xref: /freebsd/sys/kern/subr_bus.c (revision d933e97f9d7c919e68dc6aca4a6819a13ab3fbbf)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/filio.h>
36 #include <sys/lock.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/poll.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/condvar.h>
47 #include <sys/queue.h>
48 #include <machine/bus.h>
49 #include <sys/random.h>
50 #include <sys/rman.h>
51 #include <sys/selinfo.h>
52 #include <sys/signalvar.h>
53 #include <sys/smp.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/uio.h>
57 #include <sys/bus.h>
58 #include <sys/interrupt.h>
59 #include <sys/cpuset.h>
60 
61 #include <net/vnet.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/stdarg.h>
65 
66 #include <vm/uma.h>
67 #include <vm/vm.h>
68 
69 #include <ddb/ddb.h>
70 
71 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
72 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
73 
74 /*
75  * Used to attach drivers to devclasses.
76  */
77 typedef struct driverlink *driverlink_t;
78 struct driverlink {
79 	kobj_class_t	driver;
80 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
81 	int		pass;
82 	TAILQ_ENTRY(driverlink) passlink;
83 };
84 
85 /*
86  * Forward declarations
87  */
88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
90 typedef TAILQ_HEAD(device_list, device) device_list_t;
91 
92 struct devclass {
93 	TAILQ_ENTRY(devclass) link;
94 	devclass_t	parent;		/* parent in devclass hierarchy */
95 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
96 	char		*name;
97 	device_t	*devices;	/* array of devices indexed by unit */
98 	int		maxunit;	/* size of devices array */
99 	int		flags;
100 #define DC_HAS_CHILDREN		1
101 
102 	struct sysctl_ctx_list sysctl_ctx;
103 	struct sysctl_oid *sysctl_tree;
104 };
105 
106 /**
107  * @brief Implementation of device.
108  */
109 struct device {
110 	/*
111 	 * A device is a kernel object. The first field must be the
112 	 * current ops table for the object.
113 	 */
114 	KOBJ_FIELDS;
115 
116 	/*
117 	 * Device hierarchy.
118 	 */
119 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
120 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
121 	device_t	parent;		/**< parent of this device  */
122 	device_list_t	children;	/**< list of child devices */
123 
124 	/*
125 	 * Details of this device.
126 	 */
127 	driver_t	*driver;	/**< current driver */
128 	devclass_t	devclass;	/**< current device class */
129 	int		unit;		/**< current unit number */
130 	char*		nameunit;	/**< name+unit e.g. foodev0 */
131 	char*		desc;		/**< driver specific description */
132 	int		busy;		/**< count of calls to device_busy() */
133 	device_state_t	state;		/**< current device state  */
134 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
135 	u_int		flags;		/**< internal device flags  */
136 	u_int	order;			/**< order from device_add_child_ordered() */
137 	void	*ivars;			/**< instance variables  */
138 	void	*softc;			/**< current driver's variables  */
139 
140 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
141 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
142 };
143 
144 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
145 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
146 
147 static void devctl2_init(void);
148 
149 #define DRIVERNAME(d)	((d)? d->name : "no driver")
150 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
151 
152 #ifdef BUS_DEBUG
153 
154 static int bus_debug = 1;
155 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
156     "Bus debug level");
157 
158 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
159 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
160 
161 /**
162  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
163  * prevent syslog from deleting initial spaces
164  */
165 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
166 
167 static void print_device_short(device_t dev, int indent);
168 static void print_device(device_t dev, int indent);
169 void print_device_tree_short(device_t dev, int indent);
170 void print_device_tree(device_t dev, int indent);
171 static void print_driver_short(driver_t *driver, int indent);
172 static void print_driver(driver_t *driver, int indent);
173 static void print_driver_list(driver_list_t drivers, int indent);
174 static void print_devclass_short(devclass_t dc, int indent);
175 static void print_devclass(devclass_t dc, int indent);
176 void print_devclass_list_short(void);
177 void print_devclass_list(void);
178 
179 #else
180 /* Make the compiler ignore the function calls */
181 #define PDEBUG(a)			/* nop */
182 #define DEVICENAME(d)			/* nop */
183 
184 #define print_device_short(d,i)		/* nop */
185 #define print_device(d,i)		/* nop */
186 #define print_device_tree_short(d,i)	/* nop */
187 #define print_device_tree(d,i)		/* nop */
188 #define print_driver_short(d,i)		/* nop */
189 #define print_driver(d,i)		/* nop */
190 #define print_driver_list(d,i)		/* nop */
191 #define print_devclass_short(d,i)	/* nop */
192 #define print_devclass(d,i)		/* nop */
193 #define print_devclass_list_short()	/* nop */
194 #define print_devclass_list()		/* nop */
195 #endif
196 
197 /*
198  * dev sysctl tree
199  */
200 
201 enum {
202 	DEVCLASS_SYSCTL_PARENT,
203 };
204 
205 static int
206 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
207 {
208 	devclass_t dc = (devclass_t)arg1;
209 	const char *value;
210 
211 	switch (arg2) {
212 	case DEVCLASS_SYSCTL_PARENT:
213 		value = dc->parent ? dc->parent->name : "";
214 		break;
215 	default:
216 		return (EINVAL);
217 	}
218 	return (SYSCTL_OUT_STR(req, value));
219 }
220 
221 static void
222 devclass_sysctl_init(devclass_t dc)
223 {
224 
225 	if (dc->sysctl_tree != NULL)
226 		return;
227 	sysctl_ctx_init(&dc->sysctl_ctx);
228 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
229 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
230 	    CTLFLAG_RD, NULL, "");
231 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
232 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
233 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
234 	    "parent class");
235 }
236 
237 enum {
238 	DEVICE_SYSCTL_DESC,
239 	DEVICE_SYSCTL_DRIVER,
240 	DEVICE_SYSCTL_LOCATION,
241 	DEVICE_SYSCTL_PNPINFO,
242 	DEVICE_SYSCTL_PARENT,
243 };
244 
245 static int
246 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
247 {
248 	device_t dev = (device_t)arg1;
249 	const char *value;
250 	char *buf;
251 	int error;
252 
253 	buf = NULL;
254 	switch (arg2) {
255 	case DEVICE_SYSCTL_DESC:
256 		value = dev->desc ? dev->desc : "";
257 		break;
258 	case DEVICE_SYSCTL_DRIVER:
259 		value = dev->driver ? dev->driver->name : "";
260 		break;
261 	case DEVICE_SYSCTL_LOCATION:
262 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
263 		bus_child_location_str(dev, buf, 1024);
264 		break;
265 	case DEVICE_SYSCTL_PNPINFO:
266 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
267 		bus_child_pnpinfo_str(dev, buf, 1024);
268 		break;
269 	case DEVICE_SYSCTL_PARENT:
270 		value = dev->parent ? dev->parent->nameunit : "";
271 		break;
272 	default:
273 		return (EINVAL);
274 	}
275 	error = SYSCTL_OUT_STR(req, value);
276 	if (buf != NULL)
277 		free(buf, M_BUS);
278 	return (error);
279 }
280 
281 static void
282 device_sysctl_init(device_t dev)
283 {
284 	devclass_t dc = dev->devclass;
285 	int domain;
286 
287 	if (dev->sysctl_tree != NULL)
288 		return;
289 	devclass_sysctl_init(dc);
290 	sysctl_ctx_init(&dev->sysctl_ctx);
291 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
292 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
293 	    dev->nameunit + strlen(dc->name),
294 	    CTLFLAG_RD, NULL, "");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
298 	    "device description");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
302 	    "device driver name");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
306 	    "device location relative to parent");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
310 	    "device identification");
311 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
312 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
313 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
314 	    "parent device");
315 	if (bus_get_domain(dev, &domain) == 0)
316 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
317 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
318 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
319 }
320 
321 static void
322 device_sysctl_update(device_t dev)
323 {
324 	devclass_t dc = dev->devclass;
325 
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
329 }
330 
331 static void
332 device_sysctl_fini(device_t dev)
333 {
334 	if (dev->sysctl_tree == NULL)
335 		return;
336 	sysctl_ctx_free(&dev->sysctl_ctx);
337 	dev->sysctl_tree = NULL;
338 }
339 
340 /*
341  * /dev/devctl implementation
342  */
343 
344 /*
345  * This design allows only one reader for /dev/devctl.  This is not desirable
346  * in the long run, but will get a lot of hair out of this implementation.
347  * Maybe we should make this device a clonable device.
348  *
349  * Also note: we specifically do not attach a device to the device_t tree
350  * to avoid potential chicken and egg problems.  One could argue that all
351  * of this belongs to the root node.  One could also further argue that the
352  * sysctl interface that we have not might more properly be an ioctl
353  * interface, but at this stage of the game, I'm not inclined to rock that
354  * boat.
355  *
356  * I'm also not sure that the SIGIO support is done correctly or not, as
357  * I copied it from a driver that had SIGIO support that likely hasn't been
358  * tested since 3.4 or 2.2.8!
359  */
360 
361 /* Deprecated way to adjust queue length */
362 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
364     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
365     "devctl disable -- deprecated");
366 
367 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
368 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
369 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
370 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
371     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
372 
373 static d_open_t		devopen;
374 static d_close_t	devclose;
375 static d_read_t		devread;
376 static d_ioctl_t	devioctl;
377 static d_poll_t		devpoll;
378 static d_kqfilter_t	devkqfilter;
379 
380 static struct cdevsw dev_cdevsw = {
381 	.d_version =	D_VERSION,
382 	.d_open =	devopen,
383 	.d_close =	devclose,
384 	.d_read =	devread,
385 	.d_ioctl =	devioctl,
386 	.d_poll =	devpoll,
387 	.d_kqfilter =	devkqfilter,
388 	.d_name =	"devctl",
389 };
390 
391 struct dev_event_info
392 {
393 	char *dei_data;
394 	TAILQ_ENTRY(dev_event_info) dei_link;
395 };
396 
397 TAILQ_HEAD(devq, dev_event_info);
398 
399 static struct dev_softc
400 {
401 	int	inuse;
402 	int	nonblock;
403 	int	queued;
404 	int	async;
405 	struct mtx mtx;
406 	struct cv cv;
407 	struct selinfo sel;
408 	struct devq devq;
409 	struct sigio *sigio;
410 } devsoftc;
411 
412 static void	filt_devctl_detach(struct knote *kn);
413 static int	filt_devctl_read(struct knote *kn, long hint);
414 
415 struct filterops devctl_rfiltops = {
416 	.f_isfd = 1,
417 	.f_detach = filt_devctl_detach,
418 	.f_event = filt_devctl_read,
419 };
420 
421 static struct cdev *devctl_dev;
422 
423 static void
424 devinit(void)
425 {
426 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
427 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
428 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
429 	cv_init(&devsoftc.cv, "dev cv");
430 	TAILQ_INIT(&devsoftc.devq);
431 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
432 	devctl2_init();
433 }
434 
435 static int
436 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
437 {
438 
439 	mtx_lock(&devsoftc.mtx);
440 	if (devsoftc.inuse) {
441 		mtx_unlock(&devsoftc.mtx);
442 		return (EBUSY);
443 	}
444 	/* move to init */
445 	devsoftc.inuse = 1;
446 	mtx_unlock(&devsoftc.mtx);
447 	return (0);
448 }
449 
450 static int
451 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
452 {
453 
454 	mtx_lock(&devsoftc.mtx);
455 	devsoftc.inuse = 0;
456 	devsoftc.nonblock = 0;
457 	devsoftc.async = 0;
458 	cv_broadcast(&devsoftc.cv);
459 	funsetown(&devsoftc.sigio);
460 	mtx_unlock(&devsoftc.mtx);
461 	return (0);
462 }
463 
464 /*
465  * The read channel for this device is used to report changes to
466  * userland in realtime.  We are required to free the data as well as
467  * the n1 object because we allocate them separately.  Also note that
468  * we return one record at a time.  If you try to read this device a
469  * character at a time, you will lose the rest of the data.  Listening
470  * programs are expected to cope.
471  */
472 static int
473 devread(struct cdev *dev, struct uio *uio, int ioflag)
474 {
475 	struct dev_event_info *n1;
476 	int rv;
477 
478 	mtx_lock(&devsoftc.mtx);
479 	while (TAILQ_EMPTY(&devsoftc.devq)) {
480 		if (devsoftc.nonblock) {
481 			mtx_unlock(&devsoftc.mtx);
482 			return (EAGAIN);
483 		}
484 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
485 		if (rv) {
486 			/*
487 			 * Need to translate ERESTART to EINTR here? -- jake
488 			 */
489 			mtx_unlock(&devsoftc.mtx);
490 			return (rv);
491 		}
492 	}
493 	n1 = TAILQ_FIRST(&devsoftc.devq);
494 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
495 	devsoftc.queued--;
496 	mtx_unlock(&devsoftc.mtx);
497 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
498 	free(n1->dei_data, M_BUS);
499 	free(n1, M_BUS);
500 	return (rv);
501 }
502 
503 static	int
504 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
505 {
506 	switch (cmd) {
507 
508 	case FIONBIO:
509 		if (*(int*)data)
510 			devsoftc.nonblock = 1;
511 		else
512 			devsoftc.nonblock = 0;
513 		return (0);
514 	case FIOASYNC:
515 		if (*(int*)data)
516 			devsoftc.async = 1;
517 		else
518 			devsoftc.async = 0;
519 		return (0);
520 	case FIOSETOWN:
521 		return fsetown(*(int *)data, &devsoftc.sigio);
522 	case FIOGETOWN:
523 		*(int *)data = fgetown(&devsoftc.sigio);
524 		return (0);
525 
526 		/* (un)Support for other fcntl() calls. */
527 	case FIOCLEX:
528 	case FIONCLEX:
529 	case FIONREAD:
530 	default:
531 		break;
532 	}
533 	return (ENOTTY);
534 }
535 
536 static	int
537 devpoll(struct cdev *dev, int events, struct thread *td)
538 {
539 	int	revents = 0;
540 
541 	mtx_lock(&devsoftc.mtx);
542 	if (events & (POLLIN | POLLRDNORM)) {
543 		if (!TAILQ_EMPTY(&devsoftc.devq))
544 			revents = events & (POLLIN | POLLRDNORM);
545 		else
546 			selrecord(td, &devsoftc.sel);
547 	}
548 	mtx_unlock(&devsoftc.mtx);
549 
550 	return (revents);
551 }
552 
553 static int
554 devkqfilter(struct cdev *dev, struct knote *kn)
555 {
556 	int error;
557 
558 	if (kn->kn_filter == EVFILT_READ) {
559 		kn->kn_fop = &devctl_rfiltops;
560 		knlist_add(&devsoftc.sel.si_note, kn, 0);
561 		error = 0;
562 	} else
563 		error = EINVAL;
564 	return (error);
565 }
566 
567 static void
568 filt_devctl_detach(struct knote *kn)
569 {
570 
571 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
572 }
573 
574 static int
575 filt_devctl_read(struct knote *kn, long hint)
576 {
577 	kn->kn_data = devsoftc.queued;
578 	return (kn->kn_data != 0);
579 }
580 
581 /**
582  * @brief Return whether the userland process is running
583  */
584 boolean_t
585 devctl_process_running(void)
586 {
587 	return (devsoftc.inuse == 1);
588 }
589 
590 /**
591  * @brief Queue data to be read from the devctl device
592  *
593  * Generic interface to queue data to the devctl device.  It is
594  * assumed that @p data is properly formatted.  It is further assumed
595  * that @p data is allocated using the M_BUS malloc type.
596  */
597 void
598 devctl_queue_data_f(char *data, int flags)
599 {
600 	struct dev_event_info *n1 = NULL, *n2 = NULL;
601 
602 	if (strlen(data) == 0)
603 		goto out;
604 	if (devctl_queue_length == 0)
605 		goto out;
606 	n1 = malloc(sizeof(*n1), M_BUS, flags);
607 	if (n1 == NULL)
608 		goto out;
609 	n1->dei_data = data;
610 	mtx_lock(&devsoftc.mtx);
611 	if (devctl_queue_length == 0) {
612 		mtx_unlock(&devsoftc.mtx);
613 		free(n1->dei_data, M_BUS);
614 		free(n1, M_BUS);
615 		return;
616 	}
617 	/* Leave at least one spot in the queue... */
618 	while (devsoftc.queued > devctl_queue_length - 1) {
619 		n2 = TAILQ_FIRST(&devsoftc.devq);
620 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
621 		free(n2->dei_data, M_BUS);
622 		free(n2, M_BUS);
623 		devsoftc.queued--;
624 	}
625 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
626 	devsoftc.queued++;
627 	cv_broadcast(&devsoftc.cv);
628 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
629 	mtx_unlock(&devsoftc.mtx);
630 	selwakeup(&devsoftc.sel);
631 	if (devsoftc.async && devsoftc.sigio != NULL)
632 		pgsigio(&devsoftc.sigio, SIGIO, 0);
633 	return;
634 out:
635 	/*
636 	 * We have to free data on all error paths since the caller
637 	 * assumes it will be free'd when this item is dequeued.
638 	 */
639 	free(data, M_BUS);
640 	return;
641 }
642 
643 void
644 devctl_queue_data(char *data)
645 {
646 
647 	devctl_queue_data_f(data, M_NOWAIT);
648 }
649 
650 /**
651  * @brief Send a 'notification' to userland, using standard ways
652  */
653 void
654 devctl_notify_f(const char *system, const char *subsystem, const char *type,
655     const char *data, int flags)
656 {
657 	int len = 0;
658 	char *msg;
659 
660 	if (system == NULL)
661 		return;		/* BOGUS!  Must specify system. */
662 	if (subsystem == NULL)
663 		return;		/* BOGUS!  Must specify subsystem. */
664 	if (type == NULL)
665 		return;		/* BOGUS!  Must specify type. */
666 	len += strlen(" system=") + strlen(system);
667 	len += strlen(" subsystem=") + strlen(subsystem);
668 	len += strlen(" type=") + strlen(type);
669 	/* add in the data message plus newline. */
670 	if (data != NULL)
671 		len += strlen(data);
672 	len += 3;	/* '!', '\n', and NUL */
673 	msg = malloc(len, M_BUS, flags);
674 	if (msg == NULL)
675 		return;		/* Drop it on the floor */
676 	if (data != NULL)
677 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
678 		    system, subsystem, type, data);
679 	else
680 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
681 		    system, subsystem, type);
682 	devctl_queue_data_f(msg, flags);
683 }
684 
685 void
686 devctl_notify(const char *system, const char *subsystem, const char *type,
687     const char *data)
688 {
689 
690 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
691 }
692 
693 /*
694  * Common routine that tries to make sending messages as easy as possible.
695  * We allocate memory for the data, copy strings into that, but do not
696  * free it unless there's an error.  The dequeue part of the driver should
697  * free the data.  We don't send data when the device is disabled.  We do
698  * send data, even when we have no listeners, because we wish to avoid
699  * races relating to startup and restart of listening applications.
700  *
701  * devaddq is designed to string together the type of event, with the
702  * object of that event, plus the plug and play info and location info
703  * for that event.  This is likely most useful for devices, but less
704  * useful for other consumers of this interface.  Those should use
705  * the devctl_queue_data() interface instead.
706  */
707 static void
708 devaddq(const char *type, const char *what, device_t dev)
709 {
710 	char *data = NULL;
711 	char *loc = NULL;
712 	char *pnp = NULL;
713 	const char *parstr;
714 
715 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
716 		return;
717 	data = malloc(1024, M_BUS, M_NOWAIT);
718 	if (data == NULL)
719 		goto bad;
720 
721 	/* get the bus specific location of this device */
722 	loc = malloc(1024, M_BUS, M_NOWAIT);
723 	if (loc == NULL)
724 		goto bad;
725 	*loc = '\0';
726 	bus_child_location_str(dev, loc, 1024);
727 
728 	/* Get the bus specific pnp info of this device */
729 	pnp = malloc(1024, M_BUS, M_NOWAIT);
730 	if (pnp == NULL)
731 		goto bad;
732 	*pnp = '\0';
733 	bus_child_pnpinfo_str(dev, pnp, 1024);
734 
735 	/* Get the parent of this device, or / if high enough in the tree. */
736 	if (device_get_parent(dev) == NULL)
737 		parstr = ".";	/* Or '/' ? */
738 	else
739 		parstr = device_get_nameunit(device_get_parent(dev));
740 	/* String it all together. */
741 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
742 	  parstr);
743 	free(loc, M_BUS);
744 	free(pnp, M_BUS);
745 	devctl_queue_data(data);
746 	return;
747 bad:
748 	free(pnp, M_BUS);
749 	free(loc, M_BUS);
750 	free(data, M_BUS);
751 	return;
752 }
753 
754 /*
755  * A device was added to the tree.  We are called just after it successfully
756  * attaches (that is, probe and attach success for this device).  No call
757  * is made if a device is merely parented into the tree.  See devnomatch
758  * if probe fails.  If attach fails, no notification is sent (but maybe
759  * we should have a different message for this).
760  */
761 static void
762 devadded(device_t dev)
763 {
764 	devaddq("+", device_get_nameunit(dev), dev);
765 }
766 
767 /*
768  * A device was removed from the tree.  We are called just before this
769  * happens.
770  */
771 static void
772 devremoved(device_t dev)
773 {
774 	devaddq("-", device_get_nameunit(dev), dev);
775 }
776 
777 /*
778  * Called when there's no match for this device.  This is only called
779  * the first time that no match happens, so we don't keep getting this
780  * message.  Should that prove to be undesirable, we can change it.
781  * This is called when all drivers that can attach to a given bus
782  * decline to accept this device.  Other errors may not be detected.
783  */
784 static void
785 devnomatch(device_t dev)
786 {
787 	devaddq("?", "", dev);
788 }
789 
790 static int
791 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
792 {
793 	struct dev_event_info *n1;
794 	int dis, error;
795 
796 	dis = (devctl_queue_length == 0);
797 	error = sysctl_handle_int(oidp, &dis, 0, req);
798 	if (error || !req->newptr)
799 		return (error);
800 	if (mtx_initialized(&devsoftc.mtx))
801 		mtx_lock(&devsoftc.mtx);
802 	if (dis) {
803 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
804 			n1 = TAILQ_FIRST(&devsoftc.devq);
805 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
806 			free(n1->dei_data, M_BUS);
807 			free(n1, M_BUS);
808 		}
809 		devsoftc.queued = 0;
810 		devctl_queue_length = 0;
811 	} else {
812 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
813 	}
814 	if (mtx_initialized(&devsoftc.mtx))
815 		mtx_unlock(&devsoftc.mtx);
816 	return (0);
817 }
818 
819 static int
820 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
821 {
822 	struct dev_event_info *n1;
823 	int q, error;
824 
825 	q = devctl_queue_length;
826 	error = sysctl_handle_int(oidp, &q, 0, req);
827 	if (error || !req->newptr)
828 		return (error);
829 	if (q < 0)
830 		return (EINVAL);
831 	if (mtx_initialized(&devsoftc.mtx))
832 		mtx_lock(&devsoftc.mtx);
833 	devctl_queue_length = q;
834 	while (devsoftc.queued > devctl_queue_length) {
835 		n1 = TAILQ_FIRST(&devsoftc.devq);
836 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
837 		free(n1->dei_data, M_BUS);
838 		free(n1, M_BUS);
839 		devsoftc.queued--;
840 	}
841 	if (mtx_initialized(&devsoftc.mtx))
842 		mtx_unlock(&devsoftc.mtx);
843 	return (0);
844 }
845 
846 /**
847  * @brief safely quotes strings that might have double quotes in them.
848  *
849  * The devctl protocol relies on quoted strings having matching quotes.
850  * This routine quotes any internal quotes so the resulting string
851  * is safe to pass to snprintf to construct, for example pnp info strings.
852  * Strings are always terminated with a NUL, but may be truncated if longer
853  * than @p len bytes after quotes.
854  *
855  * @param dst	Buffer to hold the string. Must be at least @p len bytes long
856  * @param src	Original buffer.
857  * @param len	Length of buffer pointed to by @dst, including trailing NUL
858  */
859 void
860 devctl_safe_quote(char *dst, const char *src, size_t len)
861 {
862 	char *walker = dst, *ep = dst + len - 1;
863 
864 	if (len == 0)
865 		return;
866 	while (src != NULL && walker < ep)
867 	{
868 		if (*src == '"' || *src == '\\') {
869 			if (ep - walker < 2)
870 				break;
871 			*walker++ = '\\';
872 		}
873 		*walker++ = *src++;
874 	}
875 	*walker = '\0';
876 }
877 
878 /* End of /dev/devctl code */
879 
880 static TAILQ_HEAD(,device)	bus_data_devices;
881 static int bus_data_generation = 1;
882 
883 static kobj_method_t null_methods[] = {
884 	KOBJMETHOD_END
885 };
886 
887 DEFINE_CLASS(null, null_methods, 0);
888 
889 /*
890  * Bus pass implementation
891  */
892 
893 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
894 int bus_current_pass = BUS_PASS_ROOT;
895 
896 /**
897  * @internal
898  * @brief Register the pass level of a new driver attachment
899  *
900  * Register a new driver attachment's pass level.  If no driver
901  * attachment with the same pass level has been added, then @p new
902  * will be added to the global passes list.
903  *
904  * @param new		the new driver attachment
905  */
906 static void
907 driver_register_pass(struct driverlink *new)
908 {
909 	struct driverlink *dl;
910 
911 	/* We only consider pass numbers during boot. */
912 	if (bus_current_pass == BUS_PASS_DEFAULT)
913 		return;
914 
915 	/*
916 	 * Walk the passes list.  If we already know about this pass
917 	 * then there is nothing to do.  If we don't, then insert this
918 	 * driver link into the list.
919 	 */
920 	TAILQ_FOREACH(dl, &passes, passlink) {
921 		if (dl->pass < new->pass)
922 			continue;
923 		if (dl->pass == new->pass)
924 			return;
925 		TAILQ_INSERT_BEFORE(dl, new, passlink);
926 		return;
927 	}
928 	TAILQ_INSERT_TAIL(&passes, new, passlink);
929 }
930 
931 /**
932  * @brief Raise the current bus pass
933  *
934  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
935  * method on the root bus to kick off a new device tree scan for each
936  * new pass level that has at least one driver.
937  */
938 void
939 bus_set_pass(int pass)
940 {
941 	struct driverlink *dl;
942 
943 	if (bus_current_pass > pass)
944 		panic("Attempt to lower bus pass level");
945 
946 	TAILQ_FOREACH(dl, &passes, passlink) {
947 		/* Skip pass values below the current pass level. */
948 		if (dl->pass <= bus_current_pass)
949 			continue;
950 
951 		/*
952 		 * Bail once we hit a driver with a pass level that is
953 		 * too high.
954 		 */
955 		if (dl->pass > pass)
956 			break;
957 
958 		/*
959 		 * Raise the pass level to the next level and rescan
960 		 * the tree.
961 		 */
962 		bus_current_pass = dl->pass;
963 		BUS_NEW_PASS(root_bus);
964 	}
965 
966 	/*
967 	 * If there isn't a driver registered for the requested pass,
968 	 * then bus_current_pass might still be less than 'pass'.  Set
969 	 * it to 'pass' in that case.
970 	 */
971 	if (bus_current_pass < pass)
972 		bus_current_pass = pass;
973 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
974 }
975 
976 /*
977  * Devclass implementation
978  */
979 
980 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
981 
982 /**
983  * @internal
984  * @brief Find or create a device class
985  *
986  * If a device class with the name @p classname exists, return it,
987  * otherwise if @p create is non-zero create and return a new device
988  * class.
989  *
990  * If @p parentname is non-NULL, the parent of the devclass is set to
991  * the devclass of that name.
992  *
993  * @param classname	the devclass name to find or create
994  * @param parentname	the parent devclass name or @c NULL
995  * @param create	non-zero to create a devclass
996  */
997 static devclass_t
998 devclass_find_internal(const char *classname, const char *parentname,
999 		       int create)
1000 {
1001 	devclass_t dc;
1002 
1003 	PDEBUG(("looking for %s", classname));
1004 	if (!classname)
1005 		return (NULL);
1006 
1007 	TAILQ_FOREACH(dc, &devclasses, link) {
1008 		if (!strcmp(dc->name, classname))
1009 			break;
1010 	}
1011 
1012 	if (create && !dc) {
1013 		PDEBUG(("creating %s", classname));
1014 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1015 		    M_BUS, M_NOWAIT | M_ZERO);
1016 		if (!dc)
1017 			return (NULL);
1018 		dc->parent = NULL;
1019 		dc->name = (char*) (dc + 1);
1020 		strcpy(dc->name, classname);
1021 		TAILQ_INIT(&dc->drivers);
1022 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1023 
1024 		bus_data_generation_update();
1025 	}
1026 
1027 	/*
1028 	 * If a parent class is specified, then set that as our parent so
1029 	 * that this devclass will support drivers for the parent class as
1030 	 * well.  If the parent class has the same name don't do this though
1031 	 * as it creates a cycle that can trigger an infinite loop in
1032 	 * device_probe_child() if a device exists for which there is no
1033 	 * suitable driver.
1034 	 */
1035 	if (parentname && dc && !dc->parent &&
1036 	    strcmp(classname, parentname) != 0) {
1037 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1038 		dc->parent->flags |= DC_HAS_CHILDREN;
1039 	}
1040 
1041 	return (dc);
1042 }
1043 
1044 /**
1045  * @brief Create a device class
1046  *
1047  * If a device class with the name @p classname exists, return it,
1048  * otherwise create and return a new device class.
1049  *
1050  * @param classname	the devclass name to find or create
1051  */
1052 devclass_t
1053 devclass_create(const char *classname)
1054 {
1055 	return (devclass_find_internal(classname, NULL, TRUE));
1056 }
1057 
1058 /**
1059  * @brief Find a device class
1060  *
1061  * If a device class with the name @p classname exists, return it,
1062  * otherwise return @c NULL.
1063  *
1064  * @param classname	the devclass name to find
1065  */
1066 devclass_t
1067 devclass_find(const char *classname)
1068 {
1069 	return (devclass_find_internal(classname, NULL, FALSE));
1070 }
1071 
1072 /**
1073  * @brief Register that a device driver has been added to a devclass
1074  *
1075  * Register that a device driver has been added to a devclass.  This
1076  * is called by devclass_add_driver to accomplish the recursive
1077  * notification of all the children classes of dc, as well as dc.
1078  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1079  * the devclass.
1080  *
1081  * We do a full search here of the devclass list at each iteration
1082  * level to save storing children-lists in the devclass structure.  If
1083  * we ever move beyond a few dozen devices doing this, we may need to
1084  * reevaluate...
1085  *
1086  * @param dc		the devclass to edit
1087  * @param driver	the driver that was just added
1088  */
1089 static void
1090 devclass_driver_added(devclass_t dc, driver_t *driver)
1091 {
1092 	devclass_t parent;
1093 	int i;
1094 
1095 	/*
1096 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1097 	 */
1098 	for (i = 0; i < dc->maxunit; i++)
1099 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1100 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1101 
1102 	/*
1103 	 * Walk through the children classes.  Since we only keep a
1104 	 * single parent pointer around, we walk the entire list of
1105 	 * devclasses looking for children.  We set the
1106 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1107 	 * the parent, so we only walk the list for those devclasses
1108 	 * that have children.
1109 	 */
1110 	if (!(dc->flags & DC_HAS_CHILDREN))
1111 		return;
1112 	parent = dc;
1113 	TAILQ_FOREACH(dc, &devclasses, link) {
1114 		if (dc->parent == parent)
1115 			devclass_driver_added(dc, driver);
1116 	}
1117 }
1118 
1119 /**
1120  * @brief Add a device driver to a device class
1121  *
1122  * Add a device driver to a devclass. This is normally called
1123  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1124  * all devices in the devclass will be called to allow them to attempt
1125  * to re-probe any unmatched children.
1126  *
1127  * @param dc		the devclass to edit
1128  * @param driver	the driver to register
1129  */
1130 int
1131 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1132 {
1133 	driverlink_t dl;
1134 	const char *parentname;
1135 
1136 	PDEBUG(("%s", DRIVERNAME(driver)));
1137 
1138 	/* Don't allow invalid pass values. */
1139 	if (pass <= BUS_PASS_ROOT)
1140 		return (EINVAL);
1141 
1142 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1143 	if (!dl)
1144 		return (ENOMEM);
1145 
1146 	/*
1147 	 * Compile the driver's methods. Also increase the reference count
1148 	 * so that the class doesn't get freed when the last instance
1149 	 * goes. This means we can safely use static methods and avoids a
1150 	 * double-free in devclass_delete_driver.
1151 	 */
1152 	kobj_class_compile((kobj_class_t) driver);
1153 
1154 	/*
1155 	 * If the driver has any base classes, make the
1156 	 * devclass inherit from the devclass of the driver's
1157 	 * first base class. This will allow the system to
1158 	 * search for drivers in both devclasses for children
1159 	 * of a device using this driver.
1160 	 */
1161 	if (driver->baseclasses)
1162 		parentname = driver->baseclasses[0]->name;
1163 	else
1164 		parentname = NULL;
1165 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1166 
1167 	dl->driver = driver;
1168 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1169 	driver->refs++;		/* XXX: kobj_mtx */
1170 	dl->pass = pass;
1171 	driver_register_pass(dl);
1172 
1173 	devclass_driver_added(dc, driver);
1174 	bus_data_generation_update();
1175 	return (0);
1176 }
1177 
1178 /**
1179  * @brief Register that a device driver has been deleted from a devclass
1180  *
1181  * Register that a device driver has been removed from a devclass.
1182  * This is called by devclass_delete_driver to accomplish the
1183  * recursive notification of all the children classes of busclass, as
1184  * well as busclass.  Each layer will attempt to detach the driver
1185  * from any devices that are children of the bus's devclass.  The function
1186  * will return an error if a device fails to detach.
1187  *
1188  * We do a full search here of the devclass list at each iteration
1189  * level to save storing children-lists in the devclass structure.  If
1190  * we ever move beyond a few dozen devices doing this, we may need to
1191  * reevaluate...
1192  *
1193  * @param busclass	the devclass of the parent bus
1194  * @param dc		the devclass of the driver being deleted
1195  * @param driver	the driver being deleted
1196  */
1197 static int
1198 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1199 {
1200 	devclass_t parent;
1201 	device_t dev;
1202 	int error, i;
1203 
1204 	/*
1205 	 * Disassociate from any devices.  We iterate through all the
1206 	 * devices in the devclass of the driver and detach any which are
1207 	 * using the driver and which have a parent in the devclass which
1208 	 * we are deleting from.
1209 	 *
1210 	 * Note that since a driver can be in multiple devclasses, we
1211 	 * should not detach devices which are not children of devices in
1212 	 * the affected devclass.
1213 	 */
1214 	for (i = 0; i < dc->maxunit; i++) {
1215 		if (dc->devices[i]) {
1216 			dev = dc->devices[i];
1217 			if (dev->driver == driver && dev->parent &&
1218 			    dev->parent->devclass == busclass) {
1219 				if ((error = device_detach(dev)) != 0)
1220 					return (error);
1221 				BUS_PROBE_NOMATCH(dev->parent, dev);
1222 				devnomatch(dev);
1223 				dev->flags |= DF_DONENOMATCH;
1224 			}
1225 		}
1226 	}
1227 
1228 	/*
1229 	 * Walk through the children classes.  Since we only keep a
1230 	 * single parent pointer around, we walk the entire list of
1231 	 * devclasses looking for children.  We set the
1232 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1233 	 * the parent, so we only walk the list for those devclasses
1234 	 * that have children.
1235 	 */
1236 	if (!(busclass->flags & DC_HAS_CHILDREN))
1237 		return (0);
1238 	parent = busclass;
1239 	TAILQ_FOREACH(busclass, &devclasses, link) {
1240 		if (busclass->parent == parent) {
1241 			error = devclass_driver_deleted(busclass, dc, driver);
1242 			if (error)
1243 				return (error);
1244 		}
1245 	}
1246 	return (0);
1247 }
1248 
1249 /**
1250  * @brief Delete a device driver from a device class
1251  *
1252  * Delete a device driver from a devclass. This is normally called
1253  * automatically by DRIVER_MODULE().
1254  *
1255  * If the driver is currently attached to any devices,
1256  * devclass_delete_driver() will first attempt to detach from each
1257  * device. If one of the detach calls fails, the driver will not be
1258  * deleted.
1259  *
1260  * @param dc		the devclass to edit
1261  * @param driver	the driver to unregister
1262  */
1263 int
1264 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1265 {
1266 	devclass_t dc = devclass_find(driver->name);
1267 	driverlink_t dl;
1268 	int error;
1269 
1270 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1271 
1272 	if (!dc)
1273 		return (0);
1274 
1275 	/*
1276 	 * Find the link structure in the bus' list of drivers.
1277 	 */
1278 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1279 		if (dl->driver == driver)
1280 			break;
1281 	}
1282 
1283 	if (!dl) {
1284 		PDEBUG(("%s not found in %s list", driver->name,
1285 		    busclass->name));
1286 		return (ENOENT);
1287 	}
1288 
1289 	error = devclass_driver_deleted(busclass, dc, driver);
1290 	if (error != 0)
1291 		return (error);
1292 
1293 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1294 	free(dl, M_BUS);
1295 
1296 	/* XXX: kobj_mtx */
1297 	driver->refs--;
1298 	if (driver->refs == 0)
1299 		kobj_class_free((kobj_class_t) driver);
1300 
1301 	bus_data_generation_update();
1302 	return (0);
1303 }
1304 
1305 /**
1306  * @brief Quiesces a set of device drivers from a device class
1307  *
1308  * Quiesce a device driver from a devclass. This is normally called
1309  * automatically by DRIVER_MODULE().
1310  *
1311  * If the driver is currently attached to any devices,
1312  * devclass_quiesece_driver() will first attempt to quiesce each
1313  * device.
1314  *
1315  * @param dc		the devclass to edit
1316  * @param driver	the driver to unregister
1317  */
1318 static int
1319 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1320 {
1321 	devclass_t dc = devclass_find(driver->name);
1322 	driverlink_t dl;
1323 	device_t dev;
1324 	int i;
1325 	int error;
1326 
1327 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1328 
1329 	if (!dc)
1330 		return (0);
1331 
1332 	/*
1333 	 * Find the link structure in the bus' list of drivers.
1334 	 */
1335 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1336 		if (dl->driver == driver)
1337 			break;
1338 	}
1339 
1340 	if (!dl) {
1341 		PDEBUG(("%s not found in %s list", driver->name,
1342 		    busclass->name));
1343 		return (ENOENT);
1344 	}
1345 
1346 	/*
1347 	 * Quiesce all devices.  We iterate through all the devices in
1348 	 * the devclass of the driver and quiesce any which are using
1349 	 * the driver and which have a parent in the devclass which we
1350 	 * are quiescing.
1351 	 *
1352 	 * Note that since a driver can be in multiple devclasses, we
1353 	 * should not quiesce devices which are not children of
1354 	 * devices in the affected devclass.
1355 	 */
1356 	for (i = 0; i < dc->maxunit; i++) {
1357 		if (dc->devices[i]) {
1358 			dev = dc->devices[i];
1359 			if (dev->driver == driver && dev->parent &&
1360 			    dev->parent->devclass == busclass) {
1361 				if ((error = device_quiesce(dev)) != 0)
1362 					return (error);
1363 			}
1364 		}
1365 	}
1366 
1367 	return (0);
1368 }
1369 
1370 /**
1371  * @internal
1372  */
1373 static driverlink_t
1374 devclass_find_driver_internal(devclass_t dc, const char *classname)
1375 {
1376 	driverlink_t dl;
1377 
1378 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1379 
1380 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1381 		if (!strcmp(dl->driver->name, classname))
1382 			return (dl);
1383 	}
1384 
1385 	PDEBUG(("not found"));
1386 	return (NULL);
1387 }
1388 
1389 /**
1390  * @brief Return the name of the devclass
1391  */
1392 const char *
1393 devclass_get_name(devclass_t dc)
1394 {
1395 	return (dc->name);
1396 }
1397 
1398 /**
1399  * @brief Find a device given a unit number
1400  *
1401  * @param dc		the devclass to search
1402  * @param unit		the unit number to search for
1403  *
1404  * @returns		the device with the given unit number or @c
1405  *			NULL if there is no such device
1406  */
1407 device_t
1408 devclass_get_device(devclass_t dc, int unit)
1409 {
1410 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1411 		return (NULL);
1412 	return (dc->devices[unit]);
1413 }
1414 
1415 /**
1416  * @brief Find the softc field of a device given a unit number
1417  *
1418  * @param dc		the devclass to search
1419  * @param unit		the unit number to search for
1420  *
1421  * @returns		the softc field of the device with the given
1422  *			unit number or @c NULL if there is no such
1423  *			device
1424  */
1425 void *
1426 devclass_get_softc(devclass_t dc, int unit)
1427 {
1428 	device_t dev;
1429 
1430 	dev = devclass_get_device(dc, unit);
1431 	if (!dev)
1432 		return (NULL);
1433 
1434 	return (device_get_softc(dev));
1435 }
1436 
1437 /**
1438  * @brief Get a list of devices in the devclass
1439  *
1440  * An array containing a list of all the devices in the given devclass
1441  * is allocated and returned in @p *devlistp. The number of devices
1442  * in the array is returned in @p *devcountp. The caller should free
1443  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1444  *
1445  * @param dc		the devclass to examine
1446  * @param devlistp	points at location for array pointer return
1447  *			value
1448  * @param devcountp	points at location for array size return value
1449  *
1450  * @retval 0		success
1451  * @retval ENOMEM	the array allocation failed
1452  */
1453 int
1454 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1455 {
1456 	int count, i;
1457 	device_t *list;
1458 
1459 	count = devclass_get_count(dc);
1460 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1461 	if (!list)
1462 		return (ENOMEM);
1463 
1464 	count = 0;
1465 	for (i = 0; i < dc->maxunit; i++) {
1466 		if (dc->devices[i]) {
1467 			list[count] = dc->devices[i];
1468 			count++;
1469 		}
1470 	}
1471 
1472 	*devlistp = list;
1473 	*devcountp = count;
1474 
1475 	return (0);
1476 }
1477 
1478 /**
1479  * @brief Get a list of drivers in the devclass
1480  *
1481  * An array containing a list of pointers to all the drivers in the
1482  * given devclass is allocated and returned in @p *listp.  The number
1483  * of drivers in the array is returned in @p *countp. The caller should
1484  * free the array using @c free(p, M_TEMP).
1485  *
1486  * @param dc		the devclass to examine
1487  * @param listp		gives location for array pointer return value
1488  * @param countp	gives location for number of array elements
1489  *			return value
1490  *
1491  * @retval 0		success
1492  * @retval ENOMEM	the array allocation failed
1493  */
1494 int
1495 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1496 {
1497 	driverlink_t dl;
1498 	driver_t **list;
1499 	int count;
1500 
1501 	count = 0;
1502 	TAILQ_FOREACH(dl, &dc->drivers, link)
1503 		count++;
1504 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1505 	if (list == NULL)
1506 		return (ENOMEM);
1507 
1508 	count = 0;
1509 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1510 		list[count] = dl->driver;
1511 		count++;
1512 	}
1513 	*listp = list;
1514 	*countp = count;
1515 
1516 	return (0);
1517 }
1518 
1519 /**
1520  * @brief Get the number of devices in a devclass
1521  *
1522  * @param dc		the devclass to examine
1523  */
1524 int
1525 devclass_get_count(devclass_t dc)
1526 {
1527 	int count, i;
1528 
1529 	count = 0;
1530 	for (i = 0; i < dc->maxunit; i++)
1531 		if (dc->devices[i])
1532 			count++;
1533 	return (count);
1534 }
1535 
1536 /**
1537  * @brief Get the maximum unit number used in a devclass
1538  *
1539  * Note that this is one greater than the highest currently-allocated
1540  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1541  * that not even the devclass has been allocated yet.
1542  *
1543  * @param dc		the devclass to examine
1544  */
1545 int
1546 devclass_get_maxunit(devclass_t dc)
1547 {
1548 	if (dc == NULL)
1549 		return (-1);
1550 	return (dc->maxunit);
1551 }
1552 
1553 /**
1554  * @brief Find a free unit number in a devclass
1555  *
1556  * This function searches for the first unused unit number greater
1557  * that or equal to @p unit.
1558  *
1559  * @param dc		the devclass to examine
1560  * @param unit		the first unit number to check
1561  */
1562 int
1563 devclass_find_free_unit(devclass_t dc, int unit)
1564 {
1565 	if (dc == NULL)
1566 		return (unit);
1567 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1568 		unit++;
1569 	return (unit);
1570 }
1571 
1572 /**
1573  * @brief Set the parent of a devclass
1574  *
1575  * The parent class is normally initialised automatically by
1576  * DRIVER_MODULE().
1577  *
1578  * @param dc		the devclass to edit
1579  * @param pdc		the new parent devclass
1580  */
1581 void
1582 devclass_set_parent(devclass_t dc, devclass_t pdc)
1583 {
1584 	dc->parent = pdc;
1585 }
1586 
1587 /**
1588  * @brief Get the parent of a devclass
1589  *
1590  * @param dc		the devclass to examine
1591  */
1592 devclass_t
1593 devclass_get_parent(devclass_t dc)
1594 {
1595 	return (dc->parent);
1596 }
1597 
1598 struct sysctl_ctx_list *
1599 devclass_get_sysctl_ctx(devclass_t dc)
1600 {
1601 	return (&dc->sysctl_ctx);
1602 }
1603 
1604 struct sysctl_oid *
1605 devclass_get_sysctl_tree(devclass_t dc)
1606 {
1607 	return (dc->sysctl_tree);
1608 }
1609 
1610 /**
1611  * @internal
1612  * @brief Allocate a unit number
1613  *
1614  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1615  * will do). The allocated unit number is returned in @p *unitp.
1616 
1617  * @param dc		the devclass to allocate from
1618  * @param unitp		points at the location for the allocated unit
1619  *			number
1620  *
1621  * @retval 0		success
1622  * @retval EEXIST	the requested unit number is already allocated
1623  * @retval ENOMEM	memory allocation failure
1624  */
1625 static int
1626 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1627 {
1628 	const char *s;
1629 	int unit = *unitp;
1630 
1631 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1632 
1633 	/* Ask the parent bus if it wants to wire this device. */
1634 	if (unit == -1)
1635 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1636 		    &unit);
1637 
1638 	/* If we were given a wired unit number, check for existing device */
1639 	/* XXX imp XXX */
1640 	if (unit != -1) {
1641 		if (unit >= 0 && unit < dc->maxunit &&
1642 		    dc->devices[unit] != NULL) {
1643 			if (bootverbose)
1644 				printf("%s: %s%d already exists; skipping it\n",
1645 				    dc->name, dc->name, *unitp);
1646 			return (EEXIST);
1647 		}
1648 	} else {
1649 		/* Unwired device, find the next available slot for it */
1650 		unit = 0;
1651 		for (unit = 0;; unit++) {
1652 			/* If there is an "at" hint for a unit then skip it. */
1653 			if (resource_string_value(dc->name, unit, "at", &s) ==
1654 			    0)
1655 				continue;
1656 
1657 			/* If this device slot is already in use, skip it. */
1658 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1659 				continue;
1660 
1661 			break;
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * We've selected a unit beyond the length of the table, so let's
1667 	 * extend the table to make room for all units up to and including
1668 	 * this one.
1669 	 */
1670 	if (unit >= dc->maxunit) {
1671 		device_t *newlist, *oldlist;
1672 		int newsize;
1673 
1674 		oldlist = dc->devices;
1675 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1676 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1677 		if (!newlist)
1678 			return (ENOMEM);
1679 		if (oldlist != NULL)
1680 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1681 		bzero(newlist + dc->maxunit,
1682 		    sizeof(device_t) * (newsize - dc->maxunit));
1683 		dc->devices = newlist;
1684 		dc->maxunit = newsize;
1685 		if (oldlist != NULL)
1686 			free(oldlist, M_BUS);
1687 	}
1688 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1689 
1690 	*unitp = unit;
1691 	return (0);
1692 }
1693 
1694 /**
1695  * @internal
1696  * @brief Add a device to a devclass
1697  *
1698  * A unit number is allocated for the device (using the device's
1699  * preferred unit number if any) and the device is registered in the
1700  * devclass. This allows the device to be looked up by its unit
1701  * number, e.g. by decoding a dev_t minor number.
1702  *
1703  * @param dc		the devclass to add to
1704  * @param dev		the device to add
1705  *
1706  * @retval 0		success
1707  * @retval EEXIST	the requested unit number is already allocated
1708  * @retval ENOMEM	memory allocation failure
1709  */
1710 static int
1711 devclass_add_device(devclass_t dc, device_t dev)
1712 {
1713 	int buflen, error;
1714 
1715 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1716 
1717 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1718 	if (buflen < 0)
1719 		return (ENOMEM);
1720 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1721 	if (!dev->nameunit)
1722 		return (ENOMEM);
1723 
1724 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1725 		free(dev->nameunit, M_BUS);
1726 		dev->nameunit = NULL;
1727 		return (error);
1728 	}
1729 	dc->devices[dev->unit] = dev;
1730 	dev->devclass = dc;
1731 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1732 
1733 	return (0);
1734 }
1735 
1736 /**
1737  * @internal
1738  * @brief Delete a device from a devclass
1739  *
1740  * The device is removed from the devclass's device list and its unit
1741  * number is freed.
1742 
1743  * @param dc		the devclass to delete from
1744  * @param dev		the device to delete
1745  *
1746  * @retval 0		success
1747  */
1748 static int
1749 devclass_delete_device(devclass_t dc, device_t dev)
1750 {
1751 	if (!dc || !dev)
1752 		return (0);
1753 
1754 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1755 
1756 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1757 		panic("devclass_delete_device: inconsistent device class");
1758 	dc->devices[dev->unit] = NULL;
1759 	if (dev->flags & DF_WILDCARD)
1760 		dev->unit = -1;
1761 	dev->devclass = NULL;
1762 	free(dev->nameunit, M_BUS);
1763 	dev->nameunit = NULL;
1764 
1765 	return (0);
1766 }
1767 
1768 /**
1769  * @internal
1770  * @brief Make a new device and add it as a child of @p parent
1771  *
1772  * @param parent	the parent of the new device
1773  * @param name		the devclass name of the new device or @c NULL
1774  *			to leave the devclass unspecified
1775  * @parem unit		the unit number of the new device of @c -1 to
1776  *			leave the unit number unspecified
1777  *
1778  * @returns the new device
1779  */
1780 static device_t
1781 make_device(device_t parent, const char *name, int unit)
1782 {
1783 	device_t dev;
1784 	devclass_t dc;
1785 
1786 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1787 
1788 	if (name) {
1789 		dc = devclass_find_internal(name, NULL, TRUE);
1790 		if (!dc) {
1791 			printf("make_device: can't find device class %s\n",
1792 			    name);
1793 			return (NULL);
1794 		}
1795 	} else {
1796 		dc = NULL;
1797 	}
1798 
1799 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1800 	if (!dev)
1801 		return (NULL);
1802 
1803 	dev->parent = parent;
1804 	TAILQ_INIT(&dev->children);
1805 	kobj_init((kobj_t) dev, &null_class);
1806 	dev->driver = NULL;
1807 	dev->devclass = NULL;
1808 	dev->unit = unit;
1809 	dev->nameunit = NULL;
1810 	dev->desc = NULL;
1811 	dev->busy = 0;
1812 	dev->devflags = 0;
1813 	dev->flags = DF_ENABLED;
1814 	dev->order = 0;
1815 	if (unit == -1)
1816 		dev->flags |= DF_WILDCARD;
1817 	if (name) {
1818 		dev->flags |= DF_FIXEDCLASS;
1819 		if (devclass_add_device(dc, dev)) {
1820 			kobj_delete((kobj_t) dev, M_BUS);
1821 			return (NULL);
1822 		}
1823 	}
1824 	dev->ivars = NULL;
1825 	dev->softc = NULL;
1826 
1827 	dev->state = DS_NOTPRESENT;
1828 
1829 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1830 	bus_data_generation_update();
1831 
1832 	return (dev);
1833 }
1834 
1835 /**
1836  * @internal
1837  * @brief Print a description of a device.
1838  */
1839 static int
1840 device_print_child(device_t dev, device_t child)
1841 {
1842 	int retval = 0;
1843 
1844 	if (device_is_alive(child))
1845 		retval += BUS_PRINT_CHILD(dev, child);
1846 	else
1847 		retval += device_printf(child, " not found\n");
1848 
1849 	return (retval);
1850 }
1851 
1852 /**
1853  * @brief Create a new device
1854  *
1855  * This creates a new device and adds it as a child of an existing
1856  * parent device. The new device will be added after the last existing
1857  * child with order zero.
1858  *
1859  * @param dev		the device which will be the parent of the
1860  *			new child device
1861  * @param name		devclass name for new device or @c NULL if not
1862  *			specified
1863  * @param unit		unit number for new device or @c -1 if not
1864  *			specified
1865  *
1866  * @returns		the new device
1867  */
1868 device_t
1869 device_add_child(device_t dev, const char *name, int unit)
1870 {
1871 	return (device_add_child_ordered(dev, 0, name, unit));
1872 }
1873 
1874 /**
1875  * @brief Create a new device
1876  *
1877  * This creates a new device and adds it as a child of an existing
1878  * parent device. The new device will be added after the last existing
1879  * child with the same order.
1880  *
1881  * @param dev		the device which will be the parent of the
1882  *			new child device
1883  * @param order		a value which is used to partially sort the
1884  *			children of @p dev - devices created using
1885  *			lower values of @p order appear first in @p
1886  *			dev's list of children
1887  * @param name		devclass name for new device or @c NULL if not
1888  *			specified
1889  * @param unit		unit number for new device or @c -1 if not
1890  *			specified
1891  *
1892  * @returns		the new device
1893  */
1894 device_t
1895 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1896 {
1897 	device_t child;
1898 	device_t place;
1899 
1900 	PDEBUG(("%s at %s with order %u as unit %d",
1901 	    name, DEVICENAME(dev), order, unit));
1902 	KASSERT(name != NULL || unit == -1,
1903 	    ("child device with wildcard name and specific unit number"));
1904 
1905 	child = make_device(dev, name, unit);
1906 	if (child == NULL)
1907 		return (child);
1908 	child->order = order;
1909 
1910 	TAILQ_FOREACH(place, &dev->children, link) {
1911 		if (place->order > order)
1912 			break;
1913 	}
1914 
1915 	if (place) {
1916 		/*
1917 		 * The device 'place' is the first device whose order is
1918 		 * greater than the new child.
1919 		 */
1920 		TAILQ_INSERT_BEFORE(place, child, link);
1921 	} else {
1922 		/*
1923 		 * The new child's order is greater or equal to the order of
1924 		 * any existing device. Add the child to the tail of the list.
1925 		 */
1926 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1927 	}
1928 
1929 	bus_data_generation_update();
1930 	return (child);
1931 }
1932 
1933 /**
1934  * @brief Delete a device
1935  *
1936  * This function deletes a device along with all of its children. If
1937  * the device currently has a driver attached to it, the device is
1938  * detached first using device_detach().
1939  *
1940  * @param dev		the parent device
1941  * @param child		the device to delete
1942  *
1943  * @retval 0		success
1944  * @retval non-zero	a unit error code describing the error
1945  */
1946 int
1947 device_delete_child(device_t dev, device_t child)
1948 {
1949 	int error;
1950 	device_t grandchild;
1951 
1952 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1953 
1954 	/* detach parent before deleting children, if any */
1955 	if ((error = device_detach(child)) != 0)
1956 		return (error);
1957 
1958 	/* remove children second */
1959 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1960 		error = device_delete_child(child, grandchild);
1961 		if (error)
1962 			return (error);
1963 	}
1964 
1965 	if (child->devclass)
1966 		devclass_delete_device(child->devclass, child);
1967 	if (child->parent)
1968 		BUS_CHILD_DELETED(dev, child);
1969 	TAILQ_REMOVE(&dev->children, child, link);
1970 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1971 	kobj_delete((kobj_t) child, M_BUS);
1972 
1973 	bus_data_generation_update();
1974 	return (0);
1975 }
1976 
1977 /**
1978  * @brief Delete all children devices of the given device, if any.
1979  *
1980  * This function deletes all children devices of the given device, if
1981  * any, using the device_delete_child() function for each device it
1982  * finds. If a child device cannot be deleted, this function will
1983  * return an error code.
1984  *
1985  * @param dev		the parent device
1986  *
1987  * @retval 0		success
1988  * @retval non-zero	a device would not detach
1989  */
1990 int
1991 device_delete_children(device_t dev)
1992 {
1993 	device_t child;
1994 	int error;
1995 
1996 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1997 
1998 	error = 0;
1999 
2000 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
2001 		error = device_delete_child(dev, child);
2002 		if (error) {
2003 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2004 			break;
2005 		}
2006 	}
2007 	return (error);
2008 }
2009 
2010 /**
2011  * @brief Find a device given a unit number
2012  *
2013  * This is similar to devclass_get_devices() but only searches for
2014  * devices which have @p dev as a parent.
2015  *
2016  * @param dev		the parent device to search
2017  * @param unit		the unit number to search for.  If the unit is -1,
2018  *			return the first child of @p dev which has name
2019  *			@p classname (that is, the one with the lowest unit.)
2020  *
2021  * @returns		the device with the given unit number or @c
2022  *			NULL if there is no such device
2023  */
2024 device_t
2025 device_find_child(device_t dev, const char *classname, int unit)
2026 {
2027 	devclass_t dc;
2028 	device_t child;
2029 
2030 	dc = devclass_find(classname);
2031 	if (!dc)
2032 		return (NULL);
2033 
2034 	if (unit != -1) {
2035 		child = devclass_get_device(dc, unit);
2036 		if (child && child->parent == dev)
2037 			return (child);
2038 	} else {
2039 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2040 			child = devclass_get_device(dc, unit);
2041 			if (child && child->parent == dev)
2042 				return (child);
2043 		}
2044 	}
2045 	return (NULL);
2046 }
2047 
2048 /**
2049  * @internal
2050  */
2051 static driverlink_t
2052 first_matching_driver(devclass_t dc, device_t dev)
2053 {
2054 	if (dev->devclass)
2055 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2056 	return (TAILQ_FIRST(&dc->drivers));
2057 }
2058 
2059 /**
2060  * @internal
2061  */
2062 static driverlink_t
2063 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2064 {
2065 	if (dev->devclass) {
2066 		driverlink_t dl;
2067 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2068 			if (!strcmp(dev->devclass->name, dl->driver->name))
2069 				return (dl);
2070 		return (NULL);
2071 	}
2072 	return (TAILQ_NEXT(last, link));
2073 }
2074 
2075 /**
2076  * @internal
2077  */
2078 int
2079 device_probe_child(device_t dev, device_t child)
2080 {
2081 	devclass_t dc;
2082 	driverlink_t best = NULL;
2083 	driverlink_t dl;
2084 	int result, pri = 0;
2085 	int hasclass = (child->devclass != NULL);
2086 
2087 	GIANT_REQUIRED;
2088 
2089 	dc = dev->devclass;
2090 	if (!dc)
2091 		panic("device_probe_child: parent device has no devclass");
2092 
2093 	/*
2094 	 * If the state is already probed, then return.  However, don't
2095 	 * return if we can rebid this object.
2096 	 */
2097 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2098 		return (0);
2099 
2100 	for (; dc; dc = dc->parent) {
2101 		for (dl = first_matching_driver(dc, child);
2102 		     dl;
2103 		     dl = next_matching_driver(dc, child, dl)) {
2104 			/* If this driver's pass is too high, then ignore it. */
2105 			if (dl->pass > bus_current_pass)
2106 				continue;
2107 
2108 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2109 			result = device_set_driver(child, dl->driver);
2110 			if (result == ENOMEM)
2111 				return (result);
2112 			else if (result != 0)
2113 				continue;
2114 			if (!hasclass) {
2115 				if (device_set_devclass(child,
2116 				    dl->driver->name) != 0) {
2117 					char const * devname =
2118 					    device_get_name(child);
2119 					if (devname == NULL)
2120 						devname = "(unknown)";
2121 					printf("driver bug: Unable to set "
2122 					    "devclass (class: %s "
2123 					    "devname: %s)\n",
2124 					    dl->driver->name,
2125 					    devname);
2126 					(void)device_set_driver(child, NULL);
2127 					continue;
2128 				}
2129 			}
2130 
2131 			/* Fetch any flags for the device before probing. */
2132 			resource_int_value(dl->driver->name, child->unit,
2133 			    "flags", &child->devflags);
2134 
2135 			result = DEVICE_PROBE(child);
2136 
2137 			/* Reset flags and devclass before the next probe. */
2138 			child->devflags = 0;
2139 			if (!hasclass)
2140 				(void)device_set_devclass(child, NULL);
2141 
2142 			/*
2143 			 * If the driver returns SUCCESS, there can be
2144 			 * no higher match for this device.
2145 			 */
2146 			if (result == 0) {
2147 				best = dl;
2148 				pri = 0;
2149 				break;
2150 			}
2151 
2152 			/*
2153 			 * Reset DF_QUIET in case this driver doesn't
2154 			 * end up as the best driver.
2155 			 */
2156 			device_verbose(child);
2157 
2158 			/*
2159 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2160 			 * only match on devices whose driver was explicitly
2161 			 * specified.
2162 			 */
2163 			if (result <= BUS_PROBE_NOWILDCARD &&
2164 			    !(child->flags & DF_FIXEDCLASS)) {
2165 				result = ENXIO;
2166 			}
2167 
2168 			/*
2169 			 * The driver returned an error so it
2170 			 * certainly doesn't match.
2171 			 */
2172 			if (result > 0) {
2173 				(void)device_set_driver(child, NULL);
2174 				continue;
2175 			}
2176 
2177 			/*
2178 			 * A priority lower than SUCCESS, remember the
2179 			 * best matching driver. Initialise the value
2180 			 * of pri for the first match.
2181 			 */
2182 			if (best == NULL || result > pri) {
2183 				best = dl;
2184 				pri = result;
2185 				continue;
2186 			}
2187 		}
2188 		/*
2189 		 * If we have an unambiguous match in this devclass,
2190 		 * don't look in the parent.
2191 		 */
2192 		if (best && pri == 0)
2193 			break;
2194 	}
2195 
2196 	/*
2197 	 * If we found a driver, change state and initialise the devclass.
2198 	 */
2199 	/* XXX What happens if we rebid and got no best? */
2200 	if (best) {
2201 		/*
2202 		 * If this device was attached, and we were asked to
2203 		 * rescan, and it is a different driver, then we have
2204 		 * to detach the old driver and reattach this new one.
2205 		 * Note, we don't have to check for DF_REBID here
2206 		 * because if the state is > DS_ALIVE, we know it must
2207 		 * be.
2208 		 *
2209 		 * This assumes that all DF_REBID drivers can have
2210 		 * their probe routine called at any time and that
2211 		 * they are idempotent as well as completely benign in
2212 		 * normal operations.
2213 		 *
2214 		 * We also have to make sure that the detach
2215 		 * succeeded, otherwise we fail the operation (or
2216 		 * maybe it should just fail silently?  I'm torn).
2217 		 */
2218 		if (child->state > DS_ALIVE && best->driver != child->driver)
2219 			if ((result = device_detach(dev)) != 0)
2220 				return (result);
2221 
2222 		/* Set the winning driver, devclass, and flags. */
2223 		if (!child->devclass) {
2224 			result = device_set_devclass(child, best->driver->name);
2225 			if (result != 0)
2226 				return (result);
2227 		}
2228 		result = device_set_driver(child, best->driver);
2229 		if (result != 0)
2230 			return (result);
2231 		resource_int_value(best->driver->name, child->unit,
2232 		    "flags", &child->devflags);
2233 
2234 		if (pri < 0) {
2235 			/*
2236 			 * A bit bogus. Call the probe method again to make
2237 			 * sure that we have the right description.
2238 			 */
2239 			DEVICE_PROBE(child);
2240 #if 0
2241 			child->flags |= DF_REBID;
2242 #endif
2243 		} else
2244 			child->flags &= ~DF_REBID;
2245 		child->state = DS_ALIVE;
2246 
2247 		bus_data_generation_update();
2248 		return (0);
2249 	}
2250 
2251 	return (ENXIO);
2252 }
2253 
2254 /**
2255  * @brief Return the parent of a device
2256  */
2257 device_t
2258 device_get_parent(device_t dev)
2259 {
2260 	return (dev->parent);
2261 }
2262 
2263 /**
2264  * @brief Get a list of children of a device
2265  *
2266  * An array containing a list of all the children of the given device
2267  * is allocated and returned in @p *devlistp. The number of devices
2268  * in the array is returned in @p *devcountp. The caller should free
2269  * the array using @c free(p, M_TEMP).
2270  *
2271  * @param dev		the device to examine
2272  * @param devlistp	points at location for array pointer return
2273  *			value
2274  * @param devcountp	points at location for array size return value
2275  *
2276  * @retval 0		success
2277  * @retval ENOMEM	the array allocation failed
2278  */
2279 int
2280 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2281 {
2282 	int count;
2283 	device_t child;
2284 	device_t *list;
2285 
2286 	count = 0;
2287 	TAILQ_FOREACH(child, &dev->children, link) {
2288 		count++;
2289 	}
2290 	if (count == 0) {
2291 		*devlistp = NULL;
2292 		*devcountp = 0;
2293 		return (0);
2294 	}
2295 
2296 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2297 	if (!list)
2298 		return (ENOMEM);
2299 
2300 	count = 0;
2301 	TAILQ_FOREACH(child, &dev->children, link) {
2302 		list[count] = child;
2303 		count++;
2304 	}
2305 
2306 	*devlistp = list;
2307 	*devcountp = count;
2308 
2309 	return (0);
2310 }
2311 
2312 /**
2313  * @brief Return the current driver for the device or @c NULL if there
2314  * is no driver currently attached
2315  */
2316 driver_t *
2317 device_get_driver(device_t dev)
2318 {
2319 	return (dev->driver);
2320 }
2321 
2322 /**
2323  * @brief Return the current devclass for the device or @c NULL if
2324  * there is none.
2325  */
2326 devclass_t
2327 device_get_devclass(device_t dev)
2328 {
2329 	return (dev->devclass);
2330 }
2331 
2332 /**
2333  * @brief Return the name of the device's devclass or @c NULL if there
2334  * is none.
2335  */
2336 const char *
2337 device_get_name(device_t dev)
2338 {
2339 	if (dev != NULL && dev->devclass)
2340 		return (devclass_get_name(dev->devclass));
2341 	return (NULL);
2342 }
2343 
2344 /**
2345  * @brief Return a string containing the device's devclass name
2346  * followed by an ascii representation of the device's unit number
2347  * (e.g. @c "foo2").
2348  */
2349 const char *
2350 device_get_nameunit(device_t dev)
2351 {
2352 	return (dev->nameunit);
2353 }
2354 
2355 /**
2356  * @brief Return the device's unit number.
2357  */
2358 int
2359 device_get_unit(device_t dev)
2360 {
2361 	return (dev->unit);
2362 }
2363 
2364 /**
2365  * @brief Return the device's description string
2366  */
2367 const char *
2368 device_get_desc(device_t dev)
2369 {
2370 	return (dev->desc);
2371 }
2372 
2373 /**
2374  * @brief Return the device's flags
2375  */
2376 uint32_t
2377 device_get_flags(device_t dev)
2378 {
2379 	return (dev->devflags);
2380 }
2381 
2382 struct sysctl_ctx_list *
2383 device_get_sysctl_ctx(device_t dev)
2384 {
2385 	return (&dev->sysctl_ctx);
2386 }
2387 
2388 struct sysctl_oid *
2389 device_get_sysctl_tree(device_t dev)
2390 {
2391 	return (dev->sysctl_tree);
2392 }
2393 
2394 /**
2395  * @brief Print the name of the device followed by a colon and a space
2396  *
2397  * @returns the number of characters printed
2398  */
2399 int
2400 device_print_prettyname(device_t dev)
2401 {
2402 	const char *name = device_get_name(dev);
2403 
2404 	if (name == NULL)
2405 		return (printf("unknown: "));
2406 	return (printf("%s%d: ", name, device_get_unit(dev)));
2407 }
2408 
2409 /**
2410  * @brief Print the name of the device followed by a colon, a space
2411  * and the result of calling vprintf() with the value of @p fmt and
2412  * the following arguments.
2413  *
2414  * @returns the number of characters printed
2415  */
2416 int
2417 device_printf(device_t dev, const char * fmt, ...)
2418 {
2419 	va_list ap;
2420 	int retval;
2421 
2422 	retval = device_print_prettyname(dev);
2423 	va_start(ap, fmt);
2424 	retval += vprintf(fmt, ap);
2425 	va_end(ap);
2426 	return (retval);
2427 }
2428 
2429 /**
2430  * @internal
2431  */
2432 static void
2433 device_set_desc_internal(device_t dev, const char* desc, int copy)
2434 {
2435 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2436 		free(dev->desc, M_BUS);
2437 		dev->flags &= ~DF_DESCMALLOCED;
2438 		dev->desc = NULL;
2439 	}
2440 
2441 	if (copy && desc) {
2442 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2443 		if (dev->desc) {
2444 			strcpy(dev->desc, desc);
2445 			dev->flags |= DF_DESCMALLOCED;
2446 		}
2447 	} else {
2448 		/* Avoid a -Wcast-qual warning */
2449 		dev->desc = (char *)(uintptr_t) desc;
2450 	}
2451 
2452 	bus_data_generation_update();
2453 }
2454 
2455 /**
2456  * @brief Set the device's description
2457  *
2458  * The value of @c desc should be a string constant that will not
2459  * change (at least until the description is changed in a subsequent
2460  * call to device_set_desc() or device_set_desc_copy()).
2461  */
2462 void
2463 device_set_desc(device_t dev, const char* desc)
2464 {
2465 	device_set_desc_internal(dev, desc, FALSE);
2466 }
2467 
2468 /**
2469  * @brief Set the device's description
2470  *
2471  * The string pointed to by @c desc is copied. Use this function if
2472  * the device description is generated, (e.g. with sprintf()).
2473  */
2474 void
2475 device_set_desc_copy(device_t dev, const char* desc)
2476 {
2477 	device_set_desc_internal(dev, desc, TRUE);
2478 }
2479 
2480 /**
2481  * @brief Set the device's flags
2482  */
2483 void
2484 device_set_flags(device_t dev, uint32_t flags)
2485 {
2486 	dev->devflags = flags;
2487 }
2488 
2489 /**
2490  * @brief Return the device's softc field
2491  *
2492  * The softc is allocated and zeroed when a driver is attached, based
2493  * on the size field of the driver.
2494  */
2495 void *
2496 device_get_softc(device_t dev)
2497 {
2498 	return (dev->softc);
2499 }
2500 
2501 /**
2502  * @brief Set the device's softc field
2503  *
2504  * Most drivers do not need to use this since the softc is allocated
2505  * automatically when the driver is attached.
2506  */
2507 void
2508 device_set_softc(device_t dev, void *softc)
2509 {
2510 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2511 		free(dev->softc, M_BUS_SC);
2512 	dev->softc = softc;
2513 	if (dev->softc)
2514 		dev->flags |= DF_EXTERNALSOFTC;
2515 	else
2516 		dev->flags &= ~DF_EXTERNALSOFTC;
2517 }
2518 
2519 /**
2520  * @brief Free claimed softc
2521  *
2522  * Most drivers do not need to use this since the softc is freed
2523  * automatically when the driver is detached.
2524  */
2525 void
2526 device_free_softc(void *softc)
2527 {
2528 	free(softc, M_BUS_SC);
2529 }
2530 
2531 /**
2532  * @brief Claim softc
2533  *
2534  * This function can be used to let the driver free the automatically
2535  * allocated softc using "device_free_softc()". This function is
2536  * useful when the driver is refcounting the softc and the softc
2537  * cannot be freed when the "device_detach" method is called.
2538  */
2539 void
2540 device_claim_softc(device_t dev)
2541 {
2542 	if (dev->softc)
2543 		dev->flags |= DF_EXTERNALSOFTC;
2544 	else
2545 		dev->flags &= ~DF_EXTERNALSOFTC;
2546 }
2547 
2548 /**
2549  * @brief Get the device's ivars field
2550  *
2551  * The ivars field is used by the parent device to store per-device
2552  * state (e.g. the physical location of the device or a list of
2553  * resources).
2554  */
2555 void *
2556 device_get_ivars(device_t dev)
2557 {
2558 
2559 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2560 	return (dev->ivars);
2561 }
2562 
2563 /**
2564  * @brief Set the device's ivars field
2565  */
2566 void
2567 device_set_ivars(device_t dev, void * ivars)
2568 {
2569 
2570 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2571 	dev->ivars = ivars;
2572 }
2573 
2574 /**
2575  * @brief Return the device's state
2576  */
2577 device_state_t
2578 device_get_state(device_t dev)
2579 {
2580 	return (dev->state);
2581 }
2582 
2583 /**
2584  * @brief Set the DF_ENABLED flag for the device
2585  */
2586 void
2587 device_enable(device_t dev)
2588 {
2589 	dev->flags |= DF_ENABLED;
2590 }
2591 
2592 /**
2593  * @brief Clear the DF_ENABLED flag for the device
2594  */
2595 void
2596 device_disable(device_t dev)
2597 {
2598 	dev->flags &= ~DF_ENABLED;
2599 }
2600 
2601 /**
2602  * @brief Increment the busy counter for the device
2603  */
2604 void
2605 device_busy(device_t dev)
2606 {
2607 	if (dev->state < DS_ATTACHING)
2608 		panic("device_busy: called for unattached device");
2609 	if (dev->busy == 0 && dev->parent)
2610 		device_busy(dev->parent);
2611 	dev->busy++;
2612 	if (dev->state == DS_ATTACHED)
2613 		dev->state = DS_BUSY;
2614 }
2615 
2616 /**
2617  * @brief Decrement the busy counter for the device
2618  */
2619 void
2620 device_unbusy(device_t dev)
2621 {
2622 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2623 	    dev->state != DS_ATTACHING)
2624 		panic("device_unbusy: called for non-busy device %s",
2625 		    device_get_nameunit(dev));
2626 	dev->busy--;
2627 	if (dev->busy == 0) {
2628 		if (dev->parent)
2629 			device_unbusy(dev->parent);
2630 		if (dev->state == DS_BUSY)
2631 			dev->state = DS_ATTACHED;
2632 	}
2633 }
2634 
2635 /**
2636  * @brief Set the DF_QUIET flag for the device
2637  */
2638 void
2639 device_quiet(device_t dev)
2640 {
2641 	dev->flags |= DF_QUIET;
2642 }
2643 
2644 /**
2645  * @brief Clear the DF_QUIET flag for the device
2646  */
2647 void
2648 device_verbose(device_t dev)
2649 {
2650 	dev->flags &= ~DF_QUIET;
2651 }
2652 
2653 /**
2654  * @brief Return non-zero if the DF_QUIET flag is set on the device
2655  */
2656 int
2657 device_is_quiet(device_t dev)
2658 {
2659 	return ((dev->flags & DF_QUIET) != 0);
2660 }
2661 
2662 /**
2663  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2664  */
2665 int
2666 device_is_enabled(device_t dev)
2667 {
2668 	return ((dev->flags & DF_ENABLED) != 0);
2669 }
2670 
2671 /**
2672  * @brief Return non-zero if the device was successfully probed
2673  */
2674 int
2675 device_is_alive(device_t dev)
2676 {
2677 	return (dev->state >= DS_ALIVE);
2678 }
2679 
2680 /**
2681  * @brief Return non-zero if the device currently has a driver
2682  * attached to it
2683  */
2684 int
2685 device_is_attached(device_t dev)
2686 {
2687 	return (dev->state >= DS_ATTACHED);
2688 }
2689 
2690 /**
2691  * @brief Return non-zero if the device is currently suspended.
2692  */
2693 int
2694 device_is_suspended(device_t dev)
2695 {
2696 	return ((dev->flags & DF_SUSPENDED) != 0);
2697 }
2698 
2699 /**
2700  * @brief Set the devclass of a device
2701  * @see devclass_add_device().
2702  */
2703 int
2704 device_set_devclass(device_t dev, const char *classname)
2705 {
2706 	devclass_t dc;
2707 	int error;
2708 
2709 	if (!classname) {
2710 		if (dev->devclass)
2711 			devclass_delete_device(dev->devclass, dev);
2712 		return (0);
2713 	}
2714 
2715 	if (dev->devclass) {
2716 		printf("device_set_devclass: device class already set\n");
2717 		return (EINVAL);
2718 	}
2719 
2720 	dc = devclass_find_internal(classname, NULL, TRUE);
2721 	if (!dc)
2722 		return (ENOMEM);
2723 
2724 	error = devclass_add_device(dc, dev);
2725 
2726 	bus_data_generation_update();
2727 	return (error);
2728 }
2729 
2730 /**
2731  * @brief Set the devclass of a device and mark the devclass fixed.
2732  * @see device_set_devclass()
2733  */
2734 int
2735 device_set_devclass_fixed(device_t dev, const char *classname)
2736 {
2737 	int error;
2738 
2739 	if (classname == NULL)
2740 		return (EINVAL);
2741 
2742 	error = device_set_devclass(dev, classname);
2743 	if (error)
2744 		return (error);
2745 	dev->flags |= DF_FIXEDCLASS;
2746 	return (0);
2747 }
2748 
2749 /**
2750  * @brief Set the driver of a device
2751  *
2752  * @retval 0		success
2753  * @retval EBUSY	the device already has a driver attached
2754  * @retval ENOMEM	a memory allocation failure occurred
2755  */
2756 int
2757 device_set_driver(device_t dev, driver_t *driver)
2758 {
2759 	if (dev->state >= DS_ATTACHED)
2760 		return (EBUSY);
2761 
2762 	if (dev->driver == driver)
2763 		return (0);
2764 
2765 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2766 		free(dev->softc, M_BUS_SC);
2767 		dev->softc = NULL;
2768 	}
2769 	device_set_desc(dev, NULL);
2770 	kobj_delete((kobj_t) dev, NULL);
2771 	dev->driver = driver;
2772 	if (driver) {
2773 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2774 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2775 			dev->softc = malloc(driver->size, M_BUS_SC,
2776 			    M_NOWAIT | M_ZERO);
2777 			if (!dev->softc) {
2778 				kobj_delete((kobj_t) dev, NULL);
2779 				kobj_init((kobj_t) dev, &null_class);
2780 				dev->driver = NULL;
2781 				return (ENOMEM);
2782 			}
2783 		}
2784 	} else {
2785 		kobj_init((kobj_t) dev, &null_class);
2786 	}
2787 
2788 	bus_data_generation_update();
2789 	return (0);
2790 }
2791 
2792 /**
2793  * @brief Probe a device, and return this status.
2794  *
2795  * This function is the core of the device autoconfiguration
2796  * system. Its purpose is to select a suitable driver for a device and
2797  * then call that driver to initialise the hardware appropriately. The
2798  * driver is selected by calling the DEVICE_PROBE() method of a set of
2799  * candidate drivers and then choosing the driver which returned the
2800  * best value. This driver is then attached to the device using
2801  * device_attach().
2802  *
2803  * The set of suitable drivers is taken from the list of drivers in
2804  * the parent device's devclass. If the device was originally created
2805  * with a specific class name (see device_add_child()), only drivers
2806  * with that name are probed, otherwise all drivers in the devclass
2807  * are probed. If no drivers return successful probe values in the
2808  * parent devclass, the search continues in the parent of that
2809  * devclass (see devclass_get_parent()) if any.
2810  *
2811  * @param dev		the device to initialise
2812  *
2813  * @retval 0		success
2814  * @retval ENXIO	no driver was found
2815  * @retval ENOMEM	memory allocation failure
2816  * @retval non-zero	some other unix error code
2817  * @retval -1		Device already attached
2818  */
2819 int
2820 device_probe(device_t dev)
2821 {
2822 	int error;
2823 
2824 	GIANT_REQUIRED;
2825 
2826 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2827 		return (-1);
2828 
2829 	if (!(dev->flags & DF_ENABLED)) {
2830 		if (bootverbose && device_get_name(dev) != NULL) {
2831 			device_print_prettyname(dev);
2832 			printf("not probed (disabled)\n");
2833 		}
2834 		return (-1);
2835 	}
2836 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2837 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2838 		    !(dev->flags & DF_DONENOMATCH)) {
2839 			BUS_PROBE_NOMATCH(dev->parent, dev);
2840 			devnomatch(dev);
2841 			dev->flags |= DF_DONENOMATCH;
2842 		}
2843 		return (error);
2844 	}
2845 	return (0);
2846 }
2847 
2848 /**
2849  * @brief Probe a device and attach a driver if possible
2850  *
2851  * calls device_probe() and attaches if that was successful.
2852  */
2853 int
2854 device_probe_and_attach(device_t dev)
2855 {
2856 	int error;
2857 
2858 	GIANT_REQUIRED;
2859 
2860 	error = device_probe(dev);
2861 	if (error == -1)
2862 		return (0);
2863 	else if (error != 0)
2864 		return (error);
2865 
2866 	CURVNET_SET_QUIET(vnet0);
2867 	error = device_attach(dev);
2868 	CURVNET_RESTORE();
2869 	return error;
2870 }
2871 
2872 /**
2873  * @brief Attach a device driver to a device
2874  *
2875  * This function is a wrapper around the DEVICE_ATTACH() driver
2876  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2877  * device's sysctl tree, optionally prints a description of the device
2878  * and queues a notification event for user-based device management
2879  * services.
2880  *
2881  * Normally this function is only called internally from
2882  * device_probe_and_attach().
2883  *
2884  * @param dev		the device to initialise
2885  *
2886  * @retval 0		success
2887  * @retval ENXIO	no driver was found
2888  * @retval ENOMEM	memory allocation failure
2889  * @retval non-zero	some other unix error code
2890  */
2891 int
2892 device_attach(device_t dev)
2893 {
2894 	uint64_t attachtime;
2895 	int error;
2896 
2897 	if (resource_disabled(dev->driver->name, dev->unit)) {
2898 		device_disable(dev);
2899 		if (bootverbose)
2900 			 device_printf(dev, "disabled via hints entry\n");
2901 		return (ENXIO);
2902 	}
2903 
2904 	device_sysctl_init(dev);
2905 	if (!device_is_quiet(dev))
2906 		device_print_child(dev->parent, dev);
2907 	attachtime = get_cyclecount();
2908 	dev->state = DS_ATTACHING;
2909 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2910 		printf("device_attach: %s%d attach returned %d\n",
2911 		    dev->driver->name, dev->unit, error);
2912 		if (!(dev->flags & DF_FIXEDCLASS))
2913 			devclass_delete_device(dev->devclass, dev);
2914 		(void)device_set_driver(dev, NULL);
2915 		device_sysctl_fini(dev);
2916 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2917 		dev->state = DS_NOTPRESENT;
2918 		return (error);
2919 	}
2920 	attachtime = get_cyclecount() - attachtime;
2921 	/*
2922 	 * 4 bits per device is a reasonable value for desktop and server
2923 	 * hardware with good get_cyclecount() implementations, but WILL
2924 	 * need to be adjusted on other platforms.
2925 	 */
2926 #define	RANDOM_PROBE_BIT_GUESS	4
2927 	if (bootverbose)
2928 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2929 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2930 		    dev->driver->name, dev->unit);
2931 	random_harvest_direct(&attachtime, sizeof(attachtime),
2932 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2933 	device_sysctl_update(dev);
2934 	if (dev->busy)
2935 		dev->state = DS_BUSY;
2936 	else
2937 		dev->state = DS_ATTACHED;
2938 	dev->flags &= ~DF_DONENOMATCH;
2939 	devadded(dev);
2940 	return (0);
2941 }
2942 
2943 /**
2944  * @brief Detach a driver from a device
2945  *
2946  * This function is a wrapper around the DEVICE_DETACH() driver
2947  * method. If the call to DEVICE_DETACH() succeeds, it calls
2948  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2949  * notification event for user-based device management services and
2950  * cleans up the device's sysctl tree.
2951  *
2952  * @param dev		the device to un-initialise
2953  *
2954  * @retval 0		success
2955  * @retval ENXIO	no driver was found
2956  * @retval ENOMEM	memory allocation failure
2957  * @retval non-zero	some other unix error code
2958  */
2959 int
2960 device_detach(device_t dev)
2961 {
2962 	int error;
2963 
2964 	GIANT_REQUIRED;
2965 
2966 	PDEBUG(("%s", DEVICENAME(dev)));
2967 	if (dev->state == DS_BUSY)
2968 		return (EBUSY);
2969 	if (dev->state != DS_ATTACHED)
2970 		return (0);
2971 
2972 	if ((error = DEVICE_DETACH(dev)) != 0)
2973 		return (error);
2974 	devremoved(dev);
2975 	if (!device_is_quiet(dev))
2976 		device_printf(dev, "detached\n");
2977 	if (dev->parent)
2978 		BUS_CHILD_DETACHED(dev->parent, dev);
2979 
2980 	if (!(dev->flags & DF_FIXEDCLASS))
2981 		devclass_delete_device(dev->devclass, dev);
2982 
2983 	device_verbose(dev);
2984 	dev->state = DS_NOTPRESENT;
2985 	(void)device_set_driver(dev, NULL);
2986 	device_sysctl_fini(dev);
2987 
2988 	return (0);
2989 }
2990 
2991 /**
2992  * @brief Tells a driver to quiesce itself.
2993  *
2994  * This function is a wrapper around the DEVICE_QUIESCE() driver
2995  * method. If the call to DEVICE_QUIESCE() succeeds.
2996  *
2997  * @param dev		the device to quiesce
2998  *
2999  * @retval 0		success
3000  * @retval ENXIO	no driver was found
3001  * @retval ENOMEM	memory allocation failure
3002  * @retval non-zero	some other unix error code
3003  */
3004 int
3005 device_quiesce(device_t dev)
3006 {
3007 
3008 	PDEBUG(("%s", DEVICENAME(dev)));
3009 	if (dev->state == DS_BUSY)
3010 		return (EBUSY);
3011 	if (dev->state != DS_ATTACHED)
3012 		return (0);
3013 
3014 	return (DEVICE_QUIESCE(dev));
3015 }
3016 
3017 /**
3018  * @brief Notify a device of system shutdown
3019  *
3020  * This function calls the DEVICE_SHUTDOWN() driver method if the
3021  * device currently has an attached driver.
3022  *
3023  * @returns the value returned by DEVICE_SHUTDOWN()
3024  */
3025 int
3026 device_shutdown(device_t dev)
3027 {
3028 	if (dev->state < DS_ATTACHED)
3029 		return (0);
3030 	return (DEVICE_SHUTDOWN(dev));
3031 }
3032 
3033 /**
3034  * @brief Set the unit number of a device
3035  *
3036  * This function can be used to override the unit number used for a
3037  * device (e.g. to wire a device to a pre-configured unit number).
3038  */
3039 int
3040 device_set_unit(device_t dev, int unit)
3041 {
3042 	devclass_t dc;
3043 	int err;
3044 
3045 	dc = device_get_devclass(dev);
3046 	if (unit < dc->maxunit && dc->devices[unit])
3047 		return (EBUSY);
3048 	err = devclass_delete_device(dc, dev);
3049 	if (err)
3050 		return (err);
3051 	dev->unit = unit;
3052 	err = devclass_add_device(dc, dev);
3053 	if (err)
3054 		return (err);
3055 
3056 	bus_data_generation_update();
3057 	return (0);
3058 }
3059 
3060 /*======================================*/
3061 /*
3062  * Some useful method implementations to make life easier for bus drivers.
3063  */
3064 
3065 void
3066 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3067 {
3068 
3069 	bzero(args, sz);
3070 	args->size = sz;
3071 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3072 }
3073 
3074 /**
3075  * @brief Initialise a resource list.
3076  *
3077  * @param rl		the resource list to initialise
3078  */
3079 void
3080 resource_list_init(struct resource_list *rl)
3081 {
3082 	STAILQ_INIT(rl);
3083 }
3084 
3085 /**
3086  * @brief Reclaim memory used by a resource list.
3087  *
3088  * This function frees the memory for all resource entries on the list
3089  * (if any).
3090  *
3091  * @param rl		the resource list to free
3092  */
3093 void
3094 resource_list_free(struct resource_list *rl)
3095 {
3096 	struct resource_list_entry *rle;
3097 
3098 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3099 		if (rle->res)
3100 			panic("resource_list_free: resource entry is busy");
3101 		STAILQ_REMOVE_HEAD(rl, link);
3102 		free(rle, M_BUS);
3103 	}
3104 }
3105 
3106 /**
3107  * @brief Add a resource entry.
3108  *
3109  * This function adds a resource entry using the given @p type, @p
3110  * start, @p end and @p count values. A rid value is chosen by
3111  * searching sequentially for the first unused rid starting at zero.
3112  *
3113  * @param rl		the resource list to edit
3114  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3115  * @param start		the start address of the resource
3116  * @param end		the end address of the resource
3117  * @param count		XXX end-start+1
3118  */
3119 int
3120 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3121     rman_res_t end, rman_res_t count)
3122 {
3123 	int rid;
3124 
3125 	rid = 0;
3126 	while (resource_list_find(rl, type, rid) != NULL)
3127 		rid++;
3128 	resource_list_add(rl, type, rid, start, end, count);
3129 	return (rid);
3130 }
3131 
3132 /**
3133  * @brief Add or modify a resource entry.
3134  *
3135  * If an existing entry exists with the same type and rid, it will be
3136  * modified using the given values of @p start, @p end and @p
3137  * count. If no entry exists, a new one will be created using the
3138  * given values.  The resource list entry that matches is then returned.
3139  *
3140  * @param rl		the resource list to edit
3141  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3142  * @param rid		the resource identifier
3143  * @param start		the start address of the resource
3144  * @param end		the end address of the resource
3145  * @param count		XXX end-start+1
3146  */
3147 struct resource_list_entry *
3148 resource_list_add(struct resource_list *rl, int type, int rid,
3149     rman_res_t start, rman_res_t end, rman_res_t count)
3150 {
3151 	struct resource_list_entry *rle;
3152 
3153 	rle = resource_list_find(rl, type, rid);
3154 	if (!rle) {
3155 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3156 		    M_NOWAIT);
3157 		if (!rle)
3158 			panic("resource_list_add: can't record entry");
3159 		STAILQ_INSERT_TAIL(rl, rle, link);
3160 		rle->type = type;
3161 		rle->rid = rid;
3162 		rle->res = NULL;
3163 		rle->flags = 0;
3164 	}
3165 
3166 	if (rle->res)
3167 		panic("resource_list_add: resource entry is busy");
3168 
3169 	rle->start = start;
3170 	rle->end = end;
3171 	rle->count = count;
3172 	return (rle);
3173 }
3174 
3175 /**
3176  * @brief Determine if a resource entry is busy.
3177  *
3178  * Returns true if a resource entry is busy meaning that it has an
3179  * associated resource that is not an unallocated "reserved" resource.
3180  *
3181  * @param rl		the resource list to search
3182  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3183  * @param rid		the resource identifier
3184  *
3185  * @returns Non-zero if the entry is busy, zero otherwise.
3186  */
3187 int
3188 resource_list_busy(struct resource_list *rl, int type, int rid)
3189 {
3190 	struct resource_list_entry *rle;
3191 
3192 	rle = resource_list_find(rl, type, rid);
3193 	if (rle == NULL || rle->res == NULL)
3194 		return (0);
3195 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3196 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3197 		    ("reserved resource is active"));
3198 		return (0);
3199 	}
3200 	return (1);
3201 }
3202 
3203 /**
3204  * @brief Determine if a resource entry is reserved.
3205  *
3206  * Returns true if a resource entry is reserved meaning that it has an
3207  * associated "reserved" resource.  The resource can either be
3208  * allocated or unallocated.
3209  *
3210  * @param rl		the resource list to search
3211  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3212  * @param rid		the resource identifier
3213  *
3214  * @returns Non-zero if the entry is reserved, zero otherwise.
3215  */
3216 int
3217 resource_list_reserved(struct resource_list *rl, int type, int rid)
3218 {
3219 	struct resource_list_entry *rle;
3220 
3221 	rle = resource_list_find(rl, type, rid);
3222 	if (rle != NULL && rle->flags & RLE_RESERVED)
3223 		return (1);
3224 	return (0);
3225 }
3226 
3227 /**
3228  * @brief Find a resource entry by type and rid.
3229  *
3230  * @param rl		the resource list to search
3231  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3232  * @param rid		the resource identifier
3233  *
3234  * @returns the resource entry pointer or NULL if there is no such
3235  * entry.
3236  */
3237 struct resource_list_entry *
3238 resource_list_find(struct resource_list *rl, int type, int rid)
3239 {
3240 	struct resource_list_entry *rle;
3241 
3242 	STAILQ_FOREACH(rle, rl, link) {
3243 		if (rle->type == type && rle->rid == rid)
3244 			return (rle);
3245 	}
3246 	return (NULL);
3247 }
3248 
3249 /**
3250  * @brief Delete a resource entry.
3251  *
3252  * @param rl		the resource list to edit
3253  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3254  * @param rid		the resource identifier
3255  */
3256 void
3257 resource_list_delete(struct resource_list *rl, int type, int rid)
3258 {
3259 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3260 
3261 	if (rle) {
3262 		if (rle->res != NULL)
3263 			panic("resource_list_delete: resource has not been released");
3264 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3265 		free(rle, M_BUS);
3266 	}
3267 }
3268 
3269 /**
3270  * @brief Allocate a reserved resource
3271  *
3272  * This can be used by busses to force the allocation of resources
3273  * that are always active in the system even if they are not allocated
3274  * by a driver (e.g. PCI BARs).  This function is usually called when
3275  * adding a new child to the bus.  The resource is allocated from the
3276  * parent bus when it is reserved.  The resource list entry is marked
3277  * with RLE_RESERVED to note that it is a reserved resource.
3278  *
3279  * Subsequent attempts to allocate the resource with
3280  * resource_list_alloc() will succeed the first time and will set
3281  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3282  * resource that has been allocated is released with
3283  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3284  * the actual resource remains allocated.  The resource can be released to
3285  * the parent bus by calling resource_list_unreserve().
3286  *
3287  * @param rl		the resource list to allocate from
3288  * @param bus		the parent device of @p child
3289  * @param child		the device for which the resource is being reserved
3290  * @param type		the type of resource to allocate
3291  * @param rid		a pointer to the resource identifier
3292  * @param start		hint at the start of the resource range - pass
3293  *			@c 0 for any start address
3294  * @param end		hint at the end of the resource range - pass
3295  *			@c ~0 for any end address
3296  * @param count		hint at the size of range required - pass @c 1
3297  *			for any size
3298  * @param flags		any extra flags to control the resource
3299  *			allocation - see @c RF_XXX flags in
3300  *			<sys/rman.h> for details
3301  *
3302  * @returns		the resource which was allocated or @c NULL if no
3303  *			resource could be allocated
3304  */
3305 struct resource *
3306 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3307     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3308 {
3309 	struct resource_list_entry *rle = NULL;
3310 	int passthrough = (device_get_parent(child) != bus);
3311 	struct resource *r;
3312 
3313 	if (passthrough)
3314 		panic(
3315     "resource_list_reserve() should only be called for direct children");
3316 	if (flags & RF_ACTIVE)
3317 		panic(
3318     "resource_list_reserve() should only reserve inactive resources");
3319 
3320 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3321 	    flags);
3322 	if (r != NULL) {
3323 		rle = resource_list_find(rl, type, *rid);
3324 		rle->flags |= RLE_RESERVED;
3325 	}
3326 	return (r);
3327 }
3328 
3329 /**
3330  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3331  *
3332  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3333  * and passing the allocation up to the parent of @p bus. This assumes
3334  * that the first entry of @c device_get_ivars(child) is a struct
3335  * resource_list. This also handles 'passthrough' allocations where a
3336  * child is a remote descendant of bus by passing the allocation up to
3337  * the parent of bus.
3338  *
3339  * Typically, a bus driver would store a list of child resources
3340  * somewhere in the child device's ivars (see device_get_ivars()) and
3341  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3342  * then call resource_list_alloc() to perform the allocation.
3343  *
3344  * @param rl		the resource list to allocate from
3345  * @param bus		the parent device of @p child
3346  * @param child		the device which is requesting an allocation
3347  * @param type		the type of resource to allocate
3348  * @param rid		a pointer to the resource identifier
3349  * @param start		hint at the start of the resource range - pass
3350  *			@c 0 for any start address
3351  * @param end		hint at the end of the resource range - pass
3352  *			@c ~0 for any end address
3353  * @param count		hint at the size of range required - pass @c 1
3354  *			for any size
3355  * @param flags		any extra flags to control the resource
3356  *			allocation - see @c RF_XXX flags in
3357  *			<sys/rman.h> for details
3358  *
3359  * @returns		the resource which was allocated or @c NULL if no
3360  *			resource could be allocated
3361  */
3362 struct resource *
3363 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3364     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3365 {
3366 	struct resource_list_entry *rle = NULL;
3367 	int passthrough = (device_get_parent(child) != bus);
3368 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3369 
3370 	if (passthrough) {
3371 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3372 		    type, rid, start, end, count, flags));
3373 	}
3374 
3375 	rle = resource_list_find(rl, type, *rid);
3376 
3377 	if (!rle)
3378 		return (NULL);		/* no resource of that type/rid */
3379 
3380 	if (rle->res) {
3381 		if (rle->flags & RLE_RESERVED) {
3382 			if (rle->flags & RLE_ALLOCATED)
3383 				return (NULL);
3384 			if ((flags & RF_ACTIVE) &&
3385 			    bus_activate_resource(child, type, *rid,
3386 			    rle->res) != 0)
3387 				return (NULL);
3388 			rle->flags |= RLE_ALLOCATED;
3389 			return (rle->res);
3390 		}
3391 		device_printf(bus,
3392 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3393 		    type, device_get_nameunit(child));
3394 		return (NULL);
3395 	}
3396 
3397 	if (isdefault) {
3398 		start = rle->start;
3399 		count = ulmax(count, rle->count);
3400 		end = ulmax(rle->end, start + count - 1);
3401 	}
3402 
3403 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3404 	    type, rid, start, end, count, flags);
3405 
3406 	/*
3407 	 * Record the new range.
3408 	 */
3409 	if (rle->res) {
3410 		rle->start = rman_get_start(rle->res);
3411 		rle->end = rman_get_end(rle->res);
3412 		rle->count = count;
3413 	}
3414 
3415 	return (rle->res);
3416 }
3417 
3418 /**
3419  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3420  *
3421  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3422  * used with resource_list_alloc().
3423  *
3424  * @param rl		the resource list which was allocated from
3425  * @param bus		the parent device of @p child
3426  * @param child		the device which is requesting a release
3427  * @param type		the type of resource to release
3428  * @param rid		the resource identifier
3429  * @param res		the resource to release
3430  *
3431  * @retval 0		success
3432  * @retval non-zero	a standard unix error code indicating what
3433  *			error condition prevented the operation
3434  */
3435 int
3436 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3437     int type, int rid, struct resource *res)
3438 {
3439 	struct resource_list_entry *rle = NULL;
3440 	int passthrough = (device_get_parent(child) != bus);
3441 	int error;
3442 
3443 	if (passthrough) {
3444 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3445 		    type, rid, res));
3446 	}
3447 
3448 	rle = resource_list_find(rl, type, rid);
3449 
3450 	if (!rle)
3451 		panic("resource_list_release: can't find resource");
3452 	if (!rle->res)
3453 		panic("resource_list_release: resource entry is not busy");
3454 	if (rle->flags & RLE_RESERVED) {
3455 		if (rle->flags & RLE_ALLOCATED) {
3456 			if (rman_get_flags(res) & RF_ACTIVE) {
3457 				error = bus_deactivate_resource(child, type,
3458 				    rid, res);
3459 				if (error)
3460 					return (error);
3461 			}
3462 			rle->flags &= ~RLE_ALLOCATED;
3463 			return (0);
3464 		}
3465 		return (EINVAL);
3466 	}
3467 
3468 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3469 	    type, rid, res);
3470 	if (error)
3471 		return (error);
3472 
3473 	rle->res = NULL;
3474 	return (0);
3475 }
3476 
3477 /**
3478  * @brief Release all active resources of a given type
3479  *
3480  * Release all active resources of a specified type.  This is intended
3481  * to be used to cleanup resources leaked by a driver after detach or
3482  * a failed attach.
3483  *
3484  * @param rl		the resource list which was allocated from
3485  * @param bus		the parent device of @p child
3486  * @param child		the device whose active resources are being released
3487  * @param type		the type of resources to release
3488  *
3489  * @retval 0		success
3490  * @retval EBUSY	at least one resource was active
3491  */
3492 int
3493 resource_list_release_active(struct resource_list *rl, device_t bus,
3494     device_t child, int type)
3495 {
3496 	struct resource_list_entry *rle;
3497 	int error, retval;
3498 
3499 	retval = 0;
3500 	STAILQ_FOREACH(rle, rl, link) {
3501 		if (rle->type != type)
3502 			continue;
3503 		if (rle->res == NULL)
3504 			continue;
3505 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3506 		    RLE_RESERVED)
3507 			continue;
3508 		retval = EBUSY;
3509 		error = resource_list_release(rl, bus, child, type,
3510 		    rman_get_rid(rle->res), rle->res);
3511 		if (error != 0)
3512 			device_printf(bus,
3513 			    "Failed to release active resource: %d\n", error);
3514 	}
3515 	return (retval);
3516 }
3517 
3518 
3519 /**
3520  * @brief Fully release a reserved resource
3521  *
3522  * Fully releases a resource reserved via resource_list_reserve().
3523  *
3524  * @param rl		the resource list which was allocated from
3525  * @param bus		the parent device of @p child
3526  * @param child		the device whose reserved resource is being released
3527  * @param type		the type of resource to release
3528  * @param rid		the resource identifier
3529  * @param res		the resource to release
3530  *
3531  * @retval 0		success
3532  * @retval non-zero	a standard unix error code indicating what
3533  *			error condition prevented the operation
3534  */
3535 int
3536 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3537     int type, int rid)
3538 {
3539 	struct resource_list_entry *rle = NULL;
3540 	int passthrough = (device_get_parent(child) != bus);
3541 
3542 	if (passthrough)
3543 		panic(
3544     "resource_list_unreserve() should only be called for direct children");
3545 
3546 	rle = resource_list_find(rl, type, rid);
3547 
3548 	if (!rle)
3549 		panic("resource_list_unreserve: can't find resource");
3550 	if (!(rle->flags & RLE_RESERVED))
3551 		return (EINVAL);
3552 	if (rle->flags & RLE_ALLOCATED)
3553 		return (EBUSY);
3554 	rle->flags &= ~RLE_RESERVED;
3555 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3556 }
3557 
3558 /**
3559  * @brief Print a description of resources in a resource list
3560  *
3561  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3562  * The name is printed if at least one resource of the given type is available.
3563  * The format is used to print resource start and end.
3564  *
3565  * @param rl		the resource list to print
3566  * @param name		the name of @p type, e.g. @c "memory"
3567  * @param type		type type of resource entry to print
3568  * @param format	printf(9) format string to print resource
3569  *			start and end values
3570  *
3571  * @returns		the number of characters printed
3572  */
3573 int
3574 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3575     const char *format)
3576 {
3577 	struct resource_list_entry *rle;
3578 	int printed, retval;
3579 
3580 	printed = 0;
3581 	retval = 0;
3582 	/* Yes, this is kinda cheating */
3583 	STAILQ_FOREACH(rle, rl, link) {
3584 		if (rle->type == type) {
3585 			if (printed == 0)
3586 				retval += printf(" %s ", name);
3587 			else
3588 				retval += printf(",");
3589 			printed++;
3590 			retval += printf(format, rle->start);
3591 			if (rle->count > 1) {
3592 				retval += printf("-");
3593 				retval += printf(format, rle->start +
3594 						 rle->count - 1);
3595 			}
3596 		}
3597 	}
3598 	return (retval);
3599 }
3600 
3601 /**
3602  * @brief Releases all the resources in a list.
3603  *
3604  * @param rl		The resource list to purge.
3605  *
3606  * @returns		nothing
3607  */
3608 void
3609 resource_list_purge(struct resource_list *rl)
3610 {
3611 	struct resource_list_entry *rle;
3612 
3613 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3614 		if (rle->res)
3615 			bus_release_resource(rman_get_device(rle->res),
3616 			    rle->type, rle->rid, rle->res);
3617 		STAILQ_REMOVE_HEAD(rl, link);
3618 		free(rle, M_BUS);
3619 	}
3620 }
3621 
3622 device_t
3623 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3624 {
3625 
3626 	return (device_add_child_ordered(dev, order, name, unit));
3627 }
3628 
3629 /**
3630  * @brief Helper function for implementing DEVICE_PROBE()
3631  *
3632  * This function can be used to help implement the DEVICE_PROBE() for
3633  * a bus (i.e. a device which has other devices attached to it). It
3634  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3635  * devclass.
3636  */
3637 int
3638 bus_generic_probe(device_t dev)
3639 {
3640 	devclass_t dc = dev->devclass;
3641 	driverlink_t dl;
3642 
3643 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3644 		/*
3645 		 * If this driver's pass is too high, then ignore it.
3646 		 * For most drivers in the default pass, this will
3647 		 * never be true.  For early-pass drivers they will
3648 		 * only call the identify routines of eligible drivers
3649 		 * when this routine is called.  Drivers for later
3650 		 * passes should have their identify routines called
3651 		 * on early-pass busses during BUS_NEW_PASS().
3652 		 */
3653 		if (dl->pass > bus_current_pass)
3654 			continue;
3655 		DEVICE_IDENTIFY(dl->driver, dev);
3656 	}
3657 
3658 	return (0);
3659 }
3660 
3661 /**
3662  * @brief Helper function for implementing DEVICE_ATTACH()
3663  *
3664  * This function can be used to help implement the DEVICE_ATTACH() for
3665  * a bus. It calls device_probe_and_attach() for each of the device's
3666  * children.
3667  */
3668 int
3669 bus_generic_attach(device_t dev)
3670 {
3671 	device_t child;
3672 
3673 	TAILQ_FOREACH(child, &dev->children, link) {
3674 		device_probe_and_attach(child);
3675 	}
3676 
3677 	return (0);
3678 }
3679 
3680 /**
3681  * @brief Helper function for implementing DEVICE_DETACH()
3682  *
3683  * This function can be used to help implement the DEVICE_DETACH() for
3684  * a bus. It calls device_detach() for each of the device's
3685  * children.
3686  */
3687 int
3688 bus_generic_detach(device_t dev)
3689 {
3690 	device_t child;
3691 	int error;
3692 
3693 	if (dev->state != DS_ATTACHED)
3694 		return (EBUSY);
3695 
3696 	TAILQ_FOREACH(child, &dev->children, link) {
3697 		if ((error = device_detach(child)) != 0)
3698 			return (error);
3699 	}
3700 
3701 	return (0);
3702 }
3703 
3704 /**
3705  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3706  *
3707  * This function can be used to help implement the DEVICE_SHUTDOWN()
3708  * for a bus. It calls device_shutdown() for each of the device's
3709  * children.
3710  */
3711 int
3712 bus_generic_shutdown(device_t dev)
3713 {
3714 	device_t child;
3715 
3716 	TAILQ_FOREACH(child, &dev->children, link) {
3717 		device_shutdown(child);
3718 	}
3719 
3720 	return (0);
3721 }
3722 
3723 /**
3724  * @brief Default function for suspending a child device.
3725  *
3726  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3727  */
3728 int
3729 bus_generic_suspend_child(device_t dev, device_t child)
3730 {
3731 	int	error;
3732 
3733 	error = DEVICE_SUSPEND(child);
3734 
3735 	if (error == 0)
3736 		child->flags |= DF_SUSPENDED;
3737 
3738 	return (error);
3739 }
3740 
3741 /**
3742  * @brief Default function for resuming a child device.
3743  *
3744  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3745  */
3746 int
3747 bus_generic_resume_child(device_t dev, device_t child)
3748 {
3749 
3750 	DEVICE_RESUME(child);
3751 	child->flags &= ~DF_SUSPENDED;
3752 
3753 	return (0);
3754 }
3755 
3756 /**
3757  * @brief Helper function for implementing DEVICE_SUSPEND()
3758  *
3759  * This function can be used to help implement the DEVICE_SUSPEND()
3760  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3761  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3762  * operation is aborted and any devices which were suspended are
3763  * resumed immediately by calling their DEVICE_RESUME() methods.
3764  */
3765 int
3766 bus_generic_suspend(device_t dev)
3767 {
3768 	int		error;
3769 	device_t	child, child2;
3770 
3771 	TAILQ_FOREACH(child, &dev->children, link) {
3772 		error = BUS_SUSPEND_CHILD(dev, child);
3773 		if (error) {
3774 			for (child2 = TAILQ_FIRST(&dev->children);
3775 			     child2 && child2 != child;
3776 			     child2 = TAILQ_NEXT(child2, link))
3777 				BUS_RESUME_CHILD(dev, child2);
3778 			return (error);
3779 		}
3780 	}
3781 	return (0);
3782 }
3783 
3784 /**
3785  * @brief Helper function for implementing DEVICE_RESUME()
3786  *
3787  * This function can be used to help implement the DEVICE_RESUME() for
3788  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3789  */
3790 int
3791 bus_generic_resume(device_t dev)
3792 {
3793 	device_t	child;
3794 
3795 	TAILQ_FOREACH(child, &dev->children, link) {
3796 		BUS_RESUME_CHILD(dev, child);
3797 		/* if resume fails, there's nothing we can usefully do... */
3798 	}
3799 	return (0);
3800 }
3801 
3802 /**
3803  * @brief Helper function for implementing BUS_PRINT_CHILD().
3804  *
3805  * This function prints the first part of the ascii representation of
3806  * @p child, including its name, unit and description (if any - see
3807  * device_set_desc()).
3808  *
3809  * @returns the number of characters printed
3810  */
3811 int
3812 bus_print_child_header(device_t dev, device_t child)
3813 {
3814 	int	retval = 0;
3815 
3816 	if (device_get_desc(child)) {
3817 		retval += device_printf(child, "<%s>", device_get_desc(child));
3818 	} else {
3819 		retval += printf("%s", device_get_nameunit(child));
3820 	}
3821 
3822 	return (retval);
3823 }
3824 
3825 /**
3826  * @brief Helper function for implementing BUS_PRINT_CHILD().
3827  *
3828  * This function prints the last part of the ascii representation of
3829  * @p child, which consists of the string @c " on " followed by the
3830  * name and unit of the @p dev.
3831  *
3832  * @returns the number of characters printed
3833  */
3834 int
3835 bus_print_child_footer(device_t dev, device_t child)
3836 {
3837 	return (printf(" on %s\n", device_get_nameunit(dev)));
3838 }
3839 
3840 /**
3841  * @brief Helper function for implementing BUS_PRINT_CHILD().
3842  *
3843  * This function prints out the VM domain for the given device.
3844  *
3845  * @returns the number of characters printed
3846  */
3847 int
3848 bus_print_child_domain(device_t dev, device_t child)
3849 {
3850 	int domain;
3851 
3852 	/* No domain? Don't print anything */
3853 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3854 		return (0);
3855 
3856 	return (printf(" numa-domain %d", domain));
3857 }
3858 
3859 /**
3860  * @brief Helper function for implementing BUS_PRINT_CHILD().
3861  *
3862  * This function simply calls bus_print_child_header() followed by
3863  * bus_print_child_footer().
3864  *
3865  * @returns the number of characters printed
3866  */
3867 int
3868 bus_generic_print_child(device_t dev, device_t child)
3869 {
3870 	int	retval = 0;
3871 
3872 	retval += bus_print_child_header(dev, child);
3873 	retval += bus_print_child_domain(dev, child);
3874 	retval += bus_print_child_footer(dev, child);
3875 
3876 	return (retval);
3877 }
3878 
3879 /**
3880  * @brief Stub function for implementing BUS_READ_IVAR().
3881  *
3882  * @returns ENOENT
3883  */
3884 int
3885 bus_generic_read_ivar(device_t dev, device_t child, int index,
3886     uintptr_t * result)
3887 {
3888 	return (ENOENT);
3889 }
3890 
3891 /**
3892  * @brief Stub function for implementing BUS_WRITE_IVAR().
3893  *
3894  * @returns ENOENT
3895  */
3896 int
3897 bus_generic_write_ivar(device_t dev, device_t child, int index,
3898     uintptr_t value)
3899 {
3900 	return (ENOENT);
3901 }
3902 
3903 /**
3904  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3905  *
3906  * @returns NULL
3907  */
3908 struct resource_list *
3909 bus_generic_get_resource_list(device_t dev, device_t child)
3910 {
3911 	return (NULL);
3912 }
3913 
3914 /**
3915  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3916  *
3917  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3918  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3919  * and then calls device_probe_and_attach() for each unattached child.
3920  */
3921 void
3922 bus_generic_driver_added(device_t dev, driver_t *driver)
3923 {
3924 	device_t child;
3925 
3926 	DEVICE_IDENTIFY(driver, dev);
3927 	TAILQ_FOREACH(child, &dev->children, link) {
3928 		if (child->state == DS_NOTPRESENT ||
3929 		    (child->flags & DF_REBID))
3930 			device_probe_and_attach(child);
3931 	}
3932 }
3933 
3934 /**
3935  * @brief Helper function for implementing BUS_NEW_PASS().
3936  *
3937  * This implementing of BUS_NEW_PASS() first calls the identify
3938  * routines for any drivers that probe at the current pass.  Then it
3939  * walks the list of devices for this bus.  If a device is already
3940  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3941  * device is not already attached, it attempts to attach a driver to
3942  * it.
3943  */
3944 void
3945 bus_generic_new_pass(device_t dev)
3946 {
3947 	driverlink_t dl;
3948 	devclass_t dc;
3949 	device_t child;
3950 
3951 	dc = dev->devclass;
3952 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3953 		if (dl->pass == bus_current_pass)
3954 			DEVICE_IDENTIFY(dl->driver, dev);
3955 	}
3956 	TAILQ_FOREACH(child, &dev->children, link) {
3957 		if (child->state >= DS_ATTACHED)
3958 			BUS_NEW_PASS(child);
3959 		else if (child->state == DS_NOTPRESENT)
3960 			device_probe_and_attach(child);
3961 	}
3962 }
3963 
3964 /**
3965  * @brief Helper function for implementing BUS_SETUP_INTR().
3966  *
3967  * This simple implementation of BUS_SETUP_INTR() simply calls the
3968  * BUS_SETUP_INTR() method of the parent of @p dev.
3969  */
3970 int
3971 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3972     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3973     void **cookiep)
3974 {
3975 	/* Propagate up the bus hierarchy until someone handles it. */
3976 	if (dev->parent)
3977 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3978 		    filter, intr, arg, cookiep));
3979 	return (EINVAL);
3980 }
3981 
3982 /**
3983  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3984  *
3985  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3986  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3987  */
3988 int
3989 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3990     void *cookie)
3991 {
3992 	/* Propagate up the bus hierarchy until someone handles it. */
3993 	if (dev->parent)
3994 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3995 	return (EINVAL);
3996 }
3997 
3998 /**
3999  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4000  *
4001  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4002  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4003  */
4004 int
4005 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4006     struct resource *r, rman_res_t start, rman_res_t end)
4007 {
4008 	/* Propagate up the bus hierarchy until someone handles it. */
4009 	if (dev->parent)
4010 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4011 		    end));
4012 	return (EINVAL);
4013 }
4014 
4015 /**
4016  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4017  *
4018  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4019  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4020  */
4021 struct resource *
4022 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4023     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4024 {
4025 	/* Propagate up the bus hierarchy until someone handles it. */
4026 	if (dev->parent)
4027 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4028 		    start, end, count, flags));
4029 	return (NULL);
4030 }
4031 
4032 /**
4033  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4034  *
4035  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4036  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4037  */
4038 int
4039 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4040     struct resource *r)
4041 {
4042 	/* Propagate up the bus hierarchy until someone handles it. */
4043 	if (dev->parent)
4044 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4045 		    r));
4046 	return (EINVAL);
4047 }
4048 
4049 /**
4050  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4051  *
4052  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4053  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4054  */
4055 int
4056 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4057     struct resource *r)
4058 {
4059 	/* Propagate up the bus hierarchy until someone handles it. */
4060 	if (dev->parent)
4061 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4062 		    r));
4063 	return (EINVAL);
4064 }
4065 
4066 /**
4067  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4068  *
4069  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4070  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4071  */
4072 int
4073 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4074     int rid, struct resource *r)
4075 {
4076 	/* Propagate up the bus hierarchy until someone handles it. */
4077 	if (dev->parent)
4078 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4079 		    r));
4080 	return (EINVAL);
4081 }
4082 
4083 /**
4084  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4085  *
4086  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4087  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4088  */
4089 int
4090 bus_generic_map_resource(device_t dev, device_t child, int type,
4091     struct resource *r, struct resource_map_request *args,
4092     struct resource_map *map)
4093 {
4094 	/* Propagate up the bus hierarchy until someone handles it. */
4095 	if (dev->parent)
4096 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4097 		    map));
4098 	return (EINVAL);
4099 }
4100 
4101 /**
4102  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4103  *
4104  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4105  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4106  */
4107 int
4108 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4109     struct resource *r, struct resource_map *map)
4110 {
4111 	/* Propagate up the bus hierarchy until someone handles it. */
4112 	if (dev->parent)
4113 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4114 	return (EINVAL);
4115 }
4116 
4117 /**
4118  * @brief Helper function for implementing BUS_BIND_INTR().
4119  *
4120  * This simple implementation of BUS_BIND_INTR() simply calls the
4121  * BUS_BIND_INTR() method of the parent of @p dev.
4122  */
4123 int
4124 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4125     int cpu)
4126 {
4127 
4128 	/* Propagate up the bus hierarchy until someone handles it. */
4129 	if (dev->parent)
4130 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4131 	return (EINVAL);
4132 }
4133 
4134 /**
4135  * @brief Helper function for implementing BUS_CONFIG_INTR().
4136  *
4137  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4138  * BUS_CONFIG_INTR() method of the parent of @p dev.
4139  */
4140 int
4141 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4142     enum intr_polarity pol)
4143 {
4144 
4145 	/* Propagate up the bus hierarchy until someone handles it. */
4146 	if (dev->parent)
4147 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4148 	return (EINVAL);
4149 }
4150 
4151 /**
4152  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4153  *
4154  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4155  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4156  */
4157 int
4158 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4159     void *cookie, const char *descr)
4160 {
4161 
4162 	/* Propagate up the bus hierarchy until someone handles it. */
4163 	if (dev->parent)
4164 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4165 		    descr));
4166 	return (EINVAL);
4167 }
4168 
4169 /**
4170  * @brief Helper function for implementing BUS_GET_CPUS().
4171  *
4172  * This simple implementation of BUS_GET_CPUS() simply calls the
4173  * BUS_GET_CPUS() method of the parent of @p dev.
4174  */
4175 int
4176 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4177     size_t setsize, cpuset_t *cpuset)
4178 {
4179 
4180 	/* Propagate up the bus hierarchy until someone handles it. */
4181 	if (dev->parent != NULL)
4182 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4183 	return (EINVAL);
4184 }
4185 
4186 /**
4187  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4188  *
4189  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4190  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4191  */
4192 bus_dma_tag_t
4193 bus_generic_get_dma_tag(device_t dev, device_t child)
4194 {
4195 
4196 	/* Propagate up the bus hierarchy until someone handles it. */
4197 	if (dev->parent != NULL)
4198 		return (BUS_GET_DMA_TAG(dev->parent, child));
4199 	return (NULL);
4200 }
4201 
4202 /**
4203  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4204  *
4205  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4206  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4207  */
4208 bus_space_tag_t
4209 bus_generic_get_bus_tag(device_t dev, device_t child)
4210 {
4211 
4212 	/* Propagate up the bus hierarchy until someone handles it. */
4213 	if (dev->parent != NULL)
4214 		return (BUS_GET_BUS_TAG(dev->parent, child));
4215 	return ((bus_space_tag_t)0);
4216 }
4217 
4218 /**
4219  * @brief Helper function for implementing BUS_GET_RESOURCE().
4220  *
4221  * This implementation of BUS_GET_RESOURCE() uses the
4222  * resource_list_find() function to do most of the work. It calls
4223  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4224  * search.
4225  */
4226 int
4227 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4228     rman_res_t *startp, rman_res_t *countp)
4229 {
4230 	struct resource_list *		rl = NULL;
4231 	struct resource_list_entry *	rle = NULL;
4232 
4233 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4234 	if (!rl)
4235 		return (EINVAL);
4236 
4237 	rle = resource_list_find(rl, type, rid);
4238 	if (!rle)
4239 		return (ENOENT);
4240 
4241 	if (startp)
4242 		*startp = rle->start;
4243 	if (countp)
4244 		*countp = rle->count;
4245 
4246 	return (0);
4247 }
4248 
4249 /**
4250  * @brief Helper function for implementing BUS_SET_RESOURCE().
4251  *
4252  * This implementation of BUS_SET_RESOURCE() uses the
4253  * resource_list_add() function to do most of the work. It calls
4254  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4255  * edit.
4256  */
4257 int
4258 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4259     rman_res_t start, rman_res_t count)
4260 {
4261 	struct resource_list *		rl = NULL;
4262 
4263 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4264 	if (!rl)
4265 		return (EINVAL);
4266 
4267 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4268 
4269 	return (0);
4270 }
4271 
4272 /**
4273  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4274  *
4275  * This implementation of BUS_DELETE_RESOURCE() uses the
4276  * resource_list_delete() function to do most of the work. It calls
4277  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4278  * edit.
4279  */
4280 void
4281 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4282 {
4283 	struct resource_list *		rl = NULL;
4284 
4285 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4286 	if (!rl)
4287 		return;
4288 
4289 	resource_list_delete(rl, type, rid);
4290 
4291 	return;
4292 }
4293 
4294 /**
4295  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4296  *
4297  * This implementation of BUS_RELEASE_RESOURCE() uses the
4298  * resource_list_release() function to do most of the work. It calls
4299  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4300  */
4301 int
4302 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4303     int rid, struct resource *r)
4304 {
4305 	struct resource_list *		rl = NULL;
4306 
4307 	if (device_get_parent(child) != dev)
4308 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4309 		    type, rid, r));
4310 
4311 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4312 	if (!rl)
4313 		return (EINVAL);
4314 
4315 	return (resource_list_release(rl, dev, child, type, rid, r));
4316 }
4317 
4318 /**
4319  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4320  *
4321  * This implementation of BUS_ALLOC_RESOURCE() uses the
4322  * resource_list_alloc() function to do most of the work. It calls
4323  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4324  */
4325 struct resource *
4326 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4327     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4328 {
4329 	struct resource_list *		rl = NULL;
4330 
4331 	if (device_get_parent(child) != dev)
4332 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4333 		    type, rid, start, end, count, flags));
4334 
4335 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4336 	if (!rl)
4337 		return (NULL);
4338 
4339 	return (resource_list_alloc(rl, dev, child, type, rid,
4340 	    start, end, count, flags));
4341 }
4342 
4343 /**
4344  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4345  *
4346  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4347  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4348  */
4349 int
4350 bus_generic_child_present(device_t dev, device_t child)
4351 {
4352 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4353 }
4354 
4355 int
4356 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4357 {
4358 
4359 	if (dev->parent)
4360 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4361 
4362 	return (ENOENT);
4363 }
4364 
4365 /**
4366  * @brief Helper function for implementing BUS_RESCAN().
4367  *
4368  * This null implementation of BUS_RESCAN() always fails to indicate
4369  * the bus does not support rescanning.
4370  */
4371 int
4372 bus_null_rescan(device_t dev)
4373 {
4374 
4375 	return (ENXIO);
4376 }
4377 
4378 /*
4379  * Some convenience functions to make it easier for drivers to use the
4380  * resource-management functions.  All these really do is hide the
4381  * indirection through the parent's method table, making for slightly
4382  * less-wordy code.  In the future, it might make sense for this code
4383  * to maintain some sort of a list of resources allocated by each device.
4384  */
4385 
4386 int
4387 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4388     struct resource **res)
4389 {
4390 	int i;
4391 
4392 	for (i = 0; rs[i].type != -1; i++)
4393 		res[i] = NULL;
4394 	for (i = 0; rs[i].type != -1; i++) {
4395 		res[i] = bus_alloc_resource_any(dev,
4396 		    rs[i].type, &rs[i].rid, rs[i].flags);
4397 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4398 			bus_release_resources(dev, rs, res);
4399 			return (ENXIO);
4400 		}
4401 	}
4402 	return (0);
4403 }
4404 
4405 void
4406 bus_release_resources(device_t dev, const struct resource_spec *rs,
4407     struct resource **res)
4408 {
4409 	int i;
4410 
4411 	for (i = 0; rs[i].type != -1; i++)
4412 		if (res[i] != NULL) {
4413 			bus_release_resource(
4414 			    dev, rs[i].type, rs[i].rid, res[i]);
4415 			res[i] = NULL;
4416 		}
4417 }
4418 
4419 /**
4420  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4421  *
4422  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4423  * parent of @p dev.
4424  */
4425 struct resource *
4426 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4427     rman_res_t end, rman_res_t count, u_int flags)
4428 {
4429 	struct resource *res;
4430 
4431 	if (dev->parent == NULL)
4432 		return (NULL);
4433 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4434 	    count, flags);
4435 	return (res);
4436 }
4437 
4438 /**
4439  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4440  *
4441  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4442  * parent of @p dev.
4443  */
4444 int
4445 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4446     rman_res_t end)
4447 {
4448 	if (dev->parent == NULL)
4449 		return (EINVAL);
4450 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4451 }
4452 
4453 /**
4454  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4455  *
4456  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4457  * parent of @p dev.
4458  */
4459 int
4460 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4461 {
4462 	if (dev->parent == NULL)
4463 		return (EINVAL);
4464 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4465 }
4466 
4467 /**
4468  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4469  *
4470  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4471  * parent of @p dev.
4472  */
4473 int
4474 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4475 {
4476 	if (dev->parent == NULL)
4477 		return (EINVAL);
4478 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4479 }
4480 
4481 /**
4482  * @brief Wrapper function for BUS_MAP_RESOURCE().
4483  *
4484  * This function simply calls the BUS_MAP_RESOURCE() method of the
4485  * parent of @p dev.
4486  */
4487 int
4488 bus_map_resource(device_t dev, int type, struct resource *r,
4489     struct resource_map_request *args, struct resource_map *map)
4490 {
4491 	if (dev->parent == NULL)
4492 		return (EINVAL);
4493 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4494 }
4495 
4496 /**
4497  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4498  *
4499  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4500  * parent of @p dev.
4501  */
4502 int
4503 bus_unmap_resource(device_t dev, int type, struct resource *r,
4504     struct resource_map *map)
4505 {
4506 	if (dev->parent == NULL)
4507 		return (EINVAL);
4508 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4509 }
4510 
4511 /**
4512  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4513  *
4514  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4515  * parent of @p dev.
4516  */
4517 int
4518 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4519 {
4520 	int rv;
4521 
4522 	if (dev->parent == NULL)
4523 		return (EINVAL);
4524 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4525 	return (rv);
4526 }
4527 
4528 /**
4529  * @brief Wrapper function for BUS_SETUP_INTR().
4530  *
4531  * This function simply calls the BUS_SETUP_INTR() method of the
4532  * parent of @p dev.
4533  */
4534 int
4535 bus_setup_intr(device_t dev, struct resource *r, int flags,
4536     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4537 {
4538 	int error;
4539 
4540 	if (dev->parent == NULL)
4541 		return (EINVAL);
4542 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4543 	    arg, cookiep);
4544 	if (error != 0)
4545 		return (error);
4546 	if (handler != NULL && !(flags & INTR_MPSAFE))
4547 		device_printf(dev, "[GIANT-LOCKED]\n");
4548 	return (0);
4549 }
4550 
4551 /**
4552  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4553  *
4554  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4555  * parent of @p dev.
4556  */
4557 int
4558 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4559 {
4560 	if (dev->parent == NULL)
4561 		return (EINVAL);
4562 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4563 }
4564 
4565 /**
4566  * @brief Wrapper function for BUS_BIND_INTR().
4567  *
4568  * This function simply calls the BUS_BIND_INTR() method of the
4569  * parent of @p dev.
4570  */
4571 int
4572 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4573 {
4574 	if (dev->parent == NULL)
4575 		return (EINVAL);
4576 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4577 }
4578 
4579 /**
4580  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4581  *
4582  * This function first formats the requested description into a
4583  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4584  * the parent of @p dev.
4585  */
4586 int
4587 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4588     const char *fmt, ...)
4589 {
4590 	va_list ap;
4591 	char descr[MAXCOMLEN + 1];
4592 
4593 	if (dev->parent == NULL)
4594 		return (EINVAL);
4595 	va_start(ap, fmt);
4596 	vsnprintf(descr, sizeof(descr), fmt, ap);
4597 	va_end(ap);
4598 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4599 }
4600 
4601 /**
4602  * @brief Wrapper function for BUS_SET_RESOURCE().
4603  *
4604  * This function simply calls the BUS_SET_RESOURCE() method of the
4605  * parent of @p dev.
4606  */
4607 int
4608 bus_set_resource(device_t dev, int type, int rid,
4609     rman_res_t start, rman_res_t count)
4610 {
4611 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4612 	    start, count));
4613 }
4614 
4615 /**
4616  * @brief Wrapper function for BUS_GET_RESOURCE().
4617  *
4618  * This function simply calls the BUS_GET_RESOURCE() method of the
4619  * parent of @p dev.
4620  */
4621 int
4622 bus_get_resource(device_t dev, int type, int rid,
4623     rman_res_t *startp, rman_res_t *countp)
4624 {
4625 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4626 	    startp, countp));
4627 }
4628 
4629 /**
4630  * @brief Wrapper function for BUS_GET_RESOURCE().
4631  *
4632  * This function simply calls the BUS_GET_RESOURCE() method of the
4633  * parent of @p dev and returns the start value.
4634  */
4635 rman_res_t
4636 bus_get_resource_start(device_t dev, int type, int rid)
4637 {
4638 	rman_res_t start;
4639 	rman_res_t count;
4640 	int error;
4641 
4642 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4643 	    &start, &count);
4644 	if (error)
4645 		return (0);
4646 	return (start);
4647 }
4648 
4649 /**
4650  * @brief Wrapper function for BUS_GET_RESOURCE().
4651  *
4652  * This function simply calls the BUS_GET_RESOURCE() method of the
4653  * parent of @p dev and returns the count value.
4654  */
4655 rman_res_t
4656 bus_get_resource_count(device_t dev, int type, int rid)
4657 {
4658 	rman_res_t start;
4659 	rman_res_t count;
4660 	int error;
4661 
4662 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4663 	    &start, &count);
4664 	if (error)
4665 		return (0);
4666 	return (count);
4667 }
4668 
4669 /**
4670  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4671  *
4672  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4673  * parent of @p dev.
4674  */
4675 void
4676 bus_delete_resource(device_t dev, int type, int rid)
4677 {
4678 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4679 }
4680 
4681 /**
4682  * @brief Wrapper function for BUS_CHILD_PRESENT().
4683  *
4684  * This function simply calls the BUS_CHILD_PRESENT() method of the
4685  * parent of @p dev.
4686  */
4687 int
4688 bus_child_present(device_t child)
4689 {
4690 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4691 }
4692 
4693 /**
4694  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4695  *
4696  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4697  * parent of @p dev.
4698  */
4699 int
4700 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4701 {
4702 	device_t parent;
4703 
4704 	parent = device_get_parent(child);
4705 	if (parent == NULL) {
4706 		*buf = '\0';
4707 		return (0);
4708 	}
4709 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4710 }
4711 
4712 /**
4713  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4714  *
4715  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4716  * parent of @p dev.
4717  */
4718 int
4719 bus_child_location_str(device_t child, char *buf, size_t buflen)
4720 {
4721 	device_t parent;
4722 
4723 	parent = device_get_parent(child);
4724 	if (parent == NULL) {
4725 		*buf = '\0';
4726 		return (0);
4727 	}
4728 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4729 }
4730 
4731 /**
4732  * @brief Wrapper function for BUS_GET_CPUS().
4733  *
4734  * This function simply calls the BUS_GET_CPUS() method of the
4735  * parent of @p dev.
4736  */
4737 int
4738 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4739 {
4740 	device_t parent;
4741 
4742 	parent = device_get_parent(dev);
4743 	if (parent == NULL)
4744 		return (EINVAL);
4745 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4746 }
4747 
4748 /**
4749  * @brief Wrapper function for BUS_GET_DMA_TAG().
4750  *
4751  * This function simply calls the BUS_GET_DMA_TAG() method of the
4752  * parent of @p dev.
4753  */
4754 bus_dma_tag_t
4755 bus_get_dma_tag(device_t dev)
4756 {
4757 	device_t parent;
4758 
4759 	parent = device_get_parent(dev);
4760 	if (parent == NULL)
4761 		return (NULL);
4762 	return (BUS_GET_DMA_TAG(parent, dev));
4763 }
4764 
4765 /**
4766  * @brief Wrapper function for BUS_GET_BUS_TAG().
4767  *
4768  * This function simply calls the BUS_GET_BUS_TAG() method of the
4769  * parent of @p dev.
4770  */
4771 bus_space_tag_t
4772 bus_get_bus_tag(device_t dev)
4773 {
4774 	device_t parent;
4775 
4776 	parent = device_get_parent(dev);
4777 	if (parent == NULL)
4778 		return ((bus_space_tag_t)0);
4779 	return (BUS_GET_BUS_TAG(parent, dev));
4780 }
4781 
4782 /**
4783  * @brief Wrapper function for BUS_GET_DOMAIN().
4784  *
4785  * This function simply calls the BUS_GET_DOMAIN() method of the
4786  * parent of @p dev.
4787  */
4788 int
4789 bus_get_domain(device_t dev, int *domain)
4790 {
4791 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4792 }
4793 
4794 /* Resume all devices and then notify userland that we're up again. */
4795 static int
4796 root_resume(device_t dev)
4797 {
4798 	int error;
4799 
4800 	error = bus_generic_resume(dev);
4801 	if (error == 0)
4802 		devctl_notify("kern", "power", "resume", NULL);
4803 	return (error);
4804 }
4805 
4806 static int
4807 root_print_child(device_t dev, device_t child)
4808 {
4809 	int	retval = 0;
4810 
4811 	retval += bus_print_child_header(dev, child);
4812 	retval += printf("\n");
4813 
4814 	return (retval);
4815 }
4816 
4817 static int
4818 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4819     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4820 {
4821 	/*
4822 	 * If an interrupt mapping gets to here something bad has happened.
4823 	 */
4824 	panic("root_setup_intr");
4825 }
4826 
4827 /*
4828  * If we get here, assume that the device is permanent and really is
4829  * present in the system.  Removable bus drivers are expected to intercept
4830  * this call long before it gets here.  We return -1 so that drivers that
4831  * really care can check vs -1 or some ERRNO returned higher in the food
4832  * chain.
4833  */
4834 static int
4835 root_child_present(device_t dev, device_t child)
4836 {
4837 	return (-1);
4838 }
4839 
4840 static int
4841 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4842     cpuset_t *cpuset)
4843 {
4844 
4845 	switch (op) {
4846 	case INTR_CPUS:
4847 		/* Default to returning the set of all CPUs. */
4848 		if (setsize != sizeof(cpuset_t))
4849 			return (EINVAL);
4850 		*cpuset = all_cpus;
4851 		return (0);
4852 	default:
4853 		return (EINVAL);
4854 	}
4855 }
4856 
4857 static kobj_method_t root_methods[] = {
4858 	/* Device interface */
4859 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4860 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4861 	KOBJMETHOD(device_resume,	root_resume),
4862 
4863 	/* Bus interface */
4864 	KOBJMETHOD(bus_print_child,	root_print_child),
4865 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4866 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4867 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4868 	KOBJMETHOD(bus_child_present,	root_child_present),
4869 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4870 
4871 	KOBJMETHOD_END
4872 };
4873 
4874 static driver_t root_driver = {
4875 	"root",
4876 	root_methods,
4877 	1,			/* no softc */
4878 };
4879 
4880 device_t	root_bus;
4881 devclass_t	root_devclass;
4882 
4883 static int
4884 root_bus_module_handler(module_t mod, int what, void* arg)
4885 {
4886 	switch (what) {
4887 	case MOD_LOAD:
4888 		TAILQ_INIT(&bus_data_devices);
4889 		kobj_class_compile((kobj_class_t) &root_driver);
4890 		root_bus = make_device(NULL, "root", 0);
4891 		root_bus->desc = "System root bus";
4892 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4893 		root_bus->driver = &root_driver;
4894 		root_bus->state = DS_ATTACHED;
4895 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4896 		devinit();
4897 		return (0);
4898 
4899 	case MOD_SHUTDOWN:
4900 		device_shutdown(root_bus);
4901 		return (0);
4902 	default:
4903 		return (EOPNOTSUPP);
4904 	}
4905 
4906 	return (0);
4907 }
4908 
4909 static moduledata_t root_bus_mod = {
4910 	"rootbus",
4911 	root_bus_module_handler,
4912 	NULL
4913 };
4914 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4915 
4916 /**
4917  * @brief Automatically configure devices
4918  *
4919  * This function begins the autoconfiguration process by calling
4920  * device_probe_and_attach() for each child of the @c root0 device.
4921  */
4922 void
4923 root_bus_configure(void)
4924 {
4925 
4926 	PDEBUG(("."));
4927 
4928 	/* Eventually this will be split up, but this is sufficient for now. */
4929 	bus_set_pass(BUS_PASS_DEFAULT);
4930 }
4931 
4932 /**
4933  * @brief Module handler for registering device drivers
4934  *
4935  * This module handler is used to automatically register device
4936  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4937  * devclass_add_driver() for the driver described by the
4938  * driver_module_data structure pointed to by @p arg
4939  */
4940 int
4941 driver_module_handler(module_t mod, int what, void *arg)
4942 {
4943 	struct driver_module_data *dmd;
4944 	devclass_t bus_devclass;
4945 	kobj_class_t driver;
4946 	int error, pass;
4947 
4948 	dmd = (struct driver_module_data *)arg;
4949 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4950 	error = 0;
4951 
4952 	switch (what) {
4953 	case MOD_LOAD:
4954 		if (dmd->dmd_chainevh)
4955 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4956 
4957 		pass = dmd->dmd_pass;
4958 		driver = dmd->dmd_driver;
4959 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4960 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4961 		error = devclass_add_driver(bus_devclass, driver, pass,
4962 		    dmd->dmd_devclass);
4963 		break;
4964 
4965 	case MOD_UNLOAD:
4966 		PDEBUG(("Unloading module: driver %s from bus %s",
4967 		    DRIVERNAME(dmd->dmd_driver),
4968 		    dmd->dmd_busname));
4969 		error = devclass_delete_driver(bus_devclass,
4970 		    dmd->dmd_driver);
4971 
4972 		if (!error && dmd->dmd_chainevh)
4973 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4974 		break;
4975 	case MOD_QUIESCE:
4976 		PDEBUG(("Quiesce module: driver %s from bus %s",
4977 		    DRIVERNAME(dmd->dmd_driver),
4978 		    dmd->dmd_busname));
4979 		error = devclass_quiesce_driver(bus_devclass,
4980 		    dmd->dmd_driver);
4981 
4982 		if (!error && dmd->dmd_chainevh)
4983 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4984 		break;
4985 	default:
4986 		error = EOPNOTSUPP;
4987 		break;
4988 	}
4989 
4990 	return (error);
4991 }
4992 
4993 /**
4994  * @brief Enumerate all hinted devices for this bus.
4995  *
4996  * Walks through the hints for this bus and calls the bus_hinted_child
4997  * routine for each one it fines.  It searches first for the specific
4998  * bus that's being probed for hinted children (eg isa0), and then for
4999  * generic children (eg isa).
5000  *
5001  * @param	dev	bus device to enumerate
5002  */
5003 void
5004 bus_enumerate_hinted_children(device_t bus)
5005 {
5006 	int i;
5007 	const char *dname, *busname;
5008 	int dunit;
5009 
5010 	/*
5011 	 * enumerate all devices on the specific bus
5012 	 */
5013 	busname = device_get_nameunit(bus);
5014 	i = 0;
5015 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5016 		BUS_HINTED_CHILD(bus, dname, dunit);
5017 
5018 	/*
5019 	 * and all the generic ones.
5020 	 */
5021 	busname = device_get_name(bus);
5022 	i = 0;
5023 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5024 		BUS_HINTED_CHILD(bus, dname, dunit);
5025 }
5026 
5027 #ifdef BUS_DEBUG
5028 
5029 /* the _short versions avoid iteration by not calling anything that prints
5030  * more than oneliners. I love oneliners.
5031  */
5032 
5033 static void
5034 print_device_short(device_t dev, int indent)
5035 {
5036 	if (!dev)
5037 		return;
5038 
5039 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5040 	    dev->unit, dev->desc,
5041 	    (dev->parent? "":"no "),
5042 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5043 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5044 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5045 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5046 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5047 	    (dev->flags&DF_REBID? "rebiddable,":""),
5048 	    (dev->ivars? "":"no "),
5049 	    (dev->softc? "":"no "),
5050 	    dev->busy));
5051 }
5052 
5053 static void
5054 print_device(device_t dev, int indent)
5055 {
5056 	if (!dev)
5057 		return;
5058 
5059 	print_device_short(dev, indent);
5060 
5061 	indentprintf(("Parent:\n"));
5062 	print_device_short(dev->parent, indent+1);
5063 	indentprintf(("Driver:\n"));
5064 	print_driver_short(dev->driver, indent+1);
5065 	indentprintf(("Devclass:\n"));
5066 	print_devclass_short(dev->devclass, indent+1);
5067 }
5068 
5069 void
5070 print_device_tree_short(device_t dev, int indent)
5071 /* print the device and all its children (indented) */
5072 {
5073 	device_t child;
5074 
5075 	if (!dev)
5076 		return;
5077 
5078 	print_device_short(dev, indent);
5079 
5080 	TAILQ_FOREACH(child, &dev->children, link) {
5081 		print_device_tree_short(child, indent+1);
5082 	}
5083 }
5084 
5085 void
5086 print_device_tree(device_t dev, int indent)
5087 /* print the device and all its children (indented) */
5088 {
5089 	device_t child;
5090 
5091 	if (!dev)
5092 		return;
5093 
5094 	print_device(dev, indent);
5095 
5096 	TAILQ_FOREACH(child, &dev->children, link) {
5097 		print_device_tree(child, indent+1);
5098 	}
5099 }
5100 
5101 static void
5102 print_driver_short(driver_t *driver, int indent)
5103 {
5104 	if (!driver)
5105 		return;
5106 
5107 	indentprintf(("driver %s: softc size = %zd\n",
5108 	    driver->name, driver->size));
5109 }
5110 
5111 static void
5112 print_driver(driver_t *driver, int indent)
5113 {
5114 	if (!driver)
5115 		return;
5116 
5117 	print_driver_short(driver, indent);
5118 }
5119 
5120 static void
5121 print_driver_list(driver_list_t drivers, int indent)
5122 {
5123 	driverlink_t driver;
5124 
5125 	TAILQ_FOREACH(driver, &drivers, link) {
5126 		print_driver(driver->driver, indent);
5127 	}
5128 }
5129 
5130 static void
5131 print_devclass_short(devclass_t dc, int indent)
5132 {
5133 	if ( !dc )
5134 		return;
5135 
5136 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5137 }
5138 
5139 static void
5140 print_devclass(devclass_t dc, int indent)
5141 {
5142 	int i;
5143 
5144 	if ( !dc )
5145 		return;
5146 
5147 	print_devclass_short(dc, indent);
5148 	indentprintf(("Drivers:\n"));
5149 	print_driver_list(dc->drivers, indent+1);
5150 
5151 	indentprintf(("Devices:\n"));
5152 	for (i = 0; i < dc->maxunit; i++)
5153 		if (dc->devices[i])
5154 			print_device(dc->devices[i], indent+1);
5155 }
5156 
5157 void
5158 print_devclass_list_short(void)
5159 {
5160 	devclass_t dc;
5161 
5162 	printf("Short listing of devclasses, drivers & devices:\n");
5163 	TAILQ_FOREACH(dc, &devclasses, link) {
5164 		print_devclass_short(dc, 0);
5165 	}
5166 }
5167 
5168 void
5169 print_devclass_list(void)
5170 {
5171 	devclass_t dc;
5172 
5173 	printf("Full listing of devclasses, drivers & devices:\n");
5174 	TAILQ_FOREACH(dc, &devclasses, link) {
5175 		print_devclass(dc, 0);
5176 	}
5177 }
5178 
5179 #endif
5180 
5181 /*
5182  * User-space access to the device tree.
5183  *
5184  * We implement a small set of nodes:
5185  *
5186  * hw.bus			Single integer read method to obtain the
5187  *				current generation count.
5188  * hw.bus.devices		Reads the entire device tree in flat space.
5189  * hw.bus.rman			Resource manager interface
5190  *
5191  * We might like to add the ability to scan devclasses and/or drivers to
5192  * determine what else is currently loaded/available.
5193  */
5194 
5195 static int
5196 sysctl_bus(SYSCTL_HANDLER_ARGS)
5197 {
5198 	struct u_businfo	ubus;
5199 
5200 	ubus.ub_version = BUS_USER_VERSION;
5201 	ubus.ub_generation = bus_data_generation;
5202 
5203 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5204 }
5205 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5206     "bus-related data");
5207 
5208 static int
5209 sysctl_devices(SYSCTL_HANDLER_ARGS)
5210 {
5211 	int			*name = (int *)arg1;
5212 	u_int			namelen = arg2;
5213 	int			index;
5214 	device_t		dev;
5215 	struct u_device		udev;	/* XXX this is a bit big */
5216 	int			error;
5217 
5218 	if (namelen != 2)
5219 		return (EINVAL);
5220 
5221 	if (bus_data_generation_check(name[0]))
5222 		return (EINVAL);
5223 
5224 	index = name[1];
5225 
5226 	/*
5227 	 * Scan the list of devices, looking for the requested index.
5228 	 */
5229 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5230 		if (index-- == 0)
5231 			break;
5232 	}
5233 	if (dev == NULL)
5234 		return (ENOENT);
5235 
5236 	/*
5237 	 * Populate the return array.
5238 	 */
5239 	bzero(&udev, sizeof(udev));
5240 	udev.dv_handle = (uintptr_t)dev;
5241 	udev.dv_parent = (uintptr_t)dev->parent;
5242 	if (dev->nameunit != NULL)
5243 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5244 	if (dev->desc != NULL)
5245 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5246 	if (dev->driver != NULL && dev->driver->name != NULL)
5247 		strlcpy(udev.dv_drivername, dev->driver->name,
5248 		    sizeof(udev.dv_drivername));
5249 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5250 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5251 	udev.dv_devflags = dev->devflags;
5252 	udev.dv_flags = dev->flags;
5253 	udev.dv_state = dev->state;
5254 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5255 	return (error);
5256 }
5257 
5258 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5259     "system device tree");
5260 
5261 int
5262 bus_data_generation_check(int generation)
5263 {
5264 	if (generation != bus_data_generation)
5265 		return (1);
5266 
5267 	/* XXX generate optimised lists here? */
5268 	return (0);
5269 }
5270 
5271 void
5272 bus_data_generation_update(void)
5273 {
5274 	bus_data_generation++;
5275 }
5276 
5277 int
5278 bus_free_resource(device_t dev, int type, struct resource *r)
5279 {
5280 	if (r == NULL)
5281 		return (0);
5282 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5283 }
5284 
5285 device_t
5286 device_lookup_by_name(const char *name)
5287 {
5288 	device_t dev;
5289 
5290 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5291 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5292 			return (dev);
5293 	}
5294 	return (NULL);
5295 }
5296 
5297 /*
5298  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5299  * implicit semantics on open, so it could not be reused for this.
5300  * Another option would be to call this /dev/bus?
5301  */
5302 static int
5303 find_device(struct devreq *req, device_t *devp)
5304 {
5305 	device_t dev;
5306 
5307 	/*
5308 	 * First, ensure that the name is nul terminated.
5309 	 */
5310 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5311 		return (EINVAL);
5312 
5313 	/*
5314 	 * Second, try to find an attached device whose name matches
5315 	 * 'name'.
5316 	 */
5317 	dev = device_lookup_by_name(req->dr_name);
5318 	if (dev != NULL) {
5319 		*devp = dev;
5320 		return (0);
5321 	}
5322 
5323 	/* Finally, give device enumerators a chance. */
5324 	dev = NULL;
5325 	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5326 	if (dev == NULL)
5327 		return (ENOENT);
5328 	*devp = dev;
5329 	return (0);
5330 }
5331 
5332 static bool
5333 driver_exists(device_t bus, const char *driver)
5334 {
5335 	devclass_t dc;
5336 
5337 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5338 		if (devclass_find_driver_internal(dc, driver) != NULL)
5339 			return (true);
5340 	}
5341 	return (false);
5342 }
5343 
5344 static int
5345 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5346     struct thread *td)
5347 {
5348 	struct devreq *req;
5349 	device_t dev;
5350 	int error, old;
5351 
5352 	/* Locate the device to control. */
5353 	mtx_lock(&Giant);
5354 	req = (struct devreq *)data;
5355 	switch (cmd) {
5356 	case DEV_ATTACH:
5357 	case DEV_DETACH:
5358 	case DEV_ENABLE:
5359 	case DEV_DISABLE:
5360 	case DEV_SUSPEND:
5361 	case DEV_RESUME:
5362 	case DEV_SET_DRIVER:
5363 	case DEV_CLEAR_DRIVER:
5364 	case DEV_RESCAN:
5365 	case DEV_DELETE:
5366 		error = priv_check(td, PRIV_DRIVER);
5367 		if (error == 0)
5368 			error = find_device(req, &dev);
5369 		break;
5370 	default:
5371 		error = ENOTTY;
5372 		break;
5373 	}
5374 	if (error) {
5375 		mtx_unlock(&Giant);
5376 		return (error);
5377 	}
5378 
5379 	/* Perform the requested operation. */
5380 	switch (cmd) {
5381 	case DEV_ATTACH:
5382 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5383 			error = EBUSY;
5384 		else if (!device_is_enabled(dev))
5385 			error = ENXIO;
5386 		else
5387 			error = device_probe_and_attach(dev);
5388 		break;
5389 	case DEV_DETACH:
5390 		if (!device_is_attached(dev)) {
5391 			error = ENXIO;
5392 			break;
5393 		}
5394 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5395 			error = device_quiesce(dev);
5396 			if (error)
5397 				break;
5398 		}
5399 		error = device_detach(dev);
5400 		break;
5401 	case DEV_ENABLE:
5402 		if (device_is_enabled(dev)) {
5403 			error = EBUSY;
5404 			break;
5405 		}
5406 
5407 		/*
5408 		 * If the device has been probed but not attached (e.g.
5409 		 * when it has been disabled by a loader hint), just
5410 		 * attach the device rather than doing a full probe.
5411 		 */
5412 		device_enable(dev);
5413 		if (device_is_alive(dev)) {
5414 			/*
5415 			 * If the device was disabled via a hint, clear
5416 			 * the hint.
5417 			 */
5418 			if (resource_disabled(dev->driver->name, dev->unit))
5419 				resource_unset_value(dev->driver->name,
5420 				    dev->unit, "disabled");
5421 			error = device_attach(dev);
5422 		} else
5423 			error = device_probe_and_attach(dev);
5424 		break;
5425 	case DEV_DISABLE:
5426 		if (!device_is_enabled(dev)) {
5427 			error = ENXIO;
5428 			break;
5429 		}
5430 
5431 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5432 			error = device_quiesce(dev);
5433 			if (error)
5434 				break;
5435 		}
5436 
5437 		/*
5438 		 * Force DF_FIXEDCLASS on around detach to preserve
5439 		 * the existing name.
5440 		 */
5441 		old = dev->flags;
5442 		dev->flags |= DF_FIXEDCLASS;
5443 		error = device_detach(dev);
5444 		if (!(old & DF_FIXEDCLASS))
5445 			dev->flags &= ~DF_FIXEDCLASS;
5446 		if (error == 0)
5447 			device_disable(dev);
5448 		break;
5449 	case DEV_SUSPEND:
5450 		if (device_is_suspended(dev)) {
5451 			error = EBUSY;
5452 			break;
5453 		}
5454 		if (device_get_parent(dev) == NULL) {
5455 			error = EINVAL;
5456 			break;
5457 		}
5458 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5459 		break;
5460 	case DEV_RESUME:
5461 		if (!device_is_suspended(dev)) {
5462 			error = EINVAL;
5463 			break;
5464 		}
5465 		if (device_get_parent(dev) == NULL) {
5466 			error = EINVAL;
5467 			break;
5468 		}
5469 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5470 		break;
5471 	case DEV_SET_DRIVER: {
5472 		devclass_t dc;
5473 		char driver[128];
5474 
5475 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5476 		if (error)
5477 			break;
5478 		if (driver[0] == '\0') {
5479 			error = EINVAL;
5480 			break;
5481 		}
5482 		if (dev->devclass != NULL &&
5483 		    strcmp(driver, dev->devclass->name) == 0)
5484 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5485 			break;
5486 
5487 		/*
5488 		 * Scan drivers for this device's bus looking for at
5489 		 * least one matching driver.
5490 		 */
5491 		if (dev->parent == NULL) {
5492 			error = EINVAL;
5493 			break;
5494 		}
5495 		if (!driver_exists(dev->parent, driver)) {
5496 			error = ENOENT;
5497 			break;
5498 		}
5499 		dc = devclass_create(driver);
5500 		if (dc == NULL) {
5501 			error = ENOMEM;
5502 			break;
5503 		}
5504 
5505 		/* Detach device if necessary. */
5506 		if (device_is_attached(dev)) {
5507 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5508 				error = device_detach(dev);
5509 			else
5510 				error = EBUSY;
5511 			if (error)
5512 				break;
5513 		}
5514 
5515 		/* Clear any previously-fixed device class and unit. */
5516 		if (dev->flags & DF_FIXEDCLASS)
5517 			devclass_delete_device(dev->devclass, dev);
5518 		dev->flags |= DF_WILDCARD;
5519 		dev->unit = -1;
5520 
5521 		/* Force the new device class. */
5522 		error = devclass_add_device(dc, dev);
5523 		if (error)
5524 			break;
5525 		dev->flags |= DF_FIXEDCLASS;
5526 		error = device_probe_and_attach(dev);
5527 		break;
5528 	}
5529 	case DEV_CLEAR_DRIVER:
5530 		if (!(dev->flags & DF_FIXEDCLASS)) {
5531 			error = 0;
5532 			break;
5533 		}
5534 		if (device_is_attached(dev)) {
5535 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5536 				error = device_detach(dev);
5537 			else
5538 				error = EBUSY;
5539 			if (error)
5540 				break;
5541 		}
5542 
5543 		dev->flags &= ~DF_FIXEDCLASS;
5544 		dev->flags |= DF_WILDCARD;
5545 		devclass_delete_device(dev->devclass, dev);
5546 		error = device_probe_and_attach(dev);
5547 		break;
5548 	case DEV_RESCAN:
5549 		if (!device_is_attached(dev)) {
5550 			error = ENXIO;
5551 			break;
5552 		}
5553 		error = BUS_RESCAN(dev);
5554 		break;
5555 	case DEV_DELETE: {
5556 		device_t parent;
5557 
5558 		parent = device_get_parent(dev);
5559 		if (parent == NULL) {
5560 			error = EINVAL;
5561 			break;
5562 		}
5563 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5564 			if (bus_child_present(dev) != 0) {
5565 				error = EBUSY;
5566 				break;
5567 			}
5568 		}
5569 
5570 		error = device_delete_child(parent, dev);
5571 		break;
5572 	}
5573 	}
5574 	mtx_unlock(&Giant);
5575 	return (error);
5576 }
5577 
5578 static struct cdevsw devctl2_cdevsw = {
5579 	.d_version =	D_VERSION,
5580 	.d_ioctl =	devctl2_ioctl,
5581 	.d_name =	"devctl2",
5582 };
5583 
5584 static void
5585 devctl2_init(void)
5586 {
5587 
5588 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5589 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5590 }
5591 
5592 #ifdef DDB
5593 DB_SHOW_COMMAND(device, db_show_device)
5594 {
5595 	device_t dev;
5596 
5597 	if (!have_addr)
5598 		return;
5599 
5600 	dev = (device_t)addr;
5601 
5602 	db_printf("name:    %s\n", device_get_nameunit(dev));
5603 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5604 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5605 	db_printf("  addr:    %p\n", dev);
5606 	db_printf("  parent:  %p\n", dev->parent);
5607 	db_printf("  softc:   %p\n", dev->softc);
5608 	db_printf("  ivars:   %p\n", dev->ivars);
5609 }
5610 
5611 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5612 {
5613 	device_t dev;
5614 
5615 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5616 		db_show_device((db_expr_t)dev, true, count, modif);
5617 	}
5618 }
5619 #endif
5620