1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of device. 116 */ 117 struct device { 118 /* 119 * A device is a kernel object. The first field must be the 120 * current ops table for the object. 121 */ 122 KOBJ_FIELDS; 123 124 /* 125 * Device hierarchy. 126 */ 127 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 128 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 129 device_t parent; /**< parent of this device */ 130 device_list_t children; /**< list of child devices */ 131 132 /* 133 * Details of this device. 134 */ 135 driver_t *driver; /**< current driver */ 136 devclass_t devclass; /**< current device class */ 137 int unit; /**< current unit number */ 138 char* nameunit; /**< name+unit e.g. foodev0 */ 139 char* desc; /**< driver specific description */ 140 int busy; /**< count of calls to device_busy() */ 141 device_state_t state; /**< current device state */ 142 uint32_t devflags; /**< api level flags for device_get_flags() */ 143 u_int flags; /**< internal device flags */ 144 u_int order; /**< order from device_add_child_ordered() */ 145 void *ivars; /**< instance variables */ 146 void *softc; /**< current driver's variables */ 147 148 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 149 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 150 }; 151 152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 154 155 EVENTHANDLER_LIST_DEFINE(device_attach); 156 EVENTHANDLER_LIST_DEFINE(device_detach); 157 EVENTHANDLER_LIST_DEFINE(dev_lookup); 158 159 static void devctl2_init(void); 160 static bool device_frozen; 161 162 #define DRIVERNAME(d) ((d)? d->name : "no driver") 163 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 164 165 #ifdef BUS_DEBUG 166 167 static int bus_debug = 1; 168 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 169 "Bus debug level"); 170 171 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 172 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 173 174 /** 175 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 176 * prevent syslog from deleting initial spaces 177 */ 178 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 179 180 static void print_device_short(device_t dev, int indent); 181 static void print_device(device_t dev, int indent); 182 void print_device_tree_short(device_t dev, int indent); 183 void print_device_tree(device_t dev, int indent); 184 static void print_driver_short(driver_t *driver, int indent); 185 static void print_driver(driver_t *driver, int indent); 186 static void print_driver_list(driver_list_t drivers, int indent); 187 static void print_devclass_short(devclass_t dc, int indent); 188 static void print_devclass(devclass_t dc, int indent); 189 void print_devclass_list_short(void); 190 void print_devclass_list(void); 191 192 #else 193 /* Make the compiler ignore the function calls */ 194 #define PDEBUG(a) /* nop */ 195 #define DEVICENAME(d) /* nop */ 196 197 #define print_device_short(d,i) /* nop */ 198 #define print_device(d,i) /* nop */ 199 #define print_device_tree_short(d,i) /* nop */ 200 #define print_device_tree(d,i) /* nop */ 201 #define print_driver_short(d,i) /* nop */ 202 #define print_driver(d,i) /* nop */ 203 #define print_driver_list(d,i) /* nop */ 204 #define print_devclass_short(d,i) /* nop */ 205 #define print_devclass(d,i) /* nop */ 206 #define print_devclass_list_short() /* nop */ 207 #define print_devclass_list() /* nop */ 208 #endif 209 210 /* 211 * dev sysctl tree 212 */ 213 214 enum { 215 DEVCLASS_SYSCTL_PARENT, 216 }; 217 218 static int 219 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 220 { 221 devclass_t dc = (devclass_t)arg1; 222 const char *value; 223 224 switch (arg2) { 225 case DEVCLASS_SYSCTL_PARENT: 226 value = dc->parent ? dc->parent->name : ""; 227 break; 228 default: 229 return (EINVAL); 230 } 231 return (SYSCTL_OUT_STR(req, value)); 232 } 233 234 static void 235 devclass_sysctl_init(devclass_t dc) 236 { 237 if (dc->sysctl_tree != NULL) 238 return; 239 sysctl_ctx_init(&dc->sysctl_ctx); 240 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 241 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 242 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 243 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 244 OID_AUTO, "%parent", 245 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 246 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 247 "parent class"); 248 } 249 250 enum { 251 DEVICE_SYSCTL_DESC, 252 DEVICE_SYSCTL_DRIVER, 253 DEVICE_SYSCTL_LOCATION, 254 DEVICE_SYSCTL_PNPINFO, 255 DEVICE_SYSCTL_PARENT, 256 }; 257 258 static int 259 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 260 { 261 device_t dev = (device_t)arg1; 262 const char *value; 263 char *buf; 264 int error; 265 266 buf = NULL; 267 switch (arg2) { 268 case DEVICE_SYSCTL_DESC: 269 value = dev->desc ? dev->desc : ""; 270 break; 271 case DEVICE_SYSCTL_DRIVER: 272 value = dev->driver ? dev->driver->name : ""; 273 break; 274 case DEVICE_SYSCTL_LOCATION: 275 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 276 bus_child_location_str(dev, buf, 1024); 277 break; 278 case DEVICE_SYSCTL_PNPINFO: 279 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 280 bus_child_pnpinfo_str(dev, buf, 1024); 281 break; 282 case DEVICE_SYSCTL_PARENT: 283 value = dev->parent ? dev->parent->nameunit : ""; 284 break; 285 default: 286 return (EINVAL); 287 } 288 error = SYSCTL_OUT_STR(req, value); 289 if (buf != NULL) 290 free(buf, M_BUS); 291 return (error); 292 } 293 294 static void 295 device_sysctl_init(device_t dev) 296 { 297 devclass_t dc = dev->devclass; 298 int domain; 299 300 if (dev->sysctl_tree != NULL) 301 return; 302 devclass_sysctl_init(dc); 303 sysctl_ctx_init(&dev->sysctl_ctx); 304 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 305 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 306 dev->nameunit + strlen(dc->name), 307 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 310 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 311 "device description"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%driver", 314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 315 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 316 "device driver name"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%location", 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 320 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 321 "device location relative to parent"); 322 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 323 OID_AUTO, "%pnpinfo", 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 325 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 326 "device identification"); 327 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 328 OID_AUTO, "%parent", 329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 330 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 331 "parent device"); 332 if (bus_get_domain(dev, &domain) == 0) 333 SYSCTL_ADD_INT(&dev->sysctl_ctx, 334 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 335 CTLFLAG_RD, NULL, domain, "NUMA domain"); 336 } 337 338 static void 339 device_sysctl_update(device_t dev) 340 { 341 devclass_t dc = dev->devclass; 342 343 if (dev->sysctl_tree == NULL) 344 return; 345 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 346 } 347 348 static void 349 device_sysctl_fini(device_t dev) 350 { 351 if (dev->sysctl_tree == NULL) 352 return; 353 sysctl_ctx_free(&dev->sysctl_ctx); 354 dev->sysctl_tree = NULL; 355 } 356 357 /* 358 * /dev/devctl implementation 359 */ 360 361 /* 362 * This design allows only one reader for /dev/devctl. This is not desirable 363 * in the long run, but will get a lot of hair out of this implementation. 364 * Maybe we should make this device a clonable device. 365 * 366 * Also note: we specifically do not attach a device to the device_t tree 367 * to avoid potential chicken and egg problems. One could argue that all 368 * of this belongs to the root node. 369 */ 370 371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 374 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 375 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 376 377 static d_open_t devopen; 378 static d_close_t devclose; 379 static d_read_t devread; 380 static d_ioctl_t devioctl; 381 static d_poll_t devpoll; 382 static d_kqfilter_t devkqfilter; 383 384 static struct cdevsw dev_cdevsw = { 385 .d_version = D_VERSION, 386 .d_open = devopen, 387 .d_close = devclose, 388 .d_read = devread, 389 .d_ioctl = devioctl, 390 .d_poll = devpoll, 391 .d_kqfilter = devkqfilter, 392 .d_name = "devctl", 393 }; 394 395 struct dev_event_info 396 { 397 char *dei_data; 398 STAILQ_ENTRY(dev_event_info) dei_link; 399 }; 400 401 STAILQ_HEAD(devq, dev_event_info); 402 403 static struct dev_softc 404 { 405 int inuse; 406 int nonblock; 407 int queued; 408 int async; 409 struct mtx mtx; 410 struct cv cv; 411 struct selinfo sel; 412 struct devq devq; 413 struct sigio *sigio; 414 } devsoftc; 415 416 static void filt_devctl_detach(struct knote *kn); 417 static int filt_devctl_read(struct knote *kn, long hint); 418 419 struct filterops devctl_rfiltops = { 420 .f_isfd = 1, 421 .f_detach = filt_devctl_detach, 422 .f_event = filt_devctl_read, 423 }; 424 425 static struct cdev *devctl_dev; 426 427 static void 428 devinit(void) 429 { 430 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 431 UID_ROOT, GID_WHEEL, 0600, "devctl"); 432 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 433 cv_init(&devsoftc.cv, "dev cv"); 434 STAILQ_INIT(&devsoftc.devq); 435 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 436 devctl2_init(); 437 } 438 439 static int 440 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 441 { 442 mtx_lock(&devsoftc.mtx); 443 if (devsoftc.inuse) { 444 mtx_unlock(&devsoftc.mtx); 445 return (EBUSY); 446 } 447 /* move to init */ 448 devsoftc.inuse = 1; 449 mtx_unlock(&devsoftc.mtx); 450 return (0); 451 } 452 453 static int 454 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 455 { 456 mtx_lock(&devsoftc.mtx); 457 devsoftc.inuse = 0; 458 devsoftc.nonblock = 0; 459 devsoftc.async = 0; 460 cv_broadcast(&devsoftc.cv); 461 funsetown(&devsoftc.sigio); 462 mtx_unlock(&devsoftc.mtx); 463 return (0); 464 } 465 466 /* 467 * The read channel for this device is used to report changes to 468 * userland in realtime. We are required to free the data as well as 469 * the n1 object because we allocate them separately. Also note that 470 * we return one record at a time. If you try to read this device a 471 * character at a time, you will lose the rest of the data. Listening 472 * programs are expected to cope. 473 */ 474 static int 475 devread(struct cdev *dev, struct uio *uio, int ioflag) 476 { 477 struct dev_event_info *n1; 478 int rv; 479 480 mtx_lock(&devsoftc.mtx); 481 while (STAILQ_EMPTY(&devsoftc.devq)) { 482 if (devsoftc.nonblock) { 483 mtx_unlock(&devsoftc.mtx); 484 return (EAGAIN); 485 } 486 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 487 if (rv) { 488 /* 489 * Need to translate ERESTART to EINTR here? -- jake 490 */ 491 mtx_unlock(&devsoftc.mtx); 492 return (rv); 493 } 494 } 495 n1 = STAILQ_FIRST(&devsoftc.devq); 496 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 497 devsoftc.queued--; 498 mtx_unlock(&devsoftc.mtx); 499 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 500 free(n1->dei_data, M_BUS); 501 free(n1, M_BUS); 502 return (rv); 503 } 504 505 static int 506 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 507 { 508 switch (cmd) { 509 case FIONBIO: 510 if (*(int*)data) 511 devsoftc.nonblock = 1; 512 else 513 devsoftc.nonblock = 0; 514 return (0); 515 case FIOASYNC: 516 if (*(int*)data) 517 devsoftc.async = 1; 518 else 519 devsoftc.async = 0; 520 return (0); 521 case FIOSETOWN: 522 return fsetown(*(int *)data, &devsoftc.sigio); 523 case FIOGETOWN: 524 *(int *)data = fgetown(&devsoftc.sigio); 525 return (0); 526 527 /* (un)Support for other fcntl() calls. */ 528 case FIOCLEX: 529 case FIONCLEX: 530 case FIONREAD: 531 default: 532 break; 533 } 534 return (ENOTTY); 535 } 536 537 static int 538 devpoll(struct cdev *dev, int events, struct thread *td) 539 { 540 int revents = 0; 541 542 mtx_lock(&devsoftc.mtx); 543 if (events & (POLLIN | POLLRDNORM)) { 544 if (!STAILQ_EMPTY(&devsoftc.devq)) 545 revents = events & (POLLIN | POLLRDNORM); 546 else 547 selrecord(td, &devsoftc.sel); 548 } 549 mtx_unlock(&devsoftc.mtx); 550 551 return (revents); 552 } 553 554 static int 555 devkqfilter(struct cdev *dev, struct knote *kn) 556 { 557 int error; 558 559 if (kn->kn_filter == EVFILT_READ) { 560 kn->kn_fop = &devctl_rfiltops; 561 knlist_add(&devsoftc.sel.si_note, kn, 0); 562 error = 0; 563 } else 564 error = EINVAL; 565 return (error); 566 } 567 568 static void 569 filt_devctl_detach(struct knote *kn) 570 { 571 knlist_remove(&devsoftc.sel.si_note, kn, 0); 572 } 573 574 static int 575 filt_devctl_read(struct knote *kn, long hint) 576 { 577 kn->kn_data = devsoftc.queued; 578 return (kn->kn_data != 0); 579 } 580 581 /** 582 * @brief Return whether the userland process is running 583 */ 584 boolean_t 585 devctl_process_running(void) 586 { 587 return (devsoftc.inuse == 1); 588 } 589 590 /** 591 * @brief Queue data to be read from the devctl device 592 * 593 * Generic interface to queue data to the devctl device. It is 594 * assumed that @p data is properly formatted. It is further assumed 595 * that @p data is allocated using the M_BUS malloc type. 596 */ 597 static void 598 devctl_queue_data_f(char *data, int flags) 599 { 600 struct dev_event_info *n1 = NULL, *n2 = NULL; 601 602 if (strlen(data) == 0) 603 goto out; 604 if (devctl_queue_length == 0) 605 goto out; 606 n1 = malloc(sizeof(*n1), M_BUS, flags); 607 if (n1 == NULL) 608 goto out; 609 n1->dei_data = data; 610 mtx_lock(&devsoftc.mtx); 611 if (devctl_queue_length == 0) { 612 mtx_unlock(&devsoftc.mtx); 613 free(n1->dei_data, M_BUS); 614 free(n1, M_BUS); 615 return; 616 } 617 /* Leave at least one spot in the queue... */ 618 while (devsoftc.queued > devctl_queue_length - 1) { 619 n2 = STAILQ_FIRST(&devsoftc.devq); 620 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 621 free(n2->dei_data, M_BUS); 622 free(n2, M_BUS); 623 devsoftc.queued--; 624 } 625 STAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 626 devsoftc.queued++; 627 cv_broadcast(&devsoftc.cv); 628 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 629 mtx_unlock(&devsoftc.mtx); 630 selwakeup(&devsoftc.sel); 631 if (devsoftc.async && devsoftc.sigio != NULL) 632 pgsigio(&devsoftc.sigio, SIGIO, 0); 633 return; 634 out: 635 /* 636 * We have to free data on all error paths since the caller 637 * assumes it will be free'd when this item is dequeued. 638 */ 639 free(data, M_BUS); 640 return; 641 } 642 643 static void 644 devctl_queue_data(char *data) 645 { 646 devctl_queue_data_f(data, M_NOWAIT); 647 } 648 649 /** 650 * @brief Send a 'notification' to userland, using standard ways 651 */ 652 void 653 devctl_notify_f(const char *system, const char *subsystem, const char *type, 654 const char *data, int flags) 655 { 656 int len = 0; 657 char *msg; 658 659 if (system == NULL) 660 return; /* BOGUS! Must specify system. */ 661 if (subsystem == NULL) 662 return; /* BOGUS! Must specify subsystem. */ 663 if (type == NULL) 664 return; /* BOGUS! Must specify type. */ 665 len += strlen(" system=") + strlen(system); 666 len += strlen(" subsystem=") + strlen(subsystem); 667 len += strlen(" type=") + strlen(type); 668 /* add in the data message plus newline. */ 669 if (data != NULL) 670 len += strlen(data); 671 len += 3; /* '!', '\n', and NUL */ 672 msg = malloc(len, M_BUS, flags); 673 if (msg == NULL) 674 return; /* Drop it on the floor */ 675 if (data != NULL) 676 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 677 system, subsystem, type, data); 678 else 679 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 680 system, subsystem, type); 681 devctl_queue_data_f(msg, flags); 682 } 683 684 void 685 devctl_notify(const char *system, const char *subsystem, const char *type, 686 const char *data) 687 { 688 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 689 } 690 691 /* 692 * Common routine that tries to make sending messages as easy as possible. 693 * We allocate memory for the data, copy strings into that, but do not 694 * free it unless there's an error. The dequeue part of the driver should 695 * free the data. We don't send data when the device is disabled. We do 696 * send data, even when we have no listeners, because we wish to avoid 697 * races relating to startup and restart of listening applications. 698 * 699 * devaddq is designed to string together the type of event, with the 700 * object of that event, plus the plug and play info and location info 701 * for that event. This is likely most useful for devices, but less 702 * useful for other consumers of this interface. Those should use 703 * the devctl_queue_data() interface instead. 704 */ 705 static void 706 devaddq(const char *type, const char *what, device_t dev) 707 { 708 char *data = NULL; 709 char *loc = NULL; 710 char *pnp = NULL; 711 const char *parstr; 712 713 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 714 return; 715 data = malloc(1024, M_BUS, M_NOWAIT); 716 if (data == NULL) 717 goto bad; 718 719 /* get the bus specific location of this device */ 720 loc = malloc(1024, M_BUS, M_NOWAIT); 721 if (loc == NULL) 722 goto bad; 723 *loc = '\0'; 724 bus_child_location_str(dev, loc, 1024); 725 726 /* Get the bus specific pnp info of this device */ 727 pnp = malloc(1024, M_BUS, M_NOWAIT); 728 if (pnp == NULL) 729 goto bad; 730 *pnp = '\0'; 731 bus_child_pnpinfo_str(dev, pnp, 1024); 732 733 /* Get the parent of this device, or / if high enough in the tree. */ 734 if (device_get_parent(dev) == NULL) 735 parstr = "."; /* Or '/' ? */ 736 else 737 parstr = device_get_nameunit(device_get_parent(dev)); 738 /* String it all together. */ 739 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 740 parstr); 741 free(loc, M_BUS); 742 free(pnp, M_BUS); 743 devctl_queue_data(data); 744 return; 745 bad: 746 free(pnp, M_BUS); 747 free(loc, M_BUS); 748 free(data, M_BUS); 749 return; 750 } 751 752 /* 753 * A device was added to the tree. We are called just after it successfully 754 * attaches (that is, probe and attach success for this device). No call 755 * is made if a device is merely parented into the tree. See devnomatch 756 * if probe fails. If attach fails, no notification is sent (but maybe 757 * we should have a different message for this). 758 */ 759 static void 760 devadded(device_t dev) 761 { 762 devaddq("+", device_get_nameunit(dev), dev); 763 } 764 765 /* 766 * A device was removed from the tree. We are called just before this 767 * happens. 768 */ 769 static void 770 devremoved(device_t dev) 771 { 772 devaddq("-", device_get_nameunit(dev), dev); 773 } 774 775 /* 776 * Called when there's no match for this device. This is only called 777 * the first time that no match happens, so we don't keep getting this 778 * message. Should that prove to be undesirable, we can change it. 779 * This is called when all drivers that can attach to a given bus 780 * decline to accept this device. Other errors may not be detected. 781 */ 782 static void 783 devnomatch(device_t dev) 784 { 785 devaddq("?", "", dev); 786 } 787 788 static int 789 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 790 { 791 struct dev_event_info *n1; 792 int q, error; 793 794 q = devctl_queue_length; 795 error = sysctl_handle_int(oidp, &q, 0, req); 796 if (error || !req->newptr) 797 return (error); 798 if (q < 0) 799 return (EINVAL); 800 if (mtx_initialized(&devsoftc.mtx)) 801 mtx_lock(&devsoftc.mtx); 802 devctl_queue_length = q; 803 while (devsoftc.queued > devctl_queue_length) { 804 n1 = STAILQ_FIRST(&devsoftc.devq); 805 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 806 free(n1->dei_data, M_BUS); 807 free(n1, M_BUS); 808 devsoftc.queued--; 809 } 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_unlock(&devsoftc.mtx); 812 return (0); 813 } 814 815 /** 816 * @brief safely quotes strings that might have double quotes in them. 817 * 818 * The devctl protocol relies on quoted strings having matching quotes. 819 * This routine quotes any internal quotes so the resulting string 820 * is safe to pass to snprintf to construct, for example pnp info strings. 821 * 822 * @param sb sbuf to place the characters into 823 * @param src Original buffer. 824 */ 825 void 826 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 827 { 828 while (*src != '\0') { 829 if (*src == '"' || *src == '\\') 830 sbuf_putc(sb, '\\'); 831 sbuf_putc(sb, *src++); 832 } 833 } 834 835 /* End of /dev/devctl code */ 836 837 static TAILQ_HEAD(,device) bus_data_devices; 838 static int bus_data_generation = 1; 839 840 static kobj_method_t null_methods[] = { 841 KOBJMETHOD_END 842 }; 843 844 DEFINE_CLASS(null, null_methods, 0); 845 846 /* 847 * Bus pass implementation 848 */ 849 850 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 851 int bus_current_pass = BUS_PASS_ROOT; 852 853 /** 854 * @internal 855 * @brief Register the pass level of a new driver attachment 856 * 857 * Register a new driver attachment's pass level. If no driver 858 * attachment with the same pass level has been added, then @p new 859 * will be added to the global passes list. 860 * 861 * @param new the new driver attachment 862 */ 863 static void 864 driver_register_pass(struct driverlink *new) 865 { 866 struct driverlink *dl; 867 868 /* We only consider pass numbers during boot. */ 869 if (bus_current_pass == BUS_PASS_DEFAULT) 870 return; 871 872 /* 873 * Walk the passes list. If we already know about this pass 874 * then there is nothing to do. If we don't, then insert this 875 * driver link into the list. 876 */ 877 TAILQ_FOREACH(dl, &passes, passlink) { 878 if (dl->pass < new->pass) 879 continue; 880 if (dl->pass == new->pass) 881 return; 882 TAILQ_INSERT_BEFORE(dl, new, passlink); 883 return; 884 } 885 TAILQ_INSERT_TAIL(&passes, new, passlink); 886 } 887 888 /** 889 * @brief Raise the current bus pass 890 * 891 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 892 * method on the root bus to kick off a new device tree scan for each 893 * new pass level that has at least one driver. 894 */ 895 void 896 bus_set_pass(int pass) 897 { 898 struct driverlink *dl; 899 900 if (bus_current_pass > pass) 901 panic("Attempt to lower bus pass level"); 902 903 TAILQ_FOREACH(dl, &passes, passlink) { 904 /* Skip pass values below the current pass level. */ 905 if (dl->pass <= bus_current_pass) 906 continue; 907 908 /* 909 * Bail once we hit a driver with a pass level that is 910 * too high. 911 */ 912 if (dl->pass > pass) 913 break; 914 915 /* 916 * Raise the pass level to the next level and rescan 917 * the tree. 918 */ 919 bus_current_pass = dl->pass; 920 BUS_NEW_PASS(root_bus); 921 } 922 923 /* 924 * If there isn't a driver registered for the requested pass, 925 * then bus_current_pass might still be less than 'pass'. Set 926 * it to 'pass' in that case. 927 */ 928 if (bus_current_pass < pass) 929 bus_current_pass = pass; 930 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 931 } 932 933 /* 934 * Devclass implementation 935 */ 936 937 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 938 939 /** 940 * @internal 941 * @brief Find or create a device class 942 * 943 * If a device class with the name @p classname exists, return it, 944 * otherwise if @p create is non-zero create and return a new device 945 * class. 946 * 947 * If @p parentname is non-NULL, the parent of the devclass is set to 948 * the devclass of that name. 949 * 950 * @param classname the devclass name to find or create 951 * @param parentname the parent devclass name or @c NULL 952 * @param create non-zero to create a devclass 953 */ 954 static devclass_t 955 devclass_find_internal(const char *classname, const char *parentname, 956 int create) 957 { 958 devclass_t dc; 959 960 PDEBUG(("looking for %s", classname)); 961 if (!classname) 962 return (NULL); 963 964 TAILQ_FOREACH(dc, &devclasses, link) { 965 if (!strcmp(dc->name, classname)) 966 break; 967 } 968 969 if (create && !dc) { 970 PDEBUG(("creating %s", classname)); 971 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 972 M_BUS, M_NOWAIT | M_ZERO); 973 if (!dc) 974 return (NULL); 975 dc->parent = NULL; 976 dc->name = (char*) (dc + 1); 977 strcpy(dc->name, classname); 978 TAILQ_INIT(&dc->drivers); 979 TAILQ_INSERT_TAIL(&devclasses, dc, link); 980 981 bus_data_generation_update(); 982 } 983 984 /* 985 * If a parent class is specified, then set that as our parent so 986 * that this devclass will support drivers for the parent class as 987 * well. If the parent class has the same name don't do this though 988 * as it creates a cycle that can trigger an infinite loop in 989 * device_probe_child() if a device exists for which there is no 990 * suitable driver. 991 */ 992 if (parentname && dc && !dc->parent && 993 strcmp(classname, parentname) != 0) { 994 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 995 dc->parent->flags |= DC_HAS_CHILDREN; 996 } 997 998 return (dc); 999 } 1000 1001 /** 1002 * @brief Create a device class 1003 * 1004 * If a device class with the name @p classname exists, return it, 1005 * otherwise create and return a new device class. 1006 * 1007 * @param classname the devclass name to find or create 1008 */ 1009 devclass_t 1010 devclass_create(const char *classname) 1011 { 1012 return (devclass_find_internal(classname, NULL, TRUE)); 1013 } 1014 1015 /** 1016 * @brief Find a device class 1017 * 1018 * If a device class with the name @p classname exists, return it, 1019 * otherwise return @c NULL. 1020 * 1021 * @param classname the devclass name to find 1022 */ 1023 devclass_t 1024 devclass_find(const char *classname) 1025 { 1026 return (devclass_find_internal(classname, NULL, FALSE)); 1027 } 1028 1029 /** 1030 * @brief Register that a device driver has been added to a devclass 1031 * 1032 * Register that a device driver has been added to a devclass. This 1033 * is called by devclass_add_driver to accomplish the recursive 1034 * notification of all the children classes of dc, as well as dc. 1035 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1036 * the devclass. 1037 * 1038 * We do a full search here of the devclass list at each iteration 1039 * level to save storing children-lists in the devclass structure. If 1040 * we ever move beyond a few dozen devices doing this, we may need to 1041 * reevaluate... 1042 * 1043 * @param dc the devclass to edit 1044 * @param driver the driver that was just added 1045 */ 1046 static void 1047 devclass_driver_added(devclass_t dc, driver_t *driver) 1048 { 1049 devclass_t parent; 1050 int i; 1051 1052 /* 1053 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1054 */ 1055 for (i = 0; i < dc->maxunit; i++) 1056 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1057 BUS_DRIVER_ADDED(dc->devices[i], driver); 1058 1059 /* 1060 * Walk through the children classes. Since we only keep a 1061 * single parent pointer around, we walk the entire list of 1062 * devclasses looking for children. We set the 1063 * DC_HAS_CHILDREN flag when a child devclass is created on 1064 * the parent, so we only walk the list for those devclasses 1065 * that have children. 1066 */ 1067 if (!(dc->flags & DC_HAS_CHILDREN)) 1068 return; 1069 parent = dc; 1070 TAILQ_FOREACH(dc, &devclasses, link) { 1071 if (dc->parent == parent) 1072 devclass_driver_added(dc, driver); 1073 } 1074 } 1075 1076 /** 1077 * @brief Add a device driver to a device class 1078 * 1079 * Add a device driver to a devclass. This is normally called 1080 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1081 * all devices in the devclass will be called to allow them to attempt 1082 * to re-probe any unmatched children. 1083 * 1084 * @param dc the devclass to edit 1085 * @param driver the driver to register 1086 */ 1087 int 1088 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1089 { 1090 driverlink_t dl; 1091 const char *parentname; 1092 1093 PDEBUG(("%s", DRIVERNAME(driver))); 1094 1095 /* Don't allow invalid pass values. */ 1096 if (pass <= BUS_PASS_ROOT) 1097 return (EINVAL); 1098 1099 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1100 if (!dl) 1101 return (ENOMEM); 1102 1103 /* 1104 * Compile the driver's methods. Also increase the reference count 1105 * so that the class doesn't get freed when the last instance 1106 * goes. This means we can safely use static methods and avoids a 1107 * double-free in devclass_delete_driver. 1108 */ 1109 kobj_class_compile((kobj_class_t) driver); 1110 1111 /* 1112 * If the driver has any base classes, make the 1113 * devclass inherit from the devclass of the driver's 1114 * first base class. This will allow the system to 1115 * search for drivers in both devclasses for children 1116 * of a device using this driver. 1117 */ 1118 if (driver->baseclasses) 1119 parentname = driver->baseclasses[0]->name; 1120 else 1121 parentname = NULL; 1122 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1123 1124 dl->driver = driver; 1125 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1126 driver->refs++; /* XXX: kobj_mtx */ 1127 dl->pass = pass; 1128 driver_register_pass(dl); 1129 1130 if (device_frozen) { 1131 dl->flags |= DL_DEFERRED_PROBE; 1132 } else { 1133 devclass_driver_added(dc, driver); 1134 } 1135 bus_data_generation_update(); 1136 return (0); 1137 } 1138 1139 /** 1140 * @brief Register that a device driver has been deleted from a devclass 1141 * 1142 * Register that a device driver has been removed from a devclass. 1143 * This is called by devclass_delete_driver to accomplish the 1144 * recursive notification of all the children classes of busclass, as 1145 * well as busclass. Each layer will attempt to detach the driver 1146 * from any devices that are children of the bus's devclass. The function 1147 * will return an error if a device fails to detach. 1148 * 1149 * We do a full search here of the devclass list at each iteration 1150 * level to save storing children-lists in the devclass structure. If 1151 * we ever move beyond a few dozen devices doing this, we may need to 1152 * reevaluate... 1153 * 1154 * @param busclass the devclass of the parent bus 1155 * @param dc the devclass of the driver being deleted 1156 * @param driver the driver being deleted 1157 */ 1158 static int 1159 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1160 { 1161 devclass_t parent; 1162 device_t dev; 1163 int error, i; 1164 1165 /* 1166 * Disassociate from any devices. We iterate through all the 1167 * devices in the devclass of the driver and detach any which are 1168 * using the driver and which have a parent in the devclass which 1169 * we are deleting from. 1170 * 1171 * Note that since a driver can be in multiple devclasses, we 1172 * should not detach devices which are not children of devices in 1173 * the affected devclass. 1174 * 1175 * If we're frozen, we don't generate NOMATCH events. Mark to 1176 * generate later. 1177 */ 1178 for (i = 0; i < dc->maxunit; i++) { 1179 if (dc->devices[i]) { 1180 dev = dc->devices[i]; 1181 if (dev->driver == driver && dev->parent && 1182 dev->parent->devclass == busclass) { 1183 if ((error = device_detach(dev)) != 0) 1184 return (error); 1185 if (device_frozen) { 1186 dev->flags &= ~DF_DONENOMATCH; 1187 dev->flags |= DF_NEEDNOMATCH; 1188 } else { 1189 BUS_PROBE_NOMATCH(dev->parent, dev); 1190 devnomatch(dev); 1191 dev->flags |= DF_DONENOMATCH; 1192 } 1193 } 1194 } 1195 } 1196 1197 /* 1198 * Walk through the children classes. Since we only keep a 1199 * single parent pointer around, we walk the entire list of 1200 * devclasses looking for children. We set the 1201 * DC_HAS_CHILDREN flag when a child devclass is created on 1202 * the parent, so we only walk the list for those devclasses 1203 * that have children. 1204 */ 1205 if (!(busclass->flags & DC_HAS_CHILDREN)) 1206 return (0); 1207 parent = busclass; 1208 TAILQ_FOREACH(busclass, &devclasses, link) { 1209 if (busclass->parent == parent) { 1210 error = devclass_driver_deleted(busclass, dc, driver); 1211 if (error) 1212 return (error); 1213 } 1214 } 1215 return (0); 1216 } 1217 1218 /** 1219 * @brief Delete a device driver from a device class 1220 * 1221 * Delete a device driver from a devclass. This is normally called 1222 * automatically by DRIVER_MODULE(). 1223 * 1224 * If the driver is currently attached to any devices, 1225 * devclass_delete_driver() will first attempt to detach from each 1226 * device. If one of the detach calls fails, the driver will not be 1227 * deleted. 1228 * 1229 * @param dc the devclass to edit 1230 * @param driver the driver to unregister 1231 */ 1232 int 1233 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1234 { 1235 devclass_t dc = devclass_find(driver->name); 1236 driverlink_t dl; 1237 int error; 1238 1239 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1240 1241 if (!dc) 1242 return (0); 1243 1244 /* 1245 * Find the link structure in the bus' list of drivers. 1246 */ 1247 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1248 if (dl->driver == driver) 1249 break; 1250 } 1251 1252 if (!dl) { 1253 PDEBUG(("%s not found in %s list", driver->name, 1254 busclass->name)); 1255 return (ENOENT); 1256 } 1257 1258 error = devclass_driver_deleted(busclass, dc, driver); 1259 if (error != 0) 1260 return (error); 1261 1262 TAILQ_REMOVE(&busclass->drivers, dl, link); 1263 free(dl, M_BUS); 1264 1265 /* XXX: kobj_mtx */ 1266 driver->refs--; 1267 if (driver->refs == 0) 1268 kobj_class_free((kobj_class_t) driver); 1269 1270 bus_data_generation_update(); 1271 return (0); 1272 } 1273 1274 /** 1275 * @brief Quiesces a set of device drivers from a device class 1276 * 1277 * Quiesce a device driver from a devclass. This is normally called 1278 * automatically by DRIVER_MODULE(). 1279 * 1280 * If the driver is currently attached to any devices, 1281 * devclass_quiesece_driver() will first attempt to quiesce each 1282 * device. 1283 * 1284 * @param dc the devclass to edit 1285 * @param driver the driver to unregister 1286 */ 1287 static int 1288 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1289 { 1290 devclass_t dc = devclass_find(driver->name); 1291 driverlink_t dl; 1292 device_t dev; 1293 int i; 1294 int error; 1295 1296 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1297 1298 if (!dc) 1299 return (0); 1300 1301 /* 1302 * Find the link structure in the bus' list of drivers. 1303 */ 1304 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1305 if (dl->driver == driver) 1306 break; 1307 } 1308 1309 if (!dl) { 1310 PDEBUG(("%s not found in %s list", driver->name, 1311 busclass->name)); 1312 return (ENOENT); 1313 } 1314 1315 /* 1316 * Quiesce all devices. We iterate through all the devices in 1317 * the devclass of the driver and quiesce any which are using 1318 * the driver and which have a parent in the devclass which we 1319 * are quiescing. 1320 * 1321 * Note that since a driver can be in multiple devclasses, we 1322 * should not quiesce devices which are not children of 1323 * devices in the affected devclass. 1324 */ 1325 for (i = 0; i < dc->maxunit; i++) { 1326 if (dc->devices[i]) { 1327 dev = dc->devices[i]; 1328 if (dev->driver == driver && dev->parent && 1329 dev->parent->devclass == busclass) { 1330 if ((error = device_quiesce(dev)) != 0) 1331 return (error); 1332 } 1333 } 1334 } 1335 1336 return (0); 1337 } 1338 1339 /** 1340 * @internal 1341 */ 1342 static driverlink_t 1343 devclass_find_driver_internal(devclass_t dc, const char *classname) 1344 { 1345 driverlink_t dl; 1346 1347 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1348 1349 TAILQ_FOREACH(dl, &dc->drivers, link) { 1350 if (!strcmp(dl->driver->name, classname)) 1351 return (dl); 1352 } 1353 1354 PDEBUG(("not found")); 1355 return (NULL); 1356 } 1357 1358 /** 1359 * @brief Return the name of the devclass 1360 */ 1361 const char * 1362 devclass_get_name(devclass_t dc) 1363 { 1364 return (dc->name); 1365 } 1366 1367 /** 1368 * @brief Find a device given a unit number 1369 * 1370 * @param dc the devclass to search 1371 * @param unit the unit number to search for 1372 * 1373 * @returns the device with the given unit number or @c 1374 * NULL if there is no such device 1375 */ 1376 device_t 1377 devclass_get_device(devclass_t dc, int unit) 1378 { 1379 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1380 return (NULL); 1381 return (dc->devices[unit]); 1382 } 1383 1384 /** 1385 * @brief Find the softc field of a device given a unit number 1386 * 1387 * @param dc the devclass to search 1388 * @param unit the unit number to search for 1389 * 1390 * @returns the softc field of the device with the given 1391 * unit number or @c NULL if there is no such 1392 * device 1393 */ 1394 void * 1395 devclass_get_softc(devclass_t dc, int unit) 1396 { 1397 device_t dev; 1398 1399 dev = devclass_get_device(dc, unit); 1400 if (!dev) 1401 return (NULL); 1402 1403 return (device_get_softc(dev)); 1404 } 1405 1406 /** 1407 * @brief Get a list of devices in the devclass 1408 * 1409 * An array containing a list of all the devices in the given devclass 1410 * is allocated and returned in @p *devlistp. The number of devices 1411 * in the array is returned in @p *devcountp. The caller should free 1412 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1413 * 1414 * @param dc the devclass to examine 1415 * @param devlistp points at location for array pointer return 1416 * value 1417 * @param devcountp points at location for array size return value 1418 * 1419 * @retval 0 success 1420 * @retval ENOMEM the array allocation failed 1421 */ 1422 int 1423 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1424 { 1425 int count, i; 1426 device_t *list; 1427 1428 count = devclass_get_count(dc); 1429 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1430 if (!list) 1431 return (ENOMEM); 1432 1433 count = 0; 1434 for (i = 0; i < dc->maxunit; i++) { 1435 if (dc->devices[i]) { 1436 list[count] = dc->devices[i]; 1437 count++; 1438 } 1439 } 1440 1441 *devlistp = list; 1442 *devcountp = count; 1443 1444 return (0); 1445 } 1446 1447 /** 1448 * @brief Get a list of drivers in the devclass 1449 * 1450 * An array containing a list of pointers to all the drivers in the 1451 * given devclass is allocated and returned in @p *listp. The number 1452 * of drivers in the array is returned in @p *countp. The caller should 1453 * free the array using @c free(p, M_TEMP). 1454 * 1455 * @param dc the devclass to examine 1456 * @param listp gives location for array pointer return value 1457 * @param countp gives location for number of array elements 1458 * return value 1459 * 1460 * @retval 0 success 1461 * @retval ENOMEM the array allocation failed 1462 */ 1463 int 1464 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1465 { 1466 driverlink_t dl; 1467 driver_t **list; 1468 int count; 1469 1470 count = 0; 1471 TAILQ_FOREACH(dl, &dc->drivers, link) 1472 count++; 1473 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1474 if (list == NULL) 1475 return (ENOMEM); 1476 1477 count = 0; 1478 TAILQ_FOREACH(dl, &dc->drivers, link) { 1479 list[count] = dl->driver; 1480 count++; 1481 } 1482 *listp = list; 1483 *countp = count; 1484 1485 return (0); 1486 } 1487 1488 /** 1489 * @brief Get the number of devices in a devclass 1490 * 1491 * @param dc the devclass to examine 1492 */ 1493 int 1494 devclass_get_count(devclass_t dc) 1495 { 1496 int count, i; 1497 1498 count = 0; 1499 for (i = 0; i < dc->maxunit; i++) 1500 if (dc->devices[i]) 1501 count++; 1502 return (count); 1503 } 1504 1505 /** 1506 * @brief Get the maximum unit number used in a devclass 1507 * 1508 * Note that this is one greater than the highest currently-allocated 1509 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1510 * that not even the devclass has been allocated yet. 1511 * 1512 * @param dc the devclass to examine 1513 */ 1514 int 1515 devclass_get_maxunit(devclass_t dc) 1516 { 1517 if (dc == NULL) 1518 return (-1); 1519 return (dc->maxunit); 1520 } 1521 1522 /** 1523 * @brief Find a free unit number in a devclass 1524 * 1525 * This function searches for the first unused unit number greater 1526 * that or equal to @p unit. 1527 * 1528 * @param dc the devclass to examine 1529 * @param unit the first unit number to check 1530 */ 1531 int 1532 devclass_find_free_unit(devclass_t dc, int unit) 1533 { 1534 if (dc == NULL) 1535 return (unit); 1536 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1537 unit++; 1538 return (unit); 1539 } 1540 1541 /** 1542 * @brief Set the parent of a devclass 1543 * 1544 * The parent class is normally initialised automatically by 1545 * DRIVER_MODULE(). 1546 * 1547 * @param dc the devclass to edit 1548 * @param pdc the new parent devclass 1549 */ 1550 void 1551 devclass_set_parent(devclass_t dc, devclass_t pdc) 1552 { 1553 dc->parent = pdc; 1554 } 1555 1556 /** 1557 * @brief Get the parent of a devclass 1558 * 1559 * @param dc the devclass to examine 1560 */ 1561 devclass_t 1562 devclass_get_parent(devclass_t dc) 1563 { 1564 return (dc->parent); 1565 } 1566 1567 struct sysctl_ctx_list * 1568 devclass_get_sysctl_ctx(devclass_t dc) 1569 { 1570 return (&dc->sysctl_ctx); 1571 } 1572 1573 struct sysctl_oid * 1574 devclass_get_sysctl_tree(devclass_t dc) 1575 { 1576 return (dc->sysctl_tree); 1577 } 1578 1579 /** 1580 * @internal 1581 * @brief Allocate a unit number 1582 * 1583 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1584 * will do). The allocated unit number is returned in @p *unitp. 1585 1586 * @param dc the devclass to allocate from 1587 * @param unitp points at the location for the allocated unit 1588 * number 1589 * 1590 * @retval 0 success 1591 * @retval EEXIST the requested unit number is already allocated 1592 * @retval ENOMEM memory allocation failure 1593 */ 1594 static int 1595 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1596 { 1597 const char *s; 1598 int unit = *unitp; 1599 1600 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1601 1602 /* Ask the parent bus if it wants to wire this device. */ 1603 if (unit == -1) 1604 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1605 &unit); 1606 1607 /* If we were given a wired unit number, check for existing device */ 1608 /* XXX imp XXX */ 1609 if (unit != -1) { 1610 if (unit >= 0 && unit < dc->maxunit && 1611 dc->devices[unit] != NULL) { 1612 if (bootverbose) 1613 printf("%s: %s%d already exists; skipping it\n", 1614 dc->name, dc->name, *unitp); 1615 return (EEXIST); 1616 } 1617 } else { 1618 /* Unwired device, find the next available slot for it */ 1619 unit = 0; 1620 for (unit = 0;; unit++) { 1621 /* If there is an "at" hint for a unit then skip it. */ 1622 if (resource_string_value(dc->name, unit, "at", &s) == 1623 0) 1624 continue; 1625 1626 /* If this device slot is already in use, skip it. */ 1627 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1628 continue; 1629 1630 break; 1631 } 1632 } 1633 1634 /* 1635 * We've selected a unit beyond the length of the table, so let's 1636 * extend the table to make room for all units up to and including 1637 * this one. 1638 */ 1639 if (unit >= dc->maxunit) { 1640 device_t *newlist, *oldlist; 1641 int newsize; 1642 1643 oldlist = dc->devices; 1644 newsize = roundup((unit + 1), 1645 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1646 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1647 if (!newlist) 1648 return (ENOMEM); 1649 if (oldlist != NULL) 1650 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1651 bzero(newlist + dc->maxunit, 1652 sizeof(device_t) * (newsize - dc->maxunit)); 1653 dc->devices = newlist; 1654 dc->maxunit = newsize; 1655 if (oldlist != NULL) 1656 free(oldlist, M_BUS); 1657 } 1658 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1659 1660 *unitp = unit; 1661 return (0); 1662 } 1663 1664 /** 1665 * @internal 1666 * @brief Add a device to a devclass 1667 * 1668 * A unit number is allocated for the device (using the device's 1669 * preferred unit number if any) and the device is registered in the 1670 * devclass. This allows the device to be looked up by its unit 1671 * number, e.g. by decoding a dev_t minor number. 1672 * 1673 * @param dc the devclass to add to 1674 * @param dev the device to add 1675 * 1676 * @retval 0 success 1677 * @retval EEXIST the requested unit number is already allocated 1678 * @retval ENOMEM memory allocation failure 1679 */ 1680 static int 1681 devclass_add_device(devclass_t dc, device_t dev) 1682 { 1683 int buflen, error; 1684 1685 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1686 1687 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1688 if (buflen < 0) 1689 return (ENOMEM); 1690 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1691 if (!dev->nameunit) 1692 return (ENOMEM); 1693 1694 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1695 free(dev->nameunit, M_BUS); 1696 dev->nameunit = NULL; 1697 return (error); 1698 } 1699 dc->devices[dev->unit] = dev; 1700 dev->devclass = dc; 1701 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1702 1703 return (0); 1704 } 1705 1706 /** 1707 * @internal 1708 * @brief Delete a device from a devclass 1709 * 1710 * The device is removed from the devclass's device list and its unit 1711 * number is freed. 1712 1713 * @param dc the devclass to delete from 1714 * @param dev the device to delete 1715 * 1716 * @retval 0 success 1717 */ 1718 static int 1719 devclass_delete_device(devclass_t dc, device_t dev) 1720 { 1721 if (!dc || !dev) 1722 return (0); 1723 1724 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1725 1726 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1727 panic("devclass_delete_device: inconsistent device class"); 1728 dc->devices[dev->unit] = NULL; 1729 if (dev->flags & DF_WILDCARD) 1730 dev->unit = -1; 1731 dev->devclass = NULL; 1732 free(dev->nameunit, M_BUS); 1733 dev->nameunit = NULL; 1734 1735 return (0); 1736 } 1737 1738 /** 1739 * @internal 1740 * @brief Make a new device and add it as a child of @p parent 1741 * 1742 * @param parent the parent of the new device 1743 * @param name the devclass name of the new device or @c NULL 1744 * to leave the devclass unspecified 1745 * @parem unit the unit number of the new device of @c -1 to 1746 * leave the unit number unspecified 1747 * 1748 * @returns the new device 1749 */ 1750 static device_t 1751 make_device(device_t parent, const char *name, int unit) 1752 { 1753 device_t dev; 1754 devclass_t dc; 1755 1756 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1757 1758 if (name) { 1759 dc = devclass_find_internal(name, NULL, TRUE); 1760 if (!dc) { 1761 printf("make_device: can't find device class %s\n", 1762 name); 1763 return (NULL); 1764 } 1765 } else { 1766 dc = NULL; 1767 } 1768 1769 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1770 if (!dev) 1771 return (NULL); 1772 1773 dev->parent = parent; 1774 TAILQ_INIT(&dev->children); 1775 kobj_init((kobj_t) dev, &null_class); 1776 dev->driver = NULL; 1777 dev->devclass = NULL; 1778 dev->unit = unit; 1779 dev->nameunit = NULL; 1780 dev->desc = NULL; 1781 dev->busy = 0; 1782 dev->devflags = 0; 1783 dev->flags = DF_ENABLED; 1784 dev->order = 0; 1785 if (unit == -1) 1786 dev->flags |= DF_WILDCARD; 1787 if (name) { 1788 dev->flags |= DF_FIXEDCLASS; 1789 if (devclass_add_device(dc, dev)) { 1790 kobj_delete((kobj_t) dev, M_BUS); 1791 return (NULL); 1792 } 1793 } 1794 if (parent != NULL && device_has_quiet_children(parent)) 1795 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1796 dev->ivars = NULL; 1797 dev->softc = NULL; 1798 1799 dev->state = DS_NOTPRESENT; 1800 1801 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1802 bus_data_generation_update(); 1803 1804 return (dev); 1805 } 1806 1807 /** 1808 * @internal 1809 * @brief Print a description of a device. 1810 */ 1811 static int 1812 device_print_child(device_t dev, device_t child) 1813 { 1814 int retval = 0; 1815 1816 if (device_is_alive(child)) 1817 retval += BUS_PRINT_CHILD(dev, child); 1818 else 1819 retval += device_printf(child, " not found\n"); 1820 1821 return (retval); 1822 } 1823 1824 /** 1825 * @brief Create a new device 1826 * 1827 * This creates a new device and adds it as a child of an existing 1828 * parent device. The new device will be added after the last existing 1829 * child with order zero. 1830 * 1831 * @param dev the device which will be the parent of the 1832 * new child device 1833 * @param name devclass name for new device or @c NULL if not 1834 * specified 1835 * @param unit unit number for new device or @c -1 if not 1836 * specified 1837 * 1838 * @returns the new device 1839 */ 1840 device_t 1841 device_add_child(device_t dev, const char *name, int unit) 1842 { 1843 return (device_add_child_ordered(dev, 0, name, unit)); 1844 } 1845 1846 /** 1847 * @brief Create a new device 1848 * 1849 * This creates a new device and adds it as a child of an existing 1850 * parent device. The new device will be added after the last existing 1851 * child with the same order. 1852 * 1853 * @param dev the device which will be the parent of the 1854 * new child device 1855 * @param order a value which is used to partially sort the 1856 * children of @p dev - devices created using 1857 * lower values of @p order appear first in @p 1858 * dev's list of children 1859 * @param name devclass name for new device or @c NULL if not 1860 * specified 1861 * @param unit unit number for new device or @c -1 if not 1862 * specified 1863 * 1864 * @returns the new device 1865 */ 1866 device_t 1867 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1868 { 1869 device_t child; 1870 device_t place; 1871 1872 PDEBUG(("%s at %s with order %u as unit %d", 1873 name, DEVICENAME(dev), order, unit)); 1874 KASSERT(name != NULL || unit == -1, 1875 ("child device with wildcard name and specific unit number")); 1876 1877 child = make_device(dev, name, unit); 1878 if (child == NULL) 1879 return (child); 1880 child->order = order; 1881 1882 TAILQ_FOREACH(place, &dev->children, link) { 1883 if (place->order > order) 1884 break; 1885 } 1886 1887 if (place) { 1888 /* 1889 * The device 'place' is the first device whose order is 1890 * greater than the new child. 1891 */ 1892 TAILQ_INSERT_BEFORE(place, child, link); 1893 } else { 1894 /* 1895 * The new child's order is greater or equal to the order of 1896 * any existing device. Add the child to the tail of the list. 1897 */ 1898 TAILQ_INSERT_TAIL(&dev->children, child, link); 1899 } 1900 1901 bus_data_generation_update(); 1902 return (child); 1903 } 1904 1905 /** 1906 * @brief Delete a device 1907 * 1908 * This function deletes a device along with all of its children. If 1909 * the device currently has a driver attached to it, the device is 1910 * detached first using device_detach(). 1911 * 1912 * @param dev the parent device 1913 * @param child the device to delete 1914 * 1915 * @retval 0 success 1916 * @retval non-zero a unit error code describing the error 1917 */ 1918 int 1919 device_delete_child(device_t dev, device_t child) 1920 { 1921 int error; 1922 device_t grandchild; 1923 1924 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1925 1926 /* detach parent before deleting children, if any */ 1927 if ((error = device_detach(child)) != 0) 1928 return (error); 1929 1930 /* remove children second */ 1931 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1932 error = device_delete_child(child, grandchild); 1933 if (error) 1934 return (error); 1935 } 1936 1937 if (child->devclass) 1938 devclass_delete_device(child->devclass, child); 1939 if (child->parent) 1940 BUS_CHILD_DELETED(dev, child); 1941 TAILQ_REMOVE(&dev->children, child, link); 1942 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1943 kobj_delete((kobj_t) child, M_BUS); 1944 1945 bus_data_generation_update(); 1946 return (0); 1947 } 1948 1949 /** 1950 * @brief Delete all children devices of the given device, if any. 1951 * 1952 * This function deletes all children devices of the given device, if 1953 * any, using the device_delete_child() function for each device it 1954 * finds. If a child device cannot be deleted, this function will 1955 * return an error code. 1956 * 1957 * @param dev the parent device 1958 * 1959 * @retval 0 success 1960 * @retval non-zero a device would not detach 1961 */ 1962 int 1963 device_delete_children(device_t dev) 1964 { 1965 device_t child; 1966 int error; 1967 1968 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1969 1970 error = 0; 1971 1972 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1973 error = device_delete_child(dev, child); 1974 if (error) { 1975 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1976 break; 1977 } 1978 } 1979 return (error); 1980 } 1981 1982 /** 1983 * @brief Find a device given a unit number 1984 * 1985 * This is similar to devclass_get_devices() but only searches for 1986 * devices which have @p dev as a parent. 1987 * 1988 * @param dev the parent device to search 1989 * @param unit the unit number to search for. If the unit is -1, 1990 * return the first child of @p dev which has name 1991 * @p classname (that is, the one with the lowest unit.) 1992 * 1993 * @returns the device with the given unit number or @c 1994 * NULL if there is no such device 1995 */ 1996 device_t 1997 device_find_child(device_t dev, const char *classname, int unit) 1998 { 1999 devclass_t dc; 2000 device_t child; 2001 2002 dc = devclass_find(classname); 2003 if (!dc) 2004 return (NULL); 2005 2006 if (unit != -1) { 2007 child = devclass_get_device(dc, unit); 2008 if (child && child->parent == dev) 2009 return (child); 2010 } else { 2011 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2012 child = devclass_get_device(dc, unit); 2013 if (child && child->parent == dev) 2014 return (child); 2015 } 2016 } 2017 return (NULL); 2018 } 2019 2020 /** 2021 * @internal 2022 */ 2023 static driverlink_t 2024 first_matching_driver(devclass_t dc, device_t dev) 2025 { 2026 if (dev->devclass) 2027 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2028 return (TAILQ_FIRST(&dc->drivers)); 2029 } 2030 2031 /** 2032 * @internal 2033 */ 2034 static driverlink_t 2035 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2036 { 2037 if (dev->devclass) { 2038 driverlink_t dl; 2039 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2040 if (!strcmp(dev->devclass->name, dl->driver->name)) 2041 return (dl); 2042 return (NULL); 2043 } 2044 return (TAILQ_NEXT(last, link)); 2045 } 2046 2047 /** 2048 * @internal 2049 */ 2050 int 2051 device_probe_child(device_t dev, device_t child) 2052 { 2053 devclass_t dc; 2054 driverlink_t best = NULL; 2055 driverlink_t dl; 2056 int result, pri = 0; 2057 int hasclass = (child->devclass != NULL); 2058 2059 GIANT_REQUIRED; 2060 2061 dc = dev->devclass; 2062 if (!dc) 2063 panic("device_probe_child: parent device has no devclass"); 2064 2065 /* 2066 * If the state is already probed, then return. However, don't 2067 * return if we can rebid this object. 2068 */ 2069 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2070 return (0); 2071 2072 for (; dc; dc = dc->parent) { 2073 for (dl = first_matching_driver(dc, child); 2074 dl; 2075 dl = next_matching_driver(dc, child, dl)) { 2076 /* If this driver's pass is too high, then ignore it. */ 2077 if (dl->pass > bus_current_pass) 2078 continue; 2079 2080 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2081 result = device_set_driver(child, dl->driver); 2082 if (result == ENOMEM) 2083 return (result); 2084 else if (result != 0) 2085 continue; 2086 if (!hasclass) { 2087 if (device_set_devclass(child, 2088 dl->driver->name) != 0) { 2089 char const * devname = 2090 device_get_name(child); 2091 if (devname == NULL) 2092 devname = "(unknown)"; 2093 printf("driver bug: Unable to set " 2094 "devclass (class: %s " 2095 "devname: %s)\n", 2096 dl->driver->name, 2097 devname); 2098 (void)device_set_driver(child, NULL); 2099 continue; 2100 } 2101 } 2102 2103 /* Fetch any flags for the device before probing. */ 2104 resource_int_value(dl->driver->name, child->unit, 2105 "flags", &child->devflags); 2106 2107 result = DEVICE_PROBE(child); 2108 2109 /* Reset flags and devclass before the next probe. */ 2110 child->devflags = 0; 2111 if (!hasclass) 2112 (void)device_set_devclass(child, NULL); 2113 2114 /* 2115 * If the driver returns SUCCESS, there can be 2116 * no higher match for this device. 2117 */ 2118 if (result == 0) { 2119 best = dl; 2120 pri = 0; 2121 break; 2122 } 2123 2124 /* 2125 * Reset DF_QUIET in case this driver doesn't 2126 * end up as the best driver. 2127 */ 2128 device_verbose(child); 2129 2130 /* 2131 * Probes that return BUS_PROBE_NOWILDCARD or lower 2132 * only match on devices whose driver was explicitly 2133 * specified. 2134 */ 2135 if (result <= BUS_PROBE_NOWILDCARD && 2136 !(child->flags & DF_FIXEDCLASS)) { 2137 result = ENXIO; 2138 } 2139 2140 /* 2141 * The driver returned an error so it 2142 * certainly doesn't match. 2143 */ 2144 if (result > 0) { 2145 (void)device_set_driver(child, NULL); 2146 continue; 2147 } 2148 2149 /* 2150 * A priority lower than SUCCESS, remember the 2151 * best matching driver. Initialise the value 2152 * of pri for the first match. 2153 */ 2154 if (best == NULL || result > pri) { 2155 best = dl; 2156 pri = result; 2157 continue; 2158 } 2159 } 2160 /* 2161 * If we have an unambiguous match in this devclass, 2162 * don't look in the parent. 2163 */ 2164 if (best && pri == 0) 2165 break; 2166 } 2167 2168 /* 2169 * If we found a driver, change state and initialise the devclass. 2170 */ 2171 /* XXX What happens if we rebid and got no best? */ 2172 if (best) { 2173 /* 2174 * If this device was attached, and we were asked to 2175 * rescan, and it is a different driver, then we have 2176 * to detach the old driver and reattach this new one. 2177 * Note, we don't have to check for DF_REBID here 2178 * because if the state is > DS_ALIVE, we know it must 2179 * be. 2180 * 2181 * This assumes that all DF_REBID drivers can have 2182 * their probe routine called at any time and that 2183 * they are idempotent as well as completely benign in 2184 * normal operations. 2185 * 2186 * We also have to make sure that the detach 2187 * succeeded, otherwise we fail the operation (or 2188 * maybe it should just fail silently? I'm torn). 2189 */ 2190 if (child->state > DS_ALIVE && best->driver != child->driver) 2191 if ((result = device_detach(dev)) != 0) 2192 return (result); 2193 2194 /* Set the winning driver, devclass, and flags. */ 2195 if (!child->devclass) { 2196 result = device_set_devclass(child, best->driver->name); 2197 if (result != 0) 2198 return (result); 2199 } 2200 result = device_set_driver(child, best->driver); 2201 if (result != 0) 2202 return (result); 2203 resource_int_value(best->driver->name, child->unit, 2204 "flags", &child->devflags); 2205 2206 if (pri < 0) { 2207 /* 2208 * A bit bogus. Call the probe method again to make 2209 * sure that we have the right description. 2210 */ 2211 DEVICE_PROBE(child); 2212 #if 0 2213 child->flags |= DF_REBID; 2214 #endif 2215 } else 2216 child->flags &= ~DF_REBID; 2217 child->state = DS_ALIVE; 2218 2219 bus_data_generation_update(); 2220 return (0); 2221 } 2222 2223 return (ENXIO); 2224 } 2225 2226 /** 2227 * @brief Return the parent of a device 2228 */ 2229 device_t 2230 device_get_parent(device_t dev) 2231 { 2232 return (dev->parent); 2233 } 2234 2235 /** 2236 * @brief Get a list of children of a device 2237 * 2238 * An array containing a list of all the children of the given device 2239 * is allocated and returned in @p *devlistp. The number of devices 2240 * in the array is returned in @p *devcountp. The caller should free 2241 * the array using @c free(p, M_TEMP). 2242 * 2243 * @param dev the device to examine 2244 * @param devlistp points at location for array pointer return 2245 * value 2246 * @param devcountp points at location for array size return value 2247 * 2248 * @retval 0 success 2249 * @retval ENOMEM the array allocation failed 2250 */ 2251 int 2252 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2253 { 2254 int count; 2255 device_t child; 2256 device_t *list; 2257 2258 count = 0; 2259 TAILQ_FOREACH(child, &dev->children, link) { 2260 count++; 2261 } 2262 if (count == 0) { 2263 *devlistp = NULL; 2264 *devcountp = 0; 2265 return (0); 2266 } 2267 2268 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2269 if (!list) 2270 return (ENOMEM); 2271 2272 count = 0; 2273 TAILQ_FOREACH(child, &dev->children, link) { 2274 list[count] = child; 2275 count++; 2276 } 2277 2278 *devlistp = list; 2279 *devcountp = count; 2280 2281 return (0); 2282 } 2283 2284 /** 2285 * @brief Return the current driver for the device or @c NULL if there 2286 * is no driver currently attached 2287 */ 2288 driver_t * 2289 device_get_driver(device_t dev) 2290 { 2291 return (dev->driver); 2292 } 2293 2294 /** 2295 * @brief Return the current devclass for the device or @c NULL if 2296 * there is none. 2297 */ 2298 devclass_t 2299 device_get_devclass(device_t dev) 2300 { 2301 return (dev->devclass); 2302 } 2303 2304 /** 2305 * @brief Return the name of the device's devclass or @c NULL if there 2306 * is none. 2307 */ 2308 const char * 2309 device_get_name(device_t dev) 2310 { 2311 if (dev != NULL && dev->devclass) 2312 return (devclass_get_name(dev->devclass)); 2313 return (NULL); 2314 } 2315 2316 /** 2317 * @brief Return a string containing the device's devclass name 2318 * followed by an ascii representation of the device's unit number 2319 * (e.g. @c "foo2"). 2320 */ 2321 const char * 2322 device_get_nameunit(device_t dev) 2323 { 2324 return (dev->nameunit); 2325 } 2326 2327 /** 2328 * @brief Return the device's unit number. 2329 */ 2330 int 2331 device_get_unit(device_t dev) 2332 { 2333 return (dev->unit); 2334 } 2335 2336 /** 2337 * @brief Return the device's description string 2338 */ 2339 const char * 2340 device_get_desc(device_t dev) 2341 { 2342 return (dev->desc); 2343 } 2344 2345 /** 2346 * @brief Return the device's flags 2347 */ 2348 uint32_t 2349 device_get_flags(device_t dev) 2350 { 2351 return (dev->devflags); 2352 } 2353 2354 struct sysctl_ctx_list * 2355 device_get_sysctl_ctx(device_t dev) 2356 { 2357 return (&dev->sysctl_ctx); 2358 } 2359 2360 struct sysctl_oid * 2361 device_get_sysctl_tree(device_t dev) 2362 { 2363 return (dev->sysctl_tree); 2364 } 2365 2366 /** 2367 * @brief Print the name of the device followed by a colon and a space 2368 * 2369 * @returns the number of characters printed 2370 */ 2371 int 2372 device_print_prettyname(device_t dev) 2373 { 2374 const char *name = device_get_name(dev); 2375 2376 if (name == NULL) 2377 return (printf("unknown: ")); 2378 return (printf("%s%d: ", name, device_get_unit(dev))); 2379 } 2380 2381 /** 2382 * @brief Print the name of the device followed by a colon, a space 2383 * and the result of calling vprintf() with the value of @p fmt and 2384 * the following arguments. 2385 * 2386 * @returns the number of characters printed 2387 */ 2388 int 2389 device_printf(device_t dev, const char * fmt, ...) 2390 { 2391 char buf[128]; 2392 struct sbuf sb; 2393 const char *name; 2394 va_list ap; 2395 size_t retval; 2396 2397 retval = 0; 2398 2399 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2400 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2401 2402 name = device_get_name(dev); 2403 2404 if (name == NULL) 2405 sbuf_cat(&sb, "unknown: "); 2406 else 2407 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2408 2409 va_start(ap, fmt); 2410 sbuf_vprintf(&sb, fmt, ap); 2411 va_end(ap); 2412 2413 sbuf_finish(&sb); 2414 sbuf_delete(&sb); 2415 2416 return (retval); 2417 } 2418 2419 /** 2420 * @internal 2421 */ 2422 static void 2423 device_set_desc_internal(device_t dev, const char* desc, int copy) 2424 { 2425 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2426 free(dev->desc, M_BUS); 2427 dev->flags &= ~DF_DESCMALLOCED; 2428 dev->desc = NULL; 2429 } 2430 2431 if (copy && desc) { 2432 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2433 if (dev->desc) { 2434 strcpy(dev->desc, desc); 2435 dev->flags |= DF_DESCMALLOCED; 2436 } 2437 } else { 2438 /* Avoid a -Wcast-qual warning */ 2439 dev->desc = (char *)(uintptr_t) desc; 2440 } 2441 2442 bus_data_generation_update(); 2443 } 2444 2445 /** 2446 * @brief Set the device's description 2447 * 2448 * The value of @c desc should be a string constant that will not 2449 * change (at least until the description is changed in a subsequent 2450 * call to device_set_desc() or device_set_desc_copy()). 2451 */ 2452 void 2453 device_set_desc(device_t dev, const char* desc) 2454 { 2455 device_set_desc_internal(dev, desc, FALSE); 2456 } 2457 2458 /** 2459 * @brief Set the device's description 2460 * 2461 * The string pointed to by @c desc is copied. Use this function if 2462 * the device description is generated, (e.g. with sprintf()). 2463 */ 2464 void 2465 device_set_desc_copy(device_t dev, const char* desc) 2466 { 2467 device_set_desc_internal(dev, desc, TRUE); 2468 } 2469 2470 /** 2471 * @brief Set the device's flags 2472 */ 2473 void 2474 device_set_flags(device_t dev, uint32_t flags) 2475 { 2476 dev->devflags = flags; 2477 } 2478 2479 /** 2480 * @brief Return the device's softc field 2481 * 2482 * The softc is allocated and zeroed when a driver is attached, based 2483 * on the size field of the driver. 2484 */ 2485 void * 2486 device_get_softc(device_t dev) 2487 { 2488 return (dev->softc); 2489 } 2490 2491 /** 2492 * @brief Set the device's softc field 2493 * 2494 * Most drivers do not need to use this since the softc is allocated 2495 * automatically when the driver is attached. 2496 */ 2497 void 2498 device_set_softc(device_t dev, void *softc) 2499 { 2500 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2501 free(dev->softc, M_BUS_SC); 2502 dev->softc = softc; 2503 if (dev->softc) 2504 dev->flags |= DF_EXTERNALSOFTC; 2505 else 2506 dev->flags &= ~DF_EXTERNALSOFTC; 2507 } 2508 2509 /** 2510 * @brief Free claimed softc 2511 * 2512 * Most drivers do not need to use this since the softc is freed 2513 * automatically when the driver is detached. 2514 */ 2515 void 2516 device_free_softc(void *softc) 2517 { 2518 free(softc, M_BUS_SC); 2519 } 2520 2521 /** 2522 * @brief Claim softc 2523 * 2524 * This function can be used to let the driver free the automatically 2525 * allocated softc using "device_free_softc()". This function is 2526 * useful when the driver is refcounting the softc and the softc 2527 * cannot be freed when the "device_detach" method is called. 2528 */ 2529 void 2530 device_claim_softc(device_t dev) 2531 { 2532 if (dev->softc) 2533 dev->flags |= DF_EXTERNALSOFTC; 2534 else 2535 dev->flags &= ~DF_EXTERNALSOFTC; 2536 } 2537 2538 /** 2539 * @brief Get the device's ivars field 2540 * 2541 * The ivars field is used by the parent device to store per-device 2542 * state (e.g. the physical location of the device or a list of 2543 * resources). 2544 */ 2545 void * 2546 device_get_ivars(device_t dev) 2547 { 2548 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2549 return (dev->ivars); 2550 } 2551 2552 /** 2553 * @brief Set the device's ivars field 2554 */ 2555 void 2556 device_set_ivars(device_t dev, void * ivars) 2557 { 2558 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2559 dev->ivars = ivars; 2560 } 2561 2562 /** 2563 * @brief Return the device's state 2564 */ 2565 device_state_t 2566 device_get_state(device_t dev) 2567 { 2568 return (dev->state); 2569 } 2570 2571 /** 2572 * @brief Set the DF_ENABLED flag for the device 2573 */ 2574 void 2575 device_enable(device_t dev) 2576 { 2577 dev->flags |= DF_ENABLED; 2578 } 2579 2580 /** 2581 * @brief Clear the DF_ENABLED flag for the device 2582 */ 2583 void 2584 device_disable(device_t dev) 2585 { 2586 dev->flags &= ~DF_ENABLED; 2587 } 2588 2589 /** 2590 * @brief Increment the busy counter for the device 2591 */ 2592 void 2593 device_busy(device_t dev) 2594 { 2595 if (dev->state < DS_ATTACHING) 2596 panic("device_busy: called for unattached device"); 2597 if (dev->busy == 0 && dev->parent) 2598 device_busy(dev->parent); 2599 dev->busy++; 2600 if (dev->state == DS_ATTACHED) 2601 dev->state = DS_BUSY; 2602 } 2603 2604 /** 2605 * @brief Decrement the busy counter for the device 2606 */ 2607 void 2608 device_unbusy(device_t dev) 2609 { 2610 if (dev->busy != 0 && dev->state != DS_BUSY && 2611 dev->state != DS_ATTACHING) 2612 panic("device_unbusy: called for non-busy device %s", 2613 device_get_nameunit(dev)); 2614 dev->busy--; 2615 if (dev->busy == 0) { 2616 if (dev->parent) 2617 device_unbusy(dev->parent); 2618 if (dev->state == DS_BUSY) 2619 dev->state = DS_ATTACHED; 2620 } 2621 } 2622 2623 /** 2624 * @brief Set the DF_QUIET flag for the device 2625 */ 2626 void 2627 device_quiet(device_t dev) 2628 { 2629 dev->flags |= DF_QUIET; 2630 } 2631 2632 /** 2633 * @brief Set the DF_QUIET_CHILDREN flag for the device 2634 */ 2635 void 2636 device_quiet_children(device_t dev) 2637 { 2638 dev->flags |= DF_QUIET_CHILDREN; 2639 } 2640 2641 /** 2642 * @brief Clear the DF_QUIET flag for the device 2643 */ 2644 void 2645 device_verbose(device_t dev) 2646 { 2647 dev->flags &= ~DF_QUIET; 2648 } 2649 2650 /** 2651 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2652 */ 2653 int 2654 device_has_quiet_children(device_t dev) 2655 { 2656 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2657 } 2658 2659 /** 2660 * @brief Return non-zero if the DF_QUIET flag is set on the device 2661 */ 2662 int 2663 device_is_quiet(device_t dev) 2664 { 2665 return ((dev->flags & DF_QUIET) != 0); 2666 } 2667 2668 /** 2669 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2670 */ 2671 int 2672 device_is_enabled(device_t dev) 2673 { 2674 return ((dev->flags & DF_ENABLED) != 0); 2675 } 2676 2677 /** 2678 * @brief Return non-zero if the device was successfully probed 2679 */ 2680 int 2681 device_is_alive(device_t dev) 2682 { 2683 return (dev->state >= DS_ALIVE); 2684 } 2685 2686 /** 2687 * @brief Return non-zero if the device currently has a driver 2688 * attached to it 2689 */ 2690 int 2691 device_is_attached(device_t dev) 2692 { 2693 return (dev->state >= DS_ATTACHED); 2694 } 2695 2696 /** 2697 * @brief Return non-zero if the device is currently suspended. 2698 */ 2699 int 2700 device_is_suspended(device_t dev) 2701 { 2702 return ((dev->flags & DF_SUSPENDED) != 0); 2703 } 2704 2705 /** 2706 * @brief Set the devclass of a device 2707 * @see devclass_add_device(). 2708 */ 2709 int 2710 device_set_devclass(device_t dev, const char *classname) 2711 { 2712 devclass_t dc; 2713 int error; 2714 2715 if (!classname) { 2716 if (dev->devclass) 2717 devclass_delete_device(dev->devclass, dev); 2718 return (0); 2719 } 2720 2721 if (dev->devclass) { 2722 printf("device_set_devclass: device class already set\n"); 2723 return (EINVAL); 2724 } 2725 2726 dc = devclass_find_internal(classname, NULL, TRUE); 2727 if (!dc) 2728 return (ENOMEM); 2729 2730 error = devclass_add_device(dc, dev); 2731 2732 bus_data_generation_update(); 2733 return (error); 2734 } 2735 2736 /** 2737 * @brief Set the devclass of a device and mark the devclass fixed. 2738 * @see device_set_devclass() 2739 */ 2740 int 2741 device_set_devclass_fixed(device_t dev, const char *classname) 2742 { 2743 int error; 2744 2745 if (classname == NULL) 2746 return (EINVAL); 2747 2748 error = device_set_devclass(dev, classname); 2749 if (error) 2750 return (error); 2751 dev->flags |= DF_FIXEDCLASS; 2752 return (0); 2753 } 2754 2755 /** 2756 * @brief Query the device to determine if it's of a fixed devclass 2757 * @see device_set_devclass_fixed() 2758 */ 2759 bool 2760 device_is_devclass_fixed(device_t dev) 2761 { 2762 return ((dev->flags & DF_FIXEDCLASS) != 0); 2763 } 2764 2765 /** 2766 * @brief Set the driver of a device 2767 * 2768 * @retval 0 success 2769 * @retval EBUSY the device already has a driver attached 2770 * @retval ENOMEM a memory allocation failure occurred 2771 */ 2772 int 2773 device_set_driver(device_t dev, driver_t *driver) 2774 { 2775 int domain; 2776 struct domainset *policy; 2777 2778 if (dev->state >= DS_ATTACHED) 2779 return (EBUSY); 2780 2781 if (dev->driver == driver) 2782 return (0); 2783 2784 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2785 free(dev->softc, M_BUS_SC); 2786 dev->softc = NULL; 2787 } 2788 device_set_desc(dev, NULL); 2789 kobj_delete((kobj_t) dev, NULL); 2790 dev->driver = driver; 2791 if (driver) { 2792 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2793 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2794 if (bus_get_domain(dev, &domain) == 0) 2795 policy = DOMAINSET_PREF(domain); 2796 else 2797 policy = DOMAINSET_RR(); 2798 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2799 policy, M_NOWAIT | M_ZERO); 2800 if (!dev->softc) { 2801 kobj_delete((kobj_t) dev, NULL); 2802 kobj_init((kobj_t) dev, &null_class); 2803 dev->driver = NULL; 2804 return (ENOMEM); 2805 } 2806 } 2807 } else { 2808 kobj_init((kobj_t) dev, &null_class); 2809 } 2810 2811 bus_data_generation_update(); 2812 return (0); 2813 } 2814 2815 /** 2816 * @brief Probe a device, and return this status. 2817 * 2818 * This function is the core of the device autoconfiguration 2819 * system. Its purpose is to select a suitable driver for a device and 2820 * then call that driver to initialise the hardware appropriately. The 2821 * driver is selected by calling the DEVICE_PROBE() method of a set of 2822 * candidate drivers and then choosing the driver which returned the 2823 * best value. This driver is then attached to the device using 2824 * device_attach(). 2825 * 2826 * The set of suitable drivers is taken from the list of drivers in 2827 * the parent device's devclass. If the device was originally created 2828 * with a specific class name (see device_add_child()), only drivers 2829 * with that name are probed, otherwise all drivers in the devclass 2830 * are probed. If no drivers return successful probe values in the 2831 * parent devclass, the search continues in the parent of that 2832 * devclass (see devclass_get_parent()) if any. 2833 * 2834 * @param dev the device to initialise 2835 * 2836 * @retval 0 success 2837 * @retval ENXIO no driver was found 2838 * @retval ENOMEM memory allocation failure 2839 * @retval non-zero some other unix error code 2840 * @retval -1 Device already attached 2841 */ 2842 int 2843 device_probe(device_t dev) 2844 { 2845 int error; 2846 2847 GIANT_REQUIRED; 2848 2849 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2850 return (-1); 2851 2852 if (!(dev->flags & DF_ENABLED)) { 2853 if (bootverbose && device_get_name(dev) != NULL) { 2854 device_print_prettyname(dev); 2855 printf("not probed (disabled)\n"); 2856 } 2857 return (-1); 2858 } 2859 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2860 if (bus_current_pass == BUS_PASS_DEFAULT && 2861 !(dev->flags & DF_DONENOMATCH)) { 2862 BUS_PROBE_NOMATCH(dev->parent, dev); 2863 devnomatch(dev); 2864 dev->flags |= DF_DONENOMATCH; 2865 } 2866 return (error); 2867 } 2868 return (0); 2869 } 2870 2871 /** 2872 * @brief Probe a device and attach a driver if possible 2873 * 2874 * calls device_probe() and attaches if that was successful. 2875 */ 2876 int 2877 device_probe_and_attach(device_t dev) 2878 { 2879 int error; 2880 2881 GIANT_REQUIRED; 2882 2883 error = device_probe(dev); 2884 if (error == -1) 2885 return (0); 2886 else if (error != 0) 2887 return (error); 2888 2889 CURVNET_SET_QUIET(vnet0); 2890 error = device_attach(dev); 2891 CURVNET_RESTORE(); 2892 return error; 2893 } 2894 2895 /** 2896 * @brief Attach a device driver to a device 2897 * 2898 * This function is a wrapper around the DEVICE_ATTACH() driver 2899 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2900 * device's sysctl tree, optionally prints a description of the device 2901 * and queues a notification event for user-based device management 2902 * services. 2903 * 2904 * Normally this function is only called internally from 2905 * device_probe_and_attach(). 2906 * 2907 * @param dev the device to initialise 2908 * 2909 * @retval 0 success 2910 * @retval ENXIO no driver was found 2911 * @retval ENOMEM memory allocation failure 2912 * @retval non-zero some other unix error code 2913 */ 2914 int 2915 device_attach(device_t dev) 2916 { 2917 uint64_t attachtime; 2918 uint16_t attachentropy; 2919 int error; 2920 2921 if (resource_disabled(dev->driver->name, dev->unit)) { 2922 device_disable(dev); 2923 if (bootverbose) 2924 device_printf(dev, "disabled via hints entry\n"); 2925 return (ENXIO); 2926 } 2927 2928 device_sysctl_init(dev); 2929 if (!device_is_quiet(dev)) 2930 device_print_child(dev->parent, dev); 2931 attachtime = get_cyclecount(); 2932 dev->state = DS_ATTACHING; 2933 if ((error = DEVICE_ATTACH(dev)) != 0) { 2934 printf("device_attach: %s%d attach returned %d\n", 2935 dev->driver->name, dev->unit, error); 2936 if (!(dev->flags & DF_FIXEDCLASS)) 2937 devclass_delete_device(dev->devclass, dev); 2938 (void)device_set_driver(dev, NULL); 2939 device_sysctl_fini(dev); 2940 KASSERT(dev->busy == 0, ("attach failed but busy")); 2941 dev->state = DS_NOTPRESENT; 2942 return (error); 2943 } 2944 dev->flags |= DF_ATTACHED_ONCE; 2945 /* We only need the low bits of this time, but ranges from tens to thousands 2946 * have been seen, so keep 2 bytes' worth. 2947 */ 2948 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2949 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2950 device_sysctl_update(dev); 2951 if (dev->busy) 2952 dev->state = DS_BUSY; 2953 else 2954 dev->state = DS_ATTACHED; 2955 dev->flags &= ~DF_DONENOMATCH; 2956 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2957 devadded(dev); 2958 return (0); 2959 } 2960 2961 /** 2962 * @brief Detach a driver from a device 2963 * 2964 * This function is a wrapper around the DEVICE_DETACH() driver 2965 * method. If the call to DEVICE_DETACH() succeeds, it calls 2966 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2967 * notification event for user-based device management services and 2968 * cleans up the device's sysctl tree. 2969 * 2970 * @param dev the device to un-initialise 2971 * 2972 * @retval 0 success 2973 * @retval ENXIO no driver was found 2974 * @retval ENOMEM memory allocation failure 2975 * @retval non-zero some other unix error code 2976 */ 2977 int 2978 device_detach(device_t dev) 2979 { 2980 int error; 2981 2982 GIANT_REQUIRED; 2983 2984 PDEBUG(("%s", DEVICENAME(dev))); 2985 if (dev->state == DS_BUSY) 2986 return (EBUSY); 2987 if (dev->state == DS_ATTACHING) { 2988 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2989 return (EBUSY); 2990 } 2991 if (dev->state != DS_ATTACHED) 2992 return (0); 2993 2994 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2995 if ((error = DEVICE_DETACH(dev)) != 0) { 2996 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2997 EVHDEV_DETACH_FAILED); 2998 return (error); 2999 } else { 3000 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3001 EVHDEV_DETACH_COMPLETE); 3002 } 3003 devremoved(dev); 3004 if (!device_is_quiet(dev)) 3005 device_printf(dev, "detached\n"); 3006 if (dev->parent) 3007 BUS_CHILD_DETACHED(dev->parent, dev); 3008 3009 if (!(dev->flags & DF_FIXEDCLASS)) 3010 devclass_delete_device(dev->devclass, dev); 3011 3012 device_verbose(dev); 3013 dev->state = DS_NOTPRESENT; 3014 (void)device_set_driver(dev, NULL); 3015 device_sysctl_fini(dev); 3016 3017 return (0); 3018 } 3019 3020 /** 3021 * @brief Tells a driver to quiesce itself. 3022 * 3023 * This function is a wrapper around the DEVICE_QUIESCE() driver 3024 * method. If the call to DEVICE_QUIESCE() succeeds. 3025 * 3026 * @param dev the device to quiesce 3027 * 3028 * @retval 0 success 3029 * @retval ENXIO no driver was found 3030 * @retval ENOMEM memory allocation failure 3031 * @retval non-zero some other unix error code 3032 */ 3033 int 3034 device_quiesce(device_t dev) 3035 { 3036 PDEBUG(("%s", DEVICENAME(dev))); 3037 if (dev->state == DS_BUSY) 3038 return (EBUSY); 3039 if (dev->state != DS_ATTACHED) 3040 return (0); 3041 3042 return (DEVICE_QUIESCE(dev)); 3043 } 3044 3045 /** 3046 * @brief Notify a device of system shutdown 3047 * 3048 * This function calls the DEVICE_SHUTDOWN() driver method if the 3049 * device currently has an attached driver. 3050 * 3051 * @returns the value returned by DEVICE_SHUTDOWN() 3052 */ 3053 int 3054 device_shutdown(device_t dev) 3055 { 3056 if (dev->state < DS_ATTACHED) 3057 return (0); 3058 return (DEVICE_SHUTDOWN(dev)); 3059 } 3060 3061 /** 3062 * @brief Set the unit number of a device 3063 * 3064 * This function can be used to override the unit number used for a 3065 * device (e.g. to wire a device to a pre-configured unit number). 3066 */ 3067 int 3068 device_set_unit(device_t dev, int unit) 3069 { 3070 devclass_t dc; 3071 int err; 3072 3073 dc = device_get_devclass(dev); 3074 if (unit < dc->maxunit && dc->devices[unit]) 3075 return (EBUSY); 3076 err = devclass_delete_device(dc, dev); 3077 if (err) 3078 return (err); 3079 dev->unit = unit; 3080 err = devclass_add_device(dc, dev); 3081 if (err) 3082 return (err); 3083 3084 bus_data_generation_update(); 3085 return (0); 3086 } 3087 3088 /*======================================*/ 3089 /* 3090 * Some useful method implementations to make life easier for bus drivers. 3091 */ 3092 3093 void 3094 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3095 { 3096 bzero(args, sz); 3097 args->size = sz; 3098 args->memattr = VM_MEMATTR_UNCACHEABLE; 3099 } 3100 3101 /** 3102 * @brief Initialise a resource list. 3103 * 3104 * @param rl the resource list to initialise 3105 */ 3106 void 3107 resource_list_init(struct resource_list *rl) 3108 { 3109 STAILQ_INIT(rl); 3110 } 3111 3112 /** 3113 * @brief Reclaim memory used by a resource list. 3114 * 3115 * This function frees the memory for all resource entries on the list 3116 * (if any). 3117 * 3118 * @param rl the resource list to free 3119 */ 3120 void 3121 resource_list_free(struct resource_list *rl) 3122 { 3123 struct resource_list_entry *rle; 3124 3125 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3126 if (rle->res) 3127 panic("resource_list_free: resource entry is busy"); 3128 STAILQ_REMOVE_HEAD(rl, link); 3129 free(rle, M_BUS); 3130 } 3131 } 3132 3133 /** 3134 * @brief Add a resource entry. 3135 * 3136 * This function adds a resource entry using the given @p type, @p 3137 * start, @p end and @p count values. A rid value is chosen by 3138 * searching sequentially for the first unused rid starting at zero. 3139 * 3140 * @param rl the resource list to edit 3141 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3142 * @param start the start address of the resource 3143 * @param end the end address of the resource 3144 * @param count XXX end-start+1 3145 */ 3146 int 3147 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3148 rman_res_t end, rman_res_t count) 3149 { 3150 int rid; 3151 3152 rid = 0; 3153 while (resource_list_find(rl, type, rid) != NULL) 3154 rid++; 3155 resource_list_add(rl, type, rid, start, end, count); 3156 return (rid); 3157 } 3158 3159 /** 3160 * @brief Add or modify a resource entry. 3161 * 3162 * If an existing entry exists with the same type and rid, it will be 3163 * modified using the given values of @p start, @p end and @p 3164 * count. If no entry exists, a new one will be created using the 3165 * given values. The resource list entry that matches is then returned. 3166 * 3167 * @param rl the resource list to edit 3168 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3169 * @param rid the resource identifier 3170 * @param start the start address of the resource 3171 * @param end the end address of the resource 3172 * @param count XXX end-start+1 3173 */ 3174 struct resource_list_entry * 3175 resource_list_add(struct resource_list *rl, int type, int rid, 3176 rman_res_t start, rman_res_t end, rman_res_t count) 3177 { 3178 struct resource_list_entry *rle; 3179 3180 rle = resource_list_find(rl, type, rid); 3181 if (!rle) { 3182 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3183 M_NOWAIT); 3184 if (!rle) 3185 panic("resource_list_add: can't record entry"); 3186 STAILQ_INSERT_TAIL(rl, rle, link); 3187 rle->type = type; 3188 rle->rid = rid; 3189 rle->res = NULL; 3190 rle->flags = 0; 3191 } 3192 3193 if (rle->res) 3194 panic("resource_list_add: resource entry is busy"); 3195 3196 rle->start = start; 3197 rle->end = end; 3198 rle->count = count; 3199 return (rle); 3200 } 3201 3202 /** 3203 * @brief Determine if a resource entry is busy. 3204 * 3205 * Returns true if a resource entry is busy meaning that it has an 3206 * associated resource that is not an unallocated "reserved" resource. 3207 * 3208 * @param rl the resource list to search 3209 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3210 * @param rid the resource identifier 3211 * 3212 * @returns Non-zero if the entry is busy, zero otherwise. 3213 */ 3214 int 3215 resource_list_busy(struct resource_list *rl, int type, int rid) 3216 { 3217 struct resource_list_entry *rle; 3218 3219 rle = resource_list_find(rl, type, rid); 3220 if (rle == NULL || rle->res == NULL) 3221 return (0); 3222 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3223 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3224 ("reserved resource is active")); 3225 return (0); 3226 } 3227 return (1); 3228 } 3229 3230 /** 3231 * @brief Determine if a resource entry is reserved. 3232 * 3233 * Returns true if a resource entry is reserved meaning that it has an 3234 * associated "reserved" resource. The resource can either be 3235 * allocated or unallocated. 3236 * 3237 * @param rl the resource list to search 3238 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3239 * @param rid the resource identifier 3240 * 3241 * @returns Non-zero if the entry is reserved, zero otherwise. 3242 */ 3243 int 3244 resource_list_reserved(struct resource_list *rl, int type, int rid) 3245 { 3246 struct resource_list_entry *rle; 3247 3248 rle = resource_list_find(rl, type, rid); 3249 if (rle != NULL && rle->flags & RLE_RESERVED) 3250 return (1); 3251 return (0); 3252 } 3253 3254 /** 3255 * @brief Find a resource entry by type and rid. 3256 * 3257 * @param rl the resource list to search 3258 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3259 * @param rid the resource identifier 3260 * 3261 * @returns the resource entry pointer or NULL if there is no such 3262 * entry. 3263 */ 3264 struct resource_list_entry * 3265 resource_list_find(struct resource_list *rl, int type, int rid) 3266 { 3267 struct resource_list_entry *rle; 3268 3269 STAILQ_FOREACH(rle, rl, link) { 3270 if (rle->type == type && rle->rid == rid) 3271 return (rle); 3272 } 3273 return (NULL); 3274 } 3275 3276 /** 3277 * @brief Delete a resource entry. 3278 * 3279 * @param rl the resource list to edit 3280 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3281 * @param rid the resource identifier 3282 */ 3283 void 3284 resource_list_delete(struct resource_list *rl, int type, int rid) 3285 { 3286 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3287 3288 if (rle) { 3289 if (rle->res != NULL) 3290 panic("resource_list_delete: resource has not been released"); 3291 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3292 free(rle, M_BUS); 3293 } 3294 } 3295 3296 /** 3297 * @brief Allocate a reserved resource 3298 * 3299 * This can be used by buses to force the allocation of resources 3300 * that are always active in the system even if they are not allocated 3301 * by a driver (e.g. PCI BARs). This function is usually called when 3302 * adding a new child to the bus. The resource is allocated from the 3303 * parent bus when it is reserved. The resource list entry is marked 3304 * with RLE_RESERVED to note that it is a reserved resource. 3305 * 3306 * Subsequent attempts to allocate the resource with 3307 * resource_list_alloc() will succeed the first time and will set 3308 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3309 * resource that has been allocated is released with 3310 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3311 * the actual resource remains allocated. The resource can be released to 3312 * the parent bus by calling resource_list_unreserve(). 3313 * 3314 * @param rl the resource list to allocate from 3315 * @param bus the parent device of @p child 3316 * @param child the device for which the resource is being reserved 3317 * @param type the type of resource to allocate 3318 * @param rid a pointer to the resource identifier 3319 * @param start hint at the start of the resource range - pass 3320 * @c 0 for any start address 3321 * @param end hint at the end of the resource range - pass 3322 * @c ~0 for any end address 3323 * @param count hint at the size of range required - pass @c 1 3324 * for any size 3325 * @param flags any extra flags to control the resource 3326 * allocation - see @c RF_XXX flags in 3327 * <sys/rman.h> for details 3328 * 3329 * @returns the resource which was allocated or @c NULL if no 3330 * resource could be allocated 3331 */ 3332 struct resource * 3333 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3334 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3335 { 3336 struct resource_list_entry *rle = NULL; 3337 int passthrough = (device_get_parent(child) != bus); 3338 struct resource *r; 3339 3340 if (passthrough) 3341 panic( 3342 "resource_list_reserve() should only be called for direct children"); 3343 if (flags & RF_ACTIVE) 3344 panic( 3345 "resource_list_reserve() should only reserve inactive resources"); 3346 3347 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3348 flags); 3349 if (r != NULL) { 3350 rle = resource_list_find(rl, type, *rid); 3351 rle->flags |= RLE_RESERVED; 3352 } 3353 return (r); 3354 } 3355 3356 /** 3357 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3358 * 3359 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3360 * and passing the allocation up to the parent of @p bus. This assumes 3361 * that the first entry of @c device_get_ivars(child) is a struct 3362 * resource_list. This also handles 'passthrough' allocations where a 3363 * child is a remote descendant of bus by passing the allocation up to 3364 * the parent of bus. 3365 * 3366 * Typically, a bus driver would store a list of child resources 3367 * somewhere in the child device's ivars (see device_get_ivars()) and 3368 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3369 * then call resource_list_alloc() to perform the allocation. 3370 * 3371 * @param rl the resource list to allocate from 3372 * @param bus the parent device of @p child 3373 * @param child the device which is requesting an allocation 3374 * @param type the type of resource to allocate 3375 * @param rid a pointer to the resource identifier 3376 * @param start hint at the start of the resource range - pass 3377 * @c 0 for any start address 3378 * @param end hint at the end of the resource range - pass 3379 * @c ~0 for any end address 3380 * @param count hint at the size of range required - pass @c 1 3381 * for any size 3382 * @param flags any extra flags to control the resource 3383 * allocation - see @c RF_XXX flags in 3384 * <sys/rman.h> for details 3385 * 3386 * @returns the resource which was allocated or @c NULL if no 3387 * resource could be allocated 3388 */ 3389 struct resource * 3390 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3391 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3392 { 3393 struct resource_list_entry *rle = NULL; 3394 int passthrough = (device_get_parent(child) != bus); 3395 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3396 3397 if (passthrough) { 3398 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3399 type, rid, start, end, count, flags)); 3400 } 3401 3402 rle = resource_list_find(rl, type, *rid); 3403 3404 if (!rle) 3405 return (NULL); /* no resource of that type/rid */ 3406 3407 if (rle->res) { 3408 if (rle->flags & RLE_RESERVED) { 3409 if (rle->flags & RLE_ALLOCATED) 3410 return (NULL); 3411 if ((flags & RF_ACTIVE) && 3412 bus_activate_resource(child, type, *rid, 3413 rle->res) != 0) 3414 return (NULL); 3415 rle->flags |= RLE_ALLOCATED; 3416 return (rle->res); 3417 } 3418 device_printf(bus, 3419 "resource entry %#x type %d for child %s is busy\n", *rid, 3420 type, device_get_nameunit(child)); 3421 return (NULL); 3422 } 3423 3424 if (isdefault) { 3425 start = rle->start; 3426 count = ulmax(count, rle->count); 3427 end = ulmax(rle->end, start + count - 1); 3428 } 3429 3430 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3431 type, rid, start, end, count, flags); 3432 3433 /* 3434 * Record the new range. 3435 */ 3436 if (rle->res) { 3437 rle->start = rman_get_start(rle->res); 3438 rle->end = rman_get_end(rle->res); 3439 rle->count = count; 3440 } 3441 3442 return (rle->res); 3443 } 3444 3445 /** 3446 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3447 * 3448 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3449 * used with resource_list_alloc(). 3450 * 3451 * @param rl the resource list which was allocated from 3452 * @param bus the parent device of @p child 3453 * @param child the device which is requesting a release 3454 * @param type the type of resource to release 3455 * @param rid the resource identifier 3456 * @param res the resource to release 3457 * 3458 * @retval 0 success 3459 * @retval non-zero a standard unix error code indicating what 3460 * error condition prevented the operation 3461 */ 3462 int 3463 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3464 int type, int rid, struct resource *res) 3465 { 3466 struct resource_list_entry *rle = NULL; 3467 int passthrough = (device_get_parent(child) != bus); 3468 int error; 3469 3470 if (passthrough) { 3471 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3472 type, rid, res)); 3473 } 3474 3475 rle = resource_list_find(rl, type, rid); 3476 3477 if (!rle) 3478 panic("resource_list_release: can't find resource"); 3479 if (!rle->res) 3480 panic("resource_list_release: resource entry is not busy"); 3481 if (rle->flags & RLE_RESERVED) { 3482 if (rle->flags & RLE_ALLOCATED) { 3483 if (rman_get_flags(res) & RF_ACTIVE) { 3484 error = bus_deactivate_resource(child, type, 3485 rid, res); 3486 if (error) 3487 return (error); 3488 } 3489 rle->flags &= ~RLE_ALLOCATED; 3490 return (0); 3491 } 3492 return (EINVAL); 3493 } 3494 3495 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3496 type, rid, res); 3497 if (error) 3498 return (error); 3499 3500 rle->res = NULL; 3501 return (0); 3502 } 3503 3504 /** 3505 * @brief Release all active resources of a given type 3506 * 3507 * Release all active resources of a specified type. This is intended 3508 * to be used to cleanup resources leaked by a driver after detach or 3509 * a failed attach. 3510 * 3511 * @param rl the resource list which was allocated from 3512 * @param bus the parent device of @p child 3513 * @param child the device whose active resources are being released 3514 * @param type the type of resources to release 3515 * 3516 * @retval 0 success 3517 * @retval EBUSY at least one resource was active 3518 */ 3519 int 3520 resource_list_release_active(struct resource_list *rl, device_t bus, 3521 device_t child, int type) 3522 { 3523 struct resource_list_entry *rle; 3524 int error, retval; 3525 3526 retval = 0; 3527 STAILQ_FOREACH(rle, rl, link) { 3528 if (rle->type != type) 3529 continue; 3530 if (rle->res == NULL) 3531 continue; 3532 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3533 RLE_RESERVED) 3534 continue; 3535 retval = EBUSY; 3536 error = resource_list_release(rl, bus, child, type, 3537 rman_get_rid(rle->res), rle->res); 3538 if (error != 0) 3539 device_printf(bus, 3540 "Failed to release active resource: %d\n", error); 3541 } 3542 return (retval); 3543 } 3544 3545 /** 3546 * @brief Fully release a reserved resource 3547 * 3548 * Fully releases a resource reserved via resource_list_reserve(). 3549 * 3550 * @param rl the resource list which was allocated from 3551 * @param bus the parent device of @p child 3552 * @param child the device whose reserved resource is being released 3553 * @param type the type of resource to release 3554 * @param rid the resource identifier 3555 * @param res the resource to release 3556 * 3557 * @retval 0 success 3558 * @retval non-zero a standard unix error code indicating what 3559 * error condition prevented the operation 3560 */ 3561 int 3562 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3563 int type, int rid) 3564 { 3565 struct resource_list_entry *rle = NULL; 3566 int passthrough = (device_get_parent(child) != bus); 3567 3568 if (passthrough) 3569 panic( 3570 "resource_list_unreserve() should only be called for direct children"); 3571 3572 rle = resource_list_find(rl, type, rid); 3573 3574 if (!rle) 3575 panic("resource_list_unreserve: can't find resource"); 3576 if (!(rle->flags & RLE_RESERVED)) 3577 return (EINVAL); 3578 if (rle->flags & RLE_ALLOCATED) 3579 return (EBUSY); 3580 rle->flags &= ~RLE_RESERVED; 3581 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3582 } 3583 3584 /** 3585 * @brief Print a description of resources in a resource list 3586 * 3587 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3588 * The name is printed if at least one resource of the given type is available. 3589 * The format is used to print resource start and end. 3590 * 3591 * @param rl the resource list to print 3592 * @param name the name of @p type, e.g. @c "memory" 3593 * @param type type type of resource entry to print 3594 * @param format printf(9) format string to print resource 3595 * start and end values 3596 * 3597 * @returns the number of characters printed 3598 */ 3599 int 3600 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3601 const char *format) 3602 { 3603 struct resource_list_entry *rle; 3604 int printed, retval; 3605 3606 printed = 0; 3607 retval = 0; 3608 /* Yes, this is kinda cheating */ 3609 STAILQ_FOREACH(rle, rl, link) { 3610 if (rle->type == type) { 3611 if (printed == 0) 3612 retval += printf(" %s ", name); 3613 else 3614 retval += printf(","); 3615 printed++; 3616 retval += printf(format, rle->start); 3617 if (rle->count > 1) { 3618 retval += printf("-"); 3619 retval += printf(format, rle->start + 3620 rle->count - 1); 3621 } 3622 } 3623 } 3624 return (retval); 3625 } 3626 3627 /** 3628 * @brief Releases all the resources in a list. 3629 * 3630 * @param rl The resource list to purge. 3631 * 3632 * @returns nothing 3633 */ 3634 void 3635 resource_list_purge(struct resource_list *rl) 3636 { 3637 struct resource_list_entry *rle; 3638 3639 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3640 if (rle->res) 3641 bus_release_resource(rman_get_device(rle->res), 3642 rle->type, rle->rid, rle->res); 3643 STAILQ_REMOVE_HEAD(rl, link); 3644 free(rle, M_BUS); 3645 } 3646 } 3647 3648 device_t 3649 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3650 { 3651 return (device_add_child_ordered(dev, order, name, unit)); 3652 } 3653 3654 /** 3655 * @brief Helper function for implementing DEVICE_PROBE() 3656 * 3657 * This function can be used to help implement the DEVICE_PROBE() for 3658 * a bus (i.e. a device which has other devices attached to it). It 3659 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3660 * devclass. 3661 */ 3662 int 3663 bus_generic_probe(device_t dev) 3664 { 3665 devclass_t dc = dev->devclass; 3666 driverlink_t dl; 3667 3668 TAILQ_FOREACH(dl, &dc->drivers, link) { 3669 /* 3670 * If this driver's pass is too high, then ignore it. 3671 * For most drivers in the default pass, this will 3672 * never be true. For early-pass drivers they will 3673 * only call the identify routines of eligible drivers 3674 * when this routine is called. Drivers for later 3675 * passes should have their identify routines called 3676 * on early-pass buses during BUS_NEW_PASS(). 3677 */ 3678 if (dl->pass > bus_current_pass) 3679 continue; 3680 DEVICE_IDENTIFY(dl->driver, dev); 3681 } 3682 3683 return (0); 3684 } 3685 3686 /** 3687 * @brief Helper function for implementing DEVICE_ATTACH() 3688 * 3689 * This function can be used to help implement the DEVICE_ATTACH() for 3690 * a bus. It calls device_probe_and_attach() for each of the device's 3691 * children. 3692 */ 3693 int 3694 bus_generic_attach(device_t dev) 3695 { 3696 device_t child; 3697 3698 TAILQ_FOREACH(child, &dev->children, link) { 3699 device_probe_and_attach(child); 3700 } 3701 3702 return (0); 3703 } 3704 3705 /** 3706 * @brief Helper function for delaying attaching children 3707 * 3708 * Many buses can't run transactions on the bus which children need to probe and 3709 * attach until after interrupts and/or timers are running. This function 3710 * delays their attach until interrupts and timers are enabled. 3711 */ 3712 int 3713 bus_delayed_attach_children(device_t dev) 3714 { 3715 /* Probe and attach the bus children when interrupts are available */ 3716 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3717 3718 return (0); 3719 } 3720 3721 /** 3722 * @brief Helper function for implementing DEVICE_DETACH() 3723 * 3724 * This function can be used to help implement the DEVICE_DETACH() for 3725 * a bus. It calls device_detach() for each of the device's 3726 * children. 3727 */ 3728 int 3729 bus_generic_detach(device_t dev) 3730 { 3731 device_t child; 3732 int error; 3733 3734 if (dev->state != DS_ATTACHED) 3735 return (EBUSY); 3736 3737 /* 3738 * Detach children in the reverse order. 3739 * See bus_generic_suspend for details. 3740 */ 3741 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3742 if ((error = device_detach(child)) != 0) 3743 return (error); 3744 } 3745 3746 return (0); 3747 } 3748 3749 /** 3750 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3751 * 3752 * This function can be used to help implement the DEVICE_SHUTDOWN() 3753 * for a bus. It calls device_shutdown() for each of the device's 3754 * children. 3755 */ 3756 int 3757 bus_generic_shutdown(device_t dev) 3758 { 3759 device_t child; 3760 3761 /* 3762 * Shut down children in the reverse order. 3763 * See bus_generic_suspend for details. 3764 */ 3765 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3766 device_shutdown(child); 3767 } 3768 3769 return (0); 3770 } 3771 3772 /** 3773 * @brief Default function for suspending a child device. 3774 * 3775 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3776 */ 3777 int 3778 bus_generic_suspend_child(device_t dev, device_t child) 3779 { 3780 int error; 3781 3782 error = DEVICE_SUSPEND(child); 3783 3784 if (error == 0) 3785 child->flags |= DF_SUSPENDED; 3786 3787 return (error); 3788 } 3789 3790 /** 3791 * @brief Default function for resuming a child device. 3792 * 3793 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3794 */ 3795 int 3796 bus_generic_resume_child(device_t dev, device_t child) 3797 { 3798 DEVICE_RESUME(child); 3799 child->flags &= ~DF_SUSPENDED; 3800 3801 return (0); 3802 } 3803 3804 /** 3805 * @brief Helper function for implementing DEVICE_SUSPEND() 3806 * 3807 * This function can be used to help implement the DEVICE_SUSPEND() 3808 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3809 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3810 * operation is aborted and any devices which were suspended are 3811 * resumed immediately by calling their DEVICE_RESUME() methods. 3812 */ 3813 int 3814 bus_generic_suspend(device_t dev) 3815 { 3816 int error; 3817 device_t child; 3818 3819 /* 3820 * Suspend children in the reverse order. 3821 * For most buses all children are equal, so the order does not matter. 3822 * Other buses, such as acpi, carefully order their child devices to 3823 * express implicit dependencies between them. For such buses it is 3824 * safer to bring down devices in the reverse order. 3825 */ 3826 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3827 error = BUS_SUSPEND_CHILD(dev, child); 3828 if (error != 0) { 3829 child = TAILQ_NEXT(child, link); 3830 if (child != NULL) { 3831 TAILQ_FOREACH_FROM(child, &dev->children, link) 3832 BUS_RESUME_CHILD(dev, child); 3833 } 3834 return (error); 3835 } 3836 } 3837 return (0); 3838 } 3839 3840 /** 3841 * @brief Helper function for implementing DEVICE_RESUME() 3842 * 3843 * This function can be used to help implement the DEVICE_RESUME() for 3844 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3845 */ 3846 int 3847 bus_generic_resume(device_t dev) 3848 { 3849 device_t child; 3850 3851 TAILQ_FOREACH(child, &dev->children, link) { 3852 BUS_RESUME_CHILD(dev, child); 3853 /* if resume fails, there's nothing we can usefully do... */ 3854 } 3855 return (0); 3856 } 3857 3858 /** 3859 * @brief Helper function for implementing BUS_RESET_POST 3860 * 3861 * Bus can use this function to implement common operations of 3862 * re-attaching or resuming the children after the bus itself was 3863 * reset, and after restoring bus-unique state of children. 3864 * 3865 * @param dev The bus 3866 * #param flags DEVF_RESET_* 3867 */ 3868 int 3869 bus_helper_reset_post(device_t dev, int flags) 3870 { 3871 device_t child; 3872 int error, error1; 3873 3874 error = 0; 3875 TAILQ_FOREACH(child, &dev->children,link) { 3876 BUS_RESET_POST(dev, child); 3877 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3878 device_probe_and_attach(child) : 3879 BUS_RESUME_CHILD(dev, child); 3880 if (error == 0 && error1 != 0) 3881 error = error1; 3882 } 3883 return (error); 3884 } 3885 3886 static void 3887 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3888 { 3889 child = TAILQ_NEXT(child, link); 3890 if (child == NULL) 3891 return; 3892 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3893 BUS_RESET_POST(dev, child); 3894 if ((flags & DEVF_RESET_DETACH) != 0) 3895 device_probe_and_attach(child); 3896 else 3897 BUS_RESUME_CHILD(dev, child); 3898 } 3899 } 3900 3901 /** 3902 * @brief Helper function for implementing BUS_RESET_PREPARE 3903 * 3904 * Bus can use this function to implement common operations of 3905 * detaching or suspending the children before the bus itself is 3906 * reset, and then save bus-unique state of children that must 3907 * persists around reset. 3908 * 3909 * @param dev The bus 3910 * #param flags DEVF_RESET_* 3911 */ 3912 int 3913 bus_helper_reset_prepare(device_t dev, int flags) 3914 { 3915 device_t child; 3916 int error; 3917 3918 if (dev->state != DS_ATTACHED) 3919 return (EBUSY); 3920 3921 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3922 if ((flags & DEVF_RESET_DETACH) != 0) { 3923 error = device_get_state(child) == DS_ATTACHED ? 3924 device_detach(child) : 0; 3925 } else { 3926 error = BUS_SUSPEND_CHILD(dev, child); 3927 } 3928 if (error == 0) { 3929 error = BUS_RESET_PREPARE(dev, child); 3930 if (error != 0) { 3931 if ((flags & DEVF_RESET_DETACH) != 0) 3932 device_probe_and_attach(child); 3933 else 3934 BUS_RESUME_CHILD(dev, child); 3935 } 3936 } 3937 if (error != 0) { 3938 bus_helper_reset_prepare_rollback(dev, child, flags); 3939 return (error); 3940 } 3941 } 3942 return (0); 3943 } 3944 3945 /** 3946 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3947 * 3948 * This function prints the first part of the ascii representation of 3949 * @p child, including its name, unit and description (if any - see 3950 * device_set_desc()). 3951 * 3952 * @returns the number of characters printed 3953 */ 3954 int 3955 bus_print_child_header(device_t dev, device_t child) 3956 { 3957 int retval = 0; 3958 3959 if (device_get_desc(child)) { 3960 retval += device_printf(child, "<%s>", device_get_desc(child)); 3961 } else { 3962 retval += printf("%s", device_get_nameunit(child)); 3963 } 3964 3965 return (retval); 3966 } 3967 3968 /** 3969 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3970 * 3971 * This function prints the last part of the ascii representation of 3972 * @p child, which consists of the string @c " on " followed by the 3973 * name and unit of the @p dev. 3974 * 3975 * @returns the number of characters printed 3976 */ 3977 int 3978 bus_print_child_footer(device_t dev, device_t child) 3979 { 3980 return (printf(" on %s\n", device_get_nameunit(dev))); 3981 } 3982 3983 /** 3984 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3985 * 3986 * This function prints out the VM domain for the given device. 3987 * 3988 * @returns the number of characters printed 3989 */ 3990 int 3991 bus_print_child_domain(device_t dev, device_t child) 3992 { 3993 int domain; 3994 3995 /* No domain? Don't print anything */ 3996 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3997 return (0); 3998 3999 return (printf(" numa-domain %d", domain)); 4000 } 4001 4002 /** 4003 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4004 * 4005 * This function simply calls bus_print_child_header() followed by 4006 * bus_print_child_footer(). 4007 * 4008 * @returns the number of characters printed 4009 */ 4010 int 4011 bus_generic_print_child(device_t dev, device_t child) 4012 { 4013 int retval = 0; 4014 4015 retval += bus_print_child_header(dev, child); 4016 retval += bus_print_child_domain(dev, child); 4017 retval += bus_print_child_footer(dev, child); 4018 4019 return (retval); 4020 } 4021 4022 /** 4023 * @brief Stub function for implementing BUS_READ_IVAR(). 4024 * 4025 * @returns ENOENT 4026 */ 4027 int 4028 bus_generic_read_ivar(device_t dev, device_t child, int index, 4029 uintptr_t * result) 4030 { 4031 return (ENOENT); 4032 } 4033 4034 /** 4035 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4036 * 4037 * @returns ENOENT 4038 */ 4039 int 4040 bus_generic_write_ivar(device_t dev, device_t child, int index, 4041 uintptr_t value) 4042 { 4043 return (ENOENT); 4044 } 4045 4046 /** 4047 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4048 * 4049 * @returns NULL 4050 */ 4051 struct resource_list * 4052 bus_generic_get_resource_list(device_t dev, device_t child) 4053 { 4054 return (NULL); 4055 } 4056 4057 /** 4058 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4059 * 4060 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4061 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4062 * and then calls device_probe_and_attach() for each unattached child. 4063 */ 4064 void 4065 bus_generic_driver_added(device_t dev, driver_t *driver) 4066 { 4067 device_t child; 4068 4069 DEVICE_IDENTIFY(driver, dev); 4070 TAILQ_FOREACH(child, &dev->children, link) { 4071 if (child->state == DS_NOTPRESENT || 4072 (child->flags & DF_REBID)) 4073 device_probe_and_attach(child); 4074 } 4075 } 4076 4077 /** 4078 * @brief Helper function for implementing BUS_NEW_PASS(). 4079 * 4080 * This implementing of BUS_NEW_PASS() first calls the identify 4081 * routines for any drivers that probe at the current pass. Then it 4082 * walks the list of devices for this bus. If a device is already 4083 * attached, then it calls BUS_NEW_PASS() on that device. If the 4084 * device is not already attached, it attempts to attach a driver to 4085 * it. 4086 */ 4087 void 4088 bus_generic_new_pass(device_t dev) 4089 { 4090 driverlink_t dl; 4091 devclass_t dc; 4092 device_t child; 4093 4094 dc = dev->devclass; 4095 TAILQ_FOREACH(dl, &dc->drivers, link) { 4096 if (dl->pass == bus_current_pass) 4097 DEVICE_IDENTIFY(dl->driver, dev); 4098 } 4099 TAILQ_FOREACH(child, &dev->children, link) { 4100 if (child->state >= DS_ATTACHED) 4101 BUS_NEW_PASS(child); 4102 else if (child->state == DS_NOTPRESENT) 4103 device_probe_and_attach(child); 4104 } 4105 } 4106 4107 /** 4108 * @brief Helper function for implementing BUS_SETUP_INTR(). 4109 * 4110 * This simple implementation of BUS_SETUP_INTR() simply calls the 4111 * BUS_SETUP_INTR() method of the parent of @p dev. 4112 */ 4113 int 4114 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4115 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4116 void **cookiep) 4117 { 4118 /* Propagate up the bus hierarchy until someone handles it. */ 4119 if (dev->parent) 4120 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4121 filter, intr, arg, cookiep)); 4122 return (EINVAL); 4123 } 4124 4125 /** 4126 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4127 * 4128 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4129 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4130 */ 4131 int 4132 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4133 void *cookie) 4134 { 4135 /* Propagate up the bus hierarchy until someone handles it. */ 4136 if (dev->parent) 4137 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4138 return (EINVAL); 4139 } 4140 4141 /** 4142 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4143 * 4144 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4145 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4146 */ 4147 int 4148 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4149 { 4150 /* Propagate up the bus hierarchy until someone handles it. */ 4151 if (dev->parent) 4152 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4153 return (EINVAL); 4154 } 4155 4156 /** 4157 * @brief Helper function for implementing BUS_RESUME_INTR(). 4158 * 4159 * This simple implementation of BUS_RESUME_INTR() simply calls the 4160 * BUS_RESUME_INTR() method of the parent of @p dev. 4161 */ 4162 int 4163 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4164 { 4165 /* Propagate up the bus hierarchy until someone handles it. */ 4166 if (dev->parent) 4167 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4168 return (EINVAL); 4169 } 4170 4171 /** 4172 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4173 * 4174 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4175 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4176 */ 4177 int 4178 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4179 struct resource *r, rman_res_t start, rman_res_t end) 4180 { 4181 /* Propagate up the bus hierarchy until someone handles it. */ 4182 if (dev->parent) 4183 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4184 end)); 4185 return (EINVAL); 4186 } 4187 4188 /** 4189 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4190 * 4191 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4192 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4193 */ 4194 struct resource * 4195 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4196 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4197 { 4198 /* Propagate up the bus hierarchy until someone handles it. */ 4199 if (dev->parent) 4200 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4201 start, end, count, flags)); 4202 return (NULL); 4203 } 4204 4205 /** 4206 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4207 * 4208 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4209 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4210 */ 4211 int 4212 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4213 struct resource *r) 4214 { 4215 /* Propagate up the bus hierarchy until someone handles it. */ 4216 if (dev->parent) 4217 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4218 r)); 4219 return (EINVAL); 4220 } 4221 4222 /** 4223 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4224 * 4225 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4226 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4227 */ 4228 int 4229 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4230 struct resource *r) 4231 { 4232 /* Propagate up the bus hierarchy until someone handles it. */ 4233 if (dev->parent) 4234 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4235 r)); 4236 return (EINVAL); 4237 } 4238 4239 /** 4240 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4241 * 4242 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4243 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4244 */ 4245 int 4246 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4247 int rid, struct resource *r) 4248 { 4249 /* Propagate up the bus hierarchy until someone handles it. */ 4250 if (dev->parent) 4251 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4252 r)); 4253 return (EINVAL); 4254 } 4255 4256 /** 4257 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4258 * 4259 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4260 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4261 */ 4262 int 4263 bus_generic_map_resource(device_t dev, device_t child, int type, 4264 struct resource *r, struct resource_map_request *args, 4265 struct resource_map *map) 4266 { 4267 /* Propagate up the bus hierarchy until someone handles it. */ 4268 if (dev->parent) 4269 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4270 map)); 4271 return (EINVAL); 4272 } 4273 4274 /** 4275 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4276 * 4277 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4278 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4279 */ 4280 int 4281 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4282 struct resource *r, struct resource_map *map) 4283 { 4284 /* Propagate up the bus hierarchy until someone handles it. */ 4285 if (dev->parent) 4286 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4287 return (EINVAL); 4288 } 4289 4290 /** 4291 * @brief Helper function for implementing BUS_BIND_INTR(). 4292 * 4293 * This simple implementation of BUS_BIND_INTR() simply calls the 4294 * BUS_BIND_INTR() method of the parent of @p dev. 4295 */ 4296 int 4297 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4298 int cpu) 4299 { 4300 /* Propagate up the bus hierarchy until someone handles it. */ 4301 if (dev->parent) 4302 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4303 return (EINVAL); 4304 } 4305 4306 /** 4307 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4308 * 4309 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4310 * BUS_CONFIG_INTR() method of the parent of @p dev. 4311 */ 4312 int 4313 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4314 enum intr_polarity pol) 4315 { 4316 /* Propagate up the bus hierarchy until someone handles it. */ 4317 if (dev->parent) 4318 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4319 return (EINVAL); 4320 } 4321 4322 /** 4323 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4324 * 4325 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4326 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4327 */ 4328 int 4329 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4330 void *cookie, const char *descr) 4331 { 4332 /* Propagate up the bus hierarchy until someone handles it. */ 4333 if (dev->parent) 4334 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4335 descr)); 4336 return (EINVAL); 4337 } 4338 4339 /** 4340 * @brief Helper function for implementing BUS_GET_CPUS(). 4341 * 4342 * This simple implementation of BUS_GET_CPUS() simply calls the 4343 * BUS_GET_CPUS() method of the parent of @p dev. 4344 */ 4345 int 4346 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4347 size_t setsize, cpuset_t *cpuset) 4348 { 4349 /* Propagate up the bus hierarchy until someone handles it. */ 4350 if (dev->parent != NULL) 4351 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4352 return (EINVAL); 4353 } 4354 4355 /** 4356 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4357 * 4358 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4359 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4360 */ 4361 bus_dma_tag_t 4362 bus_generic_get_dma_tag(device_t dev, device_t child) 4363 { 4364 /* Propagate up the bus hierarchy until someone handles it. */ 4365 if (dev->parent != NULL) 4366 return (BUS_GET_DMA_TAG(dev->parent, child)); 4367 return (NULL); 4368 } 4369 4370 /** 4371 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4372 * 4373 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4374 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4375 */ 4376 bus_space_tag_t 4377 bus_generic_get_bus_tag(device_t dev, device_t child) 4378 { 4379 /* Propagate up the bus hierarchy until someone handles it. */ 4380 if (dev->parent != NULL) 4381 return (BUS_GET_BUS_TAG(dev->parent, child)); 4382 return ((bus_space_tag_t)0); 4383 } 4384 4385 /** 4386 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4387 * 4388 * This implementation of BUS_GET_RESOURCE() uses the 4389 * resource_list_find() function to do most of the work. It calls 4390 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4391 * search. 4392 */ 4393 int 4394 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4395 rman_res_t *startp, rman_res_t *countp) 4396 { 4397 struct resource_list * rl = NULL; 4398 struct resource_list_entry * rle = NULL; 4399 4400 rl = BUS_GET_RESOURCE_LIST(dev, child); 4401 if (!rl) 4402 return (EINVAL); 4403 4404 rle = resource_list_find(rl, type, rid); 4405 if (!rle) 4406 return (ENOENT); 4407 4408 if (startp) 4409 *startp = rle->start; 4410 if (countp) 4411 *countp = rle->count; 4412 4413 return (0); 4414 } 4415 4416 /** 4417 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4418 * 4419 * This implementation of BUS_SET_RESOURCE() uses the 4420 * resource_list_add() function to do most of the work. It calls 4421 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4422 * edit. 4423 */ 4424 int 4425 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4426 rman_res_t start, rman_res_t count) 4427 { 4428 struct resource_list * rl = NULL; 4429 4430 rl = BUS_GET_RESOURCE_LIST(dev, child); 4431 if (!rl) 4432 return (EINVAL); 4433 4434 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4435 4436 return (0); 4437 } 4438 4439 /** 4440 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4441 * 4442 * This implementation of BUS_DELETE_RESOURCE() uses the 4443 * resource_list_delete() function to do most of the work. It calls 4444 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4445 * edit. 4446 */ 4447 void 4448 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4449 { 4450 struct resource_list * rl = NULL; 4451 4452 rl = BUS_GET_RESOURCE_LIST(dev, child); 4453 if (!rl) 4454 return; 4455 4456 resource_list_delete(rl, type, rid); 4457 4458 return; 4459 } 4460 4461 /** 4462 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4463 * 4464 * This implementation of BUS_RELEASE_RESOURCE() uses the 4465 * resource_list_release() function to do most of the work. It calls 4466 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4467 */ 4468 int 4469 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4470 int rid, struct resource *r) 4471 { 4472 struct resource_list * rl = NULL; 4473 4474 if (device_get_parent(child) != dev) 4475 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4476 type, rid, r)); 4477 4478 rl = BUS_GET_RESOURCE_LIST(dev, child); 4479 if (!rl) 4480 return (EINVAL); 4481 4482 return (resource_list_release(rl, dev, child, type, rid, r)); 4483 } 4484 4485 /** 4486 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4487 * 4488 * This implementation of BUS_ALLOC_RESOURCE() uses the 4489 * resource_list_alloc() function to do most of the work. It calls 4490 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4491 */ 4492 struct resource * 4493 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4494 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4495 { 4496 struct resource_list * rl = NULL; 4497 4498 if (device_get_parent(child) != dev) 4499 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4500 type, rid, start, end, count, flags)); 4501 4502 rl = BUS_GET_RESOURCE_LIST(dev, child); 4503 if (!rl) 4504 return (NULL); 4505 4506 return (resource_list_alloc(rl, dev, child, type, rid, 4507 start, end, count, flags)); 4508 } 4509 4510 /** 4511 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4512 * 4513 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4514 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4515 */ 4516 int 4517 bus_generic_child_present(device_t dev, device_t child) 4518 { 4519 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4520 } 4521 4522 int 4523 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4524 { 4525 if (dev->parent) 4526 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4527 4528 return (ENOENT); 4529 } 4530 4531 /** 4532 * @brief Helper function for implementing BUS_RESCAN(). 4533 * 4534 * This null implementation of BUS_RESCAN() always fails to indicate 4535 * the bus does not support rescanning. 4536 */ 4537 int 4538 bus_null_rescan(device_t dev) 4539 { 4540 return (ENXIO); 4541 } 4542 4543 /* 4544 * Some convenience functions to make it easier for drivers to use the 4545 * resource-management functions. All these really do is hide the 4546 * indirection through the parent's method table, making for slightly 4547 * less-wordy code. In the future, it might make sense for this code 4548 * to maintain some sort of a list of resources allocated by each device. 4549 */ 4550 4551 int 4552 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4553 struct resource **res) 4554 { 4555 int i; 4556 4557 for (i = 0; rs[i].type != -1; i++) 4558 res[i] = NULL; 4559 for (i = 0; rs[i].type != -1; i++) { 4560 res[i] = bus_alloc_resource_any(dev, 4561 rs[i].type, &rs[i].rid, rs[i].flags); 4562 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4563 bus_release_resources(dev, rs, res); 4564 return (ENXIO); 4565 } 4566 } 4567 return (0); 4568 } 4569 4570 void 4571 bus_release_resources(device_t dev, const struct resource_spec *rs, 4572 struct resource **res) 4573 { 4574 int i; 4575 4576 for (i = 0; rs[i].type != -1; i++) 4577 if (res[i] != NULL) { 4578 bus_release_resource( 4579 dev, rs[i].type, rs[i].rid, res[i]); 4580 res[i] = NULL; 4581 } 4582 } 4583 4584 /** 4585 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4586 * 4587 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4588 * parent of @p dev. 4589 */ 4590 struct resource * 4591 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4592 rman_res_t end, rman_res_t count, u_int flags) 4593 { 4594 struct resource *res; 4595 4596 if (dev->parent == NULL) 4597 return (NULL); 4598 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4599 count, flags); 4600 return (res); 4601 } 4602 4603 /** 4604 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4605 * 4606 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4607 * parent of @p dev. 4608 */ 4609 int 4610 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4611 rman_res_t end) 4612 { 4613 if (dev->parent == NULL) 4614 return (EINVAL); 4615 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4616 } 4617 4618 /** 4619 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4620 * 4621 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4622 * parent of @p dev. 4623 */ 4624 int 4625 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4626 { 4627 if (dev->parent == NULL) 4628 return (EINVAL); 4629 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4630 } 4631 4632 /** 4633 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4634 * 4635 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4636 * parent of @p dev. 4637 */ 4638 int 4639 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4640 { 4641 if (dev->parent == NULL) 4642 return (EINVAL); 4643 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4644 } 4645 4646 /** 4647 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4648 * 4649 * This function simply calls the BUS_MAP_RESOURCE() method of the 4650 * parent of @p dev. 4651 */ 4652 int 4653 bus_map_resource(device_t dev, int type, struct resource *r, 4654 struct resource_map_request *args, struct resource_map *map) 4655 { 4656 if (dev->parent == NULL) 4657 return (EINVAL); 4658 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4659 } 4660 4661 /** 4662 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4663 * 4664 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4665 * parent of @p dev. 4666 */ 4667 int 4668 bus_unmap_resource(device_t dev, int type, struct resource *r, 4669 struct resource_map *map) 4670 { 4671 if (dev->parent == NULL) 4672 return (EINVAL); 4673 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4674 } 4675 4676 /** 4677 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4678 * 4679 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4680 * parent of @p dev. 4681 */ 4682 int 4683 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4684 { 4685 int rv; 4686 4687 if (dev->parent == NULL) 4688 return (EINVAL); 4689 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4690 return (rv); 4691 } 4692 4693 /** 4694 * @brief Wrapper function for BUS_SETUP_INTR(). 4695 * 4696 * This function simply calls the BUS_SETUP_INTR() method of the 4697 * parent of @p dev. 4698 */ 4699 int 4700 bus_setup_intr(device_t dev, struct resource *r, int flags, 4701 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4702 { 4703 int error; 4704 4705 if (dev->parent == NULL) 4706 return (EINVAL); 4707 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4708 arg, cookiep); 4709 if (error != 0) 4710 return (error); 4711 if (handler != NULL && !(flags & INTR_MPSAFE)) 4712 device_printf(dev, "[GIANT-LOCKED]\n"); 4713 return (0); 4714 } 4715 4716 /** 4717 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4718 * 4719 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4720 * parent of @p dev. 4721 */ 4722 int 4723 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4724 { 4725 if (dev->parent == NULL) 4726 return (EINVAL); 4727 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4728 } 4729 4730 /** 4731 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4732 * 4733 * This function simply calls the BUS_SUSPEND_INTR() method of the 4734 * parent of @p dev. 4735 */ 4736 int 4737 bus_suspend_intr(device_t dev, struct resource *r) 4738 { 4739 if (dev->parent == NULL) 4740 return (EINVAL); 4741 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4742 } 4743 4744 /** 4745 * @brief Wrapper function for BUS_RESUME_INTR(). 4746 * 4747 * This function simply calls the BUS_RESUME_INTR() method of the 4748 * parent of @p dev. 4749 */ 4750 int 4751 bus_resume_intr(device_t dev, struct resource *r) 4752 { 4753 if (dev->parent == NULL) 4754 return (EINVAL); 4755 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4756 } 4757 4758 /** 4759 * @brief Wrapper function for BUS_BIND_INTR(). 4760 * 4761 * This function simply calls the BUS_BIND_INTR() method of the 4762 * parent of @p dev. 4763 */ 4764 int 4765 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4766 { 4767 if (dev->parent == NULL) 4768 return (EINVAL); 4769 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4770 } 4771 4772 /** 4773 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4774 * 4775 * This function first formats the requested description into a 4776 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4777 * the parent of @p dev. 4778 */ 4779 int 4780 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4781 const char *fmt, ...) 4782 { 4783 va_list ap; 4784 char descr[MAXCOMLEN + 1]; 4785 4786 if (dev->parent == NULL) 4787 return (EINVAL); 4788 va_start(ap, fmt); 4789 vsnprintf(descr, sizeof(descr), fmt, ap); 4790 va_end(ap); 4791 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4792 } 4793 4794 /** 4795 * @brief Wrapper function for BUS_SET_RESOURCE(). 4796 * 4797 * This function simply calls the BUS_SET_RESOURCE() method of the 4798 * parent of @p dev. 4799 */ 4800 int 4801 bus_set_resource(device_t dev, int type, int rid, 4802 rman_res_t start, rman_res_t count) 4803 { 4804 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4805 start, count)); 4806 } 4807 4808 /** 4809 * @brief Wrapper function for BUS_GET_RESOURCE(). 4810 * 4811 * This function simply calls the BUS_GET_RESOURCE() method of the 4812 * parent of @p dev. 4813 */ 4814 int 4815 bus_get_resource(device_t dev, int type, int rid, 4816 rman_res_t *startp, rman_res_t *countp) 4817 { 4818 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4819 startp, countp)); 4820 } 4821 4822 /** 4823 * @brief Wrapper function for BUS_GET_RESOURCE(). 4824 * 4825 * This function simply calls the BUS_GET_RESOURCE() method of the 4826 * parent of @p dev and returns the start value. 4827 */ 4828 rman_res_t 4829 bus_get_resource_start(device_t dev, int type, int rid) 4830 { 4831 rman_res_t start; 4832 rman_res_t count; 4833 int error; 4834 4835 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4836 &start, &count); 4837 if (error) 4838 return (0); 4839 return (start); 4840 } 4841 4842 /** 4843 * @brief Wrapper function for BUS_GET_RESOURCE(). 4844 * 4845 * This function simply calls the BUS_GET_RESOURCE() method of the 4846 * parent of @p dev and returns the count value. 4847 */ 4848 rman_res_t 4849 bus_get_resource_count(device_t dev, int type, int rid) 4850 { 4851 rman_res_t start; 4852 rman_res_t count; 4853 int error; 4854 4855 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4856 &start, &count); 4857 if (error) 4858 return (0); 4859 return (count); 4860 } 4861 4862 /** 4863 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4864 * 4865 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4866 * parent of @p dev. 4867 */ 4868 void 4869 bus_delete_resource(device_t dev, int type, int rid) 4870 { 4871 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4872 } 4873 4874 /** 4875 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4876 * 4877 * This function simply calls the BUS_CHILD_PRESENT() method of the 4878 * parent of @p dev. 4879 */ 4880 int 4881 bus_child_present(device_t child) 4882 { 4883 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4884 } 4885 4886 /** 4887 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4888 * 4889 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4890 * parent of @p dev. 4891 */ 4892 int 4893 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4894 { 4895 device_t parent; 4896 4897 parent = device_get_parent(child); 4898 if (parent == NULL) { 4899 *buf = '\0'; 4900 return (0); 4901 } 4902 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4903 } 4904 4905 /** 4906 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4907 * 4908 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4909 * parent of @p dev. 4910 */ 4911 int 4912 bus_child_location_str(device_t child, char *buf, size_t buflen) 4913 { 4914 device_t parent; 4915 4916 parent = device_get_parent(child); 4917 if (parent == NULL) { 4918 *buf = '\0'; 4919 return (0); 4920 } 4921 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4922 } 4923 4924 /** 4925 * @brief Wrapper function for BUS_GET_CPUS(). 4926 * 4927 * This function simply calls the BUS_GET_CPUS() method of the 4928 * parent of @p dev. 4929 */ 4930 int 4931 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4932 { 4933 device_t parent; 4934 4935 parent = device_get_parent(dev); 4936 if (parent == NULL) 4937 return (EINVAL); 4938 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4939 } 4940 4941 /** 4942 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4943 * 4944 * This function simply calls the BUS_GET_DMA_TAG() method of the 4945 * parent of @p dev. 4946 */ 4947 bus_dma_tag_t 4948 bus_get_dma_tag(device_t dev) 4949 { 4950 device_t parent; 4951 4952 parent = device_get_parent(dev); 4953 if (parent == NULL) 4954 return (NULL); 4955 return (BUS_GET_DMA_TAG(parent, dev)); 4956 } 4957 4958 /** 4959 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4960 * 4961 * This function simply calls the BUS_GET_BUS_TAG() method of the 4962 * parent of @p dev. 4963 */ 4964 bus_space_tag_t 4965 bus_get_bus_tag(device_t dev) 4966 { 4967 device_t parent; 4968 4969 parent = device_get_parent(dev); 4970 if (parent == NULL) 4971 return ((bus_space_tag_t)0); 4972 return (BUS_GET_BUS_TAG(parent, dev)); 4973 } 4974 4975 /** 4976 * @brief Wrapper function for BUS_GET_DOMAIN(). 4977 * 4978 * This function simply calls the BUS_GET_DOMAIN() method of the 4979 * parent of @p dev. 4980 */ 4981 int 4982 bus_get_domain(device_t dev, int *domain) 4983 { 4984 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4985 } 4986 4987 /* Resume all devices and then notify userland that we're up again. */ 4988 static int 4989 root_resume(device_t dev) 4990 { 4991 int error; 4992 4993 error = bus_generic_resume(dev); 4994 if (error == 0) 4995 devctl_notify("kern", "power", "resume", NULL); 4996 return (error); 4997 } 4998 4999 static int 5000 root_print_child(device_t dev, device_t child) 5001 { 5002 int retval = 0; 5003 5004 retval += bus_print_child_header(dev, child); 5005 retval += printf("\n"); 5006 5007 return (retval); 5008 } 5009 5010 static int 5011 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5012 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5013 { 5014 /* 5015 * If an interrupt mapping gets to here something bad has happened. 5016 */ 5017 panic("root_setup_intr"); 5018 } 5019 5020 /* 5021 * If we get here, assume that the device is permanent and really is 5022 * present in the system. Removable bus drivers are expected to intercept 5023 * this call long before it gets here. We return -1 so that drivers that 5024 * really care can check vs -1 or some ERRNO returned higher in the food 5025 * chain. 5026 */ 5027 static int 5028 root_child_present(device_t dev, device_t child) 5029 { 5030 return (-1); 5031 } 5032 5033 static int 5034 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5035 cpuset_t *cpuset) 5036 { 5037 switch (op) { 5038 case INTR_CPUS: 5039 /* Default to returning the set of all CPUs. */ 5040 if (setsize != sizeof(cpuset_t)) 5041 return (EINVAL); 5042 *cpuset = all_cpus; 5043 return (0); 5044 default: 5045 return (EINVAL); 5046 } 5047 } 5048 5049 static kobj_method_t root_methods[] = { 5050 /* Device interface */ 5051 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5052 KOBJMETHOD(device_suspend, bus_generic_suspend), 5053 KOBJMETHOD(device_resume, root_resume), 5054 5055 /* Bus interface */ 5056 KOBJMETHOD(bus_print_child, root_print_child), 5057 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5058 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5059 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5060 KOBJMETHOD(bus_child_present, root_child_present), 5061 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5062 5063 KOBJMETHOD_END 5064 }; 5065 5066 static driver_t root_driver = { 5067 "root", 5068 root_methods, 5069 1, /* no softc */ 5070 }; 5071 5072 device_t root_bus; 5073 devclass_t root_devclass; 5074 5075 static int 5076 root_bus_module_handler(module_t mod, int what, void* arg) 5077 { 5078 switch (what) { 5079 case MOD_LOAD: 5080 TAILQ_INIT(&bus_data_devices); 5081 kobj_class_compile((kobj_class_t) &root_driver); 5082 root_bus = make_device(NULL, "root", 0); 5083 root_bus->desc = "System root bus"; 5084 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5085 root_bus->driver = &root_driver; 5086 root_bus->state = DS_ATTACHED; 5087 root_devclass = devclass_find_internal("root", NULL, FALSE); 5088 devinit(); 5089 return (0); 5090 5091 case MOD_SHUTDOWN: 5092 device_shutdown(root_bus); 5093 return (0); 5094 default: 5095 return (EOPNOTSUPP); 5096 } 5097 5098 return (0); 5099 } 5100 5101 static moduledata_t root_bus_mod = { 5102 "rootbus", 5103 root_bus_module_handler, 5104 NULL 5105 }; 5106 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5107 5108 /** 5109 * @brief Automatically configure devices 5110 * 5111 * This function begins the autoconfiguration process by calling 5112 * device_probe_and_attach() for each child of the @c root0 device. 5113 */ 5114 void 5115 root_bus_configure(void) 5116 { 5117 PDEBUG((".")); 5118 5119 /* Eventually this will be split up, but this is sufficient for now. */ 5120 bus_set_pass(BUS_PASS_DEFAULT); 5121 } 5122 5123 /** 5124 * @brief Module handler for registering device drivers 5125 * 5126 * This module handler is used to automatically register device 5127 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5128 * devclass_add_driver() for the driver described by the 5129 * driver_module_data structure pointed to by @p arg 5130 */ 5131 int 5132 driver_module_handler(module_t mod, int what, void *arg) 5133 { 5134 struct driver_module_data *dmd; 5135 devclass_t bus_devclass; 5136 kobj_class_t driver; 5137 int error, pass; 5138 5139 dmd = (struct driver_module_data *)arg; 5140 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5141 error = 0; 5142 5143 switch (what) { 5144 case MOD_LOAD: 5145 if (dmd->dmd_chainevh) 5146 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5147 5148 pass = dmd->dmd_pass; 5149 driver = dmd->dmd_driver; 5150 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5151 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5152 error = devclass_add_driver(bus_devclass, driver, pass, 5153 dmd->dmd_devclass); 5154 break; 5155 5156 case MOD_UNLOAD: 5157 PDEBUG(("Unloading module: driver %s from bus %s", 5158 DRIVERNAME(dmd->dmd_driver), 5159 dmd->dmd_busname)); 5160 error = devclass_delete_driver(bus_devclass, 5161 dmd->dmd_driver); 5162 5163 if (!error && dmd->dmd_chainevh) 5164 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5165 break; 5166 case MOD_QUIESCE: 5167 PDEBUG(("Quiesce module: driver %s from bus %s", 5168 DRIVERNAME(dmd->dmd_driver), 5169 dmd->dmd_busname)); 5170 error = devclass_quiesce_driver(bus_devclass, 5171 dmd->dmd_driver); 5172 5173 if (!error && dmd->dmd_chainevh) 5174 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5175 break; 5176 default: 5177 error = EOPNOTSUPP; 5178 break; 5179 } 5180 5181 return (error); 5182 } 5183 5184 /** 5185 * @brief Enumerate all hinted devices for this bus. 5186 * 5187 * Walks through the hints for this bus and calls the bus_hinted_child 5188 * routine for each one it fines. It searches first for the specific 5189 * bus that's being probed for hinted children (eg isa0), and then for 5190 * generic children (eg isa). 5191 * 5192 * @param dev bus device to enumerate 5193 */ 5194 void 5195 bus_enumerate_hinted_children(device_t bus) 5196 { 5197 int i; 5198 const char *dname, *busname; 5199 int dunit; 5200 5201 /* 5202 * enumerate all devices on the specific bus 5203 */ 5204 busname = device_get_nameunit(bus); 5205 i = 0; 5206 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5207 BUS_HINTED_CHILD(bus, dname, dunit); 5208 5209 /* 5210 * and all the generic ones. 5211 */ 5212 busname = device_get_name(bus); 5213 i = 0; 5214 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5215 BUS_HINTED_CHILD(bus, dname, dunit); 5216 } 5217 5218 #ifdef BUS_DEBUG 5219 5220 /* the _short versions avoid iteration by not calling anything that prints 5221 * more than oneliners. I love oneliners. 5222 */ 5223 5224 static void 5225 print_device_short(device_t dev, int indent) 5226 { 5227 if (!dev) 5228 return; 5229 5230 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5231 dev->unit, dev->desc, 5232 (dev->parent? "":"no "), 5233 (TAILQ_EMPTY(&dev->children)? "no ":""), 5234 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5235 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5236 (dev->flags&DF_WILDCARD? "wildcard,":""), 5237 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5238 (dev->flags&DF_REBID? "rebiddable,":""), 5239 (dev->flags&DF_SUSPENDED? "suspended,":""), 5240 (dev->ivars? "":"no "), 5241 (dev->softc? "":"no "), 5242 dev->busy)); 5243 } 5244 5245 static void 5246 print_device(device_t dev, int indent) 5247 { 5248 if (!dev) 5249 return; 5250 5251 print_device_short(dev, indent); 5252 5253 indentprintf(("Parent:\n")); 5254 print_device_short(dev->parent, indent+1); 5255 indentprintf(("Driver:\n")); 5256 print_driver_short(dev->driver, indent+1); 5257 indentprintf(("Devclass:\n")); 5258 print_devclass_short(dev->devclass, indent+1); 5259 } 5260 5261 void 5262 print_device_tree_short(device_t dev, int indent) 5263 /* print the device and all its children (indented) */ 5264 { 5265 device_t child; 5266 5267 if (!dev) 5268 return; 5269 5270 print_device_short(dev, indent); 5271 5272 TAILQ_FOREACH(child, &dev->children, link) { 5273 print_device_tree_short(child, indent+1); 5274 } 5275 } 5276 5277 void 5278 print_device_tree(device_t dev, int indent) 5279 /* print the device and all its children (indented) */ 5280 { 5281 device_t child; 5282 5283 if (!dev) 5284 return; 5285 5286 print_device(dev, indent); 5287 5288 TAILQ_FOREACH(child, &dev->children, link) { 5289 print_device_tree(child, indent+1); 5290 } 5291 } 5292 5293 static void 5294 print_driver_short(driver_t *driver, int indent) 5295 { 5296 if (!driver) 5297 return; 5298 5299 indentprintf(("driver %s: softc size = %zd\n", 5300 driver->name, driver->size)); 5301 } 5302 5303 static void 5304 print_driver(driver_t *driver, int indent) 5305 { 5306 if (!driver) 5307 return; 5308 5309 print_driver_short(driver, indent); 5310 } 5311 5312 static void 5313 print_driver_list(driver_list_t drivers, int indent) 5314 { 5315 driverlink_t driver; 5316 5317 TAILQ_FOREACH(driver, &drivers, link) { 5318 print_driver(driver->driver, indent); 5319 } 5320 } 5321 5322 static void 5323 print_devclass_short(devclass_t dc, int indent) 5324 { 5325 if ( !dc ) 5326 return; 5327 5328 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5329 } 5330 5331 static void 5332 print_devclass(devclass_t dc, int indent) 5333 { 5334 int i; 5335 5336 if ( !dc ) 5337 return; 5338 5339 print_devclass_short(dc, indent); 5340 indentprintf(("Drivers:\n")); 5341 print_driver_list(dc->drivers, indent+1); 5342 5343 indentprintf(("Devices:\n")); 5344 for (i = 0; i < dc->maxunit; i++) 5345 if (dc->devices[i]) 5346 print_device(dc->devices[i], indent+1); 5347 } 5348 5349 void 5350 print_devclass_list_short(void) 5351 { 5352 devclass_t dc; 5353 5354 printf("Short listing of devclasses, drivers & devices:\n"); 5355 TAILQ_FOREACH(dc, &devclasses, link) { 5356 print_devclass_short(dc, 0); 5357 } 5358 } 5359 5360 void 5361 print_devclass_list(void) 5362 { 5363 devclass_t dc; 5364 5365 printf("Full listing of devclasses, drivers & devices:\n"); 5366 TAILQ_FOREACH(dc, &devclasses, link) { 5367 print_devclass(dc, 0); 5368 } 5369 } 5370 5371 #endif 5372 5373 /* 5374 * User-space access to the device tree. 5375 * 5376 * We implement a small set of nodes: 5377 * 5378 * hw.bus Single integer read method to obtain the 5379 * current generation count. 5380 * hw.bus.devices Reads the entire device tree in flat space. 5381 * hw.bus.rman Resource manager interface 5382 * 5383 * We might like to add the ability to scan devclasses and/or drivers to 5384 * determine what else is currently loaded/available. 5385 */ 5386 5387 static int 5388 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5389 { 5390 struct u_businfo ubus; 5391 5392 ubus.ub_version = BUS_USER_VERSION; 5393 ubus.ub_generation = bus_data_generation; 5394 5395 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5396 } 5397 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5398 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5399 "bus-related data"); 5400 5401 static int 5402 sysctl_devices(SYSCTL_HANDLER_ARGS) 5403 { 5404 int *name = (int *)arg1; 5405 u_int namelen = arg2; 5406 int index; 5407 device_t dev; 5408 struct u_device *udev; 5409 int error; 5410 char *walker, *ep; 5411 5412 if (namelen != 2) 5413 return (EINVAL); 5414 5415 if (bus_data_generation_check(name[0])) 5416 return (EINVAL); 5417 5418 index = name[1]; 5419 5420 /* 5421 * Scan the list of devices, looking for the requested index. 5422 */ 5423 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5424 if (index-- == 0) 5425 break; 5426 } 5427 if (dev == NULL) 5428 return (ENOENT); 5429 5430 /* 5431 * Populate the return item, careful not to overflow the buffer. 5432 */ 5433 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5434 if (udev == NULL) 5435 return (ENOMEM); 5436 udev->dv_handle = (uintptr_t)dev; 5437 udev->dv_parent = (uintptr_t)dev->parent; 5438 udev->dv_devflags = dev->devflags; 5439 udev->dv_flags = dev->flags; 5440 udev->dv_state = dev->state; 5441 walker = udev->dv_fields; 5442 ep = walker + sizeof(udev->dv_fields); 5443 #define CP(src) \ 5444 if ((src) == NULL) \ 5445 *walker++ = '\0'; \ 5446 else { \ 5447 strlcpy(walker, (src), ep - walker); \ 5448 walker += strlen(walker) + 1; \ 5449 } \ 5450 if (walker >= ep) \ 5451 break; 5452 5453 do { 5454 CP(dev->nameunit); 5455 CP(dev->desc); 5456 CP(dev->driver != NULL ? dev->driver->name : NULL); 5457 bus_child_pnpinfo_str(dev, walker, ep - walker); 5458 walker += strlen(walker) + 1; 5459 if (walker >= ep) 5460 break; 5461 bus_child_location_str(dev, walker, ep - walker); 5462 walker += strlen(walker) + 1; 5463 if (walker >= ep) 5464 break; 5465 *walker++ = '\0'; 5466 } while (0); 5467 #undef CP 5468 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5469 free(udev, M_BUS); 5470 return (error); 5471 } 5472 5473 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5474 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5475 "system device tree"); 5476 5477 int 5478 bus_data_generation_check(int generation) 5479 { 5480 if (generation != bus_data_generation) 5481 return (1); 5482 5483 /* XXX generate optimised lists here? */ 5484 return (0); 5485 } 5486 5487 void 5488 bus_data_generation_update(void) 5489 { 5490 atomic_add_int(&bus_data_generation, 1); 5491 } 5492 5493 int 5494 bus_free_resource(device_t dev, int type, struct resource *r) 5495 { 5496 if (r == NULL) 5497 return (0); 5498 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5499 } 5500 5501 device_t 5502 device_lookup_by_name(const char *name) 5503 { 5504 device_t dev; 5505 5506 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5507 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5508 return (dev); 5509 } 5510 return (NULL); 5511 } 5512 5513 /* 5514 * /dev/devctl2 implementation. The existing /dev/devctl device has 5515 * implicit semantics on open, so it could not be reused for this. 5516 * Another option would be to call this /dev/bus? 5517 */ 5518 static int 5519 find_device(struct devreq *req, device_t *devp) 5520 { 5521 device_t dev; 5522 5523 /* 5524 * First, ensure that the name is nul terminated. 5525 */ 5526 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5527 return (EINVAL); 5528 5529 /* 5530 * Second, try to find an attached device whose name matches 5531 * 'name'. 5532 */ 5533 dev = device_lookup_by_name(req->dr_name); 5534 if (dev != NULL) { 5535 *devp = dev; 5536 return (0); 5537 } 5538 5539 /* Finally, give device enumerators a chance. */ 5540 dev = NULL; 5541 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5542 if (dev == NULL) 5543 return (ENOENT); 5544 *devp = dev; 5545 return (0); 5546 } 5547 5548 static bool 5549 driver_exists(device_t bus, const char *driver) 5550 { 5551 devclass_t dc; 5552 5553 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5554 if (devclass_find_driver_internal(dc, driver) != NULL) 5555 return (true); 5556 } 5557 return (false); 5558 } 5559 5560 static void 5561 device_gen_nomatch(device_t dev) 5562 { 5563 device_t child; 5564 5565 if (dev->flags & DF_NEEDNOMATCH && 5566 dev->state == DS_NOTPRESENT) { 5567 BUS_PROBE_NOMATCH(dev->parent, dev); 5568 devnomatch(dev); 5569 dev->flags |= DF_DONENOMATCH; 5570 } 5571 dev->flags &= ~DF_NEEDNOMATCH; 5572 TAILQ_FOREACH(child, &dev->children, link) { 5573 device_gen_nomatch(child); 5574 } 5575 } 5576 5577 static void 5578 device_do_deferred_actions(void) 5579 { 5580 devclass_t dc; 5581 driverlink_t dl; 5582 5583 /* 5584 * Walk through the devclasses to find all the drivers we've tagged as 5585 * deferred during the freeze and call the driver added routines. They 5586 * have already been added to the lists in the background, so the driver 5587 * added routines that trigger a probe will have all the right bidders 5588 * for the probe auction. 5589 */ 5590 TAILQ_FOREACH(dc, &devclasses, link) { 5591 TAILQ_FOREACH(dl, &dc->drivers, link) { 5592 if (dl->flags & DL_DEFERRED_PROBE) { 5593 devclass_driver_added(dc, dl->driver); 5594 dl->flags &= ~DL_DEFERRED_PROBE; 5595 } 5596 } 5597 } 5598 5599 /* 5600 * We also defer no-match events during a freeze. Walk the tree and 5601 * generate all the pent-up events that are still relevant. 5602 */ 5603 device_gen_nomatch(root_bus); 5604 bus_data_generation_update(); 5605 } 5606 5607 static int 5608 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5609 struct thread *td) 5610 { 5611 struct devreq *req; 5612 device_t dev; 5613 int error, old; 5614 5615 /* Locate the device to control. */ 5616 mtx_lock(&Giant); 5617 req = (struct devreq *)data; 5618 switch (cmd) { 5619 case DEV_ATTACH: 5620 case DEV_DETACH: 5621 case DEV_ENABLE: 5622 case DEV_DISABLE: 5623 case DEV_SUSPEND: 5624 case DEV_RESUME: 5625 case DEV_SET_DRIVER: 5626 case DEV_CLEAR_DRIVER: 5627 case DEV_RESCAN: 5628 case DEV_DELETE: 5629 case DEV_RESET: 5630 error = priv_check(td, PRIV_DRIVER); 5631 if (error == 0) 5632 error = find_device(req, &dev); 5633 break; 5634 case DEV_FREEZE: 5635 case DEV_THAW: 5636 error = priv_check(td, PRIV_DRIVER); 5637 break; 5638 default: 5639 error = ENOTTY; 5640 break; 5641 } 5642 if (error) { 5643 mtx_unlock(&Giant); 5644 return (error); 5645 } 5646 5647 /* Perform the requested operation. */ 5648 switch (cmd) { 5649 case DEV_ATTACH: 5650 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5651 error = EBUSY; 5652 else if (!device_is_enabled(dev)) 5653 error = ENXIO; 5654 else 5655 error = device_probe_and_attach(dev); 5656 break; 5657 case DEV_DETACH: 5658 if (!device_is_attached(dev)) { 5659 error = ENXIO; 5660 break; 5661 } 5662 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5663 error = device_quiesce(dev); 5664 if (error) 5665 break; 5666 } 5667 error = device_detach(dev); 5668 break; 5669 case DEV_ENABLE: 5670 if (device_is_enabled(dev)) { 5671 error = EBUSY; 5672 break; 5673 } 5674 5675 /* 5676 * If the device has been probed but not attached (e.g. 5677 * when it has been disabled by a loader hint), just 5678 * attach the device rather than doing a full probe. 5679 */ 5680 device_enable(dev); 5681 if (device_is_alive(dev)) { 5682 /* 5683 * If the device was disabled via a hint, clear 5684 * the hint. 5685 */ 5686 if (resource_disabled(dev->driver->name, dev->unit)) 5687 resource_unset_value(dev->driver->name, 5688 dev->unit, "disabled"); 5689 error = device_attach(dev); 5690 } else 5691 error = device_probe_and_attach(dev); 5692 break; 5693 case DEV_DISABLE: 5694 if (!device_is_enabled(dev)) { 5695 error = ENXIO; 5696 break; 5697 } 5698 5699 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5700 error = device_quiesce(dev); 5701 if (error) 5702 break; 5703 } 5704 5705 /* 5706 * Force DF_FIXEDCLASS on around detach to preserve 5707 * the existing name. 5708 */ 5709 old = dev->flags; 5710 dev->flags |= DF_FIXEDCLASS; 5711 error = device_detach(dev); 5712 if (!(old & DF_FIXEDCLASS)) 5713 dev->flags &= ~DF_FIXEDCLASS; 5714 if (error == 0) 5715 device_disable(dev); 5716 break; 5717 case DEV_SUSPEND: 5718 if (device_is_suspended(dev)) { 5719 error = EBUSY; 5720 break; 5721 } 5722 if (device_get_parent(dev) == NULL) { 5723 error = EINVAL; 5724 break; 5725 } 5726 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5727 break; 5728 case DEV_RESUME: 5729 if (!device_is_suspended(dev)) { 5730 error = EINVAL; 5731 break; 5732 } 5733 if (device_get_parent(dev) == NULL) { 5734 error = EINVAL; 5735 break; 5736 } 5737 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5738 break; 5739 case DEV_SET_DRIVER: { 5740 devclass_t dc; 5741 char driver[128]; 5742 5743 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5744 if (error) 5745 break; 5746 if (driver[0] == '\0') { 5747 error = EINVAL; 5748 break; 5749 } 5750 if (dev->devclass != NULL && 5751 strcmp(driver, dev->devclass->name) == 0) 5752 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5753 break; 5754 5755 /* 5756 * Scan drivers for this device's bus looking for at 5757 * least one matching driver. 5758 */ 5759 if (dev->parent == NULL) { 5760 error = EINVAL; 5761 break; 5762 } 5763 if (!driver_exists(dev->parent, driver)) { 5764 error = ENOENT; 5765 break; 5766 } 5767 dc = devclass_create(driver); 5768 if (dc == NULL) { 5769 error = ENOMEM; 5770 break; 5771 } 5772 5773 /* Detach device if necessary. */ 5774 if (device_is_attached(dev)) { 5775 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5776 error = device_detach(dev); 5777 else 5778 error = EBUSY; 5779 if (error) 5780 break; 5781 } 5782 5783 /* Clear any previously-fixed device class and unit. */ 5784 if (dev->flags & DF_FIXEDCLASS) 5785 devclass_delete_device(dev->devclass, dev); 5786 dev->flags |= DF_WILDCARD; 5787 dev->unit = -1; 5788 5789 /* Force the new device class. */ 5790 error = devclass_add_device(dc, dev); 5791 if (error) 5792 break; 5793 dev->flags |= DF_FIXEDCLASS; 5794 error = device_probe_and_attach(dev); 5795 break; 5796 } 5797 case DEV_CLEAR_DRIVER: 5798 if (!(dev->flags & DF_FIXEDCLASS)) { 5799 error = 0; 5800 break; 5801 } 5802 if (device_is_attached(dev)) { 5803 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5804 error = device_detach(dev); 5805 else 5806 error = EBUSY; 5807 if (error) 5808 break; 5809 } 5810 5811 dev->flags &= ~DF_FIXEDCLASS; 5812 dev->flags |= DF_WILDCARD; 5813 devclass_delete_device(dev->devclass, dev); 5814 error = device_probe_and_attach(dev); 5815 break; 5816 case DEV_RESCAN: 5817 if (!device_is_attached(dev)) { 5818 error = ENXIO; 5819 break; 5820 } 5821 error = BUS_RESCAN(dev); 5822 break; 5823 case DEV_DELETE: { 5824 device_t parent; 5825 5826 parent = device_get_parent(dev); 5827 if (parent == NULL) { 5828 error = EINVAL; 5829 break; 5830 } 5831 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5832 if (bus_child_present(dev) != 0) { 5833 error = EBUSY; 5834 break; 5835 } 5836 } 5837 5838 error = device_delete_child(parent, dev); 5839 break; 5840 } 5841 case DEV_FREEZE: 5842 if (device_frozen) 5843 error = EBUSY; 5844 else 5845 device_frozen = true; 5846 break; 5847 case DEV_THAW: 5848 if (!device_frozen) 5849 error = EBUSY; 5850 else { 5851 device_do_deferred_actions(); 5852 device_frozen = false; 5853 } 5854 break; 5855 case DEV_RESET: 5856 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5857 error = EINVAL; 5858 break; 5859 } 5860 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5861 req->dr_flags); 5862 break; 5863 } 5864 mtx_unlock(&Giant); 5865 return (error); 5866 } 5867 5868 static struct cdevsw devctl2_cdevsw = { 5869 .d_version = D_VERSION, 5870 .d_ioctl = devctl2_ioctl, 5871 .d_name = "devctl2", 5872 }; 5873 5874 static void 5875 devctl2_init(void) 5876 { 5877 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5878 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5879 } 5880 5881 /* 5882 * APIs to manage deprecation and obsolescence. 5883 */ 5884 static int obsolete_panic = 0; 5885 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5886 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5887 "2 = if deprecated)"); 5888 5889 static void 5890 gone_panic(int major, int running, const char *msg) 5891 { 5892 switch (obsolete_panic) 5893 { 5894 case 0: 5895 return; 5896 case 1: 5897 if (running < major) 5898 return; 5899 /* FALLTHROUGH */ 5900 default: 5901 panic("%s", msg); 5902 } 5903 } 5904 5905 void 5906 _gone_in(int major, const char *msg) 5907 { 5908 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5909 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5910 printf("Obsolete code will be removed soon: %s\n", msg); 5911 else 5912 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5913 major, msg); 5914 } 5915 5916 void 5917 _gone_in_dev(device_t dev, int major, const char *msg) 5918 { 5919 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5920 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5921 device_printf(dev, 5922 "Obsolete code will be removed soon: %s\n", msg); 5923 else 5924 device_printf(dev, 5925 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5926 major, msg); 5927 } 5928 5929 #ifdef DDB 5930 DB_SHOW_COMMAND(device, db_show_device) 5931 { 5932 device_t dev; 5933 5934 if (!have_addr) 5935 return; 5936 5937 dev = (device_t)addr; 5938 5939 db_printf("name: %s\n", device_get_nameunit(dev)); 5940 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5941 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5942 db_printf(" addr: %p\n", dev); 5943 db_printf(" parent: %p\n", dev->parent); 5944 db_printf(" softc: %p\n", dev->softc); 5945 db_printf(" ivars: %p\n", dev->ivars); 5946 } 5947 5948 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5949 { 5950 device_t dev; 5951 5952 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5953 db_show_device((db_expr_t)dev, true, count, modif); 5954 } 5955 } 5956 #endif 5957