1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/uio.h> 55 #include <sys/bus.h> 56 #include <sys/interrupt.h> 57 #include <sys/cpuset.h> 58 59 #include <net/vnet.h> 60 61 #include <machine/cpu.h> 62 #include <machine/stdarg.h> 63 64 #include <vm/uma.h> 65 66 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 68 69 /* 70 * Used to attach drivers to devclasses. 71 */ 72 typedef struct driverlink *driverlink_t; 73 struct driverlink { 74 kobj_class_t driver; 75 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 76 int pass; 77 TAILQ_ENTRY(driverlink) passlink; 78 }; 79 80 /* 81 * Forward declarations 82 */ 83 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 84 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 85 typedef TAILQ_HEAD(device_list, device) device_list_t; 86 87 struct devclass { 88 TAILQ_ENTRY(devclass) link; 89 devclass_t parent; /* parent in devclass hierarchy */ 90 driver_list_t drivers; /* bus devclasses store drivers for bus */ 91 char *name; 92 device_t *devices; /* array of devices indexed by unit */ 93 int maxunit; /* size of devices array */ 94 int flags; 95 #define DC_HAS_CHILDREN 1 96 97 struct sysctl_ctx_list sysctl_ctx; 98 struct sysctl_oid *sysctl_tree; 99 }; 100 101 /** 102 * @brief Implementation of device. 103 */ 104 struct device { 105 /* 106 * A device is a kernel object. The first field must be the 107 * current ops table for the object. 108 */ 109 KOBJ_FIELDS; 110 111 /* 112 * Device hierarchy. 113 */ 114 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 115 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 116 device_t parent; /**< parent of this device */ 117 device_list_t children; /**< list of child devices */ 118 119 /* 120 * Details of this device. 121 */ 122 driver_t *driver; /**< current driver */ 123 devclass_t devclass; /**< current device class */ 124 int unit; /**< current unit number */ 125 char* nameunit; /**< name+unit e.g. foodev0 */ 126 char* desc; /**< driver specific description */ 127 int busy; /**< count of calls to device_busy() */ 128 device_state_t state; /**< current device state */ 129 uint32_t devflags; /**< api level flags for device_get_flags() */ 130 u_int flags; /**< internal device flags */ 131 u_int order; /**< order from device_add_child_ordered() */ 132 void *ivars; /**< instance variables */ 133 void *softc; /**< current driver's variables */ 134 135 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 136 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 137 }; 138 139 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 140 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 141 142 static void devctl2_init(void); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 148 "Bus debug level"); 149 150 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 151 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 152 #define DRIVERNAME(d) ((d)? d->name : "no driver") 153 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 154 155 /** 156 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 157 * prevent syslog from deleting initial spaces 158 */ 159 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 160 161 static void print_device_short(device_t dev, int indent); 162 static void print_device(device_t dev, int indent); 163 void print_device_tree_short(device_t dev, int indent); 164 void print_device_tree(device_t dev, int indent); 165 static void print_driver_short(driver_t *driver, int indent); 166 static void print_driver(driver_t *driver, int indent); 167 static void print_driver_list(driver_list_t drivers, int indent); 168 static void print_devclass_short(devclass_t dc, int indent); 169 static void print_devclass(devclass_t dc, int indent); 170 void print_devclass_list_short(void); 171 void print_devclass_list(void); 172 173 #else 174 /* Make the compiler ignore the function calls */ 175 #define PDEBUG(a) /* nop */ 176 #define DEVICENAME(d) /* nop */ 177 #define DRIVERNAME(d) /* nop */ 178 #define DEVCLANAME(d) /* nop */ 179 180 #define print_device_short(d,i) /* nop */ 181 #define print_device(d,i) /* nop */ 182 #define print_device_tree_short(d,i) /* nop */ 183 #define print_device_tree(d,i) /* nop */ 184 #define print_driver_short(d,i) /* nop */ 185 #define print_driver(d,i) /* nop */ 186 #define print_driver_list(d,i) /* nop */ 187 #define print_devclass_short(d,i) /* nop */ 188 #define print_devclass(d,i) /* nop */ 189 #define print_devclass_list_short() /* nop */ 190 #define print_devclass_list() /* nop */ 191 #endif 192 193 /* 194 * dev sysctl tree 195 */ 196 197 enum { 198 DEVCLASS_SYSCTL_PARENT, 199 }; 200 201 static int 202 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 203 { 204 devclass_t dc = (devclass_t)arg1; 205 const char *value; 206 207 switch (arg2) { 208 case DEVCLASS_SYSCTL_PARENT: 209 value = dc->parent ? dc->parent->name : ""; 210 break; 211 default: 212 return (EINVAL); 213 } 214 return (SYSCTL_OUT_STR(req, value)); 215 } 216 217 static void 218 devclass_sysctl_init(devclass_t dc) 219 { 220 221 if (dc->sysctl_tree != NULL) 222 return; 223 sysctl_ctx_init(&dc->sysctl_ctx); 224 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 225 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 226 CTLFLAG_RD, NULL, ""); 227 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 228 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 229 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 230 "parent class"); 231 } 232 233 enum { 234 DEVICE_SYSCTL_DESC, 235 DEVICE_SYSCTL_DRIVER, 236 DEVICE_SYSCTL_LOCATION, 237 DEVICE_SYSCTL_PNPINFO, 238 DEVICE_SYSCTL_PARENT, 239 }; 240 241 static int 242 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 243 { 244 device_t dev = (device_t)arg1; 245 const char *value; 246 char *buf; 247 int error; 248 249 buf = NULL; 250 switch (arg2) { 251 case DEVICE_SYSCTL_DESC: 252 value = dev->desc ? dev->desc : ""; 253 break; 254 case DEVICE_SYSCTL_DRIVER: 255 value = dev->driver ? dev->driver->name : ""; 256 break; 257 case DEVICE_SYSCTL_LOCATION: 258 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 259 bus_child_location_str(dev, buf, 1024); 260 break; 261 case DEVICE_SYSCTL_PNPINFO: 262 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 263 bus_child_pnpinfo_str(dev, buf, 1024); 264 break; 265 case DEVICE_SYSCTL_PARENT: 266 value = dev->parent ? dev->parent->nameunit : ""; 267 break; 268 default: 269 return (EINVAL); 270 } 271 error = SYSCTL_OUT_STR(req, value); 272 if (buf != NULL) 273 free(buf, M_BUS); 274 return (error); 275 } 276 277 static void 278 device_sysctl_init(device_t dev) 279 { 280 devclass_t dc = dev->devclass; 281 int domain; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 if (bus_get_domain(dev, &domain) == 0) 312 SYSCTL_ADD_INT(&dev->sysctl_ctx, 313 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 314 CTLFLAG_RD, NULL, domain, "NUMA domain"); 315 } 316 317 static void 318 device_sysctl_update(device_t dev) 319 { 320 devclass_t dc = dev->devclass; 321 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 325 } 326 327 static void 328 device_sysctl_fini(device_t dev) 329 { 330 if (dev->sysctl_tree == NULL) 331 return; 332 sysctl_ctx_free(&dev->sysctl_ctx); 333 dev->sysctl_tree = NULL; 334 } 335 336 /* 337 * /dev/devctl implementation 338 */ 339 340 /* 341 * This design allows only one reader for /dev/devctl. This is not desirable 342 * in the long run, but will get a lot of hair out of this implementation. 343 * Maybe we should make this device a clonable device. 344 * 345 * Also note: we specifically do not attach a device to the device_t tree 346 * to avoid potential chicken and egg problems. One could argue that all 347 * of this belongs to the root node. One could also further argue that the 348 * sysctl interface that we have not might more properly be an ioctl 349 * interface, but at this stage of the game, I'm not inclined to rock that 350 * boat. 351 * 352 * I'm also not sure that the SIGIO support is done correctly or not, as 353 * I copied it from a driver that had SIGIO support that likely hasn't been 354 * tested since 3.4 or 2.2.8! 355 */ 356 357 /* Deprecated way to adjust queue length */ 358 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 359 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 360 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 361 "devctl disable -- deprecated"); 362 363 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 364 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 365 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 366 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 367 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 368 369 static d_open_t devopen; 370 static d_close_t devclose; 371 static d_read_t devread; 372 static d_ioctl_t devioctl; 373 static d_poll_t devpoll; 374 static d_kqfilter_t devkqfilter; 375 376 static struct cdevsw dev_cdevsw = { 377 .d_version = D_VERSION, 378 .d_open = devopen, 379 .d_close = devclose, 380 .d_read = devread, 381 .d_ioctl = devioctl, 382 .d_poll = devpoll, 383 .d_kqfilter = devkqfilter, 384 .d_name = "devctl", 385 }; 386 387 struct dev_event_info 388 { 389 char *dei_data; 390 TAILQ_ENTRY(dev_event_info) dei_link; 391 }; 392 393 TAILQ_HEAD(devq, dev_event_info); 394 395 static struct dev_softc 396 { 397 int inuse; 398 int nonblock; 399 int queued; 400 int async; 401 struct mtx mtx; 402 struct cv cv; 403 struct selinfo sel; 404 struct devq devq; 405 struct sigio *sigio; 406 } devsoftc; 407 408 static void filt_devctl_detach(struct knote *kn); 409 static int filt_devctl_read(struct knote *kn, long hint); 410 411 struct filterops devctl_rfiltops = { 412 .f_isfd = 1, 413 .f_detach = filt_devctl_detach, 414 .f_event = filt_devctl_read, 415 }; 416 417 static struct cdev *devctl_dev; 418 419 static void 420 devinit(void) 421 { 422 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 423 UID_ROOT, GID_WHEEL, 0600, "devctl"); 424 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 425 cv_init(&devsoftc.cv, "dev cv"); 426 TAILQ_INIT(&devsoftc.devq); 427 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 428 devctl2_init(); 429 } 430 431 static int 432 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 433 { 434 435 mtx_lock(&devsoftc.mtx); 436 if (devsoftc.inuse) { 437 mtx_unlock(&devsoftc.mtx); 438 return (EBUSY); 439 } 440 /* move to init */ 441 devsoftc.inuse = 1; 442 mtx_unlock(&devsoftc.mtx); 443 return (0); 444 } 445 446 static int 447 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 448 { 449 450 mtx_lock(&devsoftc.mtx); 451 devsoftc.inuse = 0; 452 devsoftc.nonblock = 0; 453 devsoftc.async = 0; 454 cv_broadcast(&devsoftc.cv); 455 funsetown(&devsoftc.sigio); 456 mtx_unlock(&devsoftc.mtx); 457 return (0); 458 } 459 460 /* 461 * The read channel for this device is used to report changes to 462 * userland in realtime. We are required to free the data as well as 463 * the n1 object because we allocate them separately. Also note that 464 * we return one record at a time. If you try to read this device a 465 * character at a time, you will lose the rest of the data. Listening 466 * programs are expected to cope. 467 */ 468 static int 469 devread(struct cdev *dev, struct uio *uio, int ioflag) 470 { 471 struct dev_event_info *n1; 472 int rv; 473 474 mtx_lock(&devsoftc.mtx); 475 while (TAILQ_EMPTY(&devsoftc.devq)) { 476 if (devsoftc.nonblock) { 477 mtx_unlock(&devsoftc.mtx); 478 return (EAGAIN); 479 } 480 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 481 if (rv) { 482 /* 483 * Need to translate ERESTART to EINTR here? -- jake 484 */ 485 mtx_unlock(&devsoftc.mtx); 486 return (rv); 487 } 488 } 489 n1 = TAILQ_FIRST(&devsoftc.devq); 490 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 491 devsoftc.queued--; 492 mtx_unlock(&devsoftc.mtx); 493 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 494 free(n1->dei_data, M_BUS); 495 free(n1, M_BUS); 496 return (rv); 497 } 498 499 static int 500 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 501 { 502 switch (cmd) { 503 504 case FIONBIO: 505 if (*(int*)data) 506 devsoftc.nonblock = 1; 507 else 508 devsoftc.nonblock = 0; 509 return (0); 510 case FIOASYNC: 511 if (*(int*)data) 512 devsoftc.async = 1; 513 else 514 devsoftc.async = 0; 515 return (0); 516 case FIOSETOWN: 517 return fsetown(*(int *)data, &devsoftc.sigio); 518 case FIOGETOWN: 519 *(int *)data = fgetown(&devsoftc.sigio); 520 return (0); 521 522 /* (un)Support for other fcntl() calls. */ 523 case FIOCLEX: 524 case FIONCLEX: 525 case FIONREAD: 526 default: 527 break; 528 } 529 return (ENOTTY); 530 } 531 532 static int 533 devpoll(struct cdev *dev, int events, struct thread *td) 534 { 535 int revents = 0; 536 537 mtx_lock(&devsoftc.mtx); 538 if (events & (POLLIN | POLLRDNORM)) { 539 if (!TAILQ_EMPTY(&devsoftc.devq)) 540 revents = events & (POLLIN | POLLRDNORM); 541 else 542 selrecord(td, &devsoftc.sel); 543 } 544 mtx_unlock(&devsoftc.mtx); 545 546 return (revents); 547 } 548 549 static int 550 devkqfilter(struct cdev *dev, struct knote *kn) 551 { 552 int error; 553 554 if (kn->kn_filter == EVFILT_READ) { 555 kn->kn_fop = &devctl_rfiltops; 556 knlist_add(&devsoftc.sel.si_note, kn, 0); 557 error = 0; 558 } else 559 error = EINVAL; 560 return (error); 561 } 562 563 static void 564 filt_devctl_detach(struct knote *kn) 565 { 566 567 knlist_remove(&devsoftc.sel.si_note, kn, 0); 568 } 569 570 static int 571 filt_devctl_read(struct knote *kn, long hint) 572 { 573 kn->kn_data = devsoftc.queued; 574 return (kn->kn_data != 0); 575 } 576 577 /** 578 * @brief Return whether the userland process is running 579 */ 580 boolean_t 581 devctl_process_running(void) 582 { 583 return (devsoftc.inuse == 1); 584 } 585 586 /** 587 * @brief Queue data to be read from the devctl device 588 * 589 * Generic interface to queue data to the devctl device. It is 590 * assumed that @p data is properly formatted. It is further assumed 591 * that @p data is allocated using the M_BUS malloc type. 592 */ 593 void 594 devctl_queue_data_f(char *data, int flags) 595 { 596 struct dev_event_info *n1 = NULL, *n2 = NULL; 597 598 if (strlen(data) == 0) 599 goto out; 600 if (devctl_queue_length == 0) 601 goto out; 602 n1 = malloc(sizeof(*n1), M_BUS, flags); 603 if (n1 == NULL) 604 goto out; 605 n1->dei_data = data; 606 mtx_lock(&devsoftc.mtx); 607 if (devctl_queue_length == 0) { 608 mtx_unlock(&devsoftc.mtx); 609 free(n1->dei_data, M_BUS); 610 free(n1, M_BUS); 611 return; 612 } 613 /* Leave at least one spot in the queue... */ 614 while (devsoftc.queued > devctl_queue_length - 1) { 615 n2 = TAILQ_FIRST(&devsoftc.devq); 616 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 617 free(n2->dei_data, M_BUS); 618 free(n2, M_BUS); 619 devsoftc.queued--; 620 } 621 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 622 devsoftc.queued++; 623 cv_broadcast(&devsoftc.cv); 624 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 625 mtx_unlock(&devsoftc.mtx); 626 selwakeup(&devsoftc.sel); 627 if (devsoftc.async && devsoftc.sigio != NULL) 628 pgsigio(&devsoftc.sigio, SIGIO, 0); 629 return; 630 out: 631 /* 632 * We have to free data on all error paths since the caller 633 * assumes it will be free'd when this item is dequeued. 634 */ 635 free(data, M_BUS); 636 return; 637 } 638 639 void 640 devctl_queue_data(char *data) 641 { 642 643 devctl_queue_data_f(data, M_NOWAIT); 644 } 645 646 /** 647 * @brief Send a 'notification' to userland, using standard ways 648 */ 649 void 650 devctl_notify_f(const char *system, const char *subsystem, const char *type, 651 const char *data, int flags) 652 { 653 int len = 0; 654 char *msg; 655 656 if (system == NULL) 657 return; /* BOGUS! Must specify system. */ 658 if (subsystem == NULL) 659 return; /* BOGUS! Must specify subsystem. */ 660 if (type == NULL) 661 return; /* BOGUS! Must specify type. */ 662 len += strlen(" system=") + strlen(system); 663 len += strlen(" subsystem=") + strlen(subsystem); 664 len += strlen(" type=") + strlen(type); 665 /* add in the data message plus newline. */ 666 if (data != NULL) 667 len += strlen(data); 668 len += 3; /* '!', '\n', and NUL */ 669 msg = malloc(len, M_BUS, flags); 670 if (msg == NULL) 671 return; /* Drop it on the floor */ 672 if (data != NULL) 673 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 674 system, subsystem, type, data); 675 else 676 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 677 system, subsystem, type); 678 devctl_queue_data_f(msg, flags); 679 } 680 681 void 682 devctl_notify(const char *system, const char *subsystem, const char *type, 683 const char *data) 684 { 685 686 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 687 } 688 689 /* 690 * Common routine that tries to make sending messages as easy as possible. 691 * We allocate memory for the data, copy strings into that, but do not 692 * free it unless there's an error. The dequeue part of the driver should 693 * free the data. We don't send data when the device is disabled. We do 694 * send data, even when we have no listeners, because we wish to avoid 695 * races relating to startup and restart of listening applications. 696 * 697 * devaddq is designed to string together the type of event, with the 698 * object of that event, plus the plug and play info and location info 699 * for that event. This is likely most useful for devices, but less 700 * useful for other consumers of this interface. Those should use 701 * the devctl_queue_data() interface instead. 702 */ 703 static void 704 devaddq(const char *type, const char *what, device_t dev) 705 { 706 char *data = NULL; 707 char *loc = NULL; 708 char *pnp = NULL; 709 const char *parstr; 710 711 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 712 return; 713 data = malloc(1024, M_BUS, M_NOWAIT); 714 if (data == NULL) 715 goto bad; 716 717 /* get the bus specific location of this device */ 718 loc = malloc(1024, M_BUS, M_NOWAIT); 719 if (loc == NULL) 720 goto bad; 721 *loc = '\0'; 722 bus_child_location_str(dev, loc, 1024); 723 724 /* Get the bus specific pnp info of this device */ 725 pnp = malloc(1024, M_BUS, M_NOWAIT); 726 if (pnp == NULL) 727 goto bad; 728 *pnp = '\0'; 729 bus_child_pnpinfo_str(dev, pnp, 1024); 730 731 /* Get the parent of this device, or / if high enough in the tree. */ 732 if (device_get_parent(dev) == NULL) 733 parstr = "."; /* Or '/' ? */ 734 else 735 parstr = device_get_nameunit(device_get_parent(dev)); 736 /* String it all together. */ 737 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 738 parstr); 739 free(loc, M_BUS); 740 free(pnp, M_BUS); 741 devctl_queue_data(data); 742 return; 743 bad: 744 free(pnp, M_BUS); 745 free(loc, M_BUS); 746 free(data, M_BUS); 747 return; 748 } 749 750 /* 751 * A device was added to the tree. We are called just after it successfully 752 * attaches (that is, probe and attach success for this device). No call 753 * is made if a device is merely parented into the tree. See devnomatch 754 * if probe fails. If attach fails, no notification is sent (but maybe 755 * we should have a different message for this). 756 */ 757 static void 758 devadded(device_t dev) 759 { 760 devaddq("+", device_get_nameunit(dev), dev); 761 } 762 763 /* 764 * A device was removed from the tree. We are called just before this 765 * happens. 766 */ 767 static void 768 devremoved(device_t dev) 769 { 770 devaddq("-", device_get_nameunit(dev), dev); 771 } 772 773 /* 774 * Called when there's no match for this device. This is only called 775 * the first time that no match happens, so we don't keep getting this 776 * message. Should that prove to be undesirable, we can change it. 777 * This is called when all drivers that can attach to a given bus 778 * decline to accept this device. Other errors may not be detected. 779 */ 780 static void 781 devnomatch(device_t dev) 782 { 783 devaddq("?", "", dev); 784 } 785 786 static int 787 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 788 { 789 struct dev_event_info *n1; 790 int dis, error; 791 792 dis = (devctl_queue_length == 0); 793 error = sysctl_handle_int(oidp, &dis, 0, req); 794 if (error || !req->newptr) 795 return (error); 796 if (mtx_initialized(&devsoftc.mtx)) 797 mtx_lock(&devsoftc.mtx); 798 if (dis) { 799 while (!TAILQ_EMPTY(&devsoftc.devq)) { 800 n1 = TAILQ_FIRST(&devsoftc.devq); 801 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 802 free(n1->dei_data, M_BUS); 803 free(n1, M_BUS); 804 } 805 devsoftc.queued = 0; 806 devctl_queue_length = 0; 807 } else { 808 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 809 } 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_unlock(&devsoftc.mtx); 812 return (0); 813 } 814 815 static int 816 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 817 { 818 struct dev_event_info *n1; 819 int q, error; 820 821 q = devctl_queue_length; 822 error = sysctl_handle_int(oidp, &q, 0, req); 823 if (error || !req->newptr) 824 return (error); 825 if (q < 0) 826 return (EINVAL); 827 if (mtx_initialized(&devsoftc.mtx)) 828 mtx_lock(&devsoftc.mtx); 829 devctl_queue_length = q; 830 while (devsoftc.queued > devctl_queue_length) { 831 n1 = TAILQ_FIRST(&devsoftc.devq); 832 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 833 free(n1->dei_data, M_BUS); 834 free(n1, M_BUS); 835 devsoftc.queued--; 836 } 837 if (mtx_initialized(&devsoftc.mtx)) 838 mtx_unlock(&devsoftc.mtx); 839 return (0); 840 } 841 842 /** 843 * @brief safely quotes strings that might have double quotes in them. 844 * 845 * The devctl protocol relies on quoted strings having matching quotes. 846 * This routine quotes any internal quotes so the resulting string 847 * is safe to pass to snprintf to construct, for example pnp info strings. 848 * Strings are always terminated with a NUL, but may be truncated if longer 849 * than @p len bytes after quotes. 850 * 851 * @param dst Buffer to hold the string. Must be at least @p len bytes long 852 * @param src Original buffer. 853 * @param len Length of buffer pointed to by @dst, including trailing NUL 854 */ 855 void 856 devctl_safe_quote(char *dst, const char *src, size_t len) 857 { 858 char *walker = dst, *ep = dst + len - 1; 859 860 if (len == 0) 861 return; 862 while (src != NULL && walker < ep) 863 { 864 if (*src == '"') { 865 if (ep - walker < 2) 866 break; 867 *walker++ = '\\'; 868 } 869 *walker++ = *src++; 870 } 871 *walker = '\0'; 872 } 873 874 /* End of /dev/devctl code */ 875 876 static TAILQ_HEAD(,device) bus_data_devices; 877 static int bus_data_generation = 1; 878 879 static kobj_method_t null_methods[] = { 880 KOBJMETHOD_END 881 }; 882 883 DEFINE_CLASS(null, null_methods, 0); 884 885 /* 886 * Bus pass implementation 887 */ 888 889 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 890 int bus_current_pass = BUS_PASS_ROOT; 891 892 /** 893 * @internal 894 * @brief Register the pass level of a new driver attachment 895 * 896 * Register a new driver attachment's pass level. If no driver 897 * attachment with the same pass level has been added, then @p new 898 * will be added to the global passes list. 899 * 900 * @param new the new driver attachment 901 */ 902 static void 903 driver_register_pass(struct driverlink *new) 904 { 905 struct driverlink *dl; 906 907 /* We only consider pass numbers during boot. */ 908 if (bus_current_pass == BUS_PASS_DEFAULT) 909 return; 910 911 /* 912 * Walk the passes list. If we already know about this pass 913 * then there is nothing to do. If we don't, then insert this 914 * driver link into the list. 915 */ 916 TAILQ_FOREACH(dl, &passes, passlink) { 917 if (dl->pass < new->pass) 918 continue; 919 if (dl->pass == new->pass) 920 return; 921 TAILQ_INSERT_BEFORE(dl, new, passlink); 922 return; 923 } 924 TAILQ_INSERT_TAIL(&passes, new, passlink); 925 } 926 927 /** 928 * @brief Raise the current bus pass 929 * 930 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 931 * method on the root bus to kick off a new device tree scan for each 932 * new pass level that has at least one driver. 933 */ 934 void 935 bus_set_pass(int pass) 936 { 937 struct driverlink *dl; 938 939 if (bus_current_pass > pass) 940 panic("Attempt to lower bus pass level"); 941 942 TAILQ_FOREACH(dl, &passes, passlink) { 943 /* Skip pass values below the current pass level. */ 944 if (dl->pass <= bus_current_pass) 945 continue; 946 947 /* 948 * Bail once we hit a driver with a pass level that is 949 * too high. 950 */ 951 if (dl->pass > pass) 952 break; 953 954 /* 955 * Raise the pass level to the next level and rescan 956 * the tree. 957 */ 958 bus_current_pass = dl->pass; 959 BUS_NEW_PASS(root_bus); 960 } 961 962 /* 963 * If there isn't a driver registered for the requested pass, 964 * then bus_current_pass might still be less than 'pass'. Set 965 * it to 'pass' in that case. 966 */ 967 if (bus_current_pass < pass) 968 bus_current_pass = pass; 969 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 970 } 971 972 /* 973 * Devclass implementation 974 */ 975 976 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 977 978 /** 979 * @internal 980 * @brief Find or create a device class 981 * 982 * If a device class with the name @p classname exists, return it, 983 * otherwise if @p create is non-zero create and return a new device 984 * class. 985 * 986 * If @p parentname is non-NULL, the parent of the devclass is set to 987 * the devclass of that name. 988 * 989 * @param classname the devclass name to find or create 990 * @param parentname the parent devclass name or @c NULL 991 * @param create non-zero to create a devclass 992 */ 993 static devclass_t 994 devclass_find_internal(const char *classname, const char *parentname, 995 int create) 996 { 997 devclass_t dc; 998 999 PDEBUG(("looking for %s", classname)); 1000 if (!classname) 1001 return (NULL); 1002 1003 TAILQ_FOREACH(dc, &devclasses, link) { 1004 if (!strcmp(dc->name, classname)) 1005 break; 1006 } 1007 1008 if (create && !dc) { 1009 PDEBUG(("creating %s", classname)); 1010 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1011 M_BUS, M_NOWAIT | M_ZERO); 1012 if (!dc) 1013 return (NULL); 1014 dc->parent = NULL; 1015 dc->name = (char*) (dc + 1); 1016 strcpy(dc->name, classname); 1017 TAILQ_INIT(&dc->drivers); 1018 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1019 1020 bus_data_generation_update(); 1021 } 1022 1023 /* 1024 * If a parent class is specified, then set that as our parent so 1025 * that this devclass will support drivers for the parent class as 1026 * well. If the parent class has the same name don't do this though 1027 * as it creates a cycle that can trigger an infinite loop in 1028 * device_probe_child() if a device exists for which there is no 1029 * suitable driver. 1030 */ 1031 if (parentname && dc && !dc->parent && 1032 strcmp(classname, parentname) != 0) { 1033 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1034 dc->parent->flags |= DC_HAS_CHILDREN; 1035 } 1036 1037 return (dc); 1038 } 1039 1040 /** 1041 * @brief Create a device class 1042 * 1043 * If a device class with the name @p classname exists, return it, 1044 * otherwise create and return a new device class. 1045 * 1046 * @param classname the devclass name to find or create 1047 */ 1048 devclass_t 1049 devclass_create(const char *classname) 1050 { 1051 return (devclass_find_internal(classname, NULL, TRUE)); 1052 } 1053 1054 /** 1055 * @brief Find a device class 1056 * 1057 * If a device class with the name @p classname exists, return it, 1058 * otherwise return @c NULL. 1059 * 1060 * @param classname the devclass name to find 1061 */ 1062 devclass_t 1063 devclass_find(const char *classname) 1064 { 1065 return (devclass_find_internal(classname, NULL, FALSE)); 1066 } 1067 1068 /** 1069 * @brief Register that a device driver has been added to a devclass 1070 * 1071 * Register that a device driver has been added to a devclass. This 1072 * is called by devclass_add_driver to accomplish the recursive 1073 * notification of all the children classes of dc, as well as dc. 1074 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1075 * the devclass. 1076 * 1077 * We do a full search here of the devclass list at each iteration 1078 * level to save storing children-lists in the devclass structure. If 1079 * we ever move beyond a few dozen devices doing this, we may need to 1080 * reevaluate... 1081 * 1082 * @param dc the devclass to edit 1083 * @param driver the driver that was just added 1084 */ 1085 static void 1086 devclass_driver_added(devclass_t dc, driver_t *driver) 1087 { 1088 devclass_t parent; 1089 int i; 1090 1091 /* 1092 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1093 */ 1094 for (i = 0; i < dc->maxunit; i++) 1095 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1096 BUS_DRIVER_ADDED(dc->devices[i], driver); 1097 1098 /* 1099 * Walk through the children classes. Since we only keep a 1100 * single parent pointer around, we walk the entire list of 1101 * devclasses looking for children. We set the 1102 * DC_HAS_CHILDREN flag when a child devclass is created on 1103 * the parent, so we only walk the list for those devclasses 1104 * that have children. 1105 */ 1106 if (!(dc->flags & DC_HAS_CHILDREN)) 1107 return; 1108 parent = dc; 1109 TAILQ_FOREACH(dc, &devclasses, link) { 1110 if (dc->parent == parent) 1111 devclass_driver_added(dc, driver); 1112 } 1113 } 1114 1115 /** 1116 * @brief Add a device driver to a device class 1117 * 1118 * Add a device driver to a devclass. This is normally called 1119 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1120 * all devices in the devclass will be called to allow them to attempt 1121 * to re-probe any unmatched children. 1122 * 1123 * @param dc the devclass to edit 1124 * @param driver the driver to register 1125 */ 1126 int 1127 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1128 { 1129 driverlink_t dl; 1130 const char *parentname; 1131 1132 PDEBUG(("%s", DRIVERNAME(driver))); 1133 1134 /* Don't allow invalid pass values. */ 1135 if (pass <= BUS_PASS_ROOT) 1136 return (EINVAL); 1137 1138 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1139 if (!dl) 1140 return (ENOMEM); 1141 1142 /* 1143 * Compile the driver's methods. Also increase the reference count 1144 * so that the class doesn't get freed when the last instance 1145 * goes. This means we can safely use static methods and avoids a 1146 * double-free in devclass_delete_driver. 1147 */ 1148 kobj_class_compile((kobj_class_t) driver); 1149 1150 /* 1151 * If the driver has any base classes, make the 1152 * devclass inherit from the devclass of the driver's 1153 * first base class. This will allow the system to 1154 * search for drivers in both devclasses for children 1155 * of a device using this driver. 1156 */ 1157 if (driver->baseclasses) 1158 parentname = driver->baseclasses[0]->name; 1159 else 1160 parentname = NULL; 1161 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1162 1163 dl->driver = driver; 1164 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1165 driver->refs++; /* XXX: kobj_mtx */ 1166 dl->pass = pass; 1167 driver_register_pass(dl); 1168 1169 devclass_driver_added(dc, driver); 1170 bus_data_generation_update(); 1171 return (0); 1172 } 1173 1174 /** 1175 * @brief Register that a device driver has been deleted from a devclass 1176 * 1177 * Register that a device driver has been removed from a devclass. 1178 * This is called by devclass_delete_driver to accomplish the 1179 * recursive notification of all the children classes of busclass, as 1180 * well as busclass. Each layer will attempt to detach the driver 1181 * from any devices that are children of the bus's devclass. The function 1182 * will return an error if a device fails to detach. 1183 * 1184 * We do a full search here of the devclass list at each iteration 1185 * level to save storing children-lists in the devclass structure. If 1186 * we ever move beyond a few dozen devices doing this, we may need to 1187 * reevaluate... 1188 * 1189 * @param busclass the devclass of the parent bus 1190 * @param dc the devclass of the driver being deleted 1191 * @param driver the driver being deleted 1192 */ 1193 static int 1194 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1195 { 1196 devclass_t parent; 1197 device_t dev; 1198 int error, i; 1199 1200 /* 1201 * Disassociate from any devices. We iterate through all the 1202 * devices in the devclass of the driver and detach any which are 1203 * using the driver and which have a parent in the devclass which 1204 * we are deleting from. 1205 * 1206 * Note that since a driver can be in multiple devclasses, we 1207 * should not detach devices which are not children of devices in 1208 * the affected devclass. 1209 */ 1210 for (i = 0; i < dc->maxunit; i++) { 1211 if (dc->devices[i]) { 1212 dev = dc->devices[i]; 1213 if (dev->driver == driver && dev->parent && 1214 dev->parent->devclass == busclass) { 1215 if ((error = device_detach(dev)) != 0) 1216 return (error); 1217 BUS_PROBE_NOMATCH(dev->parent, dev); 1218 devnomatch(dev); 1219 dev->flags |= DF_DONENOMATCH; 1220 } 1221 } 1222 } 1223 1224 /* 1225 * Walk through the children classes. Since we only keep a 1226 * single parent pointer around, we walk the entire list of 1227 * devclasses looking for children. We set the 1228 * DC_HAS_CHILDREN flag when a child devclass is created on 1229 * the parent, so we only walk the list for those devclasses 1230 * that have children. 1231 */ 1232 if (!(busclass->flags & DC_HAS_CHILDREN)) 1233 return (0); 1234 parent = busclass; 1235 TAILQ_FOREACH(busclass, &devclasses, link) { 1236 if (busclass->parent == parent) { 1237 error = devclass_driver_deleted(busclass, dc, driver); 1238 if (error) 1239 return (error); 1240 } 1241 } 1242 return (0); 1243 } 1244 1245 /** 1246 * @brief Delete a device driver from a device class 1247 * 1248 * Delete a device driver from a devclass. This is normally called 1249 * automatically by DRIVER_MODULE(). 1250 * 1251 * If the driver is currently attached to any devices, 1252 * devclass_delete_driver() will first attempt to detach from each 1253 * device. If one of the detach calls fails, the driver will not be 1254 * deleted. 1255 * 1256 * @param dc the devclass to edit 1257 * @param driver the driver to unregister 1258 */ 1259 int 1260 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1261 { 1262 devclass_t dc = devclass_find(driver->name); 1263 driverlink_t dl; 1264 int error; 1265 1266 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1267 1268 if (!dc) 1269 return (0); 1270 1271 /* 1272 * Find the link structure in the bus' list of drivers. 1273 */ 1274 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1275 if (dl->driver == driver) 1276 break; 1277 } 1278 1279 if (!dl) { 1280 PDEBUG(("%s not found in %s list", driver->name, 1281 busclass->name)); 1282 return (ENOENT); 1283 } 1284 1285 error = devclass_driver_deleted(busclass, dc, driver); 1286 if (error != 0) 1287 return (error); 1288 1289 TAILQ_REMOVE(&busclass->drivers, dl, link); 1290 free(dl, M_BUS); 1291 1292 /* XXX: kobj_mtx */ 1293 driver->refs--; 1294 if (driver->refs == 0) 1295 kobj_class_free((kobj_class_t) driver); 1296 1297 bus_data_generation_update(); 1298 return (0); 1299 } 1300 1301 /** 1302 * @brief Quiesces a set of device drivers from a device class 1303 * 1304 * Quiesce a device driver from a devclass. This is normally called 1305 * automatically by DRIVER_MODULE(). 1306 * 1307 * If the driver is currently attached to any devices, 1308 * devclass_quiesece_driver() will first attempt to quiesce each 1309 * device. 1310 * 1311 * @param dc the devclass to edit 1312 * @param driver the driver to unregister 1313 */ 1314 static int 1315 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1316 { 1317 devclass_t dc = devclass_find(driver->name); 1318 driverlink_t dl; 1319 device_t dev; 1320 int i; 1321 int error; 1322 1323 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1324 1325 if (!dc) 1326 return (0); 1327 1328 /* 1329 * Find the link structure in the bus' list of drivers. 1330 */ 1331 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1332 if (dl->driver == driver) 1333 break; 1334 } 1335 1336 if (!dl) { 1337 PDEBUG(("%s not found in %s list", driver->name, 1338 busclass->name)); 1339 return (ENOENT); 1340 } 1341 1342 /* 1343 * Quiesce all devices. We iterate through all the devices in 1344 * the devclass of the driver and quiesce any which are using 1345 * the driver and which have a parent in the devclass which we 1346 * are quiescing. 1347 * 1348 * Note that since a driver can be in multiple devclasses, we 1349 * should not quiesce devices which are not children of 1350 * devices in the affected devclass. 1351 */ 1352 for (i = 0; i < dc->maxunit; i++) { 1353 if (dc->devices[i]) { 1354 dev = dc->devices[i]; 1355 if (dev->driver == driver && dev->parent && 1356 dev->parent->devclass == busclass) { 1357 if ((error = device_quiesce(dev)) != 0) 1358 return (error); 1359 } 1360 } 1361 } 1362 1363 return (0); 1364 } 1365 1366 /** 1367 * @internal 1368 */ 1369 static driverlink_t 1370 devclass_find_driver_internal(devclass_t dc, const char *classname) 1371 { 1372 driverlink_t dl; 1373 1374 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1375 1376 TAILQ_FOREACH(dl, &dc->drivers, link) { 1377 if (!strcmp(dl->driver->name, classname)) 1378 return (dl); 1379 } 1380 1381 PDEBUG(("not found")); 1382 return (NULL); 1383 } 1384 1385 /** 1386 * @brief Return the name of the devclass 1387 */ 1388 const char * 1389 devclass_get_name(devclass_t dc) 1390 { 1391 return (dc->name); 1392 } 1393 1394 /** 1395 * @brief Find a device given a unit number 1396 * 1397 * @param dc the devclass to search 1398 * @param unit the unit number to search for 1399 * 1400 * @returns the device with the given unit number or @c 1401 * NULL if there is no such device 1402 */ 1403 device_t 1404 devclass_get_device(devclass_t dc, int unit) 1405 { 1406 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1407 return (NULL); 1408 return (dc->devices[unit]); 1409 } 1410 1411 /** 1412 * @brief Find the softc field of a device given a unit number 1413 * 1414 * @param dc the devclass to search 1415 * @param unit the unit number to search for 1416 * 1417 * @returns the softc field of the device with the given 1418 * unit number or @c NULL if there is no such 1419 * device 1420 */ 1421 void * 1422 devclass_get_softc(devclass_t dc, int unit) 1423 { 1424 device_t dev; 1425 1426 dev = devclass_get_device(dc, unit); 1427 if (!dev) 1428 return (NULL); 1429 1430 return (device_get_softc(dev)); 1431 } 1432 1433 /** 1434 * @brief Get a list of devices in the devclass 1435 * 1436 * An array containing a list of all the devices in the given devclass 1437 * is allocated and returned in @p *devlistp. The number of devices 1438 * in the array is returned in @p *devcountp. The caller should free 1439 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1440 * 1441 * @param dc the devclass to examine 1442 * @param devlistp points at location for array pointer return 1443 * value 1444 * @param devcountp points at location for array size return value 1445 * 1446 * @retval 0 success 1447 * @retval ENOMEM the array allocation failed 1448 */ 1449 int 1450 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1451 { 1452 int count, i; 1453 device_t *list; 1454 1455 count = devclass_get_count(dc); 1456 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1457 if (!list) 1458 return (ENOMEM); 1459 1460 count = 0; 1461 for (i = 0; i < dc->maxunit; i++) { 1462 if (dc->devices[i]) { 1463 list[count] = dc->devices[i]; 1464 count++; 1465 } 1466 } 1467 1468 *devlistp = list; 1469 *devcountp = count; 1470 1471 return (0); 1472 } 1473 1474 /** 1475 * @brief Get a list of drivers in the devclass 1476 * 1477 * An array containing a list of pointers to all the drivers in the 1478 * given devclass is allocated and returned in @p *listp. The number 1479 * of drivers in the array is returned in @p *countp. The caller should 1480 * free the array using @c free(p, M_TEMP). 1481 * 1482 * @param dc the devclass to examine 1483 * @param listp gives location for array pointer return value 1484 * @param countp gives location for number of array elements 1485 * return value 1486 * 1487 * @retval 0 success 1488 * @retval ENOMEM the array allocation failed 1489 */ 1490 int 1491 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1492 { 1493 driverlink_t dl; 1494 driver_t **list; 1495 int count; 1496 1497 count = 0; 1498 TAILQ_FOREACH(dl, &dc->drivers, link) 1499 count++; 1500 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1501 if (list == NULL) 1502 return (ENOMEM); 1503 1504 count = 0; 1505 TAILQ_FOREACH(dl, &dc->drivers, link) { 1506 list[count] = dl->driver; 1507 count++; 1508 } 1509 *listp = list; 1510 *countp = count; 1511 1512 return (0); 1513 } 1514 1515 /** 1516 * @brief Get the number of devices in a devclass 1517 * 1518 * @param dc the devclass to examine 1519 */ 1520 int 1521 devclass_get_count(devclass_t dc) 1522 { 1523 int count, i; 1524 1525 count = 0; 1526 for (i = 0; i < dc->maxunit; i++) 1527 if (dc->devices[i]) 1528 count++; 1529 return (count); 1530 } 1531 1532 /** 1533 * @brief Get the maximum unit number used in a devclass 1534 * 1535 * Note that this is one greater than the highest currently-allocated 1536 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1537 * that not even the devclass has been allocated yet. 1538 * 1539 * @param dc the devclass to examine 1540 */ 1541 int 1542 devclass_get_maxunit(devclass_t dc) 1543 { 1544 if (dc == NULL) 1545 return (-1); 1546 return (dc->maxunit); 1547 } 1548 1549 /** 1550 * @brief Find a free unit number in a devclass 1551 * 1552 * This function searches for the first unused unit number greater 1553 * that or equal to @p unit. 1554 * 1555 * @param dc the devclass to examine 1556 * @param unit the first unit number to check 1557 */ 1558 int 1559 devclass_find_free_unit(devclass_t dc, int unit) 1560 { 1561 if (dc == NULL) 1562 return (unit); 1563 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1564 unit++; 1565 return (unit); 1566 } 1567 1568 /** 1569 * @brief Set the parent of a devclass 1570 * 1571 * The parent class is normally initialised automatically by 1572 * DRIVER_MODULE(). 1573 * 1574 * @param dc the devclass to edit 1575 * @param pdc the new parent devclass 1576 */ 1577 void 1578 devclass_set_parent(devclass_t dc, devclass_t pdc) 1579 { 1580 dc->parent = pdc; 1581 } 1582 1583 /** 1584 * @brief Get the parent of a devclass 1585 * 1586 * @param dc the devclass to examine 1587 */ 1588 devclass_t 1589 devclass_get_parent(devclass_t dc) 1590 { 1591 return (dc->parent); 1592 } 1593 1594 struct sysctl_ctx_list * 1595 devclass_get_sysctl_ctx(devclass_t dc) 1596 { 1597 return (&dc->sysctl_ctx); 1598 } 1599 1600 struct sysctl_oid * 1601 devclass_get_sysctl_tree(devclass_t dc) 1602 { 1603 return (dc->sysctl_tree); 1604 } 1605 1606 /** 1607 * @internal 1608 * @brief Allocate a unit number 1609 * 1610 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1611 * will do). The allocated unit number is returned in @p *unitp. 1612 1613 * @param dc the devclass to allocate from 1614 * @param unitp points at the location for the allocated unit 1615 * number 1616 * 1617 * @retval 0 success 1618 * @retval EEXIST the requested unit number is already allocated 1619 * @retval ENOMEM memory allocation failure 1620 */ 1621 static int 1622 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1623 { 1624 const char *s; 1625 int unit = *unitp; 1626 1627 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1628 1629 /* Ask the parent bus if it wants to wire this device. */ 1630 if (unit == -1) 1631 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1632 &unit); 1633 1634 /* If we were given a wired unit number, check for existing device */ 1635 /* XXX imp XXX */ 1636 if (unit != -1) { 1637 if (unit >= 0 && unit < dc->maxunit && 1638 dc->devices[unit] != NULL) { 1639 if (bootverbose) 1640 printf("%s: %s%d already exists; skipping it\n", 1641 dc->name, dc->name, *unitp); 1642 return (EEXIST); 1643 } 1644 } else { 1645 /* Unwired device, find the next available slot for it */ 1646 unit = 0; 1647 for (unit = 0;; unit++) { 1648 /* If there is an "at" hint for a unit then skip it. */ 1649 if (resource_string_value(dc->name, unit, "at", &s) == 1650 0) 1651 continue; 1652 1653 /* If this device slot is already in use, skip it. */ 1654 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1655 continue; 1656 1657 break; 1658 } 1659 } 1660 1661 /* 1662 * We've selected a unit beyond the length of the table, so let's 1663 * extend the table to make room for all units up to and including 1664 * this one. 1665 */ 1666 if (unit >= dc->maxunit) { 1667 device_t *newlist, *oldlist; 1668 int newsize; 1669 1670 oldlist = dc->devices; 1671 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1672 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1673 if (!newlist) 1674 return (ENOMEM); 1675 if (oldlist != NULL) 1676 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1677 bzero(newlist + dc->maxunit, 1678 sizeof(device_t) * (newsize - dc->maxunit)); 1679 dc->devices = newlist; 1680 dc->maxunit = newsize; 1681 if (oldlist != NULL) 1682 free(oldlist, M_BUS); 1683 } 1684 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1685 1686 *unitp = unit; 1687 return (0); 1688 } 1689 1690 /** 1691 * @internal 1692 * @brief Add a device to a devclass 1693 * 1694 * A unit number is allocated for the device (using the device's 1695 * preferred unit number if any) and the device is registered in the 1696 * devclass. This allows the device to be looked up by its unit 1697 * number, e.g. by decoding a dev_t minor number. 1698 * 1699 * @param dc the devclass to add to 1700 * @param dev the device to add 1701 * 1702 * @retval 0 success 1703 * @retval EEXIST the requested unit number is already allocated 1704 * @retval ENOMEM memory allocation failure 1705 */ 1706 static int 1707 devclass_add_device(devclass_t dc, device_t dev) 1708 { 1709 int buflen, error; 1710 1711 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1712 1713 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1714 if (buflen < 0) 1715 return (ENOMEM); 1716 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1717 if (!dev->nameunit) 1718 return (ENOMEM); 1719 1720 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1721 free(dev->nameunit, M_BUS); 1722 dev->nameunit = NULL; 1723 return (error); 1724 } 1725 dc->devices[dev->unit] = dev; 1726 dev->devclass = dc; 1727 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1728 1729 return (0); 1730 } 1731 1732 /** 1733 * @internal 1734 * @brief Delete a device from a devclass 1735 * 1736 * The device is removed from the devclass's device list and its unit 1737 * number is freed. 1738 1739 * @param dc the devclass to delete from 1740 * @param dev the device to delete 1741 * 1742 * @retval 0 success 1743 */ 1744 static int 1745 devclass_delete_device(devclass_t dc, device_t dev) 1746 { 1747 if (!dc || !dev) 1748 return (0); 1749 1750 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1751 1752 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1753 panic("devclass_delete_device: inconsistent device class"); 1754 dc->devices[dev->unit] = NULL; 1755 if (dev->flags & DF_WILDCARD) 1756 dev->unit = -1; 1757 dev->devclass = NULL; 1758 free(dev->nameunit, M_BUS); 1759 dev->nameunit = NULL; 1760 1761 return (0); 1762 } 1763 1764 /** 1765 * @internal 1766 * @brief Make a new device and add it as a child of @p parent 1767 * 1768 * @param parent the parent of the new device 1769 * @param name the devclass name of the new device or @c NULL 1770 * to leave the devclass unspecified 1771 * @parem unit the unit number of the new device of @c -1 to 1772 * leave the unit number unspecified 1773 * 1774 * @returns the new device 1775 */ 1776 static device_t 1777 make_device(device_t parent, const char *name, int unit) 1778 { 1779 device_t dev; 1780 devclass_t dc; 1781 1782 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1783 1784 if (name) { 1785 dc = devclass_find_internal(name, NULL, TRUE); 1786 if (!dc) { 1787 printf("make_device: can't find device class %s\n", 1788 name); 1789 return (NULL); 1790 } 1791 } else { 1792 dc = NULL; 1793 } 1794 1795 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1796 if (!dev) 1797 return (NULL); 1798 1799 dev->parent = parent; 1800 TAILQ_INIT(&dev->children); 1801 kobj_init((kobj_t) dev, &null_class); 1802 dev->driver = NULL; 1803 dev->devclass = NULL; 1804 dev->unit = unit; 1805 dev->nameunit = NULL; 1806 dev->desc = NULL; 1807 dev->busy = 0; 1808 dev->devflags = 0; 1809 dev->flags = DF_ENABLED; 1810 dev->order = 0; 1811 if (unit == -1) 1812 dev->flags |= DF_WILDCARD; 1813 if (name) { 1814 dev->flags |= DF_FIXEDCLASS; 1815 if (devclass_add_device(dc, dev)) { 1816 kobj_delete((kobj_t) dev, M_BUS); 1817 return (NULL); 1818 } 1819 } 1820 dev->ivars = NULL; 1821 dev->softc = NULL; 1822 1823 dev->state = DS_NOTPRESENT; 1824 1825 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1826 bus_data_generation_update(); 1827 1828 return (dev); 1829 } 1830 1831 /** 1832 * @internal 1833 * @brief Print a description of a device. 1834 */ 1835 static int 1836 device_print_child(device_t dev, device_t child) 1837 { 1838 int retval = 0; 1839 1840 if (device_is_alive(child)) 1841 retval += BUS_PRINT_CHILD(dev, child); 1842 else 1843 retval += device_printf(child, " not found\n"); 1844 1845 return (retval); 1846 } 1847 1848 /** 1849 * @brief Create a new device 1850 * 1851 * This creates a new device and adds it as a child of an existing 1852 * parent device. The new device will be added after the last existing 1853 * child with order zero. 1854 * 1855 * @param dev the device which will be the parent of the 1856 * new child device 1857 * @param name devclass name for new device or @c NULL if not 1858 * specified 1859 * @param unit unit number for new device or @c -1 if not 1860 * specified 1861 * 1862 * @returns the new device 1863 */ 1864 device_t 1865 device_add_child(device_t dev, const char *name, int unit) 1866 { 1867 return (device_add_child_ordered(dev, 0, name, unit)); 1868 } 1869 1870 /** 1871 * @brief Create a new device 1872 * 1873 * This creates a new device and adds it as a child of an existing 1874 * parent device. The new device will be added after the last existing 1875 * child with the same order. 1876 * 1877 * @param dev the device which will be the parent of the 1878 * new child device 1879 * @param order a value which is used to partially sort the 1880 * children of @p dev - devices created using 1881 * lower values of @p order appear first in @p 1882 * dev's list of children 1883 * @param name devclass name for new device or @c NULL if not 1884 * specified 1885 * @param unit unit number for new device or @c -1 if not 1886 * specified 1887 * 1888 * @returns the new device 1889 */ 1890 device_t 1891 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1892 { 1893 device_t child; 1894 device_t place; 1895 1896 PDEBUG(("%s at %s with order %u as unit %d", 1897 name, DEVICENAME(dev), order, unit)); 1898 KASSERT(name != NULL || unit == -1, 1899 ("child device with wildcard name and specific unit number")); 1900 1901 child = make_device(dev, name, unit); 1902 if (child == NULL) 1903 return (child); 1904 child->order = order; 1905 1906 TAILQ_FOREACH(place, &dev->children, link) { 1907 if (place->order > order) 1908 break; 1909 } 1910 1911 if (place) { 1912 /* 1913 * The device 'place' is the first device whose order is 1914 * greater than the new child. 1915 */ 1916 TAILQ_INSERT_BEFORE(place, child, link); 1917 } else { 1918 /* 1919 * The new child's order is greater or equal to the order of 1920 * any existing device. Add the child to the tail of the list. 1921 */ 1922 TAILQ_INSERT_TAIL(&dev->children, child, link); 1923 } 1924 1925 bus_data_generation_update(); 1926 return (child); 1927 } 1928 1929 /** 1930 * @brief Delete a device 1931 * 1932 * This function deletes a device along with all of its children. If 1933 * the device currently has a driver attached to it, the device is 1934 * detached first using device_detach(). 1935 * 1936 * @param dev the parent device 1937 * @param child the device to delete 1938 * 1939 * @retval 0 success 1940 * @retval non-zero a unit error code describing the error 1941 */ 1942 int 1943 device_delete_child(device_t dev, device_t child) 1944 { 1945 int error; 1946 device_t grandchild; 1947 1948 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1949 1950 /* remove children first */ 1951 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1952 error = device_delete_child(child, grandchild); 1953 if (error) 1954 return (error); 1955 } 1956 1957 if ((error = device_detach(child)) != 0) 1958 return (error); 1959 if (child->devclass) 1960 devclass_delete_device(child->devclass, child); 1961 if (child->parent) 1962 BUS_CHILD_DELETED(dev, child); 1963 TAILQ_REMOVE(&dev->children, child, link); 1964 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1965 kobj_delete((kobj_t) child, M_BUS); 1966 1967 bus_data_generation_update(); 1968 return (0); 1969 } 1970 1971 /** 1972 * @brief Delete all children devices of the given device, if any. 1973 * 1974 * This function deletes all children devices of the given device, if 1975 * any, using the device_delete_child() function for each device it 1976 * finds. If a child device cannot be deleted, this function will 1977 * return an error code. 1978 * 1979 * @param dev the parent device 1980 * 1981 * @retval 0 success 1982 * @retval non-zero a device would not detach 1983 */ 1984 int 1985 device_delete_children(device_t dev) 1986 { 1987 device_t child; 1988 int error; 1989 1990 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1991 1992 error = 0; 1993 1994 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1995 error = device_delete_child(dev, child); 1996 if (error) { 1997 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1998 break; 1999 } 2000 } 2001 return (error); 2002 } 2003 2004 /** 2005 * @brief Find a device given a unit number 2006 * 2007 * This is similar to devclass_get_devices() but only searches for 2008 * devices which have @p dev as a parent. 2009 * 2010 * @param dev the parent device to search 2011 * @param unit the unit number to search for. If the unit is -1, 2012 * return the first child of @p dev which has name 2013 * @p classname (that is, the one with the lowest unit.) 2014 * 2015 * @returns the device with the given unit number or @c 2016 * NULL if there is no such device 2017 */ 2018 device_t 2019 device_find_child(device_t dev, const char *classname, int unit) 2020 { 2021 devclass_t dc; 2022 device_t child; 2023 2024 dc = devclass_find(classname); 2025 if (!dc) 2026 return (NULL); 2027 2028 if (unit != -1) { 2029 child = devclass_get_device(dc, unit); 2030 if (child && child->parent == dev) 2031 return (child); 2032 } else { 2033 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2034 child = devclass_get_device(dc, unit); 2035 if (child && child->parent == dev) 2036 return (child); 2037 } 2038 } 2039 return (NULL); 2040 } 2041 2042 /** 2043 * @internal 2044 */ 2045 static driverlink_t 2046 first_matching_driver(devclass_t dc, device_t dev) 2047 { 2048 if (dev->devclass) 2049 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2050 return (TAILQ_FIRST(&dc->drivers)); 2051 } 2052 2053 /** 2054 * @internal 2055 */ 2056 static driverlink_t 2057 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2058 { 2059 if (dev->devclass) { 2060 driverlink_t dl; 2061 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2062 if (!strcmp(dev->devclass->name, dl->driver->name)) 2063 return (dl); 2064 return (NULL); 2065 } 2066 return (TAILQ_NEXT(last, link)); 2067 } 2068 2069 /** 2070 * @internal 2071 */ 2072 int 2073 device_probe_child(device_t dev, device_t child) 2074 { 2075 devclass_t dc; 2076 driverlink_t best = NULL; 2077 driverlink_t dl; 2078 int result, pri = 0; 2079 int hasclass = (child->devclass != NULL); 2080 2081 GIANT_REQUIRED; 2082 2083 dc = dev->devclass; 2084 if (!dc) 2085 panic("device_probe_child: parent device has no devclass"); 2086 2087 /* 2088 * If the state is already probed, then return. However, don't 2089 * return if we can rebid this object. 2090 */ 2091 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2092 return (0); 2093 2094 for (; dc; dc = dc->parent) { 2095 for (dl = first_matching_driver(dc, child); 2096 dl; 2097 dl = next_matching_driver(dc, child, dl)) { 2098 /* If this driver's pass is too high, then ignore it. */ 2099 if (dl->pass > bus_current_pass) 2100 continue; 2101 2102 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2103 result = device_set_driver(child, dl->driver); 2104 if (result == ENOMEM) 2105 return (result); 2106 else if (result != 0) 2107 continue; 2108 if (!hasclass) { 2109 if (device_set_devclass(child, 2110 dl->driver->name) != 0) { 2111 char const * devname = 2112 device_get_name(child); 2113 if (devname == NULL) 2114 devname = "(unknown)"; 2115 printf("driver bug: Unable to set " 2116 "devclass (class: %s " 2117 "devname: %s)\n", 2118 dl->driver->name, 2119 devname); 2120 (void)device_set_driver(child, NULL); 2121 continue; 2122 } 2123 } 2124 2125 /* Fetch any flags for the device before probing. */ 2126 resource_int_value(dl->driver->name, child->unit, 2127 "flags", &child->devflags); 2128 2129 result = DEVICE_PROBE(child); 2130 2131 /* Reset flags and devclass before the next probe. */ 2132 child->devflags = 0; 2133 if (!hasclass) 2134 (void)device_set_devclass(child, NULL); 2135 2136 /* 2137 * If the driver returns SUCCESS, there can be 2138 * no higher match for this device. 2139 */ 2140 if (result == 0) { 2141 best = dl; 2142 pri = 0; 2143 break; 2144 } 2145 2146 /* 2147 * Probes that return BUS_PROBE_NOWILDCARD or lower 2148 * only match on devices whose driver was explicitly 2149 * specified. 2150 */ 2151 if (result <= BUS_PROBE_NOWILDCARD && 2152 !(child->flags & DF_FIXEDCLASS)) { 2153 result = ENXIO; 2154 } 2155 2156 /* 2157 * The driver returned an error so it 2158 * certainly doesn't match. 2159 */ 2160 if (result > 0) { 2161 (void)device_set_driver(child, NULL); 2162 continue; 2163 } 2164 2165 /* 2166 * A priority lower than SUCCESS, remember the 2167 * best matching driver. Initialise the value 2168 * of pri for the first match. 2169 */ 2170 if (best == NULL || result > pri) { 2171 best = dl; 2172 pri = result; 2173 continue; 2174 } 2175 } 2176 /* 2177 * If we have an unambiguous match in this devclass, 2178 * don't look in the parent. 2179 */ 2180 if (best && pri == 0) 2181 break; 2182 } 2183 2184 /* 2185 * If we found a driver, change state and initialise the devclass. 2186 */ 2187 /* XXX What happens if we rebid and got no best? */ 2188 if (best) { 2189 /* 2190 * If this device was attached, and we were asked to 2191 * rescan, and it is a different driver, then we have 2192 * to detach the old driver and reattach this new one. 2193 * Note, we don't have to check for DF_REBID here 2194 * because if the state is > DS_ALIVE, we know it must 2195 * be. 2196 * 2197 * This assumes that all DF_REBID drivers can have 2198 * their probe routine called at any time and that 2199 * they are idempotent as well as completely benign in 2200 * normal operations. 2201 * 2202 * We also have to make sure that the detach 2203 * succeeded, otherwise we fail the operation (or 2204 * maybe it should just fail silently? I'm torn). 2205 */ 2206 if (child->state > DS_ALIVE && best->driver != child->driver) 2207 if ((result = device_detach(dev)) != 0) 2208 return (result); 2209 2210 /* Set the winning driver, devclass, and flags. */ 2211 if (!child->devclass) { 2212 result = device_set_devclass(child, best->driver->name); 2213 if (result != 0) 2214 return (result); 2215 } 2216 result = device_set_driver(child, best->driver); 2217 if (result != 0) 2218 return (result); 2219 resource_int_value(best->driver->name, child->unit, 2220 "flags", &child->devflags); 2221 2222 if (pri < 0) { 2223 /* 2224 * A bit bogus. Call the probe method again to make 2225 * sure that we have the right description. 2226 */ 2227 DEVICE_PROBE(child); 2228 #if 0 2229 child->flags |= DF_REBID; 2230 #endif 2231 } else 2232 child->flags &= ~DF_REBID; 2233 child->state = DS_ALIVE; 2234 2235 bus_data_generation_update(); 2236 return (0); 2237 } 2238 2239 return (ENXIO); 2240 } 2241 2242 /** 2243 * @brief Return the parent of a device 2244 */ 2245 device_t 2246 device_get_parent(device_t dev) 2247 { 2248 return (dev->parent); 2249 } 2250 2251 /** 2252 * @brief Get a list of children of a device 2253 * 2254 * An array containing a list of all the children of the given device 2255 * is allocated and returned in @p *devlistp. The number of devices 2256 * in the array is returned in @p *devcountp. The caller should free 2257 * the array using @c free(p, M_TEMP). 2258 * 2259 * @param dev the device to examine 2260 * @param devlistp points at location for array pointer return 2261 * value 2262 * @param devcountp points at location for array size return value 2263 * 2264 * @retval 0 success 2265 * @retval ENOMEM the array allocation failed 2266 */ 2267 int 2268 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2269 { 2270 int count; 2271 device_t child; 2272 device_t *list; 2273 2274 count = 0; 2275 TAILQ_FOREACH(child, &dev->children, link) { 2276 count++; 2277 } 2278 if (count == 0) { 2279 *devlistp = NULL; 2280 *devcountp = 0; 2281 return (0); 2282 } 2283 2284 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2285 if (!list) 2286 return (ENOMEM); 2287 2288 count = 0; 2289 TAILQ_FOREACH(child, &dev->children, link) { 2290 list[count] = child; 2291 count++; 2292 } 2293 2294 *devlistp = list; 2295 *devcountp = count; 2296 2297 return (0); 2298 } 2299 2300 /** 2301 * @brief Return the current driver for the device or @c NULL if there 2302 * is no driver currently attached 2303 */ 2304 driver_t * 2305 device_get_driver(device_t dev) 2306 { 2307 return (dev->driver); 2308 } 2309 2310 /** 2311 * @brief Return the current devclass for the device or @c NULL if 2312 * there is none. 2313 */ 2314 devclass_t 2315 device_get_devclass(device_t dev) 2316 { 2317 return (dev->devclass); 2318 } 2319 2320 /** 2321 * @brief Return the name of the device's devclass or @c NULL if there 2322 * is none. 2323 */ 2324 const char * 2325 device_get_name(device_t dev) 2326 { 2327 if (dev != NULL && dev->devclass) 2328 return (devclass_get_name(dev->devclass)); 2329 return (NULL); 2330 } 2331 2332 /** 2333 * @brief Return a string containing the device's devclass name 2334 * followed by an ascii representation of the device's unit number 2335 * (e.g. @c "foo2"). 2336 */ 2337 const char * 2338 device_get_nameunit(device_t dev) 2339 { 2340 return (dev->nameunit); 2341 } 2342 2343 /** 2344 * @brief Return the device's unit number. 2345 */ 2346 int 2347 device_get_unit(device_t dev) 2348 { 2349 return (dev->unit); 2350 } 2351 2352 /** 2353 * @brief Return the device's description string 2354 */ 2355 const char * 2356 device_get_desc(device_t dev) 2357 { 2358 return (dev->desc); 2359 } 2360 2361 /** 2362 * @brief Return the device's flags 2363 */ 2364 uint32_t 2365 device_get_flags(device_t dev) 2366 { 2367 return (dev->devflags); 2368 } 2369 2370 struct sysctl_ctx_list * 2371 device_get_sysctl_ctx(device_t dev) 2372 { 2373 return (&dev->sysctl_ctx); 2374 } 2375 2376 struct sysctl_oid * 2377 device_get_sysctl_tree(device_t dev) 2378 { 2379 return (dev->sysctl_tree); 2380 } 2381 2382 /** 2383 * @brief Print the name of the device followed by a colon and a space 2384 * 2385 * @returns the number of characters printed 2386 */ 2387 int 2388 device_print_prettyname(device_t dev) 2389 { 2390 const char *name = device_get_name(dev); 2391 2392 if (name == NULL) 2393 return (printf("unknown: ")); 2394 return (printf("%s%d: ", name, device_get_unit(dev))); 2395 } 2396 2397 /** 2398 * @brief Print the name of the device followed by a colon, a space 2399 * and the result of calling vprintf() with the value of @p fmt and 2400 * the following arguments. 2401 * 2402 * @returns the number of characters printed 2403 */ 2404 int 2405 device_printf(device_t dev, const char * fmt, ...) 2406 { 2407 va_list ap; 2408 int retval; 2409 2410 retval = device_print_prettyname(dev); 2411 va_start(ap, fmt); 2412 retval += vprintf(fmt, ap); 2413 va_end(ap); 2414 return (retval); 2415 } 2416 2417 /** 2418 * @internal 2419 */ 2420 static void 2421 device_set_desc_internal(device_t dev, const char* desc, int copy) 2422 { 2423 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2424 free(dev->desc, M_BUS); 2425 dev->flags &= ~DF_DESCMALLOCED; 2426 dev->desc = NULL; 2427 } 2428 2429 if (copy && desc) { 2430 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2431 if (dev->desc) { 2432 strcpy(dev->desc, desc); 2433 dev->flags |= DF_DESCMALLOCED; 2434 } 2435 } else { 2436 /* Avoid a -Wcast-qual warning */ 2437 dev->desc = (char *)(uintptr_t) desc; 2438 } 2439 2440 bus_data_generation_update(); 2441 } 2442 2443 /** 2444 * @brief Set the device's description 2445 * 2446 * The value of @c desc should be a string constant that will not 2447 * change (at least until the description is changed in a subsequent 2448 * call to device_set_desc() or device_set_desc_copy()). 2449 */ 2450 void 2451 device_set_desc(device_t dev, const char* desc) 2452 { 2453 device_set_desc_internal(dev, desc, FALSE); 2454 } 2455 2456 /** 2457 * @brief Set the device's description 2458 * 2459 * The string pointed to by @c desc is copied. Use this function if 2460 * the device description is generated, (e.g. with sprintf()). 2461 */ 2462 void 2463 device_set_desc_copy(device_t dev, const char* desc) 2464 { 2465 device_set_desc_internal(dev, desc, TRUE); 2466 } 2467 2468 /** 2469 * @brief Set the device's flags 2470 */ 2471 void 2472 device_set_flags(device_t dev, uint32_t flags) 2473 { 2474 dev->devflags = flags; 2475 } 2476 2477 /** 2478 * @brief Return the device's softc field 2479 * 2480 * The softc is allocated and zeroed when a driver is attached, based 2481 * on the size field of the driver. 2482 */ 2483 void * 2484 device_get_softc(device_t dev) 2485 { 2486 return (dev->softc); 2487 } 2488 2489 /** 2490 * @brief Set the device's softc field 2491 * 2492 * Most drivers do not need to use this since the softc is allocated 2493 * automatically when the driver is attached. 2494 */ 2495 void 2496 device_set_softc(device_t dev, void *softc) 2497 { 2498 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2499 free(dev->softc, M_BUS_SC); 2500 dev->softc = softc; 2501 if (dev->softc) 2502 dev->flags |= DF_EXTERNALSOFTC; 2503 else 2504 dev->flags &= ~DF_EXTERNALSOFTC; 2505 } 2506 2507 /** 2508 * @brief Free claimed softc 2509 * 2510 * Most drivers do not need to use this since the softc is freed 2511 * automatically when the driver is detached. 2512 */ 2513 void 2514 device_free_softc(void *softc) 2515 { 2516 free(softc, M_BUS_SC); 2517 } 2518 2519 /** 2520 * @brief Claim softc 2521 * 2522 * This function can be used to let the driver free the automatically 2523 * allocated softc using "device_free_softc()". This function is 2524 * useful when the driver is refcounting the softc and the softc 2525 * cannot be freed when the "device_detach" method is called. 2526 */ 2527 void 2528 device_claim_softc(device_t dev) 2529 { 2530 if (dev->softc) 2531 dev->flags |= DF_EXTERNALSOFTC; 2532 else 2533 dev->flags &= ~DF_EXTERNALSOFTC; 2534 } 2535 2536 /** 2537 * @brief Get the device's ivars field 2538 * 2539 * The ivars field is used by the parent device to store per-device 2540 * state (e.g. the physical location of the device or a list of 2541 * resources). 2542 */ 2543 void * 2544 device_get_ivars(device_t dev) 2545 { 2546 2547 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2548 return (dev->ivars); 2549 } 2550 2551 /** 2552 * @brief Set the device's ivars field 2553 */ 2554 void 2555 device_set_ivars(device_t dev, void * ivars) 2556 { 2557 2558 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2559 dev->ivars = ivars; 2560 } 2561 2562 /** 2563 * @brief Return the device's state 2564 */ 2565 device_state_t 2566 device_get_state(device_t dev) 2567 { 2568 return (dev->state); 2569 } 2570 2571 /** 2572 * @brief Set the DF_ENABLED flag for the device 2573 */ 2574 void 2575 device_enable(device_t dev) 2576 { 2577 dev->flags |= DF_ENABLED; 2578 } 2579 2580 /** 2581 * @brief Clear the DF_ENABLED flag for the device 2582 */ 2583 void 2584 device_disable(device_t dev) 2585 { 2586 dev->flags &= ~DF_ENABLED; 2587 } 2588 2589 /** 2590 * @brief Increment the busy counter for the device 2591 */ 2592 void 2593 device_busy(device_t dev) 2594 { 2595 if (dev->state < DS_ATTACHING) 2596 panic("device_busy: called for unattached device"); 2597 if (dev->busy == 0 && dev->parent) 2598 device_busy(dev->parent); 2599 dev->busy++; 2600 if (dev->state == DS_ATTACHED) 2601 dev->state = DS_BUSY; 2602 } 2603 2604 /** 2605 * @brief Decrement the busy counter for the device 2606 */ 2607 void 2608 device_unbusy(device_t dev) 2609 { 2610 if (dev->busy != 0 && dev->state != DS_BUSY && 2611 dev->state != DS_ATTACHING) 2612 panic("device_unbusy: called for non-busy device %s", 2613 device_get_nameunit(dev)); 2614 dev->busy--; 2615 if (dev->busy == 0) { 2616 if (dev->parent) 2617 device_unbusy(dev->parent); 2618 if (dev->state == DS_BUSY) 2619 dev->state = DS_ATTACHED; 2620 } 2621 } 2622 2623 /** 2624 * @brief Set the DF_QUIET flag for the device 2625 */ 2626 void 2627 device_quiet(device_t dev) 2628 { 2629 dev->flags |= DF_QUIET; 2630 } 2631 2632 /** 2633 * @brief Clear the DF_QUIET flag for the device 2634 */ 2635 void 2636 device_verbose(device_t dev) 2637 { 2638 dev->flags &= ~DF_QUIET; 2639 } 2640 2641 /** 2642 * @brief Return non-zero if the DF_QUIET flag is set on the device 2643 */ 2644 int 2645 device_is_quiet(device_t dev) 2646 { 2647 return ((dev->flags & DF_QUIET) != 0); 2648 } 2649 2650 /** 2651 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2652 */ 2653 int 2654 device_is_enabled(device_t dev) 2655 { 2656 return ((dev->flags & DF_ENABLED) != 0); 2657 } 2658 2659 /** 2660 * @brief Return non-zero if the device was successfully probed 2661 */ 2662 int 2663 device_is_alive(device_t dev) 2664 { 2665 return (dev->state >= DS_ALIVE); 2666 } 2667 2668 /** 2669 * @brief Return non-zero if the device currently has a driver 2670 * attached to it 2671 */ 2672 int 2673 device_is_attached(device_t dev) 2674 { 2675 return (dev->state >= DS_ATTACHED); 2676 } 2677 2678 /** 2679 * @brief Return non-zero if the device is currently suspended. 2680 */ 2681 int 2682 device_is_suspended(device_t dev) 2683 { 2684 return ((dev->flags & DF_SUSPENDED) != 0); 2685 } 2686 2687 /** 2688 * @brief Set the devclass of a device 2689 * @see devclass_add_device(). 2690 */ 2691 int 2692 device_set_devclass(device_t dev, const char *classname) 2693 { 2694 devclass_t dc; 2695 int error; 2696 2697 if (!classname) { 2698 if (dev->devclass) 2699 devclass_delete_device(dev->devclass, dev); 2700 return (0); 2701 } 2702 2703 if (dev->devclass) { 2704 printf("device_set_devclass: device class already set\n"); 2705 return (EINVAL); 2706 } 2707 2708 dc = devclass_find_internal(classname, NULL, TRUE); 2709 if (!dc) 2710 return (ENOMEM); 2711 2712 error = devclass_add_device(dc, dev); 2713 2714 bus_data_generation_update(); 2715 return (error); 2716 } 2717 2718 /** 2719 * @brief Set the devclass of a device and mark the devclass fixed. 2720 * @see device_set_devclass() 2721 */ 2722 int 2723 device_set_devclass_fixed(device_t dev, const char *classname) 2724 { 2725 int error; 2726 2727 if (classname == NULL) 2728 return (EINVAL); 2729 2730 error = device_set_devclass(dev, classname); 2731 if (error) 2732 return (error); 2733 dev->flags |= DF_FIXEDCLASS; 2734 return (0); 2735 } 2736 2737 /** 2738 * @brief Set the driver of a device 2739 * 2740 * @retval 0 success 2741 * @retval EBUSY the device already has a driver attached 2742 * @retval ENOMEM a memory allocation failure occurred 2743 */ 2744 int 2745 device_set_driver(device_t dev, driver_t *driver) 2746 { 2747 if (dev->state >= DS_ATTACHED) 2748 return (EBUSY); 2749 2750 if (dev->driver == driver) 2751 return (0); 2752 2753 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2754 free(dev->softc, M_BUS_SC); 2755 dev->softc = NULL; 2756 } 2757 device_set_desc(dev, NULL); 2758 kobj_delete((kobj_t) dev, NULL); 2759 dev->driver = driver; 2760 if (driver) { 2761 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2762 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2763 dev->softc = malloc(driver->size, M_BUS_SC, 2764 M_NOWAIT | M_ZERO); 2765 if (!dev->softc) { 2766 kobj_delete((kobj_t) dev, NULL); 2767 kobj_init((kobj_t) dev, &null_class); 2768 dev->driver = NULL; 2769 return (ENOMEM); 2770 } 2771 } 2772 } else { 2773 kobj_init((kobj_t) dev, &null_class); 2774 } 2775 2776 bus_data_generation_update(); 2777 return (0); 2778 } 2779 2780 /** 2781 * @brief Probe a device, and return this status. 2782 * 2783 * This function is the core of the device autoconfiguration 2784 * system. Its purpose is to select a suitable driver for a device and 2785 * then call that driver to initialise the hardware appropriately. The 2786 * driver is selected by calling the DEVICE_PROBE() method of a set of 2787 * candidate drivers and then choosing the driver which returned the 2788 * best value. This driver is then attached to the device using 2789 * device_attach(). 2790 * 2791 * The set of suitable drivers is taken from the list of drivers in 2792 * the parent device's devclass. If the device was originally created 2793 * with a specific class name (see device_add_child()), only drivers 2794 * with that name are probed, otherwise all drivers in the devclass 2795 * are probed. If no drivers return successful probe values in the 2796 * parent devclass, the search continues in the parent of that 2797 * devclass (see devclass_get_parent()) if any. 2798 * 2799 * @param dev the device to initialise 2800 * 2801 * @retval 0 success 2802 * @retval ENXIO no driver was found 2803 * @retval ENOMEM memory allocation failure 2804 * @retval non-zero some other unix error code 2805 * @retval -1 Device already attached 2806 */ 2807 int 2808 device_probe(device_t dev) 2809 { 2810 int error; 2811 2812 GIANT_REQUIRED; 2813 2814 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2815 return (-1); 2816 2817 if (!(dev->flags & DF_ENABLED)) { 2818 if (bootverbose && device_get_name(dev) != NULL) { 2819 device_print_prettyname(dev); 2820 printf("not probed (disabled)\n"); 2821 } 2822 return (-1); 2823 } 2824 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2825 if (bus_current_pass == BUS_PASS_DEFAULT && 2826 !(dev->flags & DF_DONENOMATCH)) { 2827 BUS_PROBE_NOMATCH(dev->parent, dev); 2828 devnomatch(dev); 2829 dev->flags |= DF_DONENOMATCH; 2830 } 2831 return (error); 2832 } 2833 return (0); 2834 } 2835 2836 /** 2837 * @brief Probe a device and attach a driver if possible 2838 * 2839 * calls device_probe() and attaches if that was successful. 2840 */ 2841 int 2842 device_probe_and_attach(device_t dev) 2843 { 2844 int error; 2845 2846 GIANT_REQUIRED; 2847 2848 error = device_probe(dev); 2849 if (error == -1) 2850 return (0); 2851 else if (error != 0) 2852 return (error); 2853 2854 CURVNET_SET_QUIET(vnet0); 2855 error = device_attach(dev); 2856 CURVNET_RESTORE(); 2857 return error; 2858 } 2859 2860 /** 2861 * @brief Attach a device driver to a device 2862 * 2863 * This function is a wrapper around the DEVICE_ATTACH() driver 2864 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2865 * device's sysctl tree, optionally prints a description of the device 2866 * and queues a notification event for user-based device management 2867 * services. 2868 * 2869 * Normally this function is only called internally from 2870 * device_probe_and_attach(). 2871 * 2872 * @param dev the device to initialise 2873 * 2874 * @retval 0 success 2875 * @retval ENXIO no driver was found 2876 * @retval ENOMEM memory allocation failure 2877 * @retval non-zero some other unix error code 2878 */ 2879 int 2880 device_attach(device_t dev) 2881 { 2882 uint64_t attachtime; 2883 int error; 2884 2885 if (resource_disabled(dev->driver->name, dev->unit)) { 2886 device_disable(dev); 2887 if (bootverbose) 2888 device_printf(dev, "disabled via hints entry\n"); 2889 return (ENXIO); 2890 } 2891 2892 device_sysctl_init(dev); 2893 if (!device_is_quiet(dev)) 2894 device_print_child(dev->parent, dev); 2895 attachtime = get_cyclecount(); 2896 dev->state = DS_ATTACHING; 2897 if ((error = DEVICE_ATTACH(dev)) != 0) { 2898 printf("device_attach: %s%d attach returned %d\n", 2899 dev->driver->name, dev->unit, error); 2900 if (!(dev->flags & DF_FIXEDCLASS)) 2901 devclass_delete_device(dev->devclass, dev); 2902 (void)device_set_driver(dev, NULL); 2903 device_sysctl_fini(dev); 2904 KASSERT(dev->busy == 0, ("attach failed but busy")); 2905 dev->state = DS_NOTPRESENT; 2906 return (error); 2907 } 2908 attachtime = get_cyclecount() - attachtime; 2909 /* 2910 * 4 bits per device is a reasonable value for desktop and server 2911 * hardware with good get_cyclecount() implementations, but WILL 2912 * need to be adjusted on other platforms. 2913 */ 2914 #define RANDOM_PROBE_BIT_GUESS 4 2915 if (bootverbose) 2916 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2917 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2918 dev->driver->name, dev->unit); 2919 random_harvest_direct(&attachtime, sizeof(attachtime), 2920 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2921 device_sysctl_update(dev); 2922 if (dev->busy) 2923 dev->state = DS_BUSY; 2924 else 2925 dev->state = DS_ATTACHED; 2926 dev->flags &= ~DF_DONENOMATCH; 2927 devadded(dev); 2928 return (0); 2929 } 2930 2931 /** 2932 * @brief Detach a driver from a device 2933 * 2934 * This function is a wrapper around the DEVICE_DETACH() driver 2935 * method. If the call to DEVICE_DETACH() succeeds, it calls 2936 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2937 * notification event for user-based device management services and 2938 * cleans up the device's sysctl tree. 2939 * 2940 * @param dev the device to un-initialise 2941 * 2942 * @retval 0 success 2943 * @retval ENXIO no driver was found 2944 * @retval ENOMEM memory allocation failure 2945 * @retval non-zero some other unix error code 2946 */ 2947 int 2948 device_detach(device_t dev) 2949 { 2950 int error; 2951 2952 GIANT_REQUIRED; 2953 2954 PDEBUG(("%s", DEVICENAME(dev))); 2955 if (dev->state == DS_BUSY) 2956 return (EBUSY); 2957 if (dev->state != DS_ATTACHED) 2958 return (0); 2959 2960 if ((error = DEVICE_DETACH(dev)) != 0) 2961 return (error); 2962 devremoved(dev); 2963 if (!device_is_quiet(dev)) 2964 device_printf(dev, "detached\n"); 2965 if (dev->parent) 2966 BUS_CHILD_DETACHED(dev->parent, dev); 2967 2968 if (!(dev->flags & DF_FIXEDCLASS)) 2969 devclass_delete_device(dev->devclass, dev); 2970 2971 dev->state = DS_NOTPRESENT; 2972 (void)device_set_driver(dev, NULL); 2973 device_sysctl_fini(dev); 2974 2975 return (0); 2976 } 2977 2978 /** 2979 * @brief Tells a driver to quiesce itself. 2980 * 2981 * This function is a wrapper around the DEVICE_QUIESCE() driver 2982 * method. If the call to DEVICE_QUIESCE() succeeds. 2983 * 2984 * @param dev the device to quiesce 2985 * 2986 * @retval 0 success 2987 * @retval ENXIO no driver was found 2988 * @retval ENOMEM memory allocation failure 2989 * @retval non-zero some other unix error code 2990 */ 2991 int 2992 device_quiesce(device_t dev) 2993 { 2994 2995 PDEBUG(("%s", DEVICENAME(dev))); 2996 if (dev->state == DS_BUSY) 2997 return (EBUSY); 2998 if (dev->state != DS_ATTACHED) 2999 return (0); 3000 3001 return (DEVICE_QUIESCE(dev)); 3002 } 3003 3004 /** 3005 * @brief Notify a device of system shutdown 3006 * 3007 * This function calls the DEVICE_SHUTDOWN() driver method if the 3008 * device currently has an attached driver. 3009 * 3010 * @returns the value returned by DEVICE_SHUTDOWN() 3011 */ 3012 int 3013 device_shutdown(device_t dev) 3014 { 3015 if (dev->state < DS_ATTACHED) 3016 return (0); 3017 return (DEVICE_SHUTDOWN(dev)); 3018 } 3019 3020 /** 3021 * @brief Set the unit number of a device 3022 * 3023 * This function can be used to override the unit number used for a 3024 * device (e.g. to wire a device to a pre-configured unit number). 3025 */ 3026 int 3027 device_set_unit(device_t dev, int unit) 3028 { 3029 devclass_t dc; 3030 int err; 3031 3032 dc = device_get_devclass(dev); 3033 if (unit < dc->maxunit && dc->devices[unit]) 3034 return (EBUSY); 3035 err = devclass_delete_device(dc, dev); 3036 if (err) 3037 return (err); 3038 dev->unit = unit; 3039 err = devclass_add_device(dc, dev); 3040 if (err) 3041 return (err); 3042 3043 bus_data_generation_update(); 3044 return (0); 3045 } 3046 3047 /*======================================*/ 3048 /* 3049 * Some useful method implementations to make life easier for bus drivers. 3050 */ 3051 3052 /** 3053 * @brief Initialise a resource list. 3054 * 3055 * @param rl the resource list to initialise 3056 */ 3057 void 3058 resource_list_init(struct resource_list *rl) 3059 { 3060 STAILQ_INIT(rl); 3061 } 3062 3063 /** 3064 * @brief Reclaim memory used by a resource list. 3065 * 3066 * This function frees the memory for all resource entries on the list 3067 * (if any). 3068 * 3069 * @param rl the resource list to free 3070 */ 3071 void 3072 resource_list_free(struct resource_list *rl) 3073 { 3074 struct resource_list_entry *rle; 3075 3076 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3077 if (rle->res) 3078 panic("resource_list_free: resource entry is busy"); 3079 STAILQ_REMOVE_HEAD(rl, link); 3080 free(rle, M_BUS); 3081 } 3082 } 3083 3084 /** 3085 * @brief Add a resource entry. 3086 * 3087 * This function adds a resource entry using the given @p type, @p 3088 * start, @p end and @p count values. A rid value is chosen by 3089 * searching sequentially for the first unused rid starting at zero. 3090 * 3091 * @param rl the resource list to edit 3092 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3093 * @param start the start address of the resource 3094 * @param end the end address of the resource 3095 * @param count XXX end-start+1 3096 */ 3097 int 3098 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3099 rman_res_t end, rman_res_t count) 3100 { 3101 int rid; 3102 3103 rid = 0; 3104 while (resource_list_find(rl, type, rid) != NULL) 3105 rid++; 3106 resource_list_add(rl, type, rid, start, end, count); 3107 return (rid); 3108 } 3109 3110 /** 3111 * @brief Add or modify a resource entry. 3112 * 3113 * If an existing entry exists with the same type and rid, it will be 3114 * modified using the given values of @p start, @p end and @p 3115 * count. If no entry exists, a new one will be created using the 3116 * given values. The resource list entry that matches is then returned. 3117 * 3118 * @param rl the resource list to edit 3119 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3120 * @param rid the resource identifier 3121 * @param start the start address of the resource 3122 * @param end the end address of the resource 3123 * @param count XXX end-start+1 3124 */ 3125 struct resource_list_entry * 3126 resource_list_add(struct resource_list *rl, int type, int rid, 3127 rman_res_t start, rman_res_t end, rman_res_t count) 3128 { 3129 struct resource_list_entry *rle; 3130 3131 rle = resource_list_find(rl, type, rid); 3132 if (!rle) { 3133 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3134 M_NOWAIT); 3135 if (!rle) 3136 panic("resource_list_add: can't record entry"); 3137 STAILQ_INSERT_TAIL(rl, rle, link); 3138 rle->type = type; 3139 rle->rid = rid; 3140 rle->res = NULL; 3141 rle->flags = 0; 3142 } 3143 3144 if (rle->res) 3145 panic("resource_list_add: resource entry is busy"); 3146 3147 rle->start = start; 3148 rle->end = end; 3149 rle->count = count; 3150 return (rle); 3151 } 3152 3153 /** 3154 * @brief Determine if a resource entry is busy. 3155 * 3156 * Returns true if a resource entry is busy meaning that it has an 3157 * associated resource that is not an unallocated "reserved" resource. 3158 * 3159 * @param rl the resource list to search 3160 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3161 * @param rid the resource identifier 3162 * 3163 * @returns Non-zero if the entry is busy, zero otherwise. 3164 */ 3165 int 3166 resource_list_busy(struct resource_list *rl, int type, int rid) 3167 { 3168 struct resource_list_entry *rle; 3169 3170 rle = resource_list_find(rl, type, rid); 3171 if (rle == NULL || rle->res == NULL) 3172 return (0); 3173 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3174 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3175 ("reserved resource is active")); 3176 return (0); 3177 } 3178 return (1); 3179 } 3180 3181 /** 3182 * @brief Determine if a resource entry is reserved. 3183 * 3184 * Returns true if a resource entry is reserved meaning that it has an 3185 * associated "reserved" resource. The resource can either be 3186 * allocated or unallocated. 3187 * 3188 * @param rl the resource list to search 3189 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3190 * @param rid the resource identifier 3191 * 3192 * @returns Non-zero if the entry is reserved, zero otherwise. 3193 */ 3194 int 3195 resource_list_reserved(struct resource_list *rl, int type, int rid) 3196 { 3197 struct resource_list_entry *rle; 3198 3199 rle = resource_list_find(rl, type, rid); 3200 if (rle != NULL && rle->flags & RLE_RESERVED) 3201 return (1); 3202 return (0); 3203 } 3204 3205 /** 3206 * @brief Find a resource entry by type and rid. 3207 * 3208 * @param rl the resource list to search 3209 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3210 * @param rid the resource identifier 3211 * 3212 * @returns the resource entry pointer or NULL if there is no such 3213 * entry. 3214 */ 3215 struct resource_list_entry * 3216 resource_list_find(struct resource_list *rl, int type, int rid) 3217 { 3218 struct resource_list_entry *rle; 3219 3220 STAILQ_FOREACH(rle, rl, link) { 3221 if (rle->type == type && rle->rid == rid) 3222 return (rle); 3223 } 3224 return (NULL); 3225 } 3226 3227 /** 3228 * @brief Delete a resource entry. 3229 * 3230 * @param rl the resource list to edit 3231 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3232 * @param rid the resource identifier 3233 */ 3234 void 3235 resource_list_delete(struct resource_list *rl, int type, int rid) 3236 { 3237 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3238 3239 if (rle) { 3240 if (rle->res != NULL) 3241 panic("resource_list_delete: resource has not been released"); 3242 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3243 free(rle, M_BUS); 3244 } 3245 } 3246 3247 /** 3248 * @brief Allocate a reserved resource 3249 * 3250 * This can be used by busses to force the allocation of resources 3251 * that are always active in the system even if they are not allocated 3252 * by a driver (e.g. PCI BARs). This function is usually called when 3253 * adding a new child to the bus. The resource is allocated from the 3254 * parent bus when it is reserved. The resource list entry is marked 3255 * with RLE_RESERVED to note that it is a reserved resource. 3256 * 3257 * Subsequent attempts to allocate the resource with 3258 * resource_list_alloc() will succeed the first time and will set 3259 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3260 * resource that has been allocated is released with 3261 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3262 * the actual resource remains allocated. The resource can be released to 3263 * the parent bus by calling resource_list_unreserve(). 3264 * 3265 * @param rl the resource list to allocate from 3266 * @param bus the parent device of @p child 3267 * @param child the device for which the resource is being reserved 3268 * @param type the type of resource to allocate 3269 * @param rid a pointer to the resource identifier 3270 * @param start hint at the start of the resource range - pass 3271 * @c 0 for any start address 3272 * @param end hint at the end of the resource range - pass 3273 * @c ~0 for any end address 3274 * @param count hint at the size of range required - pass @c 1 3275 * for any size 3276 * @param flags any extra flags to control the resource 3277 * allocation - see @c RF_XXX flags in 3278 * <sys/rman.h> for details 3279 * 3280 * @returns the resource which was allocated or @c NULL if no 3281 * resource could be allocated 3282 */ 3283 struct resource * 3284 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3285 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3286 { 3287 struct resource_list_entry *rle = NULL; 3288 int passthrough = (device_get_parent(child) != bus); 3289 struct resource *r; 3290 3291 if (passthrough) 3292 panic( 3293 "resource_list_reserve() should only be called for direct children"); 3294 if (flags & RF_ACTIVE) 3295 panic( 3296 "resource_list_reserve() should only reserve inactive resources"); 3297 3298 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3299 flags); 3300 if (r != NULL) { 3301 rle = resource_list_find(rl, type, *rid); 3302 rle->flags |= RLE_RESERVED; 3303 } 3304 return (r); 3305 } 3306 3307 /** 3308 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3309 * 3310 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3311 * and passing the allocation up to the parent of @p bus. This assumes 3312 * that the first entry of @c device_get_ivars(child) is a struct 3313 * resource_list. This also handles 'passthrough' allocations where a 3314 * child is a remote descendant of bus by passing the allocation up to 3315 * the parent of bus. 3316 * 3317 * Typically, a bus driver would store a list of child resources 3318 * somewhere in the child device's ivars (see device_get_ivars()) and 3319 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3320 * then call resource_list_alloc() to perform the allocation. 3321 * 3322 * @param rl the resource list to allocate from 3323 * @param bus the parent device of @p child 3324 * @param child the device which is requesting an allocation 3325 * @param type the type of resource to allocate 3326 * @param rid a pointer to the resource identifier 3327 * @param start hint at the start of the resource range - pass 3328 * @c 0 for any start address 3329 * @param end hint at the end of the resource range - pass 3330 * @c ~0 for any end address 3331 * @param count hint at the size of range required - pass @c 1 3332 * for any size 3333 * @param flags any extra flags to control the resource 3334 * allocation - see @c RF_XXX flags in 3335 * <sys/rman.h> for details 3336 * 3337 * @returns the resource which was allocated or @c NULL if no 3338 * resource could be allocated 3339 */ 3340 struct resource * 3341 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3342 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3343 { 3344 struct resource_list_entry *rle = NULL; 3345 int passthrough = (device_get_parent(child) != bus); 3346 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3347 3348 if (passthrough) { 3349 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3350 type, rid, start, end, count, flags)); 3351 } 3352 3353 rle = resource_list_find(rl, type, *rid); 3354 3355 if (!rle) 3356 return (NULL); /* no resource of that type/rid */ 3357 3358 if (rle->res) { 3359 if (rle->flags & RLE_RESERVED) { 3360 if (rle->flags & RLE_ALLOCATED) 3361 return (NULL); 3362 if ((flags & RF_ACTIVE) && 3363 bus_activate_resource(child, type, *rid, 3364 rle->res) != 0) 3365 return (NULL); 3366 rle->flags |= RLE_ALLOCATED; 3367 return (rle->res); 3368 } 3369 device_printf(bus, 3370 "resource entry %#x type %d for child %s is busy\n", *rid, 3371 type, device_get_nameunit(child)); 3372 return (NULL); 3373 } 3374 3375 if (isdefault) { 3376 start = rle->start; 3377 count = ulmax(count, rle->count); 3378 end = ulmax(rle->end, start + count - 1); 3379 } 3380 3381 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3382 type, rid, start, end, count, flags); 3383 3384 /* 3385 * Record the new range. 3386 */ 3387 if (rle->res) { 3388 rle->start = rman_get_start(rle->res); 3389 rle->end = rman_get_end(rle->res); 3390 rle->count = count; 3391 } 3392 3393 return (rle->res); 3394 } 3395 3396 /** 3397 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3398 * 3399 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3400 * used with resource_list_alloc(). 3401 * 3402 * @param rl the resource list which was allocated from 3403 * @param bus the parent device of @p child 3404 * @param child the device which is requesting a release 3405 * @param type the type of resource to release 3406 * @param rid the resource identifier 3407 * @param res the resource to release 3408 * 3409 * @retval 0 success 3410 * @retval non-zero a standard unix error code indicating what 3411 * error condition prevented the operation 3412 */ 3413 int 3414 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3415 int type, int rid, struct resource *res) 3416 { 3417 struct resource_list_entry *rle = NULL; 3418 int passthrough = (device_get_parent(child) != bus); 3419 int error; 3420 3421 if (passthrough) { 3422 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3423 type, rid, res)); 3424 } 3425 3426 rle = resource_list_find(rl, type, rid); 3427 3428 if (!rle) 3429 panic("resource_list_release: can't find resource"); 3430 if (!rle->res) 3431 panic("resource_list_release: resource entry is not busy"); 3432 if (rle->flags & RLE_RESERVED) { 3433 if (rle->flags & RLE_ALLOCATED) { 3434 if (rman_get_flags(res) & RF_ACTIVE) { 3435 error = bus_deactivate_resource(child, type, 3436 rid, res); 3437 if (error) 3438 return (error); 3439 } 3440 rle->flags &= ~RLE_ALLOCATED; 3441 return (0); 3442 } 3443 return (EINVAL); 3444 } 3445 3446 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3447 type, rid, res); 3448 if (error) 3449 return (error); 3450 3451 rle->res = NULL; 3452 return (0); 3453 } 3454 3455 /** 3456 * @brief Release all active resources of a given type 3457 * 3458 * Release all active resources of a specified type. This is intended 3459 * to be used to cleanup resources leaked by a driver after detach or 3460 * a failed attach. 3461 * 3462 * @param rl the resource list which was allocated from 3463 * @param bus the parent device of @p child 3464 * @param child the device whose active resources are being released 3465 * @param type the type of resources to release 3466 * 3467 * @retval 0 success 3468 * @retval EBUSY at least one resource was active 3469 */ 3470 int 3471 resource_list_release_active(struct resource_list *rl, device_t bus, 3472 device_t child, int type) 3473 { 3474 struct resource_list_entry *rle; 3475 int error, retval; 3476 3477 retval = 0; 3478 STAILQ_FOREACH(rle, rl, link) { 3479 if (rle->type != type) 3480 continue; 3481 if (rle->res == NULL) 3482 continue; 3483 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3484 RLE_RESERVED) 3485 continue; 3486 retval = EBUSY; 3487 error = resource_list_release(rl, bus, child, type, 3488 rman_get_rid(rle->res), rle->res); 3489 if (error != 0) 3490 device_printf(bus, 3491 "Failed to release active resource: %d\n", error); 3492 } 3493 return (retval); 3494 } 3495 3496 3497 /** 3498 * @brief Fully release a reserved resource 3499 * 3500 * Fully releases a resource reserved via resource_list_reserve(). 3501 * 3502 * @param rl the resource list which was allocated from 3503 * @param bus the parent device of @p child 3504 * @param child the device whose reserved resource is being released 3505 * @param type the type of resource to release 3506 * @param rid the resource identifier 3507 * @param res the resource to release 3508 * 3509 * @retval 0 success 3510 * @retval non-zero a standard unix error code indicating what 3511 * error condition prevented the operation 3512 */ 3513 int 3514 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3515 int type, int rid) 3516 { 3517 struct resource_list_entry *rle = NULL; 3518 int passthrough = (device_get_parent(child) != bus); 3519 3520 if (passthrough) 3521 panic( 3522 "resource_list_unreserve() should only be called for direct children"); 3523 3524 rle = resource_list_find(rl, type, rid); 3525 3526 if (!rle) 3527 panic("resource_list_unreserve: can't find resource"); 3528 if (!(rle->flags & RLE_RESERVED)) 3529 return (EINVAL); 3530 if (rle->flags & RLE_ALLOCATED) 3531 return (EBUSY); 3532 rle->flags &= ~RLE_RESERVED; 3533 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3534 } 3535 3536 /** 3537 * @brief Print a description of resources in a resource list 3538 * 3539 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3540 * The name is printed if at least one resource of the given type is available. 3541 * The format is used to print resource start and end. 3542 * 3543 * @param rl the resource list to print 3544 * @param name the name of @p type, e.g. @c "memory" 3545 * @param type type type of resource entry to print 3546 * @param format printf(9) format string to print resource 3547 * start and end values 3548 * 3549 * @returns the number of characters printed 3550 */ 3551 int 3552 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3553 const char *format) 3554 { 3555 struct resource_list_entry *rle; 3556 int printed, retval; 3557 3558 printed = 0; 3559 retval = 0; 3560 /* Yes, this is kinda cheating */ 3561 STAILQ_FOREACH(rle, rl, link) { 3562 if (rle->type == type) { 3563 if (printed == 0) 3564 retval += printf(" %s ", name); 3565 else 3566 retval += printf(","); 3567 printed++; 3568 retval += printf(format, rle->start); 3569 if (rle->count > 1) { 3570 retval += printf("-"); 3571 retval += printf(format, rle->start + 3572 rle->count - 1); 3573 } 3574 } 3575 } 3576 return (retval); 3577 } 3578 3579 /** 3580 * @brief Releases all the resources in a list. 3581 * 3582 * @param rl The resource list to purge. 3583 * 3584 * @returns nothing 3585 */ 3586 void 3587 resource_list_purge(struct resource_list *rl) 3588 { 3589 struct resource_list_entry *rle; 3590 3591 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3592 if (rle->res) 3593 bus_release_resource(rman_get_device(rle->res), 3594 rle->type, rle->rid, rle->res); 3595 STAILQ_REMOVE_HEAD(rl, link); 3596 free(rle, M_BUS); 3597 } 3598 } 3599 3600 device_t 3601 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3602 { 3603 3604 return (device_add_child_ordered(dev, order, name, unit)); 3605 } 3606 3607 /** 3608 * @brief Helper function for implementing DEVICE_PROBE() 3609 * 3610 * This function can be used to help implement the DEVICE_PROBE() for 3611 * a bus (i.e. a device which has other devices attached to it). It 3612 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3613 * devclass. 3614 */ 3615 int 3616 bus_generic_probe(device_t dev) 3617 { 3618 devclass_t dc = dev->devclass; 3619 driverlink_t dl; 3620 3621 TAILQ_FOREACH(dl, &dc->drivers, link) { 3622 /* 3623 * If this driver's pass is too high, then ignore it. 3624 * For most drivers in the default pass, this will 3625 * never be true. For early-pass drivers they will 3626 * only call the identify routines of eligible drivers 3627 * when this routine is called. Drivers for later 3628 * passes should have their identify routines called 3629 * on early-pass busses during BUS_NEW_PASS(). 3630 */ 3631 if (dl->pass > bus_current_pass) 3632 continue; 3633 DEVICE_IDENTIFY(dl->driver, dev); 3634 } 3635 3636 return (0); 3637 } 3638 3639 /** 3640 * @brief Helper function for implementing DEVICE_ATTACH() 3641 * 3642 * This function can be used to help implement the DEVICE_ATTACH() for 3643 * a bus. It calls device_probe_and_attach() for each of the device's 3644 * children. 3645 */ 3646 int 3647 bus_generic_attach(device_t dev) 3648 { 3649 device_t child; 3650 3651 TAILQ_FOREACH(child, &dev->children, link) { 3652 device_probe_and_attach(child); 3653 } 3654 3655 return (0); 3656 } 3657 3658 /** 3659 * @brief Helper function for implementing DEVICE_DETACH() 3660 * 3661 * This function can be used to help implement the DEVICE_DETACH() for 3662 * a bus. It calls device_detach() for each of the device's 3663 * children. 3664 */ 3665 int 3666 bus_generic_detach(device_t dev) 3667 { 3668 device_t child; 3669 int error; 3670 3671 if (dev->state != DS_ATTACHED) 3672 return (EBUSY); 3673 3674 TAILQ_FOREACH(child, &dev->children, link) { 3675 if ((error = device_detach(child)) != 0) 3676 return (error); 3677 } 3678 3679 return (0); 3680 } 3681 3682 /** 3683 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3684 * 3685 * This function can be used to help implement the DEVICE_SHUTDOWN() 3686 * for a bus. It calls device_shutdown() for each of the device's 3687 * children. 3688 */ 3689 int 3690 bus_generic_shutdown(device_t dev) 3691 { 3692 device_t child; 3693 3694 TAILQ_FOREACH(child, &dev->children, link) { 3695 device_shutdown(child); 3696 } 3697 3698 return (0); 3699 } 3700 3701 /** 3702 * @brief Default function for suspending a child device. 3703 * 3704 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3705 */ 3706 int 3707 bus_generic_suspend_child(device_t dev, device_t child) 3708 { 3709 int error; 3710 3711 error = DEVICE_SUSPEND(child); 3712 3713 if (error == 0) 3714 child->flags |= DF_SUSPENDED; 3715 3716 return (error); 3717 } 3718 3719 /** 3720 * @brief Default function for resuming a child device. 3721 * 3722 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3723 */ 3724 int 3725 bus_generic_resume_child(device_t dev, device_t child) 3726 { 3727 3728 DEVICE_RESUME(child); 3729 child->flags &= ~DF_SUSPENDED; 3730 3731 return (0); 3732 } 3733 3734 /** 3735 * @brief Helper function for implementing DEVICE_SUSPEND() 3736 * 3737 * This function can be used to help implement the DEVICE_SUSPEND() 3738 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3739 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3740 * operation is aborted and any devices which were suspended are 3741 * resumed immediately by calling their DEVICE_RESUME() methods. 3742 */ 3743 int 3744 bus_generic_suspend(device_t dev) 3745 { 3746 int error; 3747 device_t child, child2; 3748 3749 TAILQ_FOREACH(child, &dev->children, link) { 3750 error = BUS_SUSPEND_CHILD(dev, child); 3751 if (error) { 3752 for (child2 = TAILQ_FIRST(&dev->children); 3753 child2 && child2 != child; 3754 child2 = TAILQ_NEXT(child2, link)) 3755 BUS_RESUME_CHILD(dev, child2); 3756 return (error); 3757 } 3758 } 3759 return (0); 3760 } 3761 3762 /** 3763 * @brief Helper function for implementing DEVICE_RESUME() 3764 * 3765 * This function can be used to help implement the DEVICE_RESUME() for 3766 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3767 */ 3768 int 3769 bus_generic_resume(device_t dev) 3770 { 3771 device_t child; 3772 3773 TAILQ_FOREACH(child, &dev->children, link) { 3774 BUS_RESUME_CHILD(dev, child); 3775 /* if resume fails, there's nothing we can usefully do... */ 3776 } 3777 return (0); 3778 } 3779 3780 /** 3781 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3782 * 3783 * This function prints the first part of the ascii representation of 3784 * @p child, including its name, unit and description (if any - see 3785 * device_set_desc()). 3786 * 3787 * @returns the number of characters printed 3788 */ 3789 int 3790 bus_print_child_header(device_t dev, device_t child) 3791 { 3792 int retval = 0; 3793 3794 if (device_get_desc(child)) { 3795 retval += device_printf(child, "<%s>", device_get_desc(child)); 3796 } else { 3797 retval += printf("%s", device_get_nameunit(child)); 3798 } 3799 3800 return (retval); 3801 } 3802 3803 /** 3804 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3805 * 3806 * This function prints the last part of the ascii representation of 3807 * @p child, which consists of the string @c " on " followed by the 3808 * name and unit of the @p dev. 3809 * 3810 * @returns the number of characters printed 3811 */ 3812 int 3813 bus_print_child_footer(device_t dev, device_t child) 3814 { 3815 return (printf(" on %s\n", device_get_nameunit(dev))); 3816 } 3817 3818 /** 3819 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3820 * 3821 * This function prints out the VM domain for the given device. 3822 * 3823 * @returns the number of characters printed 3824 */ 3825 int 3826 bus_print_child_domain(device_t dev, device_t child) 3827 { 3828 int domain; 3829 3830 /* No domain? Don't print anything */ 3831 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3832 return (0); 3833 3834 return (printf(" numa-domain %d", domain)); 3835 } 3836 3837 /** 3838 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3839 * 3840 * This function simply calls bus_print_child_header() followed by 3841 * bus_print_child_footer(). 3842 * 3843 * @returns the number of characters printed 3844 */ 3845 int 3846 bus_generic_print_child(device_t dev, device_t child) 3847 { 3848 int retval = 0; 3849 3850 retval += bus_print_child_header(dev, child); 3851 retval += bus_print_child_domain(dev, child); 3852 retval += bus_print_child_footer(dev, child); 3853 3854 return (retval); 3855 } 3856 3857 /** 3858 * @brief Stub function for implementing BUS_READ_IVAR(). 3859 * 3860 * @returns ENOENT 3861 */ 3862 int 3863 bus_generic_read_ivar(device_t dev, device_t child, int index, 3864 uintptr_t * result) 3865 { 3866 return (ENOENT); 3867 } 3868 3869 /** 3870 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3871 * 3872 * @returns ENOENT 3873 */ 3874 int 3875 bus_generic_write_ivar(device_t dev, device_t child, int index, 3876 uintptr_t value) 3877 { 3878 return (ENOENT); 3879 } 3880 3881 /** 3882 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3883 * 3884 * @returns NULL 3885 */ 3886 struct resource_list * 3887 bus_generic_get_resource_list(device_t dev, device_t child) 3888 { 3889 return (NULL); 3890 } 3891 3892 /** 3893 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3894 * 3895 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3896 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3897 * and then calls device_probe_and_attach() for each unattached child. 3898 */ 3899 void 3900 bus_generic_driver_added(device_t dev, driver_t *driver) 3901 { 3902 device_t child; 3903 3904 DEVICE_IDENTIFY(driver, dev); 3905 TAILQ_FOREACH(child, &dev->children, link) { 3906 if (child->state == DS_NOTPRESENT || 3907 (child->flags & DF_REBID)) 3908 device_probe_and_attach(child); 3909 } 3910 } 3911 3912 /** 3913 * @brief Helper function for implementing BUS_NEW_PASS(). 3914 * 3915 * This implementing of BUS_NEW_PASS() first calls the identify 3916 * routines for any drivers that probe at the current pass. Then it 3917 * walks the list of devices for this bus. If a device is already 3918 * attached, then it calls BUS_NEW_PASS() on that device. If the 3919 * device is not already attached, it attempts to attach a driver to 3920 * it. 3921 */ 3922 void 3923 bus_generic_new_pass(device_t dev) 3924 { 3925 driverlink_t dl; 3926 devclass_t dc; 3927 device_t child; 3928 3929 dc = dev->devclass; 3930 TAILQ_FOREACH(dl, &dc->drivers, link) { 3931 if (dl->pass == bus_current_pass) 3932 DEVICE_IDENTIFY(dl->driver, dev); 3933 } 3934 TAILQ_FOREACH(child, &dev->children, link) { 3935 if (child->state >= DS_ATTACHED) 3936 BUS_NEW_PASS(child); 3937 else if (child->state == DS_NOTPRESENT) 3938 device_probe_and_attach(child); 3939 } 3940 } 3941 3942 /** 3943 * @brief Helper function for implementing BUS_SETUP_INTR(). 3944 * 3945 * This simple implementation of BUS_SETUP_INTR() simply calls the 3946 * BUS_SETUP_INTR() method of the parent of @p dev. 3947 */ 3948 int 3949 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3950 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3951 void **cookiep) 3952 { 3953 /* Propagate up the bus hierarchy until someone handles it. */ 3954 if (dev->parent) 3955 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3956 filter, intr, arg, cookiep)); 3957 return (EINVAL); 3958 } 3959 3960 /** 3961 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3962 * 3963 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3964 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3965 */ 3966 int 3967 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3968 void *cookie) 3969 { 3970 /* Propagate up the bus hierarchy until someone handles it. */ 3971 if (dev->parent) 3972 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3973 return (EINVAL); 3974 } 3975 3976 /** 3977 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3978 * 3979 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3980 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3981 */ 3982 int 3983 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3984 struct resource *r, rman_res_t start, rman_res_t end) 3985 { 3986 /* Propagate up the bus hierarchy until someone handles it. */ 3987 if (dev->parent) 3988 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3989 end)); 3990 return (EINVAL); 3991 } 3992 3993 /** 3994 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3995 * 3996 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3997 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3998 */ 3999 struct resource * 4000 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4001 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4002 { 4003 /* Propagate up the bus hierarchy until someone handles it. */ 4004 if (dev->parent) 4005 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4006 start, end, count, flags)); 4007 return (NULL); 4008 } 4009 4010 /** 4011 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4012 * 4013 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4014 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4015 */ 4016 int 4017 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4018 struct resource *r) 4019 { 4020 /* Propagate up the bus hierarchy until someone handles it. */ 4021 if (dev->parent) 4022 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4023 r)); 4024 return (EINVAL); 4025 } 4026 4027 /** 4028 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4029 * 4030 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4031 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4032 */ 4033 int 4034 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4035 struct resource *r) 4036 { 4037 /* Propagate up the bus hierarchy until someone handles it. */ 4038 if (dev->parent) 4039 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4040 r)); 4041 return (EINVAL); 4042 } 4043 4044 /** 4045 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4046 * 4047 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4048 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4049 */ 4050 int 4051 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4052 int rid, struct resource *r) 4053 { 4054 /* Propagate up the bus hierarchy until someone handles it. */ 4055 if (dev->parent) 4056 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4057 r)); 4058 return (EINVAL); 4059 } 4060 4061 /** 4062 * @brief Helper function for implementing BUS_BIND_INTR(). 4063 * 4064 * This simple implementation of BUS_BIND_INTR() simply calls the 4065 * BUS_BIND_INTR() method of the parent of @p dev. 4066 */ 4067 int 4068 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4069 int cpu) 4070 { 4071 4072 /* Propagate up the bus hierarchy until someone handles it. */ 4073 if (dev->parent) 4074 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4075 return (EINVAL); 4076 } 4077 4078 /** 4079 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4080 * 4081 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4082 * BUS_CONFIG_INTR() method of the parent of @p dev. 4083 */ 4084 int 4085 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4086 enum intr_polarity pol) 4087 { 4088 4089 /* Propagate up the bus hierarchy until someone handles it. */ 4090 if (dev->parent) 4091 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4092 return (EINVAL); 4093 } 4094 4095 /** 4096 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4097 * 4098 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4099 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4100 */ 4101 int 4102 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4103 void *cookie, const char *descr) 4104 { 4105 4106 /* Propagate up the bus hierarchy until someone handles it. */ 4107 if (dev->parent) 4108 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4109 descr)); 4110 return (EINVAL); 4111 } 4112 4113 /** 4114 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4115 * 4116 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4117 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4118 */ 4119 bus_dma_tag_t 4120 bus_generic_get_dma_tag(device_t dev, device_t child) 4121 { 4122 4123 /* Propagate up the bus hierarchy until someone handles it. */ 4124 if (dev->parent != NULL) 4125 return (BUS_GET_DMA_TAG(dev->parent, child)); 4126 return (NULL); 4127 } 4128 4129 /** 4130 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4131 * 4132 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4133 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4134 */ 4135 bus_space_tag_t 4136 bus_generic_get_bus_tag(device_t dev, device_t child) 4137 { 4138 4139 /* Propagate up the bus hierarchy until someone handles it. */ 4140 if (dev->parent != NULL) 4141 return (BUS_GET_BUS_TAG(dev->parent, child)); 4142 return ((bus_space_tag_t)0); 4143 } 4144 4145 /** 4146 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4147 * 4148 * This implementation of BUS_GET_RESOURCE() uses the 4149 * resource_list_find() function to do most of the work. It calls 4150 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4151 * search. 4152 */ 4153 int 4154 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4155 rman_res_t *startp, rman_res_t *countp) 4156 { 4157 struct resource_list * rl = NULL; 4158 struct resource_list_entry * rle = NULL; 4159 4160 rl = BUS_GET_RESOURCE_LIST(dev, child); 4161 if (!rl) 4162 return (EINVAL); 4163 4164 rle = resource_list_find(rl, type, rid); 4165 if (!rle) 4166 return (ENOENT); 4167 4168 if (startp) 4169 *startp = rle->start; 4170 if (countp) 4171 *countp = rle->count; 4172 4173 return (0); 4174 } 4175 4176 /** 4177 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4178 * 4179 * This implementation of BUS_SET_RESOURCE() uses the 4180 * resource_list_add() function to do most of the work. It calls 4181 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4182 * edit. 4183 */ 4184 int 4185 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4186 rman_res_t start, rman_res_t count) 4187 { 4188 struct resource_list * rl = NULL; 4189 4190 rl = BUS_GET_RESOURCE_LIST(dev, child); 4191 if (!rl) 4192 return (EINVAL); 4193 4194 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4195 4196 return (0); 4197 } 4198 4199 /** 4200 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4201 * 4202 * This implementation of BUS_DELETE_RESOURCE() uses the 4203 * resource_list_delete() function to do most of the work. It calls 4204 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4205 * edit. 4206 */ 4207 void 4208 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4209 { 4210 struct resource_list * rl = NULL; 4211 4212 rl = BUS_GET_RESOURCE_LIST(dev, child); 4213 if (!rl) 4214 return; 4215 4216 resource_list_delete(rl, type, rid); 4217 4218 return; 4219 } 4220 4221 /** 4222 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4223 * 4224 * This implementation of BUS_RELEASE_RESOURCE() uses the 4225 * resource_list_release() function to do most of the work. It calls 4226 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4227 */ 4228 int 4229 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4230 int rid, struct resource *r) 4231 { 4232 struct resource_list * rl = NULL; 4233 4234 if (device_get_parent(child) != dev) 4235 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4236 type, rid, r)); 4237 4238 rl = BUS_GET_RESOURCE_LIST(dev, child); 4239 if (!rl) 4240 return (EINVAL); 4241 4242 return (resource_list_release(rl, dev, child, type, rid, r)); 4243 } 4244 4245 /** 4246 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4247 * 4248 * This implementation of BUS_ALLOC_RESOURCE() uses the 4249 * resource_list_alloc() function to do most of the work. It calls 4250 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4251 */ 4252 struct resource * 4253 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4254 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4255 { 4256 struct resource_list * rl = NULL; 4257 4258 if (device_get_parent(child) != dev) 4259 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4260 type, rid, start, end, count, flags)); 4261 4262 rl = BUS_GET_RESOURCE_LIST(dev, child); 4263 if (!rl) 4264 return (NULL); 4265 4266 return (resource_list_alloc(rl, dev, child, type, rid, 4267 start, end, count, flags)); 4268 } 4269 4270 /** 4271 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4272 * 4273 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4274 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4275 */ 4276 int 4277 bus_generic_child_present(device_t dev, device_t child) 4278 { 4279 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4280 } 4281 4282 int 4283 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4284 { 4285 4286 if (dev->parent) 4287 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4288 4289 return (ENOENT); 4290 } 4291 4292 /* 4293 * Some convenience functions to make it easier for drivers to use the 4294 * resource-management functions. All these really do is hide the 4295 * indirection through the parent's method table, making for slightly 4296 * less-wordy code. In the future, it might make sense for this code 4297 * to maintain some sort of a list of resources allocated by each device. 4298 */ 4299 4300 int 4301 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4302 struct resource **res) 4303 { 4304 int i; 4305 4306 for (i = 0; rs[i].type != -1; i++) 4307 res[i] = NULL; 4308 for (i = 0; rs[i].type != -1; i++) { 4309 res[i] = bus_alloc_resource_any(dev, 4310 rs[i].type, &rs[i].rid, rs[i].flags); 4311 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4312 bus_release_resources(dev, rs, res); 4313 return (ENXIO); 4314 } 4315 } 4316 return (0); 4317 } 4318 4319 void 4320 bus_release_resources(device_t dev, const struct resource_spec *rs, 4321 struct resource **res) 4322 { 4323 int i; 4324 4325 for (i = 0; rs[i].type != -1; i++) 4326 if (res[i] != NULL) { 4327 bus_release_resource( 4328 dev, rs[i].type, rs[i].rid, res[i]); 4329 res[i] = NULL; 4330 } 4331 } 4332 4333 /** 4334 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4335 * 4336 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4337 * parent of @p dev. 4338 */ 4339 struct resource * 4340 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end, 4341 rman_res_t count, u_int flags) 4342 { 4343 if (dev->parent == NULL) 4344 return (NULL); 4345 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4346 count, flags)); 4347 } 4348 4349 /** 4350 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4351 * 4352 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4353 * parent of @p dev. 4354 */ 4355 int 4356 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4357 rman_res_t end) 4358 { 4359 if (dev->parent == NULL) 4360 return (EINVAL); 4361 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4362 } 4363 4364 /** 4365 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4366 * 4367 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4368 * parent of @p dev. 4369 */ 4370 int 4371 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4372 { 4373 if (dev->parent == NULL) 4374 return (EINVAL); 4375 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4376 } 4377 4378 /** 4379 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4380 * 4381 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4382 * parent of @p dev. 4383 */ 4384 int 4385 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4386 { 4387 if (dev->parent == NULL) 4388 return (EINVAL); 4389 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4390 } 4391 4392 /** 4393 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4394 * 4395 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4396 * parent of @p dev. 4397 */ 4398 int 4399 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4400 { 4401 if (dev->parent == NULL) 4402 return (EINVAL); 4403 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4404 } 4405 4406 /** 4407 * @brief Wrapper function for BUS_SETUP_INTR(). 4408 * 4409 * This function simply calls the BUS_SETUP_INTR() method of the 4410 * parent of @p dev. 4411 */ 4412 int 4413 bus_setup_intr(device_t dev, struct resource *r, int flags, 4414 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4415 { 4416 int error; 4417 4418 if (dev->parent == NULL) 4419 return (EINVAL); 4420 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4421 arg, cookiep); 4422 if (error != 0) 4423 return (error); 4424 if (handler != NULL && !(flags & INTR_MPSAFE)) 4425 device_printf(dev, "[GIANT-LOCKED]\n"); 4426 return (0); 4427 } 4428 4429 /** 4430 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4431 * 4432 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4433 * parent of @p dev. 4434 */ 4435 int 4436 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4437 { 4438 if (dev->parent == NULL) 4439 return (EINVAL); 4440 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4441 } 4442 4443 /** 4444 * @brief Wrapper function for BUS_BIND_INTR(). 4445 * 4446 * This function simply calls the BUS_BIND_INTR() method of the 4447 * parent of @p dev. 4448 */ 4449 int 4450 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4451 { 4452 if (dev->parent == NULL) 4453 return (EINVAL); 4454 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4455 } 4456 4457 /** 4458 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4459 * 4460 * This function first formats the requested description into a 4461 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4462 * the parent of @p dev. 4463 */ 4464 int 4465 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4466 const char *fmt, ...) 4467 { 4468 va_list ap; 4469 char descr[MAXCOMLEN + 1]; 4470 4471 if (dev->parent == NULL) 4472 return (EINVAL); 4473 va_start(ap, fmt); 4474 vsnprintf(descr, sizeof(descr), fmt, ap); 4475 va_end(ap); 4476 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4477 } 4478 4479 /** 4480 * @brief Wrapper function for BUS_SET_RESOURCE(). 4481 * 4482 * This function simply calls the BUS_SET_RESOURCE() method of the 4483 * parent of @p dev. 4484 */ 4485 int 4486 bus_set_resource(device_t dev, int type, int rid, 4487 rman_res_t start, rman_res_t count) 4488 { 4489 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4490 start, count)); 4491 } 4492 4493 /** 4494 * @brief Wrapper function for BUS_GET_RESOURCE(). 4495 * 4496 * This function simply calls the BUS_GET_RESOURCE() method of the 4497 * parent of @p dev. 4498 */ 4499 int 4500 bus_get_resource(device_t dev, int type, int rid, 4501 rman_res_t *startp, rman_res_t *countp) 4502 { 4503 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4504 startp, countp)); 4505 } 4506 4507 /** 4508 * @brief Wrapper function for BUS_GET_RESOURCE(). 4509 * 4510 * This function simply calls the BUS_GET_RESOURCE() method of the 4511 * parent of @p dev and returns the start value. 4512 */ 4513 rman_res_t 4514 bus_get_resource_start(device_t dev, int type, int rid) 4515 { 4516 rman_res_t start; 4517 rman_res_t count; 4518 int error; 4519 4520 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4521 &start, &count); 4522 if (error) 4523 return (0); 4524 return (start); 4525 } 4526 4527 /** 4528 * @brief Wrapper function for BUS_GET_RESOURCE(). 4529 * 4530 * This function simply calls the BUS_GET_RESOURCE() method of the 4531 * parent of @p dev and returns the count value. 4532 */ 4533 rman_res_t 4534 bus_get_resource_count(device_t dev, int type, int rid) 4535 { 4536 rman_res_t start; 4537 rman_res_t count; 4538 int error; 4539 4540 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4541 &start, &count); 4542 if (error) 4543 return (0); 4544 return (count); 4545 } 4546 4547 /** 4548 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4549 * 4550 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4551 * parent of @p dev. 4552 */ 4553 void 4554 bus_delete_resource(device_t dev, int type, int rid) 4555 { 4556 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4557 } 4558 4559 /** 4560 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4561 * 4562 * This function simply calls the BUS_CHILD_PRESENT() method of the 4563 * parent of @p dev. 4564 */ 4565 int 4566 bus_child_present(device_t child) 4567 { 4568 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4569 } 4570 4571 /** 4572 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4573 * 4574 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4575 * parent of @p dev. 4576 */ 4577 int 4578 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4579 { 4580 device_t parent; 4581 4582 parent = device_get_parent(child); 4583 if (parent == NULL) { 4584 *buf = '\0'; 4585 return (0); 4586 } 4587 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4588 } 4589 4590 /** 4591 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4592 * 4593 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4594 * parent of @p dev. 4595 */ 4596 int 4597 bus_child_location_str(device_t child, char *buf, size_t buflen) 4598 { 4599 device_t parent; 4600 4601 parent = device_get_parent(child); 4602 if (parent == NULL) { 4603 *buf = '\0'; 4604 return (0); 4605 } 4606 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4607 } 4608 4609 /** 4610 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4611 * 4612 * This function simply calls the BUS_GET_DMA_TAG() method of the 4613 * parent of @p dev. 4614 */ 4615 bus_dma_tag_t 4616 bus_get_dma_tag(device_t dev) 4617 { 4618 device_t parent; 4619 4620 parent = device_get_parent(dev); 4621 if (parent == NULL) 4622 return (NULL); 4623 return (BUS_GET_DMA_TAG(parent, dev)); 4624 } 4625 4626 /** 4627 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4628 * 4629 * This function simply calls the BUS_GET_BUS_TAG() method of the 4630 * parent of @p dev. 4631 */ 4632 bus_space_tag_t 4633 bus_get_bus_tag(device_t dev) 4634 { 4635 device_t parent; 4636 4637 parent = device_get_parent(dev); 4638 if (parent == NULL) 4639 return ((bus_space_tag_t)0); 4640 return (BUS_GET_BUS_TAG(parent, dev)); 4641 } 4642 4643 /** 4644 * @brief Wrapper function for BUS_GET_DOMAIN(). 4645 * 4646 * This function simply calls the BUS_GET_DOMAIN() method of the 4647 * parent of @p dev. 4648 */ 4649 int 4650 bus_get_domain(device_t dev, int *domain) 4651 { 4652 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4653 } 4654 4655 /* Resume all devices and then notify userland that we're up again. */ 4656 static int 4657 root_resume(device_t dev) 4658 { 4659 int error; 4660 4661 error = bus_generic_resume(dev); 4662 if (error == 0) 4663 devctl_notify("kern", "power", "resume", NULL); 4664 return (error); 4665 } 4666 4667 static int 4668 root_print_child(device_t dev, device_t child) 4669 { 4670 int retval = 0; 4671 4672 retval += bus_print_child_header(dev, child); 4673 retval += printf("\n"); 4674 4675 return (retval); 4676 } 4677 4678 static int 4679 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4680 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4681 { 4682 /* 4683 * If an interrupt mapping gets to here something bad has happened. 4684 */ 4685 panic("root_setup_intr"); 4686 } 4687 4688 /* 4689 * If we get here, assume that the device is permanant and really is 4690 * present in the system. Removable bus drivers are expected to intercept 4691 * this call long before it gets here. We return -1 so that drivers that 4692 * really care can check vs -1 or some ERRNO returned higher in the food 4693 * chain. 4694 */ 4695 static int 4696 root_child_present(device_t dev, device_t child) 4697 { 4698 return (-1); 4699 } 4700 4701 static kobj_method_t root_methods[] = { 4702 /* Device interface */ 4703 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4704 KOBJMETHOD(device_suspend, bus_generic_suspend), 4705 KOBJMETHOD(device_resume, root_resume), 4706 4707 /* Bus interface */ 4708 KOBJMETHOD(bus_print_child, root_print_child), 4709 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4710 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4711 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4712 KOBJMETHOD(bus_child_present, root_child_present), 4713 4714 KOBJMETHOD_END 4715 }; 4716 4717 static driver_t root_driver = { 4718 "root", 4719 root_methods, 4720 1, /* no softc */ 4721 }; 4722 4723 device_t root_bus; 4724 devclass_t root_devclass; 4725 4726 static int 4727 root_bus_module_handler(module_t mod, int what, void* arg) 4728 { 4729 switch (what) { 4730 case MOD_LOAD: 4731 TAILQ_INIT(&bus_data_devices); 4732 kobj_class_compile((kobj_class_t) &root_driver); 4733 root_bus = make_device(NULL, "root", 0); 4734 root_bus->desc = "System root bus"; 4735 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4736 root_bus->driver = &root_driver; 4737 root_bus->state = DS_ATTACHED; 4738 root_devclass = devclass_find_internal("root", NULL, FALSE); 4739 devinit(); 4740 return (0); 4741 4742 case MOD_SHUTDOWN: 4743 device_shutdown(root_bus); 4744 return (0); 4745 default: 4746 return (EOPNOTSUPP); 4747 } 4748 4749 return (0); 4750 } 4751 4752 static moduledata_t root_bus_mod = { 4753 "rootbus", 4754 root_bus_module_handler, 4755 NULL 4756 }; 4757 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4758 4759 /** 4760 * @brief Automatically configure devices 4761 * 4762 * This function begins the autoconfiguration process by calling 4763 * device_probe_and_attach() for each child of the @c root0 device. 4764 */ 4765 void 4766 root_bus_configure(void) 4767 { 4768 4769 PDEBUG((".")); 4770 4771 /* Eventually this will be split up, but this is sufficient for now. */ 4772 bus_set_pass(BUS_PASS_DEFAULT); 4773 } 4774 4775 /** 4776 * @brief Module handler for registering device drivers 4777 * 4778 * This module handler is used to automatically register device 4779 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4780 * devclass_add_driver() for the driver described by the 4781 * driver_module_data structure pointed to by @p arg 4782 */ 4783 int 4784 driver_module_handler(module_t mod, int what, void *arg) 4785 { 4786 struct driver_module_data *dmd; 4787 devclass_t bus_devclass; 4788 kobj_class_t driver; 4789 int error, pass; 4790 4791 dmd = (struct driver_module_data *)arg; 4792 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4793 error = 0; 4794 4795 switch (what) { 4796 case MOD_LOAD: 4797 if (dmd->dmd_chainevh) 4798 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4799 4800 pass = dmd->dmd_pass; 4801 driver = dmd->dmd_driver; 4802 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4803 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4804 error = devclass_add_driver(bus_devclass, driver, pass, 4805 dmd->dmd_devclass); 4806 break; 4807 4808 case MOD_UNLOAD: 4809 PDEBUG(("Unloading module: driver %s from bus %s", 4810 DRIVERNAME(dmd->dmd_driver), 4811 dmd->dmd_busname)); 4812 error = devclass_delete_driver(bus_devclass, 4813 dmd->dmd_driver); 4814 4815 if (!error && dmd->dmd_chainevh) 4816 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4817 break; 4818 case MOD_QUIESCE: 4819 PDEBUG(("Quiesce module: driver %s from bus %s", 4820 DRIVERNAME(dmd->dmd_driver), 4821 dmd->dmd_busname)); 4822 error = devclass_quiesce_driver(bus_devclass, 4823 dmd->dmd_driver); 4824 4825 if (!error && dmd->dmd_chainevh) 4826 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4827 break; 4828 default: 4829 error = EOPNOTSUPP; 4830 break; 4831 } 4832 4833 return (error); 4834 } 4835 4836 /** 4837 * @brief Enumerate all hinted devices for this bus. 4838 * 4839 * Walks through the hints for this bus and calls the bus_hinted_child 4840 * routine for each one it fines. It searches first for the specific 4841 * bus that's being probed for hinted children (eg isa0), and then for 4842 * generic children (eg isa). 4843 * 4844 * @param dev bus device to enumerate 4845 */ 4846 void 4847 bus_enumerate_hinted_children(device_t bus) 4848 { 4849 int i; 4850 const char *dname, *busname; 4851 int dunit; 4852 4853 /* 4854 * enumerate all devices on the specific bus 4855 */ 4856 busname = device_get_nameunit(bus); 4857 i = 0; 4858 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4859 BUS_HINTED_CHILD(bus, dname, dunit); 4860 4861 /* 4862 * and all the generic ones. 4863 */ 4864 busname = device_get_name(bus); 4865 i = 0; 4866 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4867 BUS_HINTED_CHILD(bus, dname, dunit); 4868 } 4869 4870 #ifdef BUS_DEBUG 4871 4872 /* the _short versions avoid iteration by not calling anything that prints 4873 * more than oneliners. I love oneliners. 4874 */ 4875 4876 static void 4877 print_device_short(device_t dev, int indent) 4878 { 4879 if (!dev) 4880 return; 4881 4882 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4883 dev->unit, dev->desc, 4884 (dev->parent? "":"no "), 4885 (TAILQ_EMPTY(&dev->children)? "no ":""), 4886 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4887 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4888 (dev->flags&DF_WILDCARD? "wildcard,":""), 4889 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4890 (dev->flags&DF_REBID? "rebiddable,":""), 4891 (dev->ivars? "":"no "), 4892 (dev->softc? "":"no "), 4893 dev->busy)); 4894 } 4895 4896 static void 4897 print_device(device_t dev, int indent) 4898 { 4899 if (!dev) 4900 return; 4901 4902 print_device_short(dev, indent); 4903 4904 indentprintf(("Parent:\n")); 4905 print_device_short(dev->parent, indent+1); 4906 indentprintf(("Driver:\n")); 4907 print_driver_short(dev->driver, indent+1); 4908 indentprintf(("Devclass:\n")); 4909 print_devclass_short(dev->devclass, indent+1); 4910 } 4911 4912 void 4913 print_device_tree_short(device_t dev, int indent) 4914 /* print the device and all its children (indented) */ 4915 { 4916 device_t child; 4917 4918 if (!dev) 4919 return; 4920 4921 print_device_short(dev, indent); 4922 4923 TAILQ_FOREACH(child, &dev->children, link) { 4924 print_device_tree_short(child, indent+1); 4925 } 4926 } 4927 4928 void 4929 print_device_tree(device_t dev, int indent) 4930 /* print the device and all its children (indented) */ 4931 { 4932 device_t child; 4933 4934 if (!dev) 4935 return; 4936 4937 print_device(dev, indent); 4938 4939 TAILQ_FOREACH(child, &dev->children, link) { 4940 print_device_tree(child, indent+1); 4941 } 4942 } 4943 4944 static void 4945 print_driver_short(driver_t *driver, int indent) 4946 { 4947 if (!driver) 4948 return; 4949 4950 indentprintf(("driver %s: softc size = %zd\n", 4951 driver->name, driver->size)); 4952 } 4953 4954 static void 4955 print_driver(driver_t *driver, int indent) 4956 { 4957 if (!driver) 4958 return; 4959 4960 print_driver_short(driver, indent); 4961 } 4962 4963 static void 4964 print_driver_list(driver_list_t drivers, int indent) 4965 { 4966 driverlink_t driver; 4967 4968 TAILQ_FOREACH(driver, &drivers, link) { 4969 print_driver(driver->driver, indent); 4970 } 4971 } 4972 4973 static void 4974 print_devclass_short(devclass_t dc, int indent) 4975 { 4976 if ( !dc ) 4977 return; 4978 4979 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4980 } 4981 4982 static void 4983 print_devclass(devclass_t dc, int indent) 4984 { 4985 int i; 4986 4987 if ( !dc ) 4988 return; 4989 4990 print_devclass_short(dc, indent); 4991 indentprintf(("Drivers:\n")); 4992 print_driver_list(dc->drivers, indent+1); 4993 4994 indentprintf(("Devices:\n")); 4995 for (i = 0; i < dc->maxunit; i++) 4996 if (dc->devices[i]) 4997 print_device(dc->devices[i], indent+1); 4998 } 4999 5000 void 5001 print_devclass_list_short(void) 5002 { 5003 devclass_t dc; 5004 5005 printf("Short listing of devclasses, drivers & devices:\n"); 5006 TAILQ_FOREACH(dc, &devclasses, link) { 5007 print_devclass_short(dc, 0); 5008 } 5009 } 5010 5011 void 5012 print_devclass_list(void) 5013 { 5014 devclass_t dc; 5015 5016 printf("Full listing of devclasses, drivers & devices:\n"); 5017 TAILQ_FOREACH(dc, &devclasses, link) { 5018 print_devclass(dc, 0); 5019 } 5020 } 5021 5022 #endif 5023 5024 /* 5025 * User-space access to the device tree. 5026 * 5027 * We implement a small set of nodes: 5028 * 5029 * hw.bus Single integer read method to obtain the 5030 * current generation count. 5031 * hw.bus.devices Reads the entire device tree in flat space. 5032 * hw.bus.rman Resource manager interface 5033 * 5034 * We might like to add the ability to scan devclasses and/or drivers to 5035 * determine what else is currently loaded/available. 5036 */ 5037 5038 static int 5039 sysctl_bus(SYSCTL_HANDLER_ARGS) 5040 { 5041 struct u_businfo ubus; 5042 5043 ubus.ub_version = BUS_USER_VERSION; 5044 ubus.ub_generation = bus_data_generation; 5045 5046 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5047 } 5048 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5049 "bus-related data"); 5050 5051 static int 5052 sysctl_devices(SYSCTL_HANDLER_ARGS) 5053 { 5054 int *name = (int *)arg1; 5055 u_int namelen = arg2; 5056 int index; 5057 struct device *dev; 5058 struct u_device udev; /* XXX this is a bit big */ 5059 int error; 5060 5061 if (namelen != 2) 5062 return (EINVAL); 5063 5064 if (bus_data_generation_check(name[0])) 5065 return (EINVAL); 5066 5067 index = name[1]; 5068 5069 /* 5070 * Scan the list of devices, looking for the requested index. 5071 */ 5072 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5073 if (index-- == 0) 5074 break; 5075 } 5076 if (dev == NULL) 5077 return (ENOENT); 5078 5079 /* 5080 * Populate the return array. 5081 */ 5082 bzero(&udev, sizeof(udev)); 5083 udev.dv_handle = (uintptr_t)dev; 5084 udev.dv_parent = (uintptr_t)dev->parent; 5085 if (dev->nameunit != NULL) 5086 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5087 if (dev->desc != NULL) 5088 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5089 if (dev->driver != NULL && dev->driver->name != NULL) 5090 strlcpy(udev.dv_drivername, dev->driver->name, 5091 sizeof(udev.dv_drivername)); 5092 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5093 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5094 udev.dv_devflags = dev->devflags; 5095 udev.dv_flags = dev->flags; 5096 udev.dv_state = dev->state; 5097 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5098 return (error); 5099 } 5100 5101 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5102 "system device tree"); 5103 5104 int 5105 bus_data_generation_check(int generation) 5106 { 5107 if (generation != bus_data_generation) 5108 return (1); 5109 5110 /* XXX generate optimised lists here? */ 5111 return (0); 5112 } 5113 5114 void 5115 bus_data_generation_update(void) 5116 { 5117 bus_data_generation++; 5118 } 5119 5120 int 5121 bus_free_resource(device_t dev, int type, struct resource *r) 5122 { 5123 if (r == NULL) 5124 return (0); 5125 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5126 } 5127 5128 device_t 5129 device_lookup_by_name(const char *name) 5130 { 5131 device_t dev; 5132 5133 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5134 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5135 return (dev); 5136 } 5137 return (NULL); 5138 } 5139 5140 /* 5141 * /dev/devctl2 implementation. The existing /dev/devctl device has 5142 * implicit semantics on open, so it could not be reused for this. 5143 * Another option would be to call this /dev/bus? 5144 */ 5145 static int 5146 find_device(struct devreq *req, device_t *devp) 5147 { 5148 device_t dev; 5149 5150 /* 5151 * First, ensure that the name is nul terminated. 5152 */ 5153 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5154 return (EINVAL); 5155 5156 /* 5157 * Second, try to find an attached device whose name matches 5158 * 'name'. 5159 */ 5160 dev = device_lookup_by_name(req->dr_name); 5161 if (dev != NULL) { 5162 *devp = dev; 5163 return (0); 5164 } 5165 5166 /* Finally, give device enumerators a chance. */ 5167 dev = NULL; 5168 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5169 if (dev == NULL) 5170 return (ENOENT); 5171 *devp = dev; 5172 return (0); 5173 } 5174 5175 static bool 5176 driver_exists(struct device *bus, const char *driver) 5177 { 5178 devclass_t dc; 5179 5180 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5181 if (devclass_find_driver_internal(dc, driver) != NULL) 5182 return (true); 5183 } 5184 return (false); 5185 } 5186 5187 static int 5188 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5189 struct thread *td) 5190 { 5191 struct devreq *req; 5192 device_t dev; 5193 int error, old; 5194 5195 /* Locate the device to control. */ 5196 mtx_lock(&Giant); 5197 req = (struct devreq *)data; 5198 switch (cmd) { 5199 case DEV_ATTACH: 5200 case DEV_DETACH: 5201 case DEV_ENABLE: 5202 case DEV_DISABLE: 5203 case DEV_SUSPEND: 5204 case DEV_RESUME: 5205 case DEV_SET_DRIVER: 5206 error = priv_check(td, PRIV_DRIVER); 5207 if (error == 0) 5208 error = find_device(req, &dev); 5209 break; 5210 default: 5211 error = ENOTTY; 5212 break; 5213 } 5214 if (error) { 5215 mtx_unlock(&Giant); 5216 return (error); 5217 } 5218 5219 /* Perform the requested operation. */ 5220 switch (cmd) { 5221 case DEV_ATTACH: 5222 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5223 error = EBUSY; 5224 else if (!device_is_enabled(dev)) 5225 error = ENXIO; 5226 else 5227 error = device_probe_and_attach(dev); 5228 break; 5229 case DEV_DETACH: 5230 if (!device_is_attached(dev)) { 5231 error = ENXIO; 5232 break; 5233 } 5234 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5235 error = device_quiesce(dev); 5236 if (error) 5237 break; 5238 } 5239 error = device_detach(dev); 5240 break; 5241 case DEV_ENABLE: 5242 if (device_is_enabled(dev)) { 5243 error = EBUSY; 5244 break; 5245 } 5246 5247 /* 5248 * If the device has been probed but not attached (e.g. 5249 * when it has been disabled by a loader hint), just 5250 * attach the device rather than doing a full probe. 5251 */ 5252 device_enable(dev); 5253 if (device_is_alive(dev)) { 5254 /* 5255 * If the device was disabled via a hint, clear 5256 * the hint. 5257 */ 5258 if (resource_disabled(dev->driver->name, dev->unit)) 5259 resource_unset_value(dev->driver->name, 5260 dev->unit, "disabled"); 5261 error = device_attach(dev); 5262 } else 5263 error = device_probe_and_attach(dev); 5264 break; 5265 case DEV_DISABLE: 5266 if (!device_is_enabled(dev)) { 5267 error = ENXIO; 5268 break; 5269 } 5270 5271 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5272 error = device_quiesce(dev); 5273 if (error) 5274 break; 5275 } 5276 5277 /* 5278 * Force DF_FIXEDCLASS on around detach to preserve 5279 * the existing name. 5280 */ 5281 old = dev->flags; 5282 dev->flags |= DF_FIXEDCLASS; 5283 error = device_detach(dev); 5284 if (!(old & DF_FIXEDCLASS)) 5285 dev->flags &= ~DF_FIXEDCLASS; 5286 if (error == 0) 5287 device_disable(dev); 5288 break; 5289 case DEV_SUSPEND: 5290 if (device_is_suspended(dev)) { 5291 error = EBUSY; 5292 break; 5293 } 5294 if (device_get_parent(dev) == NULL) { 5295 error = EINVAL; 5296 break; 5297 } 5298 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5299 break; 5300 case DEV_RESUME: 5301 if (!device_is_suspended(dev)) { 5302 error = EINVAL; 5303 break; 5304 } 5305 if (device_get_parent(dev) == NULL) { 5306 error = EINVAL; 5307 break; 5308 } 5309 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5310 break; 5311 case DEV_SET_DRIVER: { 5312 devclass_t dc; 5313 char driver[128]; 5314 5315 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5316 if (error) 5317 break; 5318 if (driver[0] == '\0') { 5319 error = EINVAL; 5320 break; 5321 } 5322 if (dev->devclass != NULL && 5323 strcmp(driver, dev->devclass->name) == 0) 5324 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5325 break; 5326 5327 /* 5328 * Scan drivers for this device's bus looking for at 5329 * least one matching driver. 5330 */ 5331 if (dev->parent == NULL) { 5332 error = EINVAL; 5333 break; 5334 } 5335 if (!driver_exists(dev->parent, driver)) { 5336 error = ENOENT; 5337 break; 5338 } 5339 dc = devclass_create(driver); 5340 if (dc == NULL) { 5341 error = ENOMEM; 5342 break; 5343 } 5344 5345 /* Detach device if necessary. */ 5346 if (device_is_attached(dev)) { 5347 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5348 error = device_detach(dev); 5349 else 5350 error = EBUSY; 5351 if (error) 5352 break; 5353 } 5354 5355 /* Clear any previously-fixed device class and unit. */ 5356 if (dev->flags & DF_FIXEDCLASS) 5357 devclass_delete_device(dev->devclass, dev); 5358 dev->flags |= DF_WILDCARD; 5359 dev->unit = -1; 5360 5361 /* Force the new device class. */ 5362 error = devclass_add_device(dc, dev); 5363 if (error) 5364 break; 5365 dev->flags |= DF_FIXEDCLASS; 5366 error = device_probe_and_attach(dev); 5367 break; 5368 } 5369 } 5370 mtx_unlock(&Giant); 5371 return (error); 5372 } 5373 5374 static struct cdevsw devctl2_cdevsw = { 5375 .d_version = D_VERSION, 5376 .d_ioctl = devctl2_ioctl, 5377 .d_name = "devctl2", 5378 }; 5379 5380 static void 5381 devctl2_init(void) 5382 { 5383 5384 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5385 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5386 } 5387