1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of device. 116 */ 117 struct device { 118 /* 119 * A device is a kernel object. The first field must be the 120 * current ops table for the object. 121 */ 122 KOBJ_FIELDS; 123 124 /* 125 * Device hierarchy. 126 */ 127 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 128 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 129 device_t parent; /**< parent of this device */ 130 device_list_t children; /**< list of child devices */ 131 132 /* 133 * Details of this device. 134 */ 135 driver_t *driver; /**< current driver */ 136 devclass_t devclass; /**< current device class */ 137 int unit; /**< current unit number */ 138 char* nameunit; /**< name+unit e.g. foodev0 */ 139 char* desc; /**< driver specific description */ 140 int busy; /**< count of calls to device_busy() */ 141 device_state_t state; /**< current device state */ 142 uint32_t devflags; /**< api level flags for device_get_flags() */ 143 u_int flags; /**< internal device flags */ 144 u_int order; /**< order from device_add_child_ordered() */ 145 void *ivars; /**< instance variables */ 146 void *softc; /**< current driver's variables */ 147 148 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 149 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 150 }; 151 152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 154 155 EVENTHANDLER_LIST_DEFINE(device_attach); 156 EVENTHANDLER_LIST_DEFINE(device_detach); 157 EVENTHANDLER_LIST_DEFINE(dev_lookup); 158 159 static void devctl2_init(void); 160 static bool device_frozen; 161 162 #define DRIVERNAME(d) ((d)? d->name : "no driver") 163 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 164 165 #ifdef BUS_DEBUG 166 167 static int bus_debug = 1; 168 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 169 "Bus debug level"); 170 171 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 172 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 173 174 /** 175 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 176 * prevent syslog from deleting initial spaces 177 */ 178 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 179 180 static void print_device_short(device_t dev, int indent); 181 static void print_device(device_t dev, int indent); 182 void print_device_tree_short(device_t dev, int indent); 183 void print_device_tree(device_t dev, int indent); 184 static void print_driver_short(driver_t *driver, int indent); 185 static void print_driver(driver_t *driver, int indent); 186 static void print_driver_list(driver_list_t drivers, int indent); 187 static void print_devclass_short(devclass_t dc, int indent); 188 static void print_devclass(devclass_t dc, int indent); 189 void print_devclass_list_short(void); 190 void print_devclass_list(void); 191 192 #else 193 /* Make the compiler ignore the function calls */ 194 #define PDEBUG(a) /* nop */ 195 #define DEVICENAME(d) /* nop */ 196 197 #define print_device_short(d,i) /* nop */ 198 #define print_device(d,i) /* nop */ 199 #define print_device_tree_short(d,i) /* nop */ 200 #define print_device_tree(d,i) /* nop */ 201 #define print_driver_short(d,i) /* nop */ 202 #define print_driver(d,i) /* nop */ 203 #define print_driver_list(d,i) /* nop */ 204 #define print_devclass_short(d,i) /* nop */ 205 #define print_devclass(d,i) /* nop */ 206 #define print_devclass_list_short() /* nop */ 207 #define print_devclass_list() /* nop */ 208 #endif 209 210 /* 211 * dev sysctl tree 212 */ 213 214 enum { 215 DEVCLASS_SYSCTL_PARENT, 216 }; 217 218 static int 219 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 220 { 221 devclass_t dc = (devclass_t)arg1; 222 const char *value; 223 224 switch (arg2) { 225 case DEVCLASS_SYSCTL_PARENT: 226 value = dc->parent ? dc->parent->name : ""; 227 break; 228 default: 229 return (EINVAL); 230 } 231 return (SYSCTL_OUT_STR(req, value)); 232 } 233 234 static void 235 devclass_sysctl_init(devclass_t dc) 236 { 237 if (dc->sysctl_tree != NULL) 238 return; 239 sysctl_ctx_init(&dc->sysctl_ctx); 240 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 241 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 242 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 243 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 244 OID_AUTO, "%parent", 245 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 246 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 247 "parent class"); 248 } 249 250 enum { 251 DEVICE_SYSCTL_DESC, 252 DEVICE_SYSCTL_DRIVER, 253 DEVICE_SYSCTL_LOCATION, 254 DEVICE_SYSCTL_PNPINFO, 255 DEVICE_SYSCTL_PARENT, 256 }; 257 258 static int 259 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 260 { 261 device_t dev = (device_t)arg1; 262 const char *value; 263 char *buf; 264 int error; 265 266 buf = NULL; 267 switch (arg2) { 268 case DEVICE_SYSCTL_DESC: 269 value = dev->desc ? dev->desc : ""; 270 break; 271 case DEVICE_SYSCTL_DRIVER: 272 value = dev->driver ? dev->driver->name : ""; 273 break; 274 case DEVICE_SYSCTL_LOCATION: 275 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 276 bus_child_location_str(dev, buf, 1024); 277 break; 278 case DEVICE_SYSCTL_PNPINFO: 279 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 280 bus_child_pnpinfo_str(dev, buf, 1024); 281 break; 282 case DEVICE_SYSCTL_PARENT: 283 value = dev->parent ? dev->parent->nameunit : ""; 284 break; 285 default: 286 return (EINVAL); 287 } 288 error = SYSCTL_OUT_STR(req, value); 289 if (buf != NULL) 290 free(buf, M_BUS); 291 return (error); 292 } 293 294 static void 295 device_sysctl_init(device_t dev) 296 { 297 devclass_t dc = dev->devclass; 298 int domain; 299 300 if (dev->sysctl_tree != NULL) 301 return; 302 devclass_sysctl_init(dc); 303 sysctl_ctx_init(&dev->sysctl_ctx); 304 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 305 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 306 dev->nameunit + strlen(dc->name), 307 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 310 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 311 "device description"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%driver", 314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 315 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 316 "device driver name"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%location", 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 320 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 321 "device location relative to parent"); 322 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 323 OID_AUTO, "%pnpinfo", 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 325 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 326 "device identification"); 327 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 328 OID_AUTO, "%parent", 329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 330 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 331 "parent device"); 332 if (bus_get_domain(dev, &domain) == 0) 333 SYSCTL_ADD_INT(&dev->sysctl_ctx, 334 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 335 CTLFLAG_RD, NULL, domain, "NUMA domain"); 336 } 337 338 static void 339 device_sysctl_update(device_t dev) 340 { 341 devclass_t dc = dev->devclass; 342 343 if (dev->sysctl_tree == NULL) 344 return; 345 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 346 } 347 348 static void 349 device_sysctl_fini(device_t dev) 350 { 351 if (dev->sysctl_tree == NULL) 352 return; 353 sysctl_ctx_free(&dev->sysctl_ctx); 354 dev->sysctl_tree = NULL; 355 } 356 357 /* 358 * /dev/devctl implementation 359 */ 360 361 /* 362 * This design allows only one reader for /dev/devctl. This is not desirable 363 * in the long run, but will get a lot of hair out of this implementation. 364 * Maybe we should make this device a clonable device. 365 * 366 * Also note: we specifically do not attach a device to the device_t tree 367 * to avoid potential chicken and egg problems. One could argue that all 368 * of this belongs to the root node. One could also further argue that the 369 * sysctl interface that we have not might more properly be an ioctl 370 * interface, but at this stage of the game, I'm not inclined to rock that 371 * boat. 372 * 373 * I'm also not sure that the SIGIO support is done correctly or not, as 374 * I copied it from a driver that had SIGIO support that likely hasn't been 375 * tested since 3.4 or 2.2.8! 376 */ 377 378 /* Deprecated way to adjust queue length */ 379 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 381 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 382 "devctl disable -- deprecated"); 383 384 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 385 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 386 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 387 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 388 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 389 390 static d_open_t devopen; 391 static d_close_t devclose; 392 static d_read_t devread; 393 static d_ioctl_t devioctl; 394 static d_poll_t devpoll; 395 static d_kqfilter_t devkqfilter; 396 397 static struct cdevsw dev_cdevsw = { 398 .d_version = D_VERSION, 399 .d_open = devopen, 400 .d_close = devclose, 401 .d_read = devread, 402 .d_ioctl = devioctl, 403 .d_poll = devpoll, 404 .d_kqfilter = devkqfilter, 405 .d_name = "devctl", 406 }; 407 408 struct dev_event_info 409 { 410 char *dei_data; 411 TAILQ_ENTRY(dev_event_info) dei_link; 412 }; 413 414 TAILQ_HEAD(devq, dev_event_info); 415 416 static struct dev_softc 417 { 418 int inuse; 419 int nonblock; 420 int queued; 421 int async; 422 struct mtx mtx; 423 struct cv cv; 424 struct selinfo sel; 425 struct devq devq; 426 struct sigio *sigio; 427 } devsoftc; 428 429 static void filt_devctl_detach(struct knote *kn); 430 static int filt_devctl_read(struct knote *kn, long hint); 431 432 struct filterops devctl_rfiltops = { 433 .f_isfd = 1, 434 .f_detach = filt_devctl_detach, 435 .f_event = filt_devctl_read, 436 }; 437 438 static struct cdev *devctl_dev; 439 440 static void 441 devinit(void) 442 { 443 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 444 UID_ROOT, GID_WHEEL, 0600, "devctl"); 445 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 446 cv_init(&devsoftc.cv, "dev cv"); 447 TAILQ_INIT(&devsoftc.devq); 448 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 449 devctl2_init(); 450 } 451 452 static int 453 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 454 { 455 mtx_lock(&devsoftc.mtx); 456 if (devsoftc.inuse) { 457 mtx_unlock(&devsoftc.mtx); 458 return (EBUSY); 459 } 460 /* move to init */ 461 devsoftc.inuse = 1; 462 mtx_unlock(&devsoftc.mtx); 463 return (0); 464 } 465 466 static int 467 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 468 { 469 mtx_lock(&devsoftc.mtx); 470 devsoftc.inuse = 0; 471 devsoftc.nonblock = 0; 472 devsoftc.async = 0; 473 cv_broadcast(&devsoftc.cv); 474 funsetown(&devsoftc.sigio); 475 mtx_unlock(&devsoftc.mtx); 476 return (0); 477 } 478 479 /* 480 * The read channel for this device is used to report changes to 481 * userland in realtime. We are required to free the data as well as 482 * the n1 object because we allocate them separately. Also note that 483 * we return one record at a time. If you try to read this device a 484 * character at a time, you will lose the rest of the data. Listening 485 * programs are expected to cope. 486 */ 487 static int 488 devread(struct cdev *dev, struct uio *uio, int ioflag) 489 { 490 struct dev_event_info *n1; 491 int rv; 492 493 mtx_lock(&devsoftc.mtx); 494 while (TAILQ_EMPTY(&devsoftc.devq)) { 495 if (devsoftc.nonblock) { 496 mtx_unlock(&devsoftc.mtx); 497 return (EAGAIN); 498 } 499 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 500 if (rv) { 501 /* 502 * Need to translate ERESTART to EINTR here? -- jake 503 */ 504 mtx_unlock(&devsoftc.mtx); 505 return (rv); 506 } 507 } 508 n1 = TAILQ_FIRST(&devsoftc.devq); 509 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 510 devsoftc.queued--; 511 mtx_unlock(&devsoftc.mtx); 512 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 513 free(n1->dei_data, M_BUS); 514 free(n1, M_BUS); 515 return (rv); 516 } 517 518 static int 519 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 520 { 521 switch (cmd) { 522 case FIONBIO: 523 if (*(int*)data) 524 devsoftc.nonblock = 1; 525 else 526 devsoftc.nonblock = 0; 527 return (0); 528 case FIOASYNC: 529 if (*(int*)data) 530 devsoftc.async = 1; 531 else 532 devsoftc.async = 0; 533 return (0); 534 case FIOSETOWN: 535 return fsetown(*(int *)data, &devsoftc.sigio); 536 case FIOGETOWN: 537 *(int *)data = fgetown(&devsoftc.sigio); 538 return (0); 539 540 /* (un)Support for other fcntl() calls. */ 541 case FIOCLEX: 542 case FIONCLEX: 543 case FIONREAD: 544 default: 545 break; 546 } 547 return (ENOTTY); 548 } 549 550 static int 551 devpoll(struct cdev *dev, int events, struct thread *td) 552 { 553 int revents = 0; 554 555 mtx_lock(&devsoftc.mtx); 556 if (events & (POLLIN | POLLRDNORM)) { 557 if (!TAILQ_EMPTY(&devsoftc.devq)) 558 revents = events & (POLLIN | POLLRDNORM); 559 else 560 selrecord(td, &devsoftc.sel); 561 } 562 mtx_unlock(&devsoftc.mtx); 563 564 return (revents); 565 } 566 567 static int 568 devkqfilter(struct cdev *dev, struct knote *kn) 569 { 570 int error; 571 572 if (kn->kn_filter == EVFILT_READ) { 573 kn->kn_fop = &devctl_rfiltops; 574 knlist_add(&devsoftc.sel.si_note, kn, 0); 575 error = 0; 576 } else 577 error = EINVAL; 578 return (error); 579 } 580 581 static void 582 filt_devctl_detach(struct knote *kn) 583 { 584 knlist_remove(&devsoftc.sel.si_note, kn, 0); 585 } 586 587 static int 588 filt_devctl_read(struct knote *kn, long hint) 589 { 590 kn->kn_data = devsoftc.queued; 591 return (kn->kn_data != 0); 592 } 593 594 /** 595 * @brief Return whether the userland process is running 596 */ 597 boolean_t 598 devctl_process_running(void) 599 { 600 return (devsoftc.inuse == 1); 601 } 602 603 /** 604 * @brief Queue data to be read from the devctl device 605 * 606 * Generic interface to queue data to the devctl device. It is 607 * assumed that @p data is properly formatted. It is further assumed 608 * that @p data is allocated using the M_BUS malloc type. 609 */ 610 void 611 devctl_queue_data_f(char *data, int flags) 612 { 613 struct dev_event_info *n1 = NULL, *n2 = NULL; 614 615 if (strlen(data) == 0) 616 goto out; 617 if (devctl_queue_length == 0) 618 goto out; 619 n1 = malloc(sizeof(*n1), M_BUS, flags); 620 if (n1 == NULL) 621 goto out; 622 n1->dei_data = data; 623 mtx_lock(&devsoftc.mtx); 624 if (devctl_queue_length == 0) { 625 mtx_unlock(&devsoftc.mtx); 626 free(n1->dei_data, M_BUS); 627 free(n1, M_BUS); 628 return; 629 } 630 /* Leave at least one spot in the queue... */ 631 while (devsoftc.queued > devctl_queue_length - 1) { 632 n2 = TAILQ_FIRST(&devsoftc.devq); 633 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 634 free(n2->dei_data, M_BUS); 635 free(n2, M_BUS); 636 devsoftc.queued--; 637 } 638 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 639 devsoftc.queued++; 640 cv_broadcast(&devsoftc.cv); 641 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 642 mtx_unlock(&devsoftc.mtx); 643 selwakeup(&devsoftc.sel); 644 if (devsoftc.async && devsoftc.sigio != NULL) 645 pgsigio(&devsoftc.sigio, SIGIO, 0); 646 return; 647 out: 648 /* 649 * We have to free data on all error paths since the caller 650 * assumes it will be free'd when this item is dequeued. 651 */ 652 free(data, M_BUS); 653 return; 654 } 655 656 void 657 devctl_queue_data(char *data) 658 { 659 devctl_queue_data_f(data, M_NOWAIT); 660 } 661 662 /** 663 * @brief Send a 'notification' to userland, using standard ways 664 */ 665 void 666 devctl_notify_f(const char *system, const char *subsystem, const char *type, 667 const char *data, int flags) 668 { 669 int len = 0; 670 char *msg; 671 672 if (system == NULL) 673 return; /* BOGUS! Must specify system. */ 674 if (subsystem == NULL) 675 return; /* BOGUS! Must specify subsystem. */ 676 if (type == NULL) 677 return; /* BOGUS! Must specify type. */ 678 len += strlen(" system=") + strlen(system); 679 len += strlen(" subsystem=") + strlen(subsystem); 680 len += strlen(" type=") + strlen(type); 681 /* add in the data message plus newline. */ 682 if (data != NULL) 683 len += strlen(data); 684 len += 3; /* '!', '\n', and NUL */ 685 msg = malloc(len, M_BUS, flags); 686 if (msg == NULL) 687 return; /* Drop it on the floor */ 688 if (data != NULL) 689 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 690 system, subsystem, type, data); 691 else 692 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 693 system, subsystem, type); 694 devctl_queue_data_f(msg, flags); 695 } 696 697 void 698 devctl_notify(const char *system, const char *subsystem, const char *type, 699 const char *data) 700 { 701 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 702 } 703 704 /* 705 * Common routine that tries to make sending messages as easy as possible. 706 * We allocate memory for the data, copy strings into that, but do not 707 * free it unless there's an error. The dequeue part of the driver should 708 * free the data. We don't send data when the device is disabled. We do 709 * send data, even when we have no listeners, because we wish to avoid 710 * races relating to startup and restart of listening applications. 711 * 712 * devaddq is designed to string together the type of event, with the 713 * object of that event, plus the plug and play info and location info 714 * for that event. This is likely most useful for devices, but less 715 * useful for other consumers of this interface. Those should use 716 * the devctl_queue_data() interface instead. 717 */ 718 static void 719 devaddq(const char *type, const char *what, device_t dev) 720 { 721 char *data = NULL; 722 char *loc = NULL; 723 char *pnp = NULL; 724 const char *parstr; 725 726 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 727 return; 728 data = malloc(1024, M_BUS, M_NOWAIT); 729 if (data == NULL) 730 goto bad; 731 732 /* get the bus specific location of this device */ 733 loc = malloc(1024, M_BUS, M_NOWAIT); 734 if (loc == NULL) 735 goto bad; 736 *loc = '\0'; 737 bus_child_location_str(dev, loc, 1024); 738 739 /* Get the bus specific pnp info of this device */ 740 pnp = malloc(1024, M_BUS, M_NOWAIT); 741 if (pnp == NULL) 742 goto bad; 743 *pnp = '\0'; 744 bus_child_pnpinfo_str(dev, pnp, 1024); 745 746 /* Get the parent of this device, or / if high enough in the tree. */ 747 if (device_get_parent(dev) == NULL) 748 parstr = "."; /* Or '/' ? */ 749 else 750 parstr = device_get_nameunit(device_get_parent(dev)); 751 /* String it all together. */ 752 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 753 parstr); 754 free(loc, M_BUS); 755 free(pnp, M_BUS); 756 devctl_queue_data(data); 757 return; 758 bad: 759 free(pnp, M_BUS); 760 free(loc, M_BUS); 761 free(data, M_BUS); 762 return; 763 } 764 765 /* 766 * A device was added to the tree. We are called just after it successfully 767 * attaches (that is, probe and attach success for this device). No call 768 * is made if a device is merely parented into the tree. See devnomatch 769 * if probe fails. If attach fails, no notification is sent (but maybe 770 * we should have a different message for this). 771 */ 772 static void 773 devadded(device_t dev) 774 { 775 devaddq("+", device_get_nameunit(dev), dev); 776 } 777 778 /* 779 * A device was removed from the tree. We are called just before this 780 * happens. 781 */ 782 static void 783 devremoved(device_t dev) 784 { 785 devaddq("-", device_get_nameunit(dev), dev); 786 } 787 788 /* 789 * Called when there's no match for this device. This is only called 790 * the first time that no match happens, so we don't keep getting this 791 * message. Should that prove to be undesirable, we can change it. 792 * This is called when all drivers that can attach to a given bus 793 * decline to accept this device. Other errors may not be detected. 794 */ 795 static void 796 devnomatch(device_t dev) 797 { 798 devaddq("?", "", dev); 799 } 800 801 static int 802 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 803 { 804 struct dev_event_info *n1; 805 int dis, error; 806 807 dis = (devctl_queue_length == 0); 808 error = sysctl_handle_int(oidp, &dis, 0, req); 809 if (error || !req->newptr) 810 return (error); 811 if (mtx_initialized(&devsoftc.mtx)) 812 mtx_lock(&devsoftc.mtx); 813 if (dis) { 814 while (!TAILQ_EMPTY(&devsoftc.devq)) { 815 n1 = TAILQ_FIRST(&devsoftc.devq); 816 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 817 free(n1->dei_data, M_BUS); 818 free(n1, M_BUS); 819 } 820 devsoftc.queued = 0; 821 devctl_queue_length = 0; 822 } else { 823 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 824 } 825 if (mtx_initialized(&devsoftc.mtx)) 826 mtx_unlock(&devsoftc.mtx); 827 return (0); 828 } 829 830 static int 831 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 832 { 833 struct dev_event_info *n1; 834 int q, error; 835 836 q = devctl_queue_length; 837 error = sysctl_handle_int(oidp, &q, 0, req); 838 if (error || !req->newptr) 839 return (error); 840 if (q < 0) 841 return (EINVAL); 842 if (mtx_initialized(&devsoftc.mtx)) 843 mtx_lock(&devsoftc.mtx); 844 devctl_queue_length = q; 845 while (devsoftc.queued > devctl_queue_length) { 846 n1 = TAILQ_FIRST(&devsoftc.devq); 847 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 848 free(n1->dei_data, M_BUS); 849 free(n1, M_BUS); 850 devsoftc.queued--; 851 } 852 if (mtx_initialized(&devsoftc.mtx)) 853 mtx_unlock(&devsoftc.mtx); 854 return (0); 855 } 856 857 /** 858 * @brief safely quotes strings that might have double quotes in them. 859 * 860 * The devctl protocol relies on quoted strings having matching quotes. 861 * This routine quotes any internal quotes so the resulting string 862 * is safe to pass to snprintf to construct, for example pnp info strings. 863 * 864 * @param sb sbuf to place the characters into 865 * @param src Original buffer. 866 */ 867 void 868 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 869 { 870 while (*src != '\0') { 871 if (*src == '"' || *src == '\\') 872 sbuf_putc(sb, '\\'); 873 sbuf_putc(sb, *src++); 874 } 875 } 876 877 /* End of /dev/devctl code */ 878 879 static TAILQ_HEAD(,device) bus_data_devices; 880 static int bus_data_generation = 1; 881 882 static kobj_method_t null_methods[] = { 883 KOBJMETHOD_END 884 }; 885 886 DEFINE_CLASS(null, null_methods, 0); 887 888 /* 889 * Bus pass implementation 890 */ 891 892 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 893 int bus_current_pass = BUS_PASS_ROOT; 894 895 /** 896 * @internal 897 * @brief Register the pass level of a new driver attachment 898 * 899 * Register a new driver attachment's pass level. If no driver 900 * attachment with the same pass level has been added, then @p new 901 * will be added to the global passes list. 902 * 903 * @param new the new driver attachment 904 */ 905 static void 906 driver_register_pass(struct driverlink *new) 907 { 908 struct driverlink *dl; 909 910 /* We only consider pass numbers during boot. */ 911 if (bus_current_pass == BUS_PASS_DEFAULT) 912 return; 913 914 /* 915 * Walk the passes list. If we already know about this pass 916 * then there is nothing to do. If we don't, then insert this 917 * driver link into the list. 918 */ 919 TAILQ_FOREACH(dl, &passes, passlink) { 920 if (dl->pass < new->pass) 921 continue; 922 if (dl->pass == new->pass) 923 return; 924 TAILQ_INSERT_BEFORE(dl, new, passlink); 925 return; 926 } 927 TAILQ_INSERT_TAIL(&passes, new, passlink); 928 } 929 930 /** 931 * @brief Raise the current bus pass 932 * 933 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 934 * method on the root bus to kick off a new device tree scan for each 935 * new pass level that has at least one driver. 936 */ 937 void 938 bus_set_pass(int pass) 939 { 940 struct driverlink *dl; 941 942 if (bus_current_pass > pass) 943 panic("Attempt to lower bus pass level"); 944 945 TAILQ_FOREACH(dl, &passes, passlink) { 946 /* Skip pass values below the current pass level. */ 947 if (dl->pass <= bus_current_pass) 948 continue; 949 950 /* 951 * Bail once we hit a driver with a pass level that is 952 * too high. 953 */ 954 if (dl->pass > pass) 955 break; 956 957 /* 958 * Raise the pass level to the next level and rescan 959 * the tree. 960 */ 961 bus_current_pass = dl->pass; 962 BUS_NEW_PASS(root_bus); 963 } 964 965 /* 966 * If there isn't a driver registered for the requested pass, 967 * then bus_current_pass might still be less than 'pass'. Set 968 * it to 'pass' in that case. 969 */ 970 if (bus_current_pass < pass) 971 bus_current_pass = pass; 972 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 973 } 974 975 /* 976 * Devclass implementation 977 */ 978 979 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 980 981 /** 982 * @internal 983 * @brief Find or create a device class 984 * 985 * If a device class with the name @p classname exists, return it, 986 * otherwise if @p create is non-zero create and return a new device 987 * class. 988 * 989 * If @p parentname is non-NULL, the parent of the devclass is set to 990 * the devclass of that name. 991 * 992 * @param classname the devclass name to find or create 993 * @param parentname the parent devclass name or @c NULL 994 * @param create non-zero to create a devclass 995 */ 996 static devclass_t 997 devclass_find_internal(const char *classname, const char *parentname, 998 int create) 999 { 1000 devclass_t dc; 1001 1002 PDEBUG(("looking for %s", classname)); 1003 if (!classname) 1004 return (NULL); 1005 1006 TAILQ_FOREACH(dc, &devclasses, link) { 1007 if (!strcmp(dc->name, classname)) 1008 break; 1009 } 1010 1011 if (create && !dc) { 1012 PDEBUG(("creating %s", classname)); 1013 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1014 M_BUS, M_NOWAIT | M_ZERO); 1015 if (!dc) 1016 return (NULL); 1017 dc->parent = NULL; 1018 dc->name = (char*) (dc + 1); 1019 strcpy(dc->name, classname); 1020 TAILQ_INIT(&dc->drivers); 1021 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1022 1023 bus_data_generation_update(); 1024 } 1025 1026 /* 1027 * If a parent class is specified, then set that as our parent so 1028 * that this devclass will support drivers for the parent class as 1029 * well. If the parent class has the same name don't do this though 1030 * as it creates a cycle that can trigger an infinite loop in 1031 * device_probe_child() if a device exists for which there is no 1032 * suitable driver. 1033 */ 1034 if (parentname && dc && !dc->parent && 1035 strcmp(classname, parentname) != 0) { 1036 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1037 dc->parent->flags |= DC_HAS_CHILDREN; 1038 } 1039 1040 return (dc); 1041 } 1042 1043 /** 1044 * @brief Create a device class 1045 * 1046 * If a device class with the name @p classname exists, return it, 1047 * otherwise create and return a new device class. 1048 * 1049 * @param classname the devclass name to find or create 1050 */ 1051 devclass_t 1052 devclass_create(const char *classname) 1053 { 1054 return (devclass_find_internal(classname, NULL, TRUE)); 1055 } 1056 1057 /** 1058 * @brief Find a device class 1059 * 1060 * If a device class with the name @p classname exists, return it, 1061 * otherwise return @c NULL. 1062 * 1063 * @param classname the devclass name to find 1064 */ 1065 devclass_t 1066 devclass_find(const char *classname) 1067 { 1068 return (devclass_find_internal(classname, NULL, FALSE)); 1069 } 1070 1071 /** 1072 * @brief Register that a device driver has been added to a devclass 1073 * 1074 * Register that a device driver has been added to a devclass. This 1075 * is called by devclass_add_driver to accomplish the recursive 1076 * notification of all the children classes of dc, as well as dc. 1077 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1078 * the devclass. 1079 * 1080 * We do a full search here of the devclass list at each iteration 1081 * level to save storing children-lists in the devclass structure. If 1082 * we ever move beyond a few dozen devices doing this, we may need to 1083 * reevaluate... 1084 * 1085 * @param dc the devclass to edit 1086 * @param driver the driver that was just added 1087 */ 1088 static void 1089 devclass_driver_added(devclass_t dc, driver_t *driver) 1090 { 1091 devclass_t parent; 1092 int i; 1093 1094 /* 1095 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1096 */ 1097 for (i = 0; i < dc->maxunit; i++) 1098 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1099 BUS_DRIVER_ADDED(dc->devices[i], driver); 1100 1101 /* 1102 * Walk through the children classes. Since we only keep a 1103 * single parent pointer around, we walk the entire list of 1104 * devclasses looking for children. We set the 1105 * DC_HAS_CHILDREN flag when a child devclass is created on 1106 * the parent, so we only walk the list for those devclasses 1107 * that have children. 1108 */ 1109 if (!(dc->flags & DC_HAS_CHILDREN)) 1110 return; 1111 parent = dc; 1112 TAILQ_FOREACH(dc, &devclasses, link) { 1113 if (dc->parent == parent) 1114 devclass_driver_added(dc, driver); 1115 } 1116 } 1117 1118 /** 1119 * @brief Add a device driver to a device class 1120 * 1121 * Add a device driver to a devclass. This is normally called 1122 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1123 * all devices in the devclass will be called to allow them to attempt 1124 * to re-probe any unmatched children. 1125 * 1126 * @param dc the devclass to edit 1127 * @param driver the driver to register 1128 */ 1129 int 1130 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1131 { 1132 driverlink_t dl; 1133 const char *parentname; 1134 1135 PDEBUG(("%s", DRIVERNAME(driver))); 1136 1137 /* Don't allow invalid pass values. */ 1138 if (pass <= BUS_PASS_ROOT) 1139 return (EINVAL); 1140 1141 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1142 if (!dl) 1143 return (ENOMEM); 1144 1145 /* 1146 * Compile the driver's methods. Also increase the reference count 1147 * so that the class doesn't get freed when the last instance 1148 * goes. This means we can safely use static methods and avoids a 1149 * double-free in devclass_delete_driver. 1150 */ 1151 kobj_class_compile((kobj_class_t) driver); 1152 1153 /* 1154 * If the driver has any base classes, make the 1155 * devclass inherit from the devclass of the driver's 1156 * first base class. This will allow the system to 1157 * search for drivers in both devclasses for children 1158 * of a device using this driver. 1159 */ 1160 if (driver->baseclasses) 1161 parentname = driver->baseclasses[0]->name; 1162 else 1163 parentname = NULL; 1164 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1165 1166 dl->driver = driver; 1167 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1168 driver->refs++; /* XXX: kobj_mtx */ 1169 dl->pass = pass; 1170 driver_register_pass(dl); 1171 1172 if (device_frozen) { 1173 dl->flags |= DL_DEFERRED_PROBE; 1174 } else { 1175 devclass_driver_added(dc, driver); 1176 } 1177 bus_data_generation_update(); 1178 return (0); 1179 } 1180 1181 /** 1182 * @brief Register that a device driver has been deleted from a devclass 1183 * 1184 * Register that a device driver has been removed from a devclass. 1185 * This is called by devclass_delete_driver to accomplish the 1186 * recursive notification of all the children classes of busclass, as 1187 * well as busclass. Each layer will attempt to detach the driver 1188 * from any devices that are children of the bus's devclass. The function 1189 * will return an error if a device fails to detach. 1190 * 1191 * We do a full search here of the devclass list at each iteration 1192 * level to save storing children-lists in the devclass structure. If 1193 * we ever move beyond a few dozen devices doing this, we may need to 1194 * reevaluate... 1195 * 1196 * @param busclass the devclass of the parent bus 1197 * @param dc the devclass of the driver being deleted 1198 * @param driver the driver being deleted 1199 */ 1200 static int 1201 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1202 { 1203 devclass_t parent; 1204 device_t dev; 1205 int error, i; 1206 1207 /* 1208 * Disassociate from any devices. We iterate through all the 1209 * devices in the devclass of the driver and detach any which are 1210 * using the driver and which have a parent in the devclass which 1211 * we are deleting from. 1212 * 1213 * Note that since a driver can be in multiple devclasses, we 1214 * should not detach devices which are not children of devices in 1215 * the affected devclass. 1216 * 1217 * If we're frozen, we don't generate NOMATCH events. Mark to 1218 * generate later. 1219 */ 1220 for (i = 0; i < dc->maxunit; i++) { 1221 if (dc->devices[i]) { 1222 dev = dc->devices[i]; 1223 if (dev->driver == driver && dev->parent && 1224 dev->parent->devclass == busclass) { 1225 if ((error = device_detach(dev)) != 0) 1226 return (error); 1227 if (device_frozen) { 1228 dev->flags &= ~DF_DONENOMATCH; 1229 dev->flags |= DF_NEEDNOMATCH; 1230 } else { 1231 BUS_PROBE_NOMATCH(dev->parent, dev); 1232 devnomatch(dev); 1233 dev->flags |= DF_DONENOMATCH; 1234 } 1235 } 1236 } 1237 } 1238 1239 /* 1240 * Walk through the children classes. Since we only keep a 1241 * single parent pointer around, we walk the entire list of 1242 * devclasses looking for children. We set the 1243 * DC_HAS_CHILDREN flag when a child devclass is created on 1244 * the parent, so we only walk the list for those devclasses 1245 * that have children. 1246 */ 1247 if (!(busclass->flags & DC_HAS_CHILDREN)) 1248 return (0); 1249 parent = busclass; 1250 TAILQ_FOREACH(busclass, &devclasses, link) { 1251 if (busclass->parent == parent) { 1252 error = devclass_driver_deleted(busclass, dc, driver); 1253 if (error) 1254 return (error); 1255 } 1256 } 1257 return (0); 1258 } 1259 1260 /** 1261 * @brief Delete a device driver from a device class 1262 * 1263 * Delete a device driver from a devclass. This is normally called 1264 * automatically by DRIVER_MODULE(). 1265 * 1266 * If the driver is currently attached to any devices, 1267 * devclass_delete_driver() will first attempt to detach from each 1268 * device. If one of the detach calls fails, the driver will not be 1269 * deleted. 1270 * 1271 * @param dc the devclass to edit 1272 * @param driver the driver to unregister 1273 */ 1274 int 1275 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1276 { 1277 devclass_t dc = devclass_find(driver->name); 1278 driverlink_t dl; 1279 int error; 1280 1281 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1282 1283 if (!dc) 1284 return (0); 1285 1286 /* 1287 * Find the link structure in the bus' list of drivers. 1288 */ 1289 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1290 if (dl->driver == driver) 1291 break; 1292 } 1293 1294 if (!dl) { 1295 PDEBUG(("%s not found in %s list", driver->name, 1296 busclass->name)); 1297 return (ENOENT); 1298 } 1299 1300 error = devclass_driver_deleted(busclass, dc, driver); 1301 if (error != 0) 1302 return (error); 1303 1304 TAILQ_REMOVE(&busclass->drivers, dl, link); 1305 free(dl, M_BUS); 1306 1307 /* XXX: kobj_mtx */ 1308 driver->refs--; 1309 if (driver->refs == 0) 1310 kobj_class_free((kobj_class_t) driver); 1311 1312 bus_data_generation_update(); 1313 return (0); 1314 } 1315 1316 /** 1317 * @brief Quiesces a set of device drivers from a device class 1318 * 1319 * Quiesce a device driver from a devclass. This is normally called 1320 * automatically by DRIVER_MODULE(). 1321 * 1322 * If the driver is currently attached to any devices, 1323 * devclass_quiesece_driver() will first attempt to quiesce each 1324 * device. 1325 * 1326 * @param dc the devclass to edit 1327 * @param driver the driver to unregister 1328 */ 1329 static int 1330 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1331 { 1332 devclass_t dc = devclass_find(driver->name); 1333 driverlink_t dl; 1334 device_t dev; 1335 int i; 1336 int error; 1337 1338 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1339 1340 if (!dc) 1341 return (0); 1342 1343 /* 1344 * Find the link structure in the bus' list of drivers. 1345 */ 1346 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1347 if (dl->driver == driver) 1348 break; 1349 } 1350 1351 if (!dl) { 1352 PDEBUG(("%s not found in %s list", driver->name, 1353 busclass->name)); 1354 return (ENOENT); 1355 } 1356 1357 /* 1358 * Quiesce all devices. We iterate through all the devices in 1359 * the devclass of the driver and quiesce any which are using 1360 * the driver and which have a parent in the devclass which we 1361 * are quiescing. 1362 * 1363 * Note that since a driver can be in multiple devclasses, we 1364 * should not quiesce devices which are not children of 1365 * devices in the affected devclass. 1366 */ 1367 for (i = 0; i < dc->maxunit; i++) { 1368 if (dc->devices[i]) { 1369 dev = dc->devices[i]; 1370 if (dev->driver == driver && dev->parent && 1371 dev->parent->devclass == busclass) { 1372 if ((error = device_quiesce(dev)) != 0) 1373 return (error); 1374 } 1375 } 1376 } 1377 1378 return (0); 1379 } 1380 1381 /** 1382 * @internal 1383 */ 1384 static driverlink_t 1385 devclass_find_driver_internal(devclass_t dc, const char *classname) 1386 { 1387 driverlink_t dl; 1388 1389 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1390 1391 TAILQ_FOREACH(dl, &dc->drivers, link) { 1392 if (!strcmp(dl->driver->name, classname)) 1393 return (dl); 1394 } 1395 1396 PDEBUG(("not found")); 1397 return (NULL); 1398 } 1399 1400 /** 1401 * @brief Return the name of the devclass 1402 */ 1403 const char * 1404 devclass_get_name(devclass_t dc) 1405 { 1406 return (dc->name); 1407 } 1408 1409 /** 1410 * @brief Find a device given a unit number 1411 * 1412 * @param dc the devclass to search 1413 * @param unit the unit number to search for 1414 * 1415 * @returns the device with the given unit number or @c 1416 * NULL if there is no such device 1417 */ 1418 device_t 1419 devclass_get_device(devclass_t dc, int unit) 1420 { 1421 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1422 return (NULL); 1423 return (dc->devices[unit]); 1424 } 1425 1426 /** 1427 * @brief Find the softc field of a device given a unit number 1428 * 1429 * @param dc the devclass to search 1430 * @param unit the unit number to search for 1431 * 1432 * @returns the softc field of the device with the given 1433 * unit number or @c NULL if there is no such 1434 * device 1435 */ 1436 void * 1437 devclass_get_softc(devclass_t dc, int unit) 1438 { 1439 device_t dev; 1440 1441 dev = devclass_get_device(dc, unit); 1442 if (!dev) 1443 return (NULL); 1444 1445 return (device_get_softc(dev)); 1446 } 1447 1448 /** 1449 * @brief Get a list of devices in the devclass 1450 * 1451 * An array containing a list of all the devices in the given devclass 1452 * is allocated and returned in @p *devlistp. The number of devices 1453 * in the array is returned in @p *devcountp. The caller should free 1454 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1455 * 1456 * @param dc the devclass to examine 1457 * @param devlistp points at location for array pointer return 1458 * value 1459 * @param devcountp points at location for array size return value 1460 * 1461 * @retval 0 success 1462 * @retval ENOMEM the array allocation failed 1463 */ 1464 int 1465 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1466 { 1467 int count, i; 1468 device_t *list; 1469 1470 count = devclass_get_count(dc); 1471 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1472 if (!list) 1473 return (ENOMEM); 1474 1475 count = 0; 1476 for (i = 0; i < dc->maxunit; i++) { 1477 if (dc->devices[i]) { 1478 list[count] = dc->devices[i]; 1479 count++; 1480 } 1481 } 1482 1483 *devlistp = list; 1484 *devcountp = count; 1485 1486 return (0); 1487 } 1488 1489 /** 1490 * @brief Get a list of drivers in the devclass 1491 * 1492 * An array containing a list of pointers to all the drivers in the 1493 * given devclass is allocated and returned in @p *listp. The number 1494 * of drivers in the array is returned in @p *countp. The caller should 1495 * free the array using @c free(p, M_TEMP). 1496 * 1497 * @param dc the devclass to examine 1498 * @param listp gives location for array pointer return value 1499 * @param countp gives location for number of array elements 1500 * return value 1501 * 1502 * @retval 0 success 1503 * @retval ENOMEM the array allocation failed 1504 */ 1505 int 1506 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1507 { 1508 driverlink_t dl; 1509 driver_t **list; 1510 int count; 1511 1512 count = 0; 1513 TAILQ_FOREACH(dl, &dc->drivers, link) 1514 count++; 1515 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1516 if (list == NULL) 1517 return (ENOMEM); 1518 1519 count = 0; 1520 TAILQ_FOREACH(dl, &dc->drivers, link) { 1521 list[count] = dl->driver; 1522 count++; 1523 } 1524 *listp = list; 1525 *countp = count; 1526 1527 return (0); 1528 } 1529 1530 /** 1531 * @brief Get the number of devices in a devclass 1532 * 1533 * @param dc the devclass to examine 1534 */ 1535 int 1536 devclass_get_count(devclass_t dc) 1537 { 1538 int count, i; 1539 1540 count = 0; 1541 for (i = 0; i < dc->maxunit; i++) 1542 if (dc->devices[i]) 1543 count++; 1544 return (count); 1545 } 1546 1547 /** 1548 * @brief Get the maximum unit number used in a devclass 1549 * 1550 * Note that this is one greater than the highest currently-allocated 1551 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1552 * that not even the devclass has been allocated yet. 1553 * 1554 * @param dc the devclass to examine 1555 */ 1556 int 1557 devclass_get_maxunit(devclass_t dc) 1558 { 1559 if (dc == NULL) 1560 return (-1); 1561 return (dc->maxunit); 1562 } 1563 1564 /** 1565 * @brief Find a free unit number in a devclass 1566 * 1567 * This function searches for the first unused unit number greater 1568 * that or equal to @p unit. 1569 * 1570 * @param dc the devclass to examine 1571 * @param unit the first unit number to check 1572 */ 1573 int 1574 devclass_find_free_unit(devclass_t dc, int unit) 1575 { 1576 if (dc == NULL) 1577 return (unit); 1578 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1579 unit++; 1580 return (unit); 1581 } 1582 1583 /** 1584 * @brief Set the parent of a devclass 1585 * 1586 * The parent class is normally initialised automatically by 1587 * DRIVER_MODULE(). 1588 * 1589 * @param dc the devclass to edit 1590 * @param pdc the new parent devclass 1591 */ 1592 void 1593 devclass_set_parent(devclass_t dc, devclass_t pdc) 1594 { 1595 dc->parent = pdc; 1596 } 1597 1598 /** 1599 * @brief Get the parent of a devclass 1600 * 1601 * @param dc the devclass to examine 1602 */ 1603 devclass_t 1604 devclass_get_parent(devclass_t dc) 1605 { 1606 return (dc->parent); 1607 } 1608 1609 struct sysctl_ctx_list * 1610 devclass_get_sysctl_ctx(devclass_t dc) 1611 { 1612 return (&dc->sysctl_ctx); 1613 } 1614 1615 struct sysctl_oid * 1616 devclass_get_sysctl_tree(devclass_t dc) 1617 { 1618 return (dc->sysctl_tree); 1619 } 1620 1621 /** 1622 * @internal 1623 * @brief Allocate a unit number 1624 * 1625 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1626 * will do). The allocated unit number is returned in @p *unitp. 1627 1628 * @param dc the devclass to allocate from 1629 * @param unitp points at the location for the allocated unit 1630 * number 1631 * 1632 * @retval 0 success 1633 * @retval EEXIST the requested unit number is already allocated 1634 * @retval ENOMEM memory allocation failure 1635 */ 1636 static int 1637 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1638 { 1639 const char *s; 1640 int unit = *unitp; 1641 1642 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1643 1644 /* Ask the parent bus if it wants to wire this device. */ 1645 if (unit == -1) 1646 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1647 &unit); 1648 1649 /* If we were given a wired unit number, check for existing device */ 1650 /* XXX imp XXX */ 1651 if (unit != -1) { 1652 if (unit >= 0 && unit < dc->maxunit && 1653 dc->devices[unit] != NULL) { 1654 if (bootverbose) 1655 printf("%s: %s%d already exists; skipping it\n", 1656 dc->name, dc->name, *unitp); 1657 return (EEXIST); 1658 } 1659 } else { 1660 /* Unwired device, find the next available slot for it */ 1661 unit = 0; 1662 for (unit = 0;; unit++) { 1663 /* If there is an "at" hint for a unit then skip it. */ 1664 if (resource_string_value(dc->name, unit, "at", &s) == 1665 0) 1666 continue; 1667 1668 /* If this device slot is already in use, skip it. */ 1669 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1670 continue; 1671 1672 break; 1673 } 1674 } 1675 1676 /* 1677 * We've selected a unit beyond the length of the table, so let's 1678 * extend the table to make room for all units up to and including 1679 * this one. 1680 */ 1681 if (unit >= dc->maxunit) { 1682 device_t *newlist, *oldlist; 1683 int newsize; 1684 1685 oldlist = dc->devices; 1686 newsize = roundup((unit + 1), 1687 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1688 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1689 if (!newlist) 1690 return (ENOMEM); 1691 if (oldlist != NULL) 1692 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1693 bzero(newlist + dc->maxunit, 1694 sizeof(device_t) * (newsize - dc->maxunit)); 1695 dc->devices = newlist; 1696 dc->maxunit = newsize; 1697 if (oldlist != NULL) 1698 free(oldlist, M_BUS); 1699 } 1700 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1701 1702 *unitp = unit; 1703 return (0); 1704 } 1705 1706 /** 1707 * @internal 1708 * @brief Add a device to a devclass 1709 * 1710 * A unit number is allocated for the device (using the device's 1711 * preferred unit number if any) and the device is registered in the 1712 * devclass. This allows the device to be looked up by its unit 1713 * number, e.g. by decoding a dev_t minor number. 1714 * 1715 * @param dc the devclass to add to 1716 * @param dev the device to add 1717 * 1718 * @retval 0 success 1719 * @retval EEXIST the requested unit number is already allocated 1720 * @retval ENOMEM memory allocation failure 1721 */ 1722 static int 1723 devclass_add_device(devclass_t dc, device_t dev) 1724 { 1725 int buflen, error; 1726 1727 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1728 1729 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1730 if (buflen < 0) 1731 return (ENOMEM); 1732 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1733 if (!dev->nameunit) 1734 return (ENOMEM); 1735 1736 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1737 free(dev->nameunit, M_BUS); 1738 dev->nameunit = NULL; 1739 return (error); 1740 } 1741 dc->devices[dev->unit] = dev; 1742 dev->devclass = dc; 1743 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1744 1745 return (0); 1746 } 1747 1748 /** 1749 * @internal 1750 * @brief Delete a device from a devclass 1751 * 1752 * The device is removed from the devclass's device list and its unit 1753 * number is freed. 1754 1755 * @param dc the devclass to delete from 1756 * @param dev the device to delete 1757 * 1758 * @retval 0 success 1759 */ 1760 static int 1761 devclass_delete_device(devclass_t dc, device_t dev) 1762 { 1763 if (!dc || !dev) 1764 return (0); 1765 1766 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1767 1768 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1769 panic("devclass_delete_device: inconsistent device class"); 1770 dc->devices[dev->unit] = NULL; 1771 if (dev->flags & DF_WILDCARD) 1772 dev->unit = -1; 1773 dev->devclass = NULL; 1774 free(dev->nameunit, M_BUS); 1775 dev->nameunit = NULL; 1776 1777 return (0); 1778 } 1779 1780 /** 1781 * @internal 1782 * @brief Make a new device and add it as a child of @p parent 1783 * 1784 * @param parent the parent of the new device 1785 * @param name the devclass name of the new device or @c NULL 1786 * to leave the devclass unspecified 1787 * @parem unit the unit number of the new device of @c -1 to 1788 * leave the unit number unspecified 1789 * 1790 * @returns the new device 1791 */ 1792 static device_t 1793 make_device(device_t parent, const char *name, int unit) 1794 { 1795 device_t dev; 1796 devclass_t dc; 1797 1798 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1799 1800 if (name) { 1801 dc = devclass_find_internal(name, NULL, TRUE); 1802 if (!dc) { 1803 printf("make_device: can't find device class %s\n", 1804 name); 1805 return (NULL); 1806 } 1807 } else { 1808 dc = NULL; 1809 } 1810 1811 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1812 if (!dev) 1813 return (NULL); 1814 1815 dev->parent = parent; 1816 TAILQ_INIT(&dev->children); 1817 kobj_init((kobj_t) dev, &null_class); 1818 dev->driver = NULL; 1819 dev->devclass = NULL; 1820 dev->unit = unit; 1821 dev->nameunit = NULL; 1822 dev->desc = NULL; 1823 dev->busy = 0; 1824 dev->devflags = 0; 1825 dev->flags = DF_ENABLED; 1826 dev->order = 0; 1827 if (unit == -1) 1828 dev->flags |= DF_WILDCARD; 1829 if (name) { 1830 dev->flags |= DF_FIXEDCLASS; 1831 if (devclass_add_device(dc, dev)) { 1832 kobj_delete((kobj_t) dev, M_BUS); 1833 return (NULL); 1834 } 1835 } 1836 if (parent != NULL && device_has_quiet_children(parent)) 1837 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1838 dev->ivars = NULL; 1839 dev->softc = NULL; 1840 1841 dev->state = DS_NOTPRESENT; 1842 1843 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1844 bus_data_generation_update(); 1845 1846 return (dev); 1847 } 1848 1849 /** 1850 * @internal 1851 * @brief Print a description of a device. 1852 */ 1853 static int 1854 device_print_child(device_t dev, device_t child) 1855 { 1856 int retval = 0; 1857 1858 if (device_is_alive(child)) 1859 retval += BUS_PRINT_CHILD(dev, child); 1860 else 1861 retval += device_printf(child, " not found\n"); 1862 1863 return (retval); 1864 } 1865 1866 /** 1867 * @brief Create a new device 1868 * 1869 * This creates a new device and adds it as a child of an existing 1870 * parent device. The new device will be added after the last existing 1871 * child with order zero. 1872 * 1873 * @param dev the device which will be the parent of the 1874 * new child device 1875 * @param name devclass name for new device or @c NULL if not 1876 * specified 1877 * @param unit unit number for new device or @c -1 if not 1878 * specified 1879 * 1880 * @returns the new device 1881 */ 1882 device_t 1883 device_add_child(device_t dev, const char *name, int unit) 1884 { 1885 return (device_add_child_ordered(dev, 0, name, unit)); 1886 } 1887 1888 /** 1889 * @brief Create a new device 1890 * 1891 * This creates a new device and adds it as a child of an existing 1892 * parent device. The new device will be added after the last existing 1893 * child with the same order. 1894 * 1895 * @param dev the device which will be the parent of the 1896 * new child device 1897 * @param order a value which is used to partially sort the 1898 * children of @p dev - devices created using 1899 * lower values of @p order appear first in @p 1900 * dev's list of children 1901 * @param name devclass name for new device or @c NULL if not 1902 * specified 1903 * @param unit unit number for new device or @c -1 if not 1904 * specified 1905 * 1906 * @returns the new device 1907 */ 1908 device_t 1909 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1910 { 1911 device_t child; 1912 device_t place; 1913 1914 PDEBUG(("%s at %s with order %u as unit %d", 1915 name, DEVICENAME(dev), order, unit)); 1916 KASSERT(name != NULL || unit == -1, 1917 ("child device with wildcard name and specific unit number")); 1918 1919 child = make_device(dev, name, unit); 1920 if (child == NULL) 1921 return (child); 1922 child->order = order; 1923 1924 TAILQ_FOREACH(place, &dev->children, link) { 1925 if (place->order > order) 1926 break; 1927 } 1928 1929 if (place) { 1930 /* 1931 * The device 'place' is the first device whose order is 1932 * greater than the new child. 1933 */ 1934 TAILQ_INSERT_BEFORE(place, child, link); 1935 } else { 1936 /* 1937 * The new child's order is greater or equal to the order of 1938 * any existing device. Add the child to the tail of the list. 1939 */ 1940 TAILQ_INSERT_TAIL(&dev->children, child, link); 1941 } 1942 1943 bus_data_generation_update(); 1944 return (child); 1945 } 1946 1947 /** 1948 * @brief Delete a device 1949 * 1950 * This function deletes a device along with all of its children. If 1951 * the device currently has a driver attached to it, the device is 1952 * detached first using device_detach(). 1953 * 1954 * @param dev the parent device 1955 * @param child the device to delete 1956 * 1957 * @retval 0 success 1958 * @retval non-zero a unit error code describing the error 1959 */ 1960 int 1961 device_delete_child(device_t dev, device_t child) 1962 { 1963 int error; 1964 device_t grandchild; 1965 1966 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1967 1968 /* detach parent before deleting children, if any */ 1969 if ((error = device_detach(child)) != 0) 1970 return (error); 1971 1972 /* remove children second */ 1973 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1974 error = device_delete_child(child, grandchild); 1975 if (error) 1976 return (error); 1977 } 1978 1979 if (child->devclass) 1980 devclass_delete_device(child->devclass, child); 1981 if (child->parent) 1982 BUS_CHILD_DELETED(dev, child); 1983 TAILQ_REMOVE(&dev->children, child, link); 1984 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1985 kobj_delete((kobj_t) child, M_BUS); 1986 1987 bus_data_generation_update(); 1988 return (0); 1989 } 1990 1991 /** 1992 * @brief Delete all children devices of the given device, if any. 1993 * 1994 * This function deletes all children devices of the given device, if 1995 * any, using the device_delete_child() function for each device it 1996 * finds. If a child device cannot be deleted, this function will 1997 * return an error code. 1998 * 1999 * @param dev the parent device 2000 * 2001 * @retval 0 success 2002 * @retval non-zero a device would not detach 2003 */ 2004 int 2005 device_delete_children(device_t dev) 2006 { 2007 device_t child; 2008 int error; 2009 2010 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2011 2012 error = 0; 2013 2014 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2015 error = device_delete_child(dev, child); 2016 if (error) { 2017 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2018 break; 2019 } 2020 } 2021 return (error); 2022 } 2023 2024 /** 2025 * @brief Find a device given a unit number 2026 * 2027 * This is similar to devclass_get_devices() but only searches for 2028 * devices which have @p dev as a parent. 2029 * 2030 * @param dev the parent device to search 2031 * @param unit the unit number to search for. If the unit is -1, 2032 * return the first child of @p dev which has name 2033 * @p classname (that is, the one with the lowest unit.) 2034 * 2035 * @returns the device with the given unit number or @c 2036 * NULL if there is no such device 2037 */ 2038 device_t 2039 device_find_child(device_t dev, const char *classname, int unit) 2040 { 2041 devclass_t dc; 2042 device_t child; 2043 2044 dc = devclass_find(classname); 2045 if (!dc) 2046 return (NULL); 2047 2048 if (unit != -1) { 2049 child = devclass_get_device(dc, unit); 2050 if (child && child->parent == dev) 2051 return (child); 2052 } else { 2053 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2054 child = devclass_get_device(dc, unit); 2055 if (child && child->parent == dev) 2056 return (child); 2057 } 2058 } 2059 return (NULL); 2060 } 2061 2062 /** 2063 * @internal 2064 */ 2065 static driverlink_t 2066 first_matching_driver(devclass_t dc, device_t dev) 2067 { 2068 if (dev->devclass) 2069 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2070 return (TAILQ_FIRST(&dc->drivers)); 2071 } 2072 2073 /** 2074 * @internal 2075 */ 2076 static driverlink_t 2077 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2078 { 2079 if (dev->devclass) { 2080 driverlink_t dl; 2081 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2082 if (!strcmp(dev->devclass->name, dl->driver->name)) 2083 return (dl); 2084 return (NULL); 2085 } 2086 return (TAILQ_NEXT(last, link)); 2087 } 2088 2089 /** 2090 * @internal 2091 */ 2092 int 2093 device_probe_child(device_t dev, device_t child) 2094 { 2095 devclass_t dc; 2096 driverlink_t best = NULL; 2097 driverlink_t dl; 2098 int result, pri = 0; 2099 int hasclass = (child->devclass != NULL); 2100 2101 GIANT_REQUIRED; 2102 2103 dc = dev->devclass; 2104 if (!dc) 2105 panic("device_probe_child: parent device has no devclass"); 2106 2107 /* 2108 * If the state is already probed, then return. However, don't 2109 * return if we can rebid this object. 2110 */ 2111 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2112 return (0); 2113 2114 for (; dc; dc = dc->parent) { 2115 for (dl = first_matching_driver(dc, child); 2116 dl; 2117 dl = next_matching_driver(dc, child, dl)) { 2118 /* If this driver's pass is too high, then ignore it. */ 2119 if (dl->pass > bus_current_pass) 2120 continue; 2121 2122 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2123 result = device_set_driver(child, dl->driver); 2124 if (result == ENOMEM) 2125 return (result); 2126 else if (result != 0) 2127 continue; 2128 if (!hasclass) { 2129 if (device_set_devclass(child, 2130 dl->driver->name) != 0) { 2131 char const * devname = 2132 device_get_name(child); 2133 if (devname == NULL) 2134 devname = "(unknown)"; 2135 printf("driver bug: Unable to set " 2136 "devclass (class: %s " 2137 "devname: %s)\n", 2138 dl->driver->name, 2139 devname); 2140 (void)device_set_driver(child, NULL); 2141 continue; 2142 } 2143 } 2144 2145 /* Fetch any flags for the device before probing. */ 2146 resource_int_value(dl->driver->name, child->unit, 2147 "flags", &child->devflags); 2148 2149 result = DEVICE_PROBE(child); 2150 2151 /* Reset flags and devclass before the next probe. */ 2152 child->devflags = 0; 2153 if (!hasclass) 2154 (void)device_set_devclass(child, NULL); 2155 2156 /* 2157 * If the driver returns SUCCESS, there can be 2158 * no higher match for this device. 2159 */ 2160 if (result == 0) { 2161 best = dl; 2162 pri = 0; 2163 break; 2164 } 2165 2166 /* 2167 * Reset DF_QUIET in case this driver doesn't 2168 * end up as the best driver. 2169 */ 2170 device_verbose(child); 2171 2172 /* 2173 * Probes that return BUS_PROBE_NOWILDCARD or lower 2174 * only match on devices whose driver was explicitly 2175 * specified. 2176 */ 2177 if (result <= BUS_PROBE_NOWILDCARD && 2178 !(child->flags & DF_FIXEDCLASS)) { 2179 result = ENXIO; 2180 } 2181 2182 /* 2183 * The driver returned an error so it 2184 * certainly doesn't match. 2185 */ 2186 if (result > 0) { 2187 (void)device_set_driver(child, NULL); 2188 continue; 2189 } 2190 2191 /* 2192 * A priority lower than SUCCESS, remember the 2193 * best matching driver. Initialise the value 2194 * of pri for the first match. 2195 */ 2196 if (best == NULL || result > pri) { 2197 best = dl; 2198 pri = result; 2199 continue; 2200 } 2201 } 2202 /* 2203 * If we have an unambiguous match in this devclass, 2204 * don't look in the parent. 2205 */ 2206 if (best && pri == 0) 2207 break; 2208 } 2209 2210 /* 2211 * If we found a driver, change state and initialise the devclass. 2212 */ 2213 /* XXX What happens if we rebid and got no best? */ 2214 if (best) { 2215 /* 2216 * If this device was attached, and we were asked to 2217 * rescan, and it is a different driver, then we have 2218 * to detach the old driver and reattach this new one. 2219 * Note, we don't have to check for DF_REBID here 2220 * because if the state is > DS_ALIVE, we know it must 2221 * be. 2222 * 2223 * This assumes that all DF_REBID drivers can have 2224 * their probe routine called at any time and that 2225 * they are idempotent as well as completely benign in 2226 * normal operations. 2227 * 2228 * We also have to make sure that the detach 2229 * succeeded, otherwise we fail the operation (or 2230 * maybe it should just fail silently? I'm torn). 2231 */ 2232 if (child->state > DS_ALIVE && best->driver != child->driver) 2233 if ((result = device_detach(dev)) != 0) 2234 return (result); 2235 2236 /* Set the winning driver, devclass, and flags. */ 2237 if (!child->devclass) { 2238 result = device_set_devclass(child, best->driver->name); 2239 if (result != 0) 2240 return (result); 2241 } 2242 result = device_set_driver(child, best->driver); 2243 if (result != 0) 2244 return (result); 2245 resource_int_value(best->driver->name, child->unit, 2246 "flags", &child->devflags); 2247 2248 if (pri < 0) { 2249 /* 2250 * A bit bogus. Call the probe method again to make 2251 * sure that we have the right description. 2252 */ 2253 DEVICE_PROBE(child); 2254 #if 0 2255 child->flags |= DF_REBID; 2256 #endif 2257 } else 2258 child->flags &= ~DF_REBID; 2259 child->state = DS_ALIVE; 2260 2261 bus_data_generation_update(); 2262 return (0); 2263 } 2264 2265 return (ENXIO); 2266 } 2267 2268 /** 2269 * @brief Return the parent of a device 2270 */ 2271 device_t 2272 device_get_parent(device_t dev) 2273 { 2274 return (dev->parent); 2275 } 2276 2277 /** 2278 * @brief Get a list of children of a device 2279 * 2280 * An array containing a list of all the children of the given device 2281 * is allocated and returned in @p *devlistp. The number of devices 2282 * in the array is returned in @p *devcountp. The caller should free 2283 * the array using @c free(p, M_TEMP). 2284 * 2285 * @param dev the device to examine 2286 * @param devlistp points at location for array pointer return 2287 * value 2288 * @param devcountp points at location for array size return value 2289 * 2290 * @retval 0 success 2291 * @retval ENOMEM the array allocation failed 2292 */ 2293 int 2294 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2295 { 2296 int count; 2297 device_t child; 2298 device_t *list; 2299 2300 count = 0; 2301 TAILQ_FOREACH(child, &dev->children, link) { 2302 count++; 2303 } 2304 if (count == 0) { 2305 *devlistp = NULL; 2306 *devcountp = 0; 2307 return (0); 2308 } 2309 2310 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2311 if (!list) 2312 return (ENOMEM); 2313 2314 count = 0; 2315 TAILQ_FOREACH(child, &dev->children, link) { 2316 list[count] = child; 2317 count++; 2318 } 2319 2320 *devlistp = list; 2321 *devcountp = count; 2322 2323 return (0); 2324 } 2325 2326 /** 2327 * @brief Return the current driver for the device or @c NULL if there 2328 * is no driver currently attached 2329 */ 2330 driver_t * 2331 device_get_driver(device_t dev) 2332 { 2333 return (dev->driver); 2334 } 2335 2336 /** 2337 * @brief Return the current devclass for the device or @c NULL if 2338 * there is none. 2339 */ 2340 devclass_t 2341 device_get_devclass(device_t dev) 2342 { 2343 return (dev->devclass); 2344 } 2345 2346 /** 2347 * @brief Return the name of the device's devclass or @c NULL if there 2348 * is none. 2349 */ 2350 const char * 2351 device_get_name(device_t dev) 2352 { 2353 if (dev != NULL && dev->devclass) 2354 return (devclass_get_name(dev->devclass)); 2355 return (NULL); 2356 } 2357 2358 /** 2359 * @brief Return a string containing the device's devclass name 2360 * followed by an ascii representation of the device's unit number 2361 * (e.g. @c "foo2"). 2362 */ 2363 const char * 2364 device_get_nameunit(device_t dev) 2365 { 2366 return (dev->nameunit); 2367 } 2368 2369 /** 2370 * @brief Return the device's unit number. 2371 */ 2372 int 2373 device_get_unit(device_t dev) 2374 { 2375 return (dev->unit); 2376 } 2377 2378 /** 2379 * @brief Return the device's description string 2380 */ 2381 const char * 2382 device_get_desc(device_t dev) 2383 { 2384 return (dev->desc); 2385 } 2386 2387 /** 2388 * @brief Return the device's flags 2389 */ 2390 uint32_t 2391 device_get_flags(device_t dev) 2392 { 2393 return (dev->devflags); 2394 } 2395 2396 struct sysctl_ctx_list * 2397 device_get_sysctl_ctx(device_t dev) 2398 { 2399 return (&dev->sysctl_ctx); 2400 } 2401 2402 struct sysctl_oid * 2403 device_get_sysctl_tree(device_t dev) 2404 { 2405 return (dev->sysctl_tree); 2406 } 2407 2408 /** 2409 * @brief Print the name of the device followed by a colon and a space 2410 * 2411 * @returns the number of characters printed 2412 */ 2413 int 2414 device_print_prettyname(device_t dev) 2415 { 2416 const char *name = device_get_name(dev); 2417 2418 if (name == NULL) 2419 return (printf("unknown: ")); 2420 return (printf("%s%d: ", name, device_get_unit(dev))); 2421 } 2422 2423 /** 2424 * @brief Print the name of the device followed by a colon, a space 2425 * and the result of calling vprintf() with the value of @p fmt and 2426 * the following arguments. 2427 * 2428 * @returns the number of characters printed 2429 */ 2430 int 2431 device_printf(device_t dev, const char * fmt, ...) 2432 { 2433 char buf[128]; 2434 struct sbuf sb; 2435 const char *name; 2436 va_list ap; 2437 size_t retval; 2438 2439 retval = 0; 2440 2441 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2442 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2443 2444 name = device_get_name(dev); 2445 2446 if (name == NULL) 2447 sbuf_cat(&sb, "unknown: "); 2448 else 2449 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2450 2451 va_start(ap, fmt); 2452 sbuf_vprintf(&sb, fmt, ap); 2453 va_end(ap); 2454 2455 sbuf_finish(&sb); 2456 sbuf_delete(&sb); 2457 2458 return (retval); 2459 } 2460 2461 /** 2462 * @internal 2463 */ 2464 static void 2465 device_set_desc_internal(device_t dev, const char* desc, int copy) 2466 { 2467 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2468 free(dev->desc, M_BUS); 2469 dev->flags &= ~DF_DESCMALLOCED; 2470 dev->desc = NULL; 2471 } 2472 2473 if (copy && desc) { 2474 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2475 if (dev->desc) { 2476 strcpy(dev->desc, desc); 2477 dev->flags |= DF_DESCMALLOCED; 2478 } 2479 } else { 2480 /* Avoid a -Wcast-qual warning */ 2481 dev->desc = (char *)(uintptr_t) desc; 2482 } 2483 2484 bus_data_generation_update(); 2485 } 2486 2487 /** 2488 * @brief Set the device's description 2489 * 2490 * The value of @c desc should be a string constant that will not 2491 * change (at least until the description is changed in a subsequent 2492 * call to device_set_desc() or device_set_desc_copy()). 2493 */ 2494 void 2495 device_set_desc(device_t dev, const char* desc) 2496 { 2497 device_set_desc_internal(dev, desc, FALSE); 2498 } 2499 2500 /** 2501 * @brief Set the device's description 2502 * 2503 * The string pointed to by @c desc is copied. Use this function if 2504 * the device description is generated, (e.g. with sprintf()). 2505 */ 2506 void 2507 device_set_desc_copy(device_t dev, const char* desc) 2508 { 2509 device_set_desc_internal(dev, desc, TRUE); 2510 } 2511 2512 /** 2513 * @brief Set the device's flags 2514 */ 2515 void 2516 device_set_flags(device_t dev, uint32_t flags) 2517 { 2518 dev->devflags = flags; 2519 } 2520 2521 /** 2522 * @brief Return the device's softc field 2523 * 2524 * The softc is allocated and zeroed when a driver is attached, based 2525 * on the size field of the driver. 2526 */ 2527 void * 2528 device_get_softc(device_t dev) 2529 { 2530 return (dev->softc); 2531 } 2532 2533 /** 2534 * @brief Set the device's softc field 2535 * 2536 * Most drivers do not need to use this since the softc is allocated 2537 * automatically when the driver is attached. 2538 */ 2539 void 2540 device_set_softc(device_t dev, void *softc) 2541 { 2542 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2543 free(dev->softc, M_BUS_SC); 2544 dev->softc = softc; 2545 if (dev->softc) 2546 dev->flags |= DF_EXTERNALSOFTC; 2547 else 2548 dev->flags &= ~DF_EXTERNALSOFTC; 2549 } 2550 2551 /** 2552 * @brief Free claimed softc 2553 * 2554 * Most drivers do not need to use this since the softc is freed 2555 * automatically when the driver is detached. 2556 */ 2557 void 2558 device_free_softc(void *softc) 2559 { 2560 free(softc, M_BUS_SC); 2561 } 2562 2563 /** 2564 * @brief Claim softc 2565 * 2566 * This function can be used to let the driver free the automatically 2567 * allocated softc using "device_free_softc()". This function is 2568 * useful when the driver is refcounting the softc and the softc 2569 * cannot be freed when the "device_detach" method is called. 2570 */ 2571 void 2572 device_claim_softc(device_t dev) 2573 { 2574 if (dev->softc) 2575 dev->flags |= DF_EXTERNALSOFTC; 2576 else 2577 dev->flags &= ~DF_EXTERNALSOFTC; 2578 } 2579 2580 /** 2581 * @brief Get the device's ivars field 2582 * 2583 * The ivars field is used by the parent device to store per-device 2584 * state (e.g. the physical location of the device or a list of 2585 * resources). 2586 */ 2587 void * 2588 device_get_ivars(device_t dev) 2589 { 2590 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2591 return (dev->ivars); 2592 } 2593 2594 /** 2595 * @brief Set the device's ivars field 2596 */ 2597 void 2598 device_set_ivars(device_t dev, void * ivars) 2599 { 2600 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2601 dev->ivars = ivars; 2602 } 2603 2604 /** 2605 * @brief Return the device's state 2606 */ 2607 device_state_t 2608 device_get_state(device_t dev) 2609 { 2610 return (dev->state); 2611 } 2612 2613 /** 2614 * @brief Set the DF_ENABLED flag for the device 2615 */ 2616 void 2617 device_enable(device_t dev) 2618 { 2619 dev->flags |= DF_ENABLED; 2620 } 2621 2622 /** 2623 * @brief Clear the DF_ENABLED flag for the device 2624 */ 2625 void 2626 device_disable(device_t dev) 2627 { 2628 dev->flags &= ~DF_ENABLED; 2629 } 2630 2631 /** 2632 * @brief Increment the busy counter for the device 2633 */ 2634 void 2635 device_busy(device_t dev) 2636 { 2637 if (dev->state < DS_ATTACHING) 2638 panic("device_busy: called for unattached device"); 2639 if (dev->busy == 0 && dev->parent) 2640 device_busy(dev->parent); 2641 dev->busy++; 2642 if (dev->state == DS_ATTACHED) 2643 dev->state = DS_BUSY; 2644 } 2645 2646 /** 2647 * @brief Decrement the busy counter for the device 2648 */ 2649 void 2650 device_unbusy(device_t dev) 2651 { 2652 if (dev->busy != 0 && dev->state != DS_BUSY && 2653 dev->state != DS_ATTACHING) 2654 panic("device_unbusy: called for non-busy device %s", 2655 device_get_nameunit(dev)); 2656 dev->busy--; 2657 if (dev->busy == 0) { 2658 if (dev->parent) 2659 device_unbusy(dev->parent); 2660 if (dev->state == DS_BUSY) 2661 dev->state = DS_ATTACHED; 2662 } 2663 } 2664 2665 /** 2666 * @brief Set the DF_QUIET flag for the device 2667 */ 2668 void 2669 device_quiet(device_t dev) 2670 { 2671 dev->flags |= DF_QUIET; 2672 } 2673 2674 /** 2675 * @brief Set the DF_QUIET_CHILDREN flag for the device 2676 */ 2677 void 2678 device_quiet_children(device_t dev) 2679 { 2680 dev->flags |= DF_QUIET_CHILDREN; 2681 } 2682 2683 /** 2684 * @brief Clear the DF_QUIET flag for the device 2685 */ 2686 void 2687 device_verbose(device_t dev) 2688 { 2689 dev->flags &= ~DF_QUIET; 2690 } 2691 2692 /** 2693 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2694 */ 2695 int 2696 device_has_quiet_children(device_t dev) 2697 { 2698 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2699 } 2700 2701 /** 2702 * @brief Return non-zero if the DF_QUIET flag is set on the device 2703 */ 2704 int 2705 device_is_quiet(device_t dev) 2706 { 2707 return ((dev->flags & DF_QUIET) != 0); 2708 } 2709 2710 /** 2711 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2712 */ 2713 int 2714 device_is_enabled(device_t dev) 2715 { 2716 return ((dev->flags & DF_ENABLED) != 0); 2717 } 2718 2719 /** 2720 * @brief Return non-zero if the device was successfully probed 2721 */ 2722 int 2723 device_is_alive(device_t dev) 2724 { 2725 return (dev->state >= DS_ALIVE); 2726 } 2727 2728 /** 2729 * @brief Return non-zero if the device currently has a driver 2730 * attached to it 2731 */ 2732 int 2733 device_is_attached(device_t dev) 2734 { 2735 return (dev->state >= DS_ATTACHED); 2736 } 2737 2738 /** 2739 * @brief Return non-zero if the device is currently suspended. 2740 */ 2741 int 2742 device_is_suspended(device_t dev) 2743 { 2744 return ((dev->flags & DF_SUSPENDED) != 0); 2745 } 2746 2747 /** 2748 * @brief Set the devclass of a device 2749 * @see devclass_add_device(). 2750 */ 2751 int 2752 device_set_devclass(device_t dev, const char *classname) 2753 { 2754 devclass_t dc; 2755 int error; 2756 2757 if (!classname) { 2758 if (dev->devclass) 2759 devclass_delete_device(dev->devclass, dev); 2760 return (0); 2761 } 2762 2763 if (dev->devclass) { 2764 printf("device_set_devclass: device class already set\n"); 2765 return (EINVAL); 2766 } 2767 2768 dc = devclass_find_internal(classname, NULL, TRUE); 2769 if (!dc) 2770 return (ENOMEM); 2771 2772 error = devclass_add_device(dc, dev); 2773 2774 bus_data_generation_update(); 2775 return (error); 2776 } 2777 2778 /** 2779 * @brief Set the devclass of a device and mark the devclass fixed. 2780 * @see device_set_devclass() 2781 */ 2782 int 2783 device_set_devclass_fixed(device_t dev, const char *classname) 2784 { 2785 int error; 2786 2787 if (classname == NULL) 2788 return (EINVAL); 2789 2790 error = device_set_devclass(dev, classname); 2791 if (error) 2792 return (error); 2793 dev->flags |= DF_FIXEDCLASS; 2794 return (0); 2795 } 2796 2797 /** 2798 * @brief Query the device to determine if it's of a fixed devclass 2799 * @see device_set_devclass_fixed() 2800 */ 2801 bool 2802 device_is_devclass_fixed(device_t dev) 2803 { 2804 return ((dev->flags & DF_FIXEDCLASS) != 0); 2805 } 2806 2807 /** 2808 * @brief Set the driver of a device 2809 * 2810 * @retval 0 success 2811 * @retval EBUSY the device already has a driver attached 2812 * @retval ENOMEM a memory allocation failure occurred 2813 */ 2814 int 2815 device_set_driver(device_t dev, driver_t *driver) 2816 { 2817 int domain; 2818 struct domainset *policy; 2819 2820 if (dev->state >= DS_ATTACHED) 2821 return (EBUSY); 2822 2823 if (dev->driver == driver) 2824 return (0); 2825 2826 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2827 free(dev->softc, M_BUS_SC); 2828 dev->softc = NULL; 2829 } 2830 device_set_desc(dev, NULL); 2831 kobj_delete((kobj_t) dev, NULL); 2832 dev->driver = driver; 2833 if (driver) { 2834 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2835 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2836 if (bus_get_domain(dev, &domain) == 0) 2837 policy = DOMAINSET_PREF(domain); 2838 else 2839 policy = DOMAINSET_RR(); 2840 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2841 policy, M_NOWAIT | M_ZERO); 2842 if (!dev->softc) { 2843 kobj_delete((kobj_t) dev, NULL); 2844 kobj_init((kobj_t) dev, &null_class); 2845 dev->driver = NULL; 2846 return (ENOMEM); 2847 } 2848 } 2849 } else { 2850 kobj_init((kobj_t) dev, &null_class); 2851 } 2852 2853 bus_data_generation_update(); 2854 return (0); 2855 } 2856 2857 /** 2858 * @brief Probe a device, and return this status. 2859 * 2860 * This function is the core of the device autoconfiguration 2861 * system. Its purpose is to select a suitable driver for a device and 2862 * then call that driver to initialise the hardware appropriately. The 2863 * driver is selected by calling the DEVICE_PROBE() method of a set of 2864 * candidate drivers and then choosing the driver which returned the 2865 * best value. This driver is then attached to the device using 2866 * device_attach(). 2867 * 2868 * The set of suitable drivers is taken from the list of drivers in 2869 * the parent device's devclass. If the device was originally created 2870 * with a specific class name (see device_add_child()), only drivers 2871 * with that name are probed, otherwise all drivers in the devclass 2872 * are probed. If no drivers return successful probe values in the 2873 * parent devclass, the search continues in the parent of that 2874 * devclass (see devclass_get_parent()) if any. 2875 * 2876 * @param dev the device to initialise 2877 * 2878 * @retval 0 success 2879 * @retval ENXIO no driver was found 2880 * @retval ENOMEM memory allocation failure 2881 * @retval non-zero some other unix error code 2882 * @retval -1 Device already attached 2883 */ 2884 int 2885 device_probe(device_t dev) 2886 { 2887 int error; 2888 2889 GIANT_REQUIRED; 2890 2891 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2892 return (-1); 2893 2894 if (!(dev->flags & DF_ENABLED)) { 2895 if (bootverbose && device_get_name(dev) != NULL) { 2896 device_print_prettyname(dev); 2897 printf("not probed (disabled)\n"); 2898 } 2899 return (-1); 2900 } 2901 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2902 if (bus_current_pass == BUS_PASS_DEFAULT && 2903 !(dev->flags & DF_DONENOMATCH)) { 2904 BUS_PROBE_NOMATCH(dev->parent, dev); 2905 devnomatch(dev); 2906 dev->flags |= DF_DONENOMATCH; 2907 } 2908 return (error); 2909 } 2910 return (0); 2911 } 2912 2913 /** 2914 * @brief Probe a device and attach a driver if possible 2915 * 2916 * calls device_probe() and attaches if that was successful. 2917 */ 2918 int 2919 device_probe_and_attach(device_t dev) 2920 { 2921 int error; 2922 2923 GIANT_REQUIRED; 2924 2925 error = device_probe(dev); 2926 if (error == -1) 2927 return (0); 2928 else if (error != 0) 2929 return (error); 2930 2931 CURVNET_SET_QUIET(vnet0); 2932 error = device_attach(dev); 2933 CURVNET_RESTORE(); 2934 return error; 2935 } 2936 2937 /** 2938 * @brief Attach a device driver to a device 2939 * 2940 * This function is a wrapper around the DEVICE_ATTACH() driver 2941 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2942 * device's sysctl tree, optionally prints a description of the device 2943 * and queues a notification event for user-based device management 2944 * services. 2945 * 2946 * Normally this function is only called internally from 2947 * device_probe_and_attach(). 2948 * 2949 * @param dev the device to initialise 2950 * 2951 * @retval 0 success 2952 * @retval ENXIO no driver was found 2953 * @retval ENOMEM memory allocation failure 2954 * @retval non-zero some other unix error code 2955 */ 2956 int 2957 device_attach(device_t dev) 2958 { 2959 uint64_t attachtime; 2960 uint16_t attachentropy; 2961 int error; 2962 2963 if (resource_disabled(dev->driver->name, dev->unit)) { 2964 device_disable(dev); 2965 if (bootverbose) 2966 device_printf(dev, "disabled via hints entry\n"); 2967 return (ENXIO); 2968 } 2969 2970 device_sysctl_init(dev); 2971 if (!device_is_quiet(dev)) 2972 device_print_child(dev->parent, dev); 2973 attachtime = get_cyclecount(); 2974 dev->state = DS_ATTACHING; 2975 if ((error = DEVICE_ATTACH(dev)) != 0) { 2976 printf("device_attach: %s%d attach returned %d\n", 2977 dev->driver->name, dev->unit, error); 2978 if (!(dev->flags & DF_FIXEDCLASS)) 2979 devclass_delete_device(dev->devclass, dev); 2980 (void)device_set_driver(dev, NULL); 2981 device_sysctl_fini(dev); 2982 KASSERT(dev->busy == 0, ("attach failed but busy")); 2983 dev->state = DS_NOTPRESENT; 2984 return (error); 2985 } 2986 dev->flags |= DF_ATTACHED_ONCE; 2987 /* We only need the low bits of this time, but ranges from tens to thousands 2988 * have been seen, so keep 2 bytes' worth. 2989 */ 2990 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2991 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2992 device_sysctl_update(dev); 2993 if (dev->busy) 2994 dev->state = DS_BUSY; 2995 else 2996 dev->state = DS_ATTACHED; 2997 dev->flags &= ~DF_DONENOMATCH; 2998 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2999 devadded(dev); 3000 return (0); 3001 } 3002 3003 /** 3004 * @brief Detach a driver from a device 3005 * 3006 * This function is a wrapper around the DEVICE_DETACH() driver 3007 * method. If the call to DEVICE_DETACH() succeeds, it calls 3008 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3009 * notification event for user-based device management services and 3010 * cleans up the device's sysctl tree. 3011 * 3012 * @param dev the device to un-initialise 3013 * 3014 * @retval 0 success 3015 * @retval ENXIO no driver was found 3016 * @retval ENOMEM memory allocation failure 3017 * @retval non-zero some other unix error code 3018 */ 3019 int 3020 device_detach(device_t dev) 3021 { 3022 int error; 3023 3024 GIANT_REQUIRED; 3025 3026 PDEBUG(("%s", DEVICENAME(dev))); 3027 if (dev->state == DS_BUSY) 3028 return (EBUSY); 3029 if (dev->state == DS_ATTACHING) { 3030 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3031 return (EBUSY); 3032 } 3033 if (dev->state != DS_ATTACHED) 3034 return (0); 3035 3036 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3037 if ((error = DEVICE_DETACH(dev)) != 0) { 3038 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3039 EVHDEV_DETACH_FAILED); 3040 return (error); 3041 } else { 3042 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3043 EVHDEV_DETACH_COMPLETE); 3044 } 3045 devremoved(dev); 3046 if (!device_is_quiet(dev)) 3047 device_printf(dev, "detached\n"); 3048 if (dev->parent) 3049 BUS_CHILD_DETACHED(dev->parent, dev); 3050 3051 if (!(dev->flags & DF_FIXEDCLASS)) 3052 devclass_delete_device(dev->devclass, dev); 3053 3054 device_verbose(dev); 3055 dev->state = DS_NOTPRESENT; 3056 (void)device_set_driver(dev, NULL); 3057 device_sysctl_fini(dev); 3058 3059 return (0); 3060 } 3061 3062 /** 3063 * @brief Tells a driver to quiesce itself. 3064 * 3065 * This function is a wrapper around the DEVICE_QUIESCE() driver 3066 * method. If the call to DEVICE_QUIESCE() succeeds. 3067 * 3068 * @param dev the device to quiesce 3069 * 3070 * @retval 0 success 3071 * @retval ENXIO no driver was found 3072 * @retval ENOMEM memory allocation failure 3073 * @retval non-zero some other unix error code 3074 */ 3075 int 3076 device_quiesce(device_t dev) 3077 { 3078 PDEBUG(("%s", DEVICENAME(dev))); 3079 if (dev->state == DS_BUSY) 3080 return (EBUSY); 3081 if (dev->state != DS_ATTACHED) 3082 return (0); 3083 3084 return (DEVICE_QUIESCE(dev)); 3085 } 3086 3087 /** 3088 * @brief Notify a device of system shutdown 3089 * 3090 * This function calls the DEVICE_SHUTDOWN() driver method if the 3091 * device currently has an attached driver. 3092 * 3093 * @returns the value returned by DEVICE_SHUTDOWN() 3094 */ 3095 int 3096 device_shutdown(device_t dev) 3097 { 3098 if (dev->state < DS_ATTACHED) 3099 return (0); 3100 return (DEVICE_SHUTDOWN(dev)); 3101 } 3102 3103 /** 3104 * @brief Set the unit number of a device 3105 * 3106 * This function can be used to override the unit number used for a 3107 * device (e.g. to wire a device to a pre-configured unit number). 3108 */ 3109 int 3110 device_set_unit(device_t dev, int unit) 3111 { 3112 devclass_t dc; 3113 int err; 3114 3115 dc = device_get_devclass(dev); 3116 if (unit < dc->maxunit && dc->devices[unit]) 3117 return (EBUSY); 3118 err = devclass_delete_device(dc, dev); 3119 if (err) 3120 return (err); 3121 dev->unit = unit; 3122 err = devclass_add_device(dc, dev); 3123 if (err) 3124 return (err); 3125 3126 bus_data_generation_update(); 3127 return (0); 3128 } 3129 3130 /*======================================*/ 3131 /* 3132 * Some useful method implementations to make life easier for bus drivers. 3133 */ 3134 3135 void 3136 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3137 { 3138 bzero(args, sz); 3139 args->size = sz; 3140 args->memattr = VM_MEMATTR_UNCACHEABLE; 3141 } 3142 3143 /** 3144 * @brief Initialise a resource list. 3145 * 3146 * @param rl the resource list to initialise 3147 */ 3148 void 3149 resource_list_init(struct resource_list *rl) 3150 { 3151 STAILQ_INIT(rl); 3152 } 3153 3154 /** 3155 * @brief Reclaim memory used by a resource list. 3156 * 3157 * This function frees the memory for all resource entries on the list 3158 * (if any). 3159 * 3160 * @param rl the resource list to free 3161 */ 3162 void 3163 resource_list_free(struct resource_list *rl) 3164 { 3165 struct resource_list_entry *rle; 3166 3167 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3168 if (rle->res) 3169 panic("resource_list_free: resource entry is busy"); 3170 STAILQ_REMOVE_HEAD(rl, link); 3171 free(rle, M_BUS); 3172 } 3173 } 3174 3175 /** 3176 * @brief Add a resource entry. 3177 * 3178 * This function adds a resource entry using the given @p type, @p 3179 * start, @p end and @p count values. A rid value is chosen by 3180 * searching sequentially for the first unused rid starting at zero. 3181 * 3182 * @param rl the resource list to edit 3183 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3184 * @param start the start address of the resource 3185 * @param end the end address of the resource 3186 * @param count XXX end-start+1 3187 */ 3188 int 3189 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3190 rman_res_t end, rman_res_t count) 3191 { 3192 int rid; 3193 3194 rid = 0; 3195 while (resource_list_find(rl, type, rid) != NULL) 3196 rid++; 3197 resource_list_add(rl, type, rid, start, end, count); 3198 return (rid); 3199 } 3200 3201 /** 3202 * @brief Add or modify a resource entry. 3203 * 3204 * If an existing entry exists with the same type and rid, it will be 3205 * modified using the given values of @p start, @p end and @p 3206 * count. If no entry exists, a new one will be created using the 3207 * given values. The resource list entry that matches is then returned. 3208 * 3209 * @param rl the resource list to edit 3210 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3211 * @param rid the resource identifier 3212 * @param start the start address of the resource 3213 * @param end the end address of the resource 3214 * @param count XXX end-start+1 3215 */ 3216 struct resource_list_entry * 3217 resource_list_add(struct resource_list *rl, int type, int rid, 3218 rman_res_t start, rman_res_t end, rman_res_t count) 3219 { 3220 struct resource_list_entry *rle; 3221 3222 rle = resource_list_find(rl, type, rid); 3223 if (!rle) { 3224 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3225 M_NOWAIT); 3226 if (!rle) 3227 panic("resource_list_add: can't record entry"); 3228 STAILQ_INSERT_TAIL(rl, rle, link); 3229 rle->type = type; 3230 rle->rid = rid; 3231 rle->res = NULL; 3232 rle->flags = 0; 3233 } 3234 3235 if (rle->res) 3236 panic("resource_list_add: resource entry is busy"); 3237 3238 rle->start = start; 3239 rle->end = end; 3240 rle->count = count; 3241 return (rle); 3242 } 3243 3244 /** 3245 * @brief Determine if a resource entry is busy. 3246 * 3247 * Returns true if a resource entry is busy meaning that it has an 3248 * associated resource that is not an unallocated "reserved" resource. 3249 * 3250 * @param rl the resource list to search 3251 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3252 * @param rid the resource identifier 3253 * 3254 * @returns Non-zero if the entry is busy, zero otherwise. 3255 */ 3256 int 3257 resource_list_busy(struct resource_list *rl, int type, int rid) 3258 { 3259 struct resource_list_entry *rle; 3260 3261 rle = resource_list_find(rl, type, rid); 3262 if (rle == NULL || rle->res == NULL) 3263 return (0); 3264 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3265 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3266 ("reserved resource is active")); 3267 return (0); 3268 } 3269 return (1); 3270 } 3271 3272 /** 3273 * @brief Determine if a resource entry is reserved. 3274 * 3275 * Returns true if a resource entry is reserved meaning that it has an 3276 * associated "reserved" resource. The resource can either be 3277 * allocated or unallocated. 3278 * 3279 * @param rl the resource list to search 3280 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3281 * @param rid the resource identifier 3282 * 3283 * @returns Non-zero if the entry is reserved, zero otherwise. 3284 */ 3285 int 3286 resource_list_reserved(struct resource_list *rl, int type, int rid) 3287 { 3288 struct resource_list_entry *rle; 3289 3290 rle = resource_list_find(rl, type, rid); 3291 if (rle != NULL && rle->flags & RLE_RESERVED) 3292 return (1); 3293 return (0); 3294 } 3295 3296 /** 3297 * @brief Find a resource entry by type and rid. 3298 * 3299 * @param rl the resource list to search 3300 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3301 * @param rid the resource identifier 3302 * 3303 * @returns the resource entry pointer or NULL if there is no such 3304 * entry. 3305 */ 3306 struct resource_list_entry * 3307 resource_list_find(struct resource_list *rl, int type, int rid) 3308 { 3309 struct resource_list_entry *rle; 3310 3311 STAILQ_FOREACH(rle, rl, link) { 3312 if (rle->type == type && rle->rid == rid) 3313 return (rle); 3314 } 3315 return (NULL); 3316 } 3317 3318 /** 3319 * @brief Delete a resource entry. 3320 * 3321 * @param rl the resource list to edit 3322 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3323 * @param rid the resource identifier 3324 */ 3325 void 3326 resource_list_delete(struct resource_list *rl, int type, int rid) 3327 { 3328 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3329 3330 if (rle) { 3331 if (rle->res != NULL) 3332 panic("resource_list_delete: resource has not been released"); 3333 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3334 free(rle, M_BUS); 3335 } 3336 } 3337 3338 /** 3339 * @brief Allocate a reserved resource 3340 * 3341 * This can be used by buses to force the allocation of resources 3342 * that are always active in the system even if they are not allocated 3343 * by a driver (e.g. PCI BARs). This function is usually called when 3344 * adding a new child to the bus. The resource is allocated from the 3345 * parent bus when it is reserved. The resource list entry is marked 3346 * with RLE_RESERVED to note that it is a reserved resource. 3347 * 3348 * Subsequent attempts to allocate the resource with 3349 * resource_list_alloc() will succeed the first time and will set 3350 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3351 * resource that has been allocated is released with 3352 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3353 * the actual resource remains allocated. The resource can be released to 3354 * the parent bus by calling resource_list_unreserve(). 3355 * 3356 * @param rl the resource list to allocate from 3357 * @param bus the parent device of @p child 3358 * @param child the device for which the resource is being reserved 3359 * @param type the type of resource to allocate 3360 * @param rid a pointer to the resource identifier 3361 * @param start hint at the start of the resource range - pass 3362 * @c 0 for any start address 3363 * @param end hint at the end of the resource range - pass 3364 * @c ~0 for any end address 3365 * @param count hint at the size of range required - pass @c 1 3366 * for any size 3367 * @param flags any extra flags to control the resource 3368 * allocation - see @c RF_XXX flags in 3369 * <sys/rman.h> for details 3370 * 3371 * @returns the resource which was allocated or @c NULL if no 3372 * resource could be allocated 3373 */ 3374 struct resource * 3375 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3376 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3377 { 3378 struct resource_list_entry *rle = NULL; 3379 int passthrough = (device_get_parent(child) != bus); 3380 struct resource *r; 3381 3382 if (passthrough) 3383 panic( 3384 "resource_list_reserve() should only be called for direct children"); 3385 if (flags & RF_ACTIVE) 3386 panic( 3387 "resource_list_reserve() should only reserve inactive resources"); 3388 3389 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3390 flags); 3391 if (r != NULL) { 3392 rle = resource_list_find(rl, type, *rid); 3393 rle->flags |= RLE_RESERVED; 3394 } 3395 return (r); 3396 } 3397 3398 /** 3399 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3400 * 3401 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3402 * and passing the allocation up to the parent of @p bus. This assumes 3403 * that the first entry of @c device_get_ivars(child) is a struct 3404 * resource_list. This also handles 'passthrough' allocations where a 3405 * child is a remote descendant of bus by passing the allocation up to 3406 * the parent of bus. 3407 * 3408 * Typically, a bus driver would store a list of child resources 3409 * somewhere in the child device's ivars (see device_get_ivars()) and 3410 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3411 * then call resource_list_alloc() to perform the allocation. 3412 * 3413 * @param rl the resource list to allocate from 3414 * @param bus the parent device of @p child 3415 * @param child the device which is requesting an allocation 3416 * @param type the type of resource to allocate 3417 * @param rid a pointer to the resource identifier 3418 * @param start hint at the start of the resource range - pass 3419 * @c 0 for any start address 3420 * @param end hint at the end of the resource range - pass 3421 * @c ~0 for any end address 3422 * @param count hint at the size of range required - pass @c 1 3423 * for any size 3424 * @param flags any extra flags to control the resource 3425 * allocation - see @c RF_XXX flags in 3426 * <sys/rman.h> for details 3427 * 3428 * @returns the resource which was allocated or @c NULL if no 3429 * resource could be allocated 3430 */ 3431 struct resource * 3432 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3433 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3434 { 3435 struct resource_list_entry *rle = NULL; 3436 int passthrough = (device_get_parent(child) != bus); 3437 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3438 3439 if (passthrough) { 3440 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3441 type, rid, start, end, count, flags)); 3442 } 3443 3444 rle = resource_list_find(rl, type, *rid); 3445 3446 if (!rle) 3447 return (NULL); /* no resource of that type/rid */ 3448 3449 if (rle->res) { 3450 if (rle->flags & RLE_RESERVED) { 3451 if (rle->flags & RLE_ALLOCATED) 3452 return (NULL); 3453 if ((flags & RF_ACTIVE) && 3454 bus_activate_resource(child, type, *rid, 3455 rle->res) != 0) 3456 return (NULL); 3457 rle->flags |= RLE_ALLOCATED; 3458 return (rle->res); 3459 } 3460 device_printf(bus, 3461 "resource entry %#x type %d for child %s is busy\n", *rid, 3462 type, device_get_nameunit(child)); 3463 return (NULL); 3464 } 3465 3466 if (isdefault) { 3467 start = rle->start; 3468 count = ulmax(count, rle->count); 3469 end = ulmax(rle->end, start + count - 1); 3470 } 3471 3472 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3473 type, rid, start, end, count, flags); 3474 3475 /* 3476 * Record the new range. 3477 */ 3478 if (rle->res) { 3479 rle->start = rman_get_start(rle->res); 3480 rle->end = rman_get_end(rle->res); 3481 rle->count = count; 3482 } 3483 3484 return (rle->res); 3485 } 3486 3487 /** 3488 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3489 * 3490 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3491 * used with resource_list_alloc(). 3492 * 3493 * @param rl the resource list which was allocated from 3494 * @param bus the parent device of @p child 3495 * @param child the device which is requesting a release 3496 * @param type the type of resource to release 3497 * @param rid the resource identifier 3498 * @param res the resource to release 3499 * 3500 * @retval 0 success 3501 * @retval non-zero a standard unix error code indicating what 3502 * error condition prevented the operation 3503 */ 3504 int 3505 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3506 int type, int rid, struct resource *res) 3507 { 3508 struct resource_list_entry *rle = NULL; 3509 int passthrough = (device_get_parent(child) != bus); 3510 int error; 3511 3512 if (passthrough) { 3513 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3514 type, rid, res)); 3515 } 3516 3517 rle = resource_list_find(rl, type, rid); 3518 3519 if (!rle) 3520 panic("resource_list_release: can't find resource"); 3521 if (!rle->res) 3522 panic("resource_list_release: resource entry is not busy"); 3523 if (rle->flags & RLE_RESERVED) { 3524 if (rle->flags & RLE_ALLOCATED) { 3525 if (rman_get_flags(res) & RF_ACTIVE) { 3526 error = bus_deactivate_resource(child, type, 3527 rid, res); 3528 if (error) 3529 return (error); 3530 } 3531 rle->flags &= ~RLE_ALLOCATED; 3532 return (0); 3533 } 3534 return (EINVAL); 3535 } 3536 3537 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3538 type, rid, res); 3539 if (error) 3540 return (error); 3541 3542 rle->res = NULL; 3543 return (0); 3544 } 3545 3546 /** 3547 * @brief Release all active resources of a given type 3548 * 3549 * Release all active resources of a specified type. This is intended 3550 * to be used to cleanup resources leaked by a driver after detach or 3551 * a failed attach. 3552 * 3553 * @param rl the resource list which was allocated from 3554 * @param bus the parent device of @p child 3555 * @param child the device whose active resources are being released 3556 * @param type the type of resources to release 3557 * 3558 * @retval 0 success 3559 * @retval EBUSY at least one resource was active 3560 */ 3561 int 3562 resource_list_release_active(struct resource_list *rl, device_t bus, 3563 device_t child, int type) 3564 { 3565 struct resource_list_entry *rle; 3566 int error, retval; 3567 3568 retval = 0; 3569 STAILQ_FOREACH(rle, rl, link) { 3570 if (rle->type != type) 3571 continue; 3572 if (rle->res == NULL) 3573 continue; 3574 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3575 RLE_RESERVED) 3576 continue; 3577 retval = EBUSY; 3578 error = resource_list_release(rl, bus, child, type, 3579 rman_get_rid(rle->res), rle->res); 3580 if (error != 0) 3581 device_printf(bus, 3582 "Failed to release active resource: %d\n", error); 3583 } 3584 return (retval); 3585 } 3586 3587 /** 3588 * @brief Fully release a reserved resource 3589 * 3590 * Fully releases a resource reserved via resource_list_reserve(). 3591 * 3592 * @param rl the resource list which was allocated from 3593 * @param bus the parent device of @p child 3594 * @param child the device whose reserved resource is being released 3595 * @param type the type of resource to release 3596 * @param rid the resource identifier 3597 * @param res the resource to release 3598 * 3599 * @retval 0 success 3600 * @retval non-zero a standard unix error code indicating what 3601 * error condition prevented the operation 3602 */ 3603 int 3604 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3605 int type, int rid) 3606 { 3607 struct resource_list_entry *rle = NULL; 3608 int passthrough = (device_get_parent(child) != bus); 3609 3610 if (passthrough) 3611 panic( 3612 "resource_list_unreserve() should only be called for direct children"); 3613 3614 rle = resource_list_find(rl, type, rid); 3615 3616 if (!rle) 3617 panic("resource_list_unreserve: can't find resource"); 3618 if (!(rle->flags & RLE_RESERVED)) 3619 return (EINVAL); 3620 if (rle->flags & RLE_ALLOCATED) 3621 return (EBUSY); 3622 rle->flags &= ~RLE_RESERVED; 3623 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3624 } 3625 3626 /** 3627 * @brief Print a description of resources in a resource list 3628 * 3629 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3630 * The name is printed if at least one resource of the given type is available. 3631 * The format is used to print resource start and end. 3632 * 3633 * @param rl the resource list to print 3634 * @param name the name of @p type, e.g. @c "memory" 3635 * @param type type type of resource entry to print 3636 * @param format printf(9) format string to print resource 3637 * start and end values 3638 * 3639 * @returns the number of characters printed 3640 */ 3641 int 3642 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3643 const char *format) 3644 { 3645 struct resource_list_entry *rle; 3646 int printed, retval; 3647 3648 printed = 0; 3649 retval = 0; 3650 /* Yes, this is kinda cheating */ 3651 STAILQ_FOREACH(rle, rl, link) { 3652 if (rle->type == type) { 3653 if (printed == 0) 3654 retval += printf(" %s ", name); 3655 else 3656 retval += printf(","); 3657 printed++; 3658 retval += printf(format, rle->start); 3659 if (rle->count > 1) { 3660 retval += printf("-"); 3661 retval += printf(format, rle->start + 3662 rle->count - 1); 3663 } 3664 } 3665 } 3666 return (retval); 3667 } 3668 3669 /** 3670 * @brief Releases all the resources in a list. 3671 * 3672 * @param rl The resource list to purge. 3673 * 3674 * @returns nothing 3675 */ 3676 void 3677 resource_list_purge(struct resource_list *rl) 3678 { 3679 struct resource_list_entry *rle; 3680 3681 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3682 if (rle->res) 3683 bus_release_resource(rman_get_device(rle->res), 3684 rle->type, rle->rid, rle->res); 3685 STAILQ_REMOVE_HEAD(rl, link); 3686 free(rle, M_BUS); 3687 } 3688 } 3689 3690 device_t 3691 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3692 { 3693 return (device_add_child_ordered(dev, order, name, unit)); 3694 } 3695 3696 /** 3697 * @brief Helper function for implementing DEVICE_PROBE() 3698 * 3699 * This function can be used to help implement the DEVICE_PROBE() for 3700 * a bus (i.e. a device which has other devices attached to it). It 3701 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3702 * devclass. 3703 */ 3704 int 3705 bus_generic_probe(device_t dev) 3706 { 3707 devclass_t dc = dev->devclass; 3708 driverlink_t dl; 3709 3710 TAILQ_FOREACH(dl, &dc->drivers, link) { 3711 /* 3712 * If this driver's pass is too high, then ignore it. 3713 * For most drivers in the default pass, this will 3714 * never be true. For early-pass drivers they will 3715 * only call the identify routines of eligible drivers 3716 * when this routine is called. Drivers for later 3717 * passes should have their identify routines called 3718 * on early-pass buses during BUS_NEW_PASS(). 3719 */ 3720 if (dl->pass > bus_current_pass) 3721 continue; 3722 DEVICE_IDENTIFY(dl->driver, dev); 3723 } 3724 3725 return (0); 3726 } 3727 3728 /** 3729 * @brief Helper function for implementing DEVICE_ATTACH() 3730 * 3731 * This function can be used to help implement the DEVICE_ATTACH() for 3732 * a bus. It calls device_probe_and_attach() for each of the device's 3733 * children. 3734 */ 3735 int 3736 bus_generic_attach(device_t dev) 3737 { 3738 device_t child; 3739 3740 TAILQ_FOREACH(child, &dev->children, link) { 3741 device_probe_and_attach(child); 3742 } 3743 3744 return (0); 3745 } 3746 3747 /** 3748 * @brief Helper function for delaying attaching children 3749 * 3750 * Many buses can't run transactions on the bus which children need to probe and 3751 * attach until after interrupts and/or timers are running. This function 3752 * delays their attach until interrupts and timers are enabled. 3753 */ 3754 int 3755 bus_delayed_attach_children(device_t dev) 3756 { 3757 /* Probe and attach the bus children when interrupts are available */ 3758 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3759 3760 return (0); 3761 } 3762 3763 /** 3764 * @brief Helper function for implementing DEVICE_DETACH() 3765 * 3766 * This function can be used to help implement the DEVICE_DETACH() for 3767 * a bus. It calls device_detach() for each of the device's 3768 * children. 3769 */ 3770 int 3771 bus_generic_detach(device_t dev) 3772 { 3773 device_t child; 3774 int error; 3775 3776 if (dev->state != DS_ATTACHED) 3777 return (EBUSY); 3778 3779 /* 3780 * Detach children in the reverse order. 3781 * See bus_generic_suspend for details. 3782 */ 3783 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3784 if ((error = device_detach(child)) != 0) 3785 return (error); 3786 } 3787 3788 return (0); 3789 } 3790 3791 /** 3792 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3793 * 3794 * This function can be used to help implement the DEVICE_SHUTDOWN() 3795 * for a bus. It calls device_shutdown() for each of the device's 3796 * children. 3797 */ 3798 int 3799 bus_generic_shutdown(device_t dev) 3800 { 3801 device_t child; 3802 3803 /* 3804 * Shut down children in the reverse order. 3805 * See bus_generic_suspend for details. 3806 */ 3807 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3808 device_shutdown(child); 3809 } 3810 3811 return (0); 3812 } 3813 3814 /** 3815 * @brief Default function for suspending a child device. 3816 * 3817 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3818 */ 3819 int 3820 bus_generic_suspend_child(device_t dev, device_t child) 3821 { 3822 int error; 3823 3824 error = DEVICE_SUSPEND(child); 3825 3826 if (error == 0) 3827 child->flags |= DF_SUSPENDED; 3828 3829 return (error); 3830 } 3831 3832 /** 3833 * @brief Default function for resuming a child device. 3834 * 3835 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3836 */ 3837 int 3838 bus_generic_resume_child(device_t dev, device_t child) 3839 { 3840 DEVICE_RESUME(child); 3841 child->flags &= ~DF_SUSPENDED; 3842 3843 return (0); 3844 } 3845 3846 /** 3847 * @brief Helper function for implementing DEVICE_SUSPEND() 3848 * 3849 * This function can be used to help implement the DEVICE_SUSPEND() 3850 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3851 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3852 * operation is aborted and any devices which were suspended are 3853 * resumed immediately by calling their DEVICE_RESUME() methods. 3854 */ 3855 int 3856 bus_generic_suspend(device_t dev) 3857 { 3858 int error; 3859 device_t child; 3860 3861 /* 3862 * Suspend children in the reverse order. 3863 * For most buses all children are equal, so the order does not matter. 3864 * Other buses, such as acpi, carefully order their child devices to 3865 * express implicit dependencies between them. For such buses it is 3866 * safer to bring down devices in the reverse order. 3867 */ 3868 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3869 error = BUS_SUSPEND_CHILD(dev, child); 3870 if (error != 0) { 3871 child = TAILQ_NEXT(child, link); 3872 if (child != NULL) { 3873 TAILQ_FOREACH_FROM(child, &dev->children, link) 3874 BUS_RESUME_CHILD(dev, child); 3875 } 3876 return (error); 3877 } 3878 } 3879 return (0); 3880 } 3881 3882 /** 3883 * @brief Helper function for implementing DEVICE_RESUME() 3884 * 3885 * This function can be used to help implement the DEVICE_RESUME() for 3886 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3887 */ 3888 int 3889 bus_generic_resume(device_t dev) 3890 { 3891 device_t child; 3892 3893 TAILQ_FOREACH(child, &dev->children, link) { 3894 BUS_RESUME_CHILD(dev, child); 3895 /* if resume fails, there's nothing we can usefully do... */ 3896 } 3897 return (0); 3898 } 3899 3900 /** 3901 * @brief Helper function for implementing BUS_RESET_POST 3902 * 3903 * Bus can use this function to implement common operations of 3904 * re-attaching or resuming the children after the bus itself was 3905 * reset, and after restoring bus-unique state of children. 3906 * 3907 * @param dev The bus 3908 * #param flags DEVF_RESET_* 3909 */ 3910 int 3911 bus_helper_reset_post(device_t dev, int flags) 3912 { 3913 device_t child; 3914 int error, error1; 3915 3916 error = 0; 3917 TAILQ_FOREACH(child, &dev->children,link) { 3918 BUS_RESET_POST(dev, child); 3919 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3920 device_probe_and_attach(child) : 3921 BUS_RESUME_CHILD(dev, child); 3922 if (error == 0 && error1 != 0) 3923 error = error1; 3924 } 3925 return (error); 3926 } 3927 3928 static void 3929 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3930 { 3931 child = TAILQ_NEXT(child, link); 3932 if (child == NULL) 3933 return; 3934 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3935 BUS_RESET_POST(dev, child); 3936 if ((flags & DEVF_RESET_DETACH) != 0) 3937 device_probe_and_attach(child); 3938 else 3939 BUS_RESUME_CHILD(dev, child); 3940 } 3941 } 3942 3943 /** 3944 * @brief Helper function for implementing BUS_RESET_PREPARE 3945 * 3946 * Bus can use this function to implement common operations of 3947 * detaching or suspending the children before the bus itself is 3948 * reset, and then save bus-unique state of children that must 3949 * persists around reset. 3950 * 3951 * @param dev The bus 3952 * #param flags DEVF_RESET_* 3953 */ 3954 int 3955 bus_helper_reset_prepare(device_t dev, int flags) 3956 { 3957 device_t child; 3958 int error; 3959 3960 if (dev->state != DS_ATTACHED) 3961 return (EBUSY); 3962 3963 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3964 if ((flags & DEVF_RESET_DETACH) != 0) { 3965 error = device_get_state(child) == DS_ATTACHED ? 3966 device_detach(child) : 0; 3967 } else { 3968 error = BUS_SUSPEND_CHILD(dev, child); 3969 } 3970 if (error == 0) { 3971 error = BUS_RESET_PREPARE(dev, child); 3972 if (error != 0) { 3973 if ((flags & DEVF_RESET_DETACH) != 0) 3974 device_probe_and_attach(child); 3975 else 3976 BUS_RESUME_CHILD(dev, child); 3977 } 3978 } 3979 if (error != 0) { 3980 bus_helper_reset_prepare_rollback(dev, child, flags); 3981 return (error); 3982 } 3983 } 3984 return (0); 3985 } 3986 3987 /** 3988 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3989 * 3990 * This function prints the first part of the ascii representation of 3991 * @p child, including its name, unit and description (if any - see 3992 * device_set_desc()). 3993 * 3994 * @returns the number of characters printed 3995 */ 3996 int 3997 bus_print_child_header(device_t dev, device_t child) 3998 { 3999 int retval = 0; 4000 4001 if (device_get_desc(child)) { 4002 retval += device_printf(child, "<%s>", device_get_desc(child)); 4003 } else { 4004 retval += printf("%s", device_get_nameunit(child)); 4005 } 4006 4007 return (retval); 4008 } 4009 4010 /** 4011 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4012 * 4013 * This function prints the last part of the ascii representation of 4014 * @p child, which consists of the string @c " on " followed by the 4015 * name and unit of the @p dev. 4016 * 4017 * @returns the number of characters printed 4018 */ 4019 int 4020 bus_print_child_footer(device_t dev, device_t child) 4021 { 4022 return (printf(" on %s\n", device_get_nameunit(dev))); 4023 } 4024 4025 /** 4026 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4027 * 4028 * This function prints out the VM domain for the given device. 4029 * 4030 * @returns the number of characters printed 4031 */ 4032 int 4033 bus_print_child_domain(device_t dev, device_t child) 4034 { 4035 int domain; 4036 4037 /* No domain? Don't print anything */ 4038 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4039 return (0); 4040 4041 return (printf(" numa-domain %d", domain)); 4042 } 4043 4044 /** 4045 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4046 * 4047 * This function simply calls bus_print_child_header() followed by 4048 * bus_print_child_footer(). 4049 * 4050 * @returns the number of characters printed 4051 */ 4052 int 4053 bus_generic_print_child(device_t dev, device_t child) 4054 { 4055 int retval = 0; 4056 4057 retval += bus_print_child_header(dev, child); 4058 retval += bus_print_child_domain(dev, child); 4059 retval += bus_print_child_footer(dev, child); 4060 4061 return (retval); 4062 } 4063 4064 /** 4065 * @brief Stub function for implementing BUS_READ_IVAR(). 4066 * 4067 * @returns ENOENT 4068 */ 4069 int 4070 bus_generic_read_ivar(device_t dev, device_t child, int index, 4071 uintptr_t * result) 4072 { 4073 return (ENOENT); 4074 } 4075 4076 /** 4077 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4078 * 4079 * @returns ENOENT 4080 */ 4081 int 4082 bus_generic_write_ivar(device_t dev, device_t child, int index, 4083 uintptr_t value) 4084 { 4085 return (ENOENT); 4086 } 4087 4088 /** 4089 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4090 * 4091 * @returns NULL 4092 */ 4093 struct resource_list * 4094 bus_generic_get_resource_list(device_t dev, device_t child) 4095 { 4096 return (NULL); 4097 } 4098 4099 /** 4100 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4101 * 4102 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4103 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4104 * and then calls device_probe_and_attach() for each unattached child. 4105 */ 4106 void 4107 bus_generic_driver_added(device_t dev, driver_t *driver) 4108 { 4109 device_t child; 4110 4111 DEVICE_IDENTIFY(driver, dev); 4112 TAILQ_FOREACH(child, &dev->children, link) { 4113 if (child->state == DS_NOTPRESENT || 4114 (child->flags & DF_REBID)) 4115 device_probe_and_attach(child); 4116 } 4117 } 4118 4119 /** 4120 * @brief Helper function for implementing BUS_NEW_PASS(). 4121 * 4122 * This implementing of BUS_NEW_PASS() first calls the identify 4123 * routines for any drivers that probe at the current pass. Then it 4124 * walks the list of devices for this bus. If a device is already 4125 * attached, then it calls BUS_NEW_PASS() on that device. If the 4126 * device is not already attached, it attempts to attach a driver to 4127 * it. 4128 */ 4129 void 4130 bus_generic_new_pass(device_t dev) 4131 { 4132 driverlink_t dl; 4133 devclass_t dc; 4134 device_t child; 4135 4136 dc = dev->devclass; 4137 TAILQ_FOREACH(dl, &dc->drivers, link) { 4138 if (dl->pass == bus_current_pass) 4139 DEVICE_IDENTIFY(dl->driver, dev); 4140 } 4141 TAILQ_FOREACH(child, &dev->children, link) { 4142 if (child->state >= DS_ATTACHED) 4143 BUS_NEW_PASS(child); 4144 else if (child->state == DS_NOTPRESENT) 4145 device_probe_and_attach(child); 4146 } 4147 } 4148 4149 /** 4150 * @brief Helper function for implementing BUS_SETUP_INTR(). 4151 * 4152 * This simple implementation of BUS_SETUP_INTR() simply calls the 4153 * BUS_SETUP_INTR() method of the parent of @p dev. 4154 */ 4155 int 4156 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4157 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4158 void **cookiep) 4159 { 4160 /* Propagate up the bus hierarchy until someone handles it. */ 4161 if (dev->parent) 4162 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4163 filter, intr, arg, cookiep)); 4164 return (EINVAL); 4165 } 4166 4167 /** 4168 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4169 * 4170 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4171 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4172 */ 4173 int 4174 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4175 void *cookie) 4176 { 4177 /* Propagate up the bus hierarchy until someone handles it. */ 4178 if (dev->parent) 4179 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4180 return (EINVAL); 4181 } 4182 4183 /** 4184 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4185 * 4186 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4187 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4188 */ 4189 int 4190 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4191 { 4192 /* Propagate up the bus hierarchy until someone handles it. */ 4193 if (dev->parent) 4194 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4195 return (EINVAL); 4196 } 4197 4198 /** 4199 * @brief Helper function for implementing BUS_RESUME_INTR(). 4200 * 4201 * This simple implementation of BUS_RESUME_INTR() simply calls the 4202 * BUS_RESUME_INTR() method of the parent of @p dev. 4203 */ 4204 int 4205 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4206 { 4207 /* Propagate up the bus hierarchy until someone handles it. */ 4208 if (dev->parent) 4209 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4210 return (EINVAL); 4211 } 4212 4213 /** 4214 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4215 * 4216 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4217 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4218 */ 4219 int 4220 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4221 struct resource *r, rman_res_t start, rman_res_t end) 4222 { 4223 /* Propagate up the bus hierarchy until someone handles it. */ 4224 if (dev->parent) 4225 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4226 end)); 4227 return (EINVAL); 4228 } 4229 4230 /** 4231 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4232 * 4233 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4234 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4235 */ 4236 struct resource * 4237 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4238 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4239 { 4240 /* Propagate up the bus hierarchy until someone handles it. */ 4241 if (dev->parent) 4242 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4243 start, end, count, flags)); 4244 return (NULL); 4245 } 4246 4247 /** 4248 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4249 * 4250 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4251 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4252 */ 4253 int 4254 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4255 struct resource *r) 4256 { 4257 /* Propagate up the bus hierarchy until someone handles it. */ 4258 if (dev->parent) 4259 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4260 r)); 4261 return (EINVAL); 4262 } 4263 4264 /** 4265 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4266 * 4267 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4268 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4269 */ 4270 int 4271 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4272 struct resource *r) 4273 { 4274 /* Propagate up the bus hierarchy until someone handles it. */ 4275 if (dev->parent) 4276 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4277 r)); 4278 return (EINVAL); 4279 } 4280 4281 /** 4282 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4283 * 4284 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4285 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4286 */ 4287 int 4288 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4289 int rid, struct resource *r) 4290 { 4291 /* Propagate up the bus hierarchy until someone handles it. */ 4292 if (dev->parent) 4293 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4294 r)); 4295 return (EINVAL); 4296 } 4297 4298 /** 4299 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4300 * 4301 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4302 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4303 */ 4304 int 4305 bus_generic_map_resource(device_t dev, device_t child, int type, 4306 struct resource *r, struct resource_map_request *args, 4307 struct resource_map *map) 4308 { 4309 /* Propagate up the bus hierarchy until someone handles it. */ 4310 if (dev->parent) 4311 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4312 map)); 4313 return (EINVAL); 4314 } 4315 4316 /** 4317 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4318 * 4319 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4320 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4321 */ 4322 int 4323 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4324 struct resource *r, struct resource_map *map) 4325 { 4326 /* Propagate up the bus hierarchy until someone handles it. */ 4327 if (dev->parent) 4328 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4329 return (EINVAL); 4330 } 4331 4332 /** 4333 * @brief Helper function for implementing BUS_BIND_INTR(). 4334 * 4335 * This simple implementation of BUS_BIND_INTR() simply calls the 4336 * BUS_BIND_INTR() method of the parent of @p dev. 4337 */ 4338 int 4339 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4340 int cpu) 4341 { 4342 /* Propagate up the bus hierarchy until someone handles it. */ 4343 if (dev->parent) 4344 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4345 return (EINVAL); 4346 } 4347 4348 /** 4349 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4350 * 4351 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4352 * BUS_CONFIG_INTR() method of the parent of @p dev. 4353 */ 4354 int 4355 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4356 enum intr_polarity pol) 4357 { 4358 /* Propagate up the bus hierarchy until someone handles it. */ 4359 if (dev->parent) 4360 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4361 return (EINVAL); 4362 } 4363 4364 /** 4365 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4366 * 4367 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4368 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4369 */ 4370 int 4371 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4372 void *cookie, const char *descr) 4373 { 4374 /* Propagate up the bus hierarchy until someone handles it. */ 4375 if (dev->parent) 4376 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4377 descr)); 4378 return (EINVAL); 4379 } 4380 4381 /** 4382 * @brief Helper function for implementing BUS_GET_CPUS(). 4383 * 4384 * This simple implementation of BUS_GET_CPUS() simply calls the 4385 * BUS_GET_CPUS() method of the parent of @p dev. 4386 */ 4387 int 4388 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4389 size_t setsize, cpuset_t *cpuset) 4390 { 4391 /* Propagate up the bus hierarchy until someone handles it. */ 4392 if (dev->parent != NULL) 4393 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4394 return (EINVAL); 4395 } 4396 4397 /** 4398 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4399 * 4400 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4401 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4402 */ 4403 bus_dma_tag_t 4404 bus_generic_get_dma_tag(device_t dev, device_t child) 4405 { 4406 /* Propagate up the bus hierarchy until someone handles it. */ 4407 if (dev->parent != NULL) 4408 return (BUS_GET_DMA_TAG(dev->parent, child)); 4409 return (NULL); 4410 } 4411 4412 /** 4413 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4414 * 4415 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4416 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4417 */ 4418 bus_space_tag_t 4419 bus_generic_get_bus_tag(device_t dev, device_t child) 4420 { 4421 /* Propagate up the bus hierarchy until someone handles it. */ 4422 if (dev->parent != NULL) 4423 return (BUS_GET_BUS_TAG(dev->parent, child)); 4424 return ((bus_space_tag_t)0); 4425 } 4426 4427 /** 4428 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4429 * 4430 * This implementation of BUS_GET_RESOURCE() uses the 4431 * resource_list_find() function to do most of the work. It calls 4432 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4433 * search. 4434 */ 4435 int 4436 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4437 rman_res_t *startp, rman_res_t *countp) 4438 { 4439 struct resource_list * rl = NULL; 4440 struct resource_list_entry * rle = NULL; 4441 4442 rl = BUS_GET_RESOURCE_LIST(dev, child); 4443 if (!rl) 4444 return (EINVAL); 4445 4446 rle = resource_list_find(rl, type, rid); 4447 if (!rle) 4448 return (ENOENT); 4449 4450 if (startp) 4451 *startp = rle->start; 4452 if (countp) 4453 *countp = rle->count; 4454 4455 return (0); 4456 } 4457 4458 /** 4459 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4460 * 4461 * This implementation of BUS_SET_RESOURCE() uses the 4462 * resource_list_add() function to do most of the work. It calls 4463 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4464 * edit. 4465 */ 4466 int 4467 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4468 rman_res_t start, rman_res_t count) 4469 { 4470 struct resource_list * rl = NULL; 4471 4472 rl = BUS_GET_RESOURCE_LIST(dev, child); 4473 if (!rl) 4474 return (EINVAL); 4475 4476 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4477 4478 return (0); 4479 } 4480 4481 /** 4482 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4483 * 4484 * This implementation of BUS_DELETE_RESOURCE() uses the 4485 * resource_list_delete() function to do most of the work. It calls 4486 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4487 * edit. 4488 */ 4489 void 4490 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4491 { 4492 struct resource_list * rl = NULL; 4493 4494 rl = BUS_GET_RESOURCE_LIST(dev, child); 4495 if (!rl) 4496 return; 4497 4498 resource_list_delete(rl, type, rid); 4499 4500 return; 4501 } 4502 4503 /** 4504 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4505 * 4506 * This implementation of BUS_RELEASE_RESOURCE() uses the 4507 * resource_list_release() function to do most of the work. It calls 4508 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4509 */ 4510 int 4511 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4512 int rid, struct resource *r) 4513 { 4514 struct resource_list * rl = NULL; 4515 4516 if (device_get_parent(child) != dev) 4517 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4518 type, rid, r)); 4519 4520 rl = BUS_GET_RESOURCE_LIST(dev, child); 4521 if (!rl) 4522 return (EINVAL); 4523 4524 return (resource_list_release(rl, dev, child, type, rid, r)); 4525 } 4526 4527 /** 4528 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4529 * 4530 * This implementation of BUS_ALLOC_RESOURCE() uses the 4531 * resource_list_alloc() function to do most of the work. It calls 4532 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4533 */ 4534 struct resource * 4535 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4536 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4537 { 4538 struct resource_list * rl = NULL; 4539 4540 if (device_get_parent(child) != dev) 4541 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4542 type, rid, start, end, count, flags)); 4543 4544 rl = BUS_GET_RESOURCE_LIST(dev, child); 4545 if (!rl) 4546 return (NULL); 4547 4548 return (resource_list_alloc(rl, dev, child, type, rid, 4549 start, end, count, flags)); 4550 } 4551 4552 /** 4553 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4554 * 4555 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4556 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4557 */ 4558 int 4559 bus_generic_child_present(device_t dev, device_t child) 4560 { 4561 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4562 } 4563 4564 int 4565 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4566 { 4567 if (dev->parent) 4568 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4569 4570 return (ENOENT); 4571 } 4572 4573 /** 4574 * @brief Helper function for implementing BUS_RESCAN(). 4575 * 4576 * This null implementation of BUS_RESCAN() always fails to indicate 4577 * the bus does not support rescanning. 4578 */ 4579 int 4580 bus_null_rescan(device_t dev) 4581 { 4582 return (ENXIO); 4583 } 4584 4585 /* 4586 * Some convenience functions to make it easier for drivers to use the 4587 * resource-management functions. All these really do is hide the 4588 * indirection through the parent's method table, making for slightly 4589 * less-wordy code. In the future, it might make sense for this code 4590 * to maintain some sort of a list of resources allocated by each device. 4591 */ 4592 4593 int 4594 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4595 struct resource **res) 4596 { 4597 int i; 4598 4599 for (i = 0; rs[i].type != -1; i++) 4600 res[i] = NULL; 4601 for (i = 0; rs[i].type != -1; i++) { 4602 res[i] = bus_alloc_resource_any(dev, 4603 rs[i].type, &rs[i].rid, rs[i].flags); 4604 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4605 bus_release_resources(dev, rs, res); 4606 return (ENXIO); 4607 } 4608 } 4609 return (0); 4610 } 4611 4612 void 4613 bus_release_resources(device_t dev, const struct resource_spec *rs, 4614 struct resource **res) 4615 { 4616 int i; 4617 4618 for (i = 0; rs[i].type != -1; i++) 4619 if (res[i] != NULL) { 4620 bus_release_resource( 4621 dev, rs[i].type, rs[i].rid, res[i]); 4622 res[i] = NULL; 4623 } 4624 } 4625 4626 /** 4627 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4628 * 4629 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4630 * parent of @p dev. 4631 */ 4632 struct resource * 4633 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4634 rman_res_t end, rman_res_t count, u_int flags) 4635 { 4636 struct resource *res; 4637 4638 if (dev->parent == NULL) 4639 return (NULL); 4640 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4641 count, flags); 4642 return (res); 4643 } 4644 4645 /** 4646 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4647 * 4648 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4649 * parent of @p dev. 4650 */ 4651 int 4652 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4653 rman_res_t end) 4654 { 4655 if (dev->parent == NULL) 4656 return (EINVAL); 4657 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4658 } 4659 4660 /** 4661 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4662 * 4663 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4664 * parent of @p dev. 4665 */ 4666 int 4667 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4668 { 4669 if (dev->parent == NULL) 4670 return (EINVAL); 4671 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4672 } 4673 4674 /** 4675 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4676 * 4677 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4678 * parent of @p dev. 4679 */ 4680 int 4681 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4682 { 4683 if (dev->parent == NULL) 4684 return (EINVAL); 4685 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4686 } 4687 4688 /** 4689 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4690 * 4691 * This function simply calls the BUS_MAP_RESOURCE() method of the 4692 * parent of @p dev. 4693 */ 4694 int 4695 bus_map_resource(device_t dev, int type, struct resource *r, 4696 struct resource_map_request *args, struct resource_map *map) 4697 { 4698 if (dev->parent == NULL) 4699 return (EINVAL); 4700 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4701 } 4702 4703 /** 4704 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4705 * 4706 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4707 * parent of @p dev. 4708 */ 4709 int 4710 bus_unmap_resource(device_t dev, int type, struct resource *r, 4711 struct resource_map *map) 4712 { 4713 if (dev->parent == NULL) 4714 return (EINVAL); 4715 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4716 } 4717 4718 /** 4719 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4720 * 4721 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4722 * parent of @p dev. 4723 */ 4724 int 4725 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4726 { 4727 int rv; 4728 4729 if (dev->parent == NULL) 4730 return (EINVAL); 4731 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4732 return (rv); 4733 } 4734 4735 /** 4736 * @brief Wrapper function for BUS_SETUP_INTR(). 4737 * 4738 * This function simply calls the BUS_SETUP_INTR() method of the 4739 * parent of @p dev. 4740 */ 4741 int 4742 bus_setup_intr(device_t dev, struct resource *r, int flags, 4743 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4744 { 4745 int error; 4746 4747 if (dev->parent == NULL) 4748 return (EINVAL); 4749 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4750 arg, cookiep); 4751 if (error != 0) 4752 return (error); 4753 if (handler != NULL && !(flags & INTR_MPSAFE)) 4754 device_printf(dev, "[GIANT-LOCKED]\n"); 4755 return (0); 4756 } 4757 4758 /** 4759 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4760 * 4761 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4762 * parent of @p dev. 4763 */ 4764 int 4765 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4766 { 4767 if (dev->parent == NULL) 4768 return (EINVAL); 4769 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4770 } 4771 4772 /** 4773 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4774 * 4775 * This function simply calls the BUS_SUSPEND_INTR() method of the 4776 * parent of @p dev. 4777 */ 4778 int 4779 bus_suspend_intr(device_t dev, struct resource *r) 4780 { 4781 if (dev->parent == NULL) 4782 return (EINVAL); 4783 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4784 } 4785 4786 /** 4787 * @brief Wrapper function for BUS_RESUME_INTR(). 4788 * 4789 * This function simply calls the BUS_RESUME_INTR() method of the 4790 * parent of @p dev. 4791 */ 4792 int 4793 bus_resume_intr(device_t dev, struct resource *r) 4794 { 4795 if (dev->parent == NULL) 4796 return (EINVAL); 4797 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4798 } 4799 4800 /** 4801 * @brief Wrapper function for BUS_BIND_INTR(). 4802 * 4803 * This function simply calls the BUS_BIND_INTR() method of the 4804 * parent of @p dev. 4805 */ 4806 int 4807 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4808 { 4809 if (dev->parent == NULL) 4810 return (EINVAL); 4811 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4812 } 4813 4814 /** 4815 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4816 * 4817 * This function first formats the requested description into a 4818 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4819 * the parent of @p dev. 4820 */ 4821 int 4822 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4823 const char *fmt, ...) 4824 { 4825 va_list ap; 4826 char descr[MAXCOMLEN + 1]; 4827 4828 if (dev->parent == NULL) 4829 return (EINVAL); 4830 va_start(ap, fmt); 4831 vsnprintf(descr, sizeof(descr), fmt, ap); 4832 va_end(ap); 4833 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4834 } 4835 4836 /** 4837 * @brief Wrapper function for BUS_SET_RESOURCE(). 4838 * 4839 * This function simply calls the BUS_SET_RESOURCE() method of the 4840 * parent of @p dev. 4841 */ 4842 int 4843 bus_set_resource(device_t dev, int type, int rid, 4844 rman_res_t start, rman_res_t count) 4845 { 4846 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4847 start, count)); 4848 } 4849 4850 /** 4851 * @brief Wrapper function for BUS_GET_RESOURCE(). 4852 * 4853 * This function simply calls the BUS_GET_RESOURCE() method of the 4854 * parent of @p dev. 4855 */ 4856 int 4857 bus_get_resource(device_t dev, int type, int rid, 4858 rman_res_t *startp, rman_res_t *countp) 4859 { 4860 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4861 startp, countp)); 4862 } 4863 4864 /** 4865 * @brief Wrapper function for BUS_GET_RESOURCE(). 4866 * 4867 * This function simply calls the BUS_GET_RESOURCE() method of the 4868 * parent of @p dev and returns the start value. 4869 */ 4870 rman_res_t 4871 bus_get_resource_start(device_t dev, int type, int rid) 4872 { 4873 rman_res_t start; 4874 rman_res_t count; 4875 int error; 4876 4877 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4878 &start, &count); 4879 if (error) 4880 return (0); 4881 return (start); 4882 } 4883 4884 /** 4885 * @brief Wrapper function for BUS_GET_RESOURCE(). 4886 * 4887 * This function simply calls the BUS_GET_RESOURCE() method of the 4888 * parent of @p dev and returns the count value. 4889 */ 4890 rman_res_t 4891 bus_get_resource_count(device_t dev, int type, int rid) 4892 { 4893 rman_res_t start; 4894 rman_res_t count; 4895 int error; 4896 4897 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4898 &start, &count); 4899 if (error) 4900 return (0); 4901 return (count); 4902 } 4903 4904 /** 4905 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4906 * 4907 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4908 * parent of @p dev. 4909 */ 4910 void 4911 bus_delete_resource(device_t dev, int type, int rid) 4912 { 4913 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4914 } 4915 4916 /** 4917 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4918 * 4919 * This function simply calls the BUS_CHILD_PRESENT() method of the 4920 * parent of @p dev. 4921 */ 4922 int 4923 bus_child_present(device_t child) 4924 { 4925 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4926 } 4927 4928 /** 4929 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4930 * 4931 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4932 * parent of @p dev. 4933 */ 4934 int 4935 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4936 { 4937 device_t parent; 4938 4939 parent = device_get_parent(child); 4940 if (parent == NULL) { 4941 *buf = '\0'; 4942 return (0); 4943 } 4944 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4945 } 4946 4947 /** 4948 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4949 * 4950 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4951 * parent of @p dev. 4952 */ 4953 int 4954 bus_child_location_str(device_t child, char *buf, size_t buflen) 4955 { 4956 device_t parent; 4957 4958 parent = device_get_parent(child); 4959 if (parent == NULL) { 4960 *buf = '\0'; 4961 return (0); 4962 } 4963 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4964 } 4965 4966 /** 4967 * @brief Wrapper function for BUS_GET_CPUS(). 4968 * 4969 * This function simply calls the BUS_GET_CPUS() method of the 4970 * parent of @p dev. 4971 */ 4972 int 4973 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4974 { 4975 device_t parent; 4976 4977 parent = device_get_parent(dev); 4978 if (parent == NULL) 4979 return (EINVAL); 4980 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4981 } 4982 4983 /** 4984 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4985 * 4986 * This function simply calls the BUS_GET_DMA_TAG() method of the 4987 * parent of @p dev. 4988 */ 4989 bus_dma_tag_t 4990 bus_get_dma_tag(device_t dev) 4991 { 4992 device_t parent; 4993 4994 parent = device_get_parent(dev); 4995 if (parent == NULL) 4996 return (NULL); 4997 return (BUS_GET_DMA_TAG(parent, dev)); 4998 } 4999 5000 /** 5001 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5002 * 5003 * This function simply calls the BUS_GET_BUS_TAG() method of the 5004 * parent of @p dev. 5005 */ 5006 bus_space_tag_t 5007 bus_get_bus_tag(device_t dev) 5008 { 5009 device_t parent; 5010 5011 parent = device_get_parent(dev); 5012 if (parent == NULL) 5013 return ((bus_space_tag_t)0); 5014 return (BUS_GET_BUS_TAG(parent, dev)); 5015 } 5016 5017 /** 5018 * @brief Wrapper function for BUS_GET_DOMAIN(). 5019 * 5020 * This function simply calls the BUS_GET_DOMAIN() method of the 5021 * parent of @p dev. 5022 */ 5023 int 5024 bus_get_domain(device_t dev, int *domain) 5025 { 5026 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5027 } 5028 5029 /* Resume all devices and then notify userland that we're up again. */ 5030 static int 5031 root_resume(device_t dev) 5032 { 5033 int error; 5034 5035 error = bus_generic_resume(dev); 5036 if (error == 0) 5037 devctl_notify("kern", "power", "resume", NULL); 5038 return (error); 5039 } 5040 5041 static int 5042 root_print_child(device_t dev, device_t child) 5043 { 5044 int retval = 0; 5045 5046 retval += bus_print_child_header(dev, child); 5047 retval += printf("\n"); 5048 5049 return (retval); 5050 } 5051 5052 static int 5053 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5054 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5055 { 5056 /* 5057 * If an interrupt mapping gets to here something bad has happened. 5058 */ 5059 panic("root_setup_intr"); 5060 } 5061 5062 /* 5063 * If we get here, assume that the device is permanent and really is 5064 * present in the system. Removable bus drivers are expected to intercept 5065 * this call long before it gets here. We return -1 so that drivers that 5066 * really care can check vs -1 or some ERRNO returned higher in the food 5067 * chain. 5068 */ 5069 static int 5070 root_child_present(device_t dev, device_t child) 5071 { 5072 return (-1); 5073 } 5074 5075 static int 5076 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5077 cpuset_t *cpuset) 5078 { 5079 switch (op) { 5080 case INTR_CPUS: 5081 /* Default to returning the set of all CPUs. */ 5082 if (setsize != sizeof(cpuset_t)) 5083 return (EINVAL); 5084 *cpuset = all_cpus; 5085 return (0); 5086 default: 5087 return (EINVAL); 5088 } 5089 } 5090 5091 static kobj_method_t root_methods[] = { 5092 /* Device interface */ 5093 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5094 KOBJMETHOD(device_suspend, bus_generic_suspend), 5095 KOBJMETHOD(device_resume, root_resume), 5096 5097 /* Bus interface */ 5098 KOBJMETHOD(bus_print_child, root_print_child), 5099 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5100 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5101 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5102 KOBJMETHOD(bus_child_present, root_child_present), 5103 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5104 5105 KOBJMETHOD_END 5106 }; 5107 5108 static driver_t root_driver = { 5109 "root", 5110 root_methods, 5111 1, /* no softc */ 5112 }; 5113 5114 device_t root_bus; 5115 devclass_t root_devclass; 5116 5117 static int 5118 root_bus_module_handler(module_t mod, int what, void* arg) 5119 { 5120 switch (what) { 5121 case MOD_LOAD: 5122 TAILQ_INIT(&bus_data_devices); 5123 kobj_class_compile((kobj_class_t) &root_driver); 5124 root_bus = make_device(NULL, "root", 0); 5125 root_bus->desc = "System root bus"; 5126 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5127 root_bus->driver = &root_driver; 5128 root_bus->state = DS_ATTACHED; 5129 root_devclass = devclass_find_internal("root", NULL, FALSE); 5130 devinit(); 5131 return (0); 5132 5133 case MOD_SHUTDOWN: 5134 device_shutdown(root_bus); 5135 return (0); 5136 default: 5137 return (EOPNOTSUPP); 5138 } 5139 5140 return (0); 5141 } 5142 5143 static moduledata_t root_bus_mod = { 5144 "rootbus", 5145 root_bus_module_handler, 5146 NULL 5147 }; 5148 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5149 5150 /** 5151 * @brief Automatically configure devices 5152 * 5153 * This function begins the autoconfiguration process by calling 5154 * device_probe_and_attach() for each child of the @c root0 device. 5155 */ 5156 void 5157 root_bus_configure(void) 5158 { 5159 PDEBUG((".")); 5160 5161 /* Eventually this will be split up, but this is sufficient for now. */ 5162 bus_set_pass(BUS_PASS_DEFAULT); 5163 } 5164 5165 /** 5166 * @brief Module handler for registering device drivers 5167 * 5168 * This module handler is used to automatically register device 5169 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5170 * devclass_add_driver() for the driver described by the 5171 * driver_module_data structure pointed to by @p arg 5172 */ 5173 int 5174 driver_module_handler(module_t mod, int what, void *arg) 5175 { 5176 struct driver_module_data *dmd; 5177 devclass_t bus_devclass; 5178 kobj_class_t driver; 5179 int error, pass; 5180 5181 dmd = (struct driver_module_data *)arg; 5182 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5183 error = 0; 5184 5185 switch (what) { 5186 case MOD_LOAD: 5187 if (dmd->dmd_chainevh) 5188 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5189 5190 pass = dmd->dmd_pass; 5191 driver = dmd->dmd_driver; 5192 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5193 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5194 error = devclass_add_driver(bus_devclass, driver, pass, 5195 dmd->dmd_devclass); 5196 break; 5197 5198 case MOD_UNLOAD: 5199 PDEBUG(("Unloading module: driver %s from bus %s", 5200 DRIVERNAME(dmd->dmd_driver), 5201 dmd->dmd_busname)); 5202 error = devclass_delete_driver(bus_devclass, 5203 dmd->dmd_driver); 5204 5205 if (!error && dmd->dmd_chainevh) 5206 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5207 break; 5208 case MOD_QUIESCE: 5209 PDEBUG(("Quiesce module: driver %s from bus %s", 5210 DRIVERNAME(dmd->dmd_driver), 5211 dmd->dmd_busname)); 5212 error = devclass_quiesce_driver(bus_devclass, 5213 dmd->dmd_driver); 5214 5215 if (!error && dmd->dmd_chainevh) 5216 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5217 break; 5218 default: 5219 error = EOPNOTSUPP; 5220 break; 5221 } 5222 5223 return (error); 5224 } 5225 5226 /** 5227 * @brief Enumerate all hinted devices for this bus. 5228 * 5229 * Walks through the hints for this bus and calls the bus_hinted_child 5230 * routine for each one it fines. It searches first for the specific 5231 * bus that's being probed for hinted children (eg isa0), and then for 5232 * generic children (eg isa). 5233 * 5234 * @param dev bus device to enumerate 5235 */ 5236 void 5237 bus_enumerate_hinted_children(device_t bus) 5238 { 5239 int i; 5240 const char *dname, *busname; 5241 int dunit; 5242 5243 /* 5244 * enumerate all devices on the specific bus 5245 */ 5246 busname = device_get_nameunit(bus); 5247 i = 0; 5248 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5249 BUS_HINTED_CHILD(bus, dname, dunit); 5250 5251 /* 5252 * and all the generic ones. 5253 */ 5254 busname = device_get_name(bus); 5255 i = 0; 5256 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5257 BUS_HINTED_CHILD(bus, dname, dunit); 5258 } 5259 5260 #ifdef BUS_DEBUG 5261 5262 /* the _short versions avoid iteration by not calling anything that prints 5263 * more than oneliners. I love oneliners. 5264 */ 5265 5266 static void 5267 print_device_short(device_t dev, int indent) 5268 { 5269 if (!dev) 5270 return; 5271 5272 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5273 dev->unit, dev->desc, 5274 (dev->parent? "":"no "), 5275 (TAILQ_EMPTY(&dev->children)? "no ":""), 5276 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5277 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5278 (dev->flags&DF_WILDCARD? "wildcard,":""), 5279 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5280 (dev->flags&DF_REBID? "rebiddable,":""), 5281 (dev->flags&DF_SUSPENDED? "suspended,":""), 5282 (dev->ivars? "":"no "), 5283 (dev->softc? "":"no "), 5284 dev->busy)); 5285 } 5286 5287 static void 5288 print_device(device_t dev, int indent) 5289 { 5290 if (!dev) 5291 return; 5292 5293 print_device_short(dev, indent); 5294 5295 indentprintf(("Parent:\n")); 5296 print_device_short(dev->parent, indent+1); 5297 indentprintf(("Driver:\n")); 5298 print_driver_short(dev->driver, indent+1); 5299 indentprintf(("Devclass:\n")); 5300 print_devclass_short(dev->devclass, indent+1); 5301 } 5302 5303 void 5304 print_device_tree_short(device_t dev, int indent) 5305 /* print the device and all its children (indented) */ 5306 { 5307 device_t child; 5308 5309 if (!dev) 5310 return; 5311 5312 print_device_short(dev, indent); 5313 5314 TAILQ_FOREACH(child, &dev->children, link) { 5315 print_device_tree_short(child, indent+1); 5316 } 5317 } 5318 5319 void 5320 print_device_tree(device_t dev, int indent) 5321 /* print the device and all its children (indented) */ 5322 { 5323 device_t child; 5324 5325 if (!dev) 5326 return; 5327 5328 print_device(dev, indent); 5329 5330 TAILQ_FOREACH(child, &dev->children, link) { 5331 print_device_tree(child, indent+1); 5332 } 5333 } 5334 5335 static void 5336 print_driver_short(driver_t *driver, int indent) 5337 { 5338 if (!driver) 5339 return; 5340 5341 indentprintf(("driver %s: softc size = %zd\n", 5342 driver->name, driver->size)); 5343 } 5344 5345 static void 5346 print_driver(driver_t *driver, int indent) 5347 { 5348 if (!driver) 5349 return; 5350 5351 print_driver_short(driver, indent); 5352 } 5353 5354 static void 5355 print_driver_list(driver_list_t drivers, int indent) 5356 { 5357 driverlink_t driver; 5358 5359 TAILQ_FOREACH(driver, &drivers, link) { 5360 print_driver(driver->driver, indent); 5361 } 5362 } 5363 5364 static void 5365 print_devclass_short(devclass_t dc, int indent) 5366 { 5367 if ( !dc ) 5368 return; 5369 5370 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5371 } 5372 5373 static void 5374 print_devclass(devclass_t dc, int indent) 5375 { 5376 int i; 5377 5378 if ( !dc ) 5379 return; 5380 5381 print_devclass_short(dc, indent); 5382 indentprintf(("Drivers:\n")); 5383 print_driver_list(dc->drivers, indent+1); 5384 5385 indentprintf(("Devices:\n")); 5386 for (i = 0; i < dc->maxunit; i++) 5387 if (dc->devices[i]) 5388 print_device(dc->devices[i], indent+1); 5389 } 5390 5391 void 5392 print_devclass_list_short(void) 5393 { 5394 devclass_t dc; 5395 5396 printf("Short listing of devclasses, drivers & devices:\n"); 5397 TAILQ_FOREACH(dc, &devclasses, link) { 5398 print_devclass_short(dc, 0); 5399 } 5400 } 5401 5402 void 5403 print_devclass_list(void) 5404 { 5405 devclass_t dc; 5406 5407 printf("Full listing of devclasses, drivers & devices:\n"); 5408 TAILQ_FOREACH(dc, &devclasses, link) { 5409 print_devclass(dc, 0); 5410 } 5411 } 5412 5413 #endif 5414 5415 /* 5416 * User-space access to the device tree. 5417 * 5418 * We implement a small set of nodes: 5419 * 5420 * hw.bus Single integer read method to obtain the 5421 * current generation count. 5422 * hw.bus.devices Reads the entire device tree in flat space. 5423 * hw.bus.rman Resource manager interface 5424 * 5425 * We might like to add the ability to scan devclasses and/or drivers to 5426 * determine what else is currently loaded/available. 5427 */ 5428 5429 static int 5430 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5431 { 5432 struct u_businfo ubus; 5433 5434 ubus.ub_version = BUS_USER_VERSION; 5435 ubus.ub_generation = bus_data_generation; 5436 5437 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5438 } 5439 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5440 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5441 "bus-related data"); 5442 5443 static int 5444 sysctl_devices(SYSCTL_HANDLER_ARGS) 5445 { 5446 int *name = (int *)arg1; 5447 u_int namelen = arg2; 5448 int index; 5449 device_t dev; 5450 struct u_device *udev; 5451 int error; 5452 char *walker, *ep; 5453 5454 if (namelen != 2) 5455 return (EINVAL); 5456 5457 if (bus_data_generation_check(name[0])) 5458 return (EINVAL); 5459 5460 index = name[1]; 5461 5462 /* 5463 * Scan the list of devices, looking for the requested index. 5464 */ 5465 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5466 if (index-- == 0) 5467 break; 5468 } 5469 if (dev == NULL) 5470 return (ENOENT); 5471 5472 /* 5473 * Populate the return item, careful not to overflow the buffer. 5474 */ 5475 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5476 if (udev == NULL) 5477 return (ENOMEM); 5478 udev->dv_handle = (uintptr_t)dev; 5479 udev->dv_parent = (uintptr_t)dev->parent; 5480 udev->dv_devflags = dev->devflags; 5481 udev->dv_flags = dev->flags; 5482 udev->dv_state = dev->state; 5483 walker = udev->dv_fields; 5484 ep = walker + sizeof(udev->dv_fields); 5485 #define CP(src) \ 5486 if ((src) == NULL) \ 5487 *walker++ = '\0'; \ 5488 else { \ 5489 strlcpy(walker, (src), ep - walker); \ 5490 walker += strlen(walker) + 1; \ 5491 } \ 5492 if (walker >= ep) \ 5493 break; 5494 5495 do { 5496 CP(dev->nameunit); 5497 CP(dev->desc); 5498 CP(dev->driver != NULL ? dev->driver->name : NULL); 5499 bus_child_pnpinfo_str(dev, walker, ep - walker); 5500 walker += strlen(walker) + 1; 5501 if (walker >= ep) 5502 break; 5503 bus_child_location_str(dev, walker, ep - walker); 5504 walker += strlen(walker) + 1; 5505 if (walker >= ep) 5506 break; 5507 *walker++ = '\0'; 5508 } while (0); 5509 #undef CP 5510 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5511 free(udev, M_BUS); 5512 return (error); 5513 } 5514 5515 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5516 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5517 "system device tree"); 5518 5519 int 5520 bus_data_generation_check(int generation) 5521 { 5522 if (generation != bus_data_generation) 5523 return (1); 5524 5525 /* XXX generate optimised lists here? */ 5526 return (0); 5527 } 5528 5529 void 5530 bus_data_generation_update(void) 5531 { 5532 atomic_add_int(&bus_data_generation, 1); 5533 } 5534 5535 int 5536 bus_free_resource(device_t dev, int type, struct resource *r) 5537 { 5538 if (r == NULL) 5539 return (0); 5540 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5541 } 5542 5543 device_t 5544 device_lookup_by_name(const char *name) 5545 { 5546 device_t dev; 5547 5548 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5549 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5550 return (dev); 5551 } 5552 return (NULL); 5553 } 5554 5555 /* 5556 * /dev/devctl2 implementation. The existing /dev/devctl device has 5557 * implicit semantics on open, so it could not be reused for this. 5558 * Another option would be to call this /dev/bus? 5559 */ 5560 static int 5561 find_device(struct devreq *req, device_t *devp) 5562 { 5563 device_t dev; 5564 5565 /* 5566 * First, ensure that the name is nul terminated. 5567 */ 5568 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5569 return (EINVAL); 5570 5571 /* 5572 * Second, try to find an attached device whose name matches 5573 * 'name'. 5574 */ 5575 dev = device_lookup_by_name(req->dr_name); 5576 if (dev != NULL) { 5577 *devp = dev; 5578 return (0); 5579 } 5580 5581 /* Finally, give device enumerators a chance. */ 5582 dev = NULL; 5583 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5584 if (dev == NULL) 5585 return (ENOENT); 5586 *devp = dev; 5587 return (0); 5588 } 5589 5590 static bool 5591 driver_exists(device_t bus, const char *driver) 5592 { 5593 devclass_t dc; 5594 5595 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5596 if (devclass_find_driver_internal(dc, driver) != NULL) 5597 return (true); 5598 } 5599 return (false); 5600 } 5601 5602 static void 5603 device_gen_nomatch(device_t dev) 5604 { 5605 device_t child; 5606 5607 if (dev->flags & DF_NEEDNOMATCH && 5608 dev->state == DS_NOTPRESENT) { 5609 BUS_PROBE_NOMATCH(dev->parent, dev); 5610 devnomatch(dev); 5611 dev->flags |= DF_DONENOMATCH; 5612 } 5613 dev->flags &= ~DF_NEEDNOMATCH; 5614 TAILQ_FOREACH(child, &dev->children, link) { 5615 device_gen_nomatch(child); 5616 } 5617 } 5618 5619 static void 5620 device_do_deferred_actions(void) 5621 { 5622 devclass_t dc; 5623 driverlink_t dl; 5624 5625 /* 5626 * Walk through the devclasses to find all the drivers we've tagged as 5627 * deferred during the freeze and call the driver added routines. They 5628 * have already been added to the lists in the background, so the driver 5629 * added routines that trigger a probe will have all the right bidders 5630 * for the probe auction. 5631 */ 5632 TAILQ_FOREACH(dc, &devclasses, link) { 5633 TAILQ_FOREACH(dl, &dc->drivers, link) { 5634 if (dl->flags & DL_DEFERRED_PROBE) { 5635 devclass_driver_added(dc, dl->driver); 5636 dl->flags &= ~DL_DEFERRED_PROBE; 5637 } 5638 } 5639 } 5640 5641 /* 5642 * We also defer no-match events during a freeze. Walk the tree and 5643 * generate all the pent-up events that are still relevant. 5644 */ 5645 device_gen_nomatch(root_bus); 5646 bus_data_generation_update(); 5647 } 5648 5649 static int 5650 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5651 struct thread *td) 5652 { 5653 struct devreq *req; 5654 device_t dev; 5655 int error, old; 5656 5657 /* Locate the device to control. */ 5658 mtx_lock(&Giant); 5659 req = (struct devreq *)data; 5660 switch (cmd) { 5661 case DEV_ATTACH: 5662 case DEV_DETACH: 5663 case DEV_ENABLE: 5664 case DEV_DISABLE: 5665 case DEV_SUSPEND: 5666 case DEV_RESUME: 5667 case DEV_SET_DRIVER: 5668 case DEV_CLEAR_DRIVER: 5669 case DEV_RESCAN: 5670 case DEV_DELETE: 5671 case DEV_RESET: 5672 error = priv_check(td, PRIV_DRIVER); 5673 if (error == 0) 5674 error = find_device(req, &dev); 5675 break; 5676 case DEV_FREEZE: 5677 case DEV_THAW: 5678 error = priv_check(td, PRIV_DRIVER); 5679 break; 5680 default: 5681 error = ENOTTY; 5682 break; 5683 } 5684 if (error) { 5685 mtx_unlock(&Giant); 5686 return (error); 5687 } 5688 5689 /* Perform the requested operation. */ 5690 switch (cmd) { 5691 case DEV_ATTACH: 5692 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5693 error = EBUSY; 5694 else if (!device_is_enabled(dev)) 5695 error = ENXIO; 5696 else 5697 error = device_probe_and_attach(dev); 5698 break; 5699 case DEV_DETACH: 5700 if (!device_is_attached(dev)) { 5701 error = ENXIO; 5702 break; 5703 } 5704 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5705 error = device_quiesce(dev); 5706 if (error) 5707 break; 5708 } 5709 error = device_detach(dev); 5710 break; 5711 case DEV_ENABLE: 5712 if (device_is_enabled(dev)) { 5713 error = EBUSY; 5714 break; 5715 } 5716 5717 /* 5718 * If the device has been probed but not attached (e.g. 5719 * when it has been disabled by a loader hint), just 5720 * attach the device rather than doing a full probe. 5721 */ 5722 device_enable(dev); 5723 if (device_is_alive(dev)) { 5724 /* 5725 * If the device was disabled via a hint, clear 5726 * the hint. 5727 */ 5728 if (resource_disabled(dev->driver->name, dev->unit)) 5729 resource_unset_value(dev->driver->name, 5730 dev->unit, "disabled"); 5731 error = device_attach(dev); 5732 } else 5733 error = device_probe_and_attach(dev); 5734 break; 5735 case DEV_DISABLE: 5736 if (!device_is_enabled(dev)) { 5737 error = ENXIO; 5738 break; 5739 } 5740 5741 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5742 error = device_quiesce(dev); 5743 if (error) 5744 break; 5745 } 5746 5747 /* 5748 * Force DF_FIXEDCLASS on around detach to preserve 5749 * the existing name. 5750 */ 5751 old = dev->flags; 5752 dev->flags |= DF_FIXEDCLASS; 5753 error = device_detach(dev); 5754 if (!(old & DF_FIXEDCLASS)) 5755 dev->flags &= ~DF_FIXEDCLASS; 5756 if (error == 0) 5757 device_disable(dev); 5758 break; 5759 case DEV_SUSPEND: 5760 if (device_is_suspended(dev)) { 5761 error = EBUSY; 5762 break; 5763 } 5764 if (device_get_parent(dev) == NULL) { 5765 error = EINVAL; 5766 break; 5767 } 5768 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5769 break; 5770 case DEV_RESUME: 5771 if (!device_is_suspended(dev)) { 5772 error = EINVAL; 5773 break; 5774 } 5775 if (device_get_parent(dev) == NULL) { 5776 error = EINVAL; 5777 break; 5778 } 5779 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5780 break; 5781 case DEV_SET_DRIVER: { 5782 devclass_t dc; 5783 char driver[128]; 5784 5785 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5786 if (error) 5787 break; 5788 if (driver[0] == '\0') { 5789 error = EINVAL; 5790 break; 5791 } 5792 if (dev->devclass != NULL && 5793 strcmp(driver, dev->devclass->name) == 0) 5794 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5795 break; 5796 5797 /* 5798 * Scan drivers for this device's bus looking for at 5799 * least one matching driver. 5800 */ 5801 if (dev->parent == NULL) { 5802 error = EINVAL; 5803 break; 5804 } 5805 if (!driver_exists(dev->parent, driver)) { 5806 error = ENOENT; 5807 break; 5808 } 5809 dc = devclass_create(driver); 5810 if (dc == NULL) { 5811 error = ENOMEM; 5812 break; 5813 } 5814 5815 /* Detach device if necessary. */ 5816 if (device_is_attached(dev)) { 5817 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5818 error = device_detach(dev); 5819 else 5820 error = EBUSY; 5821 if (error) 5822 break; 5823 } 5824 5825 /* Clear any previously-fixed device class and unit. */ 5826 if (dev->flags & DF_FIXEDCLASS) 5827 devclass_delete_device(dev->devclass, dev); 5828 dev->flags |= DF_WILDCARD; 5829 dev->unit = -1; 5830 5831 /* Force the new device class. */ 5832 error = devclass_add_device(dc, dev); 5833 if (error) 5834 break; 5835 dev->flags |= DF_FIXEDCLASS; 5836 error = device_probe_and_attach(dev); 5837 break; 5838 } 5839 case DEV_CLEAR_DRIVER: 5840 if (!(dev->flags & DF_FIXEDCLASS)) { 5841 error = 0; 5842 break; 5843 } 5844 if (device_is_attached(dev)) { 5845 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5846 error = device_detach(dev); 5847 else 5848 error = EBUSY; 5849 if (error) 5850 break; 5851 } 5852 5853 dev->flags &= ~DF_FIXEDCLASS; 5854 dev->flags |= DF_WILDCARD; 5855 devclass_delete_device(dev->devclass, dev); 5856 error = device_probe_and_attach(dev); 5857 break; 5858 case DEV_RESCAN: 5859 if (!device_is_attached(dev)) { 5860 error = ENXIO; 5861 break; 5862 } 5863 error = BUS_RESCAN(dev); 5864 break; 5865 case DEV_DELETE: { 5866 device_t parent; 5867 5868 parent = device_get_parent(dev); 5869 if (parent == NULL) { 5870 error = EINVAL; 5871 break; 5872 } 5873 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5874 if (bus_child_present(dev) != 0) { 5875 error = EBUSY; 5876 break; 5877 } 5878 } 5879 5880 error = device_delete_child(parent, dev); 5881 break; 5882 } 5883 case DEV_FREEZE: 5884 if (device_frozen) 5885 error = EBUSY; 5886 else 5887 device_frozen = true; 5888 break; 5889 case DEV_THAW: 5890 if (!device_frozen) 5891 error = EBUSY; 5892 else { 5893 device_do_deferred_actions(); 5894 device_frozen = false; 5895 } 5896 break; 5897 case DEV_RESET: 5898 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5899 error = EINVAL; 5900 break; 5901 } 5902 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5903 req->dr_flags); 5904 break; 5905 } 5906 mtx_unlock(&Giant); 5907 return (error); 5908 } 5909 5910 static struct cdevsw devctl2_cdevsw = { 5911 .d_version = D_VERSION, 5912 .d_ioctl = devctl2_ioctl, 5913 .d_name = "devctl2", 5914 }; 5915 5916 static void 5917 devctl2_init(void) 5918 { 5919 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5920 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5921 } 5922 5923 /* 5924 * APIs to manage deprecation and obsolescence. 5925 */ 5926 static int obsolete_panic = 0; 5927 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5928 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5929 "2 = if deprecated)"); 5930 5931 static void 5932 gone_panic(int major, int running, const char *msg) 5933 { 5934 switch (obsolete_panic) 5935 { 5936 case 0: 5937 return; 5938 case 1: 5939 if (running < major) 5940 return; 5941 /* FALLTHROUGH */ 5942 default: 5943 panic("%s", msg); 5944 } 5945 } 5946 5947 void 5948 _gone_in(int major, const char *msg) 5949 { 5950 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5951 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5952 printf("Obsolete code will be removed soon: %s\n", msg); 5953 else 5954 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5955 major, msg); 5956 } 5957 5958 void 5959 _gone_in_dev(device_t dev, int major, const char *msg) 5960 { 5961 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5962 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5963 device_printf(dev, 5964 "Obsolete code will be removed soon: %s\n", msg); 5965 else 5966 device_printf(dev, 5967 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5968 major, msg); 5969 } 5970 5971 #ifdef DDB 5972 DB_SHOW_COMMAND(device, db_show_device) 5973 { 5974 device_t dev; 5975 5976 if (!have_addr) 5977 return; 5978 5979 dev = (device_t)addr; 5980 5981 db_printf("name: %s\n", device_get_nameunit(dev)); 5982 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5983 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5984 db_printf(" addr: %p\n", dev); 5985 db_printf(" parent: %p\n", dev->parent); 5986 db_printf(" softc: %p\n", dev->softc); 5987 db_printf(" ivars: %p\n", dev->ivars); 5988 } 5989 5990 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5991 { 5992 device_t dev; 5993 5994 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5995 db_show_device((db_expr_t)dev, true, count, modif); 5996 } 5997 } 5998 #endif 5999