unit);
1930 }
1931 
1932 /**
1933  * @brief Return the device's description string
1934  */
1935 const char *
1936 device_get_desc(device_t dev)
1937 {
1938 	return (dev->desc);
1939 }
1940 
1941 /**
1942  * @brief Return the device's flags
1943  */
1944 uint32_t
1945 device_get_flags(device_t dev)
1946 {
1947 	return (dev->devflags);
1948 }
1949 
1950 struct sysctl_ctx_list *
1951 device_get_sysctl_ctx(device_t dev)
1952 {
1953 	return (&dev->sysctl_ctx);
1954 }
1955 
1956 struct sysctl_oid *
1957 device_get_sysctl_tree(device_t dev)
1958 {
1959 	return (dev->sysctl_tree);
1960 }
1961 
1962 /**
1963  * @brief Print the name of the device followed by a colon and a space
1964  *
1965  * @returns the number of characters printed
1966  */
1967 int
1968 device_print_prettyname(device_t dev)
1969 {
1970 	const char *name = device_get_name(dev);
1971 
1972 	if (name == NULL)
1973 		return (printf("unknown: "));
1974 	return (printf("%s%d: ", name, device_get_unit(dev)));
1975 }
1976 
1977 /**
1978  * @brief Print the name of the device followed by a colon, a space
1979  * and the result of calling vprintf() with the value of @p fmt and
1980  * the following arguments.
1981  *
1982  * @returns the number of characters printed
1983  */
1984 int
1985 device_printf(device_t dev, const char * fmt, ...)
1986 {
1987 	char buf[128];
1988 	struct sbuf sb;
1989 	const char *name;
1990 	va_list ap;
1991 	size_t retval;
1992 
1993 	retval = 0;
1994 
1995 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1996 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1997 
1998 	name = device_get_name(dev);
1999 
2000 	if (name == NULL)
2001 		sbuf_cat(&sb, "unknown: ");
2002 	else
2003 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2004 
2005 	va_start(ap, fmt);
2006 	sbuf_vprintf(&sb, fmt, ap);
2007 	va_end(ap);
2008 
2009 	sbuf_finish(&sb);
2010 	sbuf_delete(&sb);
2011 
2012 	return (retval);
2013 }
2014 
2015 /**
2016  * @brief Print the name of the device followed by a colon, a space
2017  * and the result of calling log() with the value of @p fmt and
2018  * the following arguments.
2019  *
2020  * @returns the number of characters printed
2021  */
2022 int
2023 device_log(device_t dev, int pri, const char * fmt, ...)
2024 {
2025 	char buf[128];
2026 	struct sbuf sb;
2027 	const char *name;
2028 	va_list ap;
2029 	size_t retval;
2030 
2031 	retval = 0;
2032 
2033 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2034 
2035 	name = device_get_name(dev);
2036 
2037 	if (name == NULL)
2038 		sbuf_cat(&sb, "unknown: ");
2039 	else
2040 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2041 
2042 	va_start(ap, fmt);
2043 	sbuf_vprintf(&sb, fmt, ap);
2044 	va_end(ap);
2045 
2046 	sbuf_finish(&sb);
2047 
2048 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2049 	retval = sbuf_len(&sb);
2050 
2051 	sbuf_delete(&sb);
2052 
2053 	return (retval);
2054 }
2055 
2056 /**
2057  * @internal
2058  */
2059 static void
2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2061 {
2062 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2063 		free(dev->desc, M_BUS);
2064 		dev->flags &= ~DF_DESCMALLOCED;
2065 		dev->desc = NULL;
2066 	}
2067 
2068 	if (allocated && desc)
2069 		dev->flags |= DF_DESCMALLOCED;
2070 	dev->desc = __DECONST(char *, desc);
2071 
2072 	bus_data_generation_update();
2073 }
2074 
2075 /**
2076  * @brief Set the device's description
2077  *
2078  * The value of @c desc should be a string constant that will not
2079  * change (at least until the description is changed in a subsequent
2080  * call to device_set_desc() or device_set_desc_copy()).
2081  */
2082 void
2083 device_set_desc(device_t dev, const char *desc)
2084 {
2085 	device_set_desc_internal(dev, desc, false);
2086 }
2087 
2088 /**
2089  * @brief Set the device's description
2090  *
2091  * A printf-like version of device_set_desc().
2092  */
2093 void
2094 device_set_descf(device_t dev, const char *fmt, ...)
2095 {
2096 	va_list ap;
2097 	char *buf = NULL;
2098 
2099 	va_start(ap, fmt);
2100 	vasprintf(&buf, M_BUS, fmt, ap);
2101 	va_end(ap);
2102 	device_set_desc_internal(dev, buf, true);
2103 }
2104 
2105 /**
2106  * @brief Set the device's description
2107  *
2108  * The string pointed to by @c desc is copied. Use this function if
2109  * the device description is generated, (e.g. with sprintf()).
2110  */
2111 void
2112 device_set_desc_copy(device_t dev, const char *desc)
2113 {
2114 	char *buf;
2115 
2116 	buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2117 	device_set_desc_internal(dev, buf, true);
2118 }
2119 
2120 /**
2121  * @brief Set the device's flags
2122  */
2123 void
2124 device_set_flags(device_t dev, uint32_t flags)
2125 {
2126 	dev->devflags = flags;
2127 }
2128 
2129 /**
2130  * @brief Return the device's softc field
2131  *
2132  * The softc is allocated and zeroed when a driver is attached, based
2133  * on the size field of the driver.
2134  */
2135 void *
2136 device_get_softc(device_t dev)
2137 {
2138 	return (dev->softc);
2139 }
2140 
2141 /**
2142  * @brief Set the device's softc field
2143  *
2144  * Most drivers do not need to use this since the softc is allocated
2145  * automatically when the driver is attached.
2146  */
2147 void
2148 device_set_softc(device_t dev, void *softc)
2149 {
2150 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2151 		free(dev->softc, M_BUS_SC);
2152 	dev->softc = softc;
2153 	if (dev->softc)
2154 		dev->flags |= DF_EXTERNALSOFTC;
2155 	else
2156 		dev->flags &= ~DF_EXTERNALSOFTC;
2157 }
2158 
2159 /**
2160  * @brief Free claimed softc
2161  *
2162  * Most drivers do not need to use this since the softc is freed
2163  * automatically when the driver is detached.
2164  */
2165 void
2166 device_free_softc(void *softc)
2167 {
2168 	free(softc, M_BUS_SC);
2169 }
2170 
2171 /**
2172  * @brief Claim softc
2173  *
2174  * This function can be used to let the driver free the automatically
2175  * allocated softc using "device_free_softc()". This function is
2176  * useful when the driver is refcounting the softc and the softc
2177  * cannot be freed when the "device_detach" method is called.
2178  */
2179 void
2180 device_claim_softc(device_t dev)
2181 {
2182 	if (dev->softc)
2183 		dev->flags |= DF_EXTERNALSOFTC;
2184 	else
2185 		dev->flags &= ~DF_EXTERNALSOFTC;
2186 }
2187 
2188 /**
2189  * @brief Get the device's ivars field
2190  *
2191  * The ivars field is used by the parent device to store per-device
2192  * state (e.g. the physical location of the device or a list of
2193  * resources).
2194  */
2195 void *
2196 device_get_ivars(device_t dev)
2197 {
2198 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2199 	return (dev->ivars);
2200 }
2201 
2202 /**
2203  * @brief Set the device's ivars field
2204  */
2205 void
2206 device_set_ivars(device_t dev, void * ivars)
2207 {
2208 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2209 	dev->ivars = ivars;
2210 }
2211 
2212 /**
2213  * @brief Return the device's state
2214  */
2215 device_state_t
2216 device_get_state(device_t dev)
2217 {
2218 	return (dev->state);
2219 }
2220 
2221 /**
2222  * @brief Set the DF_ENABLED flag for the device
2223  */
2224 void
2225 device_enable(device_t dev)
2226 {
2227 	dev->flags |= DF_ENABLED;
2228 }
2229 
2230 /**
2231  * @brief Clear the DF_ENABLED flag for the device
2232  */
2233 void
2234 device_disable(device_t dev)
2235 {
2236 	dev->flags &= ~DF_ENABLED;
2237 }
2238 
2239 /**
2240  * @brief Increment the busy counter for the device
2241  */
2242 void
2243 device_busy(device_t dev)
2244 {
2245 
2246 	/*
2247 	 * Mark the device as busy, recursively up the tree if this busy count
2248 	 * goes 0->1.
2249 	 */
2250 	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2251 		device_busy(dev->parent);
2252 }
2253 
2254 /**
2255  * @brief Decrement the busy counter for the device
2256  */
2257 void
2258 device_unbusy(device_t dev)
2259 {
2260 
2261 	/*
2262 	 * Mark the device as unbsy, recursively if this is the last busy count.
2263 	 */
2264 	if (refcount_release(&dev->busy) && dev->parent != NULL)
2265 		device_unbusy(dev->parent);
2266 }
2267 
2268 /**
2269  * @brief Set the DF_QUIET flag for the device
2270  */
2271 void
2272 device_quiet(device_t dev)
2273 {
2274 	dev->flags |= DF_QUIET;
2275 }
2276 
2277 /**
2278  * @brief Set the DF_QUIET_CHILDREN flag for the device
2279  */
2280 void
2281 device_quiet_children(device_t dev)
2282 {
2283 	dev->flags |= DF_QUIET_CHILDREN;
2284 }
2285 
2286 /**
2287  * @brief Clear the DF_QUIET flag for the device
2288  */
2289 void
2290 device_verbose(device_t dev)
2291 {
2292 	dev->flags &= ~DF_QUIET;
2293 }
2294 
2295 ssize_t
2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2297     device_property_type_t type)
2298 {
2299 	device_t bus = device_get_parent(dev);
2300 
2301 	switch (type) {
2302 	case DEVICE_PROP_ANY:
2303 	case DEVICE_PROP_BUFFER:
2304 	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2305 		break;
2306 	case DEVICE_PROP_UINT32:
2307 		if (sz % 4 != 0)
2308 			return (-1);
2309 		break;
2310 	case DEVICE_PROP_UINT64:
2311 		if (sz % 8 != 0)
2312 			return (-1);
2313 		break;
2314 	default:
2315 		return (-1);
2316 	}
2317 
2318 	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2319 }
2320 
2321 bool
2322 device_has_property(device_t dev, const char *prop)
2323 {
2324 	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2325 }
2326 
2327 /**
2328  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2329  */
2330 int
2331 device_has_quiet_children(device_t dev)
2332 {
2333 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2334 }
2335 
2336 /**
2337  * @brief Return non-zero if the DF_QUIET flag is set on the device
2338  */
2339 int
2340 device_is_quiet(device_t dev)
2341 {
2342 	return ((dev->flags & DF_QUIET) != 0);
2343 }
2344 
2345 /**
2346  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2347  */
2348 int
2349 device_is_enabled(device_t dev)
2350 {
2351 	return ((dev->flags & DF_ENABLED) != 0);
2352 }
2353 
2354 /**
2355  * @brief Return non-zero if the device was successfully probed
2356  */
2357 int
2358 device_is_alive(device_t dev)
2359 {
2360 	return (dev->state >= DS_ALIVE);
2361 }
2362 
2363 /**
2364  * @brief Return non-zero if the device currently has a driver
2365  * attached to it
2366  */
2367 int
2368 device_is_attached(device_t dev)
2369 {
2370 	return (dev->state >= DS_ATTACHED);
2371 }
2372 
2373 /**
2374  * @brief Return non-zero if the device is currently suspended.
2375  */
2376 int
2377 device_is_suspended(device_t dev)
2378 {
2379 	return ((dev->flags & DF_SUSPENDED) != 0);
2380 }
2381 
2382 /**
2383  * @brief Set the devclass of a device
2384  * @see devclass_add_device().
2385  */
2386 int
2387 device_set_devclass(device_t dev, const char *classname)
2388 {
2389 	devclass_t dc;
2390 	int error;
2391 
2392 	if (!classname) {
2393 		if (dev->devclass)
2394 			devclass_delete_device(dev->devclass, dev);
2395 		return (0);
2396 	}
2397 
2398 	if (dev->devclass) {
2399 		printf("device_set_devclass: device class already set\n");
2400 		return (EINVAL);
2401 	}
2402 
2403 	dc = devclass_find_internal(classname, NULL, TRUE);
2404 	if (!dc)
2405 		return (ENOMEM);
2406 
2407 	error = devclass_add_device(dc, dev);
2408 
2409 	bus_data_generation_update();
2410 	return (error);
2411 }
2412 
2413 /**
2414  * @brief Set the devclass of a device and mark the devclass fixed.
2415  * @see device_set_devclass()
2416  */
2417 int
2418 device_set_devclass_fixed(device_t dev, const char *classname)
2419 {
2420 	int error;
2421 
2422 	if (classname == NULL)
2423 		return (EINVAL);
2424 
2425 	error = device_set_devclass(dev, classname);
2426 	if (error)
2427 		return (error);
2428 	dev->flags |= DF_FIXEDCLASS;
2429 	return (0);
2430 }
2431 
2432 /**
2433  * @brief Query the device to determine if it's of a fixed devclass
2434  * @see device_set_devclass_fixed()
2435  */
2436 bool
2437 device_is_devclass_fixed(device_t dev)
2438 {
2439 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2440 }
2441 
2442 /**
2443  * @brief Set the driver of a device
2444  *
2445  * @retval 0		success
2446  * @retval EBUSY	the device already has a driver attached
2447  * @retval ENOMEM	a memory allocation failure occurred
2448  */
2449 int
2450 device_set_driver(device_t dev, driver_t *driver)
2451 {
2452 	int domain;
2453 	struct domainset *policy;
2454 
2455 	if (dev->state >= DS_ATTACHED)
2456 		return (EBUSY);
2457 
2458 	if (dev->driver == driver)
2459 		return (0);
2460 
2461 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2462 		free(dev->softc, M_BUS_SC);
2463 		dev->softc = NULL;
2464 	}
2465 	device_set_desc(dev, NULL);
2466 	kobj_delete((kobj_t) dev, NULL);
2467 	dev->driver = driver;
2468 	if (driver) {
2469 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2470 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2471 			if (bus_get_domain(dev, &domain) == 0)
2472 				policy = DOMAINSET_PREF(domain);
2473 			else
2474 				policy = DOMAINSET_RR();
2475 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2476 			    policy, M_NOWAIT | M_ZERO);
2477 			if (!dev->softc) {
2478 				kobj_delete((kobj_t) dev, NULL);
2479 				kobj_init((kobj_t) dev, &null_class);
2480 				dev->driver = NULL;
2481 				return (ENOMEM);
2482 			}
2483 		}
2484 	} else {
2485 		kobj_init((kobj_t) dev, &null_class);
2486 	}
2487 
2488 	bus_data_generation_update();
2489 	return (0);
2490 }
2491 
2492 /**
2493  * @brief Probe a device, and return this status.
2494  *
2495  * This function is the core of the device autoconfiguration
2496  * system. Its purpose is to select a suitable driver for a device and
2497  * then call that driver to initialise the hardware appropriately. The
2498  * driver is selected by calling the DEVICE_PROBE() method of a set of
2499  * candidate drivers and then choosing the driver which returned the
2500  * best value. This driver is then attached to the device using
2501  * device_attach().
2502  *
2503  * The set of suitable drivers is taken from the list of drivers in
2504  * the parent device's devclass. If the device was originally created
2505  * with a specific class name (see device_add_child()), only drivers
2506  * with that name are probed, otherwise all drivers in the devclass
2507  * are probed. If no drivers return successful probe values in the
2508  * parent devclass, the search continues in the parent of that
2509  * devclass (see devclass_get_parent()) if any.
2510  *
2511  * @param dev		the device to initialise
2512  *
2513  * @retval 0		success
2514  * @retval ENXIO	no driver was found
2515  * @retval ENOMEM	memory allocation failure
2516  * @retval non-zero	some other unix error code
2517  * @retval -1		Device already attached
2518  */
2519 int
2520 device_probe(device_t dev)
2521 {
2522 	int error;
2523 
2524 	bus_topo_assert();
2525 
2526 	if (dev->state >= DS_ALIVE)
2527 		return (-1);
2528 
2529 	if (!(dev->flags & DF_ENABLED)) {
2530 		if (bootverbose && device_get_name(dev) != NULL) {
2531 			device_print_prettyname(dev);
2532 			printf("not probed (disabled)\n");
2533 		}
2534 		return (-1);
2535 	}
2536 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2537 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2538 		    !(dev->flags & DF_DONENOMATCH)) {
2539 			device_handle_nomatch(dev);
2540 		}
2541 		return (error);
2542 	}
2543 	return (0);
2544 }
2545 
2546 /**
2547  * @brief Probe a device and attach a driver if possible
2548  *
2549  * calls device_probe() and attaches if that was successful.
2550  */
2551 int
2552 device_probe_and_attach(device_t dev)
2553 {
2554 	int error;
2555 
2556 	bus_topo_assert();
2557 
2558 	error = device_probe(dev);
2559 	if (error == -1)
2560 		return (0);
2561 	else if (error != 0)
2562 		return (error);
2563 
2564 	return (device_attach(dev));
2565 }
2566 
2567 /**
2568  * @brief Attach a device driver to a device
2569  *
2570  * This function is a wrapper around the DEVICE_ATTACH() driver
2571  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2572  * device's sysctl tree, optionally prints a description of the device
2573  * and queues a notification event for user-based device management
2574  * services.
2575  *
2576  * Normally this function is only called internally from
2577  * device_probe_and_attach().
2578  *
2579  * @param dev		the device to initialise
2580  *
2581  * @retval 0		success
2582  * @retval ENXIO	no driver was found
2583  * @retval ENOMEM	memory allocation failure
2584  * @retval non-zero	some other unix error code
2585  */
2586 int
2587 device_attach(device_t dev)
2588 {
2589 	uint64_t attachtime;
2590 	uint16_t attachentropy;
2591 	int error;
2592 
2593 	if (resource_disabled(dev->driver->name, dev->unit)) {
2594 		/*
2595 		 * Mostly detach the device, but leave it attached to
2596 		 * the devclass to reserve the name and unit.
2597 		 */
2598 		device_disable(dev);
2599 		(void)device_set_driver(dev, NULL);
2600 		dev->state = DS_NOTPRESENT;
2601 		if (bootverbose)
2602 			 device_printf(dev, "disabled via hints entry\n");
2603 		return (ENXIO);
2604 	}
2605 
2606 	KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2607 	    ("device_attach: curthread is not in default vnet"));
2608 	CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2609 
2610 	device_sysctl_init(dev);
2611 	if (!device_is_quiet(dev))
2612 		device_print_child(dev->parent, dev);
2613 	attachtime = get_cyclecount();
2614 	dev->state = DS_ATTACHING;
2615 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2616 		printf("device_attach: %s%d attach returned %d\n",
2617 		    dev->driver->name, dev->unit, error);
2618 		BUS_CHILD_DETACHED(dev->parent, dev);
2619 		if (disable_failed_devs) {
2620 			/*
2621 			 * When the user has asked to disable failed devices, we
2622 			 * directly disable the device, but leave it in the
2623 			 * attaching state. It will not try to probe/attach the
2624 			 * device further. This leaves the device numbering
2625 			 * intact for other similar devices in the system. It
2626 			 * can be removed from this state with devctl.
2627 			 */
2628 			device_disable(dev);
2629 		} else {
2630 			/*
2631 			 * Otherwise, when attach fails, tear down the state
2632 			 * around that so we can retry when, for example, new
2633 			 * drivers are loaded.
2634 			 */
2635 			if (!(dev->flags & DF_FIXEDCLASS))
2636 				devclass_delete_device(dev->devclass, dev);
2637 			(void)device_set_driver(dev, NULL);
2638 			device_sysctl_fini(dev);
2639 			KASSERT(dev->busy == 0, ("attach failed but busy"));
2640 			dev->state = DS_NOTPRESENT;
2641 		}
2642 		CURVNET_RESTORE();
2643 		return (error);
2644 	}
2645 	CURVNET_RESTORE();
2646 	dev->flags |= DF_ATTACHED_ONCE;
2647 	/*
2648 	 * We only need the low bits of this time, but ranges from tens to thousands
2649 	 * have been seen, so keep 2 bytes' worth.
2650 	 */
2651 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2652 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2653 	device_sysctl_update(dev);
2654 	dev->state = DS_ATTACHED;
2655 	dev->flags &= ~DF_DONENOMATCH;
2656 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2657 	return (0);
2658 }
2659 
2660 /**
2661  * @brief Detach a driver from a device
2662  *
2663  * This function is a wrapper around the DEVICE_DETACH() driver
2664  * method. If the call to DEVICE_DETACH() succeeds, it calls
2665  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2666  * notification event for user-based device management services and
2667  * cleans up the device's sysctl tree.
2668  *
2669  * @param dev		the device to un-initialise
2670  *
2671  * @retval 0		success
2672  * @retval ENXIO	no driver was found
2673  * @retval ENOMEM	memory allocation failure
2674  * @retval non-zero	some other unix error code
2675  */
2676 int
2677 device_detach(device_t dev)
2678 {
2679 	int error;
2680 
2681 	bus_topo_assert();
2682 
2683 	PDEBUG(("%s", DEVICENAME(dev)));
2684 	if (dev->busy > 0)
2685 		return (EBUSY);
2686 	if (dev->state == DS_ATTACHING) {
2687 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2688 		return (EBUSY);
2689 	}
2690 	if (dev->state != DS_ATTACHED)
2691 		return (0);
2692 
2693 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2694 	if ((error = DEVICE_DETACH(dev)) != 0) {
2695 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2696 		    EVHDEV_DETACH_FAILED);
2697 		return (error);
2698 	} else {
2699 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2700 		    EVHDEV_DETACH_COMPLETE);
2701 	}
2702 	if (!device_is_quiet(dev))
2703 		device_printf(dev, "detached\n");
2704 	if (dev->parent)
2705 		BUS_CHILD_DETACHED(dev->parent, dev);
2706 
2707 	if (!(dev->flags & DF_FIXEDCLASS))
2708 		devclass_delete_device(dev->devclass, dev);
2709 
2710 	device_verbose(dev);
2711 	dev->state = DS_NOTPRESENT;
2712 	(void)device_set_driver(dev, NULL);
2713 	device_sysctl_fini(dev);
2714 
2715 	return (0);
2716 }
2717 
2718 /**
2719  * @brief Tells a driver to quiesce itself.
2720  *
2721  * This function is a wrapper around the DEVICE_QUIESCE() driver
2722  * method. If the call to DEVICE_QUIESCE() succeeds.
2723  *
2724  * @param dev		the device to quiesce
2725  *
2726  * @retval 0		success
2727  * @retval ENXIO	no driver was found
2728  * @retval ENOMEM	memory allocation failure
2729  * @retval non-zero	some other unix error code
2730  */
2731 int
2732 device_quiesce(device_t dev)
2733 {
2734 	PDEBUG(("%s", DEVICENAME(dev)));
2735 	if (dev->busy > 0)
2736 		return (EBUSY);
2737 	if (dev->state != DS_ATTACHED)
2738 		return (0);
2739 
2740 	return (DEVICE_QUIESCE(dev));
2741 }
2742 
2743 /**
2744  * @brief Notify a device of system shutdown
2745  *
2746  * This function calls the DEVICE_SHUTDOWN() driver method if the
2747  * device currently has an attached driver.
2748  *
2749  * @returns the value returned by DEVICE_SHUTDOWN()
2750  */
2751 int
2752 device_shutdown(device_t dev)
2753 {
2754 	if (dev->state < DS_ATTACHED)
2755 		return (0);
2756 	return (DEVICE_SHUTDOWN(dev));
2757 }
2758 
2759 /**
2760  * @brief Set the unit number of a device
2761  *
2762  * This function can be used to override the unit number used for a
2763  * device (e.g. to wire a device to a pre-configured unit number).
2764  */
2765 int
2766 device_set_unit(device_t dev, int unit)
2767 {
2768 	devclass_t dc;
2769 	int err;
2770 
2771 	if (unit == dev->unit)
2772 		return (0);
2773 	dc = device_get_devclass(dev);
2774 	if (unit < dc->maxunit && dc->devices[unit])
2775 		return (EBUSY);
2776 	err = devclass_delete_device(dc, dev);
2777 	if (err)
2778 		return (err);
2779 	dev->unit = unit;
2780 	err = devclass_add_device(dc, dev);
2781 	if (err)
2782 		return (err);
2783 
2784 	bus_data_generation_update();
2785 	return (0);
2786 }
2787 
2788 /*======================================*/
2789 /*
2790  * Some useful method implementations to make life easier for bus drivers.
2791  */
2792 
2793 /**
2794  * @brief Initialize a resource mapping request
2795  *
2796  * This is the internal implementation of the public API
2797  * resource_init_map_request.  Callers may be using a different layout
2798  * of struct resource_map_request than the kernel, so callers pass in
2799  * the size of the structure they are using to identify the structure
2800  * layout.
2801  */
2802 void
2803 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2804 {
2805 	bzero(args, sz);
2806 	args->size = sz;
2807 	args->memattr = VM_MEMATTR_DEVICE;
2808 }
2809 
2810 /**
2811  * @brief Validate a resource mapping request
2812  *
2813  * Translate a device driver's mapping request (@p in) to a struct
2814  * resource_map_request using the current structure layout (@p out).
2815  * In addition, validate the offset and length from the mapping
2816  * request against the bounds of the resource @p r.  If the offset or
2817  * length are invalid, fail with EINVAL.  If the offset and length are
2818  * valid, the absolute starting address of the requested mapping is
2819  * returned in @p startp and the length of the requested mapping is
2820  * returned in @p lengthp.
2821  */
2822 int
2823 resource_validate_map_request(struct resource *r,
2824     struct resource_map_request *in, struct resource_map_request *out,
2825     rman_res_t *startp, rman_res_t *lengthp)
2826 {
2827 	rman_res_t end, length, start;
2828 
2829 	/*
2830 	 * This assumes that any callers of this function are compiled
2831 	 * into the kernel and use the same version of the structure
2832 	 * as this file.
2833 	 */
2834 	MPASS(out->size == sizeof(struct resource_map_request));
2835 
2836 	if (in != NULL)
2837 		bcopy(in, out, imin(in->size, out->size));
2838 	start = rman_get_start(r) + out->offset;
2839 	if (out->length == 0)
2840 		length = rman_get_size(r);
2841 	else
2842 		length = out->length;
2843 	end = start + length - 1;
2844 	if (start > rman_get_end(r) || start < rman_get_start(r))
2845 		return (EINVAL);
2846 	if (end > rman_get_end(r) || end < start)
2847 		return (EINVAL);
2848 	*lengthp = length;
2849 	*startp = start;
2850 	return (0);
2851 }
2852 
2853 /**
2854  * @brief Initialise a resource list.
2855  *
2856  * @param rl		the resource list to initialise
2857  */
2858 void
2859 resource_list_init(struct resource_list *rl)
2860 {
2861 	STAILQ_INIT(rl);
2862 }
2863 
2864 /**
2865  * @brief Reclaim memory used by a resource list.
2866  *
2867  * This function frees the memory for all resource entries on the list
2868  * (if any).
2869  *
2870  * @param rl		the resource list to free
2871  */
2872 void
2873 resource_list_free(struct resource_list *rl)
2874 {
2875 	struct resource_list_entry *rle;
2876 
2877 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2878 		if (rle->res)
2879 			panic("resource_list_free: resource entry is busy");
2880 		STAILQ_REMOVE_HEAD(rl, link);
2881 		free(rle, M_BUS);
2882 	}
2883 }
2884 
2885 /**
2886  * @brief Add a resource entry.
2887  *
2888  * This function adds a resource entry using the given @p type, @p
2889  * start, @p end and @p count values. A rid value is chosen by
2890  * searching sequentially for the first unused rid starting at zero.
2891  *
2892  * @param rl		the resource list to edit
2893  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2894  * @param start		the start address of the resource
2895  * @param end		the end address of the resource
2896  * @param count		XXX end-start+1
2897  */
2898 int
2899 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2900     rman_res_t end, rman_res_t count)
2901 {
2902 	int rid;
2903 
2904 	rid = 0;
2905 	while (resource_list_find(rl, type, rid) != NULL)
2906 		rid++;
2907 	resource_list_add(rl, type, rid, start, end, count);
2908 	return (rid);
2909 }
2910 
2911 /**
2912  * @brief Add or modify a resource entry.
2913  *
2914  * If an existing entry exists with the same type and rid, it will be
2915  * modified using the given values of @p start, @p end and @p
2916  * count. If no entry exists, a new one will be created using the
2917  * given values.  The resource list entry that matches is then returned.
2918  *
2919  * @param rl		the resource list to edit
2920  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2921  * @param rid		the resource identifier
2922  * @param start		the start address of the resource
2923  * @param end		the end address of the resource
2924  * @param count		XXX end-start+1
2925  */
2926 struct resource_list_entry *
2927 resource_list_add(struct resource_list *rl, int type, int rid,
2928     rman_res_t start, rman_res_t end, rman_res_t count)
2929 {
2930 	struct resource_list_entry *rle;
2931 
2932 	rle = resource_list_find(rl, type, rid);
2933 	if (!rle) {
2934 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2935 		    M_NOWAIT);
2936 		if (!rle)
2937 			panic("resource_list_add: can't record entry");
2938 		STAILQ_INSERT_TAIL(rl, rle, link);
2939 		rle->type = type;
2940 		rle->rid = rid;
2941 		rle->res = NULL;
2942 		rle->flags = 0;
2943 	}
2944 
2945 	if (rle->res)
2946 		panic("resource_list_add: resource entry is busy");
2947 
2948 	rle->start = start;
2949 	rle->end = end;
2950 	rle->count = count;
2951 	return (rle);
2952 }
2953 
2954 /**
2955  * @brief Determine if a resource entry is busy.
2956  *
2957  * Returns true if a resource entry is busy meaning that it has an
2958  * associated resource that is not an unallocated "reserved" resource.
2959  *
2960  * @param rl		the resource list to search
2961  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2962  * @param rid		the resource identifier
2963  *
2964  * @returns Non-zero if the entry is busy, zero otherwise.
2965  */
2966 int
2967 resource_list_busy(struct resource_list *rl, int type, int rid)
2968 {
2969 	struct resource_list_entry *rle;
2970 
2971 	rle = resource_list_find(rl, type, rid);
2972 	if (rle == NULL || rle->res == NULL)
2973 		return (0);
2974 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2975 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2976 		    ("reserved resource is active"));
2977 		return (0);
2978 	}
2979 	return (1);
2980 }
2981 
2982 /**
2983  * @brief Determine if a resource entry is reserved.
2984  *
2985  * Returns true if a resource entry is reserved meaning that it has an
2986  * associated "reserved" resource.  The resource can either be
2987  * allocated or unallocated.
2988  *
2989  * @param rl		the resource list to search
2990  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2991  * @param rid		the resource identifier
2992  *
2993  * @returns Non-zero if the entry is reserved, zero otherwise.
2994  */
2995 int
2996 resource_list_reserved(struct resource_list *rl, int type, int rid)
2997 {
2998 	struct resource_list_entry *rle;
2999 
3000 	rle = resource_list_find(rl, type, rid);
3001 	if (rle != NULL && rle->flags & RLE_RESERVED)
3002 		return (1);
3003 	return (0);
3004 }
3005 
3006 /**
3007  * @brief Find a resource entry by type and rid.
3008  *
3009  * @param rl		the resource list to search
3010  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3011  * @param rid		the resource identifier
3012  *
3013  * @returns the resource entry pointer or NULL if there is no such
3014  * entry.
3015  */
3016 struct resource_list_entry *
3017 resource_list_find(struct resource_list *rl, int type, int rid)
3018 {
3019 	struct resource_list_entry *rle;
3020 
3021 	STAILQ_FOREACH(rle, rl, link) {
3022 		if (rle->type == type && rle->rid == rid)
3023 			return (rle);
3024 	}
3025 	return (NULL);
3026 }
3027 
3028 /**
3029  * @brief Delete a resource entry.
3030  *
3031  * @param rl		the resource list to edit
3032  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3033  * @param rid		the resource identifier
3034  */
3035 void
3036 resource_list_delete(struct resource_list *rl, int type, int rid)
3037 {
3038 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3039 
3040 	if (rle) {
3041 		if (rle->res != NULL)
3042 			panic("resource_list_delete: resource has not been released");
3043 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3044 		free(rle, M_BUS);
3045 	}
3046 }
3047 
3048 /**
3049  * @brief Allocate a reserved resource
3050  *
3051  * This can be used by buses to force the allocation of resources
3052  * that are always active in the system even if they are not allocated
3053  * by a driver (e.g. PCI BARs).  This function is usually called when
3054  * adding a new child to the bus.  The resource is allocated from the
3055  * parent bus when it is reserved.  The resource list entry is marked
3056  * with RLE_RESERVED to note that it is a reserved resource.
3057  *
3058  * Subsequent attempts to allocate the resource with
3059  * resource_list_alloc() will succeed the first time and will set
3060  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3061  * resource that has been allocated is released with
3062  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3063  * the actual resource remains allocated.  The resource can be released to
3064  * the parent bus by calling resource_list_unreserve().
3065  *
3066  * @param rl		the resource list to allocate from
3067  * @param bus		the parent device of @p child
3068  * @param child		the device for which the resource is being reserved
3069  * @param type		the type of resource to allocate
3070  * @param rid		a pointer to the resource identifier
3071  * @param start		hint at the start of the resource range - pass
3072  *			@c 0 for any start address
3073  * @param end		hint at the end of the resource range - pass
3074  *			@c ~0 for any end address
3075  * @param count		hint at the size of range required - pass @c 1
3076  *			for any size
3077  * @param flags		any extra flags to control the resource
3078  *			allocation - see @c RF_XXX flags in
3079  *			<sys/rman.h> for details
3080  *
3081  * @returns		the resource which was allocated or @c NULL if no
3082  *			resource could be allocated
3083  */
3084 struct resource *
3085 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3086     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3087 {
3088 	struct resource_list_entry *rle = NULL;
3089 	int passthrough = (device_get_parent(child) != bus);
3090 	struct resource *r;
3091 
3092 	if (passthrough)
3093 		panic(
3094     "resource_list_reserve() should only be called for direct children");
3095 	if (flags & RF_ACTIVE)
3096 		panic(
3097     "resource_list_reserve() should only reserve inactive resources");
3098 
3099 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3100 	    flags);
3101 	if (r != NULL) {
3102 		rle = resource_list_find(rl, type, *rid);
3103 		rle->flags |= RLE_RESERVED;
3104 	}
3105 	return (r);
3106 }
3107 
3108 /**
3109  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3110  *
3111  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3112  * and passing the allocation up to the parent of @p bus. This assumes
3113  * that the first entry of @c device_get_ivars(child) is a struct
3114  * resource_list. This also handles 'passthrough' allocations where a
3115  * child is a remote descendant of bus by passing the allocation up to
3116  * the parent of bus.
3117  *
3118  * Typically, a bus driver would store a list of child resources
3119  * somewhere in the child device's ivars (see device_get_ivars()) and
3120  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3121  * then call resource_list_alloc() to perform the allocation.
3122  *
3123  * @param rl		the resource list to allocate from
3124  * @param bus		the parent device of @p child
3125  * @param child		the device which is requesting an allocation
3126  * @param type		the type of resource to allocate
3127  * @param rid		a pointer to the resource identifier
3128  * @param start		hint at the start of the resource range - pass
3129  *			@c 0 for any start address
3130  * @param end		hint at the end of the resource range - pass
3131  *			@c ~0 for any end address
3132  * @param count		hint at the size of range required - pass @c 1
3133  *			for any size
3134  * @param flags		any extra flags to control the resource
3135  *			allocation - see @c RF_XXX flags in
3136  *			<sys/rman.h> for details
3137  *
3138  * @returns		the resource which was allocated or @c NULL if no
3139  *			resource could be allocated
3140  */
3141 struct resource *
3142 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3143     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3144 {
3145 	struct resource_list_entry *rle = NULL;
3146 	int passthrough = (device_get_parent(child) != bus);
3147 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3148 
3149 	if (passthrough) {
3150 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3151 		    type, rid, start, end, count, flags));
3152 	}
3153 
3154 	rle = resource_list_find(rl, type, *rid);
3155 
3156 	if (!rle)
3157 		return (NULL);		/* no resource of that type/rid */
3158 
3159 	if (rle->res) {
3160 		if (rle->flags & RLE_RESERVED) {
3161 			if (rle->flags & RLE_ALLOCATED)
3162 				return (NULL);
3163 			if ((flags & RF_ACTIVE) &&
3164 			    bus_activate_resource(child, type, *rid,
3165 			    rle->res) != 0)
3166 				return (NULL);
3167 			rle->flags |= RLE_ALLOCATED;
3168 			return (rle->res);
3169 		}
3170 		device_printf(bus,
3171 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3172 		    type, device_get_nameunit(child));
3173 		return (NULL);
3174 	}
3175 
3176 	if (isdefault) {
3177 		start = rle->start;
3178 		count = ulmax(count, rle->count);
3179 		end = ulmax(rle->end, start + count - 1);
3180 	}
3181 
3182 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3183 	    type, rid, start, end, count, flags);
3184 
3185 	/*
3186 	 * Record the new range.
3187 	 */
3188 	if (rle->res) {
3189 		rle->start = rman_get_start(rle->res);
3190 		rle->end = rman_get_end(rle->res);
3191 		rle->count = count;
3192 	}
3193 
3194 	return (rle->res);
3195 }
3196 
3197 /**
3198  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3199  *
3200  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3201  * used with resource_list_alloc().
3202  *
3203  * @param rl		the resource list which was allocated from
3204  * @param bus		the parent device of @p child
3205  * @param child		the device which is requesting a release
3206  * @param res		the resource to release
3207  *
3208  * @retval 0		success
3209  * @retval non-zero	a standard unix error code indicating what
3210  *			error condition prevented the operation
3211  */
3212 int
3213 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3214     struct resource *res)
3215 {
3216 	struct resource_list_entry *rle = NULL;
3217 	int passthrough = (device_get_parent(child) != bus);
3218 	int error;
3219 
3220 	if (passthrough) {
3221 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3222 		    res));
3223 	}
3224 
3225 	rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3226 
3227 	if (!rle)
3228 		panic("resource_list_release: can't find resource");
3229 	if (!rle->res)
3230 		panic("resource_list_release: resource entry is not busy");
3231 	if (rle->flags & RLE_RESERVED) {
3232 		if (rle->flags & RLE_ALLOCATED) {
3233 			if (rman_get_flags(res) & RF_ACTIVE) {
3234 				error = bus_deactivate_resource(child, res);
3235 				if (error)
3236 					return (error);
3237 			}
3238 			rle->flags &= ~RLE_ALLOCATED;
3239 			return (0);
3240 		}
3241 		return (EINVAL);
3242 	}
3243 
3244 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3245 	if (error)
3246 		return (error);
3247 
3248 	rle->res = NULL;
3249 	return (0);
3250 }
3251 
3252 /**
3253  * @brief Release all active resources of a given type
3254  *
3255  * Release all active resources of a specified type.  This is intended
3256  * to be used to cleanup resources leaked by a driver after detach or
3257  * a failed attach.
3258  *
3259  * @param rl		the resource list which was allocated from
3260  * @param bus		the parent device of @p child
3261  * @param child		the device whose active resources are being released
3262  * @param type		the type of resources to release
3263  *
3264  * @retval 0		success
3265  * @retval EBUSY	at least one resource was active
3266  */
3267 int
3268 resource_list_release_active(struct resource_list *rl, device_t bus,
3269     device_t child, int type)
3270 {
3271 	struct resource_list_entry *rle;
3272 	int error, retval;
3273 
3274 	retval = 0;
3275 	STAILQ_FOREACH(rle, rl, link) {
3276 		if (rle->type != type)
3277 			continue;
3278 		if (rle->res == NULL)
3279 			continue;
3280 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3281 		    RLE_RESERVED)
3282 			continue;
3283 		retval = EBUSY;
3284 		error = resource_list_release(rl, bus, child, rle->res);
3285 		if (error != 0)
3286 			device_printf(bus,
3287 			    "Failed to release active resource: %d\n", error);
3288 	}
3289 	return (retval);
3290 }
3291 
3292 /**
3293  * @brief Fully release a reserved resource
3294  *
3295  * Fully releases a resource reserved via resource_list_reserve().
3296  *
3297  * @param rl		the resource list which was allocated from
3298  * @param bus		the parent device of @p child
3299  * @param child		the device whose reserved resource is being released
3300  * @param type		the type of resource to release
3301  * @param rid		the resource identifier
3302  * @param res		the resource to release
3303  *
3304  * @retval 0		success
3305  * @retval non-zero	a standard unix error code indicating what
3306  *			error condition prevented the operation
3307  */
3308 int
3309 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3310     int type, int rid)
3311 {
3312 	struct resource_list_entry *rle = NULL;
3313 	int passthrough = (device_get_parent(child) != bus);
3314 
3315 	if (passthrough)
3316 		panic(
3317     "resource_list_unreserve() should only be called for direct children");
3318 
3319 	rle = resource_list_find(rl, type, rid);
3320 
3321 	if (!rle)
3322 		panic("resource_list_unreserve: can't find resource");
3323 	if (!(rle->flags & RLE_RESERVED))
3324 		return (EINVAL);
3325 	if (rle->flags & RLE_ALLOCATED)
3326 		return (EBUSY);
3327 	rle->flags &= ~RLE_RESERVED;
3328 	return (resource_list_release(rl, bus, child, rle->res));
3329 }
3330 
3331 /**
3332  * @brief Print a description of resources in a resource list
3333  *
3334  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3335  * The name is printed if at least one resource of the given type is available.
3336  * The format is used to print resource start and end.
3337  *
3338  * @param rl		the resource list to print
3339  * @param name		the name of @p type, e.g. @c "memory"
3340  * @param type		type type of resource entry to print
3341  * @param format	printf(9) format string to print resource
3342  *			start and end values
3343  *
3344  * @returns		the number of characters printed
3345  */
3346 int
3347 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3348     const char *format)
3349 {
3350 	struct resource_list_entry *rle;
3351 	int printed, retval;
3352 
3353 	printed = 0;
3354 	retval = 0;
3355 	/* Yes, this is kinda cheating */
3356 	STAILQ_FOREACH(rle, rl, link) {
3357 		if (rle->type == type) {
3358 			if (printed == 0)
3359 				retval += printf(" %s ", name);
3360 			else
3361 				retval += printf(",");
3362 			printed++;
3363 			retval += printf(format, rle->start);
3364 			if (rle->count > 1) {
3365 				retval += printf("-");
3366 				retval += printf(format, rle->start +
3367 						 rle->count - 1);
3368 			}
3369 		}
3370 	}
3371 	return (retval);
3372 }
3373 
3374 /**
3375  * @brief Releases all the resources in a list.
3376  *
3377  * @param rl		The resource list to purge.
3378  *
3379  * @returns		nothing
3380  */
3381 void
3382 resource_list_purge(struct resource_list *rl)
3383 {
3384 	struct resource_list_entry *rle;
3385 
3386 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3387 		if (rle->res)
3388 			bus_release_resource(rman_get_device(rle->res),
3389 			    rle->type, rle->rid, rle->res);
3390 		STAILQ_REMOVE_HEAD(rl, link);
3391 		free(rle, M_BUS);
3392 	}
3393 }
3394 
3395 device_t
3396 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3397 {
3398 	return (device_add_child_ordered(dev, order, name, unit));
3399 }
3400 
3401 /**
3402  * @brief Helper function for implementing DEVICE_PROBE()
3403  *
3404  * This function can be used to help implement the DEVICE_PROBE() for
3405  * a bus (i.e. a device which has other devices attached to it). It
3406  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3407  * devclass.
3408  */
3409 int
3410 bus_generic_probe(device_t dev)
3411 {
3412 	bus_identify_children(dev);
3413 	return (0);
3414 }
3415 
3416 /**
3417  * @brief Ask drivers to add child devices of the given device.
3418  *
3419  * This function allows drivers for child devices of a bus to identify
3420  * child devices and add them as children of the given device.  NB:
3421  * The driver for @param dev must implement the BUS_ADD_CHILD method.
3422  *
3423  * @param dev		the parent device
3424  */
3425 void
3426 bus_identify_children(device_t dev)
3427 {
3428 	devclass_t dc = dev->devclass;
3429 	driverlink_t dl;
3430 
3431 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3432 		/*
3433 		 * If this driver's pass is too high, then ignore it.
3434 		 * For most drivers in the default pass, this will
3435 		 * never be true.  For early-pass drivers they will
3436 		 * only call the identify routines of eligible drivers
3437 		 * when this routine is called.  Drivers for later
3438 		 * passes should have their identify routines called
3439 		 * on early-pass buses during BUS_NEW_PASS().
3440 		 */
3441 		if (dl->pass > bus_current_pass)
3442 			continue;
3443 		DEVICE_IDENTIFY(dl->driver, dev);
3444 	}
3445 }
3446 
3447 /**
3448  * @brief Helper function for implementing DEVICE_ATTACH()
3449  *
3450  * This function can be used to help implement the DEVICE_ATTACH() for
3451  * a bus. It calls device_probe_and_attach() for each of the device's
3452  * children.
3453  */
3454 int
3455 bus_generic_attach(device_t dev)
3456 {
3457 	bus_attach_children(dev);
3458 	return (0);
3459 }
3460 
3461 /**
3462  * @brief Probe and attach all children of the given device
3463  *
3464  * This function attempts to attach a device driver to each unattached
3465  * child of the given device using device_probe_and_attach().  If an
3466  * individual child fails to attach this function continues attaching
3467  * other children.
3468  *
3469  * @param dev		the parent device
3470  */
3471 void
3472 bus_attach_children(device_t dev)
3473 {
3474 	device_t child;
3475 
3476 	TAILQ_FOREACH(child, &dev->children, link) {
3477 		device_probe_and_attach(child);
3478 	}
3479 }
3480 
3481 /**
3482  * @brief Helper function for delaying attaching children
3483  *
3484  * Many buses can't run transactions on the bus which children need to probe and
3485  * attach until after interrupts and/or timers are running.  This function
3486  * delays their attach until interrupts and timers are enabled.
3487  */
3488 void
3489 bus_delayed_attach_children(device_t dev)
3490 {
3491 	/* Probe and attach the bus children when interrupts are available */
3492 	config_intrhook_oneshot((ich_func_t)bus_attach_children, dev);
3493 }
3494 
3495 /**
3496  * @brief Helper function for implementing DEVICE_DETACH()
3497  *
3498  * This function can be used to help implement the DEVICE_DETACH() for
3499  * a bus. It calls device_detach() for each of the device's
3500  * children.
3501  */
3502 int
3503 bus_generic_detach(device_t dev)
3504 {
3505 	int error;
3506 
3507 	error = bus_detach_children(dev);
3508 	if (error != 0)
3509 		return (error);
3510 
3511 	return (0);
3512 }
3513 
3514 /**
3515  * @brief Detach drivers from all children of a device
3516  *
3517  * This function attempts to detach a device driver from each attached
3518  * child of the given device using device_detach().  If an individual
3519  * child fails to detach this function stops and returns an error.
3520  * NB: Children that were successfully detached are not re-attached if
3521  * an error occurs.
3522  *
3523  * @param dev		the parent device
3524  *
3525  * @retval 0		success
3526  * @retval non-zero	a device would not detach
3527  */
3528 int
3529 bus_detach_children(device_t dev)
3530 {
3531 	device_t child;
3532 	int error;
3533 
3534 	/*
3535 	 * Detach children in the reverse order.
3536 	 * See bus_generic_suspend for details.
3537 	 */
3538 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3539 		if ((error = device_detach(child)) != 0)
3540 			return (error);
3541 	}
3542 
3543 	return (0);
3544 }
3545 
3546 /**
3547  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3548  *
3549  * This function can be used to help implement the DEVICE_SHUTDOWN()
3550  * for a bus. It calls device_shutdown() for each of the device's
3551  * children.
3552  */
3553 int
3554 bus_generic_shutdown(device_t dev)
3555 {
3556 	device_t child;
3557 
3558 	/*
3559 	 * Shut down children in the reverse order.
3560 	 * See bus_generic_suspend for details.
3561 	 */
3562 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3563 		device_shutdown(child);
3564 	}
3565 
3566 	return (0);
3567 }
3568 
3569 /**
3570  * @brief Default function for suspending a child device.
3571  *
3572  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3573  */
3574 int
3575 bus_generic_suspend_child(device_t dev, device_t child)
3576 {
3577 	int	error;
3578 
3579 	error = DEVICE_SUSPEND(child);
3580 
3581 	if (error == 0) {
3582 		child->flags |= DF_SUSPENDED;
3583 	} else {
3584 		printf("DEVICE_SUSPEND(%s) failed: %d\n",
3585 		    device_get_nameunit(child), error);
3586 	}
3587 
3588 	return (error);
3589 }
3590 
3591 /**
3592  * @brief Default function for resuming a child device.
3593  *
3594  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3595  */
3596 int
3597 bus_generic_resume_child(device_t dev, device_t child)
3598 {
3599 	DEVICE_RESUME(child);
3600 	child->flags &= ~DF_SUSPENDED;
3601 
3602 	return (0);
3603 }
3604 
3605 /**
3606  * @brief Helper function for implementing DEVICE_SUSPEND()
3607  *
3608  * This function can be used to help implement the DEVICE_SUSPEND()
3609  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3610  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3611  * operation is aborted and any devices which were suspended are
3612  * resumed immediately by calling their DEVICE_RESUME() methods.
3613  */
3614 int
3615 bus_generic_suspend(device_t dev)
3616 {
3617 	int		error;
3618 	device_t	child;
3619 
3620 	/*
3621 	 * Suspend children in the reverse order.
3622 	 * For most buses all children are equal, so the order does not matter.
3623 	 * Other buses, such as acpi, carefully order their child devices to
3624 	 * express implicit dependencies between them.  For such buses it is
3625 	 * safer to bring down devices in the reverse order.
3626 	 */
3627 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3628 		error = BUS_SUSPEND_CHILD(dev, child);
3629 		if (error != 0) {
3630 			child = TAILQ_NEXT(child, link);
3631 			if (child != NULL) {
3632 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3633 					BUS_RESUME_CHILD(dev, child);
3634 			}
3635 			return (error);
3636 		}
3637 	}
3638 	return (0);
3639 }
3640 
3641 /**
3642  * @brief Helper function for implementing DEVICE_RESUME()
3643  *
3644  * This function can be used to help implement the DEVICE_RESUME() for
3645  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3646  */
3647 int
3648 bus_generic_resume(device_t dev)
3649 {
3650 	device_t	child;
3651 
3652 	TAILQ_FOREACH(child, &dev->children, link) {
3653 		BUS_RESUME_CHILD(dev, child);
3654 		/* if resume fails, there's nothing we can usefully do... */
3655 	}
3656 	return (0);
3657 }
3658 
3659 /**
3660  * @brief Helper function for implementing BUS_RESET_POST
3661  *
3662  * Bus can use this function to implement common operations of
3663  * re-attaching or resuming the children after the bus itself was
3664  * reset, and after restoring bus-unique state of children.
3665  *
3666  * @param dev	The bus
3667  * #param flags	DEVF_RESET_*
3668  */
3669 int
3670 bus_helper_reset_post(device_t dev, int flags)
3671 {
3672 	device_t child;
3673 	int error, error1;
3674 
3675 	error = 0;
3676 	TAILQ_FOREACH(child, &dev->children,link) {
3677 		BUS_RESET_POST(dev, child);
3678 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3679 		    device_probe_and_attach(child) :
3680 		    BUS_RESUME_CHILD(dev, child);
3681 		if (error == 0 && error1 != 0)
3682 			error = error1;
3683 	}
3684 	return (error);
3685 }
3686 
3687 static void
3688 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3689 {
3690 	child = TAILQ_NEXT(child, link);
3691 	if (child == NULL)
3692 		return;
3693 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3694 		BUS_RESET_POST(dev, child);
3695 		if ((flags & DEVF_RESET_DETACH) != 0)
3696 			device_probe_and_attach(child);
3697 		else
3698 			BUS_RESUME_CHILD(dev, child);
3699 	}
3700 }
3701 
3702 /**
3703  * @brief Helper function for implementing BUS_RESET_PREPARE
3704  *
3705  * Bus can use this function to implement common operations of
3706  * detaching or suspending the children before the bus itself is
3707  * reset, and then save bus-unique state of children that must
3708  * persists around reset.
3709  *
3710  * @param dev	The bus
3711  * #param flags	DEVF_RESET_*
3712  */
3713 int
3714 bus_helper_reset_prepare(device_t dev, int flags)
3715 {
3716 	device_t child;
3717 	int error;
3718 
3719 	if (dev->state != DS_ATTACHED)
3720 		return (EBUSY);
3721 
3722 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3723 		if ((flags & DEVF_RESET_DETACH) != 0) {
3724 			error = device_get_state(child) == DS_ATTACHED ?
3725 			    device_detach(child) : 0;
3726 		} else {
3727 			error = BUS_SUSPEND_CHILD(dev, child);
3728 		}
3729 		if (error == 0) {
3730 			error = BUS_RESET_PREPARE(dev, child);
3731 			if (error != 0) {
3732 				if ((flags & DEVF_RESET_DETACH) != 0)
3733 					device_probe_and_attach(child);
3734 				else
3735 					BUS_RESUME_CHILD(dev, child);
3736 			}
3737 		}
3738 		if (error != 0) {
3739 			bus_helper_reset_prepare_rollback(dev, child, flags);
3740 			return (error);
3741 		}
3742 	}
3743 	return (0);
3744 }
3745 
3746 /**
3747  * @brief Helper function for implementing BUS_PRINT_CHILD().
3748  *
3749  * This function prints the first part of the ascii representation of
3750  * @p child, including its name, unit and description (if any - see
3751  * device_set_desc()).
3752  *
3753  * @returns the number of characters printed
3754  */
3755 int
3756 bus_print_child_header(device_t dev, device_t child)
3757 {
3758 	int	retval = 0;
3759 
3760 	if (device_get_desc(child)) {
3761 		retval += device_printf(child, "<%s>", device_get_desc(child));
3762 	} else {
3763 		retval += printf("%s", device_get_nameunit(child));
3764 	}
3765 
3766 	return (retval);
3767 }
3768 
3769 /**
3770  * @brief Helper function for implementing BUS_PRINT_CHILD().
3771  *
3772  * This function prints the last part of the ascii representation of
3773  * @p child, which consists of the string @c " on " followed by the
3774  * name and unit of the @p dev.
3775  *
3776  * @returns the number of characters printed
3777  */
3778 int
3779 bus_print_child_footer(device_t dev, device_t child)
3780 {
3781 	return (printf(" on %s\n", device_get_nameunit(dev)));
3782 }
3783 
3784 /**
3785  * @brief Helper function for implementing BUS_PRINT_CHILD().
3786  *
3787  * This function prints out the VM domain for the given device.
3788  *
3789  * @returns the number of characters printed
3790  */
3791 int
3792 bus_print_child_domain(device_t dev, device_t child)
3793 {
3794 	int domain;
3795 
3796 	/* No domain? Don't print anything */
3797 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3798 		return (0);
3799 
3800 	return (printf(" numa-domain %d", domain));
3801 }
3802 
3803 /**
3804  * @brief Helper function for implementing BUS_PRINT_CHILD().
3805  *
3806  * This function simply calls bus_print_child_header() followed by
3807  * bus_print_child_footer().
3808  *
3809  * @returns the number of characters printed
3810  */
3811 int
3812 bus_generic_print_child(device_t dev, device_t child)
3813 {
3814 	int	retval = 0;
3815 
3816 	retval += bus_print_child_header(dev, child);
3817 	retval += bus_print_child_domain(dev, child);
3818 	retval += bus_print_child_footer(dev, child);
3819 
3820 	return (retval);
3821 }
3822 
3823 /**
3824  * @brief Stub function for implementing BUS_READ_IVAR().
3825  *
3826  * @returns ENOENT
3827  */
3828 int
3829 bus_generic_read_ivar(device_t dev, device_t child, int index,
3830     uintptr_t * result)
3831 {
3832 	return (ENOENT);
3833 }
3834 
3835 /**
3836  * @brief Stub function for implementing BUS_WRITE_IVAR().
3837  *
3838  * @returns ENOENT
3839  */
3840 int
3841 bus_generic_write_ivar(device_t dev, device_t child, int index,
3842     uintptr_t value)
3843 {
3844 	return (ENOENT);
3845 }
3846 
3847 /**
3848  * @brief Helper function for implementing BUS_GET_PROPERTY().
3849  *
3850  * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3851  * until a non-default implementation is found.
3852  */
3853 ssize_t
3854 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3855     void *propvalue, size_t size, device_property_type_t type)
3856 {
3857 	if (device_get_parent(dev) != NULL)
3858 		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3859 		    propname, propvalue, size, type));
3860 
3861 	return (-1);
3862 }
3863 
3864 /**
3865  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3866  *
3867  * @returns NULL
3868  */
3869 struct resource_list *
3870 bus_generic_get_resource_list(device_t dev, device_t child)
3871 {
3872 	return (NULL);
3873 }
3874 
3875 /**
3876  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3877  *
3878  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3879  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3880  * and then calls device_probe_and_attach() for each unattached child.
3881  */
3882 void
3883 bus_generic_driver_added(device_t dev, driver_t *driver)
3884 {
3885 	device_t child;
3886 
3887 	DEVICE_IDENTIFY(driver, dev);
3888 	TAILQ_FOREACH(child, &dev->children, link) {
3889 		if (child->state == DS_NOTPRESENT)
3890 			device_probe_and_attach(child);
3891 	}
3892 }
3893 
3894 /**
3895  * @brief Helper function for implementing BUS_NEW_PASS().
3896  *
3897  * This implementing of BUS_NEW_PASS() first calls the identify
3898  * routines for any drivers that probe at the current pass.  Then it
3899  * walks the list of devices for this bus.  If a device is already
3900  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3901  * device is not already attached, it attempts to attach a driver to
3902  * it.
3903  */
3904 void
3905 bus_generic_new_pass(device_t dev)
3906 {
3907 	driverlink_t dl;
3908 	devclass_t dc;
3909 	device_t child;
3910 
3911 	dc = dev->devclass;
3912 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3913 		if (dl->pass == bus_current_pass)
3914 			DEVICE_IDENTIFY(dl->driver, dev);
3915 	}
3916 	TAILQ_FOREACH(child, &dev->children, link) {
3917 		if (child->state >= DS_ATTACHED)
3918 			BUS_NEW_PASS(child);
3919 		else if (child->state == DS_NOTPRESENT)
3920 			device_probe_and_attach(child);
3921 	}
3922 }
3923 
3924 /**
3925  * @brief Helper function for implementing BUS_SETUP_INTR().
3926  *
3927  * This simple implementation of BUS_SETUP_INTR() simply calls the
3928  * BUS_SETUP_INTR() method of the parent of @p dev.
3929  */
3930 int
3931 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3932     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3933     void **cookiep)
3934 {
3935 	/* Propagate up the bus hierarchy until someone handles it. */
3936 	if (dev->parent)
3937 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3938 		    filter, intr, arg, cookiep));
3939 	return (EINVAL);
3940 }
3941 
3942 /**
3943  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3944  *
3945  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3946  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3947  */
3948 int
3949 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3950     void *cookie)
3951 {
3952 	/* Propagate up the bus hierarchy until someone handles it. */
3953 	if (dev->parent)
3954 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3955 	return (EINVAL);
3956 }
3957 
3958 /**
3959  * @brief Helper function for implementing BUS_SUSPEND_INTR().
3960  *
3961  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3962  * BUS_SUSPEND_INTR() method of the parent of @p dev.
3963  */
3964 int
3965 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3966 {
3967 	/* Propagate up the bus hierarchy until someone handles it. */
3968 	if (dev->parent)
3969 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3970 	return (EINVAL);
3971 }
3972 
3973 /**
3974  * @brief Helper function for implementing BUS_RESUME_INTR().
3975  *
3976  * This simple implementation of BUS_RESUME_INTR() simply calls the
3977  * BUS_RESUME_INTR() method of the parent of @p dev.
3978  */
3979 int
3980 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3981 {
3982 	/* Propagate up the bus hierarchy until someone handles it. */
3983 	if (dev->parent)
3984 		return (BUS_RESUME_INTR(dev->parent, child, irq));
3985 	return (EINVAL);
3986 }
3987 
3988 /**
3989  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3990  *
3991  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3992  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3993  */
3994 int
3995 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3996     rman_res_t start, rman_res_t end)
3997 {
3998 	/* Propagate up the bus hierarchy until someone handles it. */
3999 	if (dev->parent)
4000 		return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
4001 	return (EINVAL);
4002 }
4003 
4004 /*
4005  * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
4006  *
4007  * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
4008  * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
4009  * parent, no translation happens.
4010  */
4011 int
4012 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
4013     rman_res_t *newstart)
4014 {
4015 	if (dev->parent)
4016 		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
4017 		    newstart));
4018 	*newstart = start;
4019 	return (0);
4020 }
4021 
4022 /**
4023  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4024  *
4025  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4026  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4027  */
4028 struct resource *
4029 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4030     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4031 {
4032 	/* Propagate up the bus hierarchy until someone handles it. */
4033 	if (dev->parent)
4034 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4035 		    start, end, count, flags));
4036 	return (NULL);
4037 }
4038 
4039 /**
4040  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4041  *
4042  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4043  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4044  */
4045 int
4046 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
4047 {
4048 	/* Propagate up the bus hierarchy until someone handles it. */
4049 	if (dev->parent)
4050 		return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
4051 	return (EINVAL);
4052 }
4053 
4054 /**
4055  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4056  *
4057  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4058  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4059  */
4060 int
4061 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4062 {
4063 	/* Propagate up the bus hierarchy until someone handles it. */
4064 	if (dev->parent)
4065 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4066 	return (EINVAL);
4067 }
4068 
4069 /**
4070  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4071  *
4072  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4073  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4074  */
4075 int
4076 bus_generic_deactivate_resource(device_t dev, device_t child,
4077     struct resource *r)
4078 {
4079 	/* Propagate up the bus hierarchy until someone handles it. */
4080 	if (dev->parent)
4081 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4082 	return (EINVAL);
4083 }
4084 
4085 /**
4086  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4087  *
4088  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4089  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4090  */
4091 int
4092 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4093     struct resource_map_request *args, struct resource_map *map)
4094 {
4095 	/* Propagate up the bus hierarchy until someone handles it. */
4096 	if (dev->parent)
4097 		return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4098 	return (EINVAL);
4099 }
4100 
4101 /**
4102  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4103  *
4104  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4105  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4106  */
4107 int
4108 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4109     struct resource_map *map)
4110 {
4111 	/* Propagate up the bus hierarchy until someone handles it. */
4112 	if (dev->parent)
4113 		return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4114 	return (EINVAL);
4115 }
4116 
4117 /**
4118  * @brief Helper function for implementing BUS_BIND_INTR().
4119  *
4120  * This simple implementation of BUS_BIND_INTR() simply calls the
4121  * BUS_BIND_INTR() method of the parent of @p dev.
4122  */
4123 int
4124 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4125     int cpu)
4126 {
4127 	/* Propagate up the bus hierarchy until someone handles it. */
4128 	if (dev->parent)
4129 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4130 	return (EINVAL);
4131 }
4132 
4133 /**
4134  * @brief Helper function for implementing BUS_CONFIG_INTR().
4135  *
4136  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4137  * BUS_CONFIG_INTR() method of the parent of @p dev.
4138  */
4139 int
4140 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4141     enum intr_polarity pol)
4142 {
4143 	/* Propagate up the bus hierarchy until someone handles it. */
4144 	if (dev->parent)
4145 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4146 	return (EINVAL);
4147 }
4148 
4149 /**
4150  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4151  *
4152  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4153  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4154  */
4155 int
4156 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4157     void *cookie, const char *descr)
4158 {
4159 	/* Propagate up the bus hierarchy until someone handles it. */
4160 	if (dev->parent)
4161 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4162 		    descr));
4163 	return (EINVAL);
4164 }
4165 
4166 /**
4167  * @brief Helper function for implementing BUS_GET_CPUS().
4168  *
4169  * This simple implementation of BUS_GET_CPUS() simply calls the
4170  * BUS_GET_CPUS() method of the parent of @p dev.
4171  */
4172 int
4173 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4174     size_t setsize, cpuset_t *cpuset)
4175 {
4176 	/* Propagate up the bus hierarchy until someone handles it. */
4177 	if (dev->parent != NULL)
4178 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4179 	return (EINVAL);
4180 }
4181 
4182 /**
4183  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4184  *
4185  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4186  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4187  */
4188 bus_dma_tag_t
4189 bus_generic_get_dma_tag(device_t dev, device_t child)
4190 {
4191 	/* Propagate up the bus hierarchy until someone handles it. */
4192 	if (dev->parent != NULL)
4193 		return (BUS_GET_DMA_TAG(dev->parent, child));
4194 	return (NULL);
4195 }
4196 
4197 /**
4198  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4199  *
4200  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4201  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4202  */
4203 bus_space_tag_t
4204 bus_generic_get_bus_tag(device_t dev, device_t child)
4205 {
4206 	/* Propagate up the bus hierarchy until someone handles it. */
4207 	if (dev->parent != NULL)
4208 		return (BUS_GET_BUS_TAG(dev->parent, child));
4209 	return ((bus_space_tag_t)0);
4210 }
4211 
4212 /**
4213  * @brief Helper function for implementing BUS_GET_RESOURCE().
4214  *
4215  * This implementation of BUS_GET_RESOURCE() uses the
4216  * resource_list_find() function to do most of the work. It calls
4217  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4218  * search.
4219  */
4220 int
4221 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4222     rman_res_t *startp, rman_res_t *countp)
4223 {
4224 	struct resource_list *		rl = NULL;
4225 	struct resource_list_entry *	rle = NULL;
4226 
4227 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4228 	if (!rl)
4229 		return (EINVAL);
4230 
4231 	rle = resource_list_find(rl, type, rid);
4232 	if (!rle)
4233 		return (ENOENT);
4234 
4235 	if (startp)
4236 		*startp = rle->start;
4237 	if (countp)
4238 		*countp = rle->count;
4239 
4240 	return (0);
4241 }
4242 
4243 /**
4244  * @brief Helper function for implementing BUS_SET_RESOURCE().
4245  *
4246  * This implementation of BUS_SET_RESOURCE() uses the
4247  * resource_list_add() function to do most of the work. It calls
4248  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4249  * edit.
4250  */
4251 int
4252 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4253     rman_res_t start, rman_res_t count)
4254 {
4255 	struct resource_list *		rl = NULL;
4256 
4257 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4258 	if (!rl)
4259 		return (EINVAL);
4260 
4261 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4262 
4263 	return (0);
4264 }
4265 
4266 /**
4267  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4268  *
4269  * This implementation of BUS_DELETE_RESOURCE() uses the
4270  * resource_list_delete() function to do most of the work. It calls
4271  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4272  * edit.
4273  */
4274 void
4275 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4276 {
4277 	struct resource_list *		rl = NULL;
4278 
4279 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4280 	if (!rl)
4281 		return;
4282 
4283 	resource_list_delete(rl, type, rid);
4284 
4285 	return;
4286 }
4287 
4288 /**
4289  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4290  *
4291  * This implementation of BUS_RELEASE_RESOURCE() uses the
4292  * resource_list_release() function to do most of the work. It calls
4293  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4294  */
4295 int
4296 bus_generic_rl_release_resource(device_t dev, device_t child,
4297     struct resource *r)
4298 {
4299 	struct resource_list *		rl = NULL;
4300 
4301 	if (device_get_parent(child) != dev)
4302 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4303 
4304 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4305 	if (!rl)
4306 		return (EINVAL);
4307 
4308 	return (resource_list_release(rl, dev, child, r));
4309 }
4310 
4311 /**
4312  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4313  *
4314  * This implementation of BUS_ALLOC_RESOURCE() uses the
4315  * resource_list_alloc() function to do most of the work. It calls
4316  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4317  */
4318 struct resource *
4319 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4320     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4321 {
4322 	struct resource_list *		rl = NULL;
4323 
4324 	if (device_get_parent(child) != dev)
4325 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4326 		    type, rid, start, end, count, flags));
4327 
4328 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4329 	if (!rl)
4330 		return (NULL);
4331 
4332 	return (resource_list_alloc(rl, dev, child, type, rid,
4333 	    start, end, count, flags));
4334 }
4335 
4336 /**
4337  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4338  *
4339  * This implementation of BUS_ALLOC_RESOURCE() allocates a
4340  * resource from a resource manager.  It uses BUS_GET_RMAN()
4341  * to obtain the resource manager.
4342  */
4343 struct resource *
4344 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4345     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4346 {
4347 	struct resource *r;
4348 	struct rman *rm;
4349 
4350 	rm = BUS_GET_RMAN(dev, type, flags);
4351 	if (rm == NULL)
4352 		return (NULL);
4353 
4354 	r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4355 	    child);
4356 	if (r == NULL)
4357 		return (NULL);
4358 	rman_set_rid(r, *rid);
4359 	rman_set_type(r, type);
4360 
4361 	if (flags & RF_ACTIVE) {
4362 		if (bus_activate_resource(child, type, *rid, r) != 0) {
4363 			rman_release_resource(r);
4364 			return (NULL);
4365 		}
4366 	}
4367 
4368 	return (r);
4369 }
4370 
4371 /**
4372  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4373  *
4374  * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4375  * if they were allocated from the resource manager returned by
4376  * BUS_GET_RMAN().
4377  */
4378 int
4379 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4380     struct resource *r, rman_res_t start, rman_res_t end)
4381 {
4382 	struct rman *rm;
4383 
4384 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4385 	if (rm == NULL)
4386 		return (ENXIO);
4387 	if (!rman_is_region_manager(r, rm))
4388 		return (EINVAL);
4389 	return (rman_adjust_resource(r, start, end));
4390 }
4391 
4392 /**
4393  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4394  *
4395  * This implementation of BUS_RELEASE_RESOURCE() releases resources
4396  * allocated by bus_generic_rman_alloc_resource.
4397  */
4398 int
4399 bus_generic_rman_release_resource(device_t dev, device_t child,
4400     struct resource *r)
4401 {
4402 #ifdef INVARIANTS
4403 	struct rman *rm;
4404 #endif
4405 	int error;
4406 
4407 #ifdef INVARIANTS
4408 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4409 	KASSERT(rman_is_region_manager(r, rm),
4410 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4411 #endif
4412 
4413 	if (rman_get_flags(r) & RF_ACTIVE) {
4414 		error = bus_deactivate_resource(child, r);
4415 		if (error != 0)
4416 			return (error);
4417 	}
4418 	return (rman_release_resource(r));
4419 }
4420 
4421 /**
4422  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4423  *
4424  * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4425  * allocated by bus_generic_rman_alloc_resource.
4426  */
4427 int
4428 bus_generic_rman_activate_resource(device_t dev, device_t child,
4429     struct resource *r)
4430 {
4431 	struct resource_map map;
4432 #ifdef INVARIANTS
4433 	struct rman *rm;
4434 #endif
4435 	int error, type;
4436 
4437 	type = rman_get_type(r);
4438 #ifdef INVARIANTS
4439 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4440 	KASSERT(rman_is_region_manager(r, rm),
4441 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4442 #endif
4443 
4444 	error = rman_activate_resource(r);
4445 	if (error != 0)
4446 		return (error);
4447 
4448 	switch (type) {
4449 	case SYS_RES_IOPORT:
4450 	case SYS_RES_MEMORY:
4451 		if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4452 			error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4453 			if (error != 0)
4454 				break;
4455 
4456 			rman_set_mapping(r, &map);
4457 		}
4458 		break;
4459 #ifdef INTRNG
4460 	case SYS_RES_IRQ:
4461 		error = intr_activate_irq(child, r);
4462 		break;
4463 #endif
4464 	}
4465 	if (error != 0)
4466 		rman_deactivate_resource(r);
4467 	return (error);
4468 }
4469 
4470 /**
4471  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4472  *
4473  * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4474  * resources allocated by bus_generic_rman_alloc_resource.
4475  */
4476 int
4477 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4478     struct resource *r)
4479 {
4480 	struct resource_map map;
4481 #ifdef INVARIANTS
4482 	struct rman *rm;
4483 #endif
4484 	int error, type;
4485 
4486 	type = rman_get_type(r);
4487 #ifdef INVARIANTS
4488 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4489 	KASSERT(rman_is_region_manager(r, rm),
4490 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4491 #endif
4492 
4493 	error = rman_deactivate_resource(r);
4494 	if (error != 0)
4495 		return (error);
4496 
4497 	switch (type) {
4498 	case SYS_RES_IOPORT:
4499 	case SYS_RES_MEMORY:
4500 		if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4501 			rman_get_mapping(r, &map);
4502 			BUS_UNMAP_RESOURCE(dev, child, r, &map);
4503 		}
4504 		break;
4505 #ifdef INTRNG
4506 	case SYS_RES_IRQ:
4507 		intr_deactivate_irq(child, r);
4508 		break;
4509 #endif
4510 	}
4511 	return (0);
4512 }
4513 
4514 /**
4515  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4516  *
4517  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4518  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4519  */
4520 int
4521 bus_generic_child_present(device_t dev, device_t child)
4522 {
4523 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4524 }
4525 
4526 /**
4527  * @brief Helper function for implementing BUS_GET_DOMAIN().
4528  *
4529  * This simple implementation of BUS_GET_DOMAIN() calls the
4530  * BUS_GET_DOMAIN() method of the parent of @p dev.  If @p dev
4531  * does not have a parent, the function fails with ENOENT.
4532  */
4533 int
4534 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4535 {
4536 	if (dev->parent)
4537 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4538 
4539 	return (ENOENT);
4540 }
4541 
4542 /**
4543  * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4544  *
4545  * This function knows how to (a) pass the request up the tree if there's
4546  * a parent and (b) Knows how to supply a FreeBSD locator.
4547  *
4548  * @param bus		bus in the walk up the tree
4549  * @param child		leaf node to print information about
4550  * @param locator	BUS_LOCATOR_xxx string for locator
4551  * @param sb		Buffer to print information into
4552  */
4553 int
4554 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4555     struct sbuf *sb)
4556 {
4557 	int rv = 0;
4558 	device_t parent;
4559 
4560 	/*
4561 	 * We don't recurse on ACPI since either we know the handle for the
4562 	 * device or we don't. And if we're in the generic routine, we don't
4563 	 * have a ACPI override. All other locators build up a path by having
4564 	 * their parents create a path and then adding the path element for this
4565 	 * node. That's why we recurse with parent, bus rather than the typical
4566 	 * parent, child: each spot in the tree is independent of what our child
4567 	 * will do with this path.
4568 	 */
4569 	parent = device_get_parent(bus);
4570 	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4571 		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4572 	}
4573 	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4574 		if (rv == 0) {
4575 			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4576 		}
4577 		return (rv);
4578 	}
4579 	/*
4580 	 * Don't know what to do. So assume we do nothing. Not sure that's
4581 	 * the right thing, but keeps us from having a big list here.
4582 	 */
4583 	return (0);
4584 }
4585 
4586 
4587 /**
4588  * @brief Helper function for implementing BUS_RESCAN().
4589  *
4590  * This null implementation of BUS_RESCAN() always fails to indicate
4591  * the bus does not support rescanning.
4592  */
4593 int
4594 bus_null_rescan(device_t dev)
4595 {
4596 	return (ENODEV);
4597 }
4598 
4599 /*
4600  * Some convenience functions to make it easier for drivers to use the
4601  * resource-management functions.  All these really do is hide the
4602  * indirection through the parent's method table, making for slightly
4603  * less-wordy code.  In the future, it might make sense for this code
4604  * to maintain some sort of a list of resources allocated by each device.
4605  */
4606 
4607 int
4608 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4609     struct resource **res)
4610 {
4611 	int i;
4612 
4613 	for (i = 0; rs[i].type != -1; i++)
4614 		res[i] = NULL;
4615 	for (i = 0; rs[i].type != -1; i++) {
4616 		res[i] = bus_alloc_resource_any(dev,
4617 		    rs[i].type, &rs[i].rid, rs[i].flags);
4618 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4619 			bus_release_resources(dev, rs, res);
4620 			return (ENXIO);
4621 		}
4622 	}
4623 	return (0);
4624 }
4625 
4626 void
4627 bus_release_resources(device_t dev, const struct resource_spec *rs,
4628     struct resource **res)
4629 {
4630 	int i;
4631 
4632 	for (i = 0; rs[i].type != -1; i++)
4633 		if (res[i] != NULL) {
4634 			bus_release_resource(
4635 			    dev, rs[i].type, rs[i].rid, res[i]);
4636 			res[i] = NULL;
4637 		}
4638 }
4639 
4640 /**
4641  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4642  *
4643  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4644  * parent of @p dev.
4645  */
4646 struct resource *
4647 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4648     rman_res_t end, rman_res_t count, u_int flags)
4649 {
4650 	struct resource *res;
4651 
4652 	if (dev->parent == NULL)
4653 		return (NULL);
4654 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4655 	    count, flags);
4656 	return (res);
4657 }
4658 
4659 /**
4660  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4661  *
4662  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4663  * parent of @p dev.
4664  */
4665 int
4666 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4667     rman_res_t end)
4668 {
4669 	if (dev->parent == NULL)
4670 		return (EINVAL);
4671 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4672 }
4673 
4674 int
4675 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4676     rman_res_t start, rman_res_t end)
4677 {
4678 	return (bus_adjust_resource(dev, r, start, end));
4679 }
4680 
4681 /**
4682  * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4683  *
4684  * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4685  * parent of @p dev.
4686  */
4687 int
4688 bus_translate_resource(device_t dev, int type, rman_res_t start,
4689     rman_res_t *newstart)
4690 {
4691 	if (dev->parent == NULL)
4692 		return (EINVAL);
4693 	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4694 }
4695 
4696 /**
4697  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4698  *
4699  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4700  * parent of @p dev.
4701  */
4702 int
4703 bus_activate_resource(device_t dev, struct resource *r)
4704 {
4705 	if (dev->parent == NULL)
4706 		return (EINVAL);
4707 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4708 }
4709 
4710 int
4711 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4712 {
4713 	return (bus_activate_resource(dev, r));
4714 }
4715 
4716 /**
4717  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4718  *
4719  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4720  * parent of @p dev.
4721  */
4722 int
4723 bus_deactivate_resource(device_t dev, struct resource *r)
4724 {
4725 	if (dev->parent == NULL)
4726 		return (EINVAL);
4727 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4728 }
4729 
4730 int
4731 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4732 {
4733 	return (bus_deactivate_resource(dev, r));
4734 }
4735 
4736 /**
4737  * @brief Wrapper function for BUS_MAP_RESOURCE().
4738  *
4739  * This function simply calls the BUS_MAP_RESOURCE() method of the
4740  * parent of @p dev.
4741  */
4742 int
4743 bus_map_resource(device_t dev, struct resource *r,
4744     struct resource_map_request *args, struct resource_map *map)
4745 {
4746 	if (dev->parent == NULL)
4747 		return (EINVAL);
4748 	return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4749 }
4750 
4751 int
4752 bus_map_resource_old(device_t dev, int type, struct resource *r,
4753     struct resource_map_request *args, struct resource_map *map)
4754 {
4755 	return (bus_map_resource(dev, r, args, map));
4756 }
4757 
4758 /**
4759  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4760  *
4761  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4762  * parent of @p dev.
4763  */
4764 int
4765 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4766 {
4767 	if (dev->parent == NULL)
4768 		return (EINVAL);
4769 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4770 }
4771 
4772 int
4773 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4774     struct resource_map *map)
4775 {
4776 	return (bus_unmap_resource(dev, r, map));
4777 }
4778 
4779 /**
4780  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4781  *
4782  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4783  * parent of @p dev.
4784  */
4785 int
4786 bus_release_resource(device_t dev, struct resource *r)
4787 {
4788 	int rv;
4789 
4790 	if (dev->parent == NULL)
4791 		return (EINVAL);
4792 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4793 	return (rv);
4794 }
4795 
4796 int
4797 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4798 {
4799 	return (bus_release_resource(dev, r));
4800 }
4801 
4802 /**
4803  * @brief Wrapper function for BUS_SETUP_INTR().
4804  *
4805  * This function simply calls the BUS_SETUP_INTR() method of the
4806  * parent of @p dev.
4807  */
4808 int
4809 bus_setup_intr(device_t dev, struct resource *r, int flags,
4810     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4811 {
4812 	int error;
4813 
4814 	if (dev->parent == NULL)
4815 		return (EINVAL);
4816 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4817 	    arg, cookiep);
4818 	if (error != 0)
4819 		return (error);
4820 	if (handler != NULL && !(flags & INTR_MPSAFE))
4821 		device_printf(dev, "[GIANT-LOCKED]\n");
4822 	return (0);
4823 }
4824 
4825 /**
4826  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4827  *
4828  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4829  * parent of @p dev.
4830  */
4831 int
4832 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4833 {
4834 	if (dev->parent == NULL)
4835 		return (EINVAL);
4836 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4837 }
4838 
4839 /**
4840  * @brief Wrapper function for BUS_SUSPEND_INTR().
4841  *
4842  * This function simply calls the BUS_SUSPEND_INTR() method of the
4843  * parent of @p dev.
4844  */
4845 int
4846 bus_suspend_intr(device_t dev, struct resource *r)
4847 {
4848 	if (dev->parent == NULL)
4849 		return (EINVAL);
4850 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4851 }
4852 
4853 /**
4854  * @brief Wrapper function for BUS_RESUME_INTR().
4855  *
4856  * This function simply calls the BUS_RESUME_INTR() method of the
4857  * parent of @p dev.
4858  */
4859 int
4860 bus_resume_intr(device_t dev, struct resource *r)
4861 {
4862 	if (dev->parent == NULL)
4863 		return (EINVAL);
4864 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4865 }
4866 
4867 /**
4868  * @brief Wrapper function for BUS_BIND_INTR().
4869  *
4870  * This function simply calls the BUS_BIND_INTR() method of the
4871  * parent of @p dev.
4872  */
4873 int
4874 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4875 {
4876 	if (dev->parent == NULL)
4877 		return (EINVAL);
4878 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4879 }
4880 
4881 /**
4882  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4883  *
4884  * This function first formats the requested description into a
4885  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4886  * the parent of @p dev.
4887  */
4888 int
4889 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4890     const char *fmt, ...)
4891 {
4892 	va_list ap;
4893 	char descr[MAXCOMLEN + 1];
4894 
4895 	if (dev->parent == NULL)
4896 		return (EINVAL);
4897 	va_start(ap, fmt);
4898 	vsnprintf(descr, sizeof(descr), fmt, ap);
4899 	va_end(ap);
4900 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4901 }
4902 
4903 /**
4904  * @brief Wrapper function for BUS_SET_RESOURCE().
4905  *
4906  * This function simply calls the BUS_SET_RESOURCE() method of the
4907  * parent of @p dev.
4908  */
4909 int
4910 bus_set_resource(device_t dev, int type, int rid,
4911     rman_res_t start, rman_res_t count)
4912 {
4913 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4914 	    start, count));
4915 }
4916 
4917 /**
4918  * @brief Wrapper function for BUS_GET_RESOURCE().
4919  *
4920  * This function simply calls the BUS_GET_RESOURCE() method of the
4921  * parent of @p dev.
4922  */
4923 int
4924 bus_get_resource(device_t dev, int type, int rid,
4925     rman_res_t *startp, rman_res_t *countp)
4926 {
4927 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4928 	    startp, countp));
4929 }
4930 
4931 /**
4932  * @brief Wrapper function for BUS_GET_RESOURCE().
4933  *
4934  * This function simply calls the BUS_GET_RESOURCE() method of the
4935  * parent of @p dev and returns the start value.
4936  */
4937 rman_res_t
4938 bus_get_resource_start(device_t dev, int type, int rid)
4939 {
4940 	rman_res_t start;
4941 	rman_res_t count;
4942 	int error;
4943 
4944 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4945 	    &start, &count);
4946 	if (error)
4947 		return (0);
4948 	return (start);
4949 }
4950 
4951 /**
4952  * @brief Wrapper function for BUS_GET_RESOURCE().
4953  *
4954  * This function simply calls the BUS_GET_RESOURCE() method of the
4955  * parent of @p dev and returns the count value.
4956  */
4957 rman_res_t
4958 bus_get_resource_count(device_t dev, int type, int rid)
4959 {
4960 	rman_res_t start;
4961 	rman_res_t count;
4962 	int error;
4963 
4964 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4965 	    &start, &count);
4966 	if (error)
4967 		return (0);
4968 	return (count);
4969 }
4970 
4971 /**
4972  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4973  *
4974  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4975  * parent of @p dev.
4976  */
4977 void
4978 bus_delete_resource(device_t dev, int type, int rid)
4979 {
4980 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4981 }
4982 
4983 /**
4984  * @brief Wrapper function for BUS_CHILD_PRESENT().
4985  *
4986  * This function simply calls the BUS_CHILD_PRESENT() method of the
4987  * parent of @p dev.
4988  */
4989 int
4990 bus_child_present(device_t child)
4991 {
4992 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4993 }
4994 
4995 /**
4996  * @brief Wrapper function for BUS_CHILD_PNPINFO().
4997  *
4998  * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4999  * dev.
5000  */
5001 int
5002 bus_child_pnpinfo(device_t child, struct sbuf *sb)
5003 {
5004 	device_t parent;
5005 
5006 	parent = device_get_parent(child);
5007 	if (parent == NULL)
5008 		return (0);
5009 	return (BUS_CHILD_PNPINFO(parent, child, sb));
5010 }
5011 
5012 /**
5013  * @brief Generic implementation that does nothing for bus_child_pnpinfo
5014  *
5015  * This function has the right signature and returns 0 since the sbuf is passed
5016  * to us to append to.
5017  */
5018 int
5019 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
5020 {
5021 	return (0);
5022 }
5023 
5024 /**
5025  * @brief Wrapper function for BUS_CHILD_LOCATION().
5026  *
5027  * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
5028  * @p dev.
5029  */
5030 int
5031 bus_child_location(device_t child, struct sbuf *sb)
5032 {
5033 	device_t parent;
5034 
5035 	parent = device_get_parent(child);
5036 	if (parent == NULL)
5037 		return (0);
5038 	return (BUS_CHILD_LOCATION(parent, child, sb));
5039 }
5040 
5041 /**
5042  * @brief Generic implementation that does nothing for bus_child_location
5043  *
5044  * This function has the right signature and returns 0 since the sbuf is passed
5045  * to us to append to.
5046  */
5047 int
5048 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
5049 {
5050 	return (0);
5051 }
5052 
5053 /**
5054  * @brief Wrapper function for BUS_GET_CPUS().
5055  *
5056  * This function simply calls the BUS_GET_CPUS() method of the
5057  * parent of @p dev.
5058  */
5059 int
5060 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5061 {
5062 	device_t parent;
5063 
5064 	parent = device_get_parent(dev);
5065 	if (parent == NULL)
5066 		return (EINVAL);
5067 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5068 }
5069 
5070 /**
5071  * @brief Wrapper function for BUS_GET_DMA_TAG().
5072  *
5073  * This function simply calls the BUS_GET_DMA_TAG() method of the
5074  * parent of @p dev.
5075  */
5076 bus_dma_tag_t
5077 bus_get_dma_tag(device_t dev)
5078 {
5079 	device_t parent;
5080 
5081 	parent = device_get_parent(dev);
5082 	if (parent == NULL)
5083 		return (NULL);
5084 	return (BUS_GET_DMA_TAG(parent, dev));
5085 }
5086 
5087 /**
5088  * @brief Wrapper function for BUS_GET_BUS_TAG().
5089  *
5090  * This function simply calls the BUS_GET_BUS_TAG() method of the
5091  * parent of @p dev.
5092  */
5093 bus_space_tag_t
5094 bus_get_bus_tag(device_t dev)
5095 {
5096 	device_t parent;
5097 
5098 	parent = device_get_parent(dev);
5099 	if (parent == NULL)
5100 		return ((bus_space_tag_t)0);
5101 	return (BUS_GET_BUS_TAG(parent, dev));
5102 }
5103 
5104 /**
5105  * @brief Wrapper function for BUS_GET_DOMAIN().
5106  *
5107  * This function simply calls the BUS_GET_DOMAIN() method of the
5108  * parent of @p dev.
5109  */
5110 int
5111 bus_get_domain(device_t dev, int *domain)
5112 {
5113 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5114 }
5115 
5116 /* Resume all devices and then notify userland that we're up again. */
5117 static int
5118 root_resume(device_t dev)
5119 {
5120 	int error;
5121 
5122 	error = bus_generic_resume(dev);
5123 	if (error == 0) {
5124 		devctl_notify("kernel", "power", "resume", NULL);
5125 	}
5126 	return (error);
5127 }
5128 
5129 static int
5130 root_print_child(device_t dev, device_t child)
5131 {
5132 	int	retval = 0;
5133 
5134 	retval += bus_print_child_header(dev, child);
5135 	retval += printf("\n");
5136 
5137 	return (retval);
5138 }
5139 
5140 static int
5141 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5142     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5143 {
5144 	/*
5145 	 * If an interrupt mapping gets to here something bad has happened.
5146 	 */
5147 	panic("root_setup_intr");
5148 }
5149 
5150 /*
5151  * If we get here, assume that the device is permanent and really is
5152  * present in the system.  Removable bus drivers are expected to intercept
5153  * this call long before it gets here.  We return -1 so that drivers that
5154  * really care can check vs -1 or some ERRNO returned higher in the food
5155  * chain.
5156  */
5157 static int
5158 root_child_present(device_t dev, device_t child)
5159 {
5160 	return (-1);
5161 }
5162 
5163 static int
5164 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5165     cpuset_t *cpuset)
5166 {
5167 	switch (op) {
5168 	case INTR_CPUS:
5169 		/* Default to returning the set of all CPUs. */
5170 		if (setsize != sizeof(cpuset_t))
5171 			return (EINVAL);
5172 		*cpuset = all_cpus;
5173 		return (0);
5174 	default:
5175 		return (EINVAL);
5176 	}
5177 }
5178 
5179 static kobj_method_t root_methods[] = {
5180 	/* Device interface */
5181 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5182 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5183 	KOBJMETHOD(device_resume,	root_resume),
5184 
5185 	/* Bus interface */
5186 	KOBJMETHOD(bus_print_child,	root_print_child),
5187 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5188 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5189 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5190 	KOBJMETHOD(bus_child_present,	root_child_present),
5191 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5192 
5193 	KOBJMETHOD_END
5194 };
5195 
5196 static driver_t root_driver = {
5197 	"root",
5198 	root_methods,
5199 	1,			/* no softc */
5200 };
5201 
5202 device_t	root_bus;
5203 devclass_t	root_devclass;
5204 
5205 static int
5206 root_bus_module_handler(module_t mod, int what, void* arg)
5207 {
5208 	switch (what) {
5209 	case MOD_LOAD:
5210 		TAILQ_INIT(&bus_data_devices);
5211 		kobj_class_compile((kobj_class_t) &root_driver);
5212 		root_bus = make_device(NULL, "root", 0);
5213 		root_bus->desc = "System root bus";
5214 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5215 		root_bus->driver = &root_driver;
5216 		root_bus->state = DS_ATTACHED;
5217 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5218 		devctl2_init();
5219 		return (0);
5220 
5221 	case MOD_SHUTDOWN:
5222 		device_shutdown(root_bus);
5223 		return (0);
5224 	default:
5225 		return (EOPNOTSUPP);
5226 	}
5227 
5228 	return (0);
5229 }
5230 
5231 static moduledata_t root_bus_mod = {
5232 	"rootbus",
5233 	root_bus_module_handler,
5234 	NULL
5235 };
5236 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5237 
5238 /**
5239  * @brief Automatically configure devices
5240  *
5241  * This function begins the autoconfiguration process by calling
5242  * device_probe_and_attach() for each child of the @c root0 device.
5243  */
5244 void
5245 root_bus_configure(void)
5246 {
5247 	PDEBUG(("."));
5248 
5249 	/* Eventually this will be split up, but this is sufficient for now. */
5250 	bus_set_pass(BUS_PASS_DEFAULT);
5251 }
5252 
5253 /**
5254  * @brief Module handler for registering device drivers
5255  *
5256  * This module handler is used to automatically register device
5257  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5258  * devclass_add_driver() for the driver described by the
5259  * driver_module_data structure pointed to by @p arg
5260  */
5261 int
5262 driver_module_handler(module_t mod, int what, void *arg)
5263 {
5264 	struct driver_module_data *dmd;
5265 	devclass_t bus_devclass;
5266 	kobj_class_t driver;
5267 	int error, pass;
5268 
5269 	dmd = (struct driver_module_data *)arg;
5270 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5271 	error = 0;
5272 
5273 	switch (what) {
5274 	case MOD_LOAD:
5275 		if (dmd->dmd_chainevh)
5276 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5277 
5278 		pass = dmd->dmd_pass;
5279 		driver = dmd->dmd_driver;
5280 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5281 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5282 		error = devclass_add_driver(bus_devclass, driver, pass,
5283 		    dmd->dmd_devclass);
5284 		break;
5285 
5286 	case MOD_UNLOAD:
5287 		PDEBUG(("Unloading module: driver %s from bus %s",
5288 		    DRIVERNAME(dmd->dmd_driver),
5289 		    dmd->dmd_busname));
5290 		error = devclass_delete_driver(bus_devclass,
5291 		    dmd->dmd_driver);
5292 
5293 		if (!error && dmd->dmd_chainevh)
5294 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5295 		break;
5296 	case MOD_QUIESCE:
5297 		PDEBUG(("Quiesce module: driver %s from bus %s",
5298 		    DRIVERNAME(dmd->dmd_driver),
5299 		    dmd->dmd_busname));
5300 		error = devclass_quiesce_driver(bus_devclass,
5301 		    dmd->dmd_driver);
5302 
5303 		if (!error && dmd->dmd_chainevh)
5304 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5305 		break;
5306 	default:
5307 		error = EOPNOTSUPP;
5308 		break;
5309 	}
5310 
5311 	return (error);
5312 }
5313 
5314 /**
5315  * @brief Enumerate all hinted devices for this bus.
5316  *
5317  * Walks through the hints for this bus and calls the bus_hinted_child
5318  * routine for each one it fines.  It searches first for the specific
5319  * bus that's being probed for hinted children (eg isa0), and then for
5320  * generic children (eg isa).
5321  *
5322  * @param	dev	bus device to enumerate
5323  */
5324 void
5325 bus_enumerate_hinted_children(device_t bus)
5326 {
5327 	int i;
5328 	const char *dname, *busname;
5329 	int dunit;
5330 
5331 	/*
5332 	 * enumerate all devices on the specific bus
5333 	 */
5334 	busname = device_get_nameunit(bus);
5335 	i = 0;
5336 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5337 		BUS_HINTED_CHILD(bus, dname, dunit);
5338 
5339 	/*
5340 	 * and all the generic ones.
5341 	 */
5342 	busname = device_get_name(bus);
5343 	i = 0;
5344 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5345 		BUS_HINTED_CHILD(bus, dname, dunit);
5346 }
5347 
5348 #ifdef BUS_DEBUG
5349 
5350 /* the _short versions avoid iteration by not calling anything that prints
5351  * more than oneliners. I love oneliners.
5352  */
5353 
5354 static void
5355 print_device_short(device_t dev, int indent)
5356 {
5357 	if (!dev)
5358 		return;
5359 
5360 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5361 	    dev->unit, dev->desc,
5362 	    (dev->parent? "":"no "),
5363 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5364 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5365 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5366 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5367 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5368 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5369 	    (dev->ivars? "":"no "),
5370 	    (dev->softc? "":"no "),
5371 	    dev->busy));
5372 }
5373 
5374 static void
5375 print_device(device_t dev, int indent)
5376 {
5377 	if (!dev)
5378 		return;
5379 
5380 	print_device_short(dev, indent);
5381 
5382 	indentprintf(("Parent:\n"));
5383 	print_device_short(dev->parent, indent+1);
5384 	indentprintf(("Driver:\n"));
5385 	print_driver_short(dev->driver, indent+1);
5386 	indentprintf(("Devclass:\n"));
5387 	print_devclass_short(dev->devclass, indent+1);
5388 }
5389 
5390 void
5391 print_device_tree_short(device_t dev, int indent)
5392 /* print the device and all its children (indented) */
5393 {
5394 	device_t child;
5395 
5396 	if (!dev)
5397 		return;
5398 
5399 	print_device_short(dev, indent);
5400 
5401 	TAILQ_FOREACH(child, &dev->children, link) {
5402 		print_device_tree_short(child, indent+1);
5403 	}
5404 }
5405 
5406 void
5407 print_device_tree(device_t dev, int indent)
5408 /* print the device and all its children (indented) */
5409 {
5410 	device_t child;
5411 
5412 	if (!dev)
5413 		return;
5414 
5415 	print_device(dev, indent);
5416 
5417 	TAILQ_FOREACH(child, &dev->children, link) {
5418 		print_device_tree(child, indent+1);
5419 	}
5420 }
5421 
5422 static void
5423 print_driver_short(driver_t *driver, int indent)
5424 {
5425 	if (!driver)
5426 		return;
5427 
5428 	indentprintf(("driver %s: softc size = %zd\n",
5429 	    driver->name, driver->size));
5430 }
5431 
5432 static void
5433 print_driver(driver_t *driver, int indent)
5434 {
5435 	if (!driver)
5436 		return;
5437 
5438 	print_driver_short(driver, indent);
5439 }
5440 
5441 static void
5442 print_driver_list(driver_list_t drivers, int indent)
5443 {
5444 	driverlink_t driver;
5445 
5446 	TAILQ_FOREACH(driver, &drivers, link) {
5447 		print_driver(driver->driver, indent);
5448 	}
5449 }
5450 
5451 static void
5452 print_devclass_short(devclass_t dc, int indent)
5453 {
5454 	if ( !dc )
5455 		return;
5456 
5457 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5458 }
5459 
5460 static void
5461 print_devclass(devclass_t dc, int indent)
5462 {
5463 	int i;
5464 
5465 	if ( !dc )
5466 		return;
5467 
5468 	print_devclass_short(dc, indent);
5469 	indentprintf(("Drivers:\n"));
5470 	print_driver_list(dc->drivers, indent+1);
5471 
5472 	indentprintf(("Devices:\n"));
5473 	for (i = 0; i < dc->maxunit; i++)
5474 		if (dc->devices[i])
5475 			print_device(dc->devices[i], indent+1);
5476 }
5477 
5478 void
5479 print_devclass_list_short(void)
5480 {
5481 	devclass_t dc;
5482 
5483 	printf("Short listing of devclasses, drivers & devices:\n");
5484 	TAILQ_FOREACH(dc, &devclasses, link) {
5485 		print_devclass_short(dc, 0);
5486 	}
5487 }
5488 
5489 void
5490 print_devclass_list(void)
5491 {
5492 	devclass_t dc;
5493 
5494 	printf("Full listing of devclasses, drivers & devices:\n");
5495 	TAILQ_FOREACH(dc, &devclasses, link) {
5496 		print_devclass(dc, 0);
5497 	}
5498 }
5499 
5500 #endif
5501 
5502 /*
5503  * User-space access to the device tree.
5504  *
5505  * We implement a small set of nodes:
5506  *
5507  * hw.bus			Single integer read method to obtain the
5508  *				current generation count.
5509  * hw.bus.devices		Reads the entire device tree in flat space.
5510  * hw.bus.rman			Resource manager interface
5511  *
5512  * We might like to add the ability to scan devclasses and/or drivers to
5513  * determine what else is currently loaded/available.
5514  */
5515 
5516 static int
5517 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5518 {
5519 	struct u_businfo	ubus;
5520 
5521 	ubus.ub_version = BUS_USER_VERSION;
5522 	ubus.ub_generation = bus_data_generation;
5523 
5524 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5525 }
5526 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5527     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5528     "bus-related data");
5529 
5530 static int
5531 sysctl_devices(SYSCTL_HANDLER_ARGS)
5532 {
5533 	struct sbuf		sb;
5534 	int			*name = (int *)arg1;
5535 	u_int			namelen = arg2;
5536 	int			index;
5537 	device_t		dev;
5538 	struct u_device		*udev;
5539 	int			error;
5540 
5541 	if (namelen != 2)
5542 		return (EINVAL);
5543 
5544 	if (bus_data_generation_check(name[0]))
5545 		return (EINVAL);
5546 
5547 	index = name[1];
5548 
5549 	/*
5550 	 * Scan the list of devices, looking for the requested index.
5551 	 */
5552 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5553 		if (index-- == 0)
5554 			break;
5555 	}
5556 	if (dev == NULL)
5557 		return (ENOENT);
5558 
5559 	/*
5560 	 * Populate the return item, careful not to overflow the buffer.
5561 	 */
5562 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5563 	udev->dv_handle = (uintptr_t)dev;
5564 	udev->dv_parent = (uintptr_t)dev->parent;
5565 	udev->dv_devflags = dev->devflags;
5566 	udev->dv_flags = dev->flags;
5567 	udev->dv_state = dev->state;
5568 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5569 	if (dev->nameunit != NULL)
5570 		sbuf_cat(&sb, dev->nameunit);
5571 	sbuf_putc(&sb, '\0');
5572 	if (dev->desc != NULL)
5573 		sbuf_cat(&sb, dev->desc);
5574 	sbuf_putc(&sb, '\0');
5575 	if (dev->driver != NULL)
5576 		sbuf_cat(&sb, dev->driver->name);
5577 	sbuf_putc(&sb, '\0');
5578 	bus_child_pnpinfo(dev, &sb);
5579 	sbuf_putc(&sb, '\0');
5580 	bus_child_location(dev, &sb);
5581 	sbuf_putc(&sb, '\0');
5582 	error = sbuf_finish(&sb);
5583 	if (error == 0)
5584 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5585 	sbuf_delete(&sb);
5586 	free(udev, M_BUS);
5587 	return (error);
5588 }
5589 
5590 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5591     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5592     "system device tree");
5593 
5594 int
5595 bus_data_generation_check(int generation)
5596 {
5597 	if (generation != bus_data_generation)
5598 		return (1);
5599 
5600 	/* XXX generate optimised lists here? */
5601 	return (0);
5602 }
5603 
5604 void
5605 bus_data_generation_update(void)
5606 {
5607 	atomic_add_int(&bus_data_generation, 1);
5608 }
5609 
5610 int
5611 bus_free_resource(device_t dev, int type, struct resource *r)
5612 {
5613 	if (r == NULL)
5614 		return (0);
5615 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5616 }
5617 
5618 device_t
5619 device_lookup_by_name(const char *name)
5620 {
5621 	device_t dev;
5622 
5623 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5624 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5625 			return (dev);
5626 	}
5627 	return (NULL);
5628 }
5629 
5630 /*
5631  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5632  * implicit semantics on open, so it could not be reused for this.
5633  * Another option would be to call this /dev/bus?
5634  */
5635 static int
5636 find_device(struct devreq *req, device_t *devp)
5637 {
5638 	device_t dev;
5639 
5640 	/*
5641 	 * First, ensure that the name is nul terminated.
5642 	 */
5643 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5644 		return (EINVAL);
5645 
5646 	/*
5647 	 * Second, try to find an attached device whose name matches
5648 	 * 'name'.
5649 	 */
5650 	dev = device_lookup_by_name(req->dr_name);
5651 	if (dev != NULL) {
5652 		*devp = dev;
5653 		return (0);
5654 	}
5655 
5656 	/* Finally, give device enumerators a chance. */
5657 	dev = NULL;
5658 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5659 	if (dev == NULL)
5660 		return (ENOENT);
5661 	*devp = dev;
5662 	return (0);
5663 }
5664 
5665 static bool
5666 driver_exists(device_t bus, const char *driver)
5667 {
5668 	devclass_t dc;
5669 
5670 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5671 		if (devclass_find_driver_internal(dc, driver) != NULL)
5672 			return (true);
5673 	}
5674 	return (false);
5675 }
5676 
5677 static void
5678 device_gen_nomatch(device_t dev)
5679 {
5680 	device_t child;
5681 
5682 	if (dev->flags & DF_NEEDNOMATCH &&
5683 	    dev->state == DS_NOTPRESENT) {
5684 		device_handle_nomatch(dev);
5685 	}
5686 	dev->flags &= ~DF_NEEDNOMATCH;
5687 	TAILQ_FOREACH(child, &dev->children, link) {
5688 		device_gen_nomatch(child);
5689 	}
5690 }
5691 
5692 static void
5693 device_do_deferred_actions(void)
5694 {
5695 	devclass_t dc;
5696 	driverlink_t dl;
5697 
5698 	/*
5699 	 * Walk through the devclasses to find all the drivers we've tagged as
5700 	 * deferred during the freeze and call the driver added routines. They
5701 	 * have already been added to the lists in the background, so the driver
5702 	 * added routines that trigger a probe will have all the right bidders
5703 	 * for the probe auction.
5704 	 */
5705 	TAILQ_FOREACH(dc, &devclasses, link) {
5706 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5707 			if (dl->flags & DL_DEFERRED_PROBE) {
5708 				devclass_driver_added(dc, dl->driver);
5709 				dl->flags &= ~DL_DEFERRED_PROBE;
5710 			}
5711 		}
5712 	}
5713 
5714 	/*
5715 	 * We also defer no-match events during a freeze. Walk the tree and
5716 	 * generate all the pent-up events that are still relevant.
5717 	 */
5718 	device_gen_nomatch(root_bus);
5719 	bus_data_generation_update();
5720 }
5721 
5722 static int
5723 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5724 {
5725 	device_t parent;
5726 	int error;
5727 
5728 	KASSERT(sb != NULL, ("sb is NULL"));
5729 	parent = device_get_parent(dev);
5730 	if (parent == NULL) {
5731 		error = sbuf_putc(sb, '/');
5732 	} else {
5733 		error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5734 		if (error == 0) {
5735 			error = sbuf_error(sb);
5736 			if (error == 0 && sbuf_len(sb) <= 1)
5737 				error = EIO;
5738 		}
5739 	}
5740 	sbuf_finish(sb);
5741 	return (error);
5742 }
5743 
5744 static int
5745 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5746     struct thread *td)
5747 {
5748 	struct devreq *req;
5749 	device_t dev;
5750 	int error, old;
5751 
5752 	/* Locate the device to control. */
5753 	bus_topo_lock();
5754 	req = (struct devreq *)data;
5755 	switch (cmd) {
5756 	case DEV_ATTACH:
5757 	case DEV_DETACH:
5758 	case DEV_ENABLE:
5759 	case DEV_DISABLE:
5760 	case DEV_SUSPEND:
5761 	case DEV_RESUME:
5762 	case DEV_SET_DRIVER:
5763 	case DEV_CLEAR_DRIVER:
5764 	case DEV_RESCAN:
5765 	case DEV_DELETE:
5766 	case DEV_RESET:
5767 		error = priv_check(td, PRIV_DRIVER);
5768 		if (error == 0)
5769 			error = find_device(req, &dev);
5770 		break;
5771 	case DEV_FREEZE:
5772 	case DEV_THAW:
5773 		error = priv_check(td, PRIV_DRIVER);
5774 		break;
5775 	case DEV_GET_PATH:
5776 		error = find_device(req, &dev);
5777 		break;
5778 	default:
5779 		error = ENOTTY;
5780 		break;
5781 	}
5782 	if (error) {
5783 		bus_topo_unlock();
5784 		return (error);
5785 	}
5786 
5787 	/* Perform the requested operation. */
5788 	switch (cmd) {
5789 	case DEV_ATTACH:
5790 		if (device_is_attached(dev))
5791 			error = EBUSY;
5792 		else if (!device_is_enabled(dev))
5793 			error = ENXIO;
5794 		else
5795 			error = device_probe_and_attach(dev);
5796 		break;
5797 	case DEV_DETACH:
5798 		if (!device_is_attached(dev)) {
5799 			error = ENXIO;
5800 			break;
5801 		}
5802 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5803 			error = device_quiesce(dev);
5804 			if (error)
5805 				break;
5806 		}
5807 		error = device_detach(dev);
5808 		break;
5809 	case DEV_ENABLE:
5810 		if (device_is_enabled(dev)) {
5811 			error = EBUSY;
5812 			break;
5813 		}
5814 
5815 		/*
5816 		 * If the device has been probed but not attached (e.g.
5817 		 * when it has been disabled by a loader hint), just
5818 		 * attach the device rather than doing a full probe.
5819 		 */
5820 		device_enable(dev);
5821 		if (dev->devclass != NULL) {
5822 			/*
5823 			 * If the device was disabled via a hint, clear
5824 			 * the hint.
5825 			 */
5826 			if (resource_disabled(dev->devclass->name, dev->unit))
5827 				resource_unset_value(dev->devclass->name,
5828 				    dev->unit, "disabled");
5829 
5830 			/* Allow any drivers to rebid. */
5831 			if (!(dev->flags & DF_FIXEDCLASS))
5832 				devclass_delete_device(dev->devclass, dev);
5833 		}
5834 		error = device_probe_and_attach(dev);
5835 		break;
5836 	case DEV_DISABLE:
5837 		if (!device_is_enabled(dev)) {
5838 			error = ENXIO;
5839 			break;
5840 		}
5841 
5842 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5843 			error = device_quiesce(dev);
5844 			if (error)
5845 				break;
5846 		}
5847 
5848 		/*
5849 		 * Force DF_FIXEDCLASS on around detach to preserve
5850 		 * the existing name.
5851 		 */
5852 		old = dev->flags;
5853 		dev->flags |= DF_FIXEDCLASS;
5854 		error = device_detach(dev);
5855 		if (!(old & DF_FIXEDCLASS))
5856 			dev->flags &= ~DF_FIXEDCLASS;
5857 		if (error == 0)
5858 			device_disable(dev);
5859 		break;
5860 	case DEV_SUSPEND:
5861 		if (device_is_suspended(dev)) {
5862 			error = EBUSY;
5863 			break;
5864 		}
5865 		if (device_get_parent(dev) == NULL) {
5866 			error = EINVAL;
5867 			break;
5868 		}
5869 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5870 		break;
5871 	case DEV_RESUME:
5872 		if (!device_is_suspended(dev)) {
5873 			error = EINVAL;
5874 			break;
5875 		}
5876 		if (device_get_parent(dev) == NULL) {
5877 			error = EINVAL;
5878 			break;
5879 		}
5880 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5881 		break;
5882 	case DEV_SET_DRIVER: {
5883 		devclass_t dc;
5884 		char driver[128];
5885 
5886 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5887 		if (error)
5888 			break;
5889 		if (driver[0] == '\0') {
5890 			error = EINVAL;
5891 			break;
5892 		}
5893 		if (dev->devclass != NULL &&
5894 		    strcmp(driver, dev->devclass->name) == 0)
5895 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5896 			break;
5897 
5898 		/*
5899 		 * Scan drivers for this device's bus looking for at
5900 		 * least one matching driver.
5901 		 */
5902 		if (dev->parent == NULL) {
5903 			error = EINVAL;
5904 			break;
5905 		}
5906 		if (!driver_exists(dev->parent, driver)) {
5907 			error = ENOENT;
5908 			break;
5909 		}
5910 		dc = devclass_create(driver);
5911 		if (dc == NULL) {
5912 			error = ENOMEM;
5913 			break;
5914 		}
5915 
5916 		/* Detach device if necessary. */
5917 		if (device_is_attached(dev)) {
5918 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5919 				error = device_detach(dev);
5920 			else
5921 				error = EBUSY;
5922 			if (error)
5923 				break;
5924 		}
5925 
5926 		/* Clear any previously-fixed device class and unit. */
5927 		if (dev->flags & DF_FIXEDCLASS)
5928 			devclass_delete_device(dev->devclass, dev);
5929 		dev->flags |= DF_WILDCARD;
5930 		dev->unit = DEVICE_UNIT_ANY;
5931 
5932 		/* Force the new device class. */
5933 		error = devclass_add_device(dc, dev);
5934 		if (error)
5935 			break;
5936 		dev->flags |= DF_FIXEDCLASS;
5937 		error = device_probe_and_attach(dev);
5938 		break;
5939 	}
5940 	case DEV_CLEAR_DRIVER:
5941 		if (!(dev->flags & DF_FIXEDCLASS)) {
5942 			error = 0;
5943 			break;
5944 		}
5945 		if (device_is_attached(dev)) {
5946 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5947 				error = device_detach(dev);
5948 			else
5949 				error = EBUSY;
5950 			if (error)
5951 				break;
5952 		}
5953 
5954 		dev->flags &= ~DF_FIXEDCLASS;
5955 		dev->flags |= DF_WILDCARD;
5956 		devclass_delete_device(dev->devclass, dev);
5957 		error = device_probe_and_attach(dev);
5958 		break;
5959 	case DEV_RESCAN:
5960 		if (!device_is_attached(dev)) {
5961 			error = ENXIO;
5962 			break;
5963 		}
5964 		error = BUS_RESCAN(dev);
5965 		break;
5966 	case DEV_DELETE: {
5967 		device_t parent;
5968 
5969 		parent = device_get_parent(dev);
5970 		if (parent == NULL) {
5971 			error = EINVAL;
5972 			break;
5973 		}
5974 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5975 			if (bus_child_present(dev) != 0) {
5976 				error = EBUSY;
5977 				break;
5978 			}
5979 		}
5980 
5981 		error = device_delete_child(parent, dev);
5982 		break;
5983 	}
5984 	case DEV_FREEZE:
5985 		if (device_frozen)
5986 			error = EBUSY;
5987 		else
5988 			device_frozen = true;
5989 		break;
5990 	case DEV_THAW:
5991 		if (!device_frozen)
5992 			error = EBUSY;
5993 		else {
5994 			device_do_deferred_actions();
5995 			device_frozen = false;
5996 		}
5997 		break;
5998 	case DEV_RESET:
5999 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
6000 			error = EINVAL;
6001 			break;
6002 		}
6003 		if (device_get_parent(dev) == NULL) {
6004 			error = EINVAL;
6005 			break;
6006 		}
6007 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
6008 		    req->dr_flags);
6009 		break;
6010 	case DEV_GET_PATH: {
6011 		struct sbuf *sb;
6012 		char locator[64];
6013 		ssize_t len;
6014 
6015 		error = copyinstr(req->dr_buffer.buffer, locator,
6016 		    sizeof(locator), NULL);
6017 		if (error != 0)
6018 			break;
6019 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6020 		    SBUF_INCLUDENUL /* | SBUF_WAITOK */);
6021 		error = device_get_path(dev, locator, sb);
6022 		if (error == 0) {
6023 			len = sbuf_len(sb);
6024 			if (req->dr_buffer.length < len) {
6025 				error = ENAMETOOLONG;
6026 			} else {
6027 				error = copyout(sbuf_data(sb),
6028 				    req->dr_buffer.buffer, len);
6029 			}
6030 			req->dr_buffer.length = len;
6031 		}
6032 		sbuf_delete(sb);
6033 		break;
6034 	}
6035 	}
6036 	bus_topo_unlock();
6037 	return (error);
6038 }
6039 
6040 static struct cdevsw devctl2_cdevsw = {
6041 	.d_version =	D_VERSION,
6042 	.d_ioctl =	devctl2_ioctl,
6043 	.d_name =	"devctl2",
6044 };
6045 
6046 static void
6047 devctl2_init(void)
6048 {
6049 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
6050 	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
6051 }
6052 
6053 /*
6054  * For maintaining device 'at' location info to avoid recomputing it
6055  */
6056 struct device_location_node {
6057 	const char *dln_locator;
6058 	const char *dln_path;
6059 	TAILQ_ENTRY(device_location_node) dln_link;
6060 };
6061 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6062 
6063 struct device_location_cache {
6064 	device_location_list_t dlc_list;
6065 };
6066 
6067 
6068 /*
6069  * Location cache for wired devices.
6070  */
6071 device_location_cache_t *
6072 dev_wired_cache_init(void)
6073 {
6074 	device_location_cache_t *dcp;
6075 
6076 	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6077 	TAILQ_INIT(&dcp->dlc_list);
6078 
6079 	return (dcp);
6080 }
6081 
6082 void
6083 dev_wired_cache_fini(device_location_cache_t *dcp)
6084 {
6085 	struct device_location_node *dln, *tdln;
6086 
6087 	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6088 		free(dln, M_BUS);
6089 	}
6090 	free(dcp, M_BUS);
6091 }
6092 
6093 static struct device_location_node *
6094 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6095 {
6096 	struct device_location_node *dln;
6097 
6098 	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6099 		if (strcmp(locator, dln->dln_locator) == 0)
6100 			return (dln);
6101 	}
6102 
6103 	return (NULL);
6104 }
6105 
6106 static struct device_location_node *
6107 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6108 {
6109 	struct device_location_node *dln;
6110 	size_t loclen, pathlen;
6111 
6112 	loclen = strlen(locator) + 1;
6113 	pathlen = strlen(path) + 1;
6114 	dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6115 	dln->dln_locator = (char *)(dln + 1);
6116 	memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6117 	dln->dln_path = dln->dln_locator + loclen;
6118 	memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6119 	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6120 
6121 	return (dln);
6122 }
6123 
6124 bool
6125 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6126     const char *at)
6127 {
6128 	struct sbuf *sb;
6129 	const char *cp;
6130 	char locator[32];
6131 	int error, len;
6132 	struct device_location_node *res;
6133 
6134 	cp = strchr(at, ':');
6135 	if (cp == NULL)
6136 		return (false);
6137 	len = cp - at;
6138 	if (len > sizeof(locator) - 1)	/* Skip too long locator */
6139 		return (false);
6140 	memcpy(locator, at, len);
6141 	locator[len] = '\0';
6142 	cp++;
6143 
6144 	error = 0;
6145 	/* maybe cache this inside device_t and look that up, but not yet */
6146 	res = dev_wired_cache_lookup(dcp, locator);
6147 	if (res == NULL) {
6148 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6149 		    SBUF_INCLUDENUL | SBUF_NOWAIT);
6150 		if (sb != NULL) {
6151 			error = device_get_path(dev, locator, sb);
6152 			if (error == 0) {
6153 				res = dev_wired_cache_add(dcp, locator,
6154 				    sbuf_data(sb));
6155 			}
6156 			sbuf_delete(sb);
6157 		}
6158 	}
6159 	if (error != 0 || res == NULL || res->dln_path == NULL)
6160 		return (false);
6161 
6162 	return (strcmp(res->dln_path, cp) == 0);
6163 }
6164 
6165 static struct device_prop_elm *
6166 device_prop_find(device_t dev, const char *name)
6167 {
6168 	struct device_prop_elm *e;
6169 
6170 	bus_topo_assert();
6171 
6172 	LIST_FOREACH(e, &dev->props, link) {
6173 		if (strcmp(name, e->name) == 0)
6174 			return (e);
6175 	}
6176 	return (NULL);
6177 }
6178 
6179 int
6180 device_set_prop(device_t dev, const char *name, void *val,
6181     device_prop_dtr_t dtr, void *dtr_ctx)
6182 {
6183 	struct device_prop_elm *e, *e1;
6184 
6185 	bus_topo_assert();
6186 
6187 	e = device_prop_find(dev, name);
6188 	if (e != NULL)
6189 		goto found;
6190 
6191 	e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6192 	e = device_prop_find(dev, name);
6193 	if (e != NULL) {
6194 		free(e1, M_BUS);
6195 		goto found;
6196 	}
6197 
6198 	e1->name = name;
6199 	e1->val = val;
6200 	e1->dtr = dtr;
6201 	e1->dtr_ctx = dtr_ctx;
6202 	LIST_INSERT_HEAD(&dev->props, e1, link);
6203 	return (0);
6204 
6205 found:
6206 	LIST_REMOVE(e, link);
6207 	if (e->dtr != NULL)
6208 		e->dtr(dev, name, e->val, e->dtr_ctx);
6209 	e->val = val;
6210 	e->dtr = dtr;
6211 	e->dtr_ctx = dtr_ctx;
6212 	LIST_INSERT_HEAD(&dev->props, e, link);
6213 	return (EEXIST);
6214 }
6215 
6216 int
6217 device_get_prop(device_t dev, const char *name, void **valp)
6218 {
6219 	struct device_prop_elm *e;
6220 
6221 	bus_topo_assert();
6222 
6223 	e = device_prop_find(dev, name);
6224 	if (e == NULL)
6225 		return (ENOENT);
6226 	*valp = e->val;
6227 	return (0);
6228 }
6229 
6230 int
6231 device_clear_prop(device_t dev, const char *name)
6232 {
6233 	struct device_prop_elm *e;
6234 
6235 	bus_topo_assert();
6236 
6237 	e = device_prop_find(dev, name);
6238 	if (e == NULL)
6239 		return (ENOENT);
6240 	LIST_REMOVE(e, link);
6241 	if (e->dtr != NULL)
6242 		e->dtr(dev, e->name, e->val, e->dtr_ctx);
6243 	free(e, M_BUS);
6244 	return (0);
6245 }
6246 
6247 static void
6248 device_destroy_props(device_t dev)
6249 {
6250 	struct device_prop_elm *e;
6251 
6252 	bus_topo_assert();
6253 
6254 	while ((e = LIST_FIRST(&dev->props)) != NULL) {
6255 		LIST_REMOVE_HEAD(&dev->props, link);
6256 		if (e->dtr != NULL)
6257 			e->dtr(dev, e->name, e->val, e->dtr_ctx);
6258 		free(e, M_BUS);
6259 	}
6260 }
6261 
6262 void
6263 device_clear_prop_alldev(const char *name)
6264 {
6265 	device_t dev;
6266 
6267 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6268 		device_clear_prop(dev, name);
6269 	}
6270 }
6271 
6272 /*
6273  * APIs to manage deprecation and obsolescence.
6274  */
6275 static int obsolete_panic = 0;
6276 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6277     "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6278     "2 = if deprecated)");
6279 
6280 static void
6281 gone_panic(int major, int running, const char *msg)
6282 {
6283 	switch (obsolete_panic)
6284 	{
6285 	case 0:
6286 		return;
6287 	case 1:
6288 		if (running < major)
6289 			return;
6290 		/* FALLTHROUGH */
6291 	default:
6292 		panic("%s", msg);
6293 	}
6294 }
6295 
6296 void
6297 _gone_in(int major, const char *msg)
6298 {
6299 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6300 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6301 		printf("Obsolete code will be removed soon: %s\n", msg);
6302 	else
6303 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6304 		    major, msg);
6305 }
6306 
6307 void
6308 _gone_in_dev(device_t dev, int major, const char *msg)
6309 {
6310 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6311 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6312 		device_printf(dev,
6313 		    "Obsolete code will be removed soon: %s\n", msg);
6314 	else
6315 		device_printf(dev,
6316 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
6317 		    major, msg);
6318 }
6319 
6320 #ifdef DDB
6321 DB_SHOW_COMMAND(device, db_show_device)
6322 {
6323 	device_t dev;
6324 
6325 	if (!have_addr)
6326 		return;
6327 
6328 	dev = (device_t)addr;
6329 
6330 	db_printf("name:    %s\n", device_get_nameunit(dev));
6331 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6332 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6333 	db_printf("  addr:    %p\n", dev);
6334 	db_printf("  parent:  %p\n", dev->parent);
6335 	db_printf("  softc:   %p\n", dev->softc);
6336 	db_printf("  ivars:   %p\n", dev->ivars);
6337 }
6338 
6339 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6340 {
6341 	device_t dev;
6342 
6343 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6344 		db_show_device((db_expr_t)dev, true, count, modif);
6345 	}
6346 }
6347 #endif
6348