1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 u_int32_t devflags; /**< api level flags for device_get_flags() */ 124 u_short flags; /**< internal device flags */ 125 #define DF_ENABLED 1 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 127 #define DF_WILDCARD 4 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 8 /* description was malloced */ 129 #define DF_QUIET 16 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 132 #define DF_REBID 128 /* Can rebid after attach */ 133 u_char order; /**< order from device_add_child_ordered() */ 134 u_char pad; 135 void *ivars; /**< instance variables */ 136 void *softc; /**< current driver's variables */ 137 138 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 139 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 140 }; 141 142 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 143 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 144 145 #ifdef BUS_DEBUG 146 147 static int bus_debug = 1; 148 TUNABLE_INT("bus.debug", &bus_debug); 149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 150 "Debug bus code"); 151 152 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 153 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 154 #define DRIVERNAME(d) ((d)? d->name : "no driver") 155 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 156 157 /** 158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 159 * prevent syslog from deleting initial spaces 160 */ 161 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 162 163 static void print_device_short(device_t dev, int indent); 164 static void print_device(device_t dev, int indent); 165 void print_device_tree_short(device_t dev, int indent); 166 void print_device_tree(device_t dev, int indent); 167 static void print_driver_short(driver_t *driver, int indent); 168 static void print_driver(driver_t *driver, int indent); 169 static void print_driver_list(driver_list_t drivers, int indent); 170 static void print_devclass_short(devclass_t dc, int indent); 171 static void print_devclass(devclass_t dc, int indent); 172 void print_devclass_list_short(void); 173 void print_devclass_list(void); 174 175 #else 176 /* Make the compiler ignore the function calls */ 177 #define PDEBUG(a) /* nop */ 178 #define DEVICENAME(d) /* nop */ 179 #define DRIVERNAME(d) /* nop */ 180 #define DEVCLANAME(d) /* nop */ 181 182 #define print_device_short(d,i) /* nop */ 183 #define print_device(d,i) /* nop */ 184 #define print_device_tree_short(d,i) /* nop */ 185 #define print_device_tree(d,i) /* nop */ 186 #define print_driver_short(d,i) /* nop */ 187 #define print_driver(d,i) /* nop */ 188 #define print_driver_list(d,i) /* nop */ 189 #define print_devclass_short(d,i) /* nop */ 190 #define print_devclass(d,i) /* nop */ 191 #define print_devclass_list_short() /* nop */ 192 #define print_devclass_list() /* nop */ 193 #endif 194 195 /* 196 * dev sysctl tree 197 */ 198 199 enum { 200 DEVCLASS_SYSCTL_PARENT, 201 }; 202 203 static int 204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 205 { 206 devclass_t dc = (devclass_t)arg1; 207 const char *value; 208 209 switch (arg2) { 210 case DEVCLASS_SYSCTL_PARENT: 211 value = dc->parent ? dc->parent->name : ""; 212 break; 213 default: 214 return (EINVAL); 215 } 216 return (SYSCTL_OUT(req, value, strlen(value))); 217 } 218 219 static void 220 devclass_sysctl_init(devclass_t dc) 221 { 222 223 if (dc->sysctl_tree != NULL) 224 return; 225 sysctl_ctx_init(&dc->sysctl_ctx); 226 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 227 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 228 CTLFLAG_RD, NULL, ""); 229 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 230 OID_AUTO, "%parent", CTLFLAG_RD, 231 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 232 "parent class"); 233 } 234 235 enum { 236 DEVICE_SYSCTL_DESC, 237 DEVICE_SYSCTL_DRIVER, 238 DEVICE_SYSCTL_LOCATION, 239 DEVICE_SYSCTL_PNPINFO, 240 DEVICE_SYSCTL_PARENT, 241 }; 242 243 static int 244 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 245 { 246 device_t dev = (device_t)arg1; 247 const char *value; 248 char *buf; 249 int error; 250 251 buf = NULL; 252 switch (arg2) { 253 case DEVICE_SYSCTL_DESC: 254 value = dev->desc ? dev->desc : ""; 255 break; 256 case DEVICE_SYSCTL_DRIVER: 257 value = dev->driver ? dev->driver->name : ""; 258 break; 259 case DEVICE_SYSCTL_LOCATION: 260 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 261 bus_child_location_str(dev, buf, 1024); 262 break; 263 case DEVICE_SYSCTL_PNPINFO: 264 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 265 bus_child_pnpinfo_str(dev, buf, 1024); 266 break; 267 case DEVICE_SYSCTL_PARENT: 268 value = dev->parent ? dev->parent->nameunit : ""; 269 break; 270 default: 271 return (EINVAL); 272 } 273 error = SYSCTL_OUT(req, value, strlen(value)); 274 if (buf != NULL) 275 free(buf, M_BUS); 276 return (error); 277 } 278 279 static void 280 device_sysctl_init(device_t dev) 281 { 282 devclass_t dc = dev->devclass; 283 284 if (dev->sysctl_tree != NULL) 285 return; 286 devclass_sysctl_init(dc); 287 sysctl_ctx_init(&dev->sysctl_ctx); 288 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 289 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 290 dev->nameunit + strlen(dc->name), 291 CTLFLAG_RD, NULL, ""); 292 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 293 OID_AUTO, "%desc", CTLFLAG_RD, 294 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 295 "device description"); 296 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 297 OID_AUTO, "%driver", CTLFLAG_RD, 298 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 299 "device driver name"); 300 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 301 OID_AUTO, "%location", CTLFLAG_RD, 302 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 303 "device location relative to parent"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 306 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 307 "device identification"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%parent", CTLFLAG_RD, 310 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 311 "parent device"); 312 } 313 314 static void 315 device_sysctl_update(device_t dev) 316 { 317 devclass_t dc = dev->devclass; 318 319 if (dev->sysctl_tree == NULL) 320 return; 321 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 322 } 323 324 static void 325 device_sysctl_fini(device_t dev) 326 { 327 if (dev->sysctl_tree == NULL) 328 return; 329 sysctl_ctx_free(&dev->sysctl_ctx); 330 dev->sysctl_tree = NULL; 331 } 332 333 /* 334 * /dev/devctl implementation 335 */ 336 337 /* 338 * This design allows only one reader for /dev/devctl. This is not desirable 339 * in the long run, but will get a lot of hair out of this implementation. 340 * Maybe we should make this device a clonable device. 341 * 342 * Also note: we specifically do not attach a device to the device_t tree 343 * to avoid potential chicken and egg problems. One could argue that all 344 * of this belongs to the root node. One could also further argue that the 345 * sysctl interface that we have not might more properly be an ioctl 346 * interface, but at this stage of the game, I'm not inclined to rock that 347 * boat. 348 * 349 * I'm also not sure that the SIGIO support is done correctly or not, as 350 * I copied it from a driver that had SIGIO support that likely hasn't been 351 * tested since 3.4 or 2.2.8! 352 */ 353 354 /* Deprecated way to adjust queue length */ 355 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 356 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 357 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 358 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 359 360 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 361 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 362 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 363 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 364 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 365 0, sysctl_devctl_queue, "I", "devctl queue length"); 366 367 static d_open_t devopen; 368 static d_close_t devclose; 369 static d_read_t devread; 370 static d_ioctl_t devioctl; 371 static d_poll_t devpoll; 372 373 static struct cdevsw dev_cdevsw = { 374 .d_version = D_VERSION, 375 .d_flags = D_NEEDGIANT, 376 .d_open = devopen, 377 .d_close = devclose, 378 .d_read = devread, 379 .d_ioctl = devioctl, 380 .d_poll = devpoll, 381 .d_name = "devctl", 382 }; 383 384 struct dev_event_info 385 { 386 char *dei_data; 387 TAILQ_ENTRY(dev_event_info) dei_link; 388 }; 389 390 TAILQ_HEAD(devq, dev_event_info); 391 392 static struct dev_softc 393 { 394 int inuse; 395 int nonblock; 396 int queued; 397 struct mtx mtx; 398 struct cv cv; 399 struct selinfo sel; 400 struct devq devq; 401 struct proc *async_proc; 402 } devsoftc; 403 404 static struct cdev *devctl_dev; 405 406 static void 407 devinit(void) 408 { 409 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 410 "devctl"); 411 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 412 cv_init(&devsoftc.cv, "dev cv"); 413 TAILQ_INIT(&devsoftc.devq); 414 } 415 416 static int 417 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 418 { 419 if (devsoftc.inuse) 420 return (EBUSY); 421 /* move to init */ 422 devsoftc.inuse = 1; 423 devsoftc.nonblock = 0; 424 devsoftc.async_proc = NULL; 425 return (0); 426 } 427 428 static int 429 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 430 { 431 devsoftc.inuse = 0; 432 mtx_lock(&devsoftc.mtx); 433 cv_broadcast(&devsoftc.cv); 434 mtx_unlock(&devsoftc.mtx); 435 devsoftc.async_proc = NULL; 436 return (0); 437 } 438 439 /* 440 * The read channel for this device is used to report changes to 441 * userland in realtime. We are required to free the data as well as 442 * the n1 object because we allocate them separately. Also note that 443 * we return one record at a time. If you try to read this device a 444 * character at a time, you will lose the rest of the data. Listening 445 * programs are expected to cope. 446 */ 447 static int 448 devread(struct cdev *dev, struct uio *uio, int ioflag) 449 { 450 struct dev_event_info *n1; 451 int rv; 452 453 mtx_lock(&devsoftc.mtx); 454 while (TAILQ_EMPTY(&devsoftc.devq)) { 455 if (devsoftc.nonblock) { 456 mtx_unlock(&devsoftc.mtx); 457 return (EAGAIN); 458 } 459 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 460 if (rv) { 461 /* 462 * Need to translate ERESTART to EINTR here? -- jake 463 */ 464 mtx_unlock(&devsoftc.mtx); 465 return (rv); 466 } 467 } 468 n1 = TAILQ_FIRST(&devsoftc.devq); 469 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 470 devsoftc.queued--; 471 mtx_unlock(&devsoftc.mtx); 472 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 473 free(n1->dei_data, M_BUS); 474 free(n1, M_BUS); 475 return (rv); 476 } 477 478 static int 479 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 480 { 481 switch (cmd) { 482 483 case FIONBIO: 484 if (*(int*)data) 485 devsoftc.nonblock = 1; 486 else 487 devsoftc.nonblock = 0; 488 return (0); 489 case FIOASYNC: 490 if (*(int*)data) 491 devsoftc.async_proc = td->td_proc; 492 else 493 devsoftc.async_proc = NULL; 494 return (0); 495 496 /* (un)Support for other fcntl() calls. */ 497 case FIOCLEX: 498 case FIONCLEX: 499 case FIONREAD: 500 case FIOSETOWN: 501 case FIOGETOWN: 502 default: 503 break; 504 } 505 return (ENOTTY); 506 } 507 508 static int 509 devpoll(struct cdev *dev, int events, struct thread *td) 510 { 511 int revents = 0; 512 513 mtx_lock(&devsoftc.mtx); 514 if (events & (POLLIN | POLLRDNORM)) { 515 if (!TAILQ_EMPTY(&devsoftc.devq)) 516 revents = events & (POLLIN | POLLRDNORM); 517 else 518 selrecord(td, &devsoftc.sel); 519 } 520 mtx_unlock(&devsoftc.mtx); 521 522 return (revents); 523 } 524 525 /** 526 * @brief Return whether the userland process is running 527 */ 528 boolean_t 529 devctl_process_running(void) 530 { 531 return (devsoftc.inuse == 1); 532 } 533 534 /** 535 * @brief Queue data to be read from the devctl device 536 * 537 * Generic interface to queue data to the devctl device. It is 538 * assumed that @p data is properly formatted. It is further assumed 539 * that @p data is allocated using the M_BUS malloc type. 540 */ 541 void 542 devctl_queue_data(char *data) 543 { 544 struct dev_event_info *n1 = NULL, *n2 = NULL; 545 struct proc *p; 546 547 if (strlen(data) == 0) 548 goto out; 549 if (devctl_queue_length == 0) 550 goto out; 551 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 552 if (n1 == NULL) 553 goto out; 554 n1->dei_data = data; 555 mtx_lock(&devsoftc.mtx); 556 if (devctl_queue_length == 0) { 557 mtx_unlock(&devsoftc.mtx); 558 free(n1->dei_data, M_BUS); 559 free(n1, M_BUS); 560 return; 561 } 562 /* Leave at least one spot in the queue... */ 563 while (devsoftc.queued > devctl_queue_length - 1) { 564 n2 = TAILQ_FIRST(&devsoftc.devq); 565 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 566 free(n2->dei_data, M_BUS); 567 free(n2, M_BUS); 568 devsoftc.queued--; 569 } 570 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 571 devsoftc.queued++; 572 cv_broadcast(&devsoftc.cv); 573 mtx_unlock(&devsoftc.mtx); 574 selwakeup(&devsoftc.sel); 575 p = devsoftc.async_proc; 576 if (p != NULL) { 577 PROC_LOCK(p); 578 psignal(p, SIGIO); 579 PROC_UNLOCK(p); 580 } 581 return; 582 out: 583 /* 584 * We have to free data on all error paths since the caller 585 * assumes it will be free'd when this item is dequeued. 586 */ 587 free(data, M_BUS); 588 return; 589 } 590 591 /** 592 * @brief Send a 'notification' to userland, using standard ways 593 */ 594 void 595 devctl_notify(const char *system, const char *subsystem, const char *type, 596 const char *data) 597 { 598 int len = 0; 599 char *msg; 600 601 if (system == NULL) 602 return; /* BOGUS! Must specify system. */ 603 if (subsystem == NULL) 604 return; /* BOGUS! Must specify subsystem. */ 605 if (type == NULL) 606 return; /* BOGUS! Must specify type. */ 607 len += strlen(" system=") + strlen(system); 608 len += strlen(" subsystem=") + strlen(subsystem); 609 len += strlen(" type=") + strlen(type); 610 /* add in the data message plus newline. */ 611 if (data != NULL) 612 len += strlen(data); 613 len += 3; /* '!', '\n', and NUL */ 614 msg = malloc(len, M_BUS, M_NOWAIT); 615 if (msg == NULL) 616 return; /* Drop it on the floor */ 617 if (data != NULL) 618 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 619 system, subsystem, type, data); 620 else 621 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 622 system, subsystem, type); 623 devctl_queue_data(msg); 624 } 625 626 /* 627 * Common routine that tries to make sending messages as easy as possible. 628 * We allocate memory for the data, copy strings into that, but do not 629 * free it unless there's an error. The dequeue part of the driver should 630 * free the data. We don't send data when the device is disabled. We do 631 * send data, even when we have no listeners, because we wish to avoid 632 * races relating to startup and restart of listening applications. 633 * 634 * devaddq is designed to string together the type of event, with the 635 * object of that event, plus the plug and play info and location info 636 * for that event. This is likely most useful for devices, but less 637 * useful for other consumers of this interface. Those should use 638 * the devctl_queue_data() interface instead. 639 */ 640 static void 641 devaddq(const char *type, const char *what, device_t dev) 642 { 643 char *data = NULL; 644 char *loc = NULL; 645 char *pnp = NULL; 646 const char *parstr; 647 648 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 649 return; 650 data = malloc(1024, M_BUS, M_NOWAIT); 651 if (data == NULL) 652 goto bad; 653 654 /* get the bus specific location of this device */ 655 loc = malloc(1024, M_BUS, M_NOWAIT); 656 if (loc == NULL) 657 goto bad; 658 *loc = '\0'; 659 bus_child_location_str(dev, loc, 1024); 660 661 /* Get the bus specific pnp info of this device */ 662 pnp = malloc(1024, M_BUS, M_NOWAIT); 663 if (pnp == NULL) 664 goto bad; 665 *pnp = '\0'; 666 bus_child_pnpinfo_str(dev, pnp, 1024); 667 668 /* Get the parent of this device, or / if high enough in the tree. */ 669 if (device_get_parent(dev) == NULL) 670 parstr = "."; /* Or '/' ? */ 671 else 672 parstr = device_get_nameunit(device_get_parent(dev)); 673 /* String it all together. */ 674 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 675 parstr); 676 free(loc, M_BUS); 677 free(pnp, M_BUS); 678 devctl_queue_data(data); 679 return; 680 bad: 681 free(pnp, M_BUS); 682 free(loc, M_BUS); 683 free(data, M_BUS); 684 return; 685 } 686 687 /* 688 * A device was added to the tree. We are called just after it successfully 689 * attaches (that is, probe and attach success for this device). No call 690 * is made if a device is merely parented into the tree. See devnomatch 691 * if probe fails. If attach fails, no notification is sent (but maybe 692 * we should have a different message for this). 693 */ 694 static void 695 devadded(device_t dev) 696 { 697 char *pnp = NULL; 698 char *tmp = NULL; 699 700 pnp = malloc(1024, M_BUS, M_NOWAIT); 701 if (pnp == NULL) 702 goto fail; 703 tmp = malloc(1024, M_BUS, M_NOWAIT); 704 if (tmp == NULL) 705 goto fail; 706 *pnp = '\0'; 707 bus_child_pnpinfo_str(dev, pnp, 1024); 708 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 709 devaddq("+", tmp, dev); 710 fail: 711 if (pnp != NULL) 712 free(pnp, M_BUS); 713 if (tmp != NULL) 714 free(tmp, M_BUS); 715 return; 716 } 717 718 /* 719 * A device was removed from the tree. We are called just before this 720 * happens. 721 */ 722 static void 723 devremoved(device_t dev) 724 { 725 char *pnp = NULL; 726 char *tmp = NULL; 727 728 pnp = malloc(1024, M_BUS, M_NOWAIT); 729 if (pnp == NULL) 730 goto fail; 731 tmp = malloc(1024, M_BUS, M_NOWAIT); 732 if (tmp == NULL) 733 goto fail; 734 *pnp = '\0'; 735 bus_child_pnpinfo_str(dev, pnp, 1024); 736 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 737 devaddq("-", tmp, dev); 738 fail: 739 if (pnp != NULL) 740 free(pnp, M_BUS); 741 if (tmp != NULL) 742 free(tmp, M_BUS); 743 return; 744 } 745 746 /* 747 * Called when there's no match for this device. This is only called 748 * the first time that no match happens, so we don't keep getting this 749 * message. Should that prove to be undesirable, we can change it. 750 * This is called when all drivers that can attach to a given bus 751 * decline to accept this device. Other errors may not be detected. 752 */ 753 static void 754 devnomatch(device_t dev) 755 { 756 devaddq("?", "", dev); 757 } 758 759 static int 760 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 761 { 762 struct dev_event_info *n1; 763 int dis, error; 764 765 dis = devctl_queue_length == 0; 766 error = sysctl_handle_int(oidp, &dis, 0, req); 767 if (error || !req->newptr) 768 return (error); 769 mtx_lock(&devsoftc.mtx); 770 if (dis) { 771 while (!TAILQ_EMPTY(&devsoftc.devq)) { 772 n1 = TAILQ_FIRST(&devsoftc.devq); 773 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 774 free(n1->dei_data, M_BUS); 775 free(n1, M_BUS); 776 } 777 devsoftc.queued = 0; 778 devctl_queue_length = 0; 779 } else { 780 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 781 } 782 mtx_unlock(&devsoftc.mtx); 783 return (0); 784 } 785 786 static int 787 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 788 { 789 struct dev_event_info *n1; 790 int q, error; 791 792 q = devctl_queue_length; 793 error = sysctl_handle_int(oidp, &q, 0, req); 794 if (error || !req->newptr) 795 return (error); 796 if (q < 0) 797 return (EINVAL); 798 mtx_lock(&devsoftc.mtx); 799 devctl_queue_length = q; 800 while (devsoftc.queued > devctl_queue_length) { 801 n1 = TAILQ_FIRST(&devsoftc.devq); 802 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 803 free(n1->dei_data, M_BUS); 804 free(n1, M_BUS); 805 devsoftc.queued--; 806 } 807 mtx_unlock(&devsoftc.mtx); 808 return (0); 809 } 810 811 /* End of /dev/devctl code */ 812 813 static TAILQ_HEAD(,device) bus_data_devices; 814 static int bus_data_generation = 1; 815 816 static kobj_method_t null_methods[] = { 817 KOBJMETHOD_END 818 }; 819 820 DEFINE_CLASS(null, null_methods, 0); 821 822 /* 823 * Bus pass implementation 824 */ 825 826 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 827 int bus_current_pass = BUS_PASS_ROOT; 828 829 /** 830 * @internal 831 * @brief Register the pass level of a new driver attachment 832 * 833 * Register a new driver attachment's pass level. If no driver 834 * attachment with the same pass level has been added, then @p new 835 * will be added to the global passes list. 836 * 837 * @param new the new driver attachment 838 */ 839 static void 840 driver_register_pass(struct driverlink *new) 841 { 842 struct driverlink *dl; 843 844 /* We only consider pass numbers during boot. */ 845 if (bus_current_pass == BUS_PASS_DEFAULT) 846 return; 847 848 /* 849 * Walk the passes list. If we already know about this pass 850 * then there is nothing to do. If we don't, then insert this 851 * driver link into the list. 852 */ 853 TAILQ_FOREACH(dl, &passes, passlink) { 854 if (dl->pass < new->pass) 855 continue; 856 if (dl->pass == new->pass) 857 return; 858 TAILQ_INSERT_BEFORE(dl, new, passlink); 859 return; 860 } 861 TAILQ_INSERT_TAIL(&passes, new, passlink); 862 } 863 864 /** 865 * @brief Raise the current bus pass 866 * 867 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 868 * method on the root bus to kick off a new device tree scan for each 869 * new pass level that has at least one driver. 870 */ 871 void 872 bus_set_pass(int pass) 873 { 874 struct driverlink *dl; 875 876 if (bus_current_pass > pass) 877 panic("Attempt to lower bus pass level"); 878 879 TAILQ_FOREACH(dl, &passes, passlink) { 880 /* Skip pass values below the current pass level. */ 881 if (dl->pass <= bus_current_pass) 882 continue; 883 884 /* 885 * Bail once we hit a driver with a pass level that is 886 * too high. 887 */ 888 if (dl->pass > pass) 889 break; 890 891 /* 892 * Raise the pass level to the next level and rescan 893 * the tree. 894 */ 895 bus_current_pass = dl->pass; 896 BUS_NEW_PASS(root_bus); 897 } 898 899 /* 900 * If there isn't a driver registered for the requested pass, 901 * then bus_current_pass might still be less than 'pass'. Set 902 * it to 'pass' in that case. 903 */ 904 if (bus_current_pass < pass) 905 bus_current_pass = pass; 906 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 907 } 908 909 /* 910 * Devclass implementation 911 */ 912 913 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 914 915 /** 916 * @internal 917 * @brief Find or create a device class 918 * 919 * If a device class with the name @p classname exists, return it, 920 * otherwise if @p create is non-zero create and return a new device 921 * class. 922 * 923 * If @p parentname is non-NULL, the parent of the devclass is set to 924 * the devclass of that name. 925 * 926 * @param classname the devclass name to find or create 927 * @param parentname the parent devclass name or @c NULL 928 * @param create non-zero to create a devclass 929 */ 930 static devclass_t 931 devclass_find_internal(const char *classname, const char *parentname, 932 int create) 933 { 934 devclass_t dc; 935 936 PDEBUG(("looking for %s", classname)); 937 if (!classname) 938 return (NULL); 939 940 TAILQ_FOREACH(dc, &devclasses, link) { 941 if (!strcmp(dc->name, classname)) 942 break; 943 } 944 945 if (create && !dc) { 946 PDEBUG(("creating %s", classname)); 947 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 948 M_BUS, M_NOWAIT | M_ZERO); 949 if (!dc) 950 return (NULL); 951 dc->parent = NULL; 952 dc->name = (char*) (dc + 1); 953 strcpy(dc->name, classname); 954 TAILQ_INIT(&dc->drivers); 955 TAILQ_INSERT_TAIL(&devclasses, dc, link); 956 957 bus_data_generation_update(); 958 } 959 960 /* 961 * If a parent class is specified, then set that as our parent so 962 * that this devclass will support drivers for the parent class as 963 * well. If the parent class has the same name don't do this though 964 * as it creates a cycle that can trigger an infinite loop in 965 * device_probe_child() if a device exists for which there is no 966 * suitable driver. 967 */ 968 if (parentname && dc && !dc->parent && 969 strcmp(classname, parentname) != 0) { 970 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 971 dc->parent->flags |= DC_HAS_CHILDREN; 972 } 973 974 return (dc); 975 } 976 977 /** 978 * @brief Create a device class 979 * 980 * If a device class with the name @p classname exists, return it, 981 * otherwise create and return a new device class. 982 * 983 * @param classname the devclass name to find or create 984 */ 985 devclass_t 986 devclass_create(const char *classname) 987 { 988 return (devclass_find_internal(classname, NULL, TRUE)); 989 } 990 991 /** 992 * @brief Find a device class 993 * 994 * If a device class with the name @p classname exists, return it, 995 * otherwise return @c NULL. 996 * 997 * @param classname the devclass name to find 998 */ 999 devclass_t 1000 devclass_find(const char *classname) 1001 { 1002 return (devclass_find_internal(classname, NULL, FALSE)); 1003 } 1004 1005 /** 1006 * @brief Register that a device driver has been added to a devclass 1007 * 1008 * Register that a device driver has been added to a devclass. This 1009 * is called by devclass_add_driver to accomplish the recursive 1010 * notification of all the children classes of dc, as well as dc. 1011 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1012 * the devclass. We do a full search here of the devclass list at 1013 * each iteration level to save storing children-lists in the devclass 1014 * structure. If we ever move beyond a few dozen devices doing this, 1015 * we may need to reevaluate... 1016 * 1017 * @param dc the devclass to edit 1018 * @param driver the driver that was just added 1019 */ 1020 static void 1021 devclass_driver_added(devclass_t dc, driver_t *driver) 1022 { 1023 devclass_t parent; 1024 int i; 1025 1026 /* 1027 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1028 */ 1029 for (i = 0; i < dc->maxunit; i++) 1030 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1031 BUS_DRIVER_ADDED(dc->devices[i], driver); 1032 1033 /* 1034 * Walk through the children classes. Since we only keep a 1035 * single parent pointer around, we walk the entire list of 1036 * devclasses looking for children. We set the 1037 * DC_HAS_CHILDREN flag when a child devclass is created on 1038 * the parent, so we only walk the list for those devclasses 1039 * that have children. 1040 */ 1041 if (!(dc->flags & DC_HAS_CHILDREN)) 1042 return; 1043 parent = dc; 1044 TAILQ_FOREACH(dc, &devclasses, link) { 1045 if (dc->parent == parent) 1046 devclass_driver_added(dc, driver); 1047 } 1048 } 1049 1050 /** 1051 * @brief Add a device driver to a device class 1052 * 1053 * Add a device driver to a devclass. This is normally called 1054 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1055 * all devices in the devclass will be called to allow them to attempt 1056 * to re-probe any unmatched children. 1057 * 1058 * @param dc the devclass to edit 1059 * @param driver the driver to register 1060 */ 1061 static int 1062 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1063 { 1064 driverlink_t dl; 1065 const char *parentname; 1066 1067 PDEBUG(("%s", DRIVERNAME(driver))); 1068 1069 /* Don't allow invalid pass values. */ 1070 if (pass <= BUS_PASS_ROOT) 1071 return (EINVAL); 1072 1073 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1074 if (!dl) 1075 return (ENOMEM); 1076 1077 /* 1078 * Compile the driver's methods. Also increase the reference count 1079 * so that the class doesn't get freed when the last instance 1080 * goes. This means we can safely use static methods and avoids a 1081 * double-free in devclass_delete_driver. 1082 */ 1083 kobj_class_compile((kobj_class_t) driver); 1084 1085 /* 1086 * If the driver has any base classes, make the 1087 * devclass inherit from the devclass of the driver's 1088 * first base class. This will allow the system to 1089 * search for drivers in both devclasses for children 1090 * of a device using this driver. 1091 */ 1092 if (driver->baseclasses) 1093 parentname = driver->baseclasses[0]->name; 1094 else 1095 parentname = NULL; 1096 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1097 1098 dl->driver = driver; 1099 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1100 driver->refs++; /* XXX: kobj_mtx */ 1101 dl->pass = pass; 1102 driver_register_pass(dl); 1103 1104 devclass_driver_added(dc, driver); 1105 bus_data_generation_update(); 1106 return (0); 1107 } 1108 1109 /** 1110 * @brief Delete a device driver from a device class 1111 * 1112 * Delete a device driver from a devclass. This is normally called 1113 * automatically by DRIVER_MODULE(). 1114 * 1115 * If the driver is currently attached to any devices, 1116 * devclass_delete_driver() will first attempt to detach from each 1117 * device. If one of the detach calls fails, the driver will not be 1118 * deleted. 1119 * 1120 * @param dc the devclass to edit 1121 * @param driver the driver to unregister 1122 */ 1123 static int 1124 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1125 { 1126 devclass_t dc = devclass_find(driver->name); 1127 driverlink_t dl; 1128 device_t dev; 1129 int i; 1130 int error; 1131 1132 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1133 1134 if (!dc) 1135 return (0); 1136 1137 /* 1138 * Find the link structure in the bus' list of drivers. 1139 */ 1140 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1141 if (dl->driver == driver) 1142 break; 1143 } 1144 1145 if (!dl) { 1146 PDEBUG(("%s not found in %s list", driver->name, 1147 busclass->name)); 1148 return (ENOENT); 1149 } 1150 1151 /* 1152 * Disassociate from any devices. We iterate through all the 1153 * devices in the devclass of the driver and detach any which are 1154 * using the driver and which have a parent in the devclass which 1155 * we are deleting from. 1156 * 1157 * Note that since a driver can be in multiple devclasses, we 1158 * should not detach devices which are not children of devices in 1159 * the affected devclass. 1160 */ 1161 for (i = 0; i < dc->maxunit; i++) { 1162 if (dc->devices[i]) { 1163 dev = dc->devices[i]; 1164 if (dev->driver == driver && dev->parent && 1165 dev->parent->devclass == busclass) { 1166 if ((error = device_detach(dev)) != 0) 1167 return (error); 1168 device_set_driver(dev, NULL); 1169 } 1170 } 1171 } 1172 1173 TAILQ_REMOVE(&busclass->drivers, dl, link); 1174 free(dl, M_BUS); 1175 1176 /* XXX: kobj_mtx */ 1177 driver->refs--; 1178 if (driver->refs == 0) 1179 kobj_class_free((kobj_class_t) driver); 1180 1181 bus_data_generation_update(); 1182 return (0); 1183 } 1184 1185 /** 1186 * @brief Quiesces a set of device drivers from a device class 1187 * 1188 * Quiesce a device driver from a devclass. This is normally called 1189 * automatically by DRIVER_MODULE(). 1190 * 1191 * If the driver is currently attached to any devices, 1192 * devclass_quiesece_driver() will first attempt to quiesce each 1193 * device. 1194 * 1195 * @param dc the devclass to edit 1196 * @param driver the driver to unregister 1197 */ 1198 static int 1199 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1200 { 1201 devclass_t dc = devclass_find(driver->name); 1202 driverlink_t dl; 1203 device_t dev; 1204 int i; 1205 int error; 1206 1207 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1208 1209 if (!dc) 1210 return (0); 1211 1212 /* 1213 * Find the link structure in the bus' list of drivers. 1214 */ 1215 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1216 if (dl->driver == driver) 1217 break; 1218 } 1219 1220 if (!dl) { 1221 PDEBUG(("%s not found in %s list", driver->name, 1222 busclass->name)); 1223 return (ENOENT); 1224 } 1225 1226 /* 1227 * Quiesce all devices. We iterate through all the devices in 1228 * the devclass of the driver and quiesce any which are using 1229 * the driver and which have a parent in the devclass which we 1230 * are quiescing. 1231 * 1232 * Note that since a driver can be in multiple devclasses, we 1233 * should not quiesce devices which are not children of 1234 * devices in the affected devclass. 1235 */ 1236 for (i = 0; i < dc->maxunit; i++) { 1237 if (dc->devices[i]) { 1238 dev = dc->devices[i]; 1239 if (dev->driver == driver && dev->parent && 1240 dev->parent->devclass == busclass) { 1241 if ((error = device_quiesce(dev)) != 0) 1242 return (error); 1243 } 1244 } 1245 } 1246 1247 return (0); 1248 } 1249 1250 /** 1251 * @internal 1252 */ 1253 static driverlink_t 1254 devclass_find_driver_internal(devclass_t dc, const char *classname) 1255 { 1256 driverlink_t dl; 1257 1258 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1259 1260 TAILQ_FOREACH(dl, &dc->drivers, link) { 1261 if (!strcmp(dl->driver->name, classname)) 1262 return (dl); 1263 } 1264 1265 PDEBUG(("not found")); 1266 return (NULL); 1267 } 1268 1269 /** 1270 * @brief Return the name of the devclass 1271 */ 1272 const char * 1273 devclass_get_name(devclass_t dc) 1274 { 1275 return (dc->name); 1276 } 1277 1278 /** 1279 * @brief Find a device given a unit number 1280 * 1281 * @param dc the devclass to search 1282 * @param unit the unit number to search for 1283 * 1284 * @returns the device with the given unit number or @c 1285 * NULL if there is no such device 1286 */ 1287 device_t 1288 devclass_get_device(devclass_t dc, int unit) 1289 { 1290 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1291 return (NULL); 1292 return (dc->devices[unit]); 1293 } 1294 1295 /** 1296 * @brief Find the softc field of a device given a unit number 1297 * 1298 * @param dc the devclass to search 1299 * @param unit the unit number to search for 1300 * 1301 * @returns the softc field of the device with the given 1302 * unit number or @c NULL if there is no such 1303 * device 1304 */ 1305 void * 1306 devclass_get_softc(devclass_t dc, int unit) 1307 { 1308 device_t dev; 1309 1310 dev = devclass_get_device(dc, unit); 1311 if (!dev) 1312 return (NULL); 1313 1314 return (device_get_softc(dev)); 1315 } 1316 1317 /** 1318 * @brief Get a list of devices in the devclass 1319 * 1320 * An array containing a list of all the devices in the given devclass 1321 * is allocated and returned in @p *devlistp. The number of devices 1322 * in the array is returned in @p *devcountp. The caller should free 1323 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1324 * 1325 * @param dc the devclass to examine 1326 * @param devlistp points at location for array pointer return 1327 * value 1328 * @param devcountp points at location for array size return value 1329 * 1330 * @retval 0 success 1331 * @retval ENOMEM the array allocation failed 1332 */ 1333 int 1334 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1335 { 1336 int count, i; 1337 device_t *list; 1338 1339 count = devclass_get_count(dc); 1340 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1341 if (!list) 1342 return (ENOMEM); 1343 1344 count = 0; 1345 for (i = 0; i < dc->maxunit; i++) { 1346 if (dc->devices[i]) { 1347 list[count] = dc->devices[i]; 1348 count++; 1349 } 1350 } 1351 1352 *devlistp = list; 1353 *devcountp = count; 1354 1355 return (0); 1356 } 1357 1358 /** 1359 * @brief Get a list of drivers in the devclass 1360 * 1361 * An array containing a list of pointers to all the drivers in the 1362 * given devclass is allocated and returned in @p *listp. The number 1363 * of drivers in the array is returned in @p *countp. The caller should 1364 * free the array using @c free(p, M_TEMP). 1365 * 1366 * @param dc the devclass to examine 1367 * @param listp gives location for array pointer return value 1368 * @param countp gives location for number of array elements 1369 * return value 1370 * 1371 * @retval 0 success 1372 * @retval ENOMEM the array allocation failed 1373 */ 1374 int 1375 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1376 { 1377 driverlink_t dl; 1378 driver_t **list; 1379 int count; 1380 1381 count = 0; 1382 TAILQ_FOREACH(dl, &dc->drivers, link) 1383 count++; 1384 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1385 if (list == NULL) 1386 return (ENOMEM); 1387 1388 count = 0; 1389 TAILQ_FOREACH(dl, &dc->drivers, link) { 1390 list[count] = dl->driver; 1391 count++; 1392 } 1393 *listp = list; 1394 *countp = count; 1395 1396 return (0); 1397 } 1398 1399 /** 1400 * @brief Get the number of devices in a devclass 1401 * 1402 * @param dc the devclass to examine 1403 */ 1404 int 1405 devclass_get_count(devclass_t dc) 1406 { 1407 int count, i; 1408 1409 count = 0; 1410 for (i = 0; i < dc->maxunit; i++) 1411 if (dc->devices[i]) 1412 count++; 1413 return (count); 1414 } 1415 1416 /** 1417 * @brief Get the maximum unit number used in a devclass 1418 * 1419 * Note that this is one greater than the highest currently-allocated 1420 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1421 * that not even the devclass has been allocated yet. 1422 * 1423 * @param dc the devclass to examine 1424 */ 1425 int 1426 devclass_get_maxunit(devclass_t dc) 1427 { 1428 if (dc == NULL) 1429 return (-1); 1430 return (dc->maxunit); 1431 } 1432 1433 /** 1434 * @brief Find a free unit number in a devclass 1435 * 1436 * This function searches for the first unused unit number greater 1437 * that or equal to @p unit. 1438 * 1439 * @param dc the devclass to examine 1440 * @param unit the first unit number to check 1441 */ 1442 int 1443 devclass_find_free_unit(devclass_t dc, int unit) 1444 { 1445 if (dc == NULL) 1446 return (unit); 1447 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1448 unit++; 1449 return (unit); 1450 } 1451 1452 /** 1453 * @brief Set the parent of a devclass 1454 * 1455 * The parent class is normally initialised automatically by 1456 * DRIVER_MODULE(). 1457 * 1458 * @param dc the devclass to edit 1459 * @param pdc the new parent devclass 1460 */ 1461 void 1462 devclass_set_parent(devclass_t dc, devclass_t pdc) 1463 { 1464 dc->parent = pdc; 1465 } 1466 1467 /** 1468 * @brief Get the parent of a devclass 1469 * 1470 * @param dc the devclass to examine 1471 */ 1472 devclass_t 1473 devclass_get_parent(devclass_t dc) 1474 { 1475 return (dc->parent); 1476 } 1477 1478 struct sysctl_ctx_list * 1479 devclass_get_sysctl_ctx(devclass_t dc) 1480 { 1481 return (&dc->sysctl_ctx); 1482 } 1483 1484 struct sysctl_oid * 1485 devclass_get_sysctl_tree(devclass_t dc) 1486 { 1487 return (dc->sysctl_tree); 1488 } 1489 1490 /** 1491 * @internal 1492 * @brief Allocate a unit number 1493 * 1494 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1495 * will do). The allocated unit number is returned in @p *unitp. 1496 1497 * @param dc the devclass to allocate from 1498 * @param unitp points at the location for the allocated unit 1499 * number 1500 * 1501 * @retval 0 success 1502 * @retval EEXIST the requested unit number is already allocated 1503 * @retval ENOMEM memory allocation failure 1504 */ 1505 static int 1506 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1507 { 1508 const char *s; 1509 int unit = *unitp; 1510 1511 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1512 1513 /* Ask the parent bus if it wants to wire this device. */ 1514 if (unit == -1) 1515 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1516 &unit); 1517 1518 /* If we were given a wired unit number, check for existing device */ 1519 /* XXX imp XXX */ 1520 if (unit != -1) { 1521 if (unit >= 0 && unit < dc->maxunit && 1522 dc->devices[unit] != NULL) { 1523 if (bootverbose) 1524 printf("%s: %s%d already exists; skipping it\n", 1525 dc->name, dc->name, *unitp); 1526 return (EEXIST); 1527 } 1528 } else { 1529 /* Unwired device, find the next available slot for it */ 1530 unit = 0; 1531 for (unit = 0;; unit++) { 1532 /* If there is an "at" hint for a unit then skip it. */ 1533 if (resource_string_value(dc->name, unit, "at", &s) == 1534 0) 1535 continue; 1536 1537 /* If this device slot is already in use, skip it. */ 1538 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1539 continue; 1540 1541 break; 1542 } 1543 } 1544 1545 /* 1546 * We've selected a unit beyond the length of the table, so let's 1547 * extend the table to make room for all units up to and including 1548 * this one. 1549 */ 1550 if (unit >= dc->maxunit) { 1551 device_t *newlist, *oldlist; 1552 int newsize; 1553 1554 oldlist = dc->devices; 1555 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1556 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1557 if (!newlist) 1558 return (ENOMEM); 1559 if (oldlist != NULL) 1560 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1561 bzero(newlist + dc->maxunit, 1562 sizeof(device_t) * (newsize - dc->maxunit)); 1563 dc->devices = newlist; 1564 dc->maxunit = newsize; 1565 if (oldlist != NULL) 1566 free(oldlist, M_BUS); 1567 } 1568 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1569 1570 *unitp = unit; 1571 return (0); 1572 } 1573 1574 /** 1575 * @internal 1576 * @brief Add a device to a devclass 1577 * 1578 * A unit number is allocated for the device (using the device's 1579 * preferred unit number if any) and the device is registered in the 1580 * devclass. This allows the device to be looked up by its unit 1581 * number, e.g. by decoding a dev_t minor number. 1582 * 1583 * @param dc the devclass to add to 1584 * @param dev the device to add 1585 * 1586 * @retval 0 success 1587 * @retval EEXIST the requested unit number is already allocated 1588 * @retval ENOMEM memory allocation failure 1589 */ 1590 static int 1591 devclass_add_device(devclass_t dc, device_t dev) 1592 { 1593 int buflen, error; 1594 1595 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1596 1597 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1598 if (buflen < 0) 1599 return (ENOMEM); 1600 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1601 if (!dev->nameunit) 1602 return (ENOMEM); 1603 1604 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1605 free(dev->nameunit, M_BUS); 1606 dev->nameunit = NULL; 1607 return (error); 1608 } 1609 dc->devices[dev->unit] = dev; 1610 dev->devclass = dc; 1611 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1612 1613 return (0); 1614 } 1615 1616 /** 1617 * @internal 1618 * @brief Delete a device from a devclass 1619 * 1620 * The device is removed from the devclass's device list and its unit 1621 * number is freed. 1622 1623 * @param dc the devclass to delete from 1624 * @param dev the device to delete 1625 * 1626 * @retval 0 success 1627 */ 1628 static int 1629 devclass_delete_device(devclass_t dc, device_t dev) 1630 { 1631 if (!dc || !dev) 1632 return (0); 1633 1634 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1635 1636 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1637 panic("devclass_delete_device: inconsistent device class"); 1638 dc->devices[dev->unit] = NULL; 1639 if (dev->flags & DF_WILDCARD) 1640 dev->unit = -1; 1641 dev->devclass = NULL; 1642 free(dev->nameunit, M_BUS); 1643 dev->nameunit = NULL; 1644 1645 return (0); 1646 } 1647 1648 /** 1649 * @internal 1650 * @brief Make a new device and add it as a child of @p parent 1651 * 1652 * @param parent the parent of the new device 1653 * @param name the devclass name of the new device or @c NULL 1654 * to leave the devclass unspecified 1655 * @parem unit the unit number of the new device of @c -1 to 1656 * leave the unit number unspecified 1657 * 1658 * @returns the new device 1659 */ 1660 static device_t 1661 make_device(device_t parent, const char *name, int unit) 1662 { 1663 device_t dev; 1664 devclass_t dc; 1665 1666 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1667 1668 if (name) { 1669 dc = devclass_find_internal(name, NULL, TRUE); 1670 if (!dc) { 1671 printf("make_device: can't find device class %s\n", 1672 name); 1673 return (NULL); 1674 } 1675 } else { 1676 dc = NULL; 1677 } 1678 1679 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1680 if (!dev) 1681 return (NULL); 1682 1683 dev->parent = parent; 1684 TAILQ_INIT(&dev->children); 1685 kobj_init((kobj_t) dev, &null_class); 1686 dev->driver = NULL; 1687 dev->devclass = NULL; 1688 dev->unit = unit; 1689 dev->nameunit = NULL; 1690 dev->desc = NULL; 1691 dev->busy = 0; 1692 dev->devflags = 0; 1693 dev->flags = DF_ENABLED; 1694 dev->order = 0; 1695 if (unit == -1) 1696 dev->flags |= DF_WILDCARD; 1697 if (name) { 1698 dev->flags |= DF_FIXEDCLASS; 1699 if (devclass_add_device(dc, dev)) { 1700 kobj_delete((kobj_t) dev, M_BUS); 1701 return (NULL); 1702 } 1703 } 1704 dev->ivars = NULL; 1705 dev->softc = NULL; 1706 1707 dev->state = DS_NOTPRESENT; 1708 1709 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1710 bus_data_generation_update(); 1711 1712 return (dev); 1713 } 1714 1715 /** 1716 * @internal 1717 * @brief Print a description of a device. 1718 */ 1719 static int 1720 device_print_child(device_t dev, device_t child) 1721 { 1722 int retval = 0; 1723 1724 if (device_is_alive(child)) 1725 retval += BUS_PRINT_CHILD(dev, child); 1726 else 1727 retval += device_printf(child, " not found\n"); 1728 1729 return (retval); 1730 } 1731 1732 /** 1733 * @brief Create a new device 1734 * 1735 * This creates a new device and adds it as a child of an existing 1736 * parent device. The new device will be added after the last existing 1737 * child with order zero. 1738 * 1739 * @param dev the device which will be the parent of the 1740 * new child device 1741 * @param name devclass name for new device or @c NULL if not 1742 * specified 1743 * @param unit unit number for new device or @c -1 if not 1744 * specified 1745 * 1746 * @returns the new device 1747 */ 1748 device_t 1749 device_add_child(device_t dev, const char *name, int unit) 1750 { 1751 return (device_add_child_ordered(dev, 0, name, unit)); 1752 } 1753 1754 /** 1755 * @brief Create a new device 1756 * 1757 * This creates a new device and adds it as a child of an existing 1758 * parent device. The new device will be added after the last existing 1759 * child with the same order. 1760 * 1761 * @param dev the device which will be the parent of the 1762 * new child device 1763 * @param order a value which is used to partially sort the 1764 * children of @p dev - devices created using 1765 * lower values of @p order appear first in @p 1766 * dev's list of children 1767 * @param name devclass name for new device or @c NULL if not 1768 * specified 1769 * @param unit unit number for new device or @c -1 if not 1770 * specified 1771 * 1772 * @returns the new device 1773 */ 1774 device_t 1775 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1776 { 1777 device_t child; 1778 device_t place; 1779 1780 PDEBUG(("%s at %s with order %d as unit %d", 1781 name, DEVICENAME(dev), order, unit)); 1782 1783 child = make_device(dev, name, unit); 1784 if (child == NULL) 1785 return (child); 1786 child->order = order; 1787 1788 TAILQ_FOREACH(place, &dev->children, link) { 1789 if (place->order > order) 1790 break; 1791 } 1792 1793 if (place) { 1794 /* 1795 * The device 'place' is the first device whose order is 1796 * greater than the new child. 1797 */ 1798 TAILQ_INSERT_BEFORE(place, child, link); 1799 } else { 1800 /* 1801 * The new child's order is greater or equal to the order of 1802 * any existing device. Add the child to the tail of the list. 1803 */ 1804 TAILQ_INSERT_TAIL(&dev->children, child, link); 1805 } 1806 1807 bus_data_generation_update(); 1808 return (child); 1809 } 1810 1811 /** 1812 * @brief Delete a device 1813 * 1814 * This function deletes a device along with all of its children. If 1815 * the device currently has a driver attached to it, the device is 1816 * detached first using device_detach(). 1817 * 1818 * @param dev the parent device 1819 * @param child the device to delete 1820 * 1821 * @retval 0 success 1822 * @retval non-zero a unit error code describing the error 1823 */ 1824 int 1825 device_delete_child(device_t dev, device_t child) 1826 { 1827 int error; 1828 device_t grandchild; 1829 1830 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1831 1832 /* remove children first */ 1833 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1834 error = device_delete_child(child, grandchild); 1835 if (error) 1836 return (error); 1837 } 1838 1839 if ((error = device_detach(child)) != 0) 1840 return (error); 1841 if (child->devclass) 1842 devclass_delete_device(child->devclass, child); 1843 TAILQ_REMOVE(&dev->children, child, link); 1844 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1845 kobj_delete((kobj_t) child, M_BUS); 1846 1847 bus_data_generation_update(); 1848 return (0); 1849 } 1850 1851 /** 1852 * @brief Find a device given a unit number 1853 * 1854 * This is similar to devclass_get_devices() but only searches for 1855 * devices which have @p dev as a parent. 1856 * 1857 * @param dev the parent device to search 1858 * @param unit the unit number to search for. If the unit is -1, 1859 * return the first child of @p dev which has name 1860 * @p classname (that is, the one with the lowest unit.) 1861 * 1862 * @returns the device with the given unit number or @c 1863 * NULL if there is no such device 1864 */ 1865 device_t 1866 device_find_child(device_t dev, const char *classname, int unit) 1867 { 1868 devclass_t dc; 1869 device_t child; 1870 1871 dc = devclass_find(classname); 1872 if (!dc) 1873 return (NULL); 1874 1875 if (unit != -1) { 1876 child = devclass_get_device(dc, unit); 1877 if (child && child->parent == dev) 1878 return (child); 1879 } else { 1880 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1881 child = devclass_get_device(dc, unit); 1882 if (child && child->parent == dev) 1883 return (child); 1884 } 1885 } 1886 return (NULL); 1887 } 1888 1889 /** 1890 * @internal 1891 */ 1892 static driverlink_t 1893 first_matching_driver(devclass_t dc, device_t dev) 1894 { 1895 if (dev->devclass) 1896 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1897 return (TAILQ_FIRST(&dc->drivers)); 1898 } 1899 1900 /** 1901 * @internal 1902 */ 1903 static driverlink_t 1904 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1905 { 1906 if (dev->devclass) { 1907 driverlink_t dl; 1908 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1909 if (!strcmp(dev->devclass->name, dl->driver->name)) 1910 return (dl); 1911 return (NULL); 1912 } 1913 return (TAILQ_NEXT(last, link)); 1914 } 1915 1916 /** 1917 * @internal 1918 */ 1919 int 1920 device_probe_child(device_t dev, device_t child) 1921 { 1922 devclass_t dc; 1923 driverlink_t best = NULL; 1924 driverlink_t dl; 1925 int result, pri = 0; 1926 int hasclass = (child->devclass != NULL); 1927 1928 GIANT_REQUIRED; 1929 1930 dc = dev->devclass; 1931 if (!dc) 1932 panic("device_probe_child: parent device has no devclass"); 1933 1934 /* 1935 * If the state is already probed, then return. However, don't 1936 * return if we can rebid this object. 1937 */ 1938 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1939 return (0); 1940 1941 for (; dc; dc = dc->parent) { 1942 for (dl = first_matching_driver(dc, child); 1943 dl; 1944 dl = next_matching_driver(dc, child, dl)) { 1945 1946 /* If this driver's pass is too high, then ignore it. */ 1947 if (dl->pass > bus_current_pass) 1948 continue; 1949 1950 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1951 device_set_driver(child, dl->driver); 1952 if (!hasclass) { 1953 if (device_set_devclass(child, dl->driver->name)) { 1954 printf("driver bug: Unable to set devclass (devname: %s)\n", 1955 (child ? device_get_name(child) : 1956 "no device")); 1957 device_set_driver(child, NULL); 1958 continue; 1959 } 1960 } 1961 1962 /* Fetch any flags for the device before probing. */ 1963 resource_int_value(dl->driver->name, child->unit, 1964 "flags", &child->devflags); 1965 1966 result = DEVICE_PROBE(child); 1967 1968 /* Reset flags and devclass before the next probe. */ 1969 child->devflags = 0; 1970 if (!hasclass) 1971 device_set_devclass(child, NULL); 1972 1973 /* 1974 * If the driver returns SUCCESS, there can be 1975 * no higher match for this device. 1976 */ 1977 if (result == 0) { 1978 best = dl; 1979 pri = 0; 1980 break; 1981 } 1982 1983 /* 1984 * The driver returned an error so it 1985 * certainly doesn't match. 1986 */ 1987 if (result > 0) { 1988 device_set_driver(child, NULL); 1989 continue; 1990 } 1991 1992 /* 1993 * A priority lower than SUCCESS, remember the 1994 * best matching driver. Initialise the value 1995 * of pri for the first match. 1996 */ 1997 if (best == NULL || result > pri) { 1998 /* 1999 * Probes that return BUS_PROBE_NOWILDCARD 2000 * or lower only match when they are set 2001 * in stone by the parent bus. 2002 */ 2003 if (result <= BUS_PROBE_NOWILDCARD && 2004 child->flags & DF_WILDCARD) 2005 continue; 2006 best = dl; 2007 pri = result; 2008 continue; 2009 } 2010 } 2011 /* 2012 * If we have an unambiguous match in this devclass, 2013 * don't look in the parent. 2014 */ 2015 if (best && pri == 0) 2016 break; 2017 } 2018 2019 /* 2020 * If we found a driver, change state and initialise the devclass. 2021 */ 2022 /* XXX What happens if we rebid and got no best? */ 2023 if (best) { 2024 /* 2025 * If this device was atached, and we were asked to 2026 * rescan, and it is a different driver, then we have 2027 * to detach the old driver and reattach this new one. 2028 * Note, we don't have to check for DF_REBID here 2029 * because if the state is > DS_ALIVE, we know it must 2030 * be. 2031 * 2032 * This assumes that all DF_REBID drivers can have 2033 * their probe routine called at any time and that 2034 * they are idempotent as well as completely benign in 2035 * normal operations. 2036 * 2037 * We also have to make sure that the detach 2038 * succeeded, otherwise we fail the operation (or 2039 * maybe it should just fail silently? I'm torn). 2040 */ 2041 if (child->state > DS_ALIVE && best->driver != child->driver) 2042 if ((result = device_detach(dev)) != 0) 2043 return (result); 2044 2045 /* Set the winning driver, devclass, and flags. */ 2046 if (!child->devclass) { 2047 result = device_set_devclass(child, best->driver->name); 2048 if (result != 0) 2049 return (result); 2050 } 2051 device_set_driver(child, best->driver); 2052 resource_int_value(best->driver->name, child->unit, 2053 "flags", &child->devflags); 2054 2055 if (pri < 0) { 2056 /* 2057 * A bit bogus. Call the probe method again to make 2058 * sure that we have the right description. 2059 */ 2060 DEVICE_PROBE(child); 2061 #if 0 2062 child->flags |= DF_REBID; 2063 #endif 2064 } else 2065 child->flags &= ~DF_REBID; 2066 child->state = DS_ALIVE; 2067 2068 bus_data_generation_update(); 2069 return (0); 2070 } 2071 2072 return (ENXIO); 2073 } 2074 2075 /** 2076 * @brief Return the parent of a device 2077 */ 2078 device_t 2079 device_get_parent(device_t dev) 2080 { 2081 return (dev->parent); 2082 } 2083 2084 /** 2085 * @brief Get a list of children of a device 2086 * 2087 * An array containing a list of all the children of the given device 2088 * is allocated and returned in @p *devlistp. The number of devices 2089 * in the array is returned in @p *devcountp. The caller should free 2090 * the array using @c free(p, M_TEMP). 2091 * 2092 * @param dev the device to examine 2093 * @param devlistp points at location for array pointer return 2094 * value 2095 * @param devcountp points at location for array size return value 2096 * 2097 * @retval 0 success 2098 * @retval ENOMEM the array allocation failed 2099 */ 2100 int 2101 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2102 { 2103 int count; 2104 device_t child; 2105 device_t *list; 2106 2107 count = 0; 2108 TAILQ_FOREACH(child, &dev->children, link) { 2109 count++; 2110 } 2111 2112 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2113 if (!list) 2114 return (ENOMEM); 2115 2116 count = 0; 2117 TAILQ_FOREACH(child, &dev->children, link) { 2118 list[count] = child; 2119 count++; 2120 } 2121 2122 *devlistp = list; 2123 *devcountp = count; 2124 2125 return (0); 2126 } 2127 2128 /** 2129 * @brief Return the current driver for the device or @c NULL if there 2130 * is no driver currently attached 2131 */ 2132 driver_t * 2133 device_get_driver(device_t dev) 2134 { 2135 return (dev->driver); 2136 } 2137 2138 /** 2139 * @brief Return the current devclass for the device or @c NULL if 2140 * there is none. 2141 */ 2142 devclass_t 2143 device_get_devclass(device_t dev) 2144 { 2145 return (dev->devclass); 2146 } 2147 2148 /** 2149 * @brief Return the name of the device's devclass or @c NULL if there 2150 * is none. 2151 */ 2152 const char * 2153 device_get_name(device_t dev) 2154 { 2155 if (dev != NULL && dev->devclass) 2156 return (devclass_get_name(dev->devclass)); 2157 return (NULL); 2158 } 2159 2160 /** 2161 * @brief Return a string containing the device's devclass name 2162 * followed by an ascii representation of the device's unit number 2163 * (e.g. @c "foo2"). 2164 */ 2165 const char * 2166 device_get_nameunit(device_t dev) 2167 { 2168 return (dev->nameunit); 2169 } 2170 2171 /** 2172 * @brief Return the device's unit number. 2173 */ 2174 int 2175 device_get_unit(device_t dev) 2176 { 2177 return (dev->unit); 2178 } 2179 2180 /** 2181 * @brief Return the device's description string 2182 */ 2183 const char * 2184 device_get_desc(device_t dev) 2185 { 2186 return (dev->desc); 2187 } 2188 2189 /** 2190 * @brief Return the device's flags 2191 */ 2192 u_int32_t 2193 device_get_flags(device_t dev) 2194 { 2195 return (dev->devflags); 2196 } 2197 2198 struct sysctl_ctx_list * 2199 device_get_sysctl_ctx(device_t dev) 2200 { 2201 return (&dev->sysctl_ctx); 2202 } 2203 2204 struct sysctl_oid * 2205 device_get_sysctl_tree(device_t dev) 2206 { 2207 return (dev->sysctl_tree); 2208 } 2209 2210 /** 2211 * @brief Print the name of the device followed by a colon and a space 2212 * 2213 * @returns the number of characters printed 2214 */ 2215 int 2216 device_print_prettyname(device_t dev) 2217 { 2218 const char *name = device_get_name(dev); 2219 2220 if (name == NULL) 2221 return (printf("unknown: ")); 2222 return (printf("%s%d: ", name, device_get_unit(dev))); 2223 } 2224 2225 /** 2226 * @brief Print the name of the device followed by a colon, a space 2227 * and the result of calling vprintf() with the value of @p fmt and 2228 * the following arguments. 2229 * 2230 * @returns the number of characters printed 2231 */ 2232 int 2233 device_printf(device_t dev, const char * fmt, ...) 2234 { 2235 va_list ap; 2236 int retval; 2237 2238 retval = device_print_prettyname(dev); 2239 va_start(ap, fmt); 2240 retval += vprintf(fmt, ap); 2241 va_end(ap); 2242 return (retval); 2243 } 2244 2245 /** 2246 * @internal 2247 */ 2248 static void 2249 device_set_desc_internal(device_t dev, const char* desc, int copy) 2250 { 2251 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2252 free(dev->desc, M_BUS); 2253 dev->flags &= ~DF_DESCMALLOCED; 2254 dev->desc = NULL; 2255 } 2256 2257 if (copy && desc) { 2258 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2259 if (dev->desc) { 2260 strcpy(dev->desc, desc); 2261 dev->flags |= DF_DESCMALLOCED; 2262 } 2263 } else { 2264 /* Avoid a -Wcast-qual warning */ 2265 dev->desc = (char *)(uintptr_t) desc; 2266 } 2267 2268 bus_data_generation_update(); 2269 } 2270 2271 /** 2272 * @brief Set the device's description 2273 * 2274 * The value of @c desc should be a string constant that will not 2275 * change (at least until the description is changed in a subsequent 2276 * call to device_set_desc() or device_set_desc_copy()). 2277 */ 2278 void 2279 device_set_desc(device_t dev, const char* desc) 2280 { 2281 device_set_desc_internal(dev, desc, FALSE); 2282 } 2283 2284 /** 2285 * @brief Set the device's description 2286 * 2287 * The string pointed to by @c desc is copied. Use this function if 2288 * the device description is generated, (e.g. with sprintf()). 2289 */ 2290 void 2291 device_set_desc_copy(device_t dev, const char* desc) 2292 { 2293 device_set_desc_internal(dev, desc, TRUE); 2294 } 2295 2296 /** 2297 * @brief Set the device's flags 2298 */ 2299 void 2300 device_set_flags(device_t dev, u_int32_t flags) 2301 { 2302 dev->devflags = flags; 2303 } 2304 2305 /** 2306 * @brief Return the device's softc field 2307 * 2308 * The softc is allocated and zeroed when a driver is attached, based 2309 * on the size field of the driver. 2310 */ 2311 void * 2312 device_get_softc(device_t dev) 2313 { 2314 return (dev->softc); 2315 } 2316 2317 /** 2318 * @brief Set the device's softc field 2319 * 2320 * Most drivers do not need to use this since the softc is allocated 2321 * automatically when the driver is attached. 2322 */ 2323 void 2324 device_set_softc(device_t dev, void *softc) 2325 { 2326 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2327 free(dev->softc, M_BUS_SC); 2328 dev->softc = softc; 2329 if (dev->softc) 2330 dev->flags |= DF_EXTERNALSOFTC; 2331 else 2332 dev->flags &= ~DF_EXTERNALSOFTC; 2333 } 2334 2335 /** 2336 * @brief Get the device's ivars field 2337 * 2338 * The ivars field is used by the parent device to store per-device 2339 * state (e.g. the physical location of the device or a list of 2340 * resources). 2341 */ 2342 void * 2343 device_get_ivars(device_t dev) 2344 { 2345 2346 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2347 return (dev->ivars); 2348 } 2349 2350 /** 2351 * @brief Set the device's ivars field 2352 */ 2353 void 2354 device_set_ivars(device_t dev, void * ivars) 2355 { 2356 2357 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2358 dev->ivars = ivars; 2359 } 2360 2361 /** 2362 * @brief Return the device's state 2363 */ 2364 device_state_t 2365 device_get_state(device_t dev) 2366 { 2367 return (dev->state); 2368 } 2369 2370 /** 2371 * @brief Set the DF_ENABLED flag for the device 2372 */ 2373 void 2374 device_enable(device_t dev) 2375 { 2376 dev->flags |= DF_ENABLED; 2377 } 2378 2379 /** 2380 * @brief Clear the DF_ENABLED flag for the device 2381 */ 2382 void 2383 device_disable(device_t dev) 2384 { 2385 dev->flags &= ~DF_ENABLED; 2386 } 2387 2388 /** 2389 * @brief Increment the busy counter for the device 2390 */ 2391 void 2392 device_busy(device_t dev) 2393 { 2394 if (dev->state < DS_ATTACHED) 2395 panic("device_busy: called for unattached device"); 2396 if (dev->busy == 0 && dev->parent) 2397 device_busy(dev->parent); 2398 dev->busy++; 2399 dev->state = DS_BUSY; 2400 } 2401 2402 /** 2403 * @brief Decrement the busy counter for the device 2404 */ 2405 void 2406 device_unbusy(device_t dev) 2407 { 2408 if (dev->state != DS_BUSY) 2409 panic("device_unbusy: called for non-busy device %s", 2410 device_get_nameunit(dev)); 2411 dev->busy--; 2412 if (dev->busy == 0) { 2413 if (dev->parent) 2414 device_unbusy(dev->parent); 2415 dev->state = DS_ATTACHED; 2416 } 2417 } 2418 2419 /** 2420 * @brief Set the DF_QUIET flag for the device 2421 */ 2422 void 2423 device_quiet(device_t dev) 2424 { 2425 dev->flags |= DF_QUIET; 2426 } 2427 2428 /** 2429 * @brief Clear the DF_QUIET flag for the device 2430 */ 2431 void 2432 device_verbose(device_t dev) 2433 { 2434 dev->flags &= ~DF_QUIET; 2435 } 2436 2437 /** 2438 * @brief Return non-zero if the DF_QUIET flag is set on the device 2439 */ 2440 int 2441 device_is_quiet(device_t dev) 2442 { 2443 return ((dev->flags & DF_QUIET) != 0); 2444 } 2445 2446 /** 2447 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2448 */ 2449 int 2450 device_is_enabled(device_t dev) 2451 { 2452 return ((dev->flags & DF_ENABLED) != 0); 2453 } 2454 2455 /** 2456 * @brief Return non-zero if the device was successfully probed 2457 */ 2458 int 2459 device_is_alive(device_t dev) 2460 { 2461 return (dev->state >= DS_ALIVE); 2462 } 2463 2464 /** 2465 * @brief Return non-zero if the device currently has a driver 2466 * attached to it 2467 */ 2468 int 2469 device_is_attached(device_t dev) 2470 { 2471 return (dev->state >= DS_ATTACHED); 2472 } 2473 2474 /** 2475 * @brief Set the devclass of a device 2476 * @see devclass_add_device(). 2477 */ 2478 int 2479 device_set_devclass(device_t dev, const char *classname) 2480 { 2481 devclass_t dc; 2482 int error; 2483 2484 if (!classname) { 2485 if (dev->devclass) 2486 devclass_delete_device(dev->devclass, dev); 2487 return (0); 2488 } 2489 2490 if (dev->devclass) { 2491 printf("device_set_devclass: device class already set\n"); 2492 return (EINVAL); 2493 } 2494 2495 dc = devclass_find_internal(classname, NULL, TRUE); 2496 if (!dc) 2497 return (ENOMEM); 2498 2499 error = devclass_add_device(dc, dev); 2500 2501 bus_data_generation_update(); 2502 return (error); 2503 } 2504 2505 /** 2506 * @brief Set the driver of a device 2507 * 2508 * @retval 0 success 2509 * @retval EBUSY the device already has a driver attached 2510 * @retval ENOMEM a memory allocation failure occurred 2511 */ 2512 int 2513 device_set_driver(device_t dev, driver_t *driver) 2514 { 2515 if (dev->state >= DS_ATTACHED) 2516 return (EBUSY); 2517 2518 if (dev->driver == driver) 2519 return (0); 2520 2521 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2522 free(dev->softc, M_BUS_SC); 2523 dev->softc = NULL; 2524 } 2525 kobj_delete((kobj_t) dev, NULL); 2526 dev->driver = driver; 2527 if (driver) { 2528 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2529 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2530 dev->softc = malloc(driver->size, M_BUS_SC, 2531 M_NOWAIT | M_ZERO); 2532 if (!dev->softc) { 2533 kobj_delete((kobj_t) dev, NULL); 2534 kobj_init((kobj_t) dev, &null_class); 2535 dev->driver = NULL; 2536 return (ENOMEM); 2537 } 2538 } 2539 } else { 2540 kobj_init((kobj_t) dev, &null_class); 2541 } 2542 2543 bus_data_generation_update(); 2544 return (0); 2545 } 2546 2547 /** 2548 * @brief Probe a device, and return this status. 2549 * 2550 * This function is the core of the device autoconfiguration 2551 * system. Its purpose is to select a suitable driver for a device and 2552 * then call that driver to initialise the hardware appropriately. The 2553 * driver is selected by calling the DEVICE_PROBE() method of a set of 2554 * candidate drivers and then choosing the driver which returned the 2555 * best value. This driver is then attached to the device using 2556 * device_attach(). 2557 * 2558 * The set of suitable drivers is taken from the list of drivers in 2559 * the parent device's devclass. If the device was originally created 2560 * with a specific class name (see device_add_child()), only drivers 2561 * with that name are probed, otherwise all drivers in the devclass 2562 * are probed. If no drivers return successful probe values in the 2563 * parent devclass, the search continues in the parent of that 2564 * devclass (see devclass_get_parent()) if any. 2565 * 2566 * @param dev the device to initialise 2567 * 2568 * @retval 0 success 2569 * @retval ENXIO no driver was found 2570 * @retval ENOMEM memory allocation failure 2571 * @retval non-zero some other unix error code 2572 * @retval -1 Device already attached 2573 */ 2574 int 2575 device_probe(device_t dev) 2576 { 2577 int error; 2578 2579 GIANT_REQUIRED; 2580 2581 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2582 return (-1); 2583 2584 if (!(dev->flags & DF_ENABLED)) { 2585 if (bootverbose && device_get_name(dev) != NULL) { 2586 device_print_prettyname(dev); 2587 printf("not probed (disabled)\n"); 2588 } 2589 return (-1); 2590 } 2591 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2592 if (bus_current_pass == BUS_PASS_DEFAULT && 2593 !(dev->flags & DF_DONENOMATCH)) { 2594 BUS_PROBE_NOMATCH(dev->parent, dev); 2595 devnomatch(dev); 2596 dev->flags |= DF_DONENOMATCH; 2597 } 2598 return (error); 2599 } 2600 return (0); 2601 } 2602 2603 /** 2604 * @brief Probe a device and attach a driver if possible 2605 * 2606 * calls device_probe() and attaches if that was successful. 2607 */ 2608 int 2609 device_probe_and_attach(device_t dev) 2610 { 2611 int error; 2612 2613 GIANT_REQUIRED; 2614 2615 error = device_probe(dev); 2616 if (error == -1) 2617 return (0); 2618 else if (error != 0) 2619 return (error); 2620 return (device_attach(dev)); 2621 } 2622 2623 /** 2624 * @brief Attach a device driver to a device 2625 * 2626 * This function is a wrapper around the DEVICE_ATTACH() driver 2627 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2628 * device's sysctl tree, optionally prints a description of the device 2629 * and queues a notification event for user-based device management 2630 * services. 2631 * 2632 * Normally this function is only called internally from 2633 * device_probe_and_attach(). 2634 * 2635 * @param dev the device to initialise 2636 * 2637 * @retval 0 success 2638 * @retval ENXIO no driver was found 2639 * @retval ENOMEM memory allocation failure 2640 * @retval non-zero some other unix error code 2641 */ 2642 int 2643 device_attach(device_t dev) 2644 { 2645 int error; 2646 2647 device_sysctl_init(dev); 2648 if (!device_is_quiet(dev)) 2649 device_print_child(dev->parent, dev); 2650 if ((error = DEVICE_ATTACH(dev)) != 0) { 2651 printf("device_attach: %s%d attach returned %d\n", 2652 dev->driver->name, dev->unit, error); 2653 /* Unset the class; set in device_probe_child */ 2654 if (dev->devclass == NULL) 2655 device_set_devclass(dev, NULL); 2656 device_set_driver(dev, NULL); 2657 device_sysctl_fini(dev); 2658 dev->state = DS_NOTPRESENT; 2659 return (error); 2660 } 2661 device_sysctl_update(dev); 2662 dev->state = DS_ATTACHED; 2663 devadded(dev); 2664 return (0); 2665 } 2666 2667 /** 2668 * @brief Detach a driver from a device 2669 * 2670 * This function is a wrapper around the DEVICE_DETACH() driver 2671 * method. If the call to DEVICE_DETACH() succeeds, it calls 2672 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2673 * notification event for user-based device management services and 2674 * cleans up the device's sysctl tree. 2675 * 2676 * @param dev the device to un-initialise 2677 * 2678 * @retval 0 success 2679 * @retval ENXIO no driver was found 2680 * @retval ENOMEM memory allocation failure 2681 * @retval non-zero some other unix error code 2682 */ 2683 int 2684 device_detach(device_t dev) 2685 { 2686 int error; 2687 2688 GIANT_REQUIRED; 2689 2690 PDEBUG(("%s", DEVICENAME(dev))); 2691 if (dev->state == DS_BUSY) 2692 return (EBUSY); 2693 if (dev->state != DS_ATTACHED) 2694 return (0); 2695 2696 if ((error = DEVICE_DETACH(dev)) != 0) 2697 return (error); 2698 devremoved(dev); 2699 if (!device_is_quiet(dev)) 2700 device_printf(dev, "detached\n"); 2701 if (dev->parent) 2702 BUS_CHILD_DETACHED(dev->parent, dev); 2703 2704 if (!(dev->flags & DF_FIXEDCLASS)) 2705 devclass_delete_device(dev->devclass, dev); 2706 2707 dev->state = DS_NOTPRESENT; 2708 device_set_driver(dev, NULL); 2709 device_set_desc(dev, NULL); 2710 device_sysctl_fini(dev); 2711 2712 return (0); 2713 } 2714 2715 /** 2716 * @brief Tells a driver to quiesce itself. 2717 * 2718 * This function is a wrapper around the DEVICE_QUIESCE() driver 2719 * method. If the call to DEVICE_QUIESCE() succeeds. 2720 * 2721 * @param dev the device to quiesce 2722 * 2723 * @retval 0 success 2724 * @retval ENXIO no driver was found 2725 * @retval ENOMEM memory allocation failure 2726 * @retval non-zero some other unix error code 2727 */ 2728 int 2729 device_quiesce(device_t dev) 2730 { 2731 2732 PDEBUG(("%s", DEVICENAME(dev))); 2733 if (dev->state == DS_BUSY) 2734 return (EBUSY); 2735 if (dev->state != DS_ATTACHED) 2736 return (0); 2737 2738 return (DEVICE_QUIESCE(dev)); 2739 } 2740 2741 /** 2742 * @brief Notify a device of system shutdown 2743 * 2744 * This function calls the DEVICE_SHUTDOWN() driver method if the 2745 * device currently has an attached driver. 2746 * 2747 * @returns the value returned by DEVICE_SHUTDOWN() 2748 */ 2749 int 2750 device_shutdown(device_t dev) 2751 { 2752 if (dev->state < DS_ATTACHED) 2753 return (0); 2754 return (DEVICE_SHUTDOWN(dev)); 2755 } 2756 2757 /** 2758 * @brief Set the unit number of a device 2759 * 2760 * This function can be used to override the unit number used for a 2761 * device (e.g. to wire a device to a pre-configured unit number). 2762 */ 2763 int 2764 device_set_unit(device_t dev, int unit) 2765 { 2766 devclass_t dc; 2767 int err; 2768 2769 dc = device_get_devclass(dev); 2770 if (unit < dc->maxunit && dc->devices[unit]) 2771 return (EBUSY); 2772 err = devclass_delete_device(dc, dev); 2773 if (err) 2774 return (err); 2775 dev->unit = unit; 2776 err = devclass_add_device(dc, dev); 2777 if (err) 2778 return (err); 2779 2780 bus_data_generation_update(); 2781 return (0); 2782 } 2783 2784 /*======================================*/ 2785 /* 2786 * Some useful method implementations to make life easier for bus drivers. 2787 */ 2788 2789 /** 2790 * @brief Initialise a resource list. 2791 * 2792 * @param rl the resource list to initialise 2793 */ 2794 void 2795 resource_list_init(struct resource_list *rl) 2796 { 2797 STAILQ_INIT(rl); 2798 } 2799 2800 /** 2801 * @brief Reclaim memory used by a resource list. 2802 * 2803 * This function frees the memory for all resource entries on the list 2804 * (if any). 2805 * 2806 * @param rl the resource list to free 2807 */ 2808 void 2809 resource_list_free(struct resource_list *rl) 2810 { 2811 struct resource_list_entry *rle; 2812 2813 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2814 if (rle->res) 2815 panic("resource_list_free: resource entry is busy"); 2816 STAILQ_REMOVE_HEAD(rl, link); 2817 free(rle, M_BUS); 2818 } 2819 } 2820 2821 /** 2822 * @brief Add a resource entry. 2823 * 2824 * This function adds a resource entry using the given @p type, @p 2825 * start, @p end and @p count values. A rid value is chosen by 2826 * searching sequentially for the first unused rid starting at zero. 2827 * 2828 * @param rl the resource list to edit 2829 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2830 * @param start the start address of the resource 2831 * @param end the end address of the resource 2832 * @param count XXX end-start+1 2833 */ 2834 int 2835 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2836 u_long end, u_long count) 2837 { 2838 int rid; 2839 2840 rid = 0; 2841 while (resource_list_find(rl, type, rid) != NULL) 2842 rid++; 2843 resource_list_add(rl, type, rid, start, end, count); 2844 return (rid); 2845 } 2846 2847 /** 2848 * @brief Add or modify a resource entry. 2849 * 2850 * If an existing entry exists with the same type and rid, it will be 2851 * modified using the given values of @p start, @p end and @p 2852 * count. If no entry exists, a new one will be created using the 2853 * given values. The resource list entry that matches is then returned. 2854 * 2855 * @param rl the resource list to edit 2856 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2857 * @param rid the resource identifier 2858 * @param start the start address of the resource 2859 * @param end the end address of the resource 2860 * @param count XXX end-start+1 2861 */ 2862 struct resource_list_entry * 2863 resource_list_add(struct resource_list *rl, int type, int rid, 2864 u_long start, u_long end, u_long count) 2865 { 2866 struct resource_list_entry *rle; 2867 2868 rle = resource_list_find(rl, type, rid); 2869 if (!rle) { 2870 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2871 M_NOWAIT); 2872 if (!rle) 2873 panic("resource_list_add: can't record entry"); 2874 STAILQ_INSERT_TAIL(rl, rle, link); 2875 rle->type = type; 2876 rle->rid = rid; 2877 rle->res = NULL; 2878 rle->flags = 0; 2879 } 2880 2881 if (rle->res) 2882 panic("resource_list_add: resource entry is busy"); 2883 2884 rle->start = start; 2885 rle->end = end; 2886 rle->count = count; 2887 return (rle); 2888 } 2889 2890 /** 2891 * @brief Determine if a resource entry is busy. 2892 * 2893 * Returns true if a resource entry is busy meaning that it has an 2894 * associated resource that is not an unallocated "reserved" resource. 2895 * 2896 * @param rl the resource list to search 2897 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2898 * @param rid the resource identifier 2899 * 2900 * @returns Non-zero if the entry is busy, zero otherwise. 2901 */ 2902 int 2903 resource_list_busy(struct resource_list *rl, int type, int rid) 2904 { 2905 struct resource_list_entry *rle; 2906 2907 rle = resource_list_find(rl, type, rid); 2908 if (rle == NULL || rle->res == NULL) 2909 return (0); 2910 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2911 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2912 ("reserved resource is active")); 2913 return (0); 2914 } 2915 return (1); 2916 } 2917 2918 /** 2919 * @brief Find a resource entry by type and rid. 2920 * 2921 * @param rl the resource list to search 2922 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2923 * @param rid the resource identifier 2924 * 2925 * @returns the resource entry pointer or NULL if there is no such 2926 * entry. 2927 */ 2928 struct resource_list_entry * 2929 resource_list_find(struct resource_list *rl, int type, int rid) 2930 { 2931 struct resource_list_entry *rle; 2932 2933 STAILQ_FOREACH(rle, rl, link) { 2934 if (rle->type == type && rle->rid == rid) 2935 return (rle); 2936 } 2937 return (NULL); 2938 } 2939 2940 /** 2941 * @brief Delete a resource entry. 2942 * 2943 * @param rl the resource list to edit 2944 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2945 * @param rid the resource identifier 2946 */ 2947 void 2948 resource_list_delete(struct resource_list *rl, int type, int rid) 2949 { 2950 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2951 2952 if (rle) { 2953 if (rle->res != NULL) 2954 panic("resource_list_delete: resource has not been released"); 2955 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2956 free(rle, M_BUS); 2957 } 2958 } 2959 2960 /** 2961 * @brief Allocate a reserved resource 2962 * 2963 * This can be used by busses to force the allocation of resources 2964 * that are always active in the system even if they are not allocated 2965 * by a driver (e.g. PCI BARs). This function is usually called when 2966 * adding a new child to the bus. The resource is allocated from the 2967 * parent bus when it is reserved. The resource list entry is marked 2968 * with RLE_RESERVED to note that it is a reserved resource. 2969 * 2970 * Subsequent attempts to allocate the resource with 2971 * resource_list_alloc() will succeed the first time and will set 2972 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2973 * resource that has been allocated is released with 2974 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2975 * the actual resource remains allocated. The resource can be released to 2976 * the parent bus by calling resource_list_unreserve(). 2977 * 2978 * @param rl the resource list to allocate from 2979 * @param bus the parent device of @p child 2980 * @param child the device for which the resource is being reserved 2981 * @param type the type of resource to allocate 2982 * @param rid a pointer to the resource identifier 2983 * @param start hint at the start of the resource range - pass 2984 * @c 0UL for any start address 2985 * @param end hint at the end of the resource range - pass 2986 * @c ~0UL for any end address 2987 * @param count hint at the size of range required - pass @c 1 2988 * for any size 2989 * @param flags any extra flags to control the resource 2990 * allocation - see @c RF_XXX flags in 2991 * <sys/rman.h> for details 2992 * 2993 * @returns the resource which was allocated or @c NULL if no 2994 * resource could be allocated 2995 */ 2996 struct resource * 2997 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 2998 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2999 { 3000 struct resource_list_entry *rle = NULL; 3001 int passthrough = (device_get_parent(child) != bus); 3002 struct resource *r; 3003 3004 if (passthrough) 3005 panic( 3006 "resource_list_reserve() should only be called for direct children"); 3007 if (flags & RF_ACTIVE) 3008 panic( 3009 "resource_list_reserve() should only reserve inactive resources"); 3010 3011 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3012 flags); 3013 if (r != NULL) { 3014 rle = resource_list_find(rl, type, *rid); 3015 rle->flags |= RLE_RESERVED; 3016 } 3017 return (r); 3018 } 3019 3020 /** 3021 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3022 * 3023 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3024 * and passing the allocation up to the parent of @p bus. This assumes 3025 * that the first entry of @c device_get_ivars(child) is a struct 3026 * resource_list. This also handles 'passthrough' allocations where a 3027 * child is a remote descendant of bus by passing the allocation up to 3028 * the parent of bus. 3029 * 3030 * Typically, a bus driver would store a list of child resources 3031 * somewhere in the child device's ivars (see device_get_ivars()) and 3032 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3033 * then call resource_list_alloc() to perform the allocation. 3034 * 3035 * @param rl the resource list to allocate from 3036 * @param bus the parent device of @p child 3037 * @param child the device which is requesting an allocation 3038 * @param type the type of resource to allocate 3039 * @param rid a pointer to the resource identifier 3040 * @param start hint at the start of the resource range - pass 3041 * @c 0UL for any start address 3042 * @param end hint at the end of the resource range - pass 3043 * @c ~0UL for any end address 3044 * @param count hint at the size of range required - pass @c 1 3045 * for any size 3046 * @param flags any extra flags to control the resource 3047 * allocation - see @c RF_XXX flags in 3048 * <sys/rman.h> for details 3049 * 3050 * @returns the resource which was allocated or @c NULL if no 3051 * resource could be allocated 3052 */ 3053 struct resource * 3054 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3055 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3056 { 3057 struct resource_list_entry *rle = NULL; 3058 int passthrough = (device_get_parent(child) != bus); 3059 int isdefault = (start == 0UL && end == ~0UL); 3060 3061 if (passthrough) { 3062 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3063 type, rid, start, end, count, flags)); 3064 } 3065 3066 rle = resource_list_find(rl, type, *rid); 3067 3068 if (!rle) 3069 return (NULL); /* no resource of that type/rid */ 3070 3071 if (rle->res) { 3072 if (rle->flags & RLE_RESERVED) { 3073 if (rle->flags & RLE_ALLOCATED) 3074 return (NULL); 3075 if ((flags & RF_ACTIVE) && 3076 bus_activate_resource(child, type, *rid, 3077 rle->res) != 0) 3078 return (NULL); 3079 rle->flags |= RLE_ALLOCATED; 3080 return (rle->res); 3081 } 3082 panic("resource_list_alloc: resource entry is busy"); 3083 } 3084 3085 if (isdefault) { 3086 start = rle->start; 3087 count = ulmax(count, rle->count); 3088 end = ulmax(rle->end, start + count - 1); 3089 } 3090 3091 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3092 type, rid, start, end, count, flags); 3093 3094 /* 3095 * Record the new range. 3096 */ 3097 if (rle->res) { 3098 rle->start = rman_get_start(rle->res); 3099 rle->end = rman_get_end(rle->res); 3100 rle->count = count; 3101 } 3102 3103 return (rle->res); 3104 } 3105 3106 /** 3107 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3108 * 3109 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3110 * used with resource_list_alloc(). 3111 * 3112 * @param rl the resource list which was allocated from 3113 * @param bus the parent device of @p child 3114 * @param child the device which is requesting a release 3115 * @param type the type of resource to release 3116 * @param rid the resource identifier 3117 * @param res the resource to release 3118 * 3119 * @retval 0 success 3120 * @retval non-zero a standard unix error code indicating what 3121 * error condition prevented the operation 3122 */ 3123 int 3124 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3125 int type, int rid, struct resource *res) 3126 { 3127 struct resource_list_entry *rle = NULL; 3128 int passthrough = (device_get_parent(child) != bus); 3129 int error; 3130 3131 if (passthrough) { 3132 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3133 type, rid, res)); 3134 } 3135 3136 rle = resource_list_find(rl, type, rid); 3137 3138 if (!rle) 3139 panic("resource_list_release: can't find resource"); 3140 if (!rle->res) 3141 panic("resource_list_release: resource entry is not busy"); 3142 if (rle->flags & RLE_RESERVED) { 3143 if (rle->flags & RLE_ALLOCATED) { 3144 if (rman_get_flags(res) & RF_ACTIVE) { 3145 error = bus_deactivate_resource(child, type, 3146 rid, res); 3147 if (error) 3148 return (error); 3149 } 3150 rle->flags &= ~RLE_ALLOCATED; 3151 return (0); 3152 } 3153 return (EINVAL); 3154 } 3155 3156 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3157 type, rid, res); 3158 if (error) 3159 return (error); 3160 3161 rle->res = NULL; 3162 return (0); 3163 } 3164 3165 /** 3166 * @brief Fully release a reserved resource 3167 * 3168 * Fully releases a resouce reserved via resource_list_reserve(). 3169 * 3170 * @param rl the resource list which was allocated from 3171 * @param bus the parent device of @p child 3172 * @param child the device whose reserved resource is being released 3173 * @param type the type of resource to release 3174 * @param rid the resource identifier 3175 * @param res the resource to release 3176 * 3177 * @retval 0 success 3178 * @retval non-zero a standard unix error code indicating what 3179 * error condition prevented the operation 3180 */ 3181 int 3182 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3183 int type, int rid) 3184 { 3185 struct resource_list_entry *rle = NULL; 3186 int passthrough = (device_get_parent(child) != bus); 3187 3188 if (passthrough) 3189 panic( 3190 "resource_list_unreserve() should only be called for direct children"); 3191 3192 rle = resource_list_find(rl, type, rid); 3193 3194 if (!rle) 3195 panic("resource_list_unreserve: can't find resource"); 3196 if (!(rle->flags & RLE_RESERVED)) 3197 return (EINVAL); 3198 if (rle->flags & RLE_ALLOCATED) 3199 return (EBUSY); 3200 rle->flags &= ~RLE_RESERVED; 3201 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3202 } 3203 3204 /** 3205 * @brief Print a description of resources in a resource list 3206 * 3207 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3208 * The name is printed if at least one resource of the given type is available. 3209 * The format is used to print resource start and end. 3210 * 3211 * @param rl the resource list to print 3212 * @param name the name of @p type, e.g. @c "memory" 3213 * @param type type type of resource entry to print 3214 * @param format printf(9) format string to print resource 3215 * start and end values 3216 * 3217 * @returns the number of characters printed 3218 */ 3219 int 3220 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3221 const char *format) 3222 { 3223 struct resource_list_entry *rle; 3224 int printed, retval; 3225 3226 printed = 0; 3227 retval = 0; 3228 /* Yes, this is kinda cheating */ 3229 STAILQ_FOREACH(rle, rl, link) { 3230 if (rle->type == type) { 3231 if (printed == 0) 3232 retval += printf(" %s ", name); 3233 else 3234 retval += printf(","); 3235 printed++; 3236 retval += printf(format, rle->start); 3237 if (rle->count > 1) { 3238 retval += printf("-"); 3239 retval += printf(format, rle->start + 3240 rle->count - 1); 3241 } 3242 } 3243 } 3244 return (retval); 3245 } 3246 3247 /** 3248 * @brief Releases all the resources in a list. 3249 * 3250 * @param rl The resource list to purge. 3251 * 3252 * @returns nothing 3253 */ 3254 void 3255 resource_list_purge(struct resource_list *rl) 3256 { 3257 struct resource_list_entry *rle; 3258 3259 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3260 if (rle->res) 3261 bus_release_resource(rman_get_device(rle->res), 3262 rle->type, rle->rid, rle->res); 3263 STAILQ_REMOVE_HEAD(rl, link); 3264 free(rle, M_BUS); 3265 } 3266 } 3267 3268 device_t 3269 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 3270 { 3271 3272 return (device_add_child_ordered(dev, order, name, unit)); 3273 } 3274 3275 /** 3276 * @brief Helper function for implementing DEVICE_PROBE() 3277 * 3278 * This function can be used to help implement the DEVICE_PROBE() for 3279 * a bus (i.e. a device which has other devices attached to it). It 3280 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3281 * devclass. 3282 */ 3283 int 3284 bus_generic_probe(device_t dev) 3285 { 3286 devclass_t dc = dev->devclass; 3287 driverlink_t dl; 3288 3289 TAILQ_FOREACH(dl, &dc->drivers, link) { 3290 /* 3291 * If this driver's pass is too high, then ignore it. 3292 * For most drivers in the default pass, this will 3293 * never be true. For early-pass drivers they will 3294 * only call the identify routines of eligible drivers 3295 * when this routine is called. Drivers for later 3296 * passes should have their identify routines called 3297 * on early-pass busses during BUS_NEW_PASS(). 3298 */ 3299 if (dl->pass > bus_current_pass) 3300 continue; 3301 DEVICE_IDENTIFY(dl->driver, dev); 3302 } 3303 3304 return (0); 3305 } 3306 3307 /** 3308 * @brief Helper function for implementing DEVICE_ATTACH() 3309 * 3310 * This function can be used to help implement the DEVICE_ATTACH() for 3311 * a bus. It calls device_probe_and_attach() for each of the device's 3312 * children. 3313 */ 3314 int 3315 bus_generic_attach(device_t dev) 3316 { 3317 device_t child; 3318 3319 TAILQ_FOREACH(child, &dev->children, link) { 3320 device_probe_and_attach(child); 3321 } 3322 3323 return (0); 3324 } 3325 3326 /** 3327 * @brief Helper function for implementing DEVICE_DETACH() 3328 * 3329 * This function can be used to help implement the DEVICE_DETACH() for 3330 * a bus. It calls device_detach() for each of the device's 3331 * children. 3332 */ 3333 int 3334 bus_generic_detach(device_t dev) 3335 { 3336 device_t child; 3337 int error; 3338 3339 if (dev->state != DS_ATTACHED) 3340 return (EBUSY); 3341 3342 TAILQ_FOREACH(child, &dev->children, link) { 3343 if ((error = device_detach(child)) != 0) 3344 return (error); 3345 } 3346 3347 return (0); 3348 } 3349 3350 /** 3351 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3352 * 3353 * This function can be used to help implement the DEVICE_SHUTDOWN() 3354 * for a bus. It calls device_shutdown() for each of the device's 3355 * children. 3356 */ 3357 int 3358 bus_generic_shutdown(device_t dev) 3359 { 3360 device_t child; 3361 3362 TAILQ_FOREACH(child, &dev->children, link) { 3363 device_shutdown(child); 3364 } 3365 3366 return (0); 3367 } 3368 3369 /** 3370 * @brief Helper function for implementing DEVICE_SUSPEND() 3371 * 3372 * This function can be used to help implement the DEVICE_SUSPEND() 3373 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3374 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3375 * operation is aborted and any devices which were suspended are 3376 * resumed immediately by calling their DEVICE_RESUME() methods. 3377 */ 3378 int 3379 bus_generic_suspend(device_t dev) 3380 { 3381 int error; 3382 device_t child, child2; 3383 3384 TAILQ_FOREACH(child, &dev->children, link) { 3385 error = DEVICE_SUSPEND(child); 3386 if (error) { 3387 for (child2 = TAILQ_FIRST(&dev->children); 3388 child2 && child2 != child; 3389 child2 = TAILQ_NEXT(child2, link)) 3390 DEVICE_RESUME(child2); 3391 return (error); 3392 } 3393 } 3394 return (0); 3395 } 3396 3397 /** 3398 * @brief Helper function for implementing DEVICE_RESUME() 3399 * 3400 * This function can be used to help implement the DEVICE_RESUME() for 3401 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3402 */ 3403 int 3404 bus_generic_resume(device_t dev) 3405 { 3406 device_t child; 3407 3408 TAILQ_FOREACH(child, &dev->children, link) { 3409 DEVICE_RESUME(child); 3410 /* if resume fails, there's nothing we can usefully do... */ 3411 } 3412 return (0); 3413 } 3414 3415 /** 3416 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3417 * 3418 * This function prints the first part of the ascii representation of 3419 * @p child, including its name, unit and description (if any - see 3420 * device_set_desc()). 3421 * 3422 * @returns the number of characters printed 3423 */ 3424 int 3425 bus_print_child_header(device_t dev, device_t child) 3426 { 3427 int retval = 0; 3428 3429 if (device_get_desc(child)) { 3430 retval += device_printf(child, "<%s>", device_get_desc(child)); 3431 } else { 3432 retval += printf("%s", device_get_nameunit(child)); 3433 } 3434 3435 return (retval); 3436 } 3437 3438 /** 3439 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3440 * 3441 * This function prints the last part of the ascii representation of 3442 * @p child, which consists of the string @c " on " followed by the 3443 * name and unit of the @p dev. 3444 * 3445 * @returns the number of characters printed 3446 */ 3447 int 3448 bus_print_child_footer(device_t dev, device_t child) 3449 { 3450 return (printf(" on %s\n", device_get_nameunit(dev))); 3451 } 3452 3453 /** 3454 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3455 * 3456 * This function simply calls bus_print_child_header() followed by 3457 * bus_print_child_footer(). 3458 * 3459 * @returns the number of characters printed 3460 */ 3461 int 3462 bus_generic_print_child(device_t dev, device_t child) 3463 { 3464 int retval = 0; 3465 3466 retval += bus_print_child_header(dev, child); 3467 retval += bus_print_child_footer(dev, child); 3468 3469 return (retval); 3470 } 3471 3472 /** 3473 * @brief Stub function for implementing BUS_READ_IVAR(). 3474 * 3475 * @returns ENOENT 3476 */ 3477 int 3478 bus_generic_read_ivar(device_t dev, device_t child, int index, 3479 uintptr_t * result) 3480 { 3481 return (ENOENT); 3482 } 3483 3484 /** 3485 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3486 * 3487 * @returns ENOENT 3488 */ 3489 int 3490 bus_generic_write_ivar(device_t dev, device_t child, int index, 3491 uintptr_t value) 3492 { 3493 return (ENOENT); 3494 } 3495 3496 /** 3497 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3498 * 3499 * @returns NULL 3500 */ 3501 struct resource_list * 3502 bus_generic_get_resource_list(device_t dev, device_t child) 3503 { 3504 return (NULL); 3505 } 3506 3507 /** 3508 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3509 * 3510 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3511 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3512 * and then calls device_probe_and_attach() for each unattached child. 3513 */ 3514 void 3515 bus_generic_driver_added(device_t dev, driver_t *driver) 3516 { 3517 device_t child; 3518 3519 DEVICE_IDENTIFY(driver, dev); 3520 TAILQ_FOREACH(child, &dev->children, link) { 3521 if (child->state == DS_NOTPRESENT || 3522 (child->flags & DF_REBID)) 3523 device_probe_and_attach(child); 3524 } 3525 } 3526 3527 /** 3528 * @brief Helper function for implementing BUS_NEW_PASS(). 3529 * 3530 * This implementing of BUS_NEW_PASS() first calls the identify 3531 * routines for any drivers that probe at the current pass. Then it 3532 * walks the list of devices for this bus. If a device is already 3533 * attached, then it calls BUS_NEW_PASS() on that device. If the 3534 * device is not already attached, it attempts to attach a driver to 3535 * it. 3536 */ 3537 void 3538 bus_generic_new_pass(device_t dev) 3539 { 3540 driverlink_t dl; 3541 devclass_t dc; 3542 device_t child; 3543 3544 dc = dev->devclass; 3545 TAILQ_FOREACH(dl, &dc->drivers, link) { 3546 if (dl->pass == bus_current_pass) 3547 DEVICE_IDENTIFY(dl->driver, dev); 3548 } 3549 TAILQ_FOREACH(child, &dev->children, link) { 3550 if (child->state >= DS_ATTACHED) 3551 BUS_NEW_PASS(child); 3552 else if (child->state == DS_NOTPRESENT) 3553 device_probe_and_attach(child); 3554 } 3555 } 3556 3557 /** 3558 * @brief Helper function for implementing BUS_SETUP_INTR(). 3559 * 3560 * This simple implementation of BUS_SETUP_INTR() simply calls the 3561 * BUS_SETUP_INTR() method of the parent of @p dev. 3562 */ 3563 int 3564 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3565 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3566 void **cookiep) 3567 { 3568 /* Propagate up the bus hierarchy until someone handles it. */ 3569 if (dev->parent) 3570 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3571 filter, intr, arg, cookiep)); 3572 return (EINVAL); 3573 } 3574 3575 /** 3576 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3577 * 3578 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3579 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3580 */ 3581 int 3582 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3583 void *cookie) 3584 { 3585 /* Propagate up the bus hierarchy until someone handles it. */ 3586 if (dev->parent) 3587 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3588 return (EINVAL); 3589 } 3590 3591 /** 3592 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3593 * 3594 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3595 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3596 */ 3597 struct resource * 3598 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3599 u_long start, u_long end, u_long count, u_int flags) 3600 { 3601 /* Propagate up the bus hierarchy until someone handles it. */ 3602 if (dev->parent) 3603 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3604 start, end, count, flags)); 3605 return (NULL); 3606 } 3607 3608 /** 3609 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3610 * 3611 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3612 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3613 */ 3614 int 3615 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3616 struct resource *r) 3617 { 3618 /* Propagate up the bus hierarchy until someone handles it. */ 3619 if (dev->parent) 3620 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3621 r)); 3622 return (EINVAL); 3623 } 3624 3625 /** 3626 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3627 * 3628 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3629 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3630 */ 3631 int 3632 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3633 struct resource *r) 3634 { 3635 /* Propagate up the bus hierarchy until someone handles it. */ 3636 if (dev->parent) 3637 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3638 r)); 3639 return (EINVAL); 3640 } 3641 3642 /** 3643 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3644 * 3645 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3646 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3647 */ 3648 int 3649 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3650 int rid, struct resource *r) 3651 { 3652 /* Propagate up the bus hierarchy until someone handles it. */ 3653 if (dev->parent) 3654 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3655 r)); 3656 return (EINVAL); 3657 } 3658 3659 /** 3660 * @brief Helper function for implementing BUS_BIND_INTR(). 3661 * 3662 * This simple implementation of BUS_BIND_INTR() simply calls the 3663 * BUS_BIND_INTR() method of the parent of @p dev. 3664 */ 3665 int 3666 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3667 int cpu) 3668 { 3669 3670 /* Propagate up the bus hierarchy until someone handles it. */ 3671 if (dev->parent) 3672 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3673 return (EINVAL); 3674 } 3675 3676 /** 3677 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3678 * 3679 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3680 * BUS_CONFIG_INTR() method of the parent of @p dev. 3681 */ 3682 int 3683 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3684 enum intr_polarity pol) 3685 { 3686 3687 /* Propagate up the bus hierarchy until someone handles it. */ 3688 if (dev->parent) 3689 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3690 return (EINVAL); 3691 } 3692 3693 /** 3694 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3695 * 3696 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3697 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3698 */ 3699 int 3700 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3701 void *cookie, const char *descr) 3702 { 3703 3704 /* Propagate up the bus hierarchy until someone handles it. */ 3705 if (dev->parent) 3706 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3707 descr)); 3708 return (EINVAL); 3709 } 3710 3711 /** 3712 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3713 * 3714 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3715 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3716 */ 3717 bus_dma_tag_t 3718 bus_generic_get_dma_tag(device_t dev, device_t child) 3719 { 3720 3721 /* Propagate up the bus hierarchy until someone handles it. */ 3722 if (dev->parent != NULL) 3723 return (BUS_GET_DMA_TAG(dev->parent, child)); 3724 return (NULL); 3725 } 3726 3727 /** 3728 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3729 * 3730 * This implementation of BUS_GET_RESOURCE() uses the 3731 * resource_list_find() function to do most of the work. It calls 3732 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3733 * search. 3734 */ 3735 int 3736 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3737 u_long *startp, u_long *countp) 3738 { 3739 struct resource_list * rl = NULL; 3740 struct resource_list_entry * rle = NULL; 3741 3742 rl = BUS_GET_RESOURCE_LIST(dev, child); 3743 if (!rl) 3744 return (EINVAL); 3745 3746 rle = resource_list_find(rl, type, rid); 3747 if (!rle) 3748 return (ENOENT); 3749 3750 if (startp) 3751 *startp = rle->start; 3752 if (countp) 3753 *countp = rle->count; 3754 3755 return (0); 3756 } 3757 3758 /** 3759 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3760 * 3761 * This implementation of BUS_SET_RESOURCE() uses the 3762 * resource_list_add() function to do most of the work. It calls 3763 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3764 * edit. 3765 */ 3766 int 3767 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3768 u_long start, u_long count) 3769 { 3770 struct resource_list * rl = NULL; 3771 3772 rl = BUS_GET_RESOURCE_LIST(dev, child); 3773 if (!rl) 3774 return (EINVAL); 3775 3776 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3777 3778 return (0); 3779 } 3780 3781 /** 3782 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3783 * 3784 * This implementation of BUS_DELETE_RESOURCE() uses the 3785 * resource_list_delete() function to do most of the work. It calls 3786 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3787 * edit. 3788 */ 3789 void 3790 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3791 { 3792 struct resource_list * rl = NULL; 3793 3794 rl = BUS_GET_RESOURCE_LIST(dev, child); 3795 if (!rl) 3796 return; 3797 3798 resource_list_delete(rl, type, rid); 3799 3800 return; 3801 } 3802 3803 /** 3804 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3805 * 3806 * This implementation of BUS_RELEASE_RESOURCE() uses the 3807 * resource_list_release() function to do most of the work. It calls 3808 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3809 */ 3810 int 3811 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3812 int rid, struct resource *r) 3813 { 3814 struct resource_list * rl = NULL; 3815 3816 if (device_get_parent(child) != dev) 3817 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3818 type, rid, r)); 3819 3820 rl = BUS_GET_RESOURCE_LIST(dev, child); 3821 if (!rl) 3822 return (EINVAL); 3823 3824 return (resource_list_release(rl, dev, child, type, rid, r)); 3825 } 3826 3827 /** 3828 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3829 * 3830 * This implementation of BUS_ALLOC_RESOURCE() uses the 3831 * resource_list_alloc() function to do most of the work. It calls 3832 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3833 */ 3834 struct resource * 3835 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3836 int *rid, u_long start, u_long end, u_long count, u_int flags) 3837 { 3838 struct resource_list * rl = NULL; 3839 3840 if (device_get_parent(child) != dev) 3841 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 3842 type, rid, start, end, count, flags)); 3843 3844 rl = BUS_GET_RESOURCE_LIST(dev, child); 3845 if (!rl) 3846 return (NULL); 3847 3848 return (resource_list_alloc(rl, dev, child, type, rid, 3849 start, end, count, flags)); 3850 } 3851 3852 /** 3853 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3854 * 3855 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3856 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3857 */ 3858 int 3859 bus_generic_child_present(device_t dev, device_t child) 3860 { 3861 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3862 } 3863 3864 /* 3865 * Some convenience functions to make it easier for drivers to use the 3866 * resource-management functions. All these really do is hide the 3867 * indirection through the parent's method table, making for slightly 3868 * less-wordy code. In the future, it might make sense for this code 3869 * to maintain some sort of a list of resources allocated by each device. 3870 */ 3871 3872 int 3873 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3874 struct resource **res) 3875 { 3876 int i; 3877 3878 for (i = 0; rs[i].type != -1; i++) 3879 res[i] = NULL; 3880 for (i = 0; rs[i].type != -1; i++) { 3881 res[i] = bus_alloc_resource_any(dev, 3882 rs[i].type, &rs[i].rid, rs[i].flags); 3883 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3884 bus_release_resources(dev, rs, res); 3885 return (ENXIO); 3886 } 3887 } 3888 return (0); 3889 } 3890 3891 void 3892 bus_release_resources(device_t dev, const struct resource_spec *rs, 3893 struct resource **res) 3894 { 3895 int i; 3896 3897 for (i = 0; rs[i].type != -1; i++) 3898 if (res[i] != NULL) { 3899 bus_release_resource( 3900 dev, rs[i].type, rs[i].rid, res[i]); 3901 res[i] = NULL; 3902 } 3903 } 3904 3905 /** 3906 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3907 * 3908 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3909 * parent of @p dev. 3910 */ 3911 struct resource * 3912 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3913 u_long count, u_int flags) 3914 { 3915 if (dev->parent == NULL) 3916 return (NULL); 3917 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3918 count, flags)); 3919 } 3920 3921 /** 3922 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3923 * 3924 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3925 * parent of @p dev. 3926 */ 3927 int 3928 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3929 { 3930 if (dev->parent == NULL) 3931 return (EINVAL); 3932 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3933 } 3934 3935 /** 3936 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3937 * 3938 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3939 * parent of @p dev. 3940 */ 3941 int 3942 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3943 { 3944 if (dev->parent == NULL) 3945 return (EINVAL); 3946 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3947 } 3948 3949 /** 3950 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3951 * 3952 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3953 * parent of @p dev. 3954 */ 3955 int 3956 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3957 { 3958 if (dev->parent == NULL) 3959 return (EINVAL); 3960 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3961 } 3962 3963 /** 3964 * @brief Wrapper function for BUS_SETUP_INTR(). 3965 * 3966 * This function simply calls the BUS_SETUP_INTR() method of the 3967 * parent of @p dev. 3968 */ 3969 int 3970 bus_setup_intr(device_t dev, struct resource *r, int flags, 3971 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3972 { 3973 int error; 3974 3975 if (dev->parent == NULL) 3976 return (EINVAL); 3977 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3978 arg, cookiep); 3979 if (error != 0) 3980 return (error); 3981 if (handler != NULL && !(flags & INTR_MPSAFE)) 3982 device_printf(dev, "[GIANT-LOCKED]\n"); 3983 if (bootverbose && (flags & INTR_MPSAFE)) 3984 device_printf(dev, "[MPSAFE]\n"); 3985 if (filter != NULL) { 3986 if (handler == NULL) 3987 device_printf(dev, "[FILTER]\n"); 3988 else 3989 device_printf(dev, "[FILTER+ITHREAD]\n"); 3990 } else 3991 device_printf(dev, "[ITHREAD]\n"); 3992 return (0); 3993 } 3994 3995 /** 3996 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3997 * 3998 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3999 * parent of @p dev. 4000 */ 4001 int 4002 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4003 { 4004 if (dev->parent == NULL) 4005 return (EINVAL); 4006 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4007 } 4008 4009 /** 4010 * @brief Wrapper function for BUS_BIND_INTR(). 4011 * 4012 * This function simply calls the BUS_BIND_INTR() method of the 4013 * parent of @p dev. 4014 */ 4015 int 4016 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4017 { 4018 if (dev->parent == NULL) 4019 return (EINVAL); 4020 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4021 } 4022 4023 /** 4024 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4025 * 4026 * This function first formats the requested description into a 4027 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4028 * the parent of @p dev. 4029 */ 4030 int 4031 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4032 const char *fmt, ...) 4033 { 4034 va_list ap; 4035 char descr[MAXCOMLEN + 1]; 4036 4037 if (dev->parent == NULL) 4038 return (EINVAL); 4039 va_start(ap, fmt); 4040 vsnprintf(descr, sizeof(descr), fmt, ap); 4041 va_end(ap); 4042 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4043 } 4044 4045 /** 4046 * @brief Wrapper function for BUS_SET_RESOURCE(). 4047 * 4048 * This function simply calls the BUS_SET_RESOURCE() method of the 4049 * parent of @p dev. 4050 */ 4051 int 4052 bus_set_resource(device_t dev, int type, int rid, 4053 u_long start, u_long count) 4054 { 4055 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4056 start, count)); 4057 } 4058 4059 /** 4060 * @brief Wrapper function for BUS_GET_RESOURCE(). 4061 * 4062 * This function simply calls the BUS_GET_RESOURCE() method of the 4063 * parent of @p dev. 4064 */ 4065 int 4066 bus_get_resource(device_t dev, int type, int rid, 4067 u_long *startp, u_long *countp) 4068 { 4069 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4070 startp, countp)); 4071 } 4072 4073 /** 4074 * @brief Wrapper function for BUS_GET_RESOURCE(). 4075 * 4076 * This function simply calls the BUS_GET_RESOURCE() method of the 4077 * parent of @p dev and returns the start value. 4078 */ 4079 u_long 4080 bus_get_resource_start(device_t dev, int type, int rid) 4081 { 4082 u_long start, count; 4083 int error; 4084 4085 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4086 &start, &count); 4087 if (error) 4088 return (0); 4089 return (start); 4090 } 4091 4092 /** 4093 * @brief Wrapper function for BUS_GET_RESOURCE(). 4094 * 4095 * This function simply calls the BUS_GET_RESOURCE() method of the 4096 * parent of @p dev and returns the count value. 4097 */ 4098 u_long 4099 bus_get_resource_count(device_t dev, int type, int rid) 4100 { 4101 u_long start, count; 4102 int error; 4103 4104 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4105 &start, &count); 4106 if (error) 4107 return (0); 4108 return (count); 4109 } 4110 4111 /** 4112 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4113 * 4114 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4115 * parent of @p dev. 4116 */ 4117 void 4118 bus_delete_resource(device_t dev, int type, int rid) 4119 { 4120 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4121 } 4122 4123 /** 4124 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4125 * 4126 * This function simply calls the BUS_CHILD_PRESENT() method of the 4127 * parent of @p dev. 4128 */ 4129 int 4130 bus_child_present(device_t child) 4131 { 4132 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4133 } 4134 4135 /** 4136 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4137 * 4138 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4139 * parent of @p dev. 4140 */ 4141 int 4142 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4143 { 4144 device_t parent; 4145 4146 parent = device_get_parent(child); 4147 if (parent == NULL) { 4148 *buf = '\0'; 4149 return (0); 4150 } 4151 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4152 } 4153 4154 /** 4155 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4156 * 4157 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4158 * parent of @p dev. 4159 */ 4160 int 4161 bus_child_location_str(device_t child, char *buf, size_t buflen) 4162 { 4163 device_t parent; 4164 4165 parent = device_get_parent(child); 4166 if (parent == NULL) { 4167 *buf = '\0'; 4168 return (0); 4169 } 4170 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4171 } 4172 4173 /** 4174 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4175 * 4176 * This function simply calls the BUS_GET_DMA_TAG() method of the 4177 * parent of @p dev. 4178 */ 4179 bus_dma_tag_t 4180 bus_get_dma_tag(device_t dev) 4181 { 4182 device_t parent; 4183 4184 parent = device_get_parent(dev); 4185 if (parent == NULL) 4186 return (NULL); 4187 return (BUS_GET_DMA_TAG(parent, dev)); 4188 } 4189 4190 /* Resume all devices and then notify userland that we're up again. */ 4191 static int 4192 root_resume(device_t dev) 4193 { 4194 int error; 4195 4196 error = bus_generic_resume(dev); 4197 if (error == 0) 4198 devctl_notify("kern", "power", "resume", NULL); 4199 return (error); 4200 } 4201 4202 static int 4203 root_print_child(device_t dev, device_t child) 4204 { 4205 int retval = 0; 4206 4207 retval += bus_print_child_header(dev, child); 4208 retval += printf("\n"); 4209 4210 return (retval); 4211 } 4212 4213 static int 4214 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4215 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4216 { 4217 /* 4218 * If an interrupt mapping gets to here something bad has happened. 4219 */ 4220 panic("root_setup_intr"); 4221 } 4222 4223 /* 4224 * If we get here, assume that the device is permanant and really is 4225 * present in the system. Removable bus drivers are expected to intercept 4226 * this call long before it gets here. We return -1 so that drivers that 4227 * really care can check vs -1 or some ERRNO returned higher in the food 4228 * chain. 4229 */ 4230 static int 4231 root_child_present(device_t dev, device_t child) 4232 { 4233 return (-1); 4234 } 4235 4236 static kobj_method_t root_methods[] = { 4237 /* Device interface */ 4238 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4239 KOBJMETHOD(device_suspend, bus_generic_suspend), 4240 KOBJMETHOD(device_resume, root_resume), 4241 4242 /* Bus interface */ 4243 KOBJMETHOD(bus_print_child, root_print_child), 4244 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4245 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4246 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4247 KOBJMETHOD(bus_child_present, root_child_present), 4248 4249 KOBJMETHOD_END 4250 }; 4251 4252 static driver_t root_driver = { 4253 "root", 4254 root_methods, 4255 1, /* no softc */ 4256 }; 4257 4258 device_t root_bus; 4259 devclass_t root_devclass; 4260 4261 static int 4262 root_bus_module_handler(module_t mod, int what, void* arg) 4263 { 4264 switch (what) { 4265 case MOD_LOAD: 4266 TAILQ_INIT(&bus_data_devices); 4267 kobj_class_compile((kobj_class_t) &root_driver); 4268 root_bus = make_device(NULL, "root", 0); 4269 root_bus->desc = "System root bus"; 4270 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4271 root_bus->driver = &root_driver; 4272 root_bus->state = DS_ATTACHED; 4273 root_devclass = devclass_find_internal("root", NULL, FALSE); 4274 devinit(); 4275 return (0); 4276 4277 case MOD_SHUTDOWN: 4278 device_shutdown(root_bus); 4279 return (0); 4280 default: 4281 return (EOPNOTSUPP); 4282 } 4283 4284 return (0); 4285 } 4286 4287 static moduledata_t root_bus_mod = { 4288 "rootbus", 4289 root_bus_module_handler, 4290 NULL 4291 }; 4292 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4293 4294 /** 4295 * @brief Automatically configure devices 4296 * 4297 * This function begins the autoconfiguration process by calling 4298 * device_probe_and_attach() for each child of the @c root0 device. 4299 */ 4300 void 4301 root_bus_configure(void) 4302 { 4303 4304 PDEBUG((".")); 4305 4306 /* Eventually this will be split up, but this is sufficient for now. */ 4307 bus_set_pass(BUS_PASS_DEFAULT); 4308 } 4309 4310 /** 4311 * @brief Module handler for registering device drivers 4312 * 4313 * This module handler is used to automatically register device 4314 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4315 * devclass_add_driver() for the driver described by the 4316 * driver_module_data structure pointed to by @p arg 4317 */ 4318 int 4319 driver_module_handler(module_t mod, int what, void *arg) 4320 { 4321 struct driver_module_data *dmd; 4322 devclass_t bus_devclass; 4323 kobj_class_t driver; 4324 int error, pass; 4325 4326 dmd = (struct driver_module_data *)arg; 4327 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4328 error = 0; 4329 4330 switch (what) { 4331 case MOD_LOAD: 4332 if (dmd->dmd_chainevh) 4333 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4334 4335 pass = dmd->dmd_pass; 4336 driver = dmd->dmd_driver; 4337 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4338 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4339 error = devclass_add_driver(bus_devclass, driver, pass, 4340 dmd->dmd_devclass); 4341 break; 4342 4343 case MOD_UNLOAD: 4344 PDEBUG(("Unloading module: driver %s from bus %s", 4345 DRIVERNAME(dmd->dmd_driver), 4346 dmd->dmd_busname)); 4347 error = devclass_delete_driver(bus_devclass, 4348 dmd->dmd_driver); 4349 4350 if (!error && dmd->dmd_chainevh) 4351 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4352 break; 4353 case MOD_QUIESCE: 4354 PDEBUG(("Quiesce module: driver %s from bus %s", 4355 DRIVERNAME(dmd->dmd_driver), 4356 dmd->dmd_busname)); 4357 error = devclass_quiesce_driver(bus_devclass, 4358 dmd->dmd_driver); 4359 4360 if (!error && dmd->dmd_chainevh) 4361 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4362 break; 4363 default: 4364 error = EOPNOTSUPP; 4365 break; 4366 } 4367 4368 return (error); 4369 } 4370 4371 /** 4372 * @brief Enumerate all hinted devices for this bus. 4373 * 4374 * Walks through the hints for this bus and calls the bus_hinted_child 4375 * routine for each one it fines. It searches first for the specific 4376 * bus that's being probed for hinted children (eg isa0), and then for 4377 * generic children (eg isa). 4378 * 4379 * @param dev bus device to enumerate 4380 */ 4381 void 4382 bus_enumerate_hinted_children(device_t bus) 4383 { 4384 int i; 4385 const char *dname, *busname; 4386 int dunit; 4387 4388 /* 4389 * enumerate all devices on the specific bus 4390 */ 4391 busname = device_get_nameunit(bus); 4392 i = 0; 4393 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4394 BUS_HINTED_CHILD(bus, dname, dunit); 4395 4396 /* 4397 * and all the generic ones. 4398 */ 4399 busname = device_get_name(bus); 4400 i = 0; 4401 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4402 BUS_HINTED_CHILD(bus, dname, dunit); 4403 } 4404 4405 #ifdef BUS_DEBUG 4406 4407 /* the _short versions avoid iteration by not calling anything that prints 4408 * more than oneliners. I love oneliners. 4409 */ 4410 4411 static void 4412 print_device_short(device_t dev, int indent) 4413 { 4414 if (!dev) 4415 return; 4416 4417 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4418 dev->unit, dev->desc, 4419 (dev->parent? "":"no "), 4420 (TAILQ_EMPTY(&dev->children)? "no ":""), 4421 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4422 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4423 (dev->flags&DF_WILDCARD? "wildcard,":""), 4424 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4425 (dev->flags&DF_REBID? "rebiddable,":""), 4426 (dev->ivars? "":"no "), 4427 (dev->softc? "":"no "), 4428 dev->busy)); 4429 } 4430 4431 static void 4432 print_device(device_t dev, int indent) 4433 { 4434 if (!dev) 4435 return; 4436 4437 print_device_short(dev, indent); 4438 4439 indentprintf(("Parent:\n")); 4440 print_device_short(dev->parent, indent+1); 4441 indentprintf(("Driver:\n")); 4442 print_driver_short(dev->driver, indent+1); 4443 indentprintf(("Devclass:\n")); 4444 print_devclass_short(dev->devclass, indent+1); 4445 } 4446 4447 void 4448 print_device_tree_short(device_t dev, int indent) 4449 /* print the device and all its children (indented) */ 4450 { 4451 device_t child; 4452 4453 if (!dev) 4454 return; 4455 4456 print_device_short(dev, indent); 4457 4458 TAILQ_FOREACH(child, &dev->children, link) { 4459 print_device_tree_short(child, indent+1); 4460 } 4461 } 4462 4463 void 4464 print_device_tree(device_t dev, int indent) 4465 /* print the device and all its children (indented) */ 4466 { 4467 device_t child; 4468 4469 if (!dev) 4470 return; 4471 4472 print_device(dev, indent); 4473 4474 TAILQ_FOREACH(child, &dev->children, link) { 4475 print_device_tree(child, indent+1); 4476 } 4477 } 4478 4479 static void 4480 print_driver_short(driver_t *driver, int indent) 4481 { 4482 if (!driver) 4483 return; 4484 4485 indentprintf(("driver %s: softc size = %zd\n", 4486 driver->name, driver->size)); 4487 } 4488 4489 static void 4490 print_driver(driver_t *driver, int indent) 4491 { 4492 if (!driver) 4493 return; 4494 4495 print_driver_short(driver, indent); 4496 } 4497 4498 4499 static void 4500 print_driver_list(driver_list_t drivers, int indent) 4501 { 4502 driverlink_t driver; 4503 4504 TAILQ_FOREACH(driver, &drivers, link) { 4505 print_driver(driver->driver, indent); 4506 } 4507 } 4508 4509 static void 4510 print_devclass_short(devclass_t dc, int indent) 4511 { 4512 if ( !dc ) 4513 return; 4514 4515 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4516 } 4517 4518 static void 4519 print_devclass(devclass_t dc, int indent) 4520 { 4521 int i; 4522 4523 if ( !dc ) 4524 return; 4525 4526 print_devclass_short(dc, indent); 4527 indentprintf(("Drivers:\n")); 4528 print_driver_list(dc->drivers, indent+1); 4529 4530 indentprintf(("Devices:\n")); 4531 for (i = 0; i < dc->maxunit; i++) 4532 if (dc->devices[i]) 4533 print_device(dc->devices[i], indent+1); 4534 } 4535 4536 void 4537 print_devclass_list_short(void) 4538 { 4539 devclass_t dc; 4540 4541 printf("Short listing of devclasses, drivers & devices:\n"); 4542 TAILQ_FOREACH(dc, &devclasses, link) { 4543 print_devclass_short(dc, 0); 4544 } 4545 } 4546 4547 void 4548 print_devclass_list(void) 4549 { 4550 devclass_t dc; 4551 4552 printf("Full listing of devclasses, drivers & devices:\n"); 4553 TAILQ_FOREACH(dc, &devclasses, link) { 4554 print_devclass(dc, 0); 4555 } 4556 } 4557 4558 #endif 4559 4560 /* 4561 * User-space access to the device tree. 4562 * 4563 * We implement a small set of nodes: 4564 * 4565 * hw.bus Single integer read method to obtain the 4566 * current generation count. 4567 * hw.bus.devices Reads the entire device tree in flat space. 4568 * hw.bus.rman Resource manager interface 4569 * 4570 * We might like to add the ability to scan devclasses and/or drivers to 4571 * determine what else is currently loaded/available. 4572 */ 4573 4574 static int 4575 sysctl_bus(SYSCTL_HANDLER_ARGS) 4576 { 4577 struct u_businfo ubus; 4578 4579 ubus.ub_version = BUS_USER_VERSION; 4580 ubus.ub_generation = bus_data_generation; 4581 4582 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4583 } 4584 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4585 "bus-related data"); 4586 4587 static int 4588 sysctl_devices(SYSCTL_HANDLER_ARGS) 4589 { 4590 int *name = (int *)arg1; 4591 u_int namelen = arg2; 4592 int index; 4593 struct device *dev; 4594 struct u_device udev; /* XXX this is a bit big */ 4595 int error; 4596 4597 if (namelen != 2) 4598 return (EINVAL); 4599 4600 if (bus_data_generation_check(name[0])) 4601 return (EINVAL); 4602 4603 index = name[1]; 4604 4605 /* 4606 * Scan the list of devices, looking for the requested index. 4607 */ 4608 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4609 if (index-- == 0) 4610 break; 4611 } 4612 if (dev == NULL) 4613 return (ENOENT); 4614 4615 /* 4616 * Populate the return array. 4617 */ 4618 bzero(&udev, sizeof(udev)); 4619 udev.dv_handle = (uintptr_t)dev; 4620 udev.dv_parent = (uintptr_t)dev->parent; 4621 if (dev->nameunit != NULL) 4622 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4623 if (dev->desc != NULL) 4624 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4625 if (dev->driver != NULL && dev->driver->name != NULL) 4626 strlcpy(udev.dv_drivername, dev->driver->name, 4627 sizeof(udev.dv_drivername)); 4628 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4629 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4630 udev.dv_devflags = dev->devflags; 4631 udev.dv_flags = dev->flags; 4632 udev.dv_state = dev->state; 4633 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4634 return (error); 4635 } 4636 4637 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4638 "system device tree"); 4639 4640 int 4641 bus_data_generation_check(int generation) 4642 { 4643 if (generation != bus_data_generation) 4644 return (1); 4645 4646 /* XXX generate optimised lists here? */ 4647 return (0); 4648 } 4649 4650 void 4651 bus_data_generation_update(void) 4652 { 4653 bus_data_generation++; 4654 } 4655 4656 int 4657 bus_free_resource(device_t dev, int type, struct resource *r) 4658 { 4659 if (r == NULL) 4660 return (0); 4661 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4662 } 4663