xref: /freebsd/sys/kern/subr_bus.c (revision d06955f9bdb1416d9196043ed781f9b36dae9adc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/filio.h>
38 #include <sys/lock.h>
39 #include <sys/kernel.h>
40 #include <sys/kobj.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/poll.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/condvar.h>
49 #include <sys/queue.h>
50 #include <machine/bus.h>
51 #include <sys/random.h>
52 #include <sys/rman.h>
53 #include <sys/selinfo.h>
54 #include <sys/signalvar.h>
55 #include <sys/smp.h>
56 #include <sys/sysctl.h>
57 #include <sys/systm.h>
58 #include <sys/uio.h>
59 #include <sys/bus.h>
60 #include <sys/interrupt.h>
61 #include <sys/cpuset.h>
62 
63 #include <net/vnet.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/stdarg.h>
67 
68 #include <vm/uma.h>
69 #include <vm/vm.h>
70 
71 #include <ddb/ddb.h>
72 
73 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
75 
76 /*
77  * Used to attach drivers to devclasses.
78  */
79 typedef struct driverlink *driverlink_t;
80 struct driverlink {
81 	kobj_class_t	driver;
82 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
83 	int		pass;
84 	TAILQ_ENTRY(driverlink) passlink;
85 };
86 
87 /*
88  * Forward declarations
89  */
90 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
91 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
92 typedef TAILQ_HEAD(device_list, device) device_list_t;
93 
94 struct devclass {
95 	TAILQ_ENTRY(devclass) link;
96 	devclass_t	parent;		/* parent in devclass hierarchy */
97 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
98 	char		*name;
99 	device_t	*devices;	/* array of devices indexed by unit */
100 	int		maxunit;	/* size of devices array */
101 	int		flags;
102 #define DC_HAS_CHILDREN		1
103 
104 	struct sysctl_ctx_list sysctl_ctx;
105 	struct sysctl_oid *sysctl_tree;
106 };
107 
108 /**
109  * @brief Implementation of device.
110  */
111 struct device {
112 	/*
113 	 * A device is a kernel object. The first field must be the
114 	 * current ops table for the object.
115 	 */
116 	KOBJ_FIELDS;
117 
118 	/*
119 	 * Device hierarchy.
120 	 */
121 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
122 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
123 	device_t	parent;		/**< parent of this device  */
124 	device_list_t	children;	/**< list of child devices */
125 
126 	/*
127 	 * Details of this device.
128 	 */
129 	driver_t	*driver;	/**< current driver */
130 	devclass_t	devclass;	/**< current device class */
131 	int		unit;		/**< current unit number */
132 	char*		nameunit;	/**< name+unit e.g. foodev0 */
133 	char*		desc;		/**< driver specific description */
134 	int		busy;		/**< count of calls to device_busy() */
135 	device_state_t	state;		/**< current device state  */
136 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
137 	u_int		flags;		/**< internal device flags  */
138 	u_int	order;			/**< order from device_add_child_ordered() */
139 	void	*ivars;			/**< instance variables  */
140 	void	*softc;			/**< current driver's variables  */
141 
142 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
143 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
144 };
145 
146 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
147 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
148 
149 static void devctl2_init(void);
150 
151 #define DRIVERNAME(d)	((d)? d->name : "no driver")
152 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
153 
154 #ifdef BUS_DEBUG
155 
156 static int bus_debug = 1;
157 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
158     "Bus debug level");
159 
160 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
161 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
162 
163 /**
164  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
165  * prevent syslog from deleting initial spaces
166  */
167 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
168 
169 static void print_device_short(device_t dev, int indent);
170 static void print_device(device_t dev, int indent);
171 void print_device_tree_short(device_t dev, int indent);
172 void print_device_tree(device_t dev, int indent);
173 static void print_driver_short(driver_t *driver, int indent);
174 static void print_driver(driver_t *driver, int indent);
175 static void print_driver_list(driver_list_t drivers, int indent);
176 static void print_devclass_short(devclass_t dc, int indent);
177 static void print_devclass(devclass_t dc, int indent);
178 void print_devclass_list_short(void);
179 void print_devclass_list(void);
180 
181 #else
182 /* Make the compiler ignore the function calls */
183 #define PDEBUG(a)			/* nop */
184 #define DEVICENAME(d)			/* nop */
185 
186 #define print_device_short(d,i)		/* nop */
187 #define print_device(d,i)		/* nop */
188 #define print_device_tree_short(d,i)	/* nop */
189 #define print_device_tree(d,i)		/* nop */
190 #define print_driver_short(d,i)		/* nop */
191 #define print_driver(d,i)		/* nop */
192 #define print_driver_list(d,i)		/* nop */
193 #define print_devclass_short(d,i)	/* nop */
194 #define print_devclass(d,i)		/* nop */
195 #define print_devclass_list_short()	/* nop */
196 #define print_devclass_list()		/* nop */
197 #endif
198 
199 /*
200  * dev sysctl tree
201  */
202 
203 enum {
204 	DEVCLASS_SYSCTL_PARENT,
205 };
206 
207 static int
208 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
209 {
210 	devclass_t dc = (devclass_t)arg1;
211 	const char *value;
212 
213 	switch (arg2) {
214 	case DEVCLASS_SYSCTL_PARENT:
215 		value = dc->parent ? dc->parent->name : "";
216 		break;
217 	default:
218 		return (EINVAL);
219 	}
220 	return (SYSCTL_OUT_STR(req, value));
221 }
222 
223 static void
224 devclass_sysctl_init(devclass_t dc)
225 {
226 
227 	if (dc->sysctl_tree != NULL)
228 		return;
229 	sysctl_ctx_init(&dc->sysctl_ctx);
230 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
231 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
232 	    CTLFLAG_RD, NULL, "");
233 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
234 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
235 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
236 	    "parent class");
237 }
238 
239 enum {
240 	DEVICE_SYSCTL_DESC,
241 	DEVICE_SYSCTL_DRIVER,
242 	DEVICE_SYSCTL_LOCATION,
243 	DEVICE_SYSCTL_PNPINFO,
244 	DEVICE_SYSCTL_PARENT,
245 };
246 
247 static int
248 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
249 {
250 	device_t dev = (device_t)arg1;
251 	const char *value;
252 	char *buf;
253 	int error;
254 
255 	buf = NULL;
256 	switch (arg2) {
257 	case DEVICE_SYSCTL_DESC:
258 		value = dev->desc ? dev->desc : "";
259 		break;
260 	case DEVICE_SYSCTL_DRIVER:
261 		value = dev->driver ? dev->driver->name : "";
262 		break;
263 	case DEVICE_SYSCTL_LOCATION:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_location_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PNPINFO:
268 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269 		bus_child_pnpinfo_str(dev, buf, 1024);
270 		break;
271 	case DEVICE_SYSCTL_PARENT:
272 		value = dev->parent ? dev->parent->nameunit : "";
273 		break;
274 	default:
275 		return (EINVAL);
276 	}
277 	error = SYSCTL_OUT_STR(req, value);
278 	if (buf != NULL)
279 		free(buf, M_BUS);
280 	return (error);
281 }
282 
283 static void
284 device_sysctl_init(device_t dev)
285 {
286 	devclass_t dc = dev->devclass;
287 	int domain;
288 
289 	if (dev->sysctl_tree != NULL)
290 		return;
291 	devclass_sysctl_init(dc);
292 	sysctl_ctx_init(&dev->sysctl_ctx);
293 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
294 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
295 	    dev->nameunit + strlen(dc->name),
296 	    CTLFLAG_RD, NULL, "", "device_index");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
300 	    "device description");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
304 	    "device driver name");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
308 	    "device location relative to parent");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
312 	    "device identification");
313 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
315 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
316 	    "parent device");
317 	if (bus_get_domain(dev, &domain) == 0)
318 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
319 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
320 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
321 }
322 
323 static void
324 device_sysctl_update(device_t dev)
325 {
326 	devclass_t dc = dev->devclass;
327 
328 	if (dev->sysctl_tree == NULL)
329 		return;
330 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
331 }
332 
333 static void
334 device_sysctl_fini(device_t dev)
335 {
336 	if (dev->sysctl_tree == NULL)
337 		return;
338 	sysctl_ctx_free(&dev->sysctl_ctx);
339 	dev->sysctl_tree = NULL;
340 }
341 
342 /*
343  * /dev/devctl implementation
344  */
345 
346 /*
347  * This design allows only one reader for /dev/devctl.  This is not desirable
348  * in the long run, but will get a lot of hair out of this implementation.
349  * Maybe we should make this device a clonable device.
350  *
351  * Also note: we specifically do not attach a device to the device_t tree
352  * to avoid potential chicken and egg problems.  One could argue that all
353  * of this belongs to the root node.  One could also further argue that the
354  * sysctl interface that we have not might more properly be an ioctl
355  * interface, but at this stage of the game, I'm not inclined to rock that
356  * boat.
357  *
358  * I'm also not sure that the SIGIO support is done correctly or not, as
359  * I copied it from a driver that had SIGIO support that likely hasn't been
360  * tested since 3.4 or 2.2.8!
361  */
362 
363 /* Deprecated way to adjust queue length */
364 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
365 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
366     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
367     "devctl disable -- deprecated");
368 
369 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
370 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
371 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
372 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
373     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
374 
375 static d_open_t		devopen;
376 static d_close_t	devclose;
377 static d_read_t		devread;
378 static d_ioctl_t	devioctl;
379 static d_poll_t		devpoll;
380 static d_kqfilter_t	devkqfilter;
381 
382 static struct cdevsw dev_cdevsw = {
383 	.d_version =	D_VERSION,
384 	.d_open =	devopen,
385 	.d_close =	devclose,
386 	.d_read =	devread,
387 	.d_ioctl =	devioctl,
388 	.d_poll =	devpoll,
389 	.d_kqfilter =	devkqfilter,
390 	.d_name =	"devctl",
391 };
392 
393 struct dev_event_info
394 {
395 	char *dei_data;
396 	TAILQ_ENTRY(dev_event_info) dei_link;
397 };
398 
399 TAILQ_HEAD(devq, dev_event_info);
400 
401 static struct dev_softc
402 {
403 	int	inuse;
404 	int	nonblock;
405 	int	queued;
406 	int	async;
407 	struct mtx mtx;
408 	struct cv cv;
409 	struct selinfo sel;
410 	struct devq devq;
411 	struct sigio *sigio;
412 } devsoftc;
413 
414 static void	filt_devctl_detach(struct knote *kn);
415 static int	filt_devctl_read(struct knote *kn, long hint);
416 
417 struct filterops devctl_rfiltops = {
418 	.f_isfd = 1,
419 	.f_detach = filt_devctl_detach,
420 	.f_event = filt_devctl_read,
421 };
422 
423 static struct cdev *devctl_dev;
424 
425 static void
426 devinit(void)
427 {
428 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
429 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
430 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
431 	cv_init(&devsoftc.cv, "dev cv");
432 	TAILQ_INIT(&devsoftc.devq);
433 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
434 	devctl2_init();
435 }
436 
437 static int
438 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
439 {
440 
441 	mtx_lock(&devsoftc.mtx);
442 	if (devsoftc.inuse) {
443 		mtx_unlock(&devsoftc.mtx);
444 		return (EBUSY);
445 	}
446 	/* move to init */
447 	devsoftc.inuse = 1;
448 	mtx_unlock(&devsoftc.mtx);
449 	return (0);
450 }
451 
452 static int
453 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
454 {
455 
456 	mtx_lock(&devsoftc.mtx);
457 	devsoftc.inuse = 0;
458 	devsoftc.nonblock = 0;
459 	devsoftc.async = 0;
460 	cv_broadcast(&devsoftc.cv);
461 	funsetown(&devsoftc.sigio);
462 	mtx_unlock(&devsoftc.mtx);
463 	return (0);
464 }
465 
466 /*
467  * The read channel for this device is used to report changes to
468  * userland in realtime.  We are required to free the data as well as
469  * the n1 object because we allocate them separately.  Also note that
470  * we return one record at a time.  If you try to read this device a
471  * character at a time, you will lose the rest of the data.  Listening
472  * programs are expected to cope.
473  */
474 static int
475 devread(struct cdev *dev, struct uio *uio, int ioflag)
476 {
477 	struct dev_event_info *n1;
478 	int rv;
479 
480 	mtx_lock(&devsoftc.mtx);
481 	while (TAILQ_EMPTY(&devsoftc.devq)) {
482 		if (devsoftc.nonblock) {
483 			mtx_unlock(&devsoftc.mtx);
484 			return (EAGAIN);
485 		}
486 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
487 		if (rv) {
488 			/*
489 			 * Need to translate ERESTART to EINTR here? -- jake
490 			 */
491 			mtx_unlock(&devsoftc.mtx);
492 			return (rv);
493 		}
494 	}
495 	n1 = TAILQ_FIRST(&devsoftc.devq);
496 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
497 	devsoftc.queued--;
498 	mtx_unlock(&devsoftc.mtx);
499 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
500 	free(n1->dei_data, M_BUS);
501 	free(n1, M_BUS);
502 	return (rv);
503 }
504 
505 static	int
506 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
507 {
508 	switch (cmd) {
509 
510 	case FIONBIO:
511 		if (*(int*)data)
512 			devsoftc.nonblock = 1;
513 		else
514 			devsoftc.nonblock = 0;
515 		return (0);
516 	case FIOASYNC:
517 		if (*(int*)data)
518 			devsoftc.async = 1;
519 		else
520 			devsoftc.async = 0;
521 		return (0);
522 	case FIOSETOWN:
523 		return fsetown(*(int *)data, &devsoftc.sigio);
524 	case FIOGETOWN:
525 		*(int *)data = fgetown(&devsoftc.sigio);
526 		return (0);
527 
528 		/* (un)Support for other fcntl() calls. */
529 	case FIOCLEX:
530 	case FIONCLEX:
531 	case FIONREAD:
532 	default:
533 		break;
534 	}
535 	return (ENOTTY);
536 }
537 
538 static	int
539 devpoll(struct cdev *dev, int events, struct thread *td)
540 {
541 	int	revents = 0;
542 
543 	mtx_lock(&devsoftc.mtx);
544 	if (events & (POLLIN | POLLRDNORM)) {
545 		if (!TAILQ_EMPTY(&devsoftc.devq))
546 			revents = events & (POLLIN | POLLRDNORM);
547 		else
548 			selrecord(td, &devsoftc.sel);
549 	}
550 	mtx_unlock(&devsoftc.mtx);
551 
552 	return (revents);
553 }
554 
555 static int
556 devkqfilter(struct cdev *dev, struct knote *kn)
557 {
558 	int error;
559 
560 	if (kn->kn_filter == EVFILT_READ) {
561 		kn->kn_fop = &devctl_rfiltops;
562 		knlist_add(&devsoftc.sel.si_note, kn, 0);
563 		error = 0;
564 	} else
565 		error = EINVAL;
566 	return (error);
567 }
568 
569 static void
570 filt_devctl_detach(struct knote *kn)
571 {
572 
573 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
574 }
575 
576 static int
577 filt_devctl_read(struct knote *kn, long hint)
578 {
579 	kn->kn_data = devsoftc.queued;
580 	return (kn->kn_data != 0);
581 }
582 
583 /**
584  * @brief Return whether the userland process is running
585  */
586 boolean_t
587 devctl_process_running(void)
588 {
589 	return (devsoftc.inuse == 1);
590 }
591 
592 /**
593  * @brief Queue data to be read from the devctl device
594  *
595  * Generic interface to queue data to the devctl device.  It is
596  * assumed that @p data is properly formatted.  It is further assumed
597  * that @p data is allocated using the M_BUS malloc type.
598  */
599 void
600 devctl_queue_data_f(char *data, int flags)
601 {
602 	struct dev_event_info *n1 = NULL, *n2 = NULL;
603 
604 	if (strlen(data) == 0)
605 		goto out;
606 	if (devctl_queue_length == 0)
607 		goto out;
608 	n1 = malloc(sizeof(*n1), M_BUS, flags);
609 	if (n1 == NULL)
610 		goto out;
611 	n1->dei_data = data;
612 	mtx_lock(&devsoftc.mtx);
613 	if (devctl_queue_length == 0) {
614 		mtx_unlock(&devsoftc.mtx);
615 		free(n1->dei_data, M_BUS);
616 		free(n1, M_BUS);
617 		return;
618 	}
619 	/* Leave at least one spot in the queue... */
620 	while (devsoftc.queued > devctl_queue_length - 1) {
621 		n2 = TAILQ_FIRST(&devsoftc.devq);
622 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
623 		free(n2->dei_data, M_BUS);
624 		free(n2, M_BUS);
625 		devsoftc.queued--;
626 	}
627 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
628 	devsoftc.queued++;
629 	cv_broadcast(&devsoftc.cv);
630 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
631 	mtx_unlock(&devsoftc.mtx);
632 	selwakeup(&devsoftc.sel);
633 	if (devsoftc.async && devsoftc.sigio != NULL)
634 		pgsigio(&devsoftc.sigio, SIGIO, 0);
635 	return;
636 out:
637 	/*
638 	 * We have to free data on all error paths since the caller
639 	 * assumes it will be free'd when this item is dequeued.
640 	 */
641 	free(data, M_BUS);
642 	return;
643 }
644 
645 void
646 devctl_queue_data(char *data)
647 {
648 
649 	devctl_queue_data_f(data, M_NOWAIT);
650 }
651 
652 /**
653  * @brief Send a 'notification' to userland, using standard ways
654  */
655 void
656 devctl_notify_f(const char *system, const char *subsystem, const char *type,
657     const char *data, int flags)
658 {
659 	int len = 0;
660 	char *msg;
661 
662 	if (system == NULL)
663 		return;		/* BOGUS!  Must specify system. */
664 	if (subsystem == NULL)
665 		return;		/* BOGUS!  Must specify subsystem. */
666 	if (type == NULL)
667 		return;		/* BOGUS!  Must specify type. */
668 	len += strlen(" system=") + strlen(system);
669 	len += strlen(" subsystem=") + strlen(subsystem);
670 	len += strlen(" type=") + strlen(type);
671 	/* add in the data message plus newline. */
672 	if (data != NULL)
673 		len += strlen(data);
674 	len += 3;	/* '!', '\n', and NUL */
675 	msg = malloc(len, M_BUS, flags);
676 	if (msg == NULL)
677 		return;		/* Drop it on the floor */
678 	if (data != NULL)
679 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
680 		    system, subsystem, type, data);
681 	else
682 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
683 		    system, subsystem, type);
684 	devctl_queue_data_f(msg, flags);
685 }
686 
687 void
688 devctl_notify(const char *system, const char *subsystem, const char *type,
689     const char *data)
690 {
691 
692 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
693 }
694 
695 /*
696  * Common routine that tries to make sending messages as easy as possible.
697  * We allocate memory for the data, copy strings into that, but do not
698  * free it unless there's an error.  The dequeue part of the driver should
699  * free the data.  We don't send data when the device is disabled.  We do
700  * send data, even when we have no listeners, because we wish to avoid
701  * races relating to startup and restart of listening applications.
702  *
703  * devaddq is designed to string together the type of event, with the
704  * object of that event, plus the plug and play info and location info
705  * for that event.  This is likely most useful for devices, but less
706  * useful for other consumers of this interface.  Those should use
707  * the devctl_queue_data() interface instead.
708  */
709 static void
710 devaddq(const char *type, const char *what, device_t dev)
711 {
712 	char *data = NULL;
713 	char *loc = NULL;
714 	char *pnp = NULL;
715 	const char *parstr;
716 
717 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
718 		return;
719 	data = malloc(1024, M_BUS, M_NOWAIT);
720 	if (data == NULL)
721 		goto bad;
722 
723 	/* get the bus specific location of this device */
724 	loc = malloc(1024, M_BUS, M_NOWAIT);
725 	if (loc == NULL)
726 		goto bad;
727 	*loc = '\0';
728 	bus_child_location_str(dev, loc, 1024);
729 
730 	/* Get the bus specific pnp info of this device */
731 	pnp = malloc(1024, M_BUS, M_NOWAIT);
732 	if (pnp == NULL)
733 		goto bad;
734 	*pnp = '\0';
735 	bus_child_pnpinfo_str(dev, pnp, 1024);
736 
737 	/* Get the parent of this device, or / if high enough in the tree. */
738 	if (device_get_parent(dev) == NULL)
739 		parstr = ".";	/* Or '/' ? */
740 	else
741 		parstr = device_get_nameunit(device_get_parent(dev));
742 	/* String it all together. */
743 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
744 	  parstr);
745 	free(loc, M_BUS);
746 	free(pnp, M_BUS);
747 	devctl_queue_data(data);
748 	return;
749 bad:
750 	free(pnp, M_BUS);
751 	free(loc, M_BUS);
752 	free(data, M_BUS);
753 	return;
754 }
755 
756 /*
757  * A device was added to the tree.  We are called just after it successfully
758  * attaches (that is, probe and attach success for this device).  No call
759  * is made if a device is merely parented into the tree.  See devnomatch
760  * if probe fails.  If attach fails, no notification is sent (but maybe
761  * we should have a different message for this).
762  */
763 static void
764 devadded(device_t dev)
765 {
766 	devaddq("+", device_get_nameunit(dev), dev);
767 }
768 
769 /*
770  * A device was removed from the tree.  We are called just before this
771  * happens.
772  */
773 static void
774 devremoved(device_t dev)
775 {
776 	devaddq("-", device_get_nameunit(dev), dev);
777 }
778 
779 /*
780  * Called when there's no match for this device.  This is only called
781  * the first time that no match happens, so we don't keep getting this
782  * message.  Should that prove to be undesirable, we can change it.
783  * This is called when all drivers that can attach to a given bus
784  * decline to accept this device.  Other errors may not be detected.
785  */
786 static void
787 devnomatch(device_t dev)
788 {
789 	devaddq("?", "", dev);
790 }
791 
792 static int
793 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
794 {
795 	struct dev_event_info *n1;
796 	int dis, error;
797 
798 	dis = (devctl_queue_length == 0);
799 	error = sysctl_handle_int(oidp, &dis, 0, req);
800 	if (error || !req->newptr)
801 		return (error);
802 	if (mtx_initialized(&devsoftc.mtx))
803 		mtx_lock(&devsoftc.mtx);
804 	if (dis) {
805 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
806 			n1 = TAILQ_FIRST(&devsoftc.devq);
807 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
808 			free(n1->dei_data, M_BUS);
809 			free(n1, M_BUS);
810 		}
811 		devsoftc.queued = 0;
812 		devctl_queue_length = 0;
813 	} else {
814 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
815 	}
816 	if (mtx_initialized(&devsoftc.mtx))
817 		mtx_unlock(&devsoftc.mtx);
818 	return (0);
819 }
820 
821 static int
822 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
823 {
824 	struct dev_event_info *n1;
825 	int q, error;
826 
827 	q = devctl_queue_length;
828 	error = sysctl_handle_int(oidp, &q, 0, req);
829 	if (error || !req->newptr)
830 		return (error);
831 	if (q < 0)
832 		return (EINVAL);
833 	if (mtx_initialized(&devsoftc.mtx))
834 		mtx_lock(&devsoftc.mtx);
835 	devctl_queue_length = q;
836 	while (devsoftc.queued > devctl_queue_length) {
837 		n1 = TAILQ_FIRST(&devsoftc.devq);
838 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
839 		free(n1->dei_data, M_BUS);
840 		free(n1, M_BUS);
841 		devsoftc.queued--;
842 	}
843 	if (mtx_initialized(&devsoftc.mtx))
844 		mtx_unlock(&devsoftc.mtx);
845 	return (0);
846 }
847 
848 /**
849  * @brief safely quotes strings that might have double quotes in them.
850  *
851  * The devctl protocol relies on quoted strings having matching quotes.
852  * This routine quotes any internal quotes so the resulting string
853  * is safe to pass to snprintf to construct, for example pnp info strings.
854  * Strings are always terminated with a NUL, but may be truncated if longer
855  * than @p len bytes after quotes.
856  *
857  * @param dst	Buffer to hold the string. Must be at least @p len bytes long
858  * @param src	Original buffer.
859  * @param len	Length of buffer pointed to by @dst, including trailing NUL
860  */
861 void
862 devctl_safe_quote(char *dst, const char *src, size_t len)
863 {
864 	char *walker = dst, *ep = dst + len - 1;
865 
866 	if (len == 0)
867 		return;
868 	while (src != NULL && walker < ep)
869 	{
870 		if (*src == '"' || *src == '\\') {
871 			if (ep - walker < 2)
872 				break;
873 			*walker++ = '\\';
874 		}
875 		*walker++ = *src++;
876 	}
877 	*walker = '\0';
878 }
879 
880 /* End of /dev/devctl code */
881 
882 static TAILQ_HEAD(,device)	bus_data_devices;
883 static int bus_data_generation = 1;
884 
885 static kobj_method_t null_methods[] = {
886 	KOBJMETHOD_END
887 };
888 
889 DEFINE_CLASS(null, null_methods, 0);
890 
891 /*
892  * Bus pass implementation
893  */
894 
895 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
896 int bus_current_pass = BUS_PASS_ROOT;
897 
898 /**
899  * @internal
900  * @brief Register the pass level of a new driver attachment
901  *
902  * Register a new driver attachment's pass level.  If no driver
903  * attachment with the same pass level has been added, then @p new
904  * will be added to the global passes list.
905  *
906  * @param new		the new driver attachment
907  */
908 static void
909 driver_register_pass(struct driverlink *new)
910 {
911 	struct driverlink *dl;
912 
913 	/* We only consider pass numbers during boot. */
914 	if (bus_current_pass == BUS_PASS_DEFAULT)
915 		return;
916 
917 	/*
918 	 * Walk the passes list.  If we already know about this pass
919 	 * then there is nothing to do.  If we don't, then insert this
920 	 * driver link into the list.
921 	 */
922 	TAILQ_FOREACH(dl, &passes, passlink) {
923 		if (dl->pass < new->pass)
924 			continue;
925 		if (dl->pass == new->pass)
926 			return;
927 		TAILQ_INSERT_BEFORE(dl, new, passlink);
928 		return;
929 	}
930 	TAILQ_INSERT_TAIL(&passes, new, passlink);
931 }
932 
933 /**
934  * @brief Raise the current bus pass
935  *
936  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
937  * method on the root bus to kick off a new device tree scan for each
938  * new pass level that has at least one driver.
939  */
940 void
941 bus_set_pass(int pass)
942 {
943 	struct driverlink *dl;
944 
945 	if (bus_current_pass > pass)
946 		panic("Attempt to lower bus pass level");
947 
948 	TAILQ_FOREACH(dl, &passes, passlink) {
949 		/* Skip pass values below the current pass level. */
950 		if (dl->pass <= bus_current_pass)
951 			continue;
952 
953 		/*
954 		 * Bail once we hit a driver with a pass level that is
955 		 * too high.
956 		 */
957 		if (dl->pass > pass)
958 			break;
959 
960 		/*
961 		 * Raise the pass level to the next level and rescan
962 		 * the tree.
963 		 */
964 		bus_current_pass = dl->pass;
965 		BUS_NEW_PASS(root_bus);
966 	}
967 
968 	/*
969 	 * If there isn't a driver registered for the requested pass,
970 	 * then bus_current_pass might still be less than 'pass'.  Set
971 	 * it to 'pass' in that case.
972 	 */
973 	if (bus_current_pass < pass)
974 		bus_current_pass = pass;
975 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
976 }
977 
978 /*
979  * Devclass implementation
980  */
981 
982 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
983 
984 /**
985  * @internal
986  * @brief Find or create a device class
987  *
988  * If a device class with the name @p classname exists, return it,
989  * otherwise if @p create is non-zero create and return a new device
990  * class.
991  *
992  * If @p parentname is non-NULL, the parent of the devclass is set to
993  * the devclass of that name.
994  *
995  * @param classname	the devclass name to find or create
996  * @param parentname	the parent devclass name or @c NULL
997  * @param create	non-zero to create a devclass
998  */
999 static devclass_t
1000 devclass_find_internal(const char *classname, const char *parentname,
1001 		       int create)
1002 {
1003 	devclass_t dc;
1004 
1005 	PDEBUG(("looking for %s", classname));
1006 	if (!classname)
1007 		return (NULL);
1008 
1009 	TAILQ_FOREACH(dc, &devclasses, link) {
1010 		if (!strcmp(dc->name, classname))
1011 			break;
1012 	}
1013 
1014 	if (create && !dc) {
1015 		PDEBUG(("creating %s", classname));
1016 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1017 		    M_BUS, M_NOWAIT | M_ZERO);
1018 		if (!dc)
1019 			return (NULL);
1020 		dc->parent = NULL;
1021 		dc->name = (char*) (dc + 1);
1022 		strcpy(dc->name, classname);
1023 		TAILQ_INIT(&dc->drivers);
1024 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1025 
1026 		bus_data_generation_update();
1027 	}
1028 
1029 	/*
1030 	 * If a parent class is specified, then set that as our parent so
1031 	 * that this devclass will support drivers for the parent class as
1032 	 * well.  If the parent class has the same name don't do this though
1033 	 * as it creates a cycle that can trigger an infinite loop in
1034 	 * device_probe_child() if a device exists for which there is no
1035 	 * suitable driver.
1036 	 */
1037 	if (parentname && dc && !dc->parent &&
1038 	    strcmp(classname, parentname) != 0) {
1039 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1040 		dc->parent->flags |= DC_HAS_CHILDREN;
1041 	}
1042 
1043 	return (dc);
1044 }
1045 
1046 /**
1047  * @brief Create a device class
1048  *
1049  * If a device class with the name @p classname exists, return it,
1050  * otherwise create and return a new device class.
1051  *
1052  * @param classname	the devclass name to find or create
1053  */
1054 devclass_t
1055 devclass_create(const char *classname)
1056 {
1057 	return (devclass_find_internal(classname, NULL, TRUE));
1058 }
1059 
1060 /**
1061  * @brief Find a device class
1062  *
1063  * If a device class with the name @p classname exists, return it,
1064  * otherwise return @c NULL.
1065  *
1066  * @param classname	the devclass name to find
1067  */
1068 devclass_t
1069 devclass_find(const char *classname)
1070 {
1071 	return (devclass_find_internal(classname, NULL, FALSE));
1072 }
1073 
1074 /**
1075  * @brief Register that a device driver has been added to a devclass
1076  *
1077  * Register that a device driver has been added to a devclass.  This
1078  * is called by devclass_add_driver to accomplish the recursive
1079  * notification of all the children classes of dc, as well as dc.
1080  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1081  * the devclass.
1082  *
1083  * We do a full search here of the devclass list at each iteration
1084  * level to save storing children-lists in the devclass structure.  If
1085  * we ever move beyond a few dozen devices doing this, we may need to
1086  * reevaluate...
1087  *
1088  * @param dc		the devclass to edit
1089  * @param driver	the driver that was just added
1090  */
1091 static void
1092 devclass_driver_added(devclass_t dc, driver_t *driver)
1093 {
1094 	devclass_t parent;
1095 	int i;
1096 
1097 	/*
1098 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1099 	 */
1100 	for (i = 0; i < dc->maxunit; i++)
1101 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1102 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1103 
1104 	/*
1105 	 * Walk through the children classes.  Since we only keep a
1106 	 * single parent pointer around, we walk the entire list of
1107 	 * devclasses looking for children.  We set the
1108 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1109 	 * the parent, so we only walk the list for those devclasses
1110 	 * that have children.
1111 	 */
1112 	if (!(dc->flags & DC_HAS_CHILDREN))
1113 		return;
1114 	parent = dc;
1115 	TAILQ_FOREACH(dc, &devclasses, link) {
1116 		if (dc->parent == parent)
1117 			devclass_driver_added(dc, driver);
1118 	}
1119 }
1120 
1121 /**
1122  * @brief Add a device driver to a device class
1123  *
1124  * Add a device driver to a devclass. This is normally called
1125  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1126  * all devices in the devclass will be called to allow them to attempt
1127  * to re-probe any unmatched children.
1128  *
1129  * @param dc		the devclass to edit
1130  * @param driver	the driver to register
1131  */
1132 int
1133 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1134 {
1135 	driverlink_t dl;
1136 	const char *parentname;
1137 
1138 	PDEBUG(("%s", DRIVERNAME(driver)));
1139 
1140 	/* Don't allow invalid pass values. */
1141 	if (pass <= BUS_PASS_ROOT)
1142 		return (EINVAL);
1143 
1144 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1145 	if (!dl)
1146 		return (ENOMEM);
1147 
1148 	/*
1149 	 * Compile the driver's methods. Also increase the reference count
1150 	 * so that the class doesn't get freed when the last instance
1151 	 * goes. This means we can safely use static methods and avoids a
1152 	 * double-free in devclass_delete_driver.
1153 	 */
1154 	kobj_class_compile((kobj_class_t) driver);
1155 
1156 	/*
1157 	 * If the driver has any base classes, make the
1158 	 * devclass inherit from the devclass of the driver's
1159 	 * first base class. This will allow the system to
1160 	 * search for drivers in both devclasses for children
1161 	 * of a device using this driver.
1162 	 */
1163 	if (driver->baseclasses)
1164 		parentname = driver->baseclasses[0]->name;
1165 	else
1166 		parentname = NULL;
1167 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1168 
1169 	dl->driver = driver;
1170 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1171 	driver->refs++;		/* XXX: kobj_mtx */
1172 	dl->pass = pass;
1173 	driver_register_pass(dl);
1174 
1175 	devclass_driver_added(dc, driver);
1176 	bus_data_generation_update();
1177 	return (0);
1178 }
1179 
1180 /**
1181  * @brief Register that a device driver has been deleted from a devclass
1182  *
1183  * Register that a device driver has been removed from a devclass.
1184  * This is called by devclass_delete_driver to accomplish the
1185  * recursive notification of all the children classes of busclass, as
1186  * well as busclass.  Each layer will attempt to detach the driver
1187  * from any devices that are children of the bus's devclass.  The function
1188  * will return an error if a device fails to detach.
1189  *
1190  * We do a full search here of the devclass list at each iteration
1191  * level to save storing children-lists in the devclass structure.  If
1192  * we ever move beyond a few dozen devices doing this, we may need to
1193  * reevaluate...
1194  *
1195  * @param busclass	the devclass of the parent bus
1196  * @param dc		the devclass of the driver being deleted
1197  * @param driver	the driver being deleted
1198  */
1199 static int
1200 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1201 {
1202 	devclass_t parent;
1203 	device_t dev;
1204 	int error, i;
1205 
1206 	/*
1207 	 * Disassociate from any devices.  We iterate through all the
1208 	 * devices in the devclass of the driver and detach any which are
1209 	 * using the driver and which have a parent in the devclass which
1210 	 * we are deleting from.
1211 	 *
1212 	 * Note that since a driver can be in multiple devclasses, we
1213 	 * should not detach devices which are not children of devices in
1214 	 * the affected devclass.
1215 	 */
1216 	for (i = 0; i < dc->maxunit; i++) {
1217 		if (dc->devices[i]) {
1218 			dev = dc->devices[i];
1219 			if (dev->driver == driver && dev->parent &&
1220 			    dev->parent->devclass == busclass) {
1221 				if ((error = device_detach(dev)) != 0)
1222 					return (error);
1223 				BUS_PROBE_NOMATCH(dev->parent, dev);
1224 				devnomatch(dev);
1225 				dev->flags |= DF_DONENOMATCH;
1226 			}
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * Walk through the children classes.  Since we only keep a
1232 	 * single parent pointer around, we walk the entire list of
1233 	 * devclasses looking for children.  We set the
1234 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1235 	 * the parent, so we only walk the list for those devclasses
1236 	 * that have children.
1237 	 */
1238 	if (!(busclass->flags & DC_HAS_CHILDREN))
1239 		return (0);
1240 	parent = busclass;
1241 	TAILQ_FOREACH(busclass, &devclasses, link) {
1242 		if (busclass->parent == parent) {
1243 			error = devclass_driver_deleted(busclass, dc, driver);
1244 			if (error)
1245 				return (error);
1246 		}
1247 	}
1248 	return (0);
1249 }
1250 
1251 /**
1252  * @brief Delete a device driver from a device class
1253  *
1254  * Delete a device driver from a devclass. This is normally called
1255  * automatically by DRIVER_MODULE().
1256  *
1257  * If the driver is currently attached to any devices,
1258  * devclass_delete_driver() will first attempt to detach from each
1259  * device. If one of the detach calls fails, the driver will not be
1260  * deleted.
1261  *
1262  * @param dc		the devclass to edit
1263  * @param driver	the driver to unregister
1264  */
1265 int
1266 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1267 {
1268 	devclass_t dc = devclass_find(driver->name);
1269 	driverlink_t dl;
1270 	int error;
1271 
1272 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1273 
1274 	if (!dc)
1275 		return (0);
1276 
1277 	/*
1278 	 * Find the link structure in the bus' list of drivers.
1279 	 */
1280 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1281 		if (dl->driver == driver)
1282 			break;
1283 	}
1284 
1285 	if (!dl) {
1286 		PDEBUG(("%s not found in %s list", driver->name,
1287 		    busclass->name));
1288 		return (ENOENT);
1289 	}
1290 
1291 	error = devclass_driver_deleted(busclass, dc, driver);
1292 	if (error != 0)
1293 		return (error);
1294 
1295 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1296 	free(dl, M_BUS);
1297 
1298 	/* XXX: kobj_mtx */
1299 	driver->refs--;
1300 	if (driver->refs == 0)
1301 		kobj_class_free((kobj_class_t) driver);
1302 
1303 	bus_data_generation_update();
1304 	return (0);
1305 }
1306 
1307 /**
1308  * @brief Quiesces a set of device drivers from a device class
1309  *
1310  * Quiesce a device driver from a devclass. This is normally called
1311  * automatically by DRIVER_MODULE().
1312  *
1313  * If the driver is currently attached to any devices,
1314  * devclass_quiesece_driver() will first attempt to quiesce each
1315  * device.
1316  *
1317  * @param dc		the devclass to edit
1318  * @param driver	the driver to unregister
1319  */
1320 static int
1321 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1322 {
1323 	devclass_t dc = devclass_find(driver->name);
1324 	driverlink_t dl;
1325 	device_t dev;
1326 	int i;
1327 	int error;
1328 
1329 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1330 
1331 	if (!dc)
1332 		return (0);
1333 
1334 	/*
1335 	 * Find the link structure in the bus' list of drivers.
1336 	 */
1337 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1338 		if (dl->driver == driver)
1339 			break;
1340 	}
1341 
1342 	if (!dl) {
1343 		PDEBUG(("%s not found in %s list", driver->name,
1344 		    busclass->name));
1345 		return (ENOENT);
1346 	}
1347 
1348 	/*
1349 	 * Quiesce all devices.  We iterate through all the devices in
1350 	 * the devclass of the driver and quiesce any which are using
1351 	 * the driver and which have a parent in the devclass which we
1352 	 * are quiescing.
1353 	 *
1354 	 * Note that since a driver can be in multiple devclasses, we
1355 	 * should not quiesce devices which are not children of
1356 	 * devices in the affected devclass.
1357 	 */
1358 	for (i = 0; i < dc->maxunit; i++) {
1359 		if (dc->devices[i]) {
1360 			dev = dc->devices[i];
1361 			if (dev->driver == driver && dev->parent &&
1362 			    dev->parent->devclass == busclass) {
1363 				if ((error = device_quiesce(dev)) != 0)
1364 					return (error);
1365 			}
1366 		}
1367 	}
1368 
1369 	return (0);
1370 }
1371 
1372 /**
1373  * @internal
1374  */
1375 static driverlink_t
1376 devclass_find_driver_internal(devclass_t dc, const char *classname)
1377 {
1378 	driverlink_t dl;
1379 
1380 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1381 
1382 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1383 		if (!strcmp(dl->driver->name, classname))
1384 			return (dl);
1385 	}
1386 
1387 	PDEBUG(("not found"));
1388 	return (NULL);
1389 }
1390 
1391 /**
1392  * @brief Return the name of the devclass
1393  */
1394 const char *
1395 devclass_get_name(devclass_t dc)
1396 {
1397 	return (dc->name);
1398 }
1399 
1400 /**
1401  * @brief Find a device given a unit number
1402  *
1403  * @param dc		the devclass to search
1404  * @param unit		the unit number to search for
1405  *
1406  * @returns		the device with the given unit number or @c
1407  *			NULL if there is no such device
1408  */
1409 device_t
1410 devclass_get_device(devclass_t dc, int unit)
1411 {
1412 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1413 		return (NULL);
1414 	return (dc->devices[unit]);
1415 }
1416 
1417 /**
1418  * @brief Find the softc field of a device given a unit number
1419  *
1420  * @param dc		the devclass to search
1421  * @param unit		the unit number to search for
1422  *
1423  * @returns		the softc field of the device with the given
1424  *			unit number or @c NULL if there is no such
1425  *			device
1426  */
1427 void *
1428 devclass_get_softc(devclass_t dc, int unit)
1429 {
1430 	device_t dev;
1431 
1432 	dev = devclass_get_device(dc, unit);
1433 	if (!dev)
1434 		return (NULL);
1435 
1436 	return (device_get_softc(dev));
1437 }
1438 
1439 /**
1440  * @brief Get a list of devices in the devclass
1441  *
1442  * An array containing a list of all the devices in the given devclass
1443  * is allocated and returned in @p *devlistp. The number of devices
1444  * in the array is returned in @p *devcountp. The caller should free
1445  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1446  *
1447  * @param dc		the devclass to examine
1448  * @param devlistp	points at location for array pointer return
1449  *			value
1450  * @param devcountp	points at location for array size return value
1451  *
1452  * @retval 0		success
1453  * @retval ENOMEM	the array allocation failed
1454  */
1455 int
1456 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1457 {
1458 	int count, i;
1459 	device_t *list;
1460 
1461 	count = devclass_get_count(dc);
1462 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1463 	if (!list)
1464 		return (ENOMEM);
1465 
1466 	count = 0;
1467 	for (i = 0; i < dc->maxunit; i++) {
1468 		if (dc->devices[i]) {
1469 			list[count] = dc->devices[i];
1470 			count++;
1471 		}
1472 	}
1473 
1474 	*devlistp = list;
1475 	*devcountp = count;
1476 
1477 	return (0);
1478 }
1479 
1480 /**
1481  * @brief Get a list of drivers in the devclass
1482  *
1483  * An array containing a list of pointers to all the drivers in the
1484  * given devclass is allocated and returned in @p *listp.  The number
1485  * of drivers in the array is returned in @p *countp. The caller should
1486  * free the array using @c free(p, M_TEMP).
1487  *
1488  * @param dc		the devclass to examine
1489  * @param listp		gives location for array pointer return value
1490  * @param countp	gives location for number of array elements
1491  *			return value
1492  *
1493  * @retval 0		success
1494  * @retval ENOMEM	the array allocation failed
1495  */
1496 int
1497 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1498 {
1499 	driverlink_t dl;
1500 	driver_t **list;
1501 	int count;
1502 
1503 	count = 0;
1504 	TAILQ_FOREACH(dl, &dc->drivers, link)
1505 		count++;
1506 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1507 	if (list == NULL)
1508 		return (ENOMEM);
1509 
1510 	count = 0;
1511 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1512 		list[count] = dl->driver;
1513 		count++;
1514 	}
1515 	*listp = list;
1516 	*countp = count;
1517 
1518 	return (0);
1519 }
1520 
1521 /**
1522  * @brief Get the number of devices in a devclass
1523  *
1524  * @param dc		the devclass to examine
1525  */
1526 int
1527 devclass_get_count(devclass_t dc)
1528 {
1529 	int count, i;
1530 
1531 	count = 0;
1532 	for (i = 0; i < dc->maxunit; i++)
1533 		if (dc->devices[i])
1534 			count++;
1535 	return (count);
1536 }
1537 
1538 /**
1539  * @brief Get the maximum unit number used in a devclass
1540  *
1541  * Note that this is one greater than the highest currently-allocated
1542  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1543  * that not even the devclass has been allocated yet.
1544  *
1545  * @param dc		the devclass to examine
1546  */
1547 int
1548 devclass_get_maxunit(devclass_t dc)
1549 {
1550 	if (dc == NULL)
1551 		return (-1);
1552 	return (dc->maxunit);
1553 }
1554 
1555 /**
1556  * @brief Find a free unit number in a devclass
1557  *
1558  * This function searches for the first unused unit number greater
1559  * that or equal to @p unit.
1560  *
1561  * @param dc		the devclass to examine
1562  * @param unit		the first unit number to check
1563  */
1564 int
1565 devclass_find_free_unit(devclass_t dc, int unit)
1566 {
1567 	if (dc == NULL)
1568 		return (unit);
1569 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1570 		unit++;
1571 	return (unit);
1572 }
1573 
1574 /**
1575  * @brief Set the parent of a devclass
1576  *
1577  * The parent class is normally initialised automatically by
1578  * DRIVER_MODULE().
1579  *
1580  * @param dc		the devclass to edit
1581  * @param pdc		the new parent devclass
1582  */
1583 void
1584 devclass_set_parent(devclass_t dc, devclass_t pdc)
1585 {
1586 	dc->parent = pdc;
1587 }
1588 
1589 /**
1590  * @brief Get the parent of a devclass
1591  *
1592  * @param dc		the devclass to examine
1593  */
1594 devclass_t
1595 devclass_get_parent(devclass_t dc)
1596 {
1597 	return (dc->parent);
1598 }
1599 
1600 struct sysctl_ctx_list *
1601 devclass_get_sysctl_ctx(devclass_t dc)
1602 {
1603 	return (&dc->sysctl_ctx);
1604 }
1605 
1606 struct sysctl_oid *
1607 devclass_get_sysctl_tree(devclass_t dc)
1608 {
1609 	return (dc->sysctl_tree);
1610 }
1611 
1612 /**
1613  * @internal
1614  * @brief Allocate a unit number
1615  *
1616  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1617  * will do). The allocated unit number is returned in @p *unitp.
1618 
1619  * @param dc		the devclass to allocate from
1620  * @param unitp		points at the location for the allocated unit
1621  *			number
1622  *
1623  * @retval 0		success
1624  * @retval EEXIST	the requested unit number is already allocated
1625  * @retval ENOMEM	memory allocation failure
1626  */
1627 static int
1628 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1629 {
1630 	const char *s;
1631 	int unit = *unitp;
1632 
1633 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1634 
1635 	/* Ask the parent bus if it wants to wire this device. */
1636 	if (unit == -1)
1637 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1638 		    &unit);
1639 
1640 	/* If we were given a wired unit number, check for existing device */
1641 	/* XXX imp XXX */
1642 	if (unit != -1) {
1643 		if (unit >= 0 && unit < dc->maxunit &&
1644 		    dc->devices[unit] != NULL) {
1645 			if (bootverbose)
1646 				printf("%s: %s%d already exists; skipping it\n",
1647 				    dc->name, dc->name, *unitp);
1648 			return (EEXIST);
1649 		}
1650 	} else {
1651 		/* Unwired device, find the next available slot for it */
1652 		unit = 0;
1653 		for (unit = 0;; unit++) {
1654 			/* If there is an "at" hint for a unit then skip it. */
1655 			if (resource_string_value(dc->name, unit, "at", &s) ==
1656 			    0)
1657 				continue;
1658 
1659 			/* If this device slot is already in use, skip it. */
1660 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1661 				continue;
1662 
1663 			break;
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * We've selected a unit beyond the length of the table, so let's
1669 	 * extend the table to make room for all units up to and including
1670 	 * this one.
1671 	 */
1672 	if (unit >= dc->maxunit) {
1673 		device_t *newlist, *oldlist;
1674 		int newsize;
1675 
1676 		oldlist = dc->devices;
1677 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1678 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1679 		if (!newlist)
1680 			return (ENOMEM);
1681 		if (oldlist != NULL)
1682 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1683 		bzero(newlist + dc->maxunit,
1684 		    sizeof(device_t) * (newsize - dc->maxunit));
1685 		dc->devices = newlist;
1686 		dc->maxunit = newsize;
1687 		if (oldlist != NULL)
1688 			free(oldlist, M_BUS);
1689 	}
1690 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1691 
1692 	*unitp = unit;
1693 	return (0);
1694 }
1695 
1696 /**
1697  * @internal
1698  * @brief Add a device to a devclass
1699  *
1700  * A unit number is allocated for the device (using the device's
1701  * preferred unit number if any) and the device is registered in the
1702  * devclass. This allows the device to be looked up by its unit
1703  * number, e.g. by decoding a dev_t minor number.
1704  *
1705  * @param dc		the devclass to add to
1706  * @param dev		the device to add
1707  *
1708  * @retval 0		success
1709  * @retval EEXIST	the requested unit number is already allocated
1710  * @retval ENOMEM	memory allocation failure
1711  */
1712 static int
1713 devclass_add_device(devclass_t dc, device_t dev)
1714 {
1715 	int buflen, error;
1716 
1717 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1718 
1719 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1720 	if (buflen < 0)
1721 		return (ENOMEM);
1722 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1723 	if (!dev->nameunit)
1724 		return (ENOMEM);
1725 
1726 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1727 		free(dev->nameunit, M_BUS);
1728 		dev->nameunit = NULL;
1729 		return (error);
1730 	}
1731 	dc->devices[dev->unit] = dev;
1732 	dev->devclass = dc;
1733 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1734 
1735 	return (0);
1736 }
1737 
1738 /**
1739  * @internal
1740  * @brief Delete a device from a devclass
1741  *
1742  * The device is removed from the devclass's device list and its unit
1743  * number is freed.
1744 
1745  * @param dc		the devclass to delete from
1746  * @param dev		the device to delete
1747  *
1748  * @retval 0		success
1749  */
1750 static int
1751 devclass_delete_device(devclass_t dc, device_t dev)
1752 {
1753 	if (!dc || !dev)
1754 		return (0);
1755 
1756 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1757 
1758 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1759 		panic("devclass_delete_device: inconsistent device class");
1760 	dc->devices[dev->unit] = NULL;
1761 	if (dev->flags & DF_WILDCARD)
1762 		dev->unit = -1;
1763 	dev->devclass = NULL;
1764 	free(dev->nameunit, M_BUS);
1765 	dev->nameunit = NULL;
1766 
1767 	return (0);
1768 }
1769 
1770 /**
1771  * @internal
1772  * @brief Make a new device and add it as a child of @p parent
1773  *
1774  * @param parent	the parent of the new device
1775  * @param name		the devclass name of the new device or @c NULL
1776  *			to leave the devclass unspecified
1777  * @parem unit		the unit number of the new device of @c -1 to
1778  *			leave the unit number unspecified
1779  *
1780  * @returns the new device
1781  */
1782 static device_t
1783 make_device(device_t parent, const char *name, int unit)
1784 {
1785 	device_t dev;
1786 	devclass_t dc;
1787 
1788 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1789 
1790 	if (name) {
1791 		dc = devclass_find_internal(name, NULL, TRUE);
1792 		if (!dc) {
1793 			printf("make_device: can't find device class %s\n",
1794 			    name);
1795 			return (NULL);
1796 		}
1797 	} else {
1798 		dc = NULL;
1799 	}
1800 
1801 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1802 	if (!dev)
1803 		return (NULL);
1804 
1805 	dev->parent = parent;
1806 	TAILQ_INIT(&dev->children);
1807 	kobj_init((kobj_t) dev, &null_class);
1808 	dev->driver = NULL;
1809 	dev->devclass = NULL;
1810 	dev->unit = unit;
1811 	dev->nameunit = NULL;
1812 	dev->desc = NULL;
1813 	dev->busy = 0;
1814 	dev->devflags = 0;
1815 	dev->flags = DF_ENABLED;
1816 	dev->order = 0;
1817 	if (unit == -1)
1818 		dev->flags |= DF_WILDCARD;
1819 	if (name) {
1820 		dev->flags |= DF_FIXEDCLASS;
1821 		if (devclass_add_device(dc, dev)) {
1822 			kobj_delete((kobj_t) dev, M_BUS);
1823 			return (NULL);
1824 		}
1825 	}
1826 	dev->ivars = NULL;
1827 	dev->softc = NULL;
1828 
1829 	dev->state = DS_NOTPRESENT;
1830 
1831 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1832 	bus_data_generation_update();
1833 
1834 	return (dev);
1835 }
1836 
1837 /**
1838  * @internal
1839  * @brief Print a description of a device.
1840  */
1841 static int
1842 device_print_child(device_t dev, device_t child)
1843 {
1844 	int retval = 0;
1845 
1846 	if (device_is_alive(child))
1847 		retval += BUS_PRINT_CHILD(dev, child);
1848 	else
1849 		retval += device_printf(child, " not found\n");
1850 
1851 	return (retval);
1852 }
1853 
1854 /**
1855  * @brief Create a new device
1856  *
1857  * This creates a new device and adds it as a child of an existing
1858  * parent device. The new device will be added after the last existing
1859  * child with order zero.
1860  *
1861  * @param dev		the device which will be the parent of the
1862  *			new child device
1863  * @param name		devclass name for new device or @c NULL if not
1864  *			specified
1865  * @param unit		unit number for new device or @c -1 if not
1866  *			specified
1867  *
1868  * @returns		the new device
1869  */
1870 device_t
1871 device_add_child(device_t dev, const char *name, int unit)
1872 {
1873 	return (device_add_child_ordered(dev, 0, name, unit));
1874 }
1875 
1876 /**
1877  * @brief Create a new device
1878  *
1879  * This creates a new device and adds it as a child of an existing
1880  * parent device. The new device will be added after the last existing
1881  * child with the same order.
1882  *
1883  * @param dev		the device which will be the parent of the
1884  *			new child device
1885  * @param order		a value which is used to partially sort the
1886  *			children of @p dev - devices created using
1887  *			lower values of @p order appear first in @p
1888  *			dev's list of children
1889  * @param name		devclass name for new device or @c NULL if not
1890  *			specified
1891  * @param unit		unit number for new device or @c -1 if not
1892  *			specified
1893  *
1894  * @returns		the new device
1895  */
1896 device_t
1897 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1898 {
1899 	device_t child;
1900 	device_t place;
1901 
1902 	PDEBUG(("%s at %s with order %u as unit %d",
1903 	    name, DEVICENAME(dev), order, unit));
1904 	KASSERT(name != NULL || unit == -1,
1905 	    ("child device with wildcard name and specific unit number"));
1906 
1907 	child = make_device(dev, name, unit);
1908 	if (child == NULL)
1909 		return (child);
1910 	child->order = order;
1911 
1912 	TAILQ_FOREACH(place, &dev->children, link) {
1913 		if (place->order > order)
1914 			break;
1915 	}
1916 
1917 	if (place) {
1918 		/*
1919 		 * The device 'place' is the first device whose order is
1920 		 * greater than the new child.
1921 		 */
1922 		TAILQ_INSERT_BEFORE(place, child, link);
1923 	} else {
1924 		/*
1925 		 * The new child's order is greater or equal to the order of
1926 		 * any existing device. Add the child to the tail of the list.
1927 		 */
1928 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1929 	}
1930 
1931 	bus_data_generation_update();
1932 	return (child);
1933 }
1934 
1935 /**
1936  * @brief Delete a device
1937  *
1938  * This function deletes a device along with all of its children. If
1939  * the device currently has a driver attached to it, the device is
1940  * detached first using device_detach().
1941  *
1942  * @param dev		the parent device
1943  * @param child		the device to delete
1944  *
1945  * @retval 0		success
1946  * @retval non-zero	a unit error code describing the error
1947  */
1948 int
1949 device_delete_child(device_t dev, device_t child)
1950 {
1951 	int error;
1952 	device_t grandchild;
1953 
1954 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1955 
1956 	/* detach parent before deleting children, if any */
1957 	if ((error = device_detach(child)) != 0)
1958 		return (error);
1959 
1960 	/* remove children second */
1961 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1962 		error = device_delete_child(child, grandchild);
1963 		if (error)
1964 			return (error);
1965 	}
1966 
1967 	if (child->devclass)
1968 		devclass_delete_device(child->devclass, child);
1969 	if (child->parent)
1970 		BUS_CHILD_DELETED(dev, child);
1971 	TAILQ_REMOVE(&dev->children, child, link);
1972 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1973 	kobj_delete((kobj_t) child, M_BUS);
1974 
1975 	bus_data_generation_update();
1976 	return (0);
1977 }
1978 
1979 /**
1980  * @brief Delete all children devices of the given device, if any.
1981  *
1982  * This function deletes all children devices of the given device, if
1983  * any, using the device_delete_child() function for each device it
1984  * finds. If a child device cannot be deleted, this function will
1985  * return an error code.
1986  *
1987  * @param dev		the parent device
1988  *
1989  * @retval 0		success
1990  * @retval non-zero	a device would not detach
1991  */
1992 int
1993 device_delete_children(device_t dev)
1994 {
1995 	device_t child;
1996 	int error;
1997 
1998 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1999 
2000 	error = 0;
2001 
2002 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
2003 		error = device_delete_child(dev, child);
2004 		if (error) {
2005 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2006 			break;
2007 		}
2008 	}
2009 	return (error);
2010 }
2011 
2012 /**
2013  * @brief Find a device given a unit number
2014  *
2015  * This is similar to devclass_get_devices() but only searches for
2016  * devices which have @p dev as a parent.
2017  *
2018  * @param dev		the parent device to search
2019  * @param unit		the unit number to search for.  If the unit is -1,
2020  *			return the first child of @p dev which has name
2021  *			@p classname (that is, the one with the lowest unit.)
2022  *
2023  * @returns		the device with the given unit number or @c
2024  *			NULL if there is no such device
2025  */
2026 device_t
2027 device_find_child(device_t dev, const char *classname, int unit)
2028 {
2029 	devclass_t dc;
2030 	device_t child;
2031 
2032 	dc = devclass_find(classname);
2033 	if (!dc)
2034 		return (NULL);
2035 
2036 	if (unit != -1) {
2037 		child = devclass_get_device(dc, unit);
2038 		if (child && child->parent == dev)
2039 			return (child);
2040 	} else {
2041 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2042 			child = devclass_get_device(dc, unit);
2043 			if (child && child->parent == dev)
2044 				return (child);
2045 		}
2046 	}
2047 	return (NULL);
2048 }
2049 
2050 /**
2051  * @internal
2052  */
2053 static driverlink_t
2054 first_matching_driver(devclass_t dc, device_t dev)
2055 {
2056 	if (dev->devclass)
2057 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2058 	return (TAILQ_FIRST(&dc->drivers));
2059 }
2060 
2061 /**
2062  * @internal
2063  */
2064 static driverlink_t
2065 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2066 {
2067 	if (dev->devclass) {
2068 		driverlink_t dl;
2069 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2070 			if (!strcmp(dev->devclass->name, dl->driver->name))
2071 				return (dl);
2072 		return (NULL);
2073 	}
2074 	return (TAILQ_NEXT(last, link));
2075 }
2076 
2077 /**
2078  * @internal
2079  */
2080 int
2081 device_probe_child(device_t dev, device_t child)
2082 {
2083 	devclass_t dc;
2084 	driverlink_t best = NULL;
2085 	driverlink_t dl;
2086 	int result, pri = 0;
2087 	int hasclass = (child->devclass != NULL);
2088 
2089 	GIANT_REQUIRED;
2090 
2091 	dc = dev->devclass;
2092 	if (!dc)
2093 		panic("device_probe_child: parent device has no devclass");
2094 
2095 	/*
2096 	 * If the state is already probed, then return.  However, don't
2097 	 * return if we can rebid this object.
2098 	 */
2099 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2100 		return (0);
2101 
2102 	for (; dc; dc = dc->parent) {
2103 		for (dl = first_matching_driver(dc, child);
2104 		     dl;
2105 		     dl = next_matching_driver(dc, child, dl)) {
2106 			/* If this driver's pass is too high, then ignore it. */
2107 			if (dl->pass > bus_current_pass)
2108 				continue;
2109 
2110 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2111 			result = device_set_driver(child, dl->driver);
2112 			if (result == ENOMEM)
2113 				return (result);
2114 			else if (result != 0)
2115 				continue;
2116 			if (!hasclass) {
2117 				if (device_set_devclass(child,
2118 				    dl->driver->name) != 0) {
2119 					char const * devname =
2120 					    device_get_name(child);
2121 					if (devname == NULL)
2122 						devname = "(unknown)";
2123 					printf("driver bug: Unable to set "
2124 					    "devclass (class: %s "
2125 					    "devname: %s)\n",
2126 					    dl->driver->name,
2127 					    devname);
2128 					(void)device_set_driver(child, NULL);
2129 					continue;
2130 				}
2131 			}
2132 
2133 			/* Fetch any flags for the device before probing. */
2134 			resource_int_value(dl->driver->name, child->unit,
2135 			    "flags", &child->devflags);
2136 
2137 			result = DEVICE_PROBE(child);
2138 
2139 			/* Reset flags and devclass before the next probe. */
2140 			child->devflags = 0;
2141 			if (!hasclass)
2142 				(void)device_set_devclass(child, NULL);
2143 
2144 			/*
2145 			 * If the driver returns SUCCESS, there can be
2146 			 * no higher match for this device.
2147 			 */
2148 			if (result == 0) {
2149 				best = dl;
2150 				pri = 0;
2151 				break;
2152 			}
2153 
2154 			/*
2155 			 * Reset DF_QUIET in case this driver doesn't
2156 			 * end up as the best driver.
2157 			 */
2158 			device_verbose(child);
2159 
2160 			/*
2161 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2162 			 * only match on devices whose driver was explicitly
2163 			 * specified.
2164 			 */
2165 			if (result <= BUS_PROBE_NOWILDCARD &&
2166 			    !(child->flags & DF_FIXEDCLASS)) {
2167 				result = ENXIO;
2168 			}
2169 
2170 			/*
2171 			 * The driver returned an error so it
2172 			 * certainly doesn't match.
2173 			 */
2174 			if (result > 0) {
2175 				(void)device_set_driver(child, NULL);
2176 				continue;
2177 			}
2178 
2179 			/*
2180 			 * A priority lower than SUCCESS, remember the
2181 			 * best matching driver. Initialise the value
2182 			 * of pri for the first match.
2183 			 */
2184 			if (best == NULL || result > pri) {
2185 				best = dl;
2186 				pri = result;
2187 				continue;
2188 			}
2189 		}
2190 		/*
2191 		 * If we have an unambiguous match in this devclass,
2192 		 * don't look in the parent.
2193 		 */
2194 		if (best && pri == 0)
2195 			break;
2196 	}
2197 
2198 	/*
2199 	 * If we found a driver, change state and initialise the devclass.
2200 	 */
2201 	/* XXX What happens if we rebid and got no best? */
2202 	if (best) {
2203 		/*
2204 		 * If this device was attached, and we were asked to
2205 		 * rescan, and it is a different driver, then we have
2206 		 * to detach the old driver and reattach this new one.
2207 		 * Note, we don't have to check for DF_REBID here
2208 		 * because if the state is > DS_ALIVE, we know it must
2209 		 * be.
2210 		 *
2211 		 * This assumes that all DF_REBID drivers can have
2212 		 * their probe routine called at any time and that
2213 		 * they are idempotent as well as completely benign in
2214 		 * normal operations.
2215 		 *
2216 		 * We also have to make sure that the detach
2217 		 * succeeded, otherwise we fail the operation (or
2218 		 * maybe it should just fail silently?  I'm torn).
2219 		 */
2220 		if (child->state > DS_ALIVE && best->driver != child->driver)
2221 			if ((result = device_detach(dev)) != 0)
2222 				return (result);
2223 
2224 		/* Set the winning driver, devclass, and flags. */
2225 		if (!child->devclass) {
2226 			result = device_set_devclass(child, best->driver->name);
2227 			if (result != 0)
2228 				return (result);
2229 		}
2230 		result = device_set_driver(child, best->driver);
2231 		if (result != 0)
2232 			return (result);
2233 		resource_int_value(best->driver->name, child->unit,
2234 		    "flags", &child->devflags);
2235 
2236 		if (pri < 0) {
2237 			/*
2238 			 * A bit bogus. Call the probe method again to make
2239 			 * sure that we have the right description.
2240 			 */
2241 			DEVICE_PROBE(child);
2242 #if 0
2243 			child->flags |= DF_REBID;
2244 #endif
2245 		} else
2246 			child->flags &= ~DF_REBID;
2247 		child->state = DS_ALIVE;
2248 
2249 		bus_data_generation_update();
2250 		return (0);
2251 	}
2252 
2253 	return (ENXIO);
2254 }
2255 
2256 /**
2257  * @brief Return the parent of a device
2258  */
2259 device_t
2260 device_get_parent(device_t dev)
2261 {
2262 	return (dev->parent);
2263 }
2264 
2265 /**
2266  * @brief Get a list of children of a device
2267  *
2268  * An array containing a list of all the children of the given device
2269  * is allocated and returned in @p *devlistp. The number of devices
2270  * in the array is returned in @p *devcountp. The caller should free
2271  * the array using @c free(p, M_TEMP).
2272  *
2273  * @param dev		the device to examine
2274  * @param devlistp	points at location for array pointer return
2275  *			value
2276  * @param devcountp	points at location for array size return value
2277  *
2278  * @retval 0		success
2279  * @retval ENOMEM	the array allocation failed
2280  */
2281 int
2282 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2283 {
2284 	int count;
2285 	device_t child;
2286 	device_t *list;
2287 
2288 	count = 0;
2289 	TAILQ_FOREACH(child, &dev->children, link) {
2290 		count++;
2291 	}
2292 	if (count == 0) {
2293 		*devlistp = NULL;
2294 		*devcountp = 0;
2295 		return (0);
2296 	}
2297 
2298 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2299 	if (!list)
2300 		return (ENOMEM);
2301 
2302 	count = 0;
2303 	TAILQ_FOREACH(child, &dev->children, link) {
2304 		list[count] = child;
2305 		count++;
2306 	}
2307 
2308 	*devlistp = list;
2309 	*devcountp = count;
2310 
2311 	return (0);
2312 }
2313 
2314 /**
2315  * @brief Return the current driver for the device or @c NULL if there
2316  * is no driver currently attached
2317  */
2318 driver_t *
2319 device_get_driver(device_t dev)
2320 {
2321 	return (dev->driver);
2322 }
2323 
2324 /**
2325  * @brief Return the current devclass for the device or @c NULL if
2326  * there is none.
2327  */
2328 devclass_t
2329 device_get_devclass(device_t dev)
2330 {
2331 	return (dev->devclass);
2332 }
2333 
2334 /**
2335  * @brief Return the name of the device's devclass or @c NULL if there
2336  * is none.
2337  */
2338 const char *
2339 device_get_name(device_t dev)
2340 {
2341 	if (dev != NULL && dev->devclass)
2342 		return (devclass_get_name(dev->devclass));
2343 	return (NULL);
2344 }
2345 
2346 /**
2347  * @brief Return a string containing the device's devclass name
2348  * followed by an ascii representation of the device's unit number
2349  * (e.g. @c "foo2").
2350  */
2351 const char *
2352 device_get_nameunit(device_t dev)
2353 {
2354 	return (dev->nameunit);
2355 }
2356 
2357 /**
2358  * @brief Return the device's unit number.
2359  */
2360 int
2361 device_get_unit(device_t dev)
2362 {
2363 	return (dev->unit);
2364 }
2365 
2366 /**
2367  * @brief Return the device's description string
2368  */
2369 const char *
2370 device_get_desc(device_t dev)
2371 {
2372 	return (dev->desc);
2373 }
2374 
2375 /**
2376  * @brief Return the device's flags
2377  */
2378 uint32_t
2379 device_get_flags(device_t dev)
2380 {
2381 	return (dev->devflags);
2382 }
2383 
2384 struct sysctl_ctx_list *
2385 device_get_sysctl_ctx(device_t dev)
2386 {
2387 	return (&dev->sysctl_ctx);
2388 }
2389 
2390 struct sysctl_oid *
2391 device_get_sysctl_tree(device_t dev)
2392 {
2393 	return (dev->sysctl_tree);
2394 }
2395 
2396 /**
2397  * @brief Print the name of the device followed by a colon and a space
2398  *
2399  * @returns the number of characters printed
2400  */
2401 int
2402 device_print_prettyname(device_t dev)
2403 {
2404 	const char *name = device_get_name(dev);
2405 
2406 	if (name == NULL)
2407 		return (printf("unknown: "));
2408 	return (printf("%s%d: ", name, device_get_unit(dev)));
2409 }
2410 
2411 /**
2412  * @brief Print the name of the device followed by a colon, a space
2413  * and the result of calling vprintf() with the value of @p fmt and
2414  * the following arguments.
2415  *
2416  * @returns the number of characters printed
2417  */
2418 int
2419 device_printf(device_t dev, const char * fmt, ...)
2420 {
2421 	va_list ap;
2422 	int retval;
2423 
2424 	retval = device_print_prettyname(dev);
2425 	va_start(ap, fmt);
2426 	retval += vprintf(fmt, ap);
2427 	va_end(ap);
2428 	return (retval);
2429 }
2430 
2431 /**
2432  * @internal
2433  */
2434 static void
2435 device_set_desc_internal(device_t dev, const char* desc, int copy)
2436 {
2437 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2438 		free(dev->desc, M_BUS);
2439 		dev->flags &= ~DF_DESCMALLOCED;
2440 		dev->desc = NULL;
2441 	}
2442 
2443 	if (copy && desc) {
2444 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2445 		if (dev->desc) {
2446 			strcpy(dev->desc, desc);
2447 			dev->flags |= DF_DESCMALLOCED;
2448 		}
2449 	} else {
2450 		/* Avoid a -Wcast-qual warning */
2451 		dev->desc = (char *)(uintptr_t) desc;
2452 	}
2453 
2454 	bus_data_generation_update();
2455 }
2456 
2457 /**
2458  * @brief Set the device's description
2459  *
2460  * The value of @c desc should be a string constant that will not
2461  * change (at least until the description is changed in a subsequent
2462  * call to device_set_desc() or device_set_desc_copy()).
2463  */
2464 void
2465 device_set_desc(device_t dev, const char* desc)
2466 {
2467 	device_set_desc_internal(dev, desc, FALSE);
2468 }
2469 
2470 /**
2471  * @brief Set the device's description
2472  *
2473  * The string pointed to by @c desc is copied. Use this function if
2474  * the device description is generated, (e.g. with sprintf()).
2475  */
2476 void
2477 device_set_desc_copy(device_t dev, const char* desc)
2478 {
2479 	device_set_desc_internal(dev, desc, TRUE);
2480 }
2481 
2482 /**
2483  * @brief Set the device's flags
2484  */
2485 void
2486 device_set_flags(device_t dev, uint32_t flags)
2487 {
2488 	dev->devflags = flags;
2489 }
2490 
2491 /**
2492  * @brief Return the device's softc field
2493  *
2494  * The softc is allocated and zeroed when a driver is attached, based
2495  * on the size field of the driver.
2496  */
2497 void *
2498 device_get_softc(device_t dev)
2499 {
2500 	return (dev->softc);
2501 }
2502 
2503 /**
2504  * @brief Set the device's softc field
2505  *
2506  * Most drivers do not need to use this since the softc is allocated
2507  * automatically when the driver is attached.
2508  */
2509 void
2510 device_set_softc(device_t dev, void *softc)
2511 {
2512 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2513 		free(dev->softc, M_BUS_SC);
2514 	dev->softc = softc;
2515 	if (dev->softc)
2516 		dev->flags |= DF_EXTERNALSOFTC;
2517 	else
2518 		dev->flags &= ~DF_EXTERNALSOFTC;
2519 }
2520 
2521 /**
2522  * @brief Free claimed softc
2523  *
2524  * Most drivers do not need to use this since the softc is freed
2525  * automatically when the driver is detached.
2526  */
2527 void
2528 device_free_softc(void *softc)
2529 {
2530 	free(softc, M_BUS_SC);
2531 }
2532 
2533 /**
2534  * @brief Claim softc
2535  *
2536  * This function can be used to let the driver free the automatically
2537  * allocated softc using "device_free_softc()". This function is
2538  * useful when the driver is refcounting the softc and the softc
2539  * cannot be freed when the "device_detach" method is called.
2540  */
2541 void
2542 device_claim_softc(device_t dev)
2543 {
2544 	if (dev->softc)
2545 		dev->flags |= DF_EXTERNALSOFTC;
2546 	else
2547 		dev->flags &= ~DF_EXTERNALSOFTC;
2548 }
2549 
2550 /**
2551  * @brief Get the device's ivars field
2552  *
2553  * The ivars field is used by the parent device to store per-device
2554  * state (e.g. the physical location of the device or a list of
2555  * resources).
2556  */
2557 void *
2558 device_get_ivars(device_t dev)
2559 {
2560 
2561 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2562 	return (dev->ivars);
2563 }
2564 
2565 /**
2566  * @brief Set the device's ivars field
2567  */
2568 void
2569 device_set_ivars(device_t dev, void * ivars)
2570 {
2571 
2572 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2573 	dev->ivars = ivars;
2574 }
2575 
2576 /**
2577  * @brief Return the device's state
2578  */
2579 device_state_t
2580 device_get_state(device_t dev)
2581 {
2582 	return (dev->state);
2583 }
2584 
2585 /**
2586  * @brief Set the DF_ENABLED flag for the device
2587  */
2588 void
2589 device_enable(device_t dev)
2590 {
2591 	dev->flags |= DF_ENABLED;
2592 }
2593 
2594 /**
2595  * @brief Clear the DF_ENABLED flag for the device
2596  */
2597 void
2598 device_disable(device_t dev)
2599 {
2600 	dev->flags &= ~DF_ENABLED;
2601 }
2602 
2603 /**
2604  * @brief Increment the busy counter for the device
2605  */
2606 void
2607 device_busy(device_t dev)
2608 {
2609 	if (dev->state < DS_ATTACHING)
2610 		panic("device_busy: called for unattached device");
2611 	if (dev->busy == 0 && dev->parent)
2612 		device_busy(dev->parent);
2613 	dev->busy++;
2614 	if (dev->state == DS_ATTACHED)
2615 		dev->state = DS_BUSY;
2616 }
2617 
2618 /**
2619  * @brief Decrement the busy counter for the device
2620  */
2621 void
2622 device_unbusy(device_t dev)
2623 {
2624 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2625 	    dev->state != DS_ATTACHING)
2626 		panic("device_unbusy: called for non-busy device %s",
2627 		    device_get_nameunit(dev));
2628 	dev->busy--;
2629 	if (dev->busy == 0) {
2630 		if (dev->parent)
2631 			device_unbusy(dev->parent);
2632 		if (dev->state == DS_BUSY)
2633 			dev->state = DS_ATTACHED;
2634 	}
2635 }
2636 
2637 /**
2638  * @brief Set the DF_QUIET flag for the device
2639  */
2640 void
2641 device_quiet(device_t dev)
2642 {
2643 	dev->flags |= DF_QUIET;
2644 }
2645 
2646 /**
2647  * @brief Clear the DF_QUIET flag for the device
2648  */
2649 void
2650 device_verbose(device_t dev)
2651 {
2652 	dev->flags &= ~DF_QUIET;
2653 }
2654 
2655 /**
2656  * @brief Return non-zero if the DF_QUIET flag is set on the device
2657  */
2658 int
2659 device_is_quiet(device_t dev)
2660 {
2661 	return ((dev->flags & DF_QUIET) != 0);
2662 }
2663 
2664 /**
2665  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2666  */
2667 int
2668 device_is_enabled(device_t dev)
2669 {
2670 	return ((dev->flags & DF_ENABLED) != 0);
2671 }
2672 
2673 /**
2674  * @brief Return non-zero if the device was successfully probed
2675  */
2676 int
2677 device_is_alive(device_t dev)
2678 {
2679 	return (dev->state >= DS_ALIVE);
2680 }
2681 
2682 /**
2683  * @brief Return non-zero if the device currently has a driver
2684  * attached to it
2685  */
2686 int
2687 device_is_attached(device_t dev)
2688 {
2689 	return (dev->state >= DS_ATTACHED);
2690 }
2691 
2692 /**
2693  * @brief Return non-zero if the device is currently suspended.
2694  */
2695 int
2696 device_is_suspended(device_t dev)
2697 {
2698 	return ((dev->flags & DF_SUSPENDED) != 0);
2699 }
2700 
2701 /**
2702  * @brief Set the devclass of a device
2703  * @see devclass_add_device().
2704  */
2705 int
2706 device_set_devclass(device_t dev, const char *classname)
2707 {
2708 	devclass_t dc;
2709 	int error;
2710 
2711 	if (!classname) {
2712 		if (dev->devclass)
2713 			devclass_delete_device(dev->devclass, dev);
2714 		return (0);
2715 	}
2716 
2717 	if (dev->devclass) {
2718 		printf("device_set_devclass: device class already set\n");
2719 		return (EINVAL);
2720 	}
2721 
2722 	dc = devclass_find_internal(classname, NULL, TRUE);
2723 	if (!dc)
2724 		return (ENOMEM);
2725 
2726 	error = devclass_add_device(dc, dev);
2727 
2728 	bus_data_generation_update();
2729 	return (error);
2730 }
2731 
2732 /**
2733  * @brief Set the devclass of a device and mark the devclass fixed.
2734  * @see device_set_devclass()
2735  */
2736 int
2737 device_set_devclass_fixed(device_t dev, const char *classname)
2738 {
2739 	int error;
2740 
2741 	if (classname == NULL)
2742 		return (EINVAL);
2743 
2744 	error = device_set_devclass(dev, classname);
2745 	if (error)
2746 		return (error);
2747 	dev->flags |= DF_FIXEDCLASS;
2748 	return (0);
2749 }
2750 
2751 /**
2752  * @brief Set the driver of a device
2753  *
2754  * @retval 0		success
2755  * @retval EBUSY	the device already has a driver attached
2756  * @retval ENOMEM	a memory allocation failure occurred
2757  */
2758 int
2759 device_set_driver(device_t dev, driver_t *driver)
2760 {
2761 	if (dev->state >= DS_ATTACHED)
2762 		return (EBUSY);
2763 
2764 	if (dev->driver == driver)
2765 		return (0);
2766 
2767 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2768 		free(dev->softc, M_BUS_SC);
2769 		dev->softc = NULL;
2770 	}
2771 	device_set_desc(dev, NULL);
2772 	kobj_delete((kobj_t) dev, NULL);
2773 	dev->driver = driver;
2774 	if (driver) {
2775 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2776 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2777 			dev->softc = malloc(driver->size, M_BUS_SC,
2778 			    M_NOWAIT | M_ZERO);
2779 			if (!dev->softc) {
2780 				kobj_delete((kobj_t) dev, NULL);
2781 				kobj_init((kobj_t) dev, &null_class);
2782 				dev->driver = NULL;
2783 				return (ENOMEM);
2784 			}
2785 		}
2786 	} else {
2787 		kobj_init((kobj_t) dev, &null_class);
2788 	}
2789 
2790 	bus_data_generation_update();
2791 	return (0);
2792 }
2793 
2794 /**
2795  * @brief Probe a device, and return this status.
2796  *
2797  * This function is the core of the device autoconfiguration
2798  * system. Its purpose is to select a suitable driver for a device and
2799  * then call that driver to initialise the hardware appropriately. The
2800  * driver is selected by calling the DEVICE_PROBE() method of a set of
2801  * candidate drivers and then choosing the driver which returned the
2802  * best value. This driver is then attached to the device using
2803  * device_attach().
2804  *
2805  * The set of suitable drivers is taken from the list of drivers in
2806  * the parent device's devclass. If the device was originally created
2807  * with a specific class name (see device_add_child()), only drivers
2808  * with that name are probed, otherwise all drivers in the devclass
2809  * are probed. If no drivers return successful probe values in the
2810  * parent devclass, the search continues in the parent of that
2811  * devclass (see devclass_get_parent()) if any.
2812  *
2813  * @param dev		the device to initialise
2814  *
2815  * @retval 0		success
2816  * @retval ENXIO	no driver was found
2817  * @retval ENOMEM	memory allocation failure
2818  * @retval non-zero	some other unix error code
2819  * @retval -1		Device already attached
2820  */
2821 int
2822 device_probe(device_t dev)
2823 {
2824 	int error;
2825 
2826 	GIANT_REQUIRED;
2827 
2828 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2829 		return (-1);
2830 
2831 	if (!(dev->flags & DF_ENABLED)) {
2832 		if (bootverbose && device_get_name(dev) != NULL) {
2833 			device_print_prettyname(dev);
2834 			printf("not probed (disabled)\n");
2835 		}
2836 		return (-1);
2837 	}
2838 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2839 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2840 		    !(dev->flags & DF_DONENOMATCH)) {
2841 			BUS_PROBE_NOMATCH(dev->parent, dev);
2842 			devnomatch(dev);
2843 			dev->flags |= DF_DONENOMATCH;
2844 		}
2845 		return (error);
2846 	}
2847 	return (0);
2848 }
2849 
2850 /**
2851  * @brief Probe a device and attach a driver if possible
2852  *
2853  * calls device_probe() and attaches if that was successful.
2854  */
2855 int
2856 device_probe_and_attach(device_t dev)
2857 {
2858 	int error;
2859 
2860 	GIANT_REQUIRED;
2861 
2862 	error = device_probe(dev);
2863 	if (error == -1)
2864 		return (0);
2865 	else if (error != 0)
2866 		return (error);
2867 
2868 	CURVNET_SET_QUIET(vnet0);
2869 	error = device_attach(dev);
2870 	CURVNET_RESTORE();
2871 	return error;
2872 }
2873 
2874 /**
2875  * @brief Attach a device driver to a device
2876  *
2877  * This function is a wrapper around the DEVICE_ATTACH() driver
2878  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2879  * device's sysctl tree, optionally prints a description of the device
2880  * and queues a notification event for user-based device management
2881  * services.
2882  *
2883  * Normally this function is only called internally from
2884  * device_probe_and_attach().
2885  *
2886  * @param dev		the device to initialise
2887  *
2888  * @retval 0		success
2889  * @retval ENXIO	no driver was found
2890  * @retval ENOMEM	memory allocation failure
2891  * @retval non-zero	some other unix error code
2892  */
2893 int
2894 device_attach(device_t dev)
2895 {
2896 	uint64_t attachtime;
2897 	int error;
2898 
2899 	if (resource_disabled(dev->driver->name, dev->unit)) {
2900 		device_disable(dev);
2901 		if (bootverbose)
2902 			 device_printf(dev, "disabled via hints entry\n");
2903 		return (ENXIO);
2904 	}
2905 
2906 	device_sysctl_init(dev);
2907 	if (!device_is_quiet(dev))
2908 		device_print_child(dev->parent, dev);
2909 	attachtime = get_cyclecount();
2910 	dev->state = DS_ATTACHING;
2911 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2912 		printf("device_attach: %s%d attach returned %d\n",
2913 		    dev->driver->name, dev->unit, error);
2914 		if (!(dev->flags & DF_FIXEDCLASS))
2915 			devclass_delete_device(dev->devclass, dev);
2916 		(void)device_set_driver(dev, NULL);
2917 		device_sysctl_fini(dev);
2918 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2919 		dev->state = DS_NOTPRESENT;
2920 		return (error);
2921 	}
2922 	attachtime = get_cyclecount() - attachtime;
2923 	/*
2924 	 * 4 bits per device is a reasonable value for desktop and server
2925 	 * hardware with good get_cyclecount() implementations, but WILL
2926 	 * need to be adjusted on other platforms.
2927 	 */
2928 #define	RANDOM_PROBE_BIT_GUESS	4
2929 	if (bootverbose)
2930 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2931 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2932 		    dev->driver->name, dev->unit);
2933 	random_harvest_direct(&attachtime, sizeof(attachtime),
2934 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2935 	device_sysctl_update(dev);
2936 	if (dev->busy)
2937 		dev->state = DS_BUSY;
2938 	else
2939 		dev->state = DS_ATTACHED;
2940 	dev->flags &= ~DF_DONENOMATCH;
2941 	EVENTHANDLER_INVOKE(device_attach, dev);
2942 	devadded(dev);
2943 	return (0);
2944 }
2945 
2946 /**
2947  * @brief Detach a driver from a device
2948  *
2949  * This function is a wrapper around the DEVICE_DETACH() driver
2950  * method. If the call to DEVICE_DETACH() succeeds, it calls
2951  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2952  * notification event for user-based device management services and
2953  * cleans up the device's sysctl tree.
2954  *
2955  * @param dev		the device to un-initialise
2956  *
2957  * @retval 0		success
2958  * @retval ENXIO	no driver was found
2959  * @retval ENOMEM	memory allocation failure
2960  * @retval non-zero	some other unix error code
2961  */
2962 int
2963 device_detach(device_t dev)
2964 {
2965 	int error;
2966 
2967 	GIANT_REQUIRED;
2968 
2969 	PDEBUG(("%s", DEVICENAME(dev)));
2970 	if (dev->state == DS_BUSY)
2971 		return (EBUSY);
2972 	if (dev->state != DS_ATTACHED)
2973 		return (0);
2974 
2975 	EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2976 	if ((error = DEVICE_DETACH(dev)) != 0) {
2977 		EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_FAILED);
2978 		return (error);
2979 	} else {
2980 		EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_COMPLETE);
2981 	}
2982 	devremoved(dev);
2983 	if (!device_is_quiet(dev))
2984 		device_printf(dev, "detached\n");
2985 	if (dev->parent)
2986 		BUS_CHILD_DETACHED(dev->parent, dev);
2987 
2988 	if (!(dev->flags & DF_FIXEDCLASS))
2989 		devclass_delete_device(dev->devclass, dev);
2990 
2991 	device_verbose(dev);
2992 	dev->state = DS_NOTPRESENT;
2993 	(void)device_set_driver(dev, NULL);
2994 	device_sysctl_fini(dev);
2995 
2996 	return (0);
2997 }
2998 
2999 /**
3000  * @brief Tells a driver to quiesce itself.
3001  *
3002  * This function is a wrapper around the DEVICE_QUIESCE() driver
3003  * method. If the call to DEVICE_QUIESCE() succeeds.
3004  *
3005  * @param dev		the device to quiesce
3006  *
3007  * @retval 0		success
3008  * @retval ENXIO	no driver was found
3009  * @retval ENOMEM	memory allocation failure
3010  * @retval non-zero	some other unix error code
3011  */
3012 int
3013 device_quiesce(device_t dev)
3014 {
3015 
3016 	PDEBUG(("%s", DEVICENAME(dev)));
3017 	if (dev->state == DS_BUSY)
3018 		return (EBUSY);
3019 	if (dev->state != DS_ATTACHED)
3020 		return (0);
3021 
3022 	return (DEVICE_QUIESCE(dev));
3023 }
3024 
3025 /**
3026  * @brief Notify a device of system shutdown
3027  *
3028  * This function calls the DEVICE_SHUTDOWN() driver method if the
3029  * device currently has an attached driver.
3030  *
3031  * @returns the value returned by DEVICE_SHUTDOWN()
3032  */
3033 int
3034 device_shutdown(device_t dev)
3035 {
3036 	if (dev->state < DS_ATTACHED)
3037 		return (0);
3038 	return (DEVICE_SHUTDOWN(dev));
3039 }
3040 
3041 /**
3042  * @brief Set the unit number of a device
3043  *
3044  * This function can be used to override the unit number used for a
3045  * device (e.g. to wire a device to a pre-configured unit number).
3046  */
3047 int
3048 device_set_unit(device_t dev, int unit)
3049 {
3050 	devclass_t dc;
3051 	int err;
3052 
3053 	dc = device_get_devclass(dev);
3054 	if (unit < dc->maxunit && dc->devices[unit])
3055 		return (EBUSY);
3056 	err = devclass_delete_device(dc, dev);
3057 	if (err)
3058 		return (err);
3059 	dev->unit = unit;
3060 	err = devclass_add_device(dc, dev);
3061 	if (err)
3062 		return (err);
3063 
3064 	bus_data_generation_update();
3065 	return (0);
3066 }
3067 
3068 /*======================================*/
3069 /*
3070  * Some useful method implementations to make life easier for bus drivers.
3071  */
3072 
3073 void
3074 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3075 {
3076 
3077 	bzero(args, sz);
3078 	args->size = sz;
3079 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3080 }
3081 
3082 /**
3083  * @brief Initialise a resource list.
3084  *
3085  * @param rl		the resource list to initialise
3086  */
3087 void
3088 resource_list_init(struct resource_list *rl)
3089 {
3090 	STAILQ_INIT(rl);
3091 }
3092 
3093 /**
3094  * @brief Reclaim memory used by a resource list.
3095  *
3096  * This function frees the memory for all resource entries on the list
3097  * (if any).
3098  *
3099  * @param rl		the resource list to free
3100  */
3101 void
3102 resource_list_free(struct resource_list *rl)
3103 {
3104 	struct resource_list_entry *rle;
3105 
3106 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3107 		if (rle->res)
3108 			panic("resource_list_free: resource entry is busy");
3109 		STAILQ_REMOVE_HEAD(rl, link);
3110 		free(rle, M_BUS);
3111 	}
3112 }
3113 
3114 /**
3115  * @brief Add a resource entry.
3116  *
3117  * This function adds a resource entry using the given @p type, @p
3118  * start, @p end and @p count values. A rid value is chosen by
3119  * searching sequentially for the first unused rid starting at zero.
3120  *
3121  * @param rl		the resource list to edit
3122  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3123  * @param start		the start address of the resource
3124  * @param end		the end address of the resource
3125  * @param count		XXX end-start+1
3126  */
3127 int
3128 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3129     rman_res_t end, rman_res_t count)
3130 {
3131 	int rid;
3132 
3133 	rid = 0;
3134 	while (resource_list_find(rl, type, rid) != NULL)
3135 		rid++;
3136 	resource_list_add(rl, type, rid, start, end, count);
3137 	return (rid);
3138 }
3139 
3140 /**
3141  * @brief Add or modify a resource entry.
3142  *
3143  * If an existing entry exists with the same type and rid, it will be
3144  * modified using the given values of @p start, @p end and @p
3145  * count. If no entry exists, a new one will be created using the
3146  * given values.  The resource list entry that matches is then returned.
3147  *
3148  * @param rl		the resource list to edit
3149  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3150  * @param rid		the resource identifier
3151  * @param start		the start address of the resource
3152  * @param end		the end address of the resource
3153  * @param count		XXX end-start+1
3154  */
3155 struct resource_list_entry *
3156 resource_list_add(struct resource_list *rl, int type, int rid,
3157     rman_res_t start, rman_res_t end, rman_res_t count)
3158 {
3159 	struct resource_list_entry *rle;
3160 
3161 	rle = resource_list_find(rl, type, rid);
3162 	if (!rle) {
3163 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3164 		    M_NOWAIT);
3165 		if (!rle)
3166 			panic("resource_list_add: can't record entry");
3167 		STAILQ_INSERT_TAIL(rl, rle, link);
3168 		rle->type = type;
3169 		rle->rid = rid;
3170 		rle->res = NULL;
3171 		rle->flags = 0;
3172 	}
3173 
3174 	if (rle->res)
3175 		panic("resource_list_add: resource entry is busy");
3176 
3177 	rle->start = start;
3178 	rle->end = end;
3179 	rle->count = count;
3180 	return (rle);
3181 }
3182 
3183 /**
3184  * @brief Determine if a resource entry is busy.
3185  *
3186  * Returns true if a resource entry is busy meaning that it has an
3187  * associated resource that is not an unallocated "reserved" resource.
3188  *
3189  * @param rl		the resource list to search
3190  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3191  * @param rid		the resource identifier
3192  *
3193  * @returns Non-zero if the entry is busy, zero otherwise.
3194  */
3195 int
3196 resource_list_busy(struct resource_list *rl, int type, int rid)
3197 {
3198 	struct resource_list_entry *rle;
3199 
3200 	rle = resource_list_find(rl, type, rid);
3201 	if (rle == NULL || rle->res == NULL)
3202 		return (0);
3203 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3204 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3205 		    ("reserved resource is active"));
3206 		return (0);
3207 	}
3208 	return (1);
3209 }
3210 
3211 /**
3212  * @brief Determine if a resource entry is reserved.
3213  *
3214  * Returns true if a resource entry is reserved meaning that it has an
3215  * associated "reserved" resource.  The resource can either be
3216  * allocated or unallocated.
3217  *
3218  * @param rl		the resource list to search
3219  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3220  * @param rid		the resource identifier
3221  *
3222  * @returns Non-zero if the entry is reserved, zero otherwise.
3223  */
3224 int
3225 resource_list_reserved(struct resource_list *rl, int type, int rid)
3226 {
3227 	struct resource_list_entry *rle;
3228 
3229 	rle = resource_list_find(rl, type, rid);
3230 	if (rle != NULL && rle->flags & RLE_RESERVED)
3231 		return (1);
3232 	return (0);
3233 }
3234 
3235 /**
3236  * @brief Find a resource entry by type and rid.
3237  *
3238  * @param rl		the resource list to search
3239  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3240  * @param rid		the resource identifier
3241  *
3242  * @returns the resource entry pointer or NULL if there is no such
3243  * entry.
3244  */
3245 struct resource_list_entry *
3246 resource_list_find(struct resource_list *rl, int type, int rid)
3247 {
3248 	struct resource_list_entry *rle;
3249 
3250 	STAILQ_FOREACH(rle, rl, link) {
3251 		if (rle->type == type && rle->rid == rid)
3252 			return (rle);
3253 	}
3254 	return (NULL);
3255 }
3256 
3257 /**
3258  * @brief Delete a resource entry.
3259  *
3260  * @param rl		the resource list to edit
3261  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3262  * @param rid		the resource identifier
3263  */
3264 void
3265 resource_list_delete(struct resource_list *rl, int type, int rid)
3266 {
3267 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3268 
3269 	if (rle) {
3270 		if (rle->res != NULL)
3271 			panic("resource_list_delete: resource has not been released");
3272 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3273 		free(rle, M_BUS);
3274 	}
3275 }
3276 
3277 /**
3278  * @brief Allocate a reserved resource
3279  *
3280  * This can be used by buses to force the allocation of resources
3281  * that are always active in the system even if they are not allocated
3282  * by a driver (e.g. PCI BARs).  This function is usually called when
3283  * adding a new child to the bus.  The resource is allocated from the
3284  * parent bus when it is reserved.  The resource list entry is marked
3285  * with RLE_RESERVED to note that it is a reserved resource.
3286  *
3287  * Subsequent attempts to allocate the resource with
3288  * resource_list_alloc() will succeed the first time and will set
3289  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3290  * resource that has been allocated is released with
3291  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3292  * the actual resource remains allocated.  The resource can be released to
3293  * the parent bus by calling resource_list_unreserve().
3294  *
3295  * @param rl		the resource list to allocate from
3296  * @param bus		the parent device of @p child
3297  * @param child		the device for which the resource is being reserved
3298  * @param type		the type of resource to allocate
3299  * @param rid		a pointer to the resource identifier
3300  * @param start		hint at the start of the resource range - pass
3301  *			@c 0 for any start address
3302  * @param end		hint at the end of the resource range - pass
3303  *			@c ~0 for any end address
3304  * @param count		hint at the size of range required - pass @c 1
3305  *			for any size
3306  * @param flags		any extra flags to control the resource
3307  *			allocation - see @c RF_XXX flags in
3308  *			<sys/rman.h> for details
3309  *
3310  * @returns		the resource which was allocated or @c NULL if no
3311  *			resource could be allocated
3312  */
3313 struct resource *
3314 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3315     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3316 {
3317 	struct resource_list_entry *rle = NULL;
3318 	int passthrough = (device_get_parent(child) != bus);
3319 	struct resource *r;
3320 
3321 	if (passthrough)
3322 		panic(
3323     "resource_list_reserve() should only be called for direct children");
3324 	if (flags & RF_ACTIVE)
3325 		panic(
3326     "resource_list_reserve() should only reserve inactive resources");
3327 
3328 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3329 	    flags);
3330 	if (r != NULL) {
3331 		rle = resource_list_find(rl, type, *rid);
3332 		rle->flags |= RLE_RESERVED;
3333 	}
3334 	return (r);
3335 }
3336 
3337 /**
3338  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3339  *
3340  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3341  * and passing the allocation up to the parent of @p bus. This assumes
3342  * that the first entry of @c device_get_ivars(child) is a struct
3343  * resource_list. This also handles 'passthrough' allocations where a
3344  * child is a remote descendant of bus by passing the allocation up to
3345  * the parent of bus.
3346  *
3347  * Typically, a bus driver would store a list of child resources
3348  * somewhere in the child device's ivars (see device_get_ivars()) and
3349  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3350  * then call resource_list_alloc() to perform the allocation.
3351  *
3352  * @param rl		the resource list to allocate from
3353  * @param bus		the parent device of @p child
3354  * @param child		the device which is requesting an allocation
3355  * @param type		the type of resource to allocate
3356  * @param rid		a pointer to the resource identifier
3357  * @param start		hint at the start of the resource range - pass
3358  *			@c 0 for any start address
3359  * @param end		hint at the end of the resource range - pass
3360  *			@c ~0 for any end address
3361  * @param count		hint at the size of range required - pass @c 1
3362  *			for any size
3363  * @param flags		any extra flags to control the resource
3364  *			allocation - see @c RF_XXX flags in
3365  *			<sys/rman.h> for details
3366  *
3367  * @returns		the resource which was allocated or @c NULL if no
3368  *			resource could be allocated
3369  */
3370 struct resource *
3371 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3372     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3373 {
3374 	struct resource_list_entry *rle = NULL;
3375 	int passthrough = (device_get_parent(child) != bus);
3376 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3377 
3378 	if (passthrough) {
3379 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3380 		    type, rid, start, end, count, flags));
3381 	}
3382 
3383 	rle = resource_list_find(rl, type, *rid);
3384 
3385 	if (!rle)
3386 		return (NULL);		/* no resource of that type/rid */
3387 
3388 	if (rle->res) {
3389 		if (rle->flags & RLE_RESERVED) {
3390 			if (rle->flags & RLE_ALLOCATED)
3391 				return (NULL);
3392 			if ((flags & RF_ACTIVE) &&
3393 			    bus_activate_resource(child, type, *rid,
3394 			    rle->res) != 0)
3395 				return (NULL);
3396 			rle->flags |= RLE_ALLOCATED;
3397 			return (rle->res);
3398 		}
3399 		device_printf(bus,
3400 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3401 		    type, device_get_nameunit(child));
3402 		return (NULL);
3403 	}
3404 
3405 	if (isdefault) {
3406 		start = rle->start;
3407 		count = ulmax(count, rle->count);
3408 		end = ulmax(rle->end, start + count - 1);
3409 	}
3410 
3411 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3412 	    type, rid, start, end, count, flags);
3413 
3414 	/*
3415 	 * Record the new range.
3416 	 */
3417 	if (rle->res) {
3418 		rle->start = rman_get_start(rle->res);
3419 		rle->end = rman_get_end(rle->res);
3420 		rle->count = count;
3421 	}
3422 
3423 	return (rle->res);
3424 }
3425 
3426 /**
3427  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3428  *
3429  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3430  * used with resource_list_alloc().
3431  *
3432  * @param rl		the resource list which was allocated from
3433  * @param bus		the parent device of @p child
3434  * @param child		the device which is requesting a release
3435  * @param type		the type of resource to release
3436  * @param rid		the resource identifier
3437  * @param res		the resource to release
3438  *
3439  * @retval 0		success
3440  * @retval non-zero	a standard unix error code indicating what
3441  *			error condition prevented the operation
3442  */
3443 int
3444 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3445     int type, int rid, struct resource *res)
3446 {
3447 	struct resource_list_entry *rle = NULL;
3448 	int passthrough = (device_get_parent(child) != bus);
3449 	int error;
3450 
3451 	if (passthrough) {
3452 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3453 		    type, rid, res));
3454 	}
3455 
3456 	rle = resource_list_find(rl, type, rid);
3457 
3458 	if (!rle)
3459 		panic("resource_list_release: can't find resource");
3460 	if (!rle->res)
3461 		panic("resource_list_release: resource entry is not busy");
3462 	if (rle->flags & RLE_RESERVED) {
3463 		if (rle->flags & RLE_ALLOCATED) {
3464 			if (rman_get_flags(res) & RF_ACTIVE) {
3465 				error = bus_deactivate_resource(child, type,
3466 				    rid, res);
3467 				if (error)
3468 					return (error);
3469 			}
3470 			rle->flags &= ~RLE_ALLOCATED;
3471 			return (0);
3472 		}
3473 		return (EINVAL);
3474 	}
3475 
3476 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3477 	    type, rid, res);
3478 	if (error)
3479 		return (error);
3480 
3481 	rle->res = NULL;
3482 	return (0);
3483 }
3484 
3485 /**
3486  * @brief Release all active resources of a given type
3487  *
3488  * Release all active resources of a specified type.  This is intended
3489  * to be used to cleanup resources leaked by a driver after detach or
3490  * a failed attach.
3491  *
3492  * @param rl		the resource list which was allocated from
3493  * @param bus		the parent device of @p child
3494  * @param child		the device whose active resources are being released
3495  * @param type		the type of resources to release
3496  *
3497  * @retval 0		success
3498  * @retval EBUSY	at least one resource was active
3499  */
3500 int
3501 resource_list_release_active(struct resource_list *rl, device_t bus,
3502     device_t child, int type)
3503 {
3504 	struct resource_list_entry *rle;
3505 	int error, retval;
3506 
3507 	retval = 0;
3508 	STAILQ_FOREACH(rle, rl, link) {
3509 		if (rle->type != type)
3510 			continue;
3511 		if (rle->res == NULL)
3512 			continue;
3513 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3514 		    RLE_RESERVED)
3515 			continue;
3516 		retval = EBUSY;
3517 		error = resource_list_release(rl, bus, child, type,
3518 		    rman_get_rid(rle->res), rle->res);
3519 		if (error != 0)
3520 			device_printf(bus,
3521 			    "Failed to release active resource: %d\n", error);
3522 	}
3523 	return (retval);
3524 }
3525 
3526 
3527 /**
3528  * @brief Fully release a reserved resource
3529  *
3530  * Fully releases a resource reserved via resource_list_reserve().
3531  *
3532  * @param rl		the resource list which was allocated from
3533  * @param bus		the parent device of @p child
3534  * @param child		the device whose reserved resource is being released
3535  * @param type		the type of resource to release
3536  * @param rid		the resource identifier
3537  * @param res		the resource to release
3538  *
3539  * @retval 0		success
3540  * @retval non-zero	a standard unix error code indicating what
3541  *			error condition prevented the operation
3542  */
3543 int
3544 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3545     int type, int rid)
3546 {
3547 	struct resource_list_entry *rle = NULL;
3548 	int passthrough = (device_get_parent(child) != bus);
3549 
3550 	if (passthrough)
3551 		panic(
3552     "resource_list_unreserve() should only be called for direct children");
3553 
3554 	rle = resource_list_find(rl, type, rid);
3555 
3556 	if (!rle)
3557 		panic("resource_list_unreserve: can't find resource");
3558 	if (!(rle->flags & RLE_RESERVED))
3559 		return (EINVAL);
3560 	if (rle->flags & RLE_ALLOCATED)
3561 		return (EBUSY);
3562 	rle->flags &= ~RLE_RESERVED;
3563 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3564 }
3565 
3566 /**
3567  * @brief Print a description of resources in a resource list
3568  *
3569  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3570  * The name is printed if at least one resource of the given type is available.
3571  * The format is used to print resource start and end.
3572  *
3573  * @param rl		the resource list to print
3574  * @param name		the name of @p type, e.g. @c "memory"
3575  * @param type		type type of resource entry to print
3576  * @param format	printf(9) format string to print resource
3577  *			start and end values
3578  *
3579  * @returns		the number of characters printed
3580  */
3581 int
3582 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3583     const char *format)
3584 {
3585 	struct resource_list_entry *rle;
3586 	int printed, retval;
3587 
3588 	printed = 0;
3589 	retval = 0;
3590 	/* Yes, this is kinda cheating */
3591 	STAILQ_FOREACH(rle, rl, link) {
3592 		if (rle->type == type) {
3593 			if (printed == 0)
3594 				retval += printf(" %s ", name);
3595 			else
3596 				retval += printf(",");
3597 			printed++;
3598 			retval += printf(format, rle->start);
3599 			if (rle->count > 1) {
3600 				retval += printf("-");
3601 				retval += printf(format, rle->start +
3602 						 rle->count - 1);
3603 			}
3604 		}
3605 	}
3606 	return (retval);
3607 }
3608 
3609 /**
3610  * @brief Releases all the resources in a list.
3611  *
3612  * @param rl		The resource list to purge.
3613  *
3614  * @returns		nothing
3615  */
3616 void
3617 resource_list_purge(struct resource_list *rl)
3618 {
3619 	struct resource_list_entry *rle;
3620 
3621 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3622 		if (rle->res)
3623 			bus_release_resource(rman_get_device(rle->res),
3624 			    rle->type, rle->rid, rle->res);
3625 		STAILQ_REMOVE_HEAD(rl, link);
3626 		free(rle, M_BUS);
3627 	}
3628 }
3629 
3630 device_t
3631 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3632 {
3633 
3634 	return (device_add_child_ordered(dev, order, name, unit));
3635 }
3636 
3637 /**
3638  * @brief Helper function for implementing DEVICE_PROBE()
3639  *
3640  * This function can be used to help implement the DEVICE_PROBE() for
3641  * a bus (i.e. a device which has other devices attached to it). It
3642  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3643  * devclass.
3644  */
3645 int
3646 bus_generic_probe(device_t dev)
3647 {
3648 	devclass_t dc = dev->devclass;
3649 	driverlink_t dl;
3650 
3651 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3652 		/*
3653 		 * If this driver's pass is too high, then ignore it.
3654 		 * For most drivers in the default pass, this will
3655 		 * never be true.  For early-pass drivers they will
3656 		 * only call the identify routines of eligible drivers
3657 		 * when this routine is called.  Drivers for later
3658 		 * passes should have their identify routines called
3659 		 * on early-pass buses during BUS_NEW_PASS().
3660 		 */
3661 		if (dl->pass > bus_current_pass)
3662 			continue;
3663 		DEVICE_IDENTIFY(dl->driver, dev);
3664 	}
3665 
3666 	return (0);
3667 }
3668 
3669 /**
3670  * @brief Helper function for implementing DEVICE_ATTACH()
3671  *
3672  * This function can be used to help implement the DEVICE_ATTACH() for
3673  * a bus. It calls device_probe_and_attach() for each of the device's
3674  * children.
3675  */
3676 int
3677 bus_generic_attach(device_t dev)
3678 {
3679 	device_t child;
3680 
3681 	TAILQ_FOREACH(child, &dev->children, link) {
3682 		device_probe_and_attach(child);
3683 	}
3684 
3685 	return (0);
3686 }
3687 
3688 /**
3689  * @brief Helper function for implementing DEVICE_DETACH()
3690  *
3691  * This function can be used to help implement the DEVICE_DETACH() for
3692  * a bus. It calls device_detach() for each of the device's
3693  * children.
3694  */
3695 int
3696 bus_generic_detach(device_t dev)
3697 {
3698 	device_t child;
3699 	int error;
3700 
3701 	if (dev->state != DS_ATTACHED)
3702 		return (EBUSY);
3703 
3704 	TAILQ_FOREACH(child, &dev->children, link) {
3705 		if ((error = device_detach(child)) != 0)
3706 			return (error);
3707 	}
3708 
3709 	return (0);
3710 }
3711 
3712 /**
3713  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3714  *
3715  * This function can be used to help implement the DEVICE_SHUTDOWN()
3716  * for a bus. It calls device_shutdown() for each of the device's
3717  * children.
3718  */
3719 int
3720 bus_generic_shutdown(device_t dev)
3721 {
3722 	device_t child;
3723 
3724 	TAILQ_FOREACH(child, &dev->children, link) {
3725 		device_shutdown(child);
3726 	}
3727 
3728 	return (0);
3729 }
3730 
3731 /**
3732  * @brief Default function for suspending a child device.
3733  *
3734  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3735  */
3736 int
3737 bus_generic_suspend_child(device_t dev, device_t child)
3738 {
3739 	int	error;
3740 
3741 	error = DEVICE_SUSPEND(child);
3742 
3743 	if (error == 0)
3744 		child->flags |= DF_SUSPENDED;
3745 
3746 	return (error);
3747 }
3748 
3749 /**
3750  * @brief Default function for resuming a child device.
3751  *
3752  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3753  */
3754 int
3755 bus_generic_resume_child(device_t dev, device_t child)
3756 {
3757 
3758 	DEVICE_RESUME(child);
3759 	child->flags &= ~DF_SUSPENDED;
3760 
3761 	return (0);
3762 }
3763 
3764 /**
3765  * @brief Helper function for implementing DEVICE_SUSPEND()
3766  *
3767  * This function can be used to help implement the DEVICE_SUSPEND()
3768  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3769  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3770  * operation is aborted and any devices which were suspended are
3771  * resumed immediately by calling their DEVICE_RESUME() methods.
3772  */
3773 int
3774 bus_generic_suspend(device_t dev)
3775 {
3776 	int		error;
3777 	device_t	child, child2;
3778 
3779 	TAILQ_FOREACH(child, &dev->children, link) {
3780 		error = BUS_SUSPEND_CHILD(dev, child);
3781 		if (error) {
3782 			for (child2 = TAILQ_FIRST(&dev->children);
3783 			     child2 && child2 != child;
3784 			     child2 = TAILQ_NEXT(child2, link))
3785 				BUS_RESUME_CHILD(dev, child2);
3786 			return (error);
3787 		}
3788 	}
3789 	return (0);
3790 }
3791 
3792 /**
3793  * @brief Helper function for implementing DEVICE_RESUME()
3794  *
3795  * This function can be used to help implement the DEVICE_RESUME() for
3796  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3797  */
3798 int
3799 bus_generic_resume(device_t dev)
3800 {
3801 	device_t	child;
3802 
3803 	TAILQ_FOREACH(child, &dev->children, link) {
3804 		BUS_RESUME_CHILD(dev, child);
3805 		/* if resume fails, there's nothing we can usefully do... */
3806 	}
3807 	return (0);
3808 }
3809 
3810 /**
3811  * @brief Helper function for implementing BUS_PRINT_CHILD().
3812  *
3813  * This function prints the first part of the ascii representation of
3814  * @p child, including its name, unit and description (if any - see
3815  * device_set_desc()).
3816  *
3817  * @returns the number of characters printed
3818  */
3819 int
3820 bus_print_child_header(device_t dev, device_t child)
3821 {
3822 	int	retval = 0;
3823 
3824 	if (device_get_desc(child)) {
3825 		retval += device_printf(child, "<%s>", device_get_desc(child));
3826 	} else {
3827 		retval += printf("%s", device_get_nameunit(child));
3828 	}
3829 
3830 	return (retval);
3831 }
3832 
3833 /**
3834  * @brief Helper function for implementing BUS_PRINT_CHILD().
3835  *
3836  * This function prints the last part of the ascii representation of
3837  * @p child, which consists of the string @c " on " followed by the
3838  * name and unit of the @p dev.
3839  *
3840  * @returns the number of characters printed
3841  */
3842 int
3843 bus_print_child_footer(device_t dev, device_t child)
3844 {
3845 	return (printf(" on %s\n", device_get_nameunit(dev)));
3846 }
3847 
3848 /**
3849  * @brief Helper function for implementing BUS_PRINT_CHILD().
3850  *
3851  * This function prints out the VM domain for the given device.
3852  *
3853  * @returns the number of characters printed
3854  */
3855 int
3856 bus_print_child_domain(device_t dev, device_t child)
3857 {
3858 	int domain;
3859 
3860 	/* No domain? Don't print anything */
3861 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3862 		return (0);
3863 
3864 	return (printf(" numa-domain %d", domain));
3865 }
3866 
3867 /**
3868  * @brief Helper function for implementing BUS_PRINT_CHILD().
3869  *
3870  * This function simply calls bus_print_child_header() followed by
3871  * bus_print_child_footer().
3872  *
3873  * @returns the number of characters printed
3874  */
3875 int
3876 bus_generic_print_child(device_t dev, device_t child)
3877 {
3878 	int	retval = 0;
3879 
3880 	retval += bus_print_child_header(dev, child);
3881 	retval += bus_print_child_domain(dev, child);
3882 	retval += bus_print_child_footer(dev, child);
3883 
3884 	return (retval);
3885 }
3886 
3887 /**
3888  * @brief Stub function for implementing BUS_READ_IVAR().
3889  *
3890  * @returns ENOENT
3891  */
3892 int
3893 bus_generic_read_ivar(device_t dev, device_t child, int index,
3894     uintptr_t * result)
3895 {
3896 	return (ENOENT);
3897 }
3898 
3899 /**
3900  * @brief Stub function for implementing BUS_WRITE_IVAR().
3901  *
3902  * @returns ENOENT
3903  */
3904 int
3905 bus_generic_write_ivar(device_t dev, device_t child, int index,
3906     uintptr_t value)
3907 {
3908 	return (ENOENT);
3909 }
3910 
3911 /**
3912  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3913  *
3914  * @returns NULL
3915  */
3916 struct resource_list *
3917 bus_generic_get_resource_list(device_t dev, device_t child)
3918 {
3919 	return (NULL);
3920 }
3921 
3922 /**
3923  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3924  *
3925  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3926  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3927  * and then calls device_probe_and_attach() for each unattached child.
3928  */
3929 void
3930 bus_generic_driver_added(device_t dev, driver_t *driver)
3931 {
3932 	device_t child;
3933 
3934 	DEVICE_IDENTIFY(driver, dev);
3935 	TAILQ_FOREACH(child, &dev->children, link) {
3936 		if (child->state == DS_NOTPRESENT ||
3937 		    (child->flags & DF_REBID))
3938 			device_probe_and_attach(child);
3939 	}
3940 }
3941 
3942 /**
3943  * @brief Helper function for implementing BUS_NEW_PASS().
3944  *
3945  * This implementing of BUS_NEW_PASS() first calls the identify
3946  * routines for any drivers that probe at the current pass.  Then it
3947  * walks the list of devices for this bus.  If a device is already
3948  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3949  * device is not already attached, it attempts to attach a driver to
3950  * it.
3951  */
3952 void
3953 bus_generic_new_pass(device_t dev)
3954 {
3955 	driverlink_t dl;
3956 	devclass_t dc;
3957 	device_t child;
3958 
3959 	dc = dev->devclass;
3960 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3961 		if (dl->pass == bus_current_pass)
3962 			DEVICE_IDENTIFY(dl->driver, dev);
3963 	}
3964 	TAILQ_FOREACH(child, &dev->children, link) {
3965 		if (child->state >= DS_ATTACHED)
3966 			BUS_NEW_PASS(child);
3967 		else if (child->state == DS_NOTPRESENT)
3968 			device_probe_and_attach(child);
3969 	}
3970 }
3971 
3972 /**
3973  * @brief Helper function for implementing BUS_SETUP_INTR().
3974  *
3975  * This simple implementation of BUS_SETUP_INTR() simply calls the
3976  * BUS_SETUP_INTR() method of the parent of @p dev.
3977  */
3978 int
3979 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3980     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3981     void **cookiep)
3982 {
3983 	/* Propagate up the bus hierarchy until someone handles it. */
3984 	if (dev->parent)
3985 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3986 		    filter, intr, arg, cookiep));
3987 	return (EINVAL);
3988 }
3989 
3990 /**
3991  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3992  *
3993  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3994  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3995  */
3996 int
3997 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3998     void *cookie)
3999 {
4000 	/* Propagate up the bus hierarchy until someone handles it. */
4001 	if (dev->parent)
4002 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4003 	return (EINVAL);
4004 }
4005 
4006 /**
4007  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4008  *
4009  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4010  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4011  */
4012 int
4013 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4014     struct resource *r, rman_res_t start, rman_res_t end)
4015 {
4016 	/* Propagate up the bus hierarchy until someone handles it. */
4017 	if (dev->parent)
4018 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4019 		    end));
4020 	return (EINVAL);
4021 }
4022 
4023 /**
4024  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4025  *
4026  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4027  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4028  */
4029 struct resource *
4030 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4031     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4032 {
4033 	/* Propagate up the bus hierarchy until someone handles it. */
4034 	if (dev->parent)
4035 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4036 		    start, end, count, flags));
4037 	return (NULL);
4038 }
4039 
4040 /**
4041  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4042  *
4043  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4044  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4045  */
4046 int
4047 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4048     struct resource *r)
4049 {
4050 	/* Propagate up the bus hierarchy until someone handles it. */
4051 	if (dev->parent)
4052 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4053 		    r));
4054 	return (EINVAL);
4055 }
4056 
4057 /**
4058  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4059  *
4060  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4061  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4062  */
4063 int
4064 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4065     struct resource *r)
4066 {
4067 	/* Propagate up the bus hierarchy until someone handles it. */
4068 	if (dev->parent)
4069 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4070 		    r));
4071 	return (EINVAL);
4072 }
4073 
4074 /**
4075  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4076  *
4077  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4078  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4079  */
4080 int
4081 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4082     int rid, struct resource *r)
4083 {
4084 	/* Propagate up the bus hierarchy until someone handles it. */
4085 	if (dev->parent)
4086 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4087 		    r));
4088 	return (EINVAL);
4089 }
4090 
4091 /**
4092  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4093  *
4094  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4095  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4096  */
4097 int
4098 bus_generic_map_resource(device_t dev, device_t child, int type,
4099     struct resource *r, struct resource_map_request *args,
4100     struct resource_map *map)
4101 {
4102 	/* Propagate up the bus hierarchy until someone handles it. */
4103 	if (dev->parent)
4104 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4105 		    map));
4106 	return (EINVAL);
4107 }
4108 
4109 /**
4110  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4111  *
4112  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4113  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4114  */
4115 int
4116 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4117     struct resource *r, struct resource_map *map)
4118 {
4119 	/* Propagate up the bus hierarchy until someone handles it. */
4120 	if (dev->parent)
4121 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4122 	return (EINVAL);
4123 }
4124 
4125 /**
4126  * @brief Helper function for implementing BUS_BIND_INTR().
4127  *
4128  * This simple implementation of BUS_BIND_INTR() simply calls the
4129  * BUS_BIND_INTR() method of the parent of @p dev.
4130  */
4131 int
4132 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4133     int cpu)
4134 {
4135 
4136 	/* Propagate up the bus hierarchy until someone handles it. */
4137 	if (dev->parent)
4138 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4139 	return (EINVAL);
4140 }
4141 
4142 /**
4143  * @brief Helper function for implementing BUS_CONFIG_INTR().
4144  *
4145  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4146  * BUS_CONFIG_INTR() method of the parent of @p dev.
4147  */
4148 int
4149 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4150     enum intr_polarity pol)
4151 {
4152 
4153 	/* Propagate up the bus hierarchy until someone handles it. */
4154 	if (dev->parent)
4155 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4156 	return (EINVAL);
4157 }
4158 
4159 /**
4160  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4161  *
4162  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4163  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4164  */
4165 int
4166 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4167     void *cookie, const char *descr)
4168 {
4169 
4170 	/* Propagate up the bus hierarchy until someone handles it. */
4171 	if (dev->parent)
4172 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4173 		    descr));
4174 	return (EINVAL);
4175 }
4176 
4177 /**
4178  * @brief Helper function for implementing BUS_GET_CPUS().
4179  *
4180  * This simple implementation of BUS_GET_CPUS() simply calls the
4181  * BUS_GET_CPUS() method of the parent of @p dev.
4182  */
4183 int
4184 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4185     size_t setsize, cpuset_t *cpuset)
4186 {
4187 
4188 	/* Propagate up the bus hierarchy until someone handles it. */
4189 	if (dev->parent != NULL)
4190 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4191 	return (EINVAL);
4192 }
4193 
4194 /**
4195  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4196  *
4197  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4198  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4199  */
4200 bus_dma_tag_t
4201 bus_generic_get_dma_tag(device_t dev, device_t child)
4202 {
4203 
4204 	/* Propagate up the bus hierarchy until someone handles it. */
4205 	if (dev->parent != NULL)
4206 		return (BUS_GET_DMA_TAG(dev->parent, child));
4207 	return (NULL);
4208 }
4209 
4210 /**
4211  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4212  *
4213  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4214  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4215  */
4216 bus_space_tag_t
4217 bus_generic_get_bus_tag(device_t dev, device_t child)
4218 {
4219 
4220 	/* Propagate up the bus hierarchy until someone handles it. */
4221 	if (dev->parent != NULL)
4222 		return (BUS_GET_BUS_TAG(dev->parent, child));
4223 	return ((bus_space_tag_t)0);
4224 }
4225 
4226 /**
4227  * @brief Helper function for implementing BUS_GET_RESOURCE().
4228  *
4229  * This implementation of BUS_GET_RESOURCE() uses the
4230  * resource_list_find() function to do most of the work. It calls
4231  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4232  * search.
4233  */
4234 int
4235 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4236     rman_res_t *startp, rman_res_t *countp)
4237 {
4238 	struct resource_list *		rl = NULL;
4239 	struct resource_list_entry *	rle = NULL;
4240 
4241 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4242 	if (!rl)
4243 		return (EINVAL);
4244 
4245 	rle = resource_list_find(rl, type, rid);
4246 	if (!rle)
4247 		return (ENOENT);
4248 
4249 	if (startp)
4250 		*startp = rle->start;
4251 	if (countp)
4252 		*countp = rle->count;
4253 
4254 	return (0);
4255 }
4256 
4257 /**
4258  * @brief Helper function for implementing BUS_SET_RESOURCE().
4259  *
4260  * This implementation of BUS_SET_RESOURCE() uses the
4261  * resource_list_add() function to do most of the work. It calls
4262  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4263  * edit.
4264  */
4265 int
4266 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4267     rman_res_t start, rman_res_t count)
4268 {
4269 	struct resource_list *		rl = NULL;
4270 
4271 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4272 	if (!rl)
4273 		return (EINVAL);
4274 
4275 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4276 
4277 	return (0);
4278 }
4279 
4280 /**
4281  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4282  *
4283  * This implementation of BUS_DELETE_RESOURCE() uses the
4284  * resource_list_delete() function to do most of the work. It calls
4285  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4286  * edit.
4287  */
4288 void
4289 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4290 {
4291 	struct resource_list *		rl = NULL;
4292 
4293 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4294 	if (!rl)
4295 		return;
4296 
4297 	resource_list_delete(rl, type, rid);
4298 
4299 	return;
4300 }
4301 
4302 /**
4303  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4304  *
4305  * This implementation of BUS_RELEASE_RESOURCE() uses the
4306  * resource_list_release() function to do most of the work. It calls
4307  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4308  */
4309 int
4310 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4311     int rid, struct resource *r)
4312 {
4313 	struct resource_list *		rl = NULL;
4314 
4315 	if (device_get_parent(child) != dev)
4316 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4317 		    type, rid, r));
4318 
4319 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4320 	if (!rl)
4321 		return (EINVAL);
4322 
4323 	return (resource_list_release(rl, dev, child, type, rid, r));
4324 }
4325 
4326 /**
4327  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4328  *
4329  * This implementation of BUS_ALLOC_RESOURCE() uses the
4330  * resource_list_alloc() function to do most of the work. It calls
4331  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4332  */
4333 struct resource *
4334 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4335     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4336 {
4337 	struct resource_list *		rl = NULL;
4338 
4339 	if (device_get_parent(child) != dev)
4340 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4341 		    type, rid, start, end, count, flags));
4342 
4343 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4344 	if (!rl)
4345 		return (NULL);
4346 
4347 	return (resource_list_alloc(rl, dev, child, type, rid,
4348 	    start, end, count, flags));
4349 }
4350 
4351 /**
4352  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4353  *
4354  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4355  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4356  */
4357 int
4358 bus_generic_child_present(device_t dev, device_t child)
4359 {
4360 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4361 }
4362 
4363 int
4364 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4365 {
4366 
4367 	if (dev->parent)
4368 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4369 
4370 	return (ENOENT);
4371 }
4372 
4373 /**
4374  * @brief Helper function for implementing BUS_RESCAN().
4375  *
4376  * This null implementation of BUS_RESCAN() always fails to indicate
4377  * the bus does not support rescanning.
4378  */
4379 int
4380 bus_null_rescan(device_t dev)
4381 {
4382 
4383 	return (ENXIO);
4384 }
4385 
4386 /*
4387  * Some convenience functions to make it easier for drivers to use the
4388  * resource-management functions.  All these really do is hide the
4389  * indirection through the parent's method table, making for slightly
4390  * less-wordy code.  In the future, it might make sense for this code
4391  * to maintain some sort of a list of resources allocated by each device.
4392  */
4393 
4394 int
4395 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4396     struct resource **res)
4397 {
4398 	int i;
4399 
4400 	for (i = 0; rs[i].type != -1; i++)
4401 		res[i] = NULL;
4402 	for (i = 0; rs[i].type != -1; i++) {
4403 		res[i] = bus_alloc_resource_any(dev,
4404 		    rs[i].type, &rs[i].rid, rs[i].flags);
4405 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4406 			bus_release_resources(dev, rs, res);
4407 			return (ENXIO);
4408 		}
4409 	}
4410 	return (0);
4411 }
4412 
4413 void
4414 bus_release_resources(device_t dev, const struct resource_spec *rs,
4415     struct resource **res)
4416 {
4417 	int i;
4418 
4419 	for (i = 0; rs[i].type != -1; i++)
4420 		if (res[i] != NULL) {
4421 			bus_release_resource(
4422 			    dev, rs[i].type, rs[i].rid, res[i]);
4423 			res[i] = NULL;
4424 		}
4425 }
4426 
4427 /**
4428  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4429  *
4430  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4431  * parent of @p dev.
4432  */
4433 struct resource *
4434 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4435     rman_res_t end, rman_res_t count, u_int flags)
4436 {
4437 	struct resource *res;
4438 
4439 	if (dev->parent == NULL)
4440 		return (NULL);
4441 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4442 	    count, flags);
4443 	return (res);
4444 }
4445 
4446 /**
4447  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4448  *
4449  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4450  * parent of @p dev.
4451  */
4452 int
4453 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4454     rman_res_t end)
4455 {
4456 	if (dev->parent == NULL)
4457 		return (EINVAL);
4458 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4459 }
4460 
4461 /**
4462  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4463  *
4464  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4465  * parent of @p dev.
4466  */
4467 int
4468 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4469 {
4470 	if (dev->parent == NULL)
4471 		return (EINVAL);
4472 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4473 }
4474 
4475 /**
4476  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4477  *
4478  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4479  * parent of @p dev.
4480  */
4481 int
4482 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4483 {
4484 	if (dev->parent == NULL)
4485 		return (EINVAL);
4486 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4487 }
4488 
4489 /**
4490  * @brief Wrapper function for BUS_MAP_RESOURCE().
4491  *
4492  * This function simply calls the BUS_MAP_RESOURCE() method of the
4493  * parent of @p dev.
4494  */
4495 int
4496 bus_map_resource(device_t dev, int type, struct resource *r,
4497     struct resource_map_request *args, struct resource_map *map)
4498 {
4499 	if (dev->parent == NULL)
4500 		return (EINVAL);
4501 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4502 }
4503 
4504 /**
4505  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4506  *
4507  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4508  * parent of @p dev.
4509  */
4510 int
4511 bus_unmap_resource(device_t dev, int type, struct resource *r,
4512     struct resource_map *map)
4513 {
4514 	if (dev->parent == NULL)
4515 		return (EINVAL);
4516 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4517 }
4518 
4519 /**
4520  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4521  *
4522  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4523  * parent of @p dev.
4524  */
4525 int
4526 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4527 {
4528 	int rv;
4529 
4530 	if (dev->parent == NULL)
4531 		return (EINVAL);
4532 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4533 	return (rv);
4534 }
4535 
4536 /**
4537  * @brief Wrapper function for BUS_SETUP_INTR().
4538  *
4539  * This function simply calls the BUS_SETUP_INTR() method of the
4540  * parent of @p dev.
4541  */
4542 int
4543 bus_setup_intr(device_t dev, struct resource *r, int flags,
4544     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4545 {
4546 	int error;
4547 
4548 	if (dev->parent == NULL)
4549 		return (EINVAL);
4550 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4551 	    arg, cookiep);
4552 	if (error != 0)
4553 		return (error);
4554 	if (handler != NULL && !(flags & INTR_MPSAFE))
4555 		device_printf(dev, "[GIANT-LOCKED]\n");
4556 	return (0);
4557 }
4558 
4559 /**
4560  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4561  *
4562  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4563  * parent of @p dev.
4564  */
4565 int
4566 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4567 {
4568 	if (dev->parent == NULL)
4569 		return (EINVAL);
4570 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4571 }
4572 
4573 /**
4574  * @brief Wrapper function for BUS_BIND_INTR().
4575  *
4576  * This function simply calls the BUS_BIND_INTR() method of the
4577  * parent of @p dev.
4578  */
4579 int
4580 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4581 {
4582 	if (dev->parent == NULL)
4583 		return (EINVAL);
4584 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4585 }
4586 
4587 /**
4588  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4589  *
4590  * This function first formats the requested description into a
4591  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4592  * the parent of @p dev.
4593  */
4594 int
4595 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4596     const char *fmt, ...)
4597 {
4598 	va_list ap;
4599 	char descr[MAXCOMLEN + 1];
4600 
4601 	if (dev->parent == NULL)
4602 		return (EINVAL);
4603 	va_start(ap, fmt);
4604 	vsnprintf(descr, sizeof(descr), fmt, ap);
4605 	va_end(ap);
4606 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4607 }
4608 
4609 /**
4610  * @brief Wrapper function for BUS_SET_RESOURCE().
4611  *
4612  * This function simply calls the BUS_SET_RESOURCE() method of the
4613  * parent of @p dev.
4614  */
4615 int
4616 bus_set_resource(device_t dev, int type, int rid,
4617     rman_res_t start, rman_res_t count)
4618 {
4619 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4620 	    start, count));
4621 }
4622 
4623 /**
4624  * @brief Wrapper function for BUS_GET_RESOURCE().
4625  *
4626  * This function simply calls the BUS_GET_RESOURCE() method of the
4627  * parent of @p dev.
4628  */
4629 int
4630 bus_get_resource(device_t dev, int type, int rid,
4631     rman_res_t *startp, rman_res_t *countp)
4632 {
4633 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4634 	    startp, countp));
4635 }
4636 
4637 /**
4638  * @brief Wrapper function for BUS_GET_RESOURCE().
4639  *
4640  * This function simply calls the BUS_GET_RESOURCE() method of the
4641  * parent of @p dev and returns the start value.
4642  */
4643 rman_res_t
4644 bus_get_resource_start(device_t dev, int type, int rid)
4645 {
4646 	rman_res_t start;
4647 	rman_res_t count;
4648 	int error;
4649 
4650 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4651 	    &start, &count);
4652 	if (error)
4653 		return (0);
4654 	return (start);
4655 }
4656 
4657 /**
4658  * @brief Wrapper function for BUS_GET_RESOURCE().
4659  *
4660  * This function simply calls the BUS_GET_RESOURCE() method of the
4661  * parent of @p dev and returns the count value.
4662  */
4663 rman_res_t
4664 bus_get_resource_count(device_t dev, int type, int rid)
4665 {
4666 	rman_res_t start;
4667 	rman_res_t count;
4668 	int error;
4669 
4670 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4671 	    &start, &count);
4672 	if (error)
4673 		return (0);
4674 	return (count);
4675 }
4676 
4677 /**
4678  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4679  *
4680  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4681  * parent of @p dev.
4682  */
4683 void
4684 bus_delete_resource(device_t dev, int type, int rid)
4685 {
4686 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4687 }
4688 
4689 /**
4690  * @brief Wrapper function for BUS_CHILD_PRESENT().
4691  *
4692  * This function simply calls the BUS_CHILD_PRESENT() method of the
4693  * parent of @p dev.
4694  */
4695 int
4696 bus_child_present(device_t child)
4697 {
4698 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4699 }
4700 
4701 /**
4702  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4703  *
4704  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4705  * parent of @p dev.
4706  */
4707 int
4708 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4709 {
4710 	device_t parent;
4711 
4712 	parent = device_get_parent(child);
4713 	if (parent == NULL) {
4714 		*buf = '\0';
4715 		return (0);
4716 	}
4717 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4718 }
4719 
4720 /**
4721  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4722  *
4723  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4724  * parent of @p dev.
4725  */
4726 int
4727 bus_child_location_str(device_t child, char *buf, size_t buflen)
4728 {
4729 	device_t parent;
4730 
4731 	parent = device_get_parent(child);
4732 	if (parent == NULL) {
4733 		*buf = '\0';
4734 		return (0);
4735 	}
4736 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4737 }
4738 
4739 /**
4740  * @brief Wrapper function for BUS_GET_CPUS().
4741  *
4742  * This function simply calls the BUS_GET_CPUS() method of the
4743  * parent of @p dev.
4744  */
4745 int
4746 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4747 {
4748 	device_t parent;
4749 
4750 	parent = device_get_parent(dev);
4751 	if (parent == NULL)
4752 		return (EINVAL);
4753 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4754 }
4755 
4756 /**
4757  * @brief Wrapper function for BUS_GET_DMA_TAG().
4758  *
4759  * This function simply calls the BUS_GET_DMA_TAG() method of the
4760  * parent of @p dev.
4761  */
4762 bus_dma_tag_t
4763 bus_get_dma_tag(device_t dev)
4764 {
4765 	device_t parent;
4766 
4767 	parent = device_get_parent(dev);
4768 	if (parent == NULL)
4769 		return (NULL);
4770 	return (BUS_GET_DMA_TAG(parent, dev));
4771 }
4772 
4773 /**
4774  * @brief Wrapper function for BUS_GET_BUS_TAG().
4775  *
4776  * This function simply calls the BUS_GET_BUS_TAG() method of the
4777  * parent of @p dev.
4778  */
4779 bus_space_tag_t
4780 bus_get_bus_tag(device_t dev)
4781 {
4782 	device_t parent;
4783 
4784 	parent = device_get_parent(dev);
4785 	if (parent == NULL)
4786 		return ((bus_space_tag_t)0);
4787 	return (BUS_GET_BUS_TAG(parent, dev));
4788 }
4789 
4790 /**
4791  * @brief Wrapper function for BUS_GET_DOMAIN().
4792  *
4793  * This function simply calls the BUS_GET_DOMAIN() method of the
4794  * parent of @p dev.
4795  */
4796 int
4797 bus_get_domain(device_t dev, int *domain)
4798 {
4799 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4800 }
4801 
4802 /* Resume all devices and then notify userland that we're up again. */
4803 static int
4804 root_resume(device_t dev)
4805 {
4806 	int error;
4807 
4808 	error = bus_generic_resume(dev);
4809 	if (error == 0)
4810 		devctl_notify("kern", "power", "resume", NULL);
4811 	return (error);
4812 }
4813 
4814 static int
4815 root_print_child(device_t dev, device_t child)
4816 {
4817 	int	retval = 0;
4818 
4819 	retval += bus_print_child_header(dev, child);
4820 	retval += printf("\n");
4821 
4822 	return (retval);
4823 }
4824 
4825 static int
4826 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4827     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4828 {
4829 	/*
4830 	 * If an interrupt mapping gets to here something bad has happened.
4831 	 */
4832 	panic("root_setup_intr");
4833 }
4834 
4835 /*
4836  * If we get here, assume that the device is permanent and really is
4837  * present in the system.  Removable bus drivers are expected to intercept
4838  * this call long before it gets here.  We return -1 so that drivers that
4839  * really care can check vs -1 or some ERRNO returned higher in the food
4840  * chain.
4841  */
4842 static int
4843 root_child_present(device_t dev, device_t child)
4844 {
4845 	return (-1);
4846 }
4847 
4848 static int
4849 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4850     cpuset_t *cpuset)
4851 {
4852 
4853 	switch (op) {
4854 	case INTR_CPUS:
4855 		/* Default to returning the set of all CPUs. */
4856 		if (setsize != sizeof(cpuset_t))
4857 			return (EINVAL);
4858 		*cpuset = all_cpus;
4859 		return (0);
4860 	default:
4861 		return (EINVAL);
4862 	}
4863 }
4864 
4865 static kobj_method_t root_methods[] = {
4866 	/* Device interface */
4867 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4868 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4869 	KOBJMETHOD(device_resume,	root_resume),
4870 
4871 	/* Bus interface */
4872 	KOBJMETHOD(bus_print_child,	root_print_child),
4873 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4874 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4875 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4876 	KOBJMETHOD(bus_child_present,	root_child_present),
4877 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4878 
4879 	KOBJMETHOD_END
4880 };
4881 
4882 static driver_t root_driver = {
4883 	"root",
4884 	root_methods,
4885 	1,			/* no softc */
4886 };
4887 
4888 device_t	root_bus;
4889 devclass_t	root_devclass;
4890 
4891 static int
4892 root_bus_module_handler(module_t mod, int what, void* arg)
4893 {
4894 	switch (what) {
4895 	case MOD_LOAD:
4896 		TAILQ_INIT(&bus_data_devices);
4897 		kobj_class_compile((kobj_class_t) &root_driver);
4898 		root_bus = make_device(NULL, "root", 0);
4899 		root_bus->desc = "System root bus";
4900 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4901 		root_bus->driver = &root_driver;
4902 		root_bus->state = DS_ATTACHED;
4903 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4904 		devinit();
4905 		return (0);
4906 
4907 	case MOD_SHUTDOWN:
4908 		device_shutdown(root_bus);
4909 		return (0);
4910 	default:
4911 		return (EOPNOTSUPP);
4912 	}
4913 
4914 	return (0);
4915 }
4916 
4917 static moduledata_t root_bus_mod = {
4918 	"rootbus",
4919 	root_bus_module_handler,
4920 	NULL
4921 };
4922 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4923 
4924 /**
4925  * @brief Automatically configure devices
4926  *
4927  * This function begins the autoconfiguration process by calling
4928  * device_probe_and_attach() for each child of the @c root0 device.
4929  */
4930 void
4931 root_bus_configure(void)
4932 {
4933 
4934 	PDEBUG(("."));
4935 
4936 	/* Eventually this will be split up, but this is sufficient for now. */
4937 	bus_set_pass(BUS_PASS_DEFAULT);
4938 }
4939 
4940 /**
4941  * @brief Module handler for registering device drivers
4942  *
4943  * This module handler is used to automatically register device
4944  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4945  * devclass_add_driver() for the driver described by the
4946  * driver_module_data structure pointed to by @p arg
4947  */
4948 int
4949 driver_module_handler(module_t mod, int what, void *arg)
4950 {
4951 	struct driver_module_data *dmd;
4952 	devclass_t bus_devclass;
4953 	kobj_class_t driver;
4954 	int error, pass;
4955 
4956 	dmd = (struct driver_module_data *)arg;
4957 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4958 	error = 0;
4959 
4960 	switch (what) {
4961 	case MOD_LOAD:
4962 		if (dmd->dmd_chainevh)
4963 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4964 
4965 		pass = dmd->dmd_pass;
4966 		driver = dmd->dmd_driver;
4967 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4968 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4969 		error = devclass_add_driver(bus_devclass, driver, pass,
4970 		    dmd->dmd_devclass);
4971 		break;
4972 
4973 	case MOD_UNLOAD:
4974 		PDEBUG(("Unloading module: driver %s from bus %s",
4975 		    DRIVERNAME(dmd->dmd_driver),
4976 		    dmd->dmd_busname));
4977 		error = devclass_delete_driver(bus_devclass,
4978 		    dmd->dmd_driver);
4979 
4980 		if (!error && dmd->dmd_chainevh)
4981 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4982 		break;
4983 	case MOD_QUIESCE:
4984 		PDEBUG(("Quiesce module: driver %s from bus %s",
4985 		    DRIVERNAME(dmd->dmd_driver),
4986 		    dmd->dmd_busname));
4987 		error = devclass_quiesce_driver(bus_devclass,
4988 		    dmd->dmd_driver);
4989 
4990 		if (!error && dmd->dmd_chainevh)
4991 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4992 		break;
4993 	default:
4994 		error = EOPNOTSUPP;
4995 		break;
4996 	}
4997 
4998 	return (error);
4999 }
5000 
5001 /**
5002  * @brief Enumerate all hinted devices for this bus.
5003  *
5004  * Walks through the hints for this bus and calls the bus_hinted_child
5005  * routine for each one it fines.  It searches first for the specific
5006  * bus that's being probed for hinted children (eg isa0), and then for
5007  * generic children (eg isa).
5008  *
5009  * @param	dev	bus device to enumerate
5010  */
5011 void
5012 bus_enumerate_hinted_children(device_t bus)
5013 {
5014 	int i;
5015 	const char *dname, *busname;
5016 	int dunit;
5017 
5018 	/*
5019 	 * enumerate all devices on the specific bus
5020 	 */
5021 	busname = device_get_nameunit(bus);
5022 	i = 0;
5023 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5024 		BUS_HINTED_CHILD(bus, dname, dunit);
5025 
5026 	/*
5027 	 * and all the generic ones.
5028 	 */
5029 	busname = device_get_name(bus);
5030 	i = 0;
5031 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5032 		BUS_HINTED_CHILD(bus, dname, dunit);
5033 }
5034 
5035 #ifdef BUS_DEBUG
5036 
5037 /* the _short versions avoid iteration by not calling anything that prints
5038  * more than oneliners. I love oneliners.
5039  */
5040 
5041 static void
5042 print_device_short(device_t dev, int indent)
5043 {
5044 	if (!dev)
5045 		return;
5046 
5047 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5048 	    dev->unit, dev->desc,
5049 	    (dev->parent? "":"no "),
5050 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5051 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5052 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5053 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5054 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5055 	    (dev->flags&DF_REBID? "rebiddable,":""),
5056 	    (dev->ivars? "":"no "),
5057 	    (dev->softc? "":"no "),
5058 	    dev->busy));
5059 }
5060 
5061 static void
5062 print_device(device_t dev, int indent)
5063 {
5064 	if (!dev)
5065 		return;
5066 
5067 	print_device_short(dev, indent);
5068 
5069 	indentprintf(("Parent:\n"));
5070 	print_device_short(dev->parent, indent+1);
5071 	indentprintf(("Driver:\n"));
5072 	print_driver_short(dev->driver, indent+1);
5073 	indentprintf(("Devclass:\n"));
5074 	print_devclass_short(dev->devclass, indent+1);
5075 }
5076 
5077 void
5078 print_device_tree_short(device_t dev, int indent)
5079 /* print the device and all its children (indented) */
5080 {
5081 	device_t child;
5082 
5083 	if (!dev)
5084 		return;
5085 
5086 	print_device_short(dev, indent);
5087 
5088 	TAILQ_FOREACH(child, &dev->children, link) {
5089 		print_device_tree_short(child, indent+1);
5090 	}
5091 }
5092 
5093 void
5094 print_device_tree(device_t dev, int indent)
5095 /* print the device and all its children (indented) */
5096 {
5097 	device_t child;
5098 
5099 	if (!dev)
5100 		return;
5101 
5102 	print_device(dev, indent);
5103 
5104 	TAILQ_FOREACH(child, &dev->children, link) {
5105 		print_device_tree(child, indent+1);
5106 	}
5107 }
5108 
5109 static void
5110 print_driver_short(driver_t *driver, int indent)
5111 {
5112 	if (!driver)
5113 		return;
5114 
5115 	indentprintf(("driver %s: softc size = %zd\n",
5116 	    driver->name, driver->size));
5117 }
5118 
5119 static void
5120 print_driver(driver_t *driver, int indent)
5121 {
5122 	if (!driver)
5123 		return;
5124 
5125 	print_driver_short(driver, indent);
5126 }
5127 
5128 static void
5129 print_driver_list(driver_list_t drivers, int indent)
5130 {
5131 	driverlink_t driver;
5132 
5133 	TAILQ_FOREACH(driver, &drivers, link) {
5134 		print_driver(driver->driver, indent);
5135 	}
5136 }
5137 
5138 static void
5139 print_devclass_short(devclass_t dc, int indent)
5140 {
5141 	if ( !dc )
5142 		return;
5143 
5144 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5145 }
5146 
5147 static void
5148 print_devclass(devclass_t dc, int indent)
5149 {
5150 	int i;
5151 
5152 	if ( !dc )
5153 		return;
5154 
5155 	print_devclass_short(dc, indent);
5156 	indentprintf(("Drivers:\n"));
5157 	print_driver_list(dc->drivers, indent+1);
5158 
5159 	indentprintf(("Devices:\n"));
5160 	for (i = 0; i < dc->maxunit; i++)
5161 		if (dc->devices[i])
5162 			print_device(dc->devices[i], indent+1);
5163 }
5164 
5165 void
5166 print_devclass_list_short(void)
5167 {
5168 	devclass_t dc;
5169 
5170 	printf("Short listing of devclasses, drivers & devices:\n");
5171 	TAILQ_FOREACH(dc, &devclasses, link) {
5172 		print_devclass_short(dc, 0);
5173 	}
5174 }
5175 
5176 void
5177 print_devclass_list(void)
5178 {
5179 	devclass_t dc;
5180 
5181 	printf("Full listing of devclasses, drivers & devices:\n");
5182 	TAILQ_FOREACH(dc, &devclasses, link) {
5183 		print_devclass(dc, 0);
5184 	}
5185 }
5186 
5187 #endif
5188 
5189 /*
5190  * User-space access to the device tree.
5191  *
5192  * We implement a small set of nodes:
5193  *
5194  * hw.bus			Single integer read method to obtain the
5195  *				current generation count.
5196  * hw.bus.devices		Reads the entire device tree in flat space.
5197  * hw.bus.rman			Resource manager interface
5198  *
5199  * We might like to add the ability to scan devclasses and/or drivers to
5200  * determine what else is currently loaded/available.
5201  */
5202 
5203 static int
5204 sysctl_bus(SYSCTL_HANDLER_ARGS)
5205 {
5206 	struct u_businfo	ubus;
5207 
5208 	ubus.ub_version = BUS_USER_VERSION;
5209 	ubus.ub_generation = bus_data_generation;
5210 
5211 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5212 }
5213 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5214     "bus-related data");
5215 
5216 static int
5217 sysctl_devices(SYSCTL_HANDLER_ARGS)
5218 {
5219 	int			*name = (int *)arg1;
5220 	u_int			namelen = arg2;
5221 	int			index;
5222 	device_t		dev;
5223 	struct u_device		udev;	/* XXX this is a bit big */
5224 	int			error;
5225 
5226 	if (namelen != 2)
5227 		return (EINVAL);
5228 
5229 	if (bus_data_generation_check(name[0]))
5230 		return (EINVAL);
5231 
5232 	index = name[1];
5233 
5234 	/*
5235 	 * Scan the list of devices, looking for the requested index.
5236 	 */
5237 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5238 		if (index-- == 0)
5239 			break;
5240 	}
5241 	if (dev == NULL)
5242 		return (ENOENT);
5243 
5244 	/*
5245 	 * Populate the return array.
5246 	 */
5247 	bzero(&udev, sizeof(udev));
5248 	udev.dv_handle = (uintptr_t)dev;
5249 	udev.dv_parent = (uintptr_t)dev->parent;
5250 	if (dev->nameunit != NULL)
5251 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5252 	if (dev->desc != NULL)
5253 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5254 	if (dev->driver != NULL && dev->driver->name != NULL)
5255 		strlcpy(udev.dv_drivername, dev->driver->name,
5256 		    sizeof(udev.dv_drivername));
5257 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5258 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5259 	udev.dv_devflags = dev->devflags;
5260 	udev.dv_flags = dev->flags;
5261 	udev.dv_state = dev->state;
5262 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5263 	return (error);
5264 }
5265 
5266 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5267     "system device tree");
5268 
5269 int
5270 bus_data_generation_check(int generation)
5271 {
5272 	if (generation != bus_data_generation)
5273 		return (1);
5274 
5275 	/* XXX generate optimised lists here? */
5276 	return (0);
5277 }
5278 
5279 void
5280 bus_data_generation_update(void)
5281 {
5282 	bus_data_generation++;
5283 }
5284 
5285 int
5286 bus_free_resource(device_t dev, int type, struct resource *r)
5287 {
5288 	if (r == NULL)
5289 		return (0);
5290 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5291 }
5292 
5293 device_t
5294 device_lookup_by_name(const char *name)
5295 {
5296 	device_t dev;
5297 
5298 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5299 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5300 			return (dev);
5301 	}
5302 	return (NULL);
5303 }
5304 
5305 /*
5306  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5307  * implicit semantics on open, so it could not be reused for this.
5308  * Another option would be to call this /dev/bus?
5309  */
5310 static int
5311 find_device(struct devreq *req, device_t *devp)
5312 {
5313 	device_t dev;
5314 
5315 	/*
5316 	 * First, ensure that the name is nul terminated.
5317 	 */
5318 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5319 		return (EINVAL);
5320 
5321 	/*
5322 	 * Second, try to find an attached device whose name matches
5323 	 * 'name'.
5324 	 */
5325 	dev = device_lookup_by_name(req->dr_name);
5326 	if (dev != NULL) {
5327 		*devp = dev;
5328 		return (0);
5329 	}
5330 
5331 	/* Finally, give device enumerators a chance. */
5332 	dev = NULL;
5333 	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5334 	if (dev == NULL)
5335 		return (ENOENT);
5336 	*devp = dev;
5337 	return (0);
5338 }
5339 
5340 static bool
5341 driver_exists(device_t bus, const char *driver)
5342 {
5343 	devclass_t dc;
5344 
5345 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5346 		if (devclass_find_driver_internal(dc, driver) != NULL)
5347 			return (true);
5348 	}
5349 	return (false);
5350 }
5351 
5352 static int
5353 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5354     struct thread *td)
5355 {
5356 	struct devreq *req;
5357 	device_t dev;
5358 	int error, old;
5359 
5360 	/* Locate the device to control. */
5361 	mtx_lock(&Giant);
5362 	req = (struct devreq *)data;
5363 	switch (cmd) {
5364 	case DEV_ATTACH:
5365 	case DEV_DETACH:
5366 	case DEV_ENABLE:
5367 	case DEV_DISABLE:
5368 	case DEV_SUSPEND:
5369 	case DEV_RESUME:
5370 	case DEV_SET_DRIVER:
5371 	case DEV_CLEAR_DRIVER:
5372 	case DEV_RESCAN:
5373 	case DEV_DELETE:
5374 		error = priv_check(td, PRIV_DRIVER);
5375 		if (error == 0)
5376 			error = find_device(req, &dev);
5377 		break;
5378 	default:
5379 		error = ENOTTY;
5380 		break;
5381 	}
5382 	if (error) {
5383 		mtx_unlock(&Giant);
5384 		return (error);
5385 	}
5386 
5387 	/* Perform the requested operation. */
5388 	switch (cmd) {
5389 	case DEV_ATTACH:
5390 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5391 			error = EBUSY;
5392 		else if (!device_is_enabled(dev))
5393 			error = ENXIO;
5394 		else
5395 			error = device_probe_and_attach(dev);
5396 		break;
5397 	case DEV_DETACH:
5398 		if (!device_is_attached(dev)) {
5399 			error = ENXIO;
5400 			break;
5401 		}
5402 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5403 			error = device_quiesce(dev);
5404 			if (error)
5405 				break;
5406 		}
5407 		error = device_detach(dev);
5408 		break;
5409 	case DEV_ENABLE:
5410 		if (device_is_enabled(dev)) {
5411 			error = EBUSY;
5412 			break;
5413 		}
5414 
5415 		/*
5416 		 * If the device has been probed but not attached (e.g.
5417 		 * when it has been disabled by a loader hint), just
5418 		 * attach the device rather than doing a full probe.
5419 		 */
5420 		device_enable(dev);
5421 		if (device_is_alive(dev)) {
5422 			/*
5423 			 * If the device was disabled via a hint, clear
5424 			 * the hint.
5425 			 */
5426 			if (resource_disabled(dev->driver->name, dev->unit))
5427 				resource_unset_value(dev->driver->name,
5428 				    dev->unit, "disabled");
5429 			error = device_attach(dev);
5430 		} else
5431 			error = device_probe_and_attach(dev);
5432 		break;
5433 	case DEV_DISABLE:
5434 		if (!device_is_enabled(dev)) {
5435 			error = ENXIO;
5436 			break;
5437 		}
5438 
5439 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5440 			error = device_quiesce(dev);
5441 			if (error)
5442 				break;
5443 		}
5444 
5445 		/*
5446 		 * Force DF_FIXEDCLASS on around detach to preserve
5447 		 * the existing name.
5448 		 */
5449 		old = dev->flags;
5450 		dev->flags |= DF_FIXEDCLASS;
5451 		error = device_detach(dev);
5452 		if (!(old & DF_FIXEDCLASS))
5453 			dev->flags &= ~DF_FIXEDCLASS;
5454 		if (error == 0)
5455 			device_disable(dev);
5456 		break;
5457 	case DEV_SUSPEND:
5458 		if (device_is_suspended(dev)) {
5459 			error = EBUSY;
5460 			break;
5461 		}
5462 		if (device_get_parent(dev) == NULL) {
5463 			error = EINVAL;
5464 			break;
5465 		}
5466 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5467 		break;
5468 	case DEV_RESUME:
5469 		if (!device_is_suspended(dev)) {
5470 			error = EINVAL;
5471 			break;
5472 		}
5473 		if (device_get_parent(dev) == NULL) {
5474 			error = EINVAL;
5475 			break;
5476 		}
5477 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5478 		break;
5479 	case DEV_SET_DRIVER: {
5480 		devclass_t dc;
5481 		char driver[128];
5482 
5483 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5484 		if (error)
5485 			break;
5486 		if (driver[0] == '\0') {
5487 			error = EINVAL;
5488 			break;
5489 		}
5490 		if (dev->devclass != NULL &&
5491 		    strcmp(driver, dev->devclass->name) == 0)
5492 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5493 			break;
5494 
5495 		/*
5496 		 * Scan drivers for this device's bus looking for at
5497 		 * least one matching driver.
5498 		 */
5499 		if (dev->parent == NULL) {
5500 			error = EINVAL;
5501 			break;
5502 		}
5503 		if (!driver_exists(dev->parent, driver)) {
5504 			error = ENOENT;
5505 			break;
5506 		}
5507 		dc = devclass_create(driver);
5508 		if (dc == NULL) {
5509 			error = ENOMEM;
5510 			break;
5511 		}
5512 
5513 		/* Detach device if necessary. */
5514 		if (device_is_attached(dev)) {
5515 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5516 				error = device_detach(dev);
5517 			else
5518 				error = EBUSY;
5519 			if (error)
5520 				break;
5521 		}
5522 
5523 		/* Clear any previously-fixed device class and unit. */
5524 		if (dev->flags & DF_FIXEDCLASS)
5525 			devclass_delete_device(dev->devclass, dev);
5526 		dev->flags |= DF_WILDCARD;
5527 		dev->unit = -1;
5528 
5529 		/* Force the new device class. */
5530 		error = devclass_add_device(dc, dev);
5531 		if (error)
5532 			break;
5533 		dev->flags |= DF_FIXEDCLASS;
5534 		error = device_probe_and_attach(dev);
5535 		break;
5536 	}
5537 	case DEV_CLEAR_DRIVER:
5538 		if (!(dev->flags & DF_FIXEDCLASS)) {
5539 			error = 0;
5540 			break;
5541 		}
5542 		if (device_is_attached(dev)) {
5543 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5544 				error = device_detach(dev);
5545 			else
5546 				error = EBUSY;
5547 			if (error)
5548 				break;
5549 		}
5550 
5551 		dev->flags &= ~DF_FIXEDCLASS;
5552 		dev->flags |= DF_WILDCARD;
5553 		devclass_delete_device(dev->devclass, dev);
5554 		error = device_probe_and_attach(dev);
5555 		break;
5556 	case DEV_RESCAN:
5557 		if (!device_is_attached(dev)) {
5558 			error = ENXIO;
5559 			break;
5560 		}
5561 		error = BUS_RESCAN(dev);
5562 		break;
5563 	case DEV_DELETE: {
5564 		device_t parent;
5565 
5566 		parent = device_get_parent(dev);
5567 		if (parent == NULL) {
5568 			error = EINVAL;
5569 			break;
5570 		}
5571 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5572 			if (bus_child_present(dev) != 0) {
5573 				error = EBUSY;
5574 				break;
5575 			}
5576 		}
5577 
5578 		error = device_delete_child(parent, dev);
5579 		break;
5580 	}
5581 	}
5582 	mtx_unlock(&Giant);
5583 	return (error);
5584 }
5585 
5586 static struct cdevsw devctl2_cdevsw = {
5587 	.d_version =	D_VERSION,
5588 	.d_ioctl =	devctl2_ioctl,
5589 	.d_name =	"devctl2",
5590 };
5591 
5592 static void
5593 devctl2_init(void)
5594 {
5595 
5596 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5597 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5598 }
5599 
5600 #ifdef DDB
5601 DB_SHOW_COMMAND(device, db_show_device)
5602 {
5603 	device_t dev;
5604 
5605 	if (!have_addr)
5606 		return;
5607 
5608 	dev = (device_t)addr;
5609 
5610 	db_printf("name:    %s\n", device_get_nameunit(dev));
5611 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5612 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5613 	db_printf("  addr:    %p\n", dev);
5614 	db_printf("  parent:  %p\n", dev->parent);
5615 	db_printf("  softc:   %p\n", dev->softc);
5616 	db_printf("  ivars:   %p\n", dev->ivars);
5617 }
5618 
5619 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5620 {
5621 	device_t dev;
5622 
5623 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5624 		db_show_device((db_expr_t)dev, true, count, modif);
5625 	}
5626 }
5627 #endif
5628