xref: /freebsd/sys/kern/subr_bus.c (revision da232c04ab9eba3d3a7fc73881daff847071e9fd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/filio.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/kobj.h>
43 #include <sys/limits.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/poll.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/queue.h>
52 #include <machine/bus.h>
53 #include <sys/random.h>
54 #include <sys/rman.h>
55 #include <sys/sbuf.h>
56 #include <sys/selinfo.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/uio.h>
62 #include <sys/bus.h>
63 #include <sys/cpuset.h>
64 
65 #include <net/vnet.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/stdarg.h>
69 
70 #include <vm/uma.h>
71 #include <vm/vm.h>
72 
73 #include <ddb/ddb.h>
74 
75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
78     NULL);
79 
80 /*
81  * Used to attach drivers to devclasses.
82  */
83 typedef struct driverlink *driverlink_t;
84 struct driverlink {
85 	kobj_class_t	driver;
86 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
87 	int		pass;
88 	int		flags;
89 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
90 	TAILQ_ENTRY(driverlink) passlink;
91 };
92 
93 /*
94  * Forward declarations
95  */
96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
98 typedef TAILQ_HEAD(device_list, device) device_list_t;
99 
100 struct devclass {
101 	TAILQ_ENTRY(devclass) link;
102 	devclass_t	parent;		/* parent in devclass hierarchy */
103 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
104 	char		*name;
105 	device_t	*devices;	/* array of devices indexed by unit */
106 	int		maxunit;	/* size of devices array */
107 	int		flags;
108 #define DC_HAS_CHILDREN		1
109 
110 	struct sysctl_ctx_list sysctl_ctx;
111 	struct sysctl_oid *sysctl_tree;
112 };
113 
114 /**
115  * @brief Implementation of device.
116  */
117 struct device {
118 	/*
119 	 * A device is a kernel object. The first field must be the
120 	 * current ops table for the object.
121 	 */
122 	KOBJ_FIELDS;
123 
124 	/*
125 	 * Device hierarchy.
126 	 */
127 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
128 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
129 	device_t	parent;		/**< parent of this device  */
130 	device_list_t	children;	/**< list of child devices */
131 
132 	/*
133 	 * Details of this device.
134 	 */
135 	driver_t	*driver;	/**< current driver */
136 	devclass_t	devclass;	/**< current device class */
137 	int		unit;		/**< current unit number */
138 	char*		nameunit;	/**< name+unit e.g. foodev0 */
139 	char*		desc;		/**< driver specific description */
140 	int		busy;		/**< count of calls to device_busy() */
141 	device_state_t	state;		/**< current device state  */
142 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
143 	u_int		flags;		/**< internal device flags  */
144 	u_int	order;			/**< order from device_add_child_ordered() */
145 	void	*ivars;			/**< instance variables  */
146 	void	*softc;			/**< current driver's variables  */
147 
148 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
149 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
150 };
151 
152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
154 
155 EVENTHANDLER_LIST_DEFINE(device_attach);
156 EVENTHANDLER_LIST_DEFINE(device_detach);
157 EVENTHANDLER_LIST_DEFINE(dev_lookup);
158 
159 static void devctl2_init(void);
160 static bool device_frozen;
161 
162 #define DRIVERNAME(d)	((d)? d->name : "no driver")
163 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
164 
165 #ifdef BUS_DEBUG
166 
167 static int bus_debug = 1;
168 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
169     "Bus debug level");
170 
171 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
172 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
173 
174 /**
175  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
176  * prevent syslog from deleting initial spaces
177  */
178 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
179 
180 static void print_device_short(device_t dev, int indent);
181 static void print_device(device_t dev, int indent);
182 void print_device_tree_short(device_t dev, int indent);
183 void print_device_tree(device_t dev, int indent);
184 static void print_driver_short(driver_t *driver, int indent);
185 static void print_driver(driver_t *driver, int indent);
186 static void print_driver_list(driver_list_t drivers, int indent);
187 static void print_devclass_short(devclass_t dc, int indent);
188 static void print_devclass(devclass_t dc, int indent);
189 void print_devclass_list_short(void);
190 void print_devclass_list(void);
191 
192 #else
193 /* Make the compiler ignore the function calls */
194 #define PDEBUG(a)			/* nop */
195 #define DEVICENAME(d)			/* nop */
196 
197 #define print_device_short(d,i)		/* nop */
198 #define print_device(d,i)		/* nop */
199 #define print_device_tree_short(d,i)	/* nop */
200 #define print_device_tree(d,i)		/* nop */
201 #define print_driver_short(d,i)		/* nop */
202 #define print_driver(d,i)		/* nop */
203 #define print_driver_list(d,i)		/* nop */
204 #define print_devclass_short(d,i)	/* nop */
205 #define print_devclass(d,i)		/* nop */
206 #define print_devclass_list_short()	/* nop */
207 #define print_devclass_list()		/* nop */
208 #endif
209 
210 /*
211  * dev sysctl tree
212  */
213 
214 enum {
215 	DEVCLASS_SYSCTL_PARENT,
216 };
217 
218 static int
219 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
220 {
221 	devclass_t dc = (devclass_t)arg1;
222 	const char *value;
223 
224 	switch (arg2) {
225 	case DEVCLASS_SYSCTL_PARENT:
226 		value = dc->parent ? dc->parent->name : "";
227 		break;
228 	default:
229 		return (EINVAL);
230 	}
231 	return (SYSCTL_OUT_STR(req, value));
232 }
233 
234 static void
235 devclass_sysctl_init(devclass_t dc)
236 {
237 	if (dc->sysctl_tree != NULL)
238 		return;
239 	sysctl_ctx_init(&dc->sysctl_ctx);
240 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
241 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
242 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
243 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
244 	    OID_AUTO, "%parent",
245 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
246 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
247 	    "parent class");
248 }
249 
250 enum {
251 	DEVICE_SYSCTL_DESC,
252 	DEVICE_SYSCTL_DRIVER,
253 	DEVICE_SYSCTL_LOCATION,
254 	DEVICE_SYSCTL_PNPINFO,
255 	DEVICE_SYSCTL_PARENT,
256 };
257 
258 static int
259 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
260 {
261 	device_t dev = (device_t)arg1;
262 	const char *value;
263 	char *buf;
264 	int error;
265 
266 	buf = NULL;
267 	switch (arg2) {
268 	case DEVICE_SYSCTL_DESC:
269 		value = dev->desc ? dev->desc : "";
270 		break;
271 	case DEVICE_SYSCTL_DRIVER:
272 		value = dev->driver ? dev->driver->name : "";
273 		break;
274 	case DEVICE_SYSCTL_LOCATION:
275 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
276 		bus_child_location_str(dev, buf, 1024);
277 		break;
278 	case DEVICE_SYSCTL_PNPINFO:
279 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
280 		bus_child_pnpinfo_str(dev, buf, 1024);
281 		break;
282 	case DEVICE_SYSCTL_PARENT:
283 		value = dev->parent ? dev->parent->nameunit : "";
284 		break;
285 	default:
286 		return (EINVAL);
287 	}
288 	error = SYSCTL_OUT_STR(req, value);
289 	if (buf != NULL)
290 		free(buf, M_BUS);
291 	return (error);
292 }
293 
294 static void
295 device_sysctl_init(device_t dev)
296 {
297 	devclass_t dc = dev->devclass;
298 	int domain;
299 
300 	if (dev->sysctl_tree != NULL)
301 		return;
302 	devclass_sysctl_init(dc);
303 	sysctl_ctx_init(&dev->sysctl_ctx);
304 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
305 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
306 	    dev->nameunit + strlen(dc->name),
307 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
310 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
311 	    "device description");
312 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313 	    OID_AUTO, "%driver",
314 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
315 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
316 	    "device driver name");
317 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
318 	    OID_AUTO, "%location",
319 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
320 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
321 	    "device location relative to parent");
322 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
323 	    OID_AUTO, "%pnpinfo",
324 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
325 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
326 	    "device identification");
327 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
328 	    OID_AUTO, "%parent",
329 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
330 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
331 	    "parent device");
332 	if (bus_get_domain(dev, &domain) == 0)
333 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
334 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
335 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
336 }
337 
338 static void
339 device_sysctl_update(device_t dev)
340 {
341 	devclass_t dc = dev->devclass;
342 
343 	if (dev->sysctl_tree == NULL)
344 		return;
345 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
346 }
347 
348 static void
349 device_sysctl_fini(device_t dev)
350 {
351 	if (dev->sysctl_tree == NULL)
352 		return;
353 	sysctl_ctx_free(&dev->sysctl_ctx);
354 	dev->sysctl_tree = NULL;
355 }
356 
357 /*
358  * /dev/devctl implementation
359  */
360 
361 /*
362  * This design allows only one reader for /dev/devctl.  This is not desirable
363  * in the long run, but will get a lot of hair out of this implementation.
364  * Maybe we should make this device a clonable device.
365  *
366  * Also note: we specifically do not attach a device to the device_t tree
367  * to avoid potential chicken and egg problems.  One could argue that all
368  * of this belongs to the root node.
369  */
370 
371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
374 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
375     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
376 
377 static d_open_t		devopen;
378 static d_close_t	devclose;
379 static d_read_t		devread;
380 static d_ioctl_t	devioctl;
381 static d_poll_t		devpoll;
382 static d_kqfilter_t	devkqfilter;
383 
384 static struct cdevsw dev_cdevsw = {
385 	.d_version =	D_VERSION,
386 	.d_open =	devopen,
387 	.d_close =	devclose,
388 	.d_read =	devread,
389 	.d_ioctl =	devioctl,
390 	.d_poll =	devpoll,
391 	.d_kqfilter =	devkqfilter,
392 	.d_name =	"devctl",
393 };
394 
395 struct dev_event_info
396 {
397 	char *dei_data;
398 	STAILQ_ENTRY(dev_event_info) dei_link;
399 };
400 
401 STAILQ_HEAD(devq, dev_event_info);
402 
403 static struct dev_softc
404 {
405 	int		inuse;
406 	int		nonblock;
407 	int		queued;
408 	int		async;
409 	struct mtx	mtx;
410 	struct cv	cv;
411 	struct selinfo	sel;
412 	struct devq	devq;
413 	struct sigio	*sigio;
414 } devsoftc;
415 
416 static void	filt_devctl_detach(struct knote *kn);
417 static int	filt_devctl_read(struct knote *kn, long hint);
418 
419 struct filterops devctl_rfiltops = {
420 	.f_isfd = 1,
421 	.f_detach = filt_devctl_detach,
422 	.f_event = filt_devctl_read,
423 };
424 
425 static struct cdev *devctl_dev;
426 
427 static void
428 devinit(void)
429 {
430 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
431 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
432 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
433 	cv_init(&devsoftc.cv, "dev cv");
434 	STAILQ_INIT(&devsoftc.devq);
435 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
436 	devctl2_init();
437 }
438 
439 static int
440 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
441 {
442 	mtx_lock(&devsoftc.mtx);
443 	if (devsoftc.inuse) {
444 		mtx_unlock(&devsoftc.mtx);
445 		return (EBUSY);
446 	}
447 	/* move to init */
448 	devsoftc.inuse = 1;
449 	mtx_unlock(&devsoftc.mtx);
450 	return (0);
451 }
452 
453 static int
454 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
455 {
456 	mtx_lock(&devsoftc.mtx);
457 	devsoftc.inuse = 0;
458 	devsoftc.nonblock = 0;
459 	devsoftc.async = 0;
460 	cv_broadcast(&devsoftc.cv);
461 	funsetown(&devsoftc.sigio);
462 	mtx_unlock(&devsoftc.mtx);
463 	return (0);
464 }
465 
466 /*
467  * The read channel for this device is used to report changes to
468  * userland in realtime.  We are required to free the data as well as
469  * the n1 object because we allocate them separately.  Also note that
470  * we return one record at a time.  If you try to read this device a
471  * character at a time, you will lose the rest of the data.  Listening
472  * programs are expected to cope.
473  */
474 static int
475 devread(struct cdev *dev, struct uio *uio, int ioflag)
476 {
477 	struct dev_event_info *n1;
478 	int rv;
479 
480 	mtx_lock(&devsoftc.mtx);
481 	while (STAILQ_EMPTY(&devsoftc.devq)) {
482 		if (devsoftc.nonblock) {
483 			mtx_unlock(&devsoftc.mtx);
484 			return (EAGAIN);
485 		}
486 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
487 		if (rv) {
488 			/*
489 			 * Need to translate ERESTART to EINTR here? -- jake
490 			 */
491 			mtx_unlock(&devsoftc.mtx);
492 			return (rv);
493 		}
494 	}
495 	n1 = STAILQ_FIRST(&devsoftc.devq);
496 	STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
497 	devsoftc.queued--;
498 	mtx_unlock(&devsoftc.mtx);
499 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
500 	free(n1->dei_data, M_BUS);
501 	free(n1, M_BUS);
502 	return (rv);
503 }
504 
505 static	int
506 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
507 {
508 	switch (cmd) {
509 	case FIONBIO:
510 		if (*(int*)data)
511 			devsoftc.nonblock = 1;
512 		else
513 			devsoftc.nonblock = 0;
514 		return (0);
515 	case FIOASYNC:
516 		if (*(int*)data)
517 			devsoftc.async = 1;
518 		else
519 			devsoftc.async = 0;
520 		return (0);
521 	case FIOSETOWN:
522 		return fsetown(*(int *)data, &devsoftc.sigio);
523 	case FIOGETOWN:
524 		*(int *)data = fgetown(&devsoftc.sigio);
525 		return (0);
526 
527 		/* (un)Support for other fcntl() calls. */
528 	case FIOCLEX:
529 	case FIONCLEX:
530 	case FIONREAD:
531 	default:
532 		break;
533 	}
534 	return (ENOTTY);
535 }
536 
537 static	int
538 devpoll(struct cdev *dev, int events, struct thread *td)
539 {
540 	int	revents = 0;
541 
542 	mtx_lock(&devsoftc.mtx);
543 	if (events & (POLLIN | POLLRDNORM)) {
544 		if (!STAILQ_EMPTY(&devsoftc.devq))
545 			revents = events & (POLLIN | POLLRDNORM);
546 		else
547 			selrecord(td, &devsoftc.sel);
548 	}
549 	mtx_unlock(&devsoftc.mtx);
550 
551 	return (revents);
552 }
553 
554 static int
555 devkqfilter(struct cdev *dev, struct knote *kn)
556 {
557 	int error;
558 
559 	if (kn->kn_filter == EVFILT_READ) {
560 		kn->kn_fop = &devctl_rfiltops;
561 		knlist_add(&devsoftc.sel.si_note, kn, 0);
562 		error = 0;
563 	} else
564 		error = EINVAL;
565 	return (error);
566 }
567 
568 static void
569 filt_devctl_detach(struct knote *kn)
570 {
571 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
572 }
573 
574 static int
575 filt_devctl_read(struct knote *kn, long hint)
576 {
577 	kn->kn_data = devsoftc.queued;
578 	return (kn->kn_data != 0);
579 }
580 
581 /**
582  * @brief Return whether the userland process is running
583  */
584 boolean_t
585 devctl_process_running(void)
586 {
587 	return (devsoftc.inuse == 1);
588 }
589 
590 /**
591  * @brief Queue data to be read from the devctl device
592  *
593  * Generic interface to queue data to the devctl device.  It is
594  * assumed that @p data is properly formatted.  It is further assumed
595  * that @p data is allocated using the M_BUS malloc type.
596  */
597 static void
598 devctl_queue_data_f(char *data, int flags)
599 {
600 	struct dev_event_info *n1 = NULL, *n2 = NULL;
601 
602 	if (strlen(data) == 0)
603 		goto out;
604 	if (devctl_queue_length == 0)
605 		goto out;
606 	n1 = malloc(sizeof(*n1), M_BUS, flags);
607 	if (n1 == NULL)
608 		goto out;
609 	n1->dei_data = data;
610 	mtx_lock(&devsoftc.mtx);
611 	if (devctl_queue_length == 0) {
612 		mtx_unlock(&devsoftc.mtx);
613 		free(n1->dei_data, M_BUS);
614 		free(n1, M_BUS);
615 		return;
616 	}
617 	/* Leave at least one spot in the queue... */
618 	while (devsoftc.queued > devctl_queue_length - 1) {
619 		n2 = STAILQ_FIRST(&devsoftc.devq);
620 		STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
621 		free(n2->dei_data, M_BUS);
622 		free(n2, M_BUS);
623 		devsoftc.queued--;
624 	}
625 	STAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
626 	devsoftc.queued++;
627 	cv_broadcast(&devsoftc.cv);
628 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
629 	mtx_unlock(&devsoftc.mtx);
630 	selwakeup(&devsoftc.sel);
631 	if (devsoftc.async && devsoftc.sigio != NULL)
632 		pgsigio(&devsoftc.sigio, SIGIO, 0);
633 	return;
634 out:
635 	/*
636 	 * We have to free data on all error paths since the caller
637 	 * assumes it will be free'd when this item is dequeued.
638 	 */
639 	free(data, M_BUS);
640 	return;
641 }
642 
643 static void
644 devctl_queue_data(char *data)
645 {
646 	devctl_queue_data_f(data, M_NOWAIT);
647 }
648 
649 /**
650  * @brief Send a 'notification' to userland, using standard ways
651  */
652 void
653 devctl_notify_f(const char *system, const char *subsystem, const char *type,
654     const char *data, int flags)
655 {
656 	int len = 0;
657 	char *msg;
658 
659 	if (system == NULL)
660 		return;		/* BOGUS!  Must specify system. */
661 	if (subsystem == NULL)
662 		return;		/* BOGUS!  Must specify subsystem. */
663 	if (type == NULL)
664 		return;		/* BOGUS!  Must specify type. */
665 	len += strlen(" system=") + strlen(system);
666 	len += strlen(" subsystem=") + strlen(subsystem);
667 	len += strlen(" type=") + strlen(type);
668 	/* add in the data message plus newline. */
669 	if (data != NULL)
670 		len += strlen(data);
671 	len += 3;	/* '!', '\n', and NUL */
672 	msg = malloc(len, M_BUS, flags);
673 	if (msg == NULL)
674 		return;		/* Drop it on the floor */
675 	if (data != NULL)
676 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
677 		    system, subsystem, type, data);
678 	else
679 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
680 		    system, subsystem, type);
681 	devctl_queue_data_f(msg, flags);
682 }
683 
684 void
685 devctl_notify(const char *system, const char *subsystem, const char *type,
686     const char *data)
687 {
688 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689 }
690 
691 /*
692  * Common routine that tries to make sending messages as easy as possible.
693  * We allocate memory for the data, copy strings into that, but do not
694  * free it unless there's an error.  The dequeue part of the driver should
695  * free the data.  We don't send data when the device is disabled.  We do
696  * send data, even when we have no listeners, because we wish to avoid
697  * races relating to startup and restart of listening applications.
698  *
699  * devaddq is designed to string together the type of event, with the
700  * object of that event, plus the plug and play info and location info
701  * for that event.  This is likely most useful for devices, but less
702  * useful for other consumers of this interface.  Those should use
703  * the devctl_queue_data() interface instead.
704  */
705 static void
706 devaddq(const char *type, const char *what, device_t dev)
707 {
708 	char *data = NULL;
709 	char *loc = NULL;
710 	char *pnp = NULL;
711 	const char *parstr;
712 
713 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714 		return;
715 	data = malloc(1024, M_BUS, M_NOWAIT);
716 	if (data == NULL)
717 		goto bad;
718 
719 	/* get the bus specific location of this device */
720 	loc = malloc(1024, M_BUS, M_NOWAIT);
721 	if (loc == NULL)
722 		goto bad;
723 	*loc = '\0';
724 	bus_child_location_str(dev, loc, 1024);
725 
726 	/* Get the bus specific pnp info of this device */
727 	pnp = malloc(1024, M_BUS, M_NOWAIT);
728 	if (pnp == NULL)
729 		goto bad;
730 	*pnp = '\0';
731 	bus_child_pnpinfo_str(dev, pnp, 1024);
732 
733 	/* Get the parent of this device, or / if high enough in the tree. */
734 	if (device_get_parent(dev) == NULL)
735 		parstr = ".";	/* Or '/' ? */
736 	else
737 		parstr = device_get_nameunit(device_get_parent(dev));
738 	/* String it all together. */
739 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740 	  parstr);
741 	free(loc, M_BUS);
742 	free(pnp, M_BUS);
743 	devctl_queue_data(data);
744 	return;
745 bad:
746 	free(pnp, M_BUS);
747 	free(loc, M_BUS);
748 	free(data, M_BUS);
749 	return;
750 }
751 
752 /*
753  * A device was added to the tree.  We are called just after it successfully
754  * attaches (that is, probe and attach success for this device).  No call
755  * is made if a device is merely parented into the tree.  See devnomatch
756  * if probe fails.  If attach fails, no notification is sent (but maybe
757  * we should have a different message for this).
758  */
759 static void
760 devadded(device_t dev)
761 {
762 	devaddq("+", device_get_nameunit(dev), dev);
763 }
764 
765 /*
766  * A device was removed from the tree.  We are called just before this
767  * happens.
768  */
769 static void
770 devremoved(device_t dev)
771 {
772 	devaddq("-", device_get_nameunit(dev), dev);
773 }
774 
775 /*
776  * Called when there's no match for this device.  This is only called
777  * the first time that no match happens, so we don't keep getting this
778  * message.  Should that prove to be undesirable, we can change it.
779  * This is called when all drivers that can attach to a given bus
780  * decline to accept this device.  Other errors may not be detected.
781  */
782 static void
783 devnomatch(device_t dev)
784 {
785 	devaddq("?", "", dev);
786 }
787 
788 static int
789 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
790 {
791 	struct dev_event_info *n1;
792 	int q, error;
793 
794 	q = devctl_queue_length;
795 	error = sysctl_handle_int(oidp, &q, 0, req);
796 	if (error || !req->newptr)
797 		return (error);
798 	if (q < 0)
799 		return (EINVAL);
800 	if (mtx_initialized(&devsoftc.mtx))
801 		mtx_lock(&devsoftc.mtx);
802 	devctl_queue_length = q;
803 	while (devsoftc.queued > devctl_queue_length) {
804 		n1 = STAILQ_FIRST(&devsoftc.devq);
805 		STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
806 		free(n1->dei_data, M_BUS);
807 		free(n1, M_BUS);
808 		devsoftc.queued--;
809 	}
810 	if (mtx_initialized(&devsoftc.mtx))
811 		mtx_unlock(&devsoftc.mtx);
812 	return (0);
813 }
814 
815 /**
816  * @brief safely quotes strings that might have double quotes in them.
817  *
818  * The devctl protocol relies on quoted strings having matching quotes.
819  * This routine quotes any internal quotes so the resulting string
820  * is safe to pass to snprintf to construct, for example pnp info strings.
821  *
822  * @param sb	sbuf to place the characters into
823  * @param src	Original buffer.
824  */
825 void
826 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
827 {
828 	while (*src != '\0') {
829 		if (*src == '"' || *src == '\\')
830 			sbuf_putc(sb, '\\');
831 		sbuf_putc(sb, *src++);
832 	}
833 }
834 
835 /* End of /dev/devctl code */
836 
837 static TAILQ_HEAD(,device)	bus_data_devices;
838 static int bus_data_generation = 1;
839 
840 static kobj_method_t null_methods[] = {
841 	KOBJMETHOD_END
842 };
843 
844 DEFINE_CLASS(null, null_methods, 0);
845 
846 /*
847  * Bus pass implementation
848  */
849 
850 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
851 int bus_current_pass = BUS_PASS_ROOT;
852 
853 /**
854  * @internal
855  * @brief Register the pass level of a new driver attachment
856  *
857  * Register a new driver attachment's pass level.  If no driver
858  * attachment with the same pass level has been added, then @p new
859  * will be added to the global passes list.
860  *
861  * @param new		the new driver attachment
862  */
863 static void
864 driver_register_pass(struct driverlink *new)
865 {
866 	struct driverlink *dl;
867 
868 	/* We only consider pass numbers during boot. */
869 	if (bus_current_pass == BUS_PASS_DEFAULT)
870 		return;
871 
872 	/*
873 	 * Walk the passes list.  If we already know about this pass
874 	 * then there is nothing to do.  If we don't, then insert this
875 	 * driver link into the list.
876 	 */
877 	TAILQ_FOREACH(dl, &passes, passlink) {
878 		if (dl->pass < new->pass)
879 			continue;
880 		if (dl->pass == new->pass)
881 			return;
882 		TAILQ_INSERT_BEFORE(dl, new, passlink);
883 		return;
884 	}
885 	TAILQ_INSERT_TAIL(&passes, new, passlink);
886 }
887 
888 /**
889  * @brief Raise the current bus pass
890  *
891  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
892  * method on the root bus to kick off a new device tree scan for each
893  * new pass level that has at least one driver.
894  */
895 void
896 bus_set_pass(int pass)
897 {
898 	struct driverlink *dl;
899 
900 	if (bus_current_pass > pass)
901 		panic("Attempt to lower bus pass level");
902 
903 	TAILQ_FOREACH(dl, &passes, passlink) {
904 		/* Skip pass values below the current pass level. */
905 		if (dl->pass <= bus_current_pass)
906 			continue;
907 
908 		/*
909 		 * Bail once we hit a driver with a pass level that is
910 		 * too high.
911 		 */
912 		if (dl->pass > pass)
913 			break;
914 
915 		/*
916 		 * Raise the pass level to the next level and rescan
917 		 * the tree.
918 		 */
919 		bus_current_pass = dl->pass;
920 		BUS_NEW_PASS(root_bus);
921 	}
922 
923 	/*
924 	 * If there isn't a driver registered for the requested pass,
925 	 * then bus_current_pass might still be less than 'pass'.  Set
926 	 * it to 'pass' in that case.
927 	 */
928 	if (bus_current_pass < pass)
929 		bus_current_pass = pass;
930 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
931 }
932 
933 /*
934  * Devclass implementation
935  */
936 
937 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
938 
939 /**
940  * @internal
941  * @brief Find or create a device class
942  *
943  * If a device class with the name @p classname exists, return it,
944  * otherwise if @p create is non-zero create and return a new device
945  * class.
946  *
947  * If @p parentname is non-NULL, the parent of the devclass is set to
948  * the devclass of that name.
949  *
950  * @param classname	the devclass name to find or create
951  * @param parentname	the parent devclass name or @c NULL
952  * @param create	non-zero to create a devclass
953  */
954 static devclass_t
955 devclass_find_internal(const char *classname, const char *parentname,
956 		       int create)
957 {
958 	devclass_t dc;
959 
960 	PDEBUG(("looking for %s", classname));
961 	if (!classname)
962 		return (NULL);
963 
964 	TAILQ_FOREACH(dc, &devclasses, link) {
965 		if (!strcmp(dc->name, classname))
966 			break;
967 	}
968 
969 	if (create && !dc) {
970 		PDEBUG(("creating %s", classname));
971 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
972 		    M_BUS, M_NOWAIT | M_ZERO);
973 		if (!dc)
974 			return (NULL);
975 		dc->parent = NULL;
976 		dc->name = (char*) (dc + 1);
977 		strcpy(dc->name, classname);
978 		TAILQ_INIT(&dc->drivers);
979 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
980 
981 		bus_data_generation_update();
982 	}
983 
984 	/*
985 	 * If a parent class is specified, then set that as our parent so
986 	 * that this devclass will support drivers for the parent class as
987 	 * well.  If the parent class has the same name don't do this though
988 	 * as it creates a cycle that can trigger an infinite loop in
989 	 * device_probe_child() if a device exists for which there is no
990 	 * suitable driver.
991 	 */
992 	if (parentname && dc && !dc->parent &&
993 	    strcmp(classname, parentname) != 0) {
994 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
995 		dc->parent->flags |= DC_HAS_CHILDREN;
996 	}
997 
998 	return (dc);
999 }
1000 
1001 /**
1002  * @brief Create a device class
1003  *
1004  * If a device class with the name @p classname exists, return it,
1005  * otherwise create and return a new device class.
1006  *
1007  * @param classname	the devclass name to find or create
1008  */
1009 devclass_t
1010 devclass_create(const char *classname)
1011 {
1012 	return (devclass_find_internal(classname, NULL, TRUE));
1013 }
1014 
1015 /**
1016  * @brief Find a device class
1017  *
1018  * If a device class with the name @p classname exists, return it,
1019  * otherwise return @c NULL.
1020  *
1021  * @param classname	the devclass name to find
1022  */
1023 devclass_t
1024 devclass_find(const char *classname)
1025 {
1026 	return (devclass_find_internal(classname, NULL, FALSE));
1027 }
1028 
1029 /**
1030  * @brief Register that a device driver has been added to a devclass
1031  *
1032  * Register that a device driver has been added to a devclass.  This
1033  * is called by devclass_add_driver to accomplish the recursive
1034  * notification of all the children classes of dc, as well as dc.
1035  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1036  * the devclass.
1037  *
1038  * We do a full search here of the devclass list at each iteration
1039  * level to save storing children-lists in the devclass structure.  If
1040  * we ever move beyond a few dozen devices doing this, we may need to
1041  * reevaluate...
1042  *
1043  * @param dc		the devclass to edit
1044  * @param driver	the driver that was just added
1045  */
1046 static void
1047 devclass_driver_added(devclass_t dc, driver_t *driver)
1048 {
1049 	devclass_t parent;
1050 	int i;
1051 
1052 	/*
1053 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1054 	 */
1055 	for (i = 0; i < dc->maxunit; i++)
1056 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1057 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1058 
1059 	/*
1060 	 * Walk through the children classes.  Since we only keep a
1061 	 * single parent pointer around, we walk the entire list of
1062 	 * devclasses looking for children.  We set the
1063 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1064 	 * the parent, so we only walk the list for those devclasses
1065 	 * that have children.
1066 	 */
1067 	if (!(dc->flags & DC_HAS_CHILDREN))
1068 		return;
1069 	parent = dc;
1070 	TAILQ_FOREACH(dc, &devclasses, link) {
1071 		if (dc->parent == parent)
1072 			devclass_driver_added(dc, driver);
1073 	}
1074 }
1075 
1076 /**
1077  * @brief Add a device driver to a device class
1078  *
1079  * Add a device driver to a devclass. This is normally called
1080  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1081  * all devices in the devclass will be called to allow them to attempt
1082  * to re-probe any unmatched children.
1083  *
1084  * @param dc		the devclass to edit
1085  * @param driver	the driver to register
1086  */
1087 int
1088 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1089 {
1090 	driverlink_t dl;
1091 	const char *parentname;
1092 
1093 	PDEBUG(("%s", DRIVERNAME(driver)));
1094 
1095 	/* Don't allow invalid pass values. */
1096 	if (pass <= BUS_PASS_ROOT)
1097 		return (EINVAL);
1098 
1099 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1100 	if (!dl)
1101 		return (ENOMEM);
1102 
1103 	/*
1104 	 * Compile the driver's methods. Also increase the reference count
1105 	 * so that the class doesn't get freed when the last instance
1106 	 * goes. This means we can safely use static methods and avoids a
1107 	 * double-free in devclass_delete_driver.
1108 	 */
1109 	kobj_class_compile((kobj_class_t) driver);
1110 
1111 	/*
1112 	 * If the driver has any base classes, make the
1113 	 * devclass inherit from the devclass of the driver's
1114 	 * first base class. This will allow the system to
1115 	 * search for drivers in both devclasses for children
1116 	 * of a device using this driver.
1117 	 */
1118 	if (driver->baseclasses)
1119 		parentname = driver->baseclasses[0]->name;
1120 	else
1121 		parentname = NULL;
1122 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1123 
1124 	dl->driver = driver;
1125 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1126 	driver->refs++;		/* XXX: kobj_mtx */
1127 	dl->pass = pass;
1128 	driver_register_pass(dl);
1129 
1130 	if (device_frozen) {
1131 		dl->flags |= DL_DEFERRED_PROBE;
1132 	} else {
1133 		devclass_driver_added(dc, driver);
1134 	}
1135 	bus_data_generation_update();
1136 	return (0);
1137 }
1138 
1139 /**
1140  * @brief Register that a device driver has been deleted from a devclass
1141  *
1142  * Register that a device driver has been removed from a devclass.
1143  * This is called by devclass_delete_driver to accomplish the
1144  * recursive notification of all the children classes of busclass, as
1145  * well as busclass.  Each layer will attempt to detach the driver
1146  * from any devices that are children of the bus's devclass.  The function
1147  * will return an error if a device fails to detach.
1148  *
1149  * We do a full search here of the devclass list at each iteration
1150  * level to save storing children-lists in the devclass structure.  If
1151  * we ever move beyond a few dozen devices doing this, we may need to
1152  * reevaluate...
1153  *
1154  * @param busclass	the devclass of the parent bus
1155  * @param dc		the devclass of the driver being deleted
1156  * @param driver	the driver being deleted
1157  */
1158 static int
1159 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1160 {
1161 	devclass_t parent;
1162 	device_t dev;
1163 	int error, i;
1164 
1165 	/*
1166 	 * Disassociate from any devices.  We iterate through all the
1167 	 * devices in the devclass of the driver and detach any which are
1168 	 * using the driver and which have a parent in the devclass which
1169 	 * we are deleting from.
1170 	 *
1171 	 * Note that since a driver can be in multiple devclasses, we
1172 	 * should not detach devices which are not children of devices in
1173 	 * the affected devclass.
1174 	 *
1175 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1176 	 * generate later.
1177 	 */
1178 	for (i = 0; i < dc->maxunit; i++) {
1179 		if (dc->devices[i]) {
1180 			dev = dc->devices[i];
1181 			if (dev->driver == driver && dev->parent &&
1182 			    dev->parent->devclass == busclass) {
1183 				if ((error = device_detach(dev)) != 0)
1184 					return (error);
1185 				if (device_frozen) {
1186 					dev->flags &= ~DF_DONENOMATCH;
1187 					dev->flags |= DF_NEEDNOMATCH;
1188 				} else {
1189 					BUS_PROBE_NOMATCH(dev->parent, dev);
1190 					devnomatch(dev);
1191 					dev->flags |= DF_DONENOMATCH;
1192 				}
1193 			}
1194 		}
1195 	}
1196 
1197 	/*
1198 	 * Walk through the children classes.  Since we only keep a
1199 	 * single parent pointer around, we walk the entire list of
1200 	 * devclasses looking for children.  We set the
1201 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1202 	 * the parent, so we only walk the list for those devclasses
1203 	 * that have children.
1204 	 */
1205 	if (!(busclass->flags & DC_HAS_CHILDREN))
1206 		return (0);
1207 	parent = busclass;
1208 	TAILQ_FOREACH(busclass, &devclasses, link) {
1209 		if (busclass->parent == parent) {
1210 			error = devclass_driver_deleted(busclass, dc, driver);
1211 			if (error)
1212 				return (error);
1213 		}
1214 	}
1215 	return (0);
1216 }
1217 
1218 /**
1219  * @brief Delete a device driver from a device class
1220  *
1221  * Delete a device driver from a devclass. This is normally called
1222  * automatically by DRIVER_MODULE().
1223  *
1224  * If the driver is currently attached to any devices,
1225  * devclass_delete_driver() will first attempt to detach from each
1226  * device. If one of the detach calls fails, the driver will not be
1227  * deleted.
1228  *
1229  * @param dc		the devclass to edit
1230  * @param driver	the driver to unregister
1231  */
1232 int
1233 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1234 {
1235 	devclass_t dc = devclass_find(driver->name);
1236 	driverlink_t dl;
1237 	int error;
1238 
1239 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1240 
1241 	if (!dc)
1242 		return (0);
1243 
1244 	/*
1245 	 * Find the link structure in the bus' list of drivers.
1246 	 */
1247 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1248 		if (dl->driver == driver)
1249 			break;
1250 	}
1251 
1252 	if (!dl) {
1253 		PDEBUG(("%s not found in %s list", driver->name,
1254 		    busclass->name));
1255 		return (ENOENT);
1256 	}
1257 
1258 	error = devclass_driver_deleted(busclass, dc, driver);
1259 	if (error != 0)
1260 		return (error);
1261 
1262 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1263 	free(dl, M_BUS);
1264 
1265 	/* XXX: kobj_mtx */
1266 	driver->refs--;
1267 	if (driver->refs == 0)
1268 		kobj_class_free((kobj_class_t) driver);
1269 
1270 	bus_data_generation_update();
1271 	return (0);
1272 }
1273 
1274 /**
1275  * @brief Quiesces a set of device drivers from a device class
1276  *
1277  * Quiesce a device driver from a devclass. This is normally called
1278  * automatically by DRIVER_MODULE().
1279  *
1280  * If the driver is currently attached to any devices,
1281  * devclass_quiesece_driver() will first attempt to quiesce each
1282  * device.
1283  *
1284  * @param dc		the devclass to edit
1285  * @param driver	the driver to unregister
1286  */
1287 static int
1288 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1289 {
1290 	devclass_t dc = devclass_find(driver->name);
1291 	driverlink_t dl;
1292 	device_t dev;
1293 	int i;
1294 	int error;
1295 
1296 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1297 
1298 	if (!dc)
1299 		return (0);
1300 
1301 	/*
1302 	 * Find the link structure in the bus' list of drivers.
1303 	 */
1304 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1305 		if (dl->driver == driver)
1306 			break;
1307 	}
1308 
1309 	if (!dl) {
1310 		PDEBUG(("%s not found in %s list", driver->name,
1311 		    busclass->name));
1312 		return (ENOENT);
1313 	}
1314 
1315 	/*
1316 	 * Quiesce all devices.  We iterate through all the devices in
1317 	 * the devclass of the driver and quiesce any which are using
1318 	 * the driver and which have a parent in the devclass which we
1319 	 * are quiescing.
1320 	 *
1321 	 * Note that since a driver can be in multiple devclasses, we
1322 	 * should not quiesce devices which are not children of
1323 	 * devices in the affected devclass.
1324 	 */
1325 	for (i = 0; i < dc->maxunit; i++) {
1326 		if (dc->devices[i]) {
1327 			dev = dc->devices[i];
1328 			if (dev->driver == driver && dev->parent &&
1329 			    dev->parent->devclass == busclass) {
1330 				if ((error = device_quiesce(dev)) != 0)
1331 					return (error);
1332 			}
1333 		}
1334 	}
1335 
1336 	return (0);
1337 }
1338 
1339 /**
1340  * @internal
1341  */
1342 static driverlink_t
1343 devclass_find_driver_internal(devclass_t dc, const char *classname)
1344 {
1345 	driverlink_t dl;
1346 
1347 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1348 
1349 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1350 		if (!strcmp(dl->driver->name, classname))
1351 			return (dl);
1352 	}
1353 
1354 	PDEBUG(("not found"));
1355 	return (NULL);
1356 }
1357 
1358 /**
1359  * @brief Return the name of the devclass
1360  */
1361 const char *
1362 devclass_get_name(devclass_t dc)
1363 {
1364 	return (dc->name);
1365 }
1366 
1367 /**
1368  * @brief Find a device given a unit number
1369  *
1370  * @param dc		the devclass to search
1371  * @param unit		the unit number to search for
1372  *
1373  * @returns		the device with the given unit number or @c
1374  *			NULL if there is no such device
1375  */
1376 device_t
1377 devclass_get_device(devclass_t dc, int unit)
1378 {
1379 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1380 		return (NULL);
1381 	return (dc->devices[unit]);
1382 }
1383 
1384 /**
1385  * @brief Find the softc field of a device given a unit number
1386  *
1387  * @param dc		the devclass to search
1388  * @param unit		the unit number to search for
1389  *
1390  * @returns		the softc field of the device with the given
1391  *			unit number or @c NULL if there is no such
1392  *			device
1393  */
1394 void *
1395 devclass_get_softc(devclass_t dc, int unit)
1396 {
1397 	device_t dev;
1398 
1399 	dev = devclass_get_device(dc, unit);
1400 	if (!dev)
1401 		return (NULL);
1402 
1403 	return (device_get_softc(dev));
1404 }
1405 
1406 /**
1407  * @brief Get a list of devices in the devclass
1408  *
1409  * An array containing a list of all the devices in the given devclass
1410  * is allocated and returned in @p *devlistp. The number of devices
1411  * in the array is returned in @p *devcountp. The caller should free
1412  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1413  *
1414  * @param dc		the devclass to examine
1415  * @param devlistp	points at location for array pointer return
1416  *			value
1417  * @param devcountp	points at location for array size return value
1418  *
1419  * @retval 0		success
1420  * @retval ENOMEM	the array allocation failed
1421  */
1422 int
1423 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1424 {
1425 	int count, i;
1426 	device_t *list;
1427 
1428 	count = devclass_get_count(dc);
1429 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1430 	if (!list)
1431 		return (ENOMEM);
1432 
1433 	count = 0;
1434 	for (i = 0; i < dc->maxunit; i++) {
1435 		if (dc->devices[i]) {
1436 			list[count] = dc->devices[i];
1437 			count++;
1438 		}
1439 	}
1440 
1441 	*devlistp = list;
1442 	*devcountp = count;
1443 
1444 	return (0);
1445 }
1446 
1447 /**
1448  * @brief Get a list of drivers in the devclass
1449  *
1450  * An array containing a list of pointers to all the drivers in the
1451  * given devclass is allocated and returned in @p *listp.  The number
1452  * of drivers in the array is returned in @p *countp. The caller should
1453  * free the array using @c free(p, M_TEMP).
1454  *
1455  * @param dc		the devclass to examine
1456  * @param listp		gives location for array pointer return value
1457  * @param countp	gives location for number of array elements
1458  *			return value
1459  *
1460  * @retval 0		success
1461  * @retval ENOMEM	the array allocation failed
1462  */
1463 int
1464 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1465 {
1466 	driverlink_t dl;
1467 	driver_t **list;
1468 	int count;
1469 
1470 	count = 0;
1471 	TAILQ_FOREACH(dl, &dc->drivers, link)
1472 		count++;
1473 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1474 	if (list == NULL)
1475 		return (ENOMEM);
1476 
1477 	count = 0;
1478 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1479 		list[count] = dl->driver;
1480 		count++;
1481 	}
1482 	*listp = list;
1483 	*countp = count;
1484 
1485 	return (0);
1486 }
1487 
1488 /**
1489  * @brief Get the number of devices in a devclass
1490  *
1491  * @param dc		the devclass to examine
1492  */
1493 int
1494 devclass_get_count(devclass_t dc)
1495 {
1496 	int count, i;
1497 
1498 	count = 0;
1499 	for (i = 0; i < dc->maxunit; i++)
1500 		if (dc->devices[i])
1501 			count++;
1502 	return (count);
1503 }
1504 
1505 /**
1506  * @brief Get the maximum unit number used in a devclass
1507  *
1508  * Note that this is one greater than the highest currently-allocated
1509  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1510  * that not even the devclass has been allocated yet.
1511  *
1512  * @param dc		the devclass to examine
1513  */
1514 int
1515 devclass_get_maxunit(devclass_t dc)
1516 {
1517 	if (dc == NULL)
1518 		return (-1);
1519 	return (dc->maxunit);
1520 }
1521 
1522 /**
1523  * @brief Find a free unit number in a devclass
1524  *
1525  * This function searches for the first unused unit number greater
1526  * that or equal to @p unit.
1527  *
1528  * @param dc		the devclass to examine
1529  * @param unit		the first unit number to check
1530  */
1531 int
1532 devclass_find_free_unit(devclass_t dc, int unit)
1533 {
1534 	if (dc == NULL)
1535 		return (unit);
1536 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1537 		unit++;
1538 	return (unit);
1539 }
1540 
1541 /**
1542  * @brief Set the parent of a devclass
1543  *
1544  * The parent class is normally initialised automatically by
1545  * DRIVER_MODULE().
1546  *
1547  * @param dc		the devclass to edit
1548  * @param pdc		the new parent devclass
1549  */
1550 void
1551 devclass_set_parent(devclass_t dc, devclass_t pdc)
1552 {
1553 	dc->parent = pdc;
1554 }
1555 
1556 /**
1557  * @brief Get the parent of a devclass
1558  *
1559  * @param dc		the devclass to examine
1560  */
1561 devclass_t
1562 devclass_get_parent(devclass_t dc)
1563 {
1564 	return (dc->parent);
1565 }
1566 
1567 struct sysctl_ctx_list *
1568 devclass_get_sysctl_ctx(devclass_t dc)
1569 {
1570 	return (&dc->sysctl_ctx);
1571 }
1572 
1573 struct sysctl_oid *
1574 devclass_get_sysctl_tree(devclass_t dc)
1575 {
1576 	return (dc->sysctl_tree);
1577 }
1578 
1579 /**
1580  * @internal
1581  * @brief Allocate a unit number
1582  *
1583  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1584  * will do). The allocated unit number is returned in @p *unitp.
1585 
1586  * @param dc		the devclass to allocate from
1587  * @param unitp		points at the location for the allocated unit
1588  *			number
1589  *
1590  * @retval 0		success
1591  * @retval EEXIST	the requested unit number is already allocated
1592  * @retval ENOMEM	memory allocation failure
1593  */
1594 static int
1595 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1596 {
1597 	const char *s;
1598 	int unit = *unitp;
1599 
1600 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1601 
1602 	/* Ask the parent bus if it wants to wire this device. */
1603 	if (unit == -1)
1604 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1605 		    &unit);
1606 
1607 	/* If we were given a wired unit number, check for existing device */
1608 	/* XXX imp XXX */
1609 	if (unit != -1) {
1610 		if (unit >= 0 && unit < dc->maxunit &&
1611 		    dc->devices[unit] != NULL) {
1612 			if (bootverbose)
1613 				printf("%s: %s%d already exists; skipping it\n",
1614 				    dc->name, dc->name, *unitp);
1615 			return (EEXIST);
1616 		}
1617 	} else {
1618 		/* Unwired device, find the next available slot for it */
1619 		unit = 0;
1620 		for (unit = 0;; unit++) {
1621 			/* If there is an "at" hint for a unit then skip it. */
1622 			if (resource_string_value(dc->name, unit, "at", &s) ==
1623 			    0)
1624 				continue;
1625 
1626 			/* If this device slot is already in use, skip it. */
1627 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1628 				continue;
1629 
1630 			break;
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * We've selected a unit beyond the length of the table, so let's
1636 	 * extend the table to make room for all units up to and including
1637 	 * this one.
1638 	 */
1639 	if (unit >= dc->maxunit) {
1640 		device_t *newlist, *oldlist;
1641 		int newsize;
1642 
1643 		oldlist = dc->devices;
1644 		newsize = roundup((unit + 1),
1645 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1646 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1647 		if (!newlist)
1648 			return (ENOMEM);
1649 		if (oldlist != NULL)
1650 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1651 		bzero(newlist + dc->maxunit,
1652 		    sizeof(device_t) * (newsize - dc->maxunit));
1653 		dc->devices = newlist;
1654 		dc->maxunit = newsize;
1655 		if (oldlist != NULL)
1656 			free(oldlist, M_BUS);
1657 	}
1658 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1659 
1660 	*unitp = unit;
1661 	return (0);
1662 }
1663 
1664 /**
1665  * @internal
1666  * @brief Add a device to a devclass
1667  *
1668  * A unit number is allocated for the device (using the device's
1669  * preferred unit number if any) and the device is registered in the
1670  * devclass. This allows the device to be looked up by its unit
1671  * number, e.g. by decoding a dev_t minor number.
1672  *
1673  * @param dc		the devclass to add to
1674  * @param dev		the device to add
1675  *
1676  * @retval 0		success
1677  * @retval EEXIST	the requested unit number is already allocated
1678  * @retval ENOMEM	memory allocation failure
1679  */
1680 static int
1681 devclass_add_device(devclass_t dc, device_t dev)
1682 {
1683 	int buflen, error;
1684 
1685 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1686 
1687 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1688 	if (buflen < 0)
1689 		return (ENOMEM);
1690 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1691 	if (!dev->nameunit)
1692 		return (ENOMEM);
1693 
1694 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1695 		free(dev->nameunit, M_BUS);
1696 		dev->nameunit = NULL;
1697 		return (error);
1698 	}
1699 	dc->devices[dev->unit] = dev;
1700 	dev->devclass = dc;
1701 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1702 
1703 	return (0);
1704 }
1705 
1706 /**
1707  * @internal
1708  * @brief Delete a device from a devclass
1709  *
1710  * The device is removed from the devclass's device list and its unit
1711  * number is freed.
1712 
1713  * @param dc		the devclass to delete from
1714  * @param dev		the device to delete
1715  *
1716  * @retval 0		success
1717  */
1718 static int
1719 devclass_delete_device(devclass_t dc, device_t dev)
1720 {
1721 	if (!dc || !dev)
1722 		return (0);
1723 
1724 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1725 
1726 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1727 		panic("devclass_delete_device: inconsistent device class");
1728 	dc->devices[dev->unit] = NULL;
1729 	if (dev->flags & DF_WILDCARD)
1730 		dev->unit = -1;
1731 	dev->devclass = NULL;
1732 	free(dev->nameunit, M_BUS);
1733 	dev->nameunit = NULL;
1734 
1735 	return (0);
1736 }
1737 
1738 /**
1739  * @internal
1740  * @brief Make a new device and add it as a child of @p parent
1741  *
1742  * @param parent	the parent of the new device
1743  * @param name		the devclass name of the new device or @c NULL
1744  *			to leave the devclass unspecified
1745  * @parem unit		the unit number of the new device of @c -1 to
1746  *			leave the unit number unspecified
1747  *
1748  * @returns the new device
1749  */
1750 static device_t
1751 make_device(device_t parent, const char *name, int unit)
1752 {
1753 	device_t dev;
1754 	devclass_t dc;
1755 
1756 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1757 
1758 	if (name) {
1759 		dc = devclass_find_internal(name, NULL, TRUE);
1760 		if (!dc) {
1761 			printf("make_device: can't find device class %s\n",
1762 			    name);
1763 			return (NULL);
1764 		}
1765 	} else {
1766 		dc = NULL;
1767 	}
1768 
1769 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1770 	if (!dev)
1771 		return (NULL);
1772 
1773 	dev->parent = parent;
1774 	TAILQ_INIT(&dev->children);
1775 	kobj_init((kobj_t) dev, &null_class);
1776 	dev->driver = NULL;
1777 	dev->devclass = NULL;
1778 	dev->unit = unit;
1779 	dev->nameunit = NULL;
1780 	dev->desc = NULL;
1781 	dev->busy = 0;
1782 	dev->devflags = 0;
1783 	dev->flags = DF_ENABLED;
1784 	dev->order = 0;
1785 	if (unit == -1)
1786 		dev->flags |= DF_WILDCARD;
1787 	if (name) {
1788 		dev->flags |= DF_FIXEDCLASS;
1789 		if (devclass_add_device(dc, dev)) {
1790 			kobj_delete((kobj_t) dev, M_BUS);
1791 			return (NULL);
1792 		}
1793 	}
1794 	if (parent != NULL && device_has_quiet_children(parent))
1795 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1796 	dev->ivars = NULL;
1797 	dev->softc = NULL;
1798 
1799 	dev->state = DS_NOTPRESENT;
1800 
1801 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1802 	bus_data_generation_update();
1803 
1804 	return (dev);
1805 }
1806 
1807 /**
1808  * @internal
1809  * @brief Print a description of a device.
1810  */
1811 static int
1812 device_print_child(device_t dev, device_t child)
1813 {
1814 	int retval = 0;
1815 
1816 	if (device_is_alive(child))
1817 		retval += BUS_PRINT_CHILD(dev, child);
1818 	else
1819 		retval += device_printf(child, " not found\n");
1820 
1821 	return (retval);
1822 }
1823 
1824 /**
1825  * @brief Create a new device
1826  *
1827  * This creates a new device and adds it as a child of an existing
1828  * parent device. The new device will be added after the last existing
1829  * child with order zero.
1830  *
1831  * @param dev		the device which will be the parent of the
1832  *			new child device
1833  * @param name		devclass name for new device or @c NULL if not
1834  *			specified
1835  * @param unit		unit number for new device or @c -1 if not
1836  *			specified
1837  *
1838  * @returns		the new device
1839  */
1840 device_t
1841 device_add_child(device_t dev, const char *name, int unit)
1842 {
1843 	return (device_add_child_ordered(dev, 0, name, unit));
1844 }
1845 
1846 /**
1847  * @brief Create a new device
1848  *
1849  * This creates a new device and adds it as a child of an existing
1850  * parent device. The new device will be added after the last existing
1851  * child with the same order.
1852  *
1853  * @param dev		the device which will be the parent of the
1854  *			new child device
1855  * @param order		a value which is used to partially sort the
1856  *			children of @p dev - devices created using
1857  *			lower values of @p order appear first in @p
1858  *			dev's list of children
1859  * @param name		devclass name for new device or @c NULL if not
1860  *			specified
1861  * @param unit		unit number for new device or @c -1 if not
1862  *			specified
1863  *
1864  * @returns		the new device
1865  */
1866 device_t
1867 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1868 {
1869 	device_t child;
1870 	device_t place;
1871 
1872 	PDEBUG(("%s at %s with order %u as unit %d",
1873 	    name, DEVICENAME(dev), order, unit));
1874 	KASSERT(name != NULL || unit == -1,
1875 	    ("child device with wildcard name and specific unit number"));
1876 
1877 	child = make_device(dev, name, unit);
1878 	if (child == NULL)
1879 		return (child);
1880 	child->order = order;
1881 
1882 	TAILQ_FOREACH(place, &dev->children, link) {
1883 		if (place->order > order)
1884 			break;
1885 	}
1886 
1887 	if (place) {
1888 		/*
1889 		 * The device 'place' is the first device whose order is
1890 		 * greater than the new child.
1891 		 */
1892 		TAILQ_INSERT_BEFORE(place, child, link);
1893 	} else {
1894 		/*
1895 		 * The new child's order is greater or equal to the order of
1896 		 * any existing device. Add the child to the tail of the list.
1897 		 */
1898 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1899 	}
1900 
1901 	bus_data_generation_update();
1902 	return (child);
1903 }
1904 
1905 /**
1906  * @brief Delete a device
1907  *
1908  * This function deletes a device along with all of its children. If
1909  * the device currently has a driver attached to it, the device is
1910  * detached first using device_detach().
1911  *
1912  * @param dev		the parent device
1913  * @param child		the device to delete
1914  *
1915  * @retval 0		success
1916  * @retval non-zero	a unit error code describing the error
1917  */
1918 int
1919 device_delete_child(device_t dev, device_t child)
1920 {
1921 	int error;
1922 	device_t grandchild;
1923 
1924 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1925 
1926 	/* detach parent before deleting children, if any */
1927 	if ((error = device_detach(child)) != 0)
1928 		return (error);
1929 
1930 	/* remove children second */
1931 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1932 		error = device_delete_child(child, grandchild);
1933 		if (error)
1934 			return (error);
1935 	}
1936 
1937 	if (child->devclass)
1938 		devclass_delete_device(child->devclass, child);
1939 	if (child->parent)
1940 		BUS_CHILD_DELETED(dev, child);
1941 	TAILQ_REMOVE(&dev->children, child, link);
1942 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1943 	kobj_delete((kobj_t) child, M_BUS);
1944 
1945 	bus_data_generation_update();
1946 	return (0);
1947 }
1948 
1949 /**
1950  * @brief Delete all children devices of the given device, if any.
1951  *
1952  * This function deletes all children devices of the given device, if
1953  * any, using the device_delete_child() function for each device it
1954  * finds. If a child device cannot be deleted, this function will
1955  * return an error code.
1956  *
1957  * @param dev		the parent device
1958  *
1959  * @retval 0		success
1960  * @retval non-zero	a device would not detach
1961  */
1962 int
1963 device_delete_children(device_t dev)
1964 {
1965 	device_t child;
1966 	int error;
1967 
1968 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1969 
1970 	error = 0;
1971 
1972 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1973 		error = device_delete_child(dev, child);
1974 		if (error) {
1975 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1976 			break;
1977 		}
1978 	}
1979 	return (error);
1980 }
1981 
1982 /**
1983  * @brief Find a device given a unit number
1984  *
1985  * This is similar to devclass_get_devices() but only searches for
1986  * devices which have @p dev as a parent.
1987  *
1988  * @param dev		the parent device to search
1989  * @param unit		the unit number to search for.  If the unit is -1,
1990  *			return the first child of @p dev which has name
1991  *			@p classname (that is, the one with the lowest unit.)
1992  *
1993  * @returns		the device with the given unit number or @c
1994  *			NULL if there is no such device
1995  */
1996 device_t
1997 device_find_child(device_t dev, const char *classname, int unit)
1998 {
1999 	devclass_t dc;
2000 	device_t child;
2001 
2002 	dc = devclass_find(classname);
2003 	if (!dc)
2004 		return (NULL);
2005 
2006 	if (unit != -1) {
2007 		child = devclass_get_device(dc, unit);
2008 		if (child && child->parent == dev)
2009 			return (child);
2010 	} else {
2011 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2012 			child = devclass_get_device(dc, unit);
2013 			if (child && child->parent == dev)
2014 				return (child);
2015 		}
2016 	}
2017 	return (NULL);
2018 }
2019 
2020 /**
2021  * @internal
2022  */
2023 static driverlink_t
2024 first_matching_driver(devclass_t dc, device_t dev)
2025 {
2026 	if (dev->devclass)
2027 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2028 	return (TAILQ_FIRST(&dc->drivers));
2029 }
2030 
2031 /**
2032  * @internal
2033  */
2034 static driverlink_t
2035 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2036 {
2037 	if (dev->devclass) {
2038 		driverlink_t dl;
2039 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2040 			if (!strcmp(dev->devclass->name, dl->driver->name))
2041 				return (dl);
2042 		return (NULL);
2043 	}
2044 	return (TAILQ_NEXT(last, link));
2045 }
2046 
2047 /**
2048  * @internal
2049  */
2050 int
2051 device_probe_child(device_t dev, device_t child)
2052 {
2053 	devclass_t dc;
2054 	driverlink_t best = NULL;
2055 	driverlink_t dl;
2056 	int result, pri = 0;
2057 	int hasclass = (child->devclass != NULL);
2058 
2059 	GIANT_REQUIRED;
2060 
2061 	dc = dev->devclass;
2062 	if (!dc)
2063 		panic("device_probe_child: parent device has no devclass");
2064 
2065 	/*
2066 	 * If the state is already probed, then return.  However, don't
2067 	 * return if we can rebid this object.
2068 	 */
2069 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2070 		return (0);
2071 
2072 	for (; dc; dc = dc->parent) {
2073 		for (dl = first_matching_driver(dc, child);
2074 		     dl;
2075 		     dl = next_matching_driver(dc, child, dl)) {
2076 			/* If this driver's pass is too high, then ignore it. */
2077 			if (dl->pass > bus_current_pass)
2078 				continue;
2079 
2080 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2081 			result = device_set_driver(child, dl->driver);
2082 			if (result == ENOMEM)
2083 				return (result);
2084 			else if (result != 0)
2085 				continue;
2086 			if (!hasclass) {
2087 				if (device_set_devclass(child,
2088 				    dl->driver->name) != 0) {
2089 					char const * devname =
2090 					    device_get_name(child);
2091 					if (devname == NULL)
2092 						devname = "(unknown)";
2093 					printf("driver bug: Unable to set "
2094 					    "devclass (class: %s "
2095 					    "devname: %s)\n",
2096 					    dl->driver->name,
2097 					    devname);
2098 					(void)device_set_driver(child, NULL);
2099 					continue;
2100 				}
2101 			}
2102 
2103 			/* Fetch any flags for the device before probing. */
2104 			resource_int_value(dl->driver->name, child->unit,
2105 			    "flags", &child->devflags);
2106 
2107 			result = DEVICE_PROBE(child);
2108 
2109 			/* Reset flags and devclass before the next probe. */
2110 			child->devflags = 0;
2111 			if (!hasclass)
2112 				(void)device_set_devclass(child, NULL);
2113 
2114 			/*
2115 			 * If the driver returns SUCCESS, there can be
2116 			 * no higher match for this device.
2117 			 */
2118 			if (result == 0) {
2119 				best = dl;
2120 				pri = 0;
2121 				break;
2122 			}
2123 
2124 			/*
2125 			 * Reset DF_QUIET in case this driver doesn't
2126 			 * end up as the best driver.
2127 			 */
2128 			device_verbose(child);
2129 
2130 			/*
2131 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2132 			 * only match on devices whose driver was explicitly
2133 			 * specified.
2134 			 */
2135 			if (result <= BUS_PROBE_NOWILDCARD &&
2136 			    !(child->flags & DF_FIXEDCLASS)) {
2137 				result = ENXIO;
2138 			}
2139 
2140 			/*
2141 			 * The driver returned an error so it
2142 			 * certainly doesn't match.
2143 			 */
2144 			if (result > 0) {
2145 				(void)device_set_driver(child, NULL);
2146 				continue;
2147 			}
2148 
2149 			/*
2150 			 * A priority lower than SUCCESS, remember the
2151 			 * best matching driver. Initialise the value
2152 			 * of pri for the first match.
2153 			 */
2154 			if (best == NULL || result > pri) {
2155 				best = dl;
2156 				pri = result;
2157 				continue;
2158 			}
2159 		}
2160 		/*
2161 		 * If we have an unambiguous match in this devclass,
2162 		 * don't look in the parent.
2163 		 */
2164 		if (best && pri == 0)
2165 			break;
2166 	}
2167 
2168 	/*
2169 	 * If we found a driver, change state and initialise the devclass.
2170 	 */
2171 	/* XXX What happens if we rebid and got no best? */
2172 	if (best) {
2173 		/*
2174 		 * If this device was attached, and we were asked to
2175 		 * rescan, and it is a different driver, then we have
2176 		 * to detach the old driver and reattach this new one.
2177 		 * Note, we don't have to check for DF_REBID here
2178 		 * because if the state is > DS_ALIVE, we know it must
2179 		 * be.
2180 		 *
2181 		 * This assumes that all DF_REBID drivers can have
2182 		 * their probe routine called at any time and that
2183 		 * they are idempotent as well as completely benign in
2184 		 * normal operations.
2185 		 *
2186 		 * We also have to make sure that the detach
2187 		 * succeeded, otherwise we fail the operation (or
2188 		 * maybe it should just fail silently?  I'm torn).
2189 		 */
2190 		if (child->state > DS_ALIVE && best->driver != child->driver)
2191 			if ((result = device_detach(dev)) != 0)
2192 				return (result);
2193 
2194 		/* Set the winning driver, devclass, and flags. */
2195 		if (!child->devclass) {
2196 			result = device_set_devclass(child, best->driver->name);
2197 			if (result != 0)
2198 				return (result);
2199 		}
2200 		result = device_set_driver(child, best->driver);
2201 		if (result != 0)
2202 			return (result);
2203 		resource_int_value(best->driver->name, child->unit,
2204 		    "flags", &child->devflags);
2205 
2206 		if (pri < 0) {
2207 			/*
2208 			 * A bit bogus. Call the probe method again to make
2209 			 * sure that we have the right description.
2210 			 */
2211 			DEVICE_PROBE(child);
2212 #if 0
2213 			child->flags |= DF_REBID;
2214 #endif
2215 		} else
2216 			child->flags &= ~DF_REBID;
2217 		child->state = DS_ALIVE;
2218 
2219 		bus_data_generation_update();
2220 		return (0);
2221 	}
2222 
2223 	return (ENXIO);
2224 }
2225 
2226 /**
2227  * @brief Return the parent of a device
2228  */
2229 device_t
2230 device_get_parent(device_t dev)
2231 {
2232 	return (dev->parent);
2233 }
2234 
2235 /**
2236  * @brief Get a list of children of a device
2237  *
2238  * An array containing a list of all the children of the given device
2239  * is allocated and returned in @p *devlistp. The number of devices
2240  * in the array is returned in @p *devcountp. The caller should free
2241  * the array using @c free(p, M_TEMP).
2242  *
2243  * @param dev		the device to examine
2244  * @param devlistp	points at location for array pointer return
2245  *			value
2246  * @param devcountp	points at location for array size return value
2247  *
2248  * @retval 0		success
2249  * @retval ENOMEM	the array allocation failed
2250  */
2251 int
2252 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2253 {
2254 	int count;
2255 	device_t child;
2256 	device_t *list;
2257 
2258 	count = 0;
2259 	TAILQ_FOREACH(child, &dev->children, link) {
2260 		count++;
2261 	}
2262 	if (count == 0) {
2263 		*devlistp = NULL;
2264 		*devcountp = 0;
2265 		return (0);
2266 	}
2267 
2268 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2269 	if (!list)
2270 		return (ENOMEM);
2271 
2272 	count = 0;
2273 	TAILQ_FOREACH(child, &dev->children, link) {
2274 		list[count] = child;
2275 		count++;
2276 	}
2277 
2278 	*devlistp = list;
2279 	*devcountp = count;
2280 
2281 	return (0);
2282 }
2283 
2284 /**
2285  * @brief Return the current driver for the device or @c NULL if there
2286  * is no driver currently attached
2287  */
2288 driver_t *
2289 device_get_driver(device_t dev)
2290 {
2291 	return (dev->driver);
2292 }
2293 
2294 /**
2295  * @brief Return the current devclass for the device or @c NULL if
2296  * there is none.
2297  */
2298 devclass_t
2299 device_get_devclass(device_t dev)
2300 {
2301 	return (dev->devclass);
2302 }
2303 
2304 /**
2305  * @brief Return the name of the device's devclass or @c NULL if there
2306  * is none.
2307  */
2308 const char *
2309 device_get_name(device_t dev)
2310 {
2311 	if (dev != NULL && dev->devclass)
2312 		return (devclass_get_name(dev->devclass));
2313 	return (NULL);
2314 }
2315 
2316 /**
2317  * @brief Return a string containing the device's devclass name
2318  * followed by an ascii representation of the device's unit number
2319  * (e.g. @c "foo2").
2320  */
2321 const char *
2322 device_get_nameunit(device_t dev)
2323 {
2324 	return (dev->nameunit);
2325 }
2326 
2327 /**
2328  * @brief Return the device's unit number.
2329  */
2330 int
2331 device_get_unit(device_t dev)
2332 {
2333 	return (dev->unit);
2334 }
2335 
2336 /**
2337  * @brief Return the device's description string
2338  */
2339 const char *
2340 device_get_desc(device_t dev)
2341 {
2342 	return (dev->desc);
2343 }
2344 
2345 /**
2346  * @brief Return the device's flags
2347  */
2348 uint32_t
2349 device_get_flags(device_t dev)
2350 {
2351 	return (dev->devflags);
2352 }
2353 
2354 struct sysctl_ctx_list *
2355 device_get_sysctl_ctx(device_t dev)
2356 {
2357 	return (&dev->sysctl_ctx);
2358 }
2359 
2360 struct sysctl_oid *
2361 device_get_sysctl_tree(device_t dev)
2362 {
2363 	return (dev->sysctl_tree);
2364 }
2365 
2366 /**
2367  * @brief Print the name of the device followed by a colon and a space
2368  *
2369  * @returns the number of characters printed
2370  */
2371 int
2372 device_print_prettyname(device_t dev)
2373 {
2374 	const char *name = device_get_name(dev);
2375 
2376 	if (name == NULL)
2377 		return (printf("unknown: "));
2378 	return (printf("%s%d: ", name, device_get_unit(dev)));
2379 }
2380 
2381 /**
2382  * @brief Print the name of the device followed by a colon, a space
2383  * and the result of calling vprintf() with the value of @p fmt and
2384  * the following arguments.
2385  *
2386  * @returns the number of characters printed
2387  */
2388 int
2389 device_printf(device_t dev, const char * fmt, ...)
2390 {
2391 	char buf[128];
2392 	struct sbuf sb;
2393 	const char *name;
2394 	va_list ap;
2395 	size_t retval;
2396 
2397 	retval = 0;
2398 
2399 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2400 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2401 
2402 	name = device_get_name(dev);
2403 
2404 	if (name == NULL)
2405 		sbuf_cat(&sb, "unknown: ");
2406 	else
2407 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2408 
2409 	va_start(ap, fmt);
2410 	sbuf_vprintf(&sb, fmt, ap);
2411 	va_end(ap);
2412 
2413 	sbuf_finish(&sb);
2414 	sbuf_delete(&sb);
2415 
2416 	return (retval);
2417 }
2418 
2419 /**
2420  * @internal
2421  */
2422 static void
2423 device_set_desc_internal(device_t dev, const char* desc, int copy)
2424 {
2425 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2426 		free(dev->desc, M_BUS);
2427 		dev->flags &= ~DF_DESCMALLOCED;
2428 		dev->desc = NULL;
2429 	}
2430 
2431 	if (copy && desc) {
2432 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2433 		if (dev->desc) {
2434 			strcpy(dev->desc, desc);
2435 			dev->flags |= DF_DESCMALLOCED;
2436 		}
2437 	} else {
2438 		/* Avoid a -Wcast-qual warning */
2439 		dev->desc = (char *)(uintptr_t) desc;
2440 	}
2441 
2442 	bus_data_generation_update();
2443 }
2444 
2445 /**
2446  * @brief Set the device's description
2447  *
2448  * The value of @c desc should be a string constant that will not
2449  * change (at least until the description is changed in a subsequent
2450  * call to device_set_desc() or device_set_desc_copy()).
2451  */
2452 void
2453 device_set_desc(device_t dev, const char* desc)
2454 {
2455 	device_set_desc_internal(dev, desc, FALSE);
2456 }
2457 
2458 /**
2459  * @brief Set the device's description
2460  *
2461  * The string pointed to by @c desc is copied. Use this function if
2462  * the device description is generated, (e.g. with sprintf()).
2463  */
2464 void
2465 device_set_desc_copy(device_t dev, const char* desc)
2466 {
2467 	device_set_desc_internal(dev, desc, TRUE);
2468 }
2469 
2470 /**
2471  * @brief Set the device's flags
2472  */
2473 void
2474 device_set_flags(device_t dev, uint32_t flags)
2475 {
2476 	dev->devflags = flags;
2477 }
2478 
2479 /**
2480  * @brief Return the device's softc field
2481  *
2482  * The softc is allocated and zeroed when a driver is attached, based
2483  * on the size field of the driver.
2484  */
2485 void *
2486 device_get_softc(device_t dev)
2487 {
2488 	return (dev->softc);
2489 }
2490 
2491 /**
2492  * @brief Set the device's softc field
2493  *
2494  * Most drivers do not need to use this since the softc is allocated
2495  * automatically when the driver is attached.
2496  */
2497 void
2498 device_set_softc(device_t dev, void *softc)
2499 {
2500 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2501 		free(dev->softc, M_BUS_SC);
2502 	dev->softc = softc;
2503 	if (dev->softc)
2504 		dev->flags |= DF_EXTERNALSOFTC;
2505 	else
2506 		dev->flags &= ~DF_EXTERNALSOFTC;
2507 }
2508 
2509 /**
2510  * @brief Free claimed softc
2511  *
2512  * Most drivers do not need to use this since the softc is freed
2513  * automatically when the driver is detached.
2514  */
2515 void
2516 device_free_softc(void *softc)
2517 {
2518 	free(softc, M_BUS_SC);
2519 }
2520 
2521 /**
2522  * @brief Claim softc
2523  *
2524  * This function can be used to let the driver free the automatically
2525  * allocated softc using "device_free_softc()". This function is
2526  * useful when the driver is refcounting the softc and the softc
2527  * cannot be freed when the "device_detach" method is called.
2528  */
2529 void
2530 device_claim_softc(device_t dev)
2531 {
2532 	if (dev->softc)
2533 		dev->flags |= DF_EXTERNALSOFTC;
2534 	else
2535 		dev->flags &= ~DF_EXTERNALSOFTC;
2536 }
2537 
2538 /**
2539  * @brief Get the device's ivars field
2540  *
2541  * The ivars field is used by the parent device to store per-device
2542  * state (e.g. the physical location of the device or a list of
2543  * resources).
2544  */
2545 void *
2546 device_get_ivars(device_t dev)
2547 {
2548 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2549 	return (dev->ivars);
2550 }
2551 
2552 /**
2553  * @brief Set the device's ivars field
2554  */
2555 void
2556 device_set_ivars(device_t dev, void * ivars)
2557 {
2558 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2559 	dev->ivars = ivars;
2560 }
2561 
2562 /**
2563  * @brief Return the device's state
2564  */
2565 device_state_t
2566 device_get_state(device_t dev)
2567 {
2568 	return (dev->state);
2569 }
2570 
2571 /**
2572  * @brief Set the DF_ENABLED flag for the device
2573  */
2574 void
2575 device_enable(device_t dev)
2576 {
2577 	dev->flags |= DF_ENABLED;
2578 }
2579 
2580 /**
2581  * @brief Clear the DF_ENABLED flag for the device
2582  */
2583 void
2584 device_disable(device_t dev)
2585 {
2586 	dev->flags &= ~DF_ENABLED;
2587 }
2588 
2589 /**
2590  * @brief Increment the busy counter for the device
2591  */
2592 void
2593 device_busy(device_t dev)
2594 {
2595 	if (dev->state < DS_ATTACHING)
2596 		panic("device_busy: called for unattached device");
2597 	if (dev->busy == 0 && dev->parent)
2598 		device_busy(dev->parent);
2599 	dev->busy++;
2600 	if (dev->state == DS_ATTACHED)
2601 		dev->state = DS_BUSY;
2602 }
2603 
2604 /**
2605  * @brief Decrement the busy counter for the device
2606  */
2607 void
2608 device_unbusy(device_t dev)
2609 {
2610 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2611 	    dev->state != DS_ATTACHING)
2612 		panic("device_unbusy: called for non-busy device %s",
2613 		    device_get_nameunit(dev));
2614 	dev->busy--;
2615 	if (dev->busy == 0) {
2616 		if (dev->parent)
2617 			device_unbusy(dev->parent);
2618 		if (dev->state == DS_BUSY)
2619 			dev->state = DS_ATTACHED;
2620 	}
2621 }
2622 
2623 /**
2624  * @brief Set the DF_QUIET flag for the device
2625  */
2626 void
2627 device_quiet(device_t dev)
2628 {
2629 	dev->flags |= DF_QUIET;
2630 }
2631 
2632 /**
2633  * @brief Set the DF_QUIET_CHILDREN flag for the device
2634  */
2635 void
2636 device_quiet_children(device_t dev)
2637 {
2638 	dev->flags |= DF_QUIET_CHILDREN;
2639 }
2640 
2641 /**
2642  * @brief Clear the DF_QUIET flag for the device
2643  */
2644 void
2645 device_verbose(device_t dev)
2646 {
2647 	dev->flags &= ~DF_QUIET;
2648 }
2649 
2650 /**
2651  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2652  */
2653 int
2654 device_has_quiet_children(device_t dev)
2655 {
2656 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2657 }
2658 
2659 /**
2660  * @brief Return non-zero if the DF_QUIET flag is set on the device
2661  */
2662 int
2663 device_is_quiet(device_t dev)
2664 {
2665 	return ((dev->flags & DF_QUIET) != 0);
2666 }
2667 
2668 /**
2669  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2670  */
2671 int
2672 device_is_enabled(device_t dev)
2673 {
2674 	return ((dev->flags & DF_ENABLED) != 0);
2675 }
2676 
2677 /**
2678  * @brief Return non-zero if the device was successfully probed
2679  */
2680 int
2681 device_is_alive(device_t dev)
2682 {
2683 	return (dev->state >= DS_ALIVE);
2684 }
2685 
2686 /**
2687  * @brief Return non-zero if the device currently has a driver
2688  * attached to it
2689  */
2690 int
2691 device_is_attached(device_t dev)
2692 {
2693 	return (dev->state >= DS_ATTACHED);
2694 }
2695 
2696 /**
2697  * @brief Return non-zero if the device is currently suspended.
2698  */
2699 int
2700 device_is_suspended(device_t dev)
2701 {
2702 	return ((dev->flags & DF_SUSPENDED) != 0);
2703 }
2704 
2705 /**
2706  * @brief Set the devclass of a device
2707  * @see devclass_add_device().
2708  */
2709 int
2710 device_set_devclass(device_t dev, const char *classname)
2711 {
2712 	devclass_t dc;
2713 	int error;
2714 
2715 	if (!classname) {
2716 		if (dev->devclass)
2717 			devclass_delete_device(dev->devclass, dev);
2718 		return (0);
2719 	}
2720 
2721 	if (dev->devclass) {
2722 		printf("device_set_devclass: device class already set\n");
2723 		return (EINVAL);
2724 	}
2725 
2726 	dc = devclass_find_internal(classname, NULL, TRUE);
2727 	if (!dc)
2728 		return (ENOMEM);
2729 
2730 	error = devclass_add_device(dc, dev);
2731 
2732 	bus_data_generation_update();
2733 	return (error);
2734 }
2735 
2736 /**
2737  * @brief Set the devclass of a device and mark the devclass fixed.
2738  * @see device_set_devclass()
2739  */
2740 int
2741 device_set_devclass_fixed(device_t dev, const char *classname)
2742 {
2743 	int error;
2744 
2745 	if (classname == NULL)
2746 		return (EINVAL);
2747 
2748 	error = device_set_devclass(dev, classname);
2749 	if (error)
2750 		return (error);
2751 	dev->flags |= DF_FIXEDCLASS;
2752 	return (0);
2753 }
2754 
2755 /**
2756  * @brief Query the device to determine if it's of a fixed devclass
2757  * @see device_set_devclass_fixed()
2758  */
2759 bool
2760 device_is_devclass_fixed(device_t dev)
2761 {
2762 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2763 }
2764 
2765 /**
2766  * @brief Set the driver of a device
2767  *
2768  * @retval 0		success
2769  * @retval EBUSY	the device already has a driver attached
2770  * @retval ENOMEM	a memory allocation failure occurred
2771  */
2772 int
2773 device_set_driver(device_t dev, driver_t *driver)
2774 {
2775 	int domain;
2776 	struct domainset *policy;
2777 
2778 	if (dev->state >= DS_ATTACHED)
2779 		return (EBUSY);
2780 
2781 	if (dev->driver == driver)
2782 		return (0);
2783 
2784 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2785 		free(dev->softc, M_BUS_SC);
2786 		dev->softc = NULL;
2787 	}
2788 	device_set_desc(dev, NULL);
2789 	kobj_delete((kobj_t) dev, NULL);
2790 	dev->driver = driver;
2791 	if (driver) {
2792 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2793 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2794 			if (bus_get_domain(dev, &domain) == 0)
2795 				policy = DOMAINSET_PREF(domain);
2796 			else
2797 				policy = DOMAINSET_RR();
2798 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2799 			    policy, M_NOWAIT | M_ZERO);
2800 			if (!dev->softc) {
2801 				kobj_delete((kobj_t) dev, NULL);
2802 				kobj_init((kobj_t) dev, &null_class);
2803 				dev->driver = NULL;
2804 				return (ENOMEM);
2805 			}
2806 		}
2807 	} else {
2808 		kobj_init((kobj_t) dev, &null_class);
2809 	}
2810 
2811 	bus_data_generation_update();
2812 	return (0);
2813 }
2814 
2815 /**
2816  * @brief Probe a device, and return this status.
2817  *
2818  * This function is the core of the device autoconfiguration
2819  * system. Its purpose is to select a suitable driver for a device and
2820  * then call that driver to initialise the hardware appropriately. The
2821  * driver is selected by calling the DEVICE_PROBE() method of a set of
2822  * candidate drivers and then choosing the driver which returned the
2823  * best value. This driver is then attached to the device using
2824  * device_attach().
2825  *
2826  * The set of suitable drivers is taken from the list of drivers in
2827  * the parent device's devclass. If the device was originally created
2828  * with a specific class name (see device_add_child()), only drivers
2829  * with that name are probed, otherwise all drivers in the devclass
2830  * are probed. If no drivers return successful probe values in the
2831  * parent devclass, the search continues in the parent of that
2832  * devclass (see devclass_get_parent()) if any.
2833  *
2834  * @param dev		the device to initialise
2835  *
2836  * @retval 0		success
2837  * @retval ENXIO	no driver was found
2838  * @retval ENOMEM	memory allocation failure
2839  * @retval non-zero	some other unix error code
2840  * @retval -1		Device already attached
2841  */
2842 int
2843 device_probe(device_t dev)
2844 {
2845 	int error;
2846 
2847 	GIANT_REQUIRED;
2848 
2849 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2850 		return (-1);
2851 
2852 	if (!(dev->flags & DF_ENABLED)) {
2853 		if (bootverbose && device_get_name(dev) != NULL) {
2854 			device_print_prettyname(dev);
2855 			printf("not probed (disabled)\n");
2856 		}
2857 		return (-1);
2858 	}
2859 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2860 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2861 		    !(dev->flags & DF_DONENOMATCH)) {
2862 			BUS_PROBE_NOMATCH(dev->parent, dev);
2863 			devnomatch(dev);
2864 			dev->flags |= DF_DONENOMATCH;
2865 		}
2866 		return (error);
2867 	}
2868 	return (0);
2869 }
2870 
2871 /**
2872  * @brief Probe a device and attach a driver if possible
2873  *
2874  * calls device_probe() and attaches if that was successful.
2875  */
2876 int
2877 device_probe_and_attach(device_t dev)
2878 {
2879 	int error;
2880 
2881 	GIANT_REQUIRED;
2882 
2883 	error = device_probe(dev);
2884 	if (error == -1)
2885 		return (0);
2886 	else if (error != 0)
2887 		return (error);
2888 
2889 	CURVNET_SET_QUIET(vnet0);
2890 	error = device_attach(dev);
2891 	CURVNET_RESTORE();
2892 	return error;
2893 }
2894 
2895 /**
2896  * @brief Attach a device driver to a device
2897  *
2898  * This function is a wrapper around the DEVICE_ATTACH() driver
2899  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2900  * device's sysctl tree, optionally prints a description of the device
2901  * and queues a notification event for user-based device management
2902  * services.
2903  *
2904  * Normally this function is only called internally from
2905  * device_probe_and_attach().
2906  *
2907  * @param dev		the device to initialise
2908  *
2909  * @retval 0		success
2910  * @retval ENXIO	no driver was found
2911  * @retval ENOMEM	memory allocation failure
2912  * @retval non-zero	some other unix error code
2913  */
2914 int
2915 device_attach(device_t dev)
2916 {
2917 	uint64_t attachtime;
2918 	uint16_t attachentropy;
2919 	int error;
2920 
2921 	if (resource_disabled(dev->driver->name, dev->unit)) {
2922 		device_disable(dev);
2923 		if (bootverbose)
2924 			 device_printf(dev, "disabled via hints entry\n");
2925 		return (ENXIO);
2926 	}
2927 
2928 	device_sysctl_init(dev);
2929 	if (!device_is_quiet(dev))
2930 		device_print_child(dev->parent, dev);
2931 	attachtime = get_cyclecount();
2932 	dev->state = DS_ATTACHING;
2933 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2934 		printf("device_attach: %s%d attach returned %d\n",
2935 		    dev->driver->name, dev->unit, error);
2936 		if (!(dev->flags & DF_FIXEDCLASS))
2937 			devclass_delete_device(dev->devclass, dev);
2938 		(void)device_set_driver(dev, NULL);
2939 		device_sysctl_fini(dev);
2940 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2941 		dev->state = DS_NOTPRESENT;
2942 		return (error);
2943 	}
2944 	dev->flags |= DF_ATTACHED_ONCE;
2945 	/* We only need the low bits of this time, but ranges from tens to thousands
2946 	 * have been seen, so keep 2 bytes' worth.
2947 	 */
2948 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2949 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2950 	device_sysctl_update(dev);
2951 	if (dev->busy)
2952 		dev->state = DS_BUSY;
2953 	else
2954 		dev->state = DS_ATTACHED;
2955 	dev->flags &= ~DF_DONENOMATCH;
2956 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2957 	devadded(dev);
2958 	return (0);
2959 }
2960 
2961 /**
2962  * @brief Detach a driver from a device
2963  *
2964  * This function is a wrapper around the DEVICE_DETACH() driver
2965  * method. If the call to DEVICE_DETACH() succeeds, it calls
2966  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2967  * notification event for user-based device management services and
2968  * cleans up the device's sysctl tree.
2969  *
2970  * @param dev		the device to un-initialise
2971  *
2972  * @retval 0		success
2973  * @retval ENXIO	no driver was found
2974  * @retval ENOMEM	memory allocation failure
2975  * @retval non-zero	some other unix error code
2976  */
2977 int
2978 device_detach(device_t dev)
2979 {
2980 	int error;
2981 
2982 	GIANT_REQUIRED;
2983 
2984 	PDEBUG(("%s", DEVICENAME(dev)));
2985 	if (dev->state == DS_BUSY)
2986 		return (EBUSY);
2987 	if (dev->state == DS_ATTACHING) {
2988 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2989 		return (EBUSY);
2990 	}
2991 	if (dev->state != DS_ATTACHED)
2992 		return (0);
2993 
2994 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2995 	if ((error = DEVICE_DETACH(dev)) != 0) {
2996 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2997 		    EVHDEV_DETACH_FAILED);
2998 		return (error);
2999 	} else {
3000 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3001 		    EVHDEV_DETACH_COMPLETE);
3002 	}
3003 	devremoved(dev);
3004 	if (!device_is_quiet(dev))
3005 		device_printf(dev, "detached\n");
3006 	if (dev->parent)
3007 		BUS_CHILD_DETACHED(dev->parent, dev);
3008 
3009 	if (!(dev->flags & DF_FIXEDCLASS))
3010 		devclass_delete_device(dev->devclass, dev);
3011 
3012 	device_verbose(dev);
3013 	dev->state = DS_NOTPRESENT;
3014 	(void)device_set_driver(dev, NULL);
3015 	device_sysctl_fini(dev);
3016 
3017 	return (0);
3018 }
3019 
3020 /**
3021  * @brief Tells a driver to quiesce itself.
3022  *
3023  * This function is a wrapper around the DEVICE_QUIESCE() driver
3024  * method. If the call to DEVICE_QUIESCE() succeeds.
3025  *
3026  * @param dev		the device to quiesce
3027  *
3028  * @retval 0		success
3029  * @retval ENXIO	no driver was found
3030  * @retval ENOMEM	memory allocation failure
3031  * @retval non-zero	some other unix error code
3032  */
3033 int
3034 device_quiesce(device_t dev)
3035 {
3036 	PDEBUG(("%s", DEVICENAME(dev)));
3037 	if (dev->state == DS_BUSY)
3038 		return (EBUSY);
3039 	if (dev->state != DS_ATTACHED)
3040 		return (0);
3041 
3042 	return (DEVICE_QUIESCE(dev));
3043 }
3044 
3045 /**
3046  * @brief Notify a device of system shutdown
3047  *
3048  * This function calls the DEVICE_SHUTDOWN() driver method if the
3049  * device currently has an attached driver.
3050  *
3051  * @returns the value returned by DEVICE_SHUTDOWN()
3052  */
3053 int
3054 device_shutdown(device_t dev)
3055 {
3056 	if (dev->state < DS_ATTACHED)
3057 		return (0);
3058 	return (DEVICE_SHUTDOWN(dev));
3059 }
3060 
3061 /**
3062  * @brief Set the unit number of a device
3063  *
3064  * This function can be used to override the unit number used for a
3065  * device (e.g. to wire a device to a pre-configured unit number).
3066  */
3067 int
3068 device_set_unit(device_t dev, int unit)
3069 {
3070 	devclass_t dc;
3071 	int err;
3072 
3073 	dc = device_get_devclass(dev);
3074 	if (unit < dc->maxunit && dc->devices[unit])
3075 		return (EBUSY);
3076 	err = devclass_delete_device(dc, dev);
3077 	if (err)
3078 		return (err);
3079 	dev->unit = unit;
3080 	err = devclass_add_device(dc, dev);
3081 	if (err)
3082 		return (err);
3083 
3084 	bus_data_generation_update();
3085 	return (0);
3086 }
3087 
3088 /*======================================*/
3089 /*
3090  * Some useful method implementations to make life easier for bus drivers.
3091  */
3092 
3093 void
3094 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3095 {
3096 	bzero(args, sz);
3097 	args->size = sz;
3098 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3099 }
3100 
3101 /**
3102  * @brief Initialise a resource list.
3103  *
3104  * @param rl		the resource list to initialise
3105  */
3106 void
3107 resource_list_init(struct resource_list *rl)
3108 {
3109 	STAILQ_INIT(rl);
3110 }
3111 
3112 /**
3113  * @brief Reclaim memory used by a resource list.
3114  *
3115  * This function frees the memory for all resource entries on the list
3116  * (if any).
3117  *
3118  * @param rl		the resource list to free
3119  */
3120 void
3121 resource_list_free(struct resource_list *rl)
3122 {
3123 	struct resource_list_entry *rle;
3124 
3125 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3126 		if (rle->res)
3127 			panic("resource_list_free: resource entry is busy");
3128 		STAILQ_REMOVE_HEAD(rl, link);
3129 		free(rle, M_BUS);
3130 	}
3131 }
3132 
3133 /**
3134  * @brief Add a resource entry.
3135  *
3136  * This function adds a resource entry using the given @p type, @p
3137  * start, @p end and @p count values. A rid value is chosen by
3138  * searching sequentially for the first unused rid starting at zero.
3139  *
3140  * @param rl		the resource list to edit
3141  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3142  * @param start		the start address of the resource
3143  * @param end		the end address of the resource
3144  * @param count		XXX end-start+1
3145  */
3146 int
3147 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3148     rman_res_t end, rman_res_t count)
3149 {
3150 	int rid;
3151 
3152 	rid = 0;
3153 	while (resource_list_find(rl, type, rid) != NULL)
3154 		rid++;
3155 	resource_list_add(rl, type, rid, start, end, count);
3156 	return (rid);
3157 }
3158 
3159 /**
3160  * @brief Add or modify a resource entry.
3161  *
3162  * If an existing entry exists with the same type and rid, it will be
3163  * modified using the given values of @p start, @p end and @p
3164  * count. If no entry exists, a new one will be created using the
3165  * given values.  The resource list entry that matches is then returned.
3166  *
3167  * @param rl		the resource list to edit
3168  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3169  * @param rid		the resource identifier
3170  * @param start		the start address of the resource
3171  * @param end		the end address of the resource
3172  * @param count		XXX end-start+1
3173  */
3174 struct resource_list_entry *
3175 resource_list_add(struct resource_list *rl, int type, int rid,
3176     rman_res_t start, rman_res_t end, rman_res_t count)
3177 {
3178 	struct resource_list_entry *rle;
3179 
3180 	rle = resource_list_find(rl, type, rid);
3181 	if (!rle) {
3182 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3183 		    M_NOWAIT);
3184 		if (!rle)
3185 			panic("resource_list_add: can't record entry");
3186 		STAILQ_INSERT_TAIL(rl, rle, link);
3187 		rle->type = type;
3188 		rle->rid = rid;
3189 		rle->res = NULL;
3190 		rle->flags = 0;
3191 	}
3192 
3193 	if (rle->res)
3194 		panic("resource_list_add: resource entry is busy");
3195 
3196 	rle->start = start;
3197 	rle->end = end;
3198 	rle->count = count;
3199 	return (rle);
3200 }
3201 
3202 /**
3203  * @brief Determine if a resource entry is busy.
3204  *
3205  * Returns true if a resource entry is busy meaning that it has an
3206  * associated resource that is not an unallocated "reserved" resource.
3207  *
3208  * @param rl		the resource list to search
3209  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3210  * @param rid		the resource identifier
3211  *
3212  * @returns Non-zero if the entry is busy, zero otherwise.
3213  */
3214 int
3215 resource_list_busy(struct resource_list *rl, int type, int rid)
3216 {
3217 	struct resource_list_entry *rle;
3218 
3219 	rle = resource_list_find(rl, type, rid);
3220 	if (rle == NULL || rle->res == NULL)
3221 		return (0);
3222 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3223 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3224 		    ("reserved resource is active"));
3225 		return (0);
3226 	}
3227 	return (1);
3228 }
3229 
3230 /**
3231  * @brief Determine if a resource entry is reserved.
3232  *
3233  * Returns true if a resource entry is reserved meaning that it has an
3234  * associated "reserved" resource.  The resource can either be
3235  * allocated or unallocated.
3236  *
3237  * @param rl		the resource list to search
3238  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3239  * @param rid		the resource identifier
3240  *
3241  * @returns Non-zero if the entry is reserved, zero otherwise.
3242  */
3243 int
3244 resource_list_reserved(struct resource_list *rl, int type, int rid)
3245 {
3246 	struct resource_list_entry *rle;
3247 
3248 	rle = resource_list_find(rl, type, rid);
3249 	if (rle != NULL && rle->flags & RLE_RESERVED)
3250 		return (1);
3251 	return (0);
3252 }
3253 
3254 /**
3255  * @brief Find a resource entry by type and rid.
3256  *
3257  * @param rl		the resource list to search
3258  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3259  * @param rid		the resource identifier
3260  *
3261  * @returns the resource entry pointer or NULL if there is no such
3262  * entry.
3263  */
3264 struct resource_list_entry *
3265 resource_list_find(struct resource_list *rl, int type, int rid)
3266 {
3267 	struct resource_list_entry *rle;
3268 
3269 	STAILQ_FOREACH(rle, rl, link) {
3270 		if (rle->type == type && rle->rid == rid)
3271 			return (rle);
3272 	}
3273 	return (NULL);
3274 }
3275 
3276 /**
3277  * @brief Delete a resource entry.
3278  *
3279  * @param rl		the resource list to edit
3280  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3281  * @param rid		the resource identifier
3282  */
3283 void
3284 resource_list_delete(struct resource_list *rl, int type, int rid)
3285 {
3286 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3287 
3288 	if (rle) {
3289 		if (rle->res != NULL)
3290 			panic("resource_list_delete: resource has not been released");
3291 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3292 		free(rle, M_BUS);
3293 	}
3294 }
3295 
3296 /**
3297  * @brief Allocate a reserved resource
3298  *
3299  * This can be used by buses to force the allocation of resources
3300  * that are always active in the system even if they are not allocated
3301  * by a driver (e.g. PCI BARs).  This function is usually called when
3302  * adding a new child to the bus.  The resource is allocated from the
3303  * parent bus when it is reserved.  The resource list entry is marked
3304  * with RLE_RESERVED to note that it is a reserved resource.
3305  *
3306  * Subsequent attempts to allocate the resource with
3307  * resource_list_alloc() will succeed the first time and will set
3308  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3309  * resource that has been allocated is released with
3310  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3311  * the actual resource remains allocated.  The resource can be released to
3312  * the parent bus by calling resource_list_unreserve().
3313  *
3314  * @param rl		the resource list to allocate from
3315  * @param bus		the parent device of @p child
3316  * @param child		the device for which the resource is being reserved
3317  * @param type		the type of resource to allocate
3318  * @param rid		a pointer to the resource identifier
3319  * @param start		hint at the start of the resource range - pass
3320  *			@c 0 for any start address
3321  * @param end		hint at the end of the resource range - pass
3322  *			@c ~0 for any end address
3323  * @param count		hint at the size of range required - pass @c 1
3324  *			for any size
3325  * @param flags		any extra flags to control the resource
3326  *			allocation - see @c RF_XXX flags in
3327  *			<sys/rman.h> for details
3328  *
3329  * @returns		the resource which was allocated or @c NULL if no
3330  *			resource could be allocated
3331  */
3332 struct resource *
3333 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3334     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3335 {
3336 	struct resource_list_entry *rle = NULL;
3337 	int passthrough = (device_get_parent(child) != bus);
3338 	struct resource *r;
3339 
3340 	if (passthrough)
3341 		panic(
3342     "resource_list_reserve() should only be called for direct children");
3343 	if (flags & RF_ACTIVE)
3344 		panic(
3345     "resource_list_reserve() should only reserve inactive resources");
3346 
3347 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3348 	    flags);
3349 	if (r != NULL) {
3350 		rle = resource_list_find(rl, type, *rid);
3351 		rle->flags |= RLE_RESERVED;
3352 	}
3353 	return (r);
3354 }
3355 
3356 /**
3357  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3358  *
3359  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3360  * and passing the allocation up to the parent of @p bus. This assumes
3361  * that the first entry of @c device_get_ivars(child) is a struct
3362  * resource_list. This also handles 'passthrough' allocations where a
3363  * child is a remote descendant of bus by passing the allocation up to
3364  * the parent of bus.
3365  *
3366  * Typically, a bus driver would store a list of child resources
3367  * somewhere in the child device's ivars (see device_get_ivars()) and
3368  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3369  * then call resource_list_alloc() to perform the allocation.
3370  *
3371  * @param rl		the resource list to allocate from
3372  * @param bus		the parent device of @p child
3373  * @param child		the device which is requesting an allocation
3374  * @param type		the type of resource to allocate
3375  * @param rid		a pointer to the resource identifier
3376  * @param start		hint at the start of the resource range - pass
3377  *			@c 0 for any start address
3378  * @param end		hint at the end of the resource range - pass
3379  *			@c ~0 for any end address
3380  * @param count		hint at the size of range required - pass @c 1
3381  *			for any size
3382  * @param flags		any extra flags to control the resource
3383  *			allocation - see @c RF_XXX flags in
3384  *			<sys/rman.h> for details
3385  *
3386  * @returns		the resource which was allocated or @c NULL if no
3387  *			resource could be allocated
3388  */
3389 struct resource *
3390 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3391     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3392 {
3393 	struct resource_list_entry *rle = NULL;
3394 	int passthrough = (device_get_parent(child) != bus);
3395 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3396 
3397 	if (passthrough) {
3398 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3399 		    type, rid, start, end, count, flags));
3400 	}
3401 
3402 	rle = resource_list_find(rl, type, *rid);
3403 
3404 	if (!rle)
3405 		return (NULL);		/* no resource of that type/rid */
3406 
3407 	if (rle->res) {
3408 		if (rle->flags & RLE_RESERVED) {
3409 			if (rle->flags & RLE_ALLOCATED)
3410 				return (NULL);
3411 			if ((flags & RF_ACTIVE) &&
3412 			    bus_activate_resource(child, type, *rid,
3413 			    rle->res) != 0)
3414 				return (NULL);
3415 			rle->flags |= RLE_ALLOCATED;
3416 			return (rle->res);
3417 		}
3418 		device_printf(bus,
3419 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3420 		    type, device_get_nameunit(child));
3421 		return (NULL);
3422 	}
3423 
3424 	if (isdefault) {
3425 		start = rle->start;
3426 		count = ulmax(count, rle->count);
3427 		end = ulmax(rle->end, start + count - 1);
3428 	}
3429 
3430 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3431 	    type, rid, start, end, count, flags);
3432 
3433 	/*
3434 	 * Record the new range.
3435 	 */
3436 	if (rle->res) {
3437 		rle->start = rman_get_start(rle->res);
3438 		rle->end = rman_get_end(rle->res);
3439 		rle->count = count;
3440 	}
3441 
3442 	return (rle->res);
3443 }
3444 
3445 /**
3446  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3447  *
3448  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3449  * used with resource_list_alloc().
3450  *
3451  * @param rl		the resource list which was allocated from
3452  * @param bus		the parent device of @p child
3453  * @param child		the device which is requesting a release
3454  * @param type		the type of resource to release
3455  * @param rid		the resource identifier
3456  * @param res		the resource to release
3457  *
3458  * @retval 0		success
3459  * @retval non-zero	a standard unix error code indicating what
3460  *			error condition prevented the operation
3461  */
3462 int
3463 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3464     int type, int rid, struct resource *res)
3465 {
3466 	struct resource_list_entry *rle = NULL;
3467 	int passthrough = (device_get_parent(child) != bus);
3468 	int error;
3469 
3470 	if (passthrough) {
3471 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3472 		    type, rid, res));
3473 	}
3474 
3475 	rle = resource_list_find(rl, type, rid);
3476 
3477 	if (!rle)
3478 		panic("resource_list_release: can't find resource");
3479 	if (!rle->res)
3480 		panic("resource_list_release: resource entry is not busy");
3481 	if (rle->flags & RLE_RESERVED) {
3482 		if (rle->flags & RLE_ALLOCATED) {
3483 			if (rman_get_flags(res) & RF_ACTIVE) {
3484 				error = bus_deactivate_resource(child, type,
3485 				    rid, res);
3486 				if (error)
3487 					return (error);
3488 			}
3489 			rle->flags &= ~RLE_ALLOCATED;
3490 			return (0);
3491 		}
3492 		return (EINVAL);
3493 	}
3494 
3495 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3496 	    type, rid, res);
3497 	if (error)
3498 		return (error);
3499 
3500 	rle->res = NULL;
3501 	return (0);
3502 }
3503 
3504 /**
3505  * @brief Release all active resources of a given type
3506  *
3507  * Release all active resources of a specified type.  This is intended
3508  * to be used to cleanup resources leaked by a driver after detach or
3509  * a failed attach.
3510  *
3511  * @param rl		the resource list which was allocated from
3512  * @param bus		the parent device of @p child
3513  * @param child		the device whose active resources are being released
3514  * @param type		the type of resources to release
3515  *
3516  * @retval 0		success
3517  * @retval EBUSY	at least one resource was active
3518  */
3519 int
3520 resource_list_release_active(struct resource_list *rl, device_t bus,
3521     device_t child, int type)
3522 {
3523 	struct resource_list_entry *rle;
3524 	int error, retval;
3525 
3526 	retval = 0;
3527 	STAILQ_FOREACH(rle, rl, link) {
3528 		if (rle->type != type)
3529 			continue;
3530 		if (rle->res == NULL)
3531 			continue;
3532 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3533 		    RLE_RESERVED)
3534 			continue;
3535 		retval = EBUSY;
3536 		error = resource_list_release(rl, bus, child, type,
3537 		    rman_get_rid(rle->res), rle->res);
3538 		if (error != 0)
3539 			device_printf(bus,
3540 			    "Failed to release active resource: %d\n", error);
3541 	}
3542 	return (retval);
3543 }
3544 
3545 /**
3546  * @brief Fully release a reserved resource
3547  *
3548  * Fully releases a resource reserved via resource_list_reserve().
3549  *
3550  * @param rl		the resource list which was allocated from
3551  * @param bus		the parent device of @p child
3552  * @param child		the device whose reserved resource is being released
3553  * @param type		the type of resource to release
3554  * @param rid		the resource identifier
3555  * @param res		the resource to release
3556  *
3557  * @retval 0		success
3558  * @retval non-zero	a standard unix error code indicating what
3559  *			error condition prevented the operation
3560  */
3561 int
3562 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3563     int type, int rid)
3564 {
3565 	struct resource_list_entry *rle = NULL;
3566 	int passthrough = (device_get_parent(child) != bus);
3567 
3568 	if (passthrough)
3569 		panic(
3570     "resource_list_unreserve() should only be called for direct children");
3571 
3572 	rle = resource_list_find(rl, type, rid);
3573 
3574 	if (!rle)
3575 		panic("resource_list_unreserve: can't find resource");
3576 	if (!(rle->flags & RLE_RESERVED))
3577 		return (EINVAL);
3578 	if (rle->flags & RLE_ALLOCATED)
3579 		return (EBUSY);
3580 	rle->flags &= ~RLE_RESERVED;
3581 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3582 }
3583 
3584 /**
3585  * @brief Print a description of resources in a resource list
3586  *
3587  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3588  * The name is printed if at least one resource of the given type is available.
3589  * The format is used to print resource start and end.
3590  *
3591  * @param rl		the resource list to print
3592  * @param name		the name of @p type, e.g. @c "memory"
3593  * @param type		type type of resource entry to print
3594  * @param format	printf(9) format string to print resource
3595  *			start and end values
3596  *
3597  * @returns		the number of characters printed
3598  */
3599 int
3600 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3601     const char *format)
3602 {
3603 	struct resource_list_entry *rle;
3604 	int printed, retval;
3605 
3606 	printed = 0;
3607 	retval = 0;
3608 	/* Yes, this is kinda cheating */
3609 	STAILQ_FOREACH(rle, rl, link) {
3610 		if (rle->type == type) {
3611 			if (printed == 0)
3612 				retval += printf(" %s ", name);
3613 			else
3614 				retval += printf(",");
3615 			printed++;
3616 			retval += printf(format, rle->start);
3617 			if (rle->count > 1) {
3618 				retval += printf("-");
3619 				retval += printf(format, rle->start +
3620 						 rle->count - 1);
3621 			}
3622 		}
3623 	}
3624 	return (retval);
3625 }
3626 
3627 /**
3628  * @brief Releases all the resources in a list.
3629  *
3630  * @param rl		The resource list to purge.
3631  *
3632  * @returns		nothing
3633  */
3634 void
3635 resource_list_purge(struct resource_list *rl)
3636 {
3637 	struct resource_list_entry *rle;
3638 
3639 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3640 		if (rle->res)
3641 			bus_release_resource(rman_get_device(rle->res),
3642 			    rle->type, rle->rid, rle->res);
3643 		STAILQ_REMOVE_HEAD(rl, link);
3644 		free(rle, M_BUS);
3645 	}
3646 }
3647 
3648 device_t
3649 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3650 {
3651 	return (device_add_child_ordered(dev, order, name, unit));
3652 }
3653 
3654 /**
3655  * @brief Helper function for implementing DEVICE_PROBE()
3656  *
3657  * This function can be used to help implement the DEVICE_PROBE() for
3658  * a bus (i.e. a device which has other devices attached to it). It
3659  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3660  * devclass.
3661  */
3662 int
3663 bus_generic_probe(device_t dev)
3664 {
3665 	devclass_t dc = dev->devclass;
3666 	driverlink_t dl;
3667 
3668 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3669 		/*
3670 		 * If this driver's pass is too high, then ignore it.
3671 		 * For most drivers in the default pass, this will
3672 		 * never be true.  For early-pass drivers they will
3673 		 * only call the identify routines of eligible drivers
3674 		 * when this routine is called.  Drivers for later
3675 		 * passes should have their identify routines called
3676 		 * on early-pass buses during BUS_NEW_PASS().
3677 		 */
3678 		if (dl->pass > bus_current_pass)
3679 			continue;
3680 		DEVICE_IDENTIFY(dl->driver, dev);
3681 	}
3682 
3683 	return (0);
3684 }
3685 
3686 /**
3687  * @brief Helper function for implementing DEVICE_ATTACH()
3688  *
3689  * This function can be used to help implement the DEVICE_ATTACH() for
3690  * a bus. It calls device_probe_and_attach() for each of the device's
3691  * children.
3692  */
3693 int
3694 bus_generic_attach(device_t dev)
3695 {
3696 	device_t child;
3697 
3698 	TAILQ_FOREACH(child, &dev->children, link) {
3699 		device_probe_and_attach(child);
3700 	}
3701 
3702 	return (0);
3703 }
3704 
3705 /**
3706  * @brief Helper function for delaying attaching children
3707  *
3708  * Many buses can't run transactions on the bus which children need to probe and
3709  * attach until after interrupts and/or timers are running.  This function
3710  * delays their attach until interrupts and timers are enabled.
3711  */
3712 int
3713 bus_delayed_attach_children(device_t dev)
3714 {
3715 	/* Probe and attach the bus children when interrupts are available */
3716 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3717 
3718 	return (0);
3719 }
3720 
3721 /**
3722  * @brief Helper function for implementing DEVICE_DETACH()
3723  *
3724  * This function can be used to help implement the DEVICE_DETACH() for
3725  * a bus. It calls device_detach() for each of the device's
3726  * children.
3727  */
3728 int
3729 bus_generic_detach(device_t dev)
3730 {
3731 	device_t child;
3732 	int error;
3733 
3734 	if (dev->state != DS_ATTACHED)
3735 		return (EBUSY);
3736 
3737 	/*
3738 	 * Detach children in the reverse order.
3739 	 * See bus_generic_suspend for details.
3740 	 */
3741 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3742 		if ((error = device_detach(child)) != 0)
3743 			return (error);
3744 	}
3745 
3746 	return (0);
3747 }
3748 
3749 /**
3750  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3751  *
3752  * This function can be used to help implement the DEVICE_SHUTDOWN()
3753  * for a bus. It calls device_shutdown() for each of the device's
3754  * children.
3755  */
3756 int
3757 bus_generic_shutdown(device_t dev)
3758 {
3759 	device_t child;
3760 
3761 	/*
3762 	 * Shut down children in the reverse order.
3763 	 * See bus_generic_suspend for details.
3764 	 */
3765 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3766 		device_shutdown(child);
3767 	}
3768 
3769 	return (0);
3770 }
3771 
3772 /**
3773  * @brief Default function for suspending a child device.
3774  *
3775  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3776  */
3777 int
3778 bus_generic_suspend_child(device_t dev, device_t child)
3779 {
3780 	int	error;
3781 
3782 	error = DEVICE_SUSPEND(child);
3783 
3784 	if (error == 0)
3785 		child->flags |= DF_SUSPENDED;
3786 
3787 	return (error);
3788 }
3789 
3790 /**
3791  * @brief Default function for resuming a child device.
3792  *
3793  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3794  */
3795 int
3796 bus_generic_resume_child(device_t dev, device_t child)
3797 {
3798 	DEVICE_RESUME(child);
3799 	child->flags &= ~DF_SUSPENDED;
3800 
3801 	return (0);
3802 }
3803 
3804 /**
3805  * @brief Helper function for implementing DEVICE_SUSPEND()
3806  *
3807  * This function can be used to help implement the DEVICE_SUSPEND()
3808  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3809  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3810  * operation is aborted and any devices which were suspended are
3811  * resumed immediately by calling their DEVICE_RESUME() methods.
3812  */
3813 int
3814 bus_generic_suspend(device_t dev)
3815 {
3816 	int		error;
3817 	device_t	child;
3818 
3819 	/*
3820 	 * Suspend children in the reverse order.
3821 	 * For most buses all children are equal, so the order does not matter.
3822 	 * Other buses, such as acpi, carefully order their child devices to
3823 	 * express implicit dependencies between them.  For such buses it is
3824 	 * safer to bring down devices in the reverse order.
3825 	 */
3826 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3827 		error = BUS_SUSPEND_CHILD(dev, child);
3828 		if (error != 0) {
3829 			child = TAILQ_NEXT(child, link);
3830 			if (child != NULL) {
3831 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3832 					BUS_RESUME_CHILD(dev, child);
3833 			}
3834 			return (error);
3835 		}
3836 	}
3837 	return (0);
3838 }
3839 
3840 /**
3841  * @brief Helper function for implementing DEVICE_RESUME()
3842  *
3843  * This function can be used to help implement the DEVICE_RESUME() for
3844  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3845  */
3846 int
3847 bus_generic_resume(device_t dev)
3848 {
3849 	device_t	child;
3850 
3851 	TAILQ_FOREACH(child, &dev->children, link) {
3852 		BUS_RESUME_CHILD(dev, child);
3853 		/* if resume fails, there's nothing we can usefully do... */
3854 	}
3855 	return (0);
3856 }
3857 
3858 /**
3859  * @brief Helper function for implementing BUS_RESET_POST
3860  *
3861  * Bus can use this function to implement common operations of
3862  * re-attaching or resuming the children after the bus itself was
3863  * reset, and after restoring bus-unique state of children.
3864  *
3865  * @param dev	The bus
3866  * #param flags	DEVF_RESET_*
3867  */
3868 int
3869 bus_helper_reset_post(device_t dev, int flags)
3870 {
3871 	device_t child;
3872 	int error, error1;
3873 
3874 	error = 0;
3875 	TAILQ_FOREACH(child, &dev->children,link) {
3876 		BUS_RESET_POST(dev, child);
3877 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3878 		    device_probe_and_attach(child) :
3879 		    BUS_RESUME_CHILD(dev, child);
3880 		if (error == 0 && error1 != 0)
3881 			error = error1;
3882 	}
3883 	return (error);
3884 }
3885 
3886 static void
3887 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3888 {
3889 	child = TAILQ_NEXT(child, link);
3890 	if (child == NULL)
3891 		return;
3892 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3893 		BUS_RESET_POST(dev, child);
3894 		if ((flags & DEVF_RESET_DETACH) != 0)
3895 			device_probe_and_attach(child);
3896 		else
3897 			BUS_RESUME_CHILD(dev, child);
3898 	}
3899 }
3900 
3901 /**
3902  * @brief Helper function for implementing BUS_RESET_PREPARE
3903  *
3904  * Bus can use this function to implement common operations of
3905  * detaching or suspending the children before the bus itself is
3906  * reset, and then save bus-unique state of children that must
3907  * persists around reset.
3908  *
3909  * @param dev	The bus
3910  * #param flags	DEVF_RESET_*
3911  */
3912 int
3913 bus_helper_reset_prepare(device_t dev, int flags)
3914 {
3915 	device_t child;
3916 	int error;
3917 
3918 	if (dev->state != DS_ATTACHED)
3919 		return (EBUSY);
3920 
3921 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3922 		if ((flags & DEVF_RESET_DETACH) != 0) {
3923 			error = device_get_state(child) == DS_ATTACHED ?
3924 			    device_detach(child) : 0;
3925 		} else {
3926 			error = BUS_SUSPEND_CHILD(dev, child);
3927 		}
3928 		if (error == 0) {
3929 			error = BUS_RESET_PREPARE(dev, child);
3930 			if (error != 0) {
3931 				if ((flags & DEVF_RESET_DETACH) != 0)
3932 					device_probe_and_attach(child);
3933 				else
3934 					BUS_RESUME_CHILD(dev, child);
3935 			}
3936 		}
3937 		if (error != 0) {
3938 			bus_helper_reset_prepare_rollback(dev, child, flags);
3939 			return (error);
3940 		}
3941 	}
3942 	return (0);
3943 }
3944 
3945 /**
3946  * @brief Helper function for implementing BUS_PRINT_CHILD().
3947  *
3948  * This function prints the first part of the ascii representation of
3949  * @p child, including its name, unit and description (if any - see
3950  * device_set_desc()).
3951  *
3952  * @returns the number of characters printed
3953  */
3954 int
3955 bus_print_child_header(device_t dev, device_t child)
3956 {
3957 	int	retval = 0;
3958 
3959 	if (device_get_desc(child)) {
3960 		retval += device_printf(child, "<%s>", device_get_desc(child));
3961 	} else {
3962 		retval += printf("%s", device_get_nameunit(child));
3963 	}
3964 
3965 	return (retval);
3966 }
3967 
3968 /**
3969  * @brief Helper function for implementing BUS_PRINT_CHILD().
3970  *
3971  * This function prints the last part of the ascii representation of
3972  * @p child, which consists of the string @c " on " followed by the
3973  * name and unit of the @p dev.
3974  *
3975  * @returns the number of characters printed
3976  */
3977 int
3978 bus_print_child_footer(device_t dev, device_t child)
3979 {
3980 	return (printf(" on %s\n", device_get_nameunit(dev)));
3981 }
3982 
3983 /**
3984  * @brief Helper function for implementing BUS_PRINT_CHILD().
3985  *
3986  * This function prints out the VM domain for the given device.
3987  *
3988  * @returns the number of characters printed
3989  */
3990 int
3991 bus_print_child_domain(device_t dev, device_t child)
3992 {
3993 	int domain;
3994 
3995 	/* No domain? Don't print anything */
3996 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3997 		return (0);
3998 
3999 	return (printf(" numa-domain %d", domain));
4000 }
4001 
4002 /**
4003  * @brief Helper function for implementing BUS_PRINT_CHILD().
4004  *
4005  * This function simply calls bus_print_child_header() followed by
4006  * bus_print_child_footer().
4007  *
4008  * @returns the number of characters printed
4009  */
4010 int
4011 bus_generic_print_child(device_t dev, device_t child)
4012 {
4013 	int	retval = 0;
4014 
4015 	retval += bus_print_child_header(dev, child);
4016 	retval += bus_print_child_domain(dev, child);
4017 	retval += bus_print_child_footer(dev, child);
4018 
4019 	return (retval);
4020 }
4021 
4022 /**
4023  * @brief Stub function for implementing BUS_READ_IVAR().
4024  *
4025  * @returns ENOENT
4026  */
4027 int
4028 bus_generic_read_ivar(device_t dev, device_t child, int index,
4029     uintptr_t * result)
4030 {
4031 	return (ENOENT);
4032 }
4033 
4034 /**
4035  * @brief Stub function for implementing BUS_WRITE_IVAR().
4036  *
4037  * @returns ENOENT
4038  */
4039 int
4040 bus_generic_write_ivar(device_t dev, device_t child, int index,
4041     uintptr_t value)
4042 {
4043 	return (ENOENT);
4044 }
4045 
4046 /**
4047  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4048  *
4049  * @returns NULL
4050  */
4051 struct resource_list *
4052 bus_generic_get_resource_list(device_t dev, device_t child)
4053 {
4054 	return (NULL);
4055 }
4056 
4057 /**
4058  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4059  *
4060  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4061  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4062  * and then calls device_probe_and_attach() for each unattached child.
4063  */
4064 void
4065 bus_generic_driver_added(device_t dev, driver_t *driver)
4066 {
4067 	device_t child;
4068 
4069 	DEVICE_IDENTIFY(driver, dev);
4070 	TAILQ_FOREACH(child, &dev->children, link) {
4071 		if (child->state == DS_NOTPRESENT ||
4072 		    (child->flags & DF_REBID))
4073 			device_probe_and_attach(child);
4074 	}
4075 }
4076 
4077 /**
4078  * @brief Helper function for implementing BUS_NEW_PASS().
4079  *
4080  * This implementing of BUS_NEW_PASS() first calls the identify
4081  * routines for any drivers that probe at the current pass.  Then it
4082  * walks the list of devices for this bus.  If a device is already
4083  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4084  * device is not already attached, it attempts to attach a driver to
4085  * it.
4086  */
4087 void
4088 bus_generic_new_pass(device_t dev)
4089 {
4090 	driverlink_t dl;
4091 	devclass_t dc;
4092 	device_t child;
4093 
4094 	dc = dev->devclass;
4095 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4096 		if (dl->pass == bus_current_pass)
4097 			DEVICE_IDENTIFY(dl->driver, dev);
4098 	}
4099 	TAILQ_FOREACH(child, &dev->children, link) {
4100 		if (child->state >= DS_ATTACHED)
4101 			BUS_NEW_PASS(child);
4102 		else if (child->state == DS_NOTPRESENT)
4103 			device_probe_and_attach(child);
4104 	}
4105 }
4106 
4107 /**
4108  * @brief Helper function for implementing BUS_SETUP_INTR().
4109  *
4110  * This simple implementation of BUS_SETUP_INTR() simply calls the
4111  * BUS_SETUP_INTR() method of the parent of @p dev.
4112  */
4113 int
4114 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4115     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4116     void **cookiep)
4117 {
4118 	/* Propagate up the bus hierarchy until someone handles it. */
4119 	if (dev->parent)
4120 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4121 		    filter, intr, arg, cookiep));
4122 	return (EINVAL);
4123 }
4124 
4125 /**
4126  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4127  *
4128  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4129  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4130  */
4131 int
4132 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4133     void *cookie)
4134 {
4135 	/* Propagate up the bus hierarchy until someone handles it. */
4136 	if (dev->parent)
4137 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4138 	return (EINVAL);
4139 }
4140 
4141 /**
4142  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4143  *
4144  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4145  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4146  */
4147 int
4148 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4149 {
4150 	/* Propagate up the bus hierarchy until someone handles it. */
4151 	if (dev->parent)
4152 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4153 	return (EINVAL);
4154 }
4155 
4156 /**
4157  * @brief Helper function for implementing BUS_RESUME_INTR().
4158  *
4159  * This simple implementation of BUS_RESUME_INTR() simply calls the
4160  * BUS_RESUME_INTR() method of the parent of @p dev.
4161  */
4162 int
4163 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4164 {
4165 	/* Propagate up the bus hierarchy until someone handles it. */
4166 	if (dev->parent)
4167 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4168 	return (EINVAL);
4169 }
4170 
4171 /**
4172  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4173  *
4174  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4175  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4176  */
4177 int
4178 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4179     struct resource *r, rman_res_t start, rman_res_t end)
4180 {
4181 	/* Propagate up the bus hierarchy until someone handles it. */
4182 	if (dev->parent)
4183 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4184 		    end));
4185 	return (EINVAL);
4186 }
4187 
4188 /**
4189  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4190  *
4191  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4192  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4193  */
4194 struct resource *
4195 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4196     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4197 {
4198 	/* Propagate up the bus hierarchy until someone handles it. */
4199 	if (dev->parent)
4200 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4201 		    start, end, count, flags));
4202 	return (NULL);
4203 }
4204 
4205 /**
4206  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4207  *
4208  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4209  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4210  */
4211 int
4212 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4213     struct resource *r)
4214 {
4215 	/* Propagate up the bus hierarchy until someone handles it. */
4216 	if (dev->parent)
4217 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4218 		    r));
4219 	return (EINVAL);
4220 }
4221 
4222 /**
4223  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4224  *
4225  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4226  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4227  */
4228 int
4229 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4230     struct resource *r)
4231 {
4232 	/* Propagate up the bus hierarchy until someone handles it. */
4233 	if (dev->parent)
4234 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4235 		    r));
4236 	return (EINVAL);
4237 }
4238 
4239 /**
4240  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4241  *
4242  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4243  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4244  */
4245 int
4246 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4247     int rid, struct resource *r)
4248 {
4249 	/* Propagate up the bus hierarchy until someone handles it. */
4250 	if (dev->parent)
4251 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4252 		    r));
4253 	return (EINVAL);
4254 }
4255 
4256 /**
4257  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4258  *
4259  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4260  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4261  */
4262 int
4263 bus_generic_map_resource(device_t dev, device_t child, int type,
4264     struct resource *r, struct resource_map_request *args,
4265     struct resource_map *map)
4266 {
4267 	/* Propagate up the bus hierarchy until someone handles it. */
4268 	if (dev->parent)
4269 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4270 		    map));
4271 	return (EINVAL);
4272 }
4273 
4274 /**
4275  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4276  *
4277  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4278  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4279  */
4280 int
4281 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4282     struct resource *r, struct resource_map *map)
4283 {
4284 	/* Propagate up the bus hierarchy until someone handles it. */
4285 	if (dev->parent)
4286 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4287 	return (EINVAL);
4288 }
4289 
4290 /**
4291  * @brief Helper function for implementing BUS_BIND_INTR().
4292  *
4293  * This simple implementation of BUS_BIND_INTR() simply calls the
4294  * BUS_BIND_INTR() method of the parent of @p dev.
4295  */
4296 int
4297 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4298     int cpu)
4299 {
4300 	/* Propagate up the bus hierarchy until someone handles it. */
4301 	if (dev->parent)
4302 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4303 	return (EINVAL);
4304 }
4305 
4306 /**
4307  * @brief Helper function for implementing BUS_CONFIG_INTR().
4308  *
4309  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4310  * BUS_CONFIG_INTR() method of the parent of @p dev.
4311  */
4312 int
4313 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4314     enum intr_polarity pol)
4315 {
4316 	/* Propagate up the bus hierarchy until someone handles it. */
4317 	if (dev->parent)
4318 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4319 	return (EINVAL);
4320 }
4321 
4322 /**
4323  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4324  *
4325  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4326  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4327  */
4328 int
4329 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4330     void *cookie, const char *descr)
4331 {
4332 	/* Propagate up the bus hierarchy until someone handles it. */
4333 	if (dev->parent)
4334 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4335 		    descr));
4336 	return (EINVAL);
4337 }
4338 
4339 /**
4340  * @brief Helper function for implementing BUS_GET_CPUS().
4341  *
4342  * This simple implementation of BUS_GET_CPUS() simply calls the
4343  * BUS_GET_CPUS() method of the parent of @p dev.
4344  */
4345 int
4346 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4347     size_t setsize, cpuset_t *cpuset)
4348 {
4349 	/* Propagate up the bus hierarchy until someone handles it. */
4350 	if (dev->parent != NULL)
4351 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4352 	return (EINVAL);
4353 }
4354 
4355 /**
4356  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4357  *
4358  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4359  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4360  */
4361 bus_dma_tag_t
4362 bus_generic_get_dma_tag(device_t dev, device_t child)
4363 {
4364 	/* Propagate up the bus hierarchy until someone handles it. */
4365 	if (dev->parent != NULL)
4366 		return (BUS_GET_DMA_TAG(dev->parent, child));
4367 	return (NULL);
4368 }
4369 
4370 /**
4371  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4372  *
4373  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4374  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4375  */
4376 bus_space_tag_t
4377 bus_generic_get_bus_tag(device_t dev, device_t child)
4378 {
4379 	/* Propagate up the bus hierarchy until someone handles it. */
4380 	if (dev->parent != NULL)
4381 		return (BUS_GET_BUS_TAG(dev->parent, child));
4382 	return ((bus_space_tag_t)0);
4383 }
4384 
4385 /**
4386  * @brief Helper function for implementing BUS_GET_RESOURCE().
4387  *
4388  * This implementation of BUS_GET_RESOURCE() uses the
4389  * resource_list_find() function to do most of the work. It calls
4390  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4391  * search.
4392  */
4393 int
4394 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4395     rman_res_t *startp, rman_res_t *countp)
4396 {
4397 	struct resource_list *		rl = NULL;
4398 	struct resource_list_entry *	rle = NULL;
4399 
4400 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4401 	if (!rl)
4402 		return (EINVAL);
4403 
4404 	rle = resource_list_find(rl, type, rid);
4405 	if (!rle)
4406 		return (ENOENT);
4407 
4408 	if (startp)
4409 		*startp = rle->start;
4410 	if (countp)
4411 		*countp = rle->count;
4412 
4413 	return (0);
4414 }
4415 
4416 /**
4417  * @brief Helper function for implementing BUS_SET_RESOURCE().
4418  *
4419  * This implementation of BUS_SET_RESOURCE() uses the
4420  * resource_list_add() function to do most of the work. It calls
4421  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4422  * edit.
4423  */
4424 int
4425 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4426     rman_res_t start, rman_res_t count)
4427 {
4428 	struct resource_list *		rl = NULL;
4429 
4430 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4431 	if (!rl)
4432 		return (EINVAL);
4433 
4434 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4435 
4436 	return (0);
4437 }
4438 
4439 /**
4440  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4441  *
4442  * This implementation of BUS_DELETE_RESOURCE() uses the
4443  * resource_list_delete() function to do most of the work. It calls
4444  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4445  * edit.
4446  */
4447 void
4448 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4449 {
4450 	struct resource_list *		rl = NULL;
4451 
4452 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4453 	if (!rl)
4454 		return;
4455 
4456 	resource_list_delete(rl, type, rid);
4457 
4458 	return;
4459 }
4460 
4461 /**
4462  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4463  *
4464  * This implementation of BUS_RELEASE_RESOURCE() uses the
4465  * resource_list_release() function to do most of the work. It calls
4466  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4467  */
4468 int
4469 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4470     int rid, struct resource *r)
4471 {
4472 	struct resource_list *		rl = NULL;
4473 
4474 	if (device_get_parent(child) != dev)
4475 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4476 		    type, rid, r));
4477 
4478 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4479 	if (!rl)
4480 		return (EINVAL);
4481 
4482 	return (resource_list_release(rl, dev, child, type, rid, r));
4483 }
4484 
4485 /**
4486  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4487  *
4488  * This implementation of BUS_ALLOC_RESOURCE() uses the
4489  * resource_list_alloc() function to do most of the work. It calls
4490  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4491  */
4492 struct resource *
4493 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4494     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4495 {
4496 	struct resource_list *		rl = NULL;
4497 
4498 	if (device_get_parent(child) != dev)
4499 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4500 		    type, rid, start, end, count, flags));
4501 
4502 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4503 	if (!rl)
4504 		return (NULL);
4505 
4506 	return (resource_list_alloc(rl, dev, child, type, rid,
4507 	    start, end, count, flags));
4508 }
4509 
4510 /**
4511  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4512  *
4513  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4514  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4515  */
4516 int
4517 bus_generic_child_present(device_t dev, device_t child)
4518 {
4519 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4520 }
4521 
4522 int
4523 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4524 {
4525 	if (dev->parent)
4526 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4527 
4528 	return (ENOENT);
4529 }
4530 
4531 /**
4532  * @brief Helper function for implementing BUS_RESCAN().
4533  *
4534  * This null implementation of BUS_RESCAN() always fails to indicate
4535  * the bus does not support rescanning.
4536  */
4537 int
4538 bus_null_rescan(device_t dev)
4539 {
4540 	return (ENXIO);
4541 }
4542 
4543 /*
4544  * Some convenience functions to make it easier for drivers to use the
4545  * resource-management functions.  All these really do is hide the
4546  * indirection through the parent's method table, making for slightly
4547  * less-wordy code.  In the future, it might make sense for this code
4548  * to maintain some sort of a list of resources allocated by each device.
4549  */
4550 
4551 int
4552 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4553     struct resource **res)
4554 {
4555 	int i;
4556 
4557 	for (i = 0; rs[i].type != -1; i++)
4558 		res[i] = NULL;
4559 	for (i = 0; rs[i].type != -1; i++) {
4560 		res[i] = bus_alloc_resource_any(dev,
4561 		    rs[i].type, &rs[i].rid, rs[i].flags);
4562 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4563 			bus_release_resources(dev, rs, res);
4564 			return (ENXIO);
4565 		}
4566 	}
4567 	return (0);
4568 }
4569 
4570 void
4571 bus_release_resources(device_t dev, const struct resource_spec *rs,
4572     struct resource **res)
4573 {
4574 	int i;
4575 
4576 	for (i = 0; rs[i].type != -1; i++)
4577 		if (res[i] != NULL) {
4578 			bus_release_resource(
4579 			    dev, rs[i].type, rs[i].rid, res[i]);
4580 			res[i] = NULL;
4581 		}
4582 }
4583 
4584 /**
4585  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4586  *
4587  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4588  * parent of @p dev.
4589  */
4590 struct resource *
4591 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4592     rman_res_t end, rman_res_t count, u_int flags)
4593 {
4594 	struct resource *res;
4595 
4596 	if (dev->parent == NULL)
4597 		return (NULL);
4598 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4599 	    count, flags);
4600 	return (res);
4601 }
4602 
4603 /**
4604  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4605  *
4606  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4607  * parent of @p dev.
4608  */
4609 int
4610 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4611     rman_res_t end)
4612 {
4613 	if (dev->parent == NULL)
4614 		return (EINVAL);
4615 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4616 }
4617 
4618 /**
4619  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4620  *
4621  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4622  * parent of @p dev.
4623  */
4624 int
4625 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4626 {
4627 	if (dev->parent == NULL)
4628 		return (EINVAL);
4629 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4630 }
4631 
4632 /**
4633  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4634  *
4635  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4636  * parent of @p dev.
4637  */
4638 int
4639 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4640 {
4641 	if (dev->parent == NULL)
4642 		return (EINVAL);
4643 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4644 }
4645 
4646 /**
4647  * @brief Wrapper function for BUS_MAP_RESOURCE().
4648  *
4649  * This function simply calls the BUS_MAP_RESOURCE() method of the
4650  * parent of @p dev.
4651  */
4652 int
4653 bus_map_resource(device_t dev, int type, struct resource *r,
4654     struct resource_map_request *args, struct resource_map *map)
4655 {
4656 	if (dev->parent == NULL)
4657 		return (EINVAL);
4658 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4659 }
4660 
4661 /**
4662  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4663  *
4664  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4665  * parent of @p dev.
4666  */
4667 int
4668 bus_unmap_resource(device_t dev, int type, struct resource *r,
4669     struct resource_map *map)
4670 {
4671 	if (dev->parent == NULL)
4672 		return (EINVAL);
4673 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4674 }
4675 
4676 /**
4677  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4678  *
4679  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4680  * parent of @p dev.
4681  */
4682 int
4683 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4684 {
4685 	int rv;
4686 
4687 	if (dev->parent == NULL)
4688 		return (EINVAL);
4689 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4690 	return (rv);
4691 }
4692 
4693 /**
4694  * @brief Wrapper function for BUS_SETUP_INTR().
4695  *
4696  * This function simply calls the BUS_SETUP_INTR() method of the
4697  * parent of @p dev.
4698  */
4699 int
4700 bus_setup_intr(device_t dev, struct resource *r, int flags,
4701     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4702 {
4703 	int error;
4704 
4705 	if (dev->parent == NULL)
4706 		return (EINVAL);
4707 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4708 	    arg, cookiep);
4709 	if (error != 0)
4710 		return (error);
4711 	if (handler != NULL && !(flags & INTR_MPSAFE))
4712 		device_printf(dev, "[GIANT-LOCKED]\n");
4713 	return (0);
4714 }
4715 
4716 /**
4717  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4718  *
4719  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4720  * parent of @p dev.
4721  */
4722 int
4723 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4724 {
4725 	if (dev->parent == NULL)
4726 		return (EINVAL);
4727 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4728 }
4729 
4730 /**
4731  * @brief Wrapper function for BUS_SUSPEND_INTR().
4732  *
4733  * This function simply calls the BUS_SUSPEND_INTR() method of the
4734  * parent of @p dev.
4735  */
4736 int
4737 bus_suspend_intr(device_t dev, struct resource *r)
4738 {
4739 	if (dev->parent == NULL)
4740 		return (EINVAL);
4741 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4742 }
4743 
4744 /**
4745  * @brief Wrapper function for BUS_RESUME_INTR().
4746  *
4747  * This function simply calls the BUS_RESUME_INTR() method of the
4748  * parent of @p dev.
4749  */
4750 int
4751 bus_resume_intr(device_t dev, struct resource *r)
4752 {
4753 	if (dev->parent == NULL)
4754 		return (EINVAL);
4755 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4756 }
4757 
4758 /**
4759  * @brief Wrapper function for BUS_BIND_INTR().
4760  *
4761  * This function simply calls the BUS_BIND_INTR() method of the
4762  * parent of @p dev.
4763  */
4764 int
4765 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4766 {
4767 	if (dev->parent == NULL)
4768 		return (EINVAL);
4769 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4770 }
4771 
4772 /**
4773  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4774  *
4775  * This function first formats the requested description into a
4776  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4777  * the parent of @p dev.
4778  */
4779 int
4780 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4781     const char *fmt, ...)
4782 {
4783 	va_list ap;
4784 	char descr[MAXCOMLEN + 1];
4785 
4786 	if (dev->parent == NULL)
4787 		return (EINVAL);
4788 	va_start(ap, fmt);
4789 	vsnprintf(descr, sizeof(descr), fmt, ap);
4790 	va_end(ap);
4791 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4792 }
4793 
4794 /**
4795  * @brief Wrapper function for BUS_SET_RESOURCE().
4796  *
4797  * This function simply calls the BUS_SET_RESOURCE() method of the
4798  * parent of @p dev.
4799  */
4800 int
4801 bus_set_resource(device_t dev, int type, int rid,
4802     rman_res_t start, rman_res_t count)
4803 {
4804 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4805 	    start, count));
4806 }
4807 
4808 /**
4809  * @brief Wrapper function for BUS_GET_RESOURCE().
4810  *
4811  * This function simply calls the BUS_GET_RESOURCE() method of the
4812  * parent of @p dev.
4813  */
4814 int
4815 bus_get_resource(device_t dev, int type, int rid,
4816     rman_res_t *startp, rman_res_t *countp)
4817 {
4818 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4819 	    startp, countp));
4820 }
4821 
4822 /**
4823  * @brief Wrapper function for BUS_GET_RESOURCE().
4824  *
4825  * This function simply calls the BUS_GET_RESOURCE() method of the
4826  * parent of @p dev and returns the start value.
4827  */
4828 rman_res_t
4829 bus_get_resource_start(device_t dev, int type, int rid)
4830 {
4831 	rman_res_t start;
4832 	rman_res_t count;
4833 	int error;
4834 
4835 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4836 	    &start, &count);
4837 	if (error)
4838 		return (0);
4839 	return (start);
4840 }
4841 
4842 /**
4843  * @brief Wrapper function for BUS_GET_RESOURCE().
4844  *
4845  * This function simply calls the BUS_GET_RESOURCE() method of the
4846  * parent of @p dev and returns the count value.
4847  */
4848 rman_res_t
4849 bus_get_resource_count(device_t dev, int type, int rid)
4850 {
4851 	rman_res_t start;
4852 	rman_res_t count;
4853 	int error;
4854 
4855 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4856 	    &start, &count);
4857 	if (error)
4858 		return (0);
4859 	return (count);
4860 }
4861 
4862 /**
4863  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4864  *
4865  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4866  * parent of @p dev.
4867  */
4868 void
4869 bus_delete_resource(device_t dev, int type, int rid)
4870 {
4871 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4872 }
4873 
4874 /**
4875  * @brief Wrapper function for BUS_CHILD_PRESENT().
4876  *
4877  * This function simply calls the BUS_CHILD_PRESENT() method of the
4878  * parent of @p dev.
4879  */
4880 int
4881 bus_child_present(device_t child)
4882 {
4883 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4884 }
4885 
4886 /**
4887  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4888  *
4889  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4890  * parent of @p dev.
4891  */
4892 int
4893 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4894 {
4895 	device_t parent;
4896 
4897 	parent = device_get_parent(child);
4898 	if (parent == NULL) {
4899 		*buf = '\0';
4900 		return (0);
4901 	}
4902 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4903 }
4904 
4905 /**
4906  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4907  *
4908  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4909  * parent of @p dev.
4910  */
4911 int
4912 bus_child_location_str(device_t child, char *buf, size_t buflen)
4913 {
4914 	device_t parent;
4915 
4916 	parent = device_get_parent(child);
4917 	if (parent == NULL) {
4918 		*buf = '\0';
4919 		return (0);
4920 	}
4921 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4922 }
4923 
4924 /**
4925  * @brief Wrapper function for BUS_GET_CPUS().
4926  *
4927  * This function simply calls the BUS_GET_CPUS() method of the
4928  * parent of @p dev.
4929  */
4930 int
4931 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4932 {
4933 	device_t parent;
4934 
4935 	parent = device_get_parent(dev);
4936 	if (parent == NULL)
4937 		return (EINVAL);
4938 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4939 }
4940 
4941 /**
4942  * @brief Wrapper function for BUS_GET_DMA_TAG().
4943  *
4944  * This function simply calls the BUS_GET_DMA_TAG() method of the
4945  * parent of @p dev.
4946  */
4947 bus_dma_tag_t
4948 bus_get_dma_tag(device_t dev)
4949 {
4950 	device_t parent;
4951 
4952 	parent = device_get_parent(dev);
4953 	if (parent == NULL)
4954 		return (NULL);
4955 	return (BUS_GET_DMA_TAG(parent, dev));
4956 }
4957 
4958 /**
4959  * @brief Wrapper function for BUS_GET_BUS_TAG().
4960  *
4961  * This function simply calls the BUS_GET_BUS_TAG() method of the
4962  * parent of @p dev.
4963  */
4964 bus_space_tag_t
4965 bus_get_bus_tag(device_t dev)
4966 {
4967 	device_t parent;
4968 
4969 	parent = device_get_parent(dev);
4970 	if (parent == NULL)
4971 		return ((bus_space_tag_t)0);
4972 	return (BUS_GET_BUS_TAG(parent, dev));
4973 }
4974 
4975 /**
4976  * @brief Wrapper function for BUS_GET_DOMAIN().
4977  *
4978  * This function simply calls the BUS_GET_DOMAIN() method of the
4979  * parent of @p dev.
4980  */
4981 int
4982 bus_get_domain(device_t dev, int *domain)
4983 {
4984 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4985 }
4986 
4987 /* Resume all devices and then notify userland that we're up again. */
4988 static int
4989 root_resume(device_t dev)
4990 {
4991 	int error;
4992 
4993 	error = bus_generic_resume(dev);
4994 	if (error == 0)
4995 		devctl_notify("kern", "power", "resume", NULL);
4996 	return (error);
4997 }
4998 
4999 static int
5000 root_print_child(device_t dev, device_t child)
5001 {
5002 	int	retval = 0;
5003 
5004 	retval += bus_print_child_header(dev, child);
5005 	retval += printf("\n");
5006 
5007 	return (retval);
5008 }
5009 
5010 static int
5011 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5012     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5013 {
5014 	/*
5015 	 * If an interrupt mapping gets to here something bad has happened.
5016 	 */
5017 	panic("root_setup_intr");
5018 }
5019 
5020 /*
5021  * If we get here, assume that the device is permanent and really is
5022  * present in the system.  Removable bus drivers are expected to intercept
5023  * this call long before it gets here.  We return -1 so that drivers that
5024  * really care can check vs -1 or some ERRNO returned higher in the food
5025  * chain.
5026  */
5027 static int
5028 root_child_present(device_t dev, device_t child)
5029 {
5030 	return (-1);
5031 }
5032 
5033 static int
5034 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5035     cpuset_t *cpuset)
5036 {
5037 	switch (op) {
5038 	case INTR_CPUS:
5039 		/* Default to returning the set of all CPUs. */
5040 		if (setsize != sizeof(cpuset_t))
5041 			return (EINVAL);
5042 		*cpuset = all_cpus;
5043 		return (0);
5044 	default:
5045 		return (EINVAL);
5046 	}
5047 }
5048 
5049 static kobj_method_t root_methods[] = {
5050 	/* Device interface */
5051 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5052 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5053 	KOBJMETHOD(device_resume,	root_resume),
5054 
5055 	/* Bus interface */
5056 	KOBJMETHOD(bus_print_child,	root_print_child),
5057 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5058 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5059 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5060 	KOBJMETHOD(bus_child_present,	root_child_present),
5061 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5062 
5063 	KOBJMETHOD_END
5064 };
5065 
5066 static driver_t root_driver = {
5067 	"root",
5068 	root_methods,
5069 	1,			/* no softc */
5070 };
5071 
5072 device_t	root_bus;
5073 devclass_t	root_devclass;
5074 
5075 static int
5076 root_bus_module_handler(module_t mod, int what, void* arg)
5077 {
5078 	switch (what) {
5079 	case MOD_LOAD:
5080 		TAILQ_INIT(&bus_data_devices);
5081 		kobj_class_compile((kobj_class_t) &root_driver);
5082 		root_bus = make_device(NULL, "root", 0);
5083 		root_bus->desc = "System root bus";
5084 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5085 		root_bus->driver = &root_driver;
5086 		root_bus->state = DS_ATTACHED;
5087 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5088 		devinit();
5089 		return (0);
5090 
5091 	case MOD_SHUTDOWN:
5092 		device_shutdown(root_bus);
5093 		return (0);
5094 	default:
5095 		return (EOPNOTSUPP);
5096 	}
5097 
5098 	return (0);
5099 }
5100 
5101 static moduledata_t root_bus_mod = {
5102 	"rootbus",
5103 	root_bus_module_handler,
5104 	NULL
5105 };
5106 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5107 
5108 /**
5109  * @brief Automatically configure devices
5110  *
5111  * This function begins the autoconfiguration process by calling
5112  * device_probe_and_attach() for each child of the @c root0 device.
5113  */
5114 void
5115 root_bus_configure(void)
5116 {
5117 	PDEBUG(("."));
5118 
5119 	/* Eventually this will be split up, but this is sufficient for now. */
5120 	bus_set_pass(BUS_PASS_DEFAULT);
5121 }
5122 
5123 /**
5124  * @brief Module handler for registering device drivers
5125  *
5126  * This module handler is used to automatically register device
5127  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5128  * devclass_add_driver() for the driver described by the
5129  * driver_module_data structure pointed to by @p arg
5130  */
5131 int
5132 driver_module_handler(module_t mod, int what, void *arg)
5133 {
5134 	struct driver_module_data *dmd;
5135 	devclass_t bus_devclass;
5136 	kobj_class_t driver;
5137 	int error, pass;
5138 
5139 	dmd = (struct driver_module_data *)arg;
5140 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5141 	error = 0;
5142 
5143 	switch (what) {
5144 	case MOD_LOAD:
5145 		if (dmd->dmd_chainevh)
5146 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5147 
5148 		pass = dmd->dmd_pass;
5149 		driver = dmd->dmd_driver;
5150 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5151 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5152 		error = devclass_add_driver(bus_devclass, driver, pass,
5153 		    dmd->dmd_devclass);
5154 		break;
5155 
5156 	case MOD_UNLOAD:
5157 		PDEBUG(("Unloading module: driver %s from bus %s",
5158 		    DRIVERNAME(dmd->dmd_driver),
5159 		    dmd->dmd_busname));
5160 		error = devclass_delete_driver(bus_devclass,
5161 		    dmd->dmd_driver);
5162 
5163 		if (!error && dmd->dmd_chainevh)
5164 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5165 		break;
5166 	case MOD_QUIESCE:
5167 		PDEBUG(("Quiesce module: driver %s from bus %s",
5168 		    DRIVERNAME(dmd->dmd_driver),
5169 		    dmd->dmd_busname));
5170 		error = devclass_quiesce_driver(bus_devclass,
5171 		    dmd->dmd_driver);
5172 
5173 		if (!error && dmd->dmd_chainevh)
5174 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5175 		break;
5176 	default:
5177 		error = EOPNOTSUPP;
5178 		break;
5179 	}
5180 
5181 	return (error);
5182 }
5183 
5184 /**
5185  * @brief Enumerate all hinted devices for this bus.
5186  *
5187  * Walks through the hints for this bus and calls the bus_hinted_child
5188  * routine for each one it fines.  It searches first for the specific
5189  * bus that's being probed for hinted children (eg isa0), and then for
5190  * generic children (eg isa).
5191  *
5192  * @param	dev	bus device to enumerate
5193  */
5194 void
5195 bus_enumerate_hinted_children(device_t bus)
5196 {
5197 	int i;
5198 	const char *dname, *busname;
5199 	int dunit;
5200 
5201 	/*
5202 	 * enumerate all devices on the specific bus
5203 	 */
5204 	busname = device_get_nameunit(bus);
5205 	i = 0;
5206 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5207 		BUS_HINTED_CHILD(bus, dname, dunit);
5208 
5209 	/*
5210 	 * and all the generic ones.
5211 	 */
5212 	busname = device_get_name(bus);
5213 	i = 0;
5214 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5215 		BUS_HINTED_CHILD(bus, dname, dunit);
5216 }
5217 
5218 #ifdef BUS_DEBUG
5219 
5220 /* the _short versions avoid iteration by not calling anything that prints
5221  * more than oneliners. I love oneliners.
5222  */
5223 
5224 static void
5225 print_device_short(device_t dev, int indent)
5226 {
5227 	if (!dev)
5228 		return;
5229 
5230 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5231 	    dev->unit, dev->desc,
5232 	    (dev->parent? "":"no "),
5233 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5234 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5235 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5236 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5237 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5238 	    (dev->flags&DF_REBID? "rebiddable,":""),
5239 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5240 	    (dev->ivars? "":"no "),
5241 	    (dev->softc? "":"no "),
5242 	    dev->busy));
5243 }
5244 
5245 static void
5246 print_device(device_t dev, int indent)
5247 {
5248 	if (!dev)
5249 		return;
5250 
5251 	print_device_short(dev, indent);
5252 
5253 	indentprintf(("Parent:\n"));
5254 	print_device_short(dev->parent, indent+1);
5255 	indentprintf(("Driver:\n"));
5256 	print_driver_short(dev->driver, indent+1);
5257 	indentprintf(("Devclass:\n"));
5258 	print_devclass_short(dev->devclass, indent+1);
5259 }
5260 
5261 void
5262 print_device_tree_short(device_t dev, int indent)
5263 /* print the device and all its children (indented) */
5264 {
5265 	device_t child;
5266 
5267 	if (!dev)
5268 		return;
5269 
5270 	print_device_short(dev, indent);
5271 
5272 	TAILQ_FOREACH(child, &dev->children, link) {
5273 		print_device_tree_short(child, indent+1);
5274 	}
5275 }
5276 
5277 void
5278 print_device_tree(device_t dev, int indent)
5279 /* print the device and all its children (indented) */
5280 {
5281 	device_t child;
5282 
5283 	if (!dev)
5284 		return;
5285 
5286 	print_device(dev, indent);
5287 
5288 	TAILQ_FOREACH(child, &dev->children, link) {
5289 		print_device_tree(child, indent+1);
5290 	}
5291 }
5292 
5293 static void
5294 print_driver_short(driver_t *driver, int indent)
5295 {
5296 	if (!driver)
5297 		return;
5298 
5299 	indentprintf(("driver %s: softc size = %zd\n",
5300 	    driver->name, driver->size));
5301 }
5302 
5303 static void
5304 print_driver(driver_t *driver, int indent)
5305 {
5306 	if (!driver)
5307 		return;
5308 
5309 	print_driver_short(driver, indent);
5310 }
5311 
5312 static void
5313 print_driver_list(driver_list_t drivers, int indent)
5314 {
5315 	driverlink_t driver;
5316 
5317 	TAILQ_FOREACH(driver, &drivers, link) {
5318 		print_driver(driver->driver, indent);
5319 	}
5320 }
5321 
5322 static void
5323 print_devclass_short(devclass_t dc, int indent)
5324 {
5325 	if ( !dc )
5326 		return;
5327 
5328 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5329 }
5330 
5331 static void
5332 print_devclass(devclass_t dc, int indent)
5333 {
5334 	int i;
5335 
5336 	if ( !dc )
5337 		return;
5338 
5339 	print_devclass_short(dc, indent);
5340 	indentprintf(("Drivers:\n"));
5341 	print_driver_list(dc->drivers, indent+1);
5342 
5343 	indentprintf(("Devices:\n"));
5344 	for (i = 0; i < dc->maxunit; i++)
5345 		if (dc->devices[i])
5346 			print_device(dc->devices[i], indent+1);
5347 }
5348 
5349 void
5350 print_devclass_list_short(void)
5351 {
5352 	devclass_t dc;
5353 
5354 	printf("Short listing of devclasses, drivers & devices:\n");
5355 	TAILQ_FOREACH(dc, &devclasses, link) {
5356 		print_devclass_short(dc, 0);
5357 	}
5358 }
5359 
5360 void
5361 print_devclass_list(void)
5362 {
5363 	devclass_t dc;
5364 
5365 	printf("Full listing of devclasses, drivers & devices:\n");
5366 	TAILQ_FOREACH(dc, &devclasses, link) {
5367 		print_devclass(dc, 0);
5368 	}
5369 }
5370 
5371 #endif
5372 
5373 /*
5374  * User-space access to the device tree.
5375  *
5376  * We implement a small set of nodes:
5377  *
5378  * hw.bus			Single integer read method to obtain the
5379  *				current generation count.
5380  * hw.bus.devices		Reads the entire device tree in flat space.
5381  * hw.bus.rman			Resource manager interface
5382  *
5383  * We might like to add the ability to scan devclasses and/or drivers to
5384  * determine what else is currently loaded/available.
5385  */
5386 
5387 static int
5388 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5389 {
5390 	struct u_businfo	ubus;
5391 
5392 	ubus.ub_version = BUS_USER_VERSION;
5393 	ubus.ub_generation = bus_data_generation;
5394 
5395 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5396 }
5397 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5398     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5399     "bus-related data");
5400 
5401 static int
5402 sysctl_devices(SYSCTL_HANDLER_ARGS)
5403 {
5404 	int			*name = (int *)arg1;
5405 	u_int			namelen = arg2;
5406 	int			index;
5407 	device_t		dev;
5408 	struct u_device		*udev;
5409 	int			error;
5410 	char			*walker, *ep;
5411 
5412 	if (namelen != 2)
5413 		return (EINVAL);
5414 
5415 	if (bus_data_generation_check(name[0]))
5416 		return (EINVAL);
5417 
5418 	index = name[1];
5419 
5420 	/*
5421 	 * Scan the list of devices, looking for the requested index.
5422 	 */
5423 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5424 		if (index-- == 0)
5425 			break;
5426 	}
5427 	if (dev == NULL)
5428 		return (ENOENT);
5429 
5430 	/*
5431 	 * Populate the return item, careful not to overflow the buffer.
5432 	 */
5433 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5434 	if (udev == NULL)
5435 		return (ENOMEM);
5436 	udev->dv_handle = (uintptr_t)dev;
5437 	udev->dv_parent = (uintptr_t)dev->parent;
5438 	udev->dv_devflags = dev->devflags;
5439 	udev->dv_flags = dev->flags;
5440 	udev->dv_state = dev->state;
5441 	walker = udev->dv_fields;
5442 	ep = walker + sizeof(udev->dv_fields);
5443 #define CP(src)						\
5444 	if ((src) == NULL)				\
5445 		*walker++ = '\0';			\
5446 	else {						\
5447 		strlcpy(walker, (src), ep - walker);	\
5448 		walker += strlen(walker) + 1;		\
5449 	}						\
5450 	if (walker >= ep)				\
5451 		break;
5452 
5453 	do {
5454 		CP(dev->nameunit);
5455 		CP(dev->desc);
5456 		CP(dev->driver != NULL ? dev->driver->name : NULL);
5457 		bus_child_pnpinfo_str(dev, walker, ep - walker);
5458 		walker += strlen(walker) + 1;
5459 		if (walker >= ep)
5460 			break;
5461 		bus_child_location_str(dev, walker, ep - walker);
5462 		walker += strlen(walker) + 1;
5463 		if (walker >= ep)
5464 			break;
5465 		*walker++ = '\0';
5466 	} while (0);
5467 #undef CP
5468 	error = SYSCTL_OUT(req, udev, sizeof(*udev));
5469 	free(udev, M_BUS);
5470 	return (error);
5471 }
5472 
5473 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5474     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5475     "system device tree");
5476 
5477 int
5478 bus_data_generation_check(int generation)
5479 {
5480 	if (generation != bus_data_generation)
5481 		return (1);
5482 
5483 	/* XXX generate optimised lists here? */
5484 	return (0);
5485 }
5486 
5487 void
5488 bus_data_generation_update(void)
5489 {
5490 	atomic_add_int(&bus_data_generation, 1);
5491 }
5492 
5493 int
5494 bus_free_resource(device_t dev, int type, struct resource *r)
5495 {
5496 	if (r == NULL)
5497 		return (0);
5498 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5499 }
5500 
5501 device_t
5502 device_lookup_by_name(const char *name)
5503 {
5504 	device_t dev;
5505 
5506 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5507 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5508 			return (dev);
5509 	}
5510 	return (NULL);
5511 }
5512 
5513 /*
5514  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5515  * implicit semantics on open, so it could not be reused for this.
5516  * Another option would be to call this /dev/bus?
5517  */
5518 static int
5519 find_device(struct devreq *req, device_t *devp)
5520 {
5521 	device_t dev;
5522 
5523 	/*
5524 	 * First, ensure that the name is nul terminated.
5525 	 */
5526 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5527 		return (EINVAL);
5528 
5529 	/*
5530 	 * Second, try to find an attached device whose name matches
5531 	 * 'name'.
5532 	 */
5533 	dev = device_lookup_by_name(req->dr_name);
5534 	if (dev != NULL) {
5535 		*devp = dev;
5536 		return (0);
5537 	}
5538 
5539 	/* Finally, give device enumerators a chance. */
5540 	dev = NULL;
5541 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5542 	if (dev == NULL)
5543 		return (ENOENT);
5544 	*devp = dev;
5545 	return (0);
5546 }
5547 
5548 static bool
5549 driver_exists(device_t bus, const char *driver)
5550 {
5551 	devclass_t dc;
5552 
5553 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5554 		if (devclass_find_driver_internal(dc, driver) != NULL)
5555 			return (true);
5556 	}
5557 	return (false);
5558 }
5559 
5560 static void
5561 device_gen_nomatch(device_t dev)
5562 {
5563 	device_t child;
5564 
5565 	if (dev->flags & DF_NEEDNOMATCH &&
5566 	    dev->state == DS_NOTPRESENT) {
5567 		BUS_PROBE_NOMATCH(dev->parent, dev);
5568 		devnomatch(dev);
5569 		dev->flags |= DF_DONENOMATCH;
5570 	}
5571 	dev->flags &= ~DF_NEEDNOMATCH;
5572 	TAILQ_FOREACH(child, &dev->children, link) {
5573 		device_gen_nomatch(child);
5574 	}
5575 }
5576 
5577 static void
5578 device_do_deferred_actions(void)
5579 {
5580 	devclass_t dc;
5581 	driverlink_t dl;
5582 
5583 	/*
5584 	 * Walk through the devclasses to find all the drivers we've tagged as
5585 	 * deferred during the freeze and call the driver added routines. They
5586 	 * have already been added to the lists in the background, so the driver
5587 	 * added routines that trigger a probe will have all the right bidders
5588 	 * for the probe auction.
5589 	 */
5590 	TAILQ_FOREACH(dc, &devclasses, link) {
5591 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5592 			if (dl->flags & DL_DEFERRED_PROBE) {
5593 				devclass_driver_added(dc, dl->driver);
5594 				dl->flags &= ~DL_DEFERRED_PROBE;
5595 			}
5596 		}
5597 	}
5598 
5599 	/*
5600 	 * We also defer no-match events during a freeze. Walk the tree and
5601 	 * generate all the pent-up events that are still relevant.
5602 	 */
5603 	device_gen_nomatch(root_bus);
5604 	bus_data_generation_update();
5605 }
5606 
5607 static int
5608 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5609     struct thread *td)
5610 {
5611 	struct devreq *req;
5612 	device_t dev;
5613 	int error, old;
5614 
5615 	/* Locate the device to control. */
5616 	mtx_lock(&Giant);
5617 	req = (struct devreq *)data;
5618 	switch (cmd) {
5619 	case DEV_ATTACH:
5620 	case DEV_DETACH:
5621 	case DEV_ENABLE:
5622 	case DEV_DISABLE:
5623 	case DEV_SUSPEND:
5624 	case DEV_RESUME:
5625 	case DEV_SET_DRIVER:
5626 	case DEV_CLEAR_DRIVER:
5627 	case DEV_RESCAN:
5628 	case DEV_DELETE:
5629 	case DEV_RESET:
5630 		error = priv_check(td, PRIV_DRIVER);
5631 		if (error == 0)
5632 			error = find_device(req, &dev);
5633 		break;
5634 	case DEV_FREEZE:
5635 	case DEV_THAW:
5636 		error = priv_check(td, PRIV_DRIVER);
5637 		break;
5638 	default:
5639 		error = ENOTTY;
5640 		break;
5641 	}
5642 	if (error) {
5643 		mtx_unlock(&Giant);
5644 		return (error);
5645 	}
5646 
5647 	/* Perform the requested operation. */
5648 	switch (cmd) {
5649 	case DEV_ATTACH:
5650 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5651 			error = EBUSY;
5652 		else if (!device_is_enabled(dev))
5653 			error = ENXIO;
5654 		else
5655 			error = device_probe_and_attach(dev);
5656 		break;
5657 	case DEV_DETACH:
5658 		if (!device_is_attached(dev)) {
5659 			error = ENXIO;
5660 			break;
5661 		}
5662 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5663 			error = device_quiesce(dev);
5664 			if (error)
5665 				break;
5666 		}
5667 		error = device_detach(dev);
5668 		break;
5669 	case DEV_ENABLE:
5670 		if (device_is_enabled(dev)) {
5671 			error = EBUSY;
5672 			break;
5673 		}
5674 
5675 		/*
5676 		 * If the device has been probed but not attached (e.g.
5677 		 * when it has been disabled by a loader hint), just
5678 		 * attach the device rather than doing a full probe.
5679 		 */
5680 		device_enable(dev);
5681 		if (device_is_alive(dev)) {
5682 			/*
5683 			 * If the device was disabled via a hint, clear
5684 			 * the hint.
5685 			 */
5686 			if (resource_disabled(dev->driver->name, dev->unit))
5687 				resource_unset_value(dev->driver->name,
5688 				    dev->unit, "disabled");
5689 			error = device_attach(dev);
5690 		} else
5691 			error = device_probe_and_attach(dev);
5692 		break;
5693 	case DEV_DISABLE:
5694 		if (!device_is_enabled(dev)) {
5695 			error = ENXIO;
5696 			break;
5697 		}
5698 
5699 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5700 			error = device_quiesce(dev);
5701 			if (error)
5702 				break;
5703 		}
5704 
5705 		/*
5706 		 * Force DF_FIXEDCLASS on around detach to preserve
5707 		 * the existing name.
5708 		 */
5709 		old = dev->flags;
5710 		dev->flags |= DF_FIXEDCLASS;
5711 		error = device_detach(dev);
5712 		if (!(old & DF_FIXEDCLASS))
5713 			dev->flags &= ~DF_FIXEDCLASS;
5714 		if (error == 0)
5715 			device_disable(dev);
5716 		break;
5717 	case DEV_SUSPEND:
5718 		if (device_is_suspended(dev)) {
5719 			error = EBUSY;
5720 			break;
5721 		}
5722 		if (device_get_parent(dev) == NULL) {
5723 			error = EINVAL;
5724 			break;
5725 		}
5726 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5727 		break;
5728 	case DEV_RESUME:
5729 		if (!device_is_suspended(dev)) {
5730 			error = EINVAL;
5731 			break;
5732 		}
5733 		if (device_get_parent(dev) == NULL) {
5734 			error = EINVAL;
5735 			break;
5736 		}
5737 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5738 		break;
5739 	case DEV_SET_DRIVER: {
5740 		devclass_t dc;
5741 		char driver[128];
5742 
5743 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5744 		if (error)
5745 			break;
5746 		if (driver[0] == '\0') {
5747 			error = EINVAL;
5748 			break;
5749 		}
5750 		if (dev->devclass != NULL &&
5751 		    strcmp(driver, dev->devclass->name) == 0)
5752 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5753 			break;
5754 
5755 		/*
5756 		 * Scan drivers for this device's bus looking for at
5757 		 * least one matching driver.
5758 		 */
5759 		if (dev->parent == NULL) {
5760 			error = EINVAL;
5761 			break;
5762 		}
5763 		if (!driver_exists(dev->parent, driver)) {
5764 			error = ENOENT;
5765 			break;
5766 		}
5767 		dc = devclass_create(driver);
5768 		if (dc == NULL) {
5769 			error = ENOMEM;
5770 			break;
5771 		}
5772 
5773 		/* Detach device if necessary. */
5774 		if (device_is_attached(dev)) {
5775 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5776 				error = device_detach(dev);
5777 			else
5778 				error = EBUSY;
5779 			if (error)
5780 				break;
5781 		}
5782 
5783 		/* Clear any previously-fixed device class and unit. */
5784 		if (dev->flags & DF_FIXEDCLASS)
5785 			devclass_delete_device(dev->devclass, dev);
5786 		dev->flags |= DF_WILDCARD;
5787 		dev->unit = -1;
5788 
5789 		/* Force the new device class. */
5790 		error = devclass_add_device(dc, dev);
5791 		if (error)
5792 			break;
5793 		dev->flags |= DF_FIXEDCLASS;
5794 		error = device_probe_and_attach(dev);
5795 		break;
5796 	}
5797 	case DEV_CLEAR_DRIVER:
5798 		if (!(dev->flags & DF_FIXEDCLASS)) {
5799 			error = 0;
5800 			break;
5801 		}
5802 		if (device_is_attached(dev)) {
5803 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5804 				error = device_detach(dev);
5805 			else
5806 				error = EBUSY;
5807 			if (error)
5808 				break;
5809 		}
5810 
5811 		dev->flags &= ~DF_FIXEDCLASS;
5812 		dev->flags |= DF_WILDCARD;
5813 		devclass_delete_device(dev->devclass, dev);
5814 		error = device_probe_and_attach(dev);
5815 		break;
5816 	case DEV_RESCAN:
5817 		if (!device_is_attached(dev)) {
5818 			error = ENXIO;
5819 			break;
5820 		}
5821 		error = BUS_RESCAN(dev);
5822 		break;
5823 	case DEV_DELETE: {
5824 		device_t parent;
5825 
5826 		parent = device_get_parent(dev);
5827 		if (parent == NULL) {
5828 			error = EINVAL;
5829 			break;
5830 		}
5831 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5832 			if (bus_child_present(dev) != 0) {
5833 				error = EBUSY;
5834 				break;
5835 			}
5836 		}
5837 
5838 		error = device_delete_child(parent, dev);
5839 		break;
5840 	}
5841 	case DEV_FREEZE:
5842 		if (device_frozen)
5843 			error = EBUSY;
5844 		else
5845 			device_frozen = true;
5846 		break;
5847 	case DEV_THAW:
5848 		if (!device_frozen)
5849 			error = EBUSY;
5850 		else {
5851 			device_do_deferred_actions();
5852 			device_frozen = false;
5853 		}
5854 		break;
5855 	case DEV_RESET:
5856 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5857 			error = EINVAL;
5858 			break;
5859 		}
5860 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5861 		    req->dr_flags);
5862 		break;
5863 	}
5864 	mtx_unlock(&Giant);
5865 	return (error);
5866 }
5867 
5868 static struct cdevsw devctl2_cdevsw = {
5869 	.d_version =	D_VERSION,
5870 	.d_ioctl =	devctl2_ioctl,
5871 	.d_name =	"devctl2",
5872 };
5873 
5874 static void
5875 devctl2_init(void)
5876 {
5877 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5878 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5879 }
5880 
5881 /*
5882  * APIs to manage deprecation and obsolescence.
5883  */
5884 static int obsolete_panic = 0;
5885 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5886     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
5887     "2 = if deprecated)");
5888 
5889 static void
5890 gone_panic(int major, int running, const char *msg)
5891 {
5892 	switch (obsolete_panic)
5893 	{
5894 	case 0:
5895 		return;
5896 	case 1:
5897 		if (running < major)
5898 			return;
5899 		/* FALLTHROUGH */
5900 	default:
5901 		panic("%s", msg);
5902 	}
5903 }
5904 
5905 void
5906 _gone_in(int major, const char *msg)
5907 {
5908 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5909 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5910 		printf("Obsolete code will be removed soon: %s\n", msg);
5911 	else
5912 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5913 		    major, msg);
5914 }
5915 
5916 void
5917 _gone_in_dev(device_t dev, int major, const char *msg)
5918 {
5919 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5920 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5921 		device_printf(dev,
5922 		    "Obsolete code will be removed soon: %s\n", msg);
5923 	else
5924 		device_printf(dev,
5925 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5926 		    major, msg);
5927 }
5928 
5929 #ifdef DDB
5930 DB_SHOW_COMMAND(device, db_show_device)
5931 {
5932 	device_t dev;
5933 
5934 	if (!have_addr)
5935 		return;
5936 
5937 	dev = (device_t)addr;
5938 
5939 	db_printf("name:    %s\n", device_get_nameunit(dev));
5940 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5941 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5942 	db_printf("  addr:    %p\n", dev);
5943 	db_printf("  parent:  %p\n", dev->parent);
5944 	db_printf("  softc:   %p\n", dev->softc);
5945 	db_printf("  ivars:   %p\n", dev->ivars);
5946 }
5947 
5948 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5949 {
5950 	device_t dev;
5951 
5952 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5953 		db_show_device((db_expr_t)dev, true, count, modif);
5954 	}
5955 }
5956 #endif
5957