xref: /freebsd/sys/kern/subr_bus.c (revision ca9ac06c99bfd0150b85d4d83c396ce6237c0e05)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #define __RMAN_RESOURCE_VISIBLE
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/filio.h>
36 #include <sys/lock.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 };
70 
71 /*
72  * Forward declarations
73  */
74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76 typedef TAILQ_HEAD(device_list, device) device_list_t;
77 
78 struct devclass {
79 	TAILQ_ENTRY(devclass) link;
80 	devclass_t	parent;		/* parent in devclass hierarchy */
81 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82 	char		*name;
83 	device_t	*devices;	/* array of devices indexed by unit */
84 	int		maxunit;	/* size of devices array */
85 
86 	struct sysctl_ctx_list sysctl_ctx;
87 	struct sysctl_oid *sysctl_tree;
88 };
89 
90 /**
91  * @brief Implementation of device.
92  */
93 struct device {
94 	/*
95 	 * A device is a kernel object. The first field must be the
96 	 * current ops table for the object.
97 	 */
98 	KOBJ_FIELDS;
99 
100 	/*
101 	 * Device hierarchy.
102 	 */
103 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105 	device_t	parent;		/**< parent of this device  */
106 	device_list_t	children;	/**< list of child devices */
107 
108 	/*
109 	 * Details of this device.
110 	 */
111 	driver_t	*driver;	/**< current driver */
112 	devclass_t	devclass;	/**< current device class */
113 	int		unit;		/**< current unit number */
114 	char*		nameunit;	/**< name+unit e.g. foodev0 */
115 	char*		desc;		/**< driver specific description */
116 	int		busy;		/**< count of calls to device_busy() */
117 	device_state_t	state;		/**< current device state  */
118 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119 	u_short		flags;		/**< internal device flags  */
120 #define	DF_ENABLED	1		/* device should be probed/attached */
121 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122 #define	DF_WILDCARD	4		/* unit was originally wildcard */
123 #define	DF_DESCMALLOCED	8		/* description was malloced */
124 #define	DF_QUIET	16		/* don't print verbose attach message */
125 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127 #define	DF_REBID	128		/* Can rebid after attach */
128 	u_char	order;			/**< order from device_add_child_ordered() */
129 	u_char	pad;
130 	void	*ivars;			/**< instance variables  */
131 	void	*softc;			/**< current driver's variables  */
132 
133 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135 };
136 
137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139 
140 #ifdef BUS_DEBUG
141 
142 static int bus_debug = 1;
143 TUNABLE_INT("bus.debug", &bus_debug);
144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145     "Debug bus code");
146 
147 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149 #define DRIVERNAME(d)	((d)? d->name : "no driver")
150 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
151 
152 /**
153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154  * prevent syslog from deleting initial spaces
155  */
156 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157 
158 static void print_device_short(device_t dev, int indent);
159 static void print_device(device_t dev, int indent);
160 void print_device_tree_short(device_t dev, int indent);
161 void print_device_tree(device_t dev, int indent);
162 static void print_driver_short(driver_t *driver, int indent);
163 static void print_driver(driver_t *driver, int indent);
164 static void print_driver_list(driver_list_t drivers, int indent);
165 static void print_devclass_short(devclass_t dc, int indent);
166 static void print_devclass(devclass_t dc, int indent);
167 void print_devclass_list_short(void);
168 void print_devclass_list(void);
169 
170 #else
171 /* Make the compiler ignore the function calls */
172 #define PDEBUG(a)			/* nop */
173 #define DEVICENAME(d)			/* nop */
174 #define DRIVERNAME(d)			/* nop */
175 #define DEVCLANAME(d)			/* nop */
176 
177 #define print_device_short(d,i)		/* nop */
178 #define print_device(d,i)		/* nop */
179 #define print_device_tree_short(d,i)	/* nop */
180 #define print_device_tree(d,i)		/* nop */
181 #define print_driver_short(d,i)		/* nop */
182 #define print_driver(d,i)		/* nop */
183 #define print_driver_list(d,i)		/* nop */
184 #define print_devclass_short(d,i)	/* nop */
185 #define print_devclass(d,i)		/* nop */
186 #define print_devclass_list_short()	/* nop */
187 #define print_devclass_list()		/* nop */
188 #endif
189 
190 /*
191  * dev sysctl tree
192  */
193 
194 enum {
195 	DEVCLASS_SYSCTL_PARENT,
196 };
197 
198 static int
199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200 {
201 	devclass_t dc = (devclass_t)arg1;
202 	const char *value;
203 
204 	switch (arg2) {
205 	case DEVCLASS_SYSCTL_PARENT:
206 		value = dc->parent ? dc->parent->name : "";
207 		break;
208 	default:
209 		return (EINVAL);
210 	}
211 	return (SYSCTL_OUT(req, value, strlen(value)));
212 }
213 
214 static void
215 devclass_sysctl_init(devclass_t dc)
216 {
217 
218 	if (dc->sysctl_tree != NULL)
219 		return;
220 	sysctl_ctx_init(&dc->sysctl_ctx);
221 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
222 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
223 	    CTLFLAG_RD, 0, "");
224 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
225 	    OID_AUTO, "%parent", CTLFLAG_RD,
226 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
227 	    "parent class");
228 }
229 
230 enum {
231 	DEVICE_SYSCTL_DESC,
232 	DEVICE_SYSCTL_DRIVER,
233 	DEVICE_SYSCTL_LOCATION,
234 	DEVICE_SYSCTL_PNPINFO,
235 	DEVICE_SYSCTL_PARENT,
236 };
237 
238 static int
239 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
240 {
241 	device_t dev = (device_t)arg1;
242 	const char *value;
243 	char *buf;
244 	int error;
245 
246 	buf = NULL;
247 	switch (arg2) {
248 	case DEVICE_SYSCTL_DESC:
249 		value = dev->desc ? dev->desc : "";
250 		break;
251 	case DEVICE_SYSCTL_DRIVER:
252 		value = dev->driver ? dev->driver->name : "";
253 		break;
254 	case DEVICE_SYSCTL_LOCATION:
255 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
256 		bus_child_location_str(dev, buf, 1024);
257 		break;
258 	case DEVICE_SYSCTL_PNPINFO:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_pnpinfo_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PARENT:
263 		value = dev->parent ? dev->parent->nameunit : "";
264 		break;
265 	default:
266 		return (EINVAL);
267 	}
268 	error = SYSCTL_OUT(req, value, strlen(value));
269 	if (buf != NULL)
270 		free(buf, M_BUS);
271 	return (error);
272 }
273 
274 static void
275 device_sysctl_init(device_t dev)
276 {
277 	devclass_t dc = dev->devclass;
278 
279 	if (dev->sysctl_tree != NULL)
280 		return;
281 	devclass_sysctl_init(dc);
282 	sysctl_ctx_init(&dev->sysctl_ctx);
283 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
284 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
285 	    dev->nameunit + strlen(dc->name),
286 	    CTLFLAG_RD, 0, "");
287 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
288 	    OID_AUTO, "%desc", CTLFLAG_RD,
289 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
290 	    "device description");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%driver", CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
294 	    "device driver name");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%location", CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
298 	    "device location relative to parent");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
302 	    "device identification");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%parent", CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
306 	    "parent device");
307 }
308 
309 static void
310 device_sysctl_fini(device_t dev)
311 {
312 	if (dev->sysctl_tree == NULL)
313 		return;
314 	sysctl_ctx_free(&dev->sysctl_ctx);
315 	dev->sysctl_tree = NULL;
316 }
317 
318 /*
319  * /dev/devctl implementation
320  */
321 
322 /*
323  * This design allows only one reader for /dev/devctl.  This is not desirable
324  * in the long run, but will get a lot of hair out of this implementation.
325  * Maybe we should make this device a clonable device.
326  *
327  * Also note: we specifically do not attach a device to the device_t tree
328  * to avoid potential chicken and egg problems.  One could argue that all
329  * of this belongs to the root node.  One could also further argue that the
330  * sysctl interface that we have not might more properly be an ioctl
331  * interface, but at this stage of the game, I'm not inclined to rock that
332  * boat.
333  *
334  * I'm also not sure that the SIGIO support is done correctly or not, as
335  * I copied it from a driver that had SIGIO support that likely hasn't been
336  * tested since 3.4 or 2.2.8!
337  */
338 
339 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
340 static int devctl_disable = 0;
341 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
342 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
343     sysctl_devctl_disable, "I", "devctl disable");
344 
345 static d_open_t		devopen;
346 static d_close_t	devclose;
347 static d_read_t		devread;
348 static d_ioctl_t	devioctl;
349 static d_poll_t		devpoll;
350 
351 static struct cdevsw dev_cdevsw = {
352 	.d_version =	D_VERSION,
353 	.d_flags =	D_NEEDGIANT,
354 	.d_open =	devopen,
355 	.d_close =	devclose,
356 	.d_read =	devread,
357 	.d_ioctl =	devioctl,
358 	.d_poll =	devpoll,
359 	.d_name =	"devctl",
360 };
361 
362 struct dev_event_info
363 {
364 	char *dei_data;
365 	TAILQ_ENTRY(dev_event_info) dei_link;
366 };
367 
368 TAILQ_HEAD(devq, dev_event_info);
369 
370 static struct dev_softc
371 {
372 	int	inuse;
373 	int	nonblock;
374 	struct mtx mtx;
375 	struct cv cv;
376 	struct selinfo sel;
377 	struct devq devq;
378 	struct proc *async_proc;
379 } devsoftc;
380 
381 static struct cdev *devctl_dev;
382 
383 static void
384 devinit(void)
385 {
386 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
387 	    "devctl");
388 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
389 	cv_init(&devsoftc.cv, "dev cv");
390 	TAILQ_INIT(&devsoftc.devq);
391 }
392 
393 static int
394 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
395 {
396 	if (devsoftc.inuse)
397 		return (EBUSY);
398 	/* move to init */
399 	devsoftc.inuse = 1;
400 	devsoftc.nonblock = 0;
401 	devsoftc.async_proc = NULL;
402 	return (0);
403 }
404 
405 static int
406 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
407 {
408 	devsoftc.inuse = 0;
409 	mtx_lock(&devsoftc.mtx);
410 	cv_broadcast(&devsoftc.cv);
411 	mtx_unlock(&devsoftc.mtx);
412 
413 	return (0);
414 }
415 
416 /*
417  * The read channel for this device is used to report changes to
418  * userland in realtime.  We are required to free the data as well as
419  * the n1 object because we allocate them separately.  Also note that
420  * we return one record at a time.  If you try to read this device a
421  * character at a time, you will loose the rest of the data.  Listening
422  * programs are expected to cope.
423  */
424 static int
425 devread(struct cdev *dev, struct uio *uio, int ioflag)
426 {
427 	struct dev_event_info *n1;
428 	int rv;
429 
430 	mtx_lock(&devsoftc.mtx);
431 	while (TAILQ_EMPTY(&devsoftc.devq)) {
432 		if (devsoftc.nonblock) {
433 			mtx_unlock(&devsoftc.mtx);
434 			return (EAGAIN);
435 		}
436 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
437 		if (rv) {
438 			/*
439 			 * Need to translate ERESTART to EINTR here? -- jake
440 			 */
441 			mtx_unlock(&devsoftc.mtx);
442 			return (rv);
443 		}
444 	}
445 	n1 = TAILQ_FIRST(&devsoftc.devq);
446 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
447 	mtx_unlock(&devsoftc.mtx);
448 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
449 	free(n1->dei_data, M_BUS);
450 	free(n1, M_BUS);
451 	return (rv);
452 }
453 
454 static	int
455 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
456 {
457 	switch (cmd) {
458 
459 	case FIONBIO:
460 		if (*(int*)data)
461 			devsoftc.nonblock = 1;
462 		else
463 			devsoftc.nonblock = 0;
464 		return (0);
465 	case FIOASYNC:
466 		if (*(int*)data)
467 			devsoftc.async_proc = td->td_proc;
468 		else
469 			devsoftc.async_proc = NULL;
470 		return (0);
471 
472 		/* (un)Support for other fcntl() calls. */
473 	case FIOCLEX:
474 	case FIONCLEX:
475 	case FIONREAD:
476 	case FIOSETOWN:
477 	case FIOGETOWN:
478 	default:
479 		break;
480 	}
481 	return (ENOTTY);
482 }
483 
484 static	int
485 devpoll(struct cdev *dev, int events, d_thread_t *td)
486 {
487 	int	revents = 0;
488 
489 	mtx_lock(&devsoftc.mtx);
490 	if (events & (POLLIN | POLLRDNORM)) {
491 		if (!TAILQ_EMPTY(&devsoftc.devq))
492 			revents = events & (POLLIN | POLLRDNORM);
493 		else
494 			selrecord(td, &devsoftc.sel);
495 	}
496 	mtx_unlock(&devsoftc.mtx);
497 
498 	return (revents);
499 }
500 
501 /**
502  * @brief Queue data to be read from the devctl device
503  *
504  * Generic interface to queue data to the devctl device.  It is
505  * assumed that @p data is properly formatted.  It is further assumed
506  * that @p data is allocated using the M_BUS malloc type.
507  */
508 void
509 devctl_queue_data(char *data)
510 {
511 	struct dev_event_info *n1 = NULL;
512 	struct proc *p;
513 
514 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
515 	if (n1 == NULL)
516 		return;
517 	n1->dei_data = data;
518 	mtx_lock(&devsoftc.mtx);
519 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
520 	cv_broadcast(&devsoftc.cv);
521 	mtx_unlock(&devsoftc.mtx);
522 	selwakeup(&devsoftc.sel);
523 	p = devsoftc.async_proc;
524 	if (p != NULL) {
525 		PROC_LOCK(p);
526 		psignal(p, SIGIO);
527 		PROC_UNLOCK(p);
528 	}
529 }
530 
531 /**
532  * @brief Send a 'notification' to userland, using standard ways
533  */
534 void
535 devctl_notify(const char *system, const char *subsystem, const char *type,
536     const char *data)
537 {
538 	int len = 0;
539 	char *msg;
540 
541 	if (system == NULL)
542 		return;		/* BOGUS!  Must specify system. */
543 	if (subsystem == NULL)
544 		return;		/* BOGUS!  Must specify subsystem. */
545 	if (type == NULL)
546 		return;		/* BOGUS!  Must specify type. */
547 	len += strlen(" system=") + strlen(system);
548 	len += strlen(" subsystem=") + strlen(subsystem);
549 	len += strlen(" type=") + strlen(type);
550 	/* add in the data message plus newline. */
551 	if (data != NULL)
552 		len += strlen(data);
553 	len += 3;	/* '!', '\n', and NUL */
554 	msg = malloc(len, M_BUS, M_NOWAIT);
555 	if (msg == NULL)
556 		return;		/* Drop it on the floor */
557 	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
558 	    subsystem, type, data);
559 	devctl_queue_data(msg);
560 }
561 
562 /*
563  * Common routine that tries to make sending messages as easy as possible.
564  * We allocate memory for the data, copy strings into that, but do not
565  * free it unless there's an error.  The dequeue part of the driver should
566  * free the data.  We don't send data when the device is disabled.  We do
567  * send data, even when we have no listeners, because we wish to avoid
568  * races relating to startup and restart of listening applications.
569  *
570  * devaddq is designed to string together the type of event, with the
571  * object of that event, plus the plug and play info and location info
572  * for that event.  This is likely most useful for devices, but less
573  * useful for other consumers of this interface.  Those should use
574  * the devctl_queue_data() interface instead.
575  */
576 static void
577 devaddq(const char *type, const char *what, device_t dev)
578 {
579 	char *data = NULL;
580 	char *loc = NULL;
581 	char *pnp = NULL;
582 	const char *parstr;
583 
584 	if (devctl_disable)
585 		return;
586 	data = malloc(1024, M_BUS, M_NOWAIT);
587 	if (data == NULL)
588 		goto bad;
589 
590 	/* get the bus specific location of this device */
591 	loc = malloc(1024, M_BUS, M_NOWAIT);
592 	if (loc == NULL)
593 		goto bad;
594 	*loc = '\0';
595 	bus_child_location_str(dev, loc, 1024);
596 
597 	/* Get the bus specific pnp info of this device */
598 	pnp = malloc(1024, M_BUS, M_NOWAIT);
599 	if (pnp == NULL)
600 		goto bad;
601 	*pnp = '\0';
602 	bus_child_pnpinfo_str(dev, pnp, 1024);
603 
604 	/* Get the parent of this device, or / if high enough in the tree. */
605 	if (device_get_parent(dev) == NULL)
606 		parstr = ".";	/* Or '/' ? */
607 	else
608 		parstr = device_get_nameunit(device_get_parent(dev));
609 	/* String it all together. */
610 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
611 	  parstr);
612 	free(loc, M_BUS);
613 	free(pnp, M_BUS);
614 	devctl_queue_data(data);
615 	return;
616 bad:
617 	free(pnp, M_BUS);
618 	free(loc, M_BUS);
619 	free(data, M_BUS);
620 	return;
621 }
622 
623 /*
624  * A device was added to the tree.  We are called just after it successfully
625  * attaches (that is, probe and attach success for this device).  No call
626  * is made if a device is merely parented into the tree.  See devnomatch
627  * if probe fails.  If attach fails, no notification is sent (but maybe
628  * we should have a different message for this).
629  */
630 static void
631 devadded(device_t dev)
632 {
633 	char *pnp = NULL;
634 	char *tmp = NULL;
635 
636 	pnp = malloc(1024, M_BUS, M_NOWAIT);
637 	if (pnp == NULL)
638 		goto fail;
639 	tmp = malloc(1024, M_BUS, M_NOWAIT);
640 	if (tmp == NULL)
641 		goto fail;
642 	*pnp = '\0';
643 	bus_child_pnpinfo_str(dev, pnp, 1024);
644 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
645 	devaddq("+", tmp, dev);
646 fail:
647 	if (pnp != NULL)
648 		free(pnp, M_BUS);
649 	if (tmp != NULL)
650 		free(tmp, M_BUS);
651 	return;
652 }
653 
654 /*
655  * A device was removed from the tree.  We are called just before this
656  * happens.
657  */
658 static void
659 devremoved(device_t dev)
660 {
661 	char *pnp = NULL;
662 	char *tmp = NULL;
663 
664 	pnp = malloc(1024, M_BUS, M_NOWAIT);
665 	if (pnp == NULL)
666 		goto fail;
667 	tmp = malloc(1024, M_BUS, M_NOWAIT);
668 	if (tmp == NULL)
669 		goto fail;
670 	*pnp = '\0';
671 	bus_child_pnpinfo_str(dev, pnp, 1024);
672 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
673 	devaddq("-", tmp, dev);
674 fail:
675 	if (pnp != NULL)
676 		free(pnp, M_BUS);
677 	if (tmp != NULL)
678 		free(tmp, M_BUS);
679 	return;
680 }
681 
682 /*
683  * Called when there's no match for this device.  This is only called
684  * the first time that no match happens, so we don't keep getitng this
685  * message.  Should that prove to be undesirable, we can change it.
686  * This is called when all drivers that can attach to a given bus
687  * decline to accept this device.  Other errrors may not be detected.
688  */
689 static void
690 devnomatch(device_t dev)
691 {
692 	devaddq("?", "", dev);
693 }
694 
695 static int
696 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
697 {
698 	struct dev_event_info *n1;
699 	int dis, error;
700 
701 	dis = devctl_disable;
702 	error = sysctl_handle_int(oidp, &dis, 0, req);
703 	if (error || !req->newptr)
704 		return (error);
705 	mtx_lock(&devsoftc.mtx);
706 	devctl_disable = dis;
707 	if (dis) {
708 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
709 			n1 = TAILQ_FIRST(&devsoftc.devq);
710 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
711 			free(n1->dei_data, M_BUS);
712 			free(n1, M_BUS);
713 		}
714 	}
715 	mtx_unlock(&devsoftc.mtx);
716 	return (0);
717 }
718 
719 /* End of /dev/devctl code */
720 
721 TAILQ_HEAD(,device)	bus_data_devices;
722 static int bus_data_generation = 1;
723 
724 kobj_method_t null_methods[] = {
725 	{ 0, 0 }
726 };
727 
728 DEFINE_CLASS(null, null_methods, 0);
729 
730 /*
731  * Devclass implementation
732  */
733 
734 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
735 
736 
737 /**
738  * @internal
739  * @brief Find or create a device class
740  *
741  * If a device class with the name @p classname exists, return it,
742  * otherwise if @p create is non-zero create and return a new device
743  * class.
744  *
745  * If @p parentname is non-NULL, the parent of the devclass is set to
746  * the devclass of that name.
747  *
748  * @param classname	the devclass name to find or create
749  * @param parentname	the parent devclass name or @c NULL
750  * @param create	non-zero to create a devclass
751  */
752 static devclass_t
753 devclass_find_internal(const char *classname, const char *parentname,
754 		       int create)
755 {
756 	devclass_t dc;
757 
758 	PDEBUG(("looking for %s", classname));
759 	if (!classname)
760 		return (NULL);
761 
762 	TAILQ_FOREACH(dc, &devclasses, link) {
763 		if (!strcmp(dc->name, classname))
764 			break;
765 	}
766 
767 	if (create && !dc) {
768 		PDEBUG(("creating %s", classname));
769 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
770 		    M_BUS, M_NOWAIT|M_ZERO);
771 		if (!dc)
772 			return (NULL);
773 		dc->parent = NULL;
774 		dc->name = (char*) (dc + 1);
775 		strcpy(dc->name, classname);
776 		TAILQ_INIT(&dc->drivers);
777 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
778 
779 		bus_data_generation_update();
780 	}
781 	if (parentname && dc && !dc->parent) {
782 		dc->parent = devclass_find_internal(parentname, 0, FALSE);
783 	}
784 
785 	return (dc);
786 }
787 
788 /**
789  * @brief Create a device class
790  *
791  * If a device class with the name @p classname exists, return it,
792  * otherwise create and return a new device class.
793  *
794  * @param classname	the devclass name to find or create
795  */
796 devclass_t
797 devclass_create(const char *classname)
798 {
799 	return (devclass_find_internal(classname, 0, TRUE));
800 }
801 
802 /**
803  * @brief Find a device class
804  *
805  * If a device class with the name @p classname exists, return it,
806  * otherwise return @c NULL.
807  *
808  * @param classname	the devclass name to find
809  */
810 devclass_t
811 devclass_find(const char *classname)
812 {
813 	return (devclass_find_internal(classname, 0, FALSE));
814 }
815 
816 /**
817  * @brief Add a device driver to a device class
818  *
819  * Add a device driver to a devclass. This is normally called
820  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
821  * all devices in the devclass will be called to allow them to attempt
822  * to re-probe any unmatched children.
823  *
824  * @param dc		the devclass to edit
825  * @param driver	the driver to register
826  */
827 int
828 devclass_add_driver(devclass_t dc, driver_t *driver)
829 {
830 	driverlink_t dl;
831 	int i;
832 
833 	PDEBUG(("%s", DRIVERNAME(driver)));
834 
835 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
836 	if (!dl)
837 		return (ENOMEM);
838 
839 	/*
840 	 * Compile the driver's methods. Also increase the reference count
841 	 * so that the class doesn't get freed when the last instance
842 	 * goes. This means we can safely use static methods and avoids a
843 	 * double-free in devclass_delete_driver.
844 	 */
845 	kobj_class_compile((kobj_class_t) driver);
846 
847 	/*
848 	 * Make sure the devclass which the driver is implementing exists.
849 	 */
850 	devclass_find_internal(driver->name, 0, TRUE);
851 
852 	dl->driver = driver;
853 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
854 	driver->refs++;
855 
856 	/*
857 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
858 	 */
859 	for (i = 0; i < dc->maxunit; i++)
860 		if (dc->devices[i])
861 			BUS_DRIVER_ADDED(dc->devices[i], driver);
862 
863 	bus_data_generation_update();
864 	return (0);
865 }
866 
867 /**
868  * @brief Delete a device driver from a device class
869  *
870  * Delete a device driver from a devclass. This is normally called
871  * automatically by DRIVER_MODULE().
872  *
873  * If the driver is currently attached to any devices,
874  * devclass_delete_driver() will first attempt to detach from each
875  * device. If one of the detach calls fails, the driver will not be
876  * deleted.
877  *
878  * @param dc		the devclass to edit
879  * @param driver	the driver to unregister
880  */
881 int
882 devclass_delete_driver(devclass_t busclass, driver_t *driver)
883 {
884 	devclass_t dc = devclass_find(driver->name);
885 	driverlink_t dl;
886 	device_t dev;
887 	int i;
888 	int error;
889 
890 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
891 
892 	if (!dc)
893 		return (0);
894 
895 	/*
896 	 * Find the link structure in the bus' list of drivers.
897 	 */
898 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
899 		if (dl->driver == driver)
900 			break;
901 	}
902 
903 	if (!dl) {
904 		PDEBUG(("%s not found in %s list", driver->name,
905 		    busclass->name));
906 		return (ENOENT);
907 	}
908 
909 	/*
910 	 * Disassociate from any devices.  We iterate through all the
911 	 * devices in the devclass of the driver and detach any which are
912 	 * using the driver and which have a parent in the devclass which
913 	 * we are deleting from.
914 	 *
915 	 * Note that since a driver can be in multiple devclasses, we
916 	 * should not detach devices which are not children of devices in
917 	 * the affected devclass.
918 	 */
919 	for (i = 0; i < dc->maxunit; i++) {
920 		if (dc->devices[i]) {
921 			dev = dc->devices[i];
922 			if (dev->driver == driver && dev->parent &&
923 			    dev->parent->devclass == busclass) {
924 				if ((error = device_detach(dev)) != 0)
925 					return (error);
926 				device_set_driver(dev, NULL);
927 			}
928 		}
929 	}
930 
931 	TAILQ_REMOVE(&busclass->drivers, dl, link);
932 	free(dl, M_BUS);
933 
934 	driver->refs--;
935 	if (driver->refs == 0)
936 		kobj_class_free((kobj_class_t) driver);
937 
938 	bus_data_generation_update();
939 	return (0);
940 }
941 
942 /**
943  * @brief Quiesces a set of device drivers from a device class
944  *
945  * Quiesce a device driver from a devclass. This is normally called
946  * automatically by DRIVER_MODULE().
947  *
948  * If the driver is currently attached to any devices,
949  * devclass_quiesece_driver() will first attempt to quiesce each
950  * device.
951  *
952  * @param dc		the devclass to edit
953  * @param driver	the driver to unregister
954  */
955 int
956 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
957 {
958 	devclass_t dc = devclass_find(driver->name);
959 	driverlink_t dl;
960 	device_t dev;
961 	int i;
962 	int error;
963 
964 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
965 
966 	if (!dc)
967 		return (0);
968 
969 	/*
970 	 * Find the link structure in the bus' list of drivers.
971 	 */
972 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
973 		if (dl->driver == driver)
974 			break;
975 	}
976 
977 	if (!dl) {
978 		PDEBUG(("%s not found in %s list", driver->name,
979 		    busclass->name));
980 		return (ENOENT);
981 	}
982 
983 	/*
984 	 * Quiesce all devices.  We iterate through all the devices in
985 	 * the devclass of the driver and quiesce any which are using
986 	 * the driver and which have a parent in the devclass which we
987 	 * are quiescing.
988 	 *
989 	 * Note that since a driver can be in multiple devclasses, we
990 	 * should not quiesce devices which are not children of
991 	 * devices in the affected devclass.
992 	 */
993 	for (i = 0; i < dc->maxunit; i++) {
994 		if (dc->devices[i]) {
995 			dev = dc->devices[i];
996 			if (dev->driver == driver && dev->parent &&
997 			    dev->parent->devclass == busclass) {
998 				if ((error = device_quiesce(dev)) != 0)
999 					return (error);
1000 			}
1001 		}
1002 	}
1003 
1004 	return (0);
1005 }
1006 
1007 /**
1008  * @internal
1009  */
1010 static driverlink_t
1011 devclass_find_driver_internal(devclass_t dc, const char *classname)
1012 {
1013 	driverlink_t dl;
1014 
1015 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1016 
1017 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1018 		if (!strcmp(dl->driver->name, classname))
1019 			return (dl);
1020 	}
1021 
1022 	PDEBUG(("not found"));
1023 	return (NULL);
1024 }
1025 
1026 /**
1027  * @brief Search a devclass for a driver
1028  *
1029  * This function searches the devclass's list of drivers and returns
1030  * the first driver whose name is @p classname or @c NULL if there is
1031  * no driver of that name.
1032  *
1033  * @param dc		the devclass to search
1034  * @param classname	the driver name to search for
1035  */
1036 kobj_class_t
1037 devclass_find_driver(devclass_t dc, const char *classname)
1038 {
1039 	driverlink_t dl;
1040 
1041 	dl = devclass_find_driver_internal(dc, classname);
1042 	if (dl)
1043 		return (dl->driver);
1044 	return (NULL);
1045 }
1046 
1047 /**
1048  * @brief Return the name of the devclass
1049  */
1050 const char *
1051 devclass_get_name(devclass_t dc)
1052 {
1053 	return (dc->name);
1054 }
1055 
1056 /**
1057  * @brief Find a device given a unit number
1058  *
1059  * @param dc		the devclass to search
1060  * @param unit		the unit number to search for
1061  *
1062  * @returns		the device with the given unit number or @c
1063  *			NULL if there is no such device
1064  */
1065 device_t
1066 devclass_get_device(devclass_t dc, int unit)
1067 {
1068 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1069 		return (NULL);
1070 	return (dc->devices[unit]);
1071 }
1072 
1073 /**
1074  * @brief Find the softc field of a device given a unit number
1075  *
1076  * @param dc		the devclass to search
1077  * @param unit		the unit number to search for
1078  *
1079  * @returns		the softc field of the device with the given
1080  *			unit number or @c NULL if there is no such
1081  *			device
1082  */
1083 void *
1084 devclass_get_softc(devclass_t dc, int unit)
1085 {
1086 	device_t dev;
1087 
1088 	dev = devclass_get_device(dc, unit);
1089 	if (!dev)
1090 		return (NULL);
1091 
1092 	return (device_get_softc(dev));
1093 }
1094 
1095 /**
1096  * @brief Get a list of devices in the devclass
1097  *
1098  * An array containing a list of all the devices in the given devclass
1099  * is allocated and returned in @p *devlistp. The number of devices
1100  * in the array is returned in @p *devcountp. The caller should free
1101  * the array using @c free(p, M_TEMP).
1102  *
1103  * @param dc		the devclass to examine
1104  * @param devlistp	points at location for array pointer return
1105  *			value
1106  * @param devcountp	points at location for array size return value
1107  *
1108  * @retval 0		success
1109  * @retval ENOMEM	the array allocation failed
1110  */
1111 int
1112 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1113 {
1114 	int count, i;
1115 	device_t *list;
1116 
1117 	count = devclass_get_count(dc);
1118 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1119 	if (!list)
1120 		return (ENOMEM);
1121 
1122 	count = 0;
1123 	for (i = 0; i < dc->maxunit; i++) {
1124 		if (dc->devices[i]) {
1125 			list[count] = dc->devices[i];
1126 			count++;
1127 		}
1128 	}
1129 
1130 	*devlistp = list;
1131 	*devcountp = count;
1132 
1133 	return (0);
1134 }
1135 
1136 /**
1137  * @brief Get the number of devices in a devclass
1138  *
1139  * @param dc		the devclass to examine
1140  */
1141 int
1142 devclass_get_count(devclass_t dc)
1143 {
1144 	int count, i;
1145 
1146 	count = 0;
1147 	for (i = 0; i < dc->maxunit; i++)
1148 		if (dc->devices[i])
1149 			count++;
1150 	return (count);
1151 }
1152 
1153 /**
1154  * @brief Get the maximum unit number used in a devclass
1155  *
1156  * @param dc		the devclass to examine
1157  */
1158 int
1159 devclass_get_maxunit(devclass_t dc)
1160 {
1161 	return (dc->maxunit);
1162 }
1163 
1164 /**
1165  * @brief Find a free unit number in a devclass
1166  *
1167  * This function searches for the first unused unit number greater
1168  * that or equal to @p unit.
1169  *
1170  * @param dc		the devclass to examine
1171  * @param unit		the first unit number to check
1172  */
1173 int
1174 devclass_find_free_unit(devclass_t dc, int unit)
1175 {
1176 	if (dc == NULL)
1177 		return (unit);
1178 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1179 		unit++;
1180 	return (unit);
1181 }
1182 
1183 /**
1184  * @brief Set the parent of a devclass
1185  *
1186  * The parent class is normally initialised automatically by
1187  * DRIVER_MODULE().
1188  *
1189  * @param dc		the devclass to edit
1190  * @param pdc		the new parent devclass
1191  */
1192 void
1193 devclass_set_parent(devclass_t dc, devclass_t pdc)
1194 {
1195 	dc->parent = pdc;
1196 }
1197 
1198 /**
1199  * @brief Get the parent of a devclass
1200  *
1201  * @param dc		the devclass to examine
1202  */
1203 devclass_t
1204 devclass_get_parent(devclass_t dc)
1205 {
1206 	return (dc->parent);
1207 }
1208 
1209 struct sysctl_ctx_list *
1210 devclass_get_sysctl_ctx(devclass_t dc)
1211 {
1212 	return (&dc->sysctl_ctx);
1213 }
1214 
1215 struct sysctl_oid *
1216 devclass_get_sysctl_tree(devclass_t dc)
1217 {
1218 	return (dc->sysctl_tree);
1219 }
1220 
1221 /**
1222  * @internal
1223  * @brief Allocate a unit number
1224  *
1225  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1226  * will do). The allocated unit number is returned in @p *unitp.
1227 
1228  * @param dc		the devclass to allocate from
1229  * @param unitp		points at the location for the allocated unit
1230  *			number
1231  *
1232  * @retval 0		success
1233  * @retval EEXIST	the requested unit number is already allocated
1234  * @retval ENOMEM	memory allocation failure
1235  */
1236 static int
1237 devclass_alloc_unit(devclass_t dc, int *unitp)
1238 {
1239 	int unit = *unitp;
1240 
1241 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1242 
1243 	/* If we were given a wired unit number, check for existing device */
1244 	/* XXX imp XXX */
1245 	if (unit != -1) {
1246 		if (unit >= 0 && unit < dc->maxunit &&
1247 		    dc->devices[unit] != NULL) {
1248 			if (bootverbose)
1249 				printf("%s: %s%d already exists; skipping it\n",
1250 				    dc->name, dc->name, *unitp);
1251 			return (EEXIST);
1252 		}
1253 	} else {
1254 		/* Unwired device, find the next available slot for it */
1255 		unit = 0;
1256 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1257 			unit++;
1258 	}
1259 
1260 	/*
1261 	 * We've selected a unit beyond the length of the table, so let's
1262 	 * extend the table to make room for all units up to and including
1263 	 * this one.
1264 	 */
1265 	if (unit >= dc->maxunit) {
1266 		device_t *newlist;
1267 		int newsize;
1268 
1269 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1270 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1271 		if (!newlist)
1272 			return (ENOMEM);
1273 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1274 		bzero(newlist + dc->maxunit,
1275 		    sizeof(device_t) * (newsize - dc->maxunit));
1276 		if (dc->devices)
1277 			free(dc->devices, M_BUS);
1278 		dc->devices = newlist;
1279 		dc->maxunit = newsize;
1280 	}
1281 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1282 
1283 	*unitp = unit;
1284 	return (0);
1285 }
1286 
1287 /**
1288  * @internal
1289  * @brief Add a device to a devclass
1290  *
1291  * A unit number is allocated for the device (using the device's
1292  * preferred unit number if any) and the device is registered in the
1293  * devclass. This allows the device to be looked up by its unit
1294  * number, e.g. by decoding a dev_t minor number.
1295  *
1296  * @param dc		the devclass to add to
1297  * @param dev		the device to add
1298  *
1299  * @retval 0		success
1300  * @retval EEXIST	the requested unit number is already allocated
1301  * @retval ENOMEM	memory allocation failure
1302  */
1303 static int
1304 devclass_add_device(devclass_t dc, device_t dev)
1305 {
1306 	int buflen, error;
1307 
1308 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1309 
1310 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1311 	if (buflen < 0)
1312 		return (ENOMEM);
1313 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1314 	if (!dev->nameunit)
1315 		return (ENOMEM);
1316 
1317 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1318 		free(dev->nameunit, M_BUS);
1319 		dev->nameunit = NULL;
1320 		return (error);
1321 	}
1322 	dc->devices[dev->unit] = dev;
1323 	dev->devclass = dc;
1324 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1325 
1326 	return (0);
1327 }
1328 
1329 /**
1330  * @internal
1331  * @brief Delete a device from a devclass
1332  *
1333  * The device is removed from the devclass's device list and its unit
1334  * number is freed.
1335 
1336  * @param dc		the devclass to delete from
1337  * @param dev		the device to delete
1338  *
1339  * @retval 0		success
1340  */
1341 static int
1342 devclass_delete_device(devclass_t dc, device_t dev)
1343 {
1344 	if (!dc || !dev)
1345 		return (0);
1346 
1347 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1348 
1349 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1350 		panic("devclass_delete_device: inconsistent device class");
1351 	dc->devices[dev->unit] = NULL;
1352 	if (dev->flags & DF_WILDCARD)
1353 		dev->unit = -1;
1354 	dev->devclass = NULL;
1355 	free(dev->nameunit, M_BUS);
1356 	dev->nameunit = NULL;
1357 
1358 	return (0);
1359 }
1360 
1361 /**
1362  * @internal
1363  * @brief Make a new device and add it as a child of @p parent
1364  *
1365  * @param parent	the parent of the new device
1366  * @param name		the devclass name of the new device or @c NULL
1367  *			to leave the devclass unspecified
1368  * @parem unit		the unit number of the new device of @c -1 to
1369  *			leave the unit number unspecified
1370  *
1371  * @returns the new device
1372  */
1373 static device_t
1374 make_device(device_t parent, const char *name, int unit)
1375 {
1376 	device_t dev;
1377 	devclass_t dc;
1378 
1379 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1380 
1381 	if (name) {
1382 		dc = devclass_find_internal(name, 0, TRUE);
1383 		if (!dc) {
1384 			printf("make_device: can't find device class %s\n",
1385 			    name);
1386 			return (NULL);
1387 		}
1388 	} else {
1389 		dc = NULL;
1390 	}
1391 
1392 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1393 	if (!dev)
1394 		return (NULL);
1395 
1396 	dev->parent = parent;
1397 	TAILQ_INIT(&dev->children);
1398 	kobj_init((kobj_t) dev, &null_class);
1399 	dev->driver = NULL;
1400 	dev->devclass = NULL;
1401 	dev->unit = unit;
1402 	dev->nameunit = NULL;
1403 	dev->desc = NULL;
1404 	dev->busy = 0;
1405 	dev->devflags = 0;
1406 	dev->flags = DF_ENABLED;
1407 	dev->order = 0;
1408 	if (unit == -1)
1409 		dev->flags |= DF_WILDCARD;
1410 	if (name) {
1411 		dev->flags |= DF_FIXEDCLASS;
1412 		if (devclass_add_device(dc, dev)) {
1413 			kobj_delete((kobj_t) dev, M_BUS);
1414 			return (NULL);
1415 		}
1416 	}
1417 	dev->ivars = NULL;
1418 	dev->softc = NULL;
1419 
1420 	dev->state = DS_NOTPRESENT;
1421 
1422 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1423 	bus_data_generation_update();
1424 
1425 	return (dev);
1426 }
1427 
1428 /**
1429  * @internal
1430  * @brief Print a description of a device.
1431  */
1432 static int
1433 device_print_child(device_t dev, device_t child)
1434 {
1435 	int retval = 0;
1436 
1437 	if (device_is_alive(child))
1438 		retval += BUS_PRINT_CHILD(dev, child);
1439 	else
1440 		retval += device_printf(child, " not found\n");
1441 
1442 	return (retval);
1443 }
1444 
1445 /**
1446  * @brief Create a new device
1447  *
1448  * This creates a new device and adds it as a child of an existing
1449  * parent device. The new device will be added after the last existing
1450  * child with order zero.
1451  *
1452  * @param dev		the device which will be the parent of the
1453  *			new child device
1454  * @param name		devclass name for new device or @c NULL if not
1455  *			specified
1456  * @param unit		unit number for new device or @c -1 if not
1457  *			specified
1458  *
1459  * @returns		the new device
1460  */
1461 device_t
1462 device_add_child(device_t dev, const char *name, int unit)
1463 {
1464 	return (device_add_child_ordered(dev, 0, name, unit));
1465 }
1466 
1467 /**
1468  * @brief Create a new device
1469  *
1470  * This creates a new device and adds it as a child of an existing
1471  * parent device. The new device will be added after the last existing
1472  * child with the same order.
1473  *
1474  * @param dev		the device which will be the parent of the
1475  *			new child device
1476  * @param order		a value which is used to partially sort the
1477  *			children of @p dev - devices created using
1478  *			lower values of @p order appear first in @p
1479  *			dev's list of children
1480  * @param name		devclass name for new device or @c NULL if not
1481  *			specified
1482  * @param unit		unit number for new device or @c -1 if not
1483  *			specified
1484  *
1485  * @returns		the new device
1486  */
1487 device_t
1488 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1489 {
1490 	device_t child;
1491 	device_t place;
1492 
1493 	PDEBUG(("%s at %s with order %d as unit %d",
1494 	    name, DEVICENAME(dev), order, unit));
1495 
1496 	child = make_device(dev, name, unit);
1497 	if (child == NULL)
1498 		return (child);
1499 	child->order = order;
1500 
1501 	TAILQ_FOREACH(place, &dev->children, link) {
1502 		if (place->order > order)
1503 			break;
1504 	}
1505 
1506 	if (place) {
1507 		/*
1508 		 * The device 'place' is the first device whose order is
1509 		 * greater than the new child.
1510 		 */
1511 		TAILQ_INSERT_BEFORE(place, child, link);
1512 	} else {
1513 		/*
1514 		 * The new child's order is greater or equal to the order of
1515 		 * any existing device. Add the child to the tail of the list.
1516 		 */
1517 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1518 	}
1519 
1520 	bus_data_generation_update();
1521 	return (child);
1522 }
1523 
1524 /**
1525  * @brief Delete a device
1526  *
1527  * This function deletes a device along with all of its children. If
1528  * the device currently has a driver attached to it, the device is
1529  * detached first using device_detach().
1530  *
1531  * @param dev		the parent device
1532  * @param child		the device to delete
1533  *
1534  * @retval 0		success
1535  * @retval non-zero	a unit error code describing the error
1536  */
1537 int
1538 device_delete_child(device_t dev, device_t child)
1539 {
1540 	int error;
1541 	device_t grandchild;
1542 
1543 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1544 
1545 	/* remove children first */
1546 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1547 		error = device_delete_child(child, grandchild);
1548 		if (error)
1549 			return (error);
1550 	}
1551 
1552 	if ((error = device_detach(child)) != 0)
1553 		return (error);
1554 	if (child->devclass)
1555 		devclass_delete_device(child->devclass, child);
1556 	TAILQ_REMOVE(&dev->children, child, link);
1557 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1558 	kobj_delete((kobj_t) child, M_BUS);
1559 
1560 	bus_data_generation_update();
1561 	return (0);
1562 }
1563 
1564 /**
1565  * @brief Find a device given a unit number
1566  *
1567  * This is similar to devclass_get_devices() but only searches for
1568  * devices which have @p dev as a parent.
1569  *
1570  * @param dev		the parent device to search
1571  * @param unit		the unit number to search for.  If the unit is -1,
1572  *			return the first child of @p dev which has name
1573  *			@p classname (that is, the one with the lowest unit.)
1574  *
1575  * @returns		the device with the given unit number or @c
1576  *			NULL if there is no such device
1577  */
1578 device_t
1579 device_find_child(device_t dev, const char *classname, int unit)
1580 {
1581 	devclass_t dc;
1582 	device_t child;
1583 
1584 	dc = devclass_find(classname);
1585 	if (!dc)
1586 		return (NULL);
1587 
1588 	if (unit != -1) {
1589 		child = devclass_get_device(dc, unit);
1590 		if (child && child->parent == dev)
1591 			return (child);
1592 	} else {
1593 		for (unit = 0; unit <= devclass_get_maxunit(dc); unit++) {
1594 			child = devclass_get_device(dc, unit);
1595 			if (child && child->parent == dev)
1596 				return (child);
1597 		}
1598 	}
1599 	return (NULL);
1600 }
1601 
1602 /**
1603  * @internal
1604  */
1605 static driverlink_t
1606 first_matching_driver(devclass_t dc, device_t dev)
1607 {
1608 	if (dev->devclass)
1609 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1610 	return (TAILQ_FIRST(&dc->drivers));
1611 }
1612 
1613 /**
1614  * @internal
1615  */
1616 static driverlink_t
1617 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1618 {
1619 	if (dev->devclass) {
1620 		driverlink_t dl;
1621 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1622 			if (!strcmp(dev->devclass->name, dl->driver->name))
1623 				return (dl);
1624 		return (NULL);
1625 	}
1626 	return (TAILQ_NEXT(last, link));
1627 }
1628 
1629 /**
1630  * @internal
1631  */
1632 static int
1633 device_probe_child(device_t dev, device_t child)
1634 {
1635 	devclass_t dc;
1636 	driverlink_t best = 0;
1637 	driverlink_t dl;
1638 	int result, pri = 0;
1639 	int hasclass = (child->devclass != 0);
1640 
1641 	GIANT_REQUIRED;
1642 
1643 	dc = dev->devclass;
1644 	if (!dc)
1645 		panic("device_probe_child: parent device has no devclass");
1646 
1647 	/*
1648 	 * If the state is already probed, then return.  However, don't
1649 	 * return if we can rebid this object.
1650 	 */
1651 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1652 		return (0);
1653 
1654 	for (; dc; dc = dc->parent) {
1655 		for (dl = first_matching_driver(dc, child);
1656 		     dl;
1657 		     dl = next_matching_driver(dc, child, dl)) {
1658 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1659 			device_set_driver(child, dl->driver);
1660 			if (!hasclass)
1661 				device_set_devclass(child, dl->driver->name);
1662 
1663 			/* Fetch any flags for the device before probing. */
1664 			resource_int_value(dl->driver->name, child->unit,
1665 			    "flags", &child->devflags);
1666 
1667 			result = DEVICE_PROBE(child);
1668 
1669 			/* Reset flags and devclass before the next probe. */
1670 			child->devflags = 0;
1671 			if (!hasclass)
1672 				device_set_devclass(child, 0);
1673 
1674 			/*
1675 			 * If the driver returns SUCCESS, there can be
1676 			 * no higher match for this device.
1677 			 */
1678 			if (result == 0) {
1679 				best = dl;
1680 				pri = 0;
1681 				break;
1682 			}
1683 
1684 			/*
1685 			 * The driver returned an error so it
1686 			 * certainly doesn't match.
1687 			 */
1688 			if (result > 0) {
1689 				device_set_driver(child, 0);
1690 				continue;
1691 			}
1692 
1693 			/*
1694 			 * A priority lower than SUCCESS, remember the
1695 			 * best matching driver. Initialise the value
1696 			 * of pri for the first match.
1697 			 */
1698 			if (best == 0 || result > pri) {
1699 				best = dl;
1700 				pri = result;
1701 				continue;
1702 			}
1703 		}
1704 		/*
1705 		 * If we have an unambiguous match in this devclass,
1706 		 * don't look in the parent.
1707 		 */
1708 		if (best && pri == 0)
1709 			break;
1710 	}
1711 
1712 	/*
1713 	 * If we found a driver, change state and initialise the devclass.
1714 	 */
1715 	/* XXX What happens if we rebid and got no best? */
1716 	if (best) {
1717 		/*
1718 		 * If this device was atached, and we were asked to
1719 		 * rescan, and it is a different driver, then we have
1720 		 * to detach the old driver and reattach this new one.
1721 		 * Note, we don't have to check for DF_REBID here
1722 		 * because if the state is > DS_ALIVE, we know it must
1723 		 * be.
1724 		 *
1725 		 * This assumes that all DF_REBID drivers can have
1726 		 * their probe routine called at any time and that
1727 		 * they are idempotent as well as completely benign in
1728 		 * normal operations.
1729 		 *
1730 		 * We also have to make sure that the detach
1731 		 * succeeded, otherwise we fail the operation (or
1732 		 * maybe it should just fail silently?  I'm torn).
1733 		 */
1734 		if (child->state > DS_ALIVE && best->driver != child->driver)
1735 			if ((result = device_detach(dev)) != 0)
1736 				return (result);
1737 
1738 		/* Set the winning driver, devclass, and flags. */
1739 		if (!child->devclass)
1740 			device_set_devclass(child, best->driver->name);
1741 		device_set_driver(child, best->driver);
1742 		resource_int_value(best->driver->name, child->unit,
1743 		    "flags", &child->devflags);
1744 
1745 		if (pri < 0) {
1746 			/*
1747 			 * A bit bogus. Call the probe method again to make
1748 			 * sure that we have the right description.
1749 			 */
1750 			DEVICE_PROBE(child);
1751 #if 0
1752 			child->flags |= DF_REBID;
1753 #endif
1754 		} else
1755 			child->flags &= ~DF_REBID;
1756 		child->state = DS_ALIVE;
1757 
1758 		bus_data_generation_update();
1759 		return (0);
1760 	}
1761 
1762 	return (ENXIO);
1763 }
1764 
1765 /**
1766  * @brief Return the parent of a device
1767  */
1768 device_t
1769 device_get_parent(device_t dev)
1770 {
1771 	return (dev->parent);
1772 }
1773 
1774 /**
1775  * @brief Get a list of children of a device
1776  *
1777  * An array containing a list of all the children of the given device
1778  * is allocated and returned in @p *devlistp. The number of devices
1779  * in the array is returned in @p *devcountp. The caller should free
1780  * the array using @c free(p, M_TEMP).
1781  *
1782  * @param dev		the device to examine
1783  * @param devlistp	points at location for array pointer return
1784  *			value
1785  * @param devcountp	points at location for array size return value
1786  *
1787  * @retval 0		success
1788  * @retval ENOMEM	the array allocation failed
1789  */
1790 int
1791 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1792 {
1793 	int count;
1794 	device_t child;
1795 	device_t *list;
1796 
1797 	count = 0;
1798 	TAILQ_FOREACH(child, &dev->children, link) {
1799 		count++;
1800 	}
1801 
1802 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1803 	if (!list)
1804 		return (ENOMEM);
1805 
1806 	count = 0;
1807 	TAILQ_FOREACH(child, &dev->children, link) {
1808 		list[count] = child;
1809 		count++;
1810 	}
1811 
1812 	*devlistp = list;
1813 	*devcountp = count;
1814 
1815 	return (0);
1816 }
1817 
1818 /**
1819  * @brief Return the current driver for the device or @c NULL if there
1820  * is no driver currently attached
1821  */
1822 driver_t *
1823 device_get_driver(device_t dev)
1824 {
1825 	return (dev->driver);
1826 }
1827 
1828 /**
1829  * @brief Return the current devclass for the device or @c NULL if
1830  * there is none.
1831  */
1832 devclass_t
1833 device_get_devclass(device_t dev)
1834 {
1835 	return (dev->devclass);
1836 }
1837 
1838 /**
1839  * @brief Return the name of the device's devclass or @c NULL if there
1840  * is none.
1841  */
1842 const char *
1843 device_get_name(device_t dev)
1844 {
1845 	if (dev != NULL && dev->devclass)
1846 		return (devclass_get_name(dev->devclass));
1847 	return (NULL);
1848 }
1849 
1850 /**
1851  * @brief Return a string containing the device's devclass name
1852  * followed by an ascii representation of the device's unit number
1853  * (e.g. @c "foo2").
1854  */
1855 const char *
1856 device_get_nameunit(device_t dev)
1857 {
1858 	return (dev->nameunit);
1859 }
1860 
1861 /**
1862  * @brief Return the device's unit number.
1863  */
1864 int
1865 device_get_unit(device_t dev)
1866 {
1867 	return (dev->unit);
1868 }
1869 
1870 /**
1871  * @brief Return the device's description string
1872  */
1873 const char *
1874 device_get_desc(device_t dev)
1875 {
1876 	return (dev->desc);
1877 }
1878 
1879 /**
1880  * @brief Return the device's flags
1881  */
1882 u_int32_t
1883 device_get_flags(device_t dev)
1884 {
1885 	return (dev->devflags);
1886 }
1887 
1888 struct sysctl_ctx_list *
1889 device_get_sysctl_ctx(device_t dev)
1890 {
1891 	return (&dev->sysctl_ctx);
1892 }
1893 
1894 struct sysctl_oid *
1895 device_get_sysctl_tree(device_t dev)
1896 {
1897 	return (dev->sysctl_tree);
1898 }
1899 
1900 /**
1901  * @brief Print the name of the device followed by a colon and a space
1902  *
1903  * @returns the number of characters printed
1904  */
1905 int
1906 device_print_prettyname(device_t dev)
1907 {
1908 	const char *name = device_get_name(dev);
1909 
1910 	if (name == 0)
1911 		return (printf("unknown: "));
1912 	return (printf("%s%d: ", name, device_get_unit(dev)));
1913 }
1914 
1915 /**
1916  * @brief Print the name of the device followed by a colon, a space
1917  * and the result of calling vprintf() with the value of @p fmt and
1918  * the following arguments.
1919  *
1920  * @returns the number of characters printed
1921  */
1922 int
1923 device_printf(device_t dev, const char * fmt, ...)
1924 {
1925 	va_list ap;
1926 	int retval;
1927 
1928 	retval = device_print_prettyname(dev);
1929 	va_start(ap, fmt);
1930 	retval += vprintf(fmt, ap);
1931 	va_end(ap);
1932 	return (retval);
1933 }
1934 
1935 /**
1936  * @internal
1937  */
1938 static void
1939 device_set_desc_internal(device_t dev, const char* desc, int copy)
1940 {
1941 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1942 		free(dev->desc, M_BUS);
1943 		dev->flags &= ~DF_DESCMALLOCED;
1944 		dev->desc = NULL;
1945 	}
1946 
1947 	if (copy && desc) {
1948 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1949 		if (dev->desc) {
1950 			strcpy(dev->desc, desc);
1951 			dev->flags |= DF_DESCMALLOCED;
1952 		}
1953 	} else {
1954 		/* Avoid a -Wcast-qual warning */
1955 		dev->desc = (char *)(uintptr_t) desc;
1956 	}
1957 
1958 	bus_data_generation_update();
1959 }
1960 
1961 /**
1962  * @brief Set the device's description
1963  *
1964  * The value of @c desc should be a string constant that will not
1965  * change (at least until the description is changed in a subsequent
1966  * call to device_set_desc() or device_set_desc_copy()).
1967  */
1968 void
1969 device_set_desc(device_t dev, const char* desc)
1970 {
1971 	device_set_desc_internal(dev, desc, FALSE);
1972 }
1973 
1974 /**
1975  * @brief Set the device's description
1976  *
1977  * The string pointed to by @c desc is copied. Use this function if
1978  * the device description is generated, (e.g. with sprintf()).
1979  */
1980 void
1981 device_set_desc_copy(device_t dev, const char* desc)
1982 {
1983 	device_set_desc_internal(dev, desc, TRUE);
1984 }
1985 
1986 /**
1987  * @brief Set the device's flags
1988  */
1989 void
1990 device_set_flags(device_t dev, u_int32_t flags)
1991 {
1992 	dev->devflags = flags;
1993 }
1994 
1995 /**
1996  * @brief Return the device's softc field
1997  *
1998  * The softc is allocated and zeroed when a driver is attached, based
1999  * on the size field of the driver.
2000  */
2001 void *
2002 device_get_softc(device_t dev)
2003 {
2004 	return (dev->softc);
2005 }
2006 
2007 /**
2008  * @brief Set the device's softc field
2009  *
2010  * Most drivers do not need to use this since the softc is allocated
2011  * automatically when the driver is attached.
2012  */
2013 void
2014 device_set_softc(device_t dev, void *softc)
2015 {
2016 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2017 		free(dev->softc, M_BUS_SC);
2018 	dev->softc = softc;
2019 	if (dev->softc)
2020 		dev->flags |= DF_EXTERNALSOFTC;
2021 	else
2022 		dev->flags &= ~DF_EXTERNALSOFTC;
2023 }
2024 
2025 /**
2026  * @brief Get the device's ivars field
2027  *
2028  * The ivars field is used by the parent device to store per-device
2029  * state (e.g. the physical location of the device or a list of
2030  * resources).
2031  */
2032 void *
2033 device_get_ivars(device_t dev)
2034 {
2035 
2036 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2037 	return (dev->ivars);
2038 }
2039 
2040 /**
2041  * @brief Set the device's ivars field
2042  */
2043 void
2044 device_set_ivars(device_t dev, void * ivars)
2045 {
2046 
2047 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2048 	dev->ivars = ivars;
2049 }
2050 
2051 /**
2052  * @brief Return the device's state
2053  */
2054 device_state_t
2055 device_get_state(device_t dev)
2056 {
2057 	return (dev->state);
2058 }
2059 
2060 /**
2061  * @brief Set the DF_ENABLED flag for the device
2062  */
2063 void
2064 device_enable(device_t dev)
2065 {
2066 	dev->flags |= DF_ENABLED;
2067 }
2068 
2069 /**
2070  * @brief Clear the DF_ENABLED flag for the device
2071  */
2072 void
2073 device_disable(device_t dev)
2074 {
2075 	dev->flags &= ~DF_ENABLED;
2076 }
2077 
2078 /**
2079  * @brief Increment the busy counter for the device
2080  */
2081 void
2082 device_busy(device_t dev)
2083 {
2084 	if (dev->state < DS_ATTACHED)
2085 		panic("device_busy: called for unattached device");
2086 	if (dev->busy == 0 && dev->parent)
2087 		device_busy(dev->parent);
2088 	dev->busy++;
2089 	dev->state = DS_BUSY;
2090 }
2091 
2092 /**
2093  * @brief Decrement the busy counter for the device
2094  */
2095 void
2096 device_unbusy(device_t dev)
2097 {
2098 	if (dev->state != DS_BUSY)
2099 		panic("device_unbusy: called for non-busy device %s",
2100 		    device_get_nameunit(dev));
2101 	dev->busy--;
2102 	if (dev->busy == 0) {
2103 		if (dev->parent)
2104 			device_unbusy(dev->parent);
2105 		dev->state = DS_ATTACHED;
2106 	}
2107 }
2108 
2109 /**
2110  * @brief Set the DF_QUIET flag for the device
2111  */
2112 void
2113 device_quiet(device_t dev)
2114 {
2115 	dev->flags |= DF_QUIET;
2116 }
2117 
2118 /**
2119  * @brief Clear the DF_QUIET flag for the device
2120  */
2121 void
2122 device_verbose(device_t dev)
2123 {
2124 	dev->flags &= ~DF_QUIET;
2125 }
2126 
2127 /**
2128  * @brief Return non-zero if the DF_QUIET flag is set on the device
2129  */
2130 int
2131 device_is_quiet(device_t dev)
2132 {
2133 	return ((dev->flags & DF_QUIET) != 0);
2134 }
2135 
2136 /**
2137  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2138  */
2139 int
2140 device_is_enabled(device_t dev)
2141 {
2142 	return ((dev->flags & DF_ENABLED) != 0);
2143 }
2144 
2145 /**
2146  * @brief Return non-zero if the device was successfully probed
2147  */
2148 int
2149 device_is_alive(device_t dev)
2150 {
2151 	return (dev->state >= DS_ALIVE);
2152 }
2153 
2154 /**
2155  * @brief Return non-zero if the device currently has a driver
2156  * attached to it
2157  */
2158 int
2159 device_is_attached(device_t dev)
2160 {
2161 	return (dev->state >= DS_ATTACHED);
2162 }
2163 
2164 /**
2165  * @brief Set the devclass of a device
2166  * @see devclass_add_device().
2167  */
2168 int
2169 device_set_devclass(device_t dev, const char *classname)
2170 {
2171 	devclass_t dc;
2172 	int error;
2173 
2174 	if (!classname) {
2175 		if (dev->devclass)
2176 			devclass_delete_device(dev->devclass, dev);
2177 		return (0);
2178 	}
2179 
2180 	if (dev->devclass) {
2181 		printf("device_set_devclass: device class already set\n");
2182 		return (EINVAL);
2183 	}
2184 
2185 	dc = devclass_find_internal(classname, 0, TRUE);
2186 	if (!dc)
2187 		return (ENOMEM);
2188 
2189 	error = devclass_add_device(dc, dev);
2190 
2191 	bus_data_generation_update();
2192 	return (error);
2193 }
2194 
2195 /**
2196  * @brief Set the driver of a device
2197  *
2198  * @retval 0		success
2199  * @retval EBUSY	the device already has a driver attached
2200  * @retval ENOMEM	a memory allocation failure occurred
2201  */
2202 int
2203 device_set_driver(device_t dev, driver_t *driver)
2204 {
2205 	if (dev->state >= DS_ATTACHED)
2206 		return (EBUSY);
2207 
2208 	if (dev->driver == driver)
2209 		return (0);
2210 
2211 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2212 		free(dev->softc, M_BUS_SC);
2213 		dev->softc = NULL;
2214 	}
2215 	kobj_delete((kobj_t) dev, 0);
2216 	dev->driver = driver;
2217 	if (driver) {
2218 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2219 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2220 			dev->softc = malloc(driver->size, M_BUS_SC,
2221 			    M_NOWAIT | M_ZERO);
2222 			if (!dev->softc) {
2223 				kobj_delete((kobj_t) dev, 0);
2224 				kobj_init((kobj_t) dev, &null_class);
2225 				dev->driver = NULL;
2226 				return (ENOMEM);
2227 			}
2228 		}
2229 	} else {
2230 		kobj_init((kobj_t) dev, &null_class);
2231 	}
2232 
2233 	bus_data_generation_update();
2234 	return (0);
2235 }
2236 
2237 /**
2238  * @brief Probe a device and attach a driver if possible
2239  *
2240  * This function is the core of the device autoconfiguration
2241  * system. Its purpose is to select a suitable driver for a device and
2242  * then call that driver to initialise the hardware appropriately. The
2243  * driver is selected by calling the DEVICE_PROBE() method of a set of
2244  * candidate drivers and then choosing the driver which returned the
2245  * best value. This driver is then attached to the device using
2246  * device_attach().
2247  *
2248  * The set of suitable drivers is taken from the list of drivers in
2249  * the parent device's devclass. If the device was originally created
2250  * with a specific class name (see device_add_child()), only drivers
2251  * with that name are probed, otherwise all drivers in the devclass
2252  * are probed. If no drivers return successful probe values in the
2253  * parent devclass, the search continues in the parent of that
2254  * devclass (see devclass_get_parent()) if any.
2255  *
2256  * @param dev		the device to initialise
2257  *
2258  * @retval 0		success
2259  * @retval ENXIO	no driver was found
2260  * @retval ENOMEM	memory allocation failure
2261  * @retval non-zero	some other unix error code
2262  */
2263 int
2264 device_probe_and_attach(device_t dev)
2265 {
2266 	int error;
2267 
2268 	GIANT_REQUIRED;
2269 
2270 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2271 		return (0);
2272 
2273 	if (!(dev->flags & DF_ENABLED)) {
2274 		if (bootverbose && device_get_name(dev) != NULL) {
2275 			device_print_prettyname(dev);
2276 			printf("not probed (disabled)\n");
2277 		}
2278 		return (0);
2279 	}
2280 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2281 		if (!(dev->flags & DF_DONENOMATCH)) {
2282 			BUS_PROBE_NOMATCH(dev->parent, dev);
2283 			devnomatch(dev);
2284 			dev->flags |= DF_DONENOMATCH;
2285 		}
2286 		return (error);
2287 	}
2288 	error = device_attach(dev);
2289 
2290 	return (error);
2291 }
2292 
2293 /**
2294  * @brief Attach a device driver to a device
2295  *
2296  * This function is a wrapper around the DEVICE_ATTACH() driver
2297  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2298  * device's sysctl tree, optionally prints a description of the device
2299  * and queues a notification event for user-based device management
2300  * services.
2301  *
2302  * Normally this function is only called internally from
2303  * device_probe_and_attach().
2304  *
2305  * @param dev		the device to initialise
2306  *
2307  * @retval 0		success
2308  * @retval ENXIO	no driver was found
2309  * @retval ENOMEM	memory allocation failure
2310  * @retval non-zero	some other unix error code
2311  */
2312 int
2313 device_attach(device_t dev)
2314 {
2315 	int error;
2316 
2317 	device_sysctl_init(dev);
2318 	if (!device_is_quiet(dev))
2319 		device_print_child(dev->parent, dev);
2320 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2321 		printf("device_attach: %s%d attach returned %d\n",
2322 		    dev->driver->name, dev->unit, error);
2323 		/* Unset the class; set in device_probe_child */
2324 		if (dev->devclass == 0)
2325 			device_set_devclass(dev, 0);
2326 		device_set_driver(dev, NULL);
2327 		device_sysctl_fini(dev);
2328 		dev->state = DS_NOTPRESENT;
2329 		return (error);
2330 	}
2331 	dev->state = DS_ATTACHED;
2332 	devadded(dev);
2333 	return (0);
2334 }
2335 
2336 /**
2337  * @brief Detach a driver from a device
2338  *
2339  * This function is a wrapper around the DEVICE_DETACH() driver
2340  * method. If the call to DEVICE_DETACH() succeeds, it calls
2341  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2342  * notification event for user-based device management services and
2343  * cleans up the device's sysctl tree.
2344  *
2345  * @param dev		the device to un-initialise
2346  *
2347  * @retval 0		success
2348  * @retval ENXIO	no driver was found
2349  * @retval ENOMEM	memory allocation failure
2350  * @retval non-zero	some other unix error code
2351  */
2352 int
2353 device_detach(device_t dev)
2354 {
2355 	int error;
2356 
2357 	GIANT_REQUIRED;
2358 
2359 	PDEBUG(("%s", DEVICENAME(dev)));
2360 	if (dev->state == DS_BUSY)
2361 		return (EBUSY);
2362 	if (dev->state != DS_ATTACHED)
2363 		return (0);
2364 
2365 	if ((error = DEVICE_DETACH(dev)) != 0)
2366 		return (error);
2367 	devremoved(dev);
2368 	device_printf(dev, "detached\n");
2369 	if (dev->parent)
2370 		BUS_CHILD_DETACHED(dev->parent, dev);
2371 
2372 	if (!(dev->flags & DF_FIXEDCLASS))
2373 		devclass_delete_device(dev->devclass, dev);
2374 
2375 	dev->state = DS_NOTPRESENT;
2376 	device_set_driver(dev, NULL);
2377 	device_set_desc(dev, NULL);
2378 	device_sysctl_fini(dev);
2379 
2380 	return (0);
2381 }
2382 
2383 /**
2384  * @brief Tells a driver to quiesce itself.
2385  *
2386  * This function is a wrapper around the DEVICE_QUIESCE() driver
2387  * method. If the call to DEVICE_QUIESCE() succeeds.
2388  *
2389  * @param dev		the device to quiesce
2390  *
2391  * @retval 0		success
2392  * @retval ENXIO	no driver was found
2393  * @retval ENOMEM	memory allocation failure
2394  * @retval non-zero	some other unix error code
2395  */
2396 int
2397 device_quiesce(device_t dev)
2398 {
2399 
2400 	PDEBUG(("%s", DEVICENAME(dev)));
2401 	if (dev->state == DS_BUSY)
2402 		return (EBUSY);
2403 	if (dev->state != DS_ATTACHED)
2404 		return (0);
2405 
2406 	return (DEVICE_QUIESCE(dev));
2407 }
2408 
2409 /**
2410  * @brief Notify a device of system shutdown
2411  *
2412  * This function calls the DEVICE_SHUTDOWN() driver method if the
2413  * device currently has an attached driver.
2414  *
2415  * @returns the value returned by DEVICE_SHUTDOWN()
2416  */
2417 int
2418 device_shutdown(device_t dev)
2419 {
2420 	if (dev->state < DS_ATTACHED)
2421 		return (0);
2422 	return (DEVICE_SHUTDOWN(dev));
2423 }
2424 
2425 /**
2426  * @brief Set the unit number of a device
2427  *
2428  * This function can be used to override the unit number used for a
2429  * device (e.g. to wire a device to a pre-configured unit number).
2430  */
2431 int
2432 device_set_unit(device_t dev, int unit)
2433 {
2434 	devclass_t dc;
2435 	int err;
2436 
2437 	dc = device_get_devclass(dev);
2438 	if (unit < dc->maxunit && dc->devices[unit])
2439 		return (EBUSY);
2440 	err = devclass_delete_device(dc, dev);
2441 	if (err)
2442 		return (err);
2443 	dev->unit = unit;
2444 	err = devclass_add_device(dc, dev);
2445 	if (err)
2446 		return (err);
2447 
2448 	bus_data_generation_update();
2449 	return (0);
2450 }
2451 
2452 /*======================================*/
2453 /*
2454  * Some useful method implementations to make life easier for bus drivers.
2455  */
2456 
2457 /**
2458  * @brief Initialise a resource list.
2459  *
2460  * @param rl		the resource list to initialise
2461  */
2462 void
2463 resource_list_init(struct resource_list *rl)
2464 {
2465 	STAILQ_INIT(rl);
2466 }
2467 
2468 /**
2469  * @brief Reclaim memory used by a resource list.
2470  *
2471  * This function frees the memory for all resource entries on the list
2472  * (if any).
2473  *
2474  * @param rl		the resource list to free
2475  */
2476 void
2477 resource_list_free(struct resource_list *rl)
2478 {
2479 	struct resource_list_entry *rle;
2480 
2481 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2482 		if (rle->res)
2483 			panic("resource_list_free: resource entry is busy");
2484 		STAILQ_REMOVE_HEAD(rl, link);
2485 		free(rle, M_BUS);
2486 	}
2487 }
2488 
2489 /**
2490  * @brief Add a resource entry.
2491  *
2492  * This function adds a resource entry using the given @p type, @p
2493  * start, @p end and @p count values. A rid value is chosen by
2494  * searching sequentially for the first unused rid starting at zero.
2495  *
2496  * @param rl		the resource list to edit
2497  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2498  * @param start		the start address of the resource
2499  * @param end		the end address of the resource
2500  * @param count		XXX end-start+1
2501  */
2502 int
2503 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2504     u_long end, u_long count)
2505 {
2506 	int rid;
2507 
2508 	rid = 0;
2509 	while (resource_list_find(rl, type, rid) != NULL)
2510 		rid++;
2511 	resource_list_add(rl, type, rid, start, end, count);
2512 	return (rid);
2513 }
2514 
2515 /**
2516  * @brief Add or modify a resource entry.
2517  *
2518  * If an existing entry exists with the same type and rid, it will be
2519  * modified using the given values of @p start, @p end and @p
2520  * count. If no entry exists, a new one will be created using the
2521  * given values.
2522  *
2523  * @param rl		the resource list to edit
2524  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2525  * @param rid		the resource identifier
2526  * @param start		the start address of the resource
2527  * @param end		the end address of the resource
2528  * @param count		XXX end-start+1
2529  */
2530 void
2531 resource_list_add(struct resource_list *rl, int type, int rid,
2532     u_long start, u_long end, u_long count)
2533 {
2534 	struct resource_list_entry *rle;
2535 
2536 	rle = resource_list_find(rl, type, rid);
2537 	if (!rle) {
2538 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2539 		    M_NOWAIT);
2540 		if (!rle)
2541 			panic("resource_list_add: can't record entry");
2542 		STAILQ_INSERT_TAIL(rl, rle, link);
2543 		rle->type = type;
2544 		rle->rid = rid;
2545 		rle->res = NULL;
2546 	}
2547 
2548 	if (rle->res)
2549 		panic("resource_list_add: resource entry is busy");
2550 
2551 	rle->start = start;
2552 	rle->end = end;
2553 	rle->count = count;
2554 }
2555 
2556 /**
2557  * @brief Find a resource entry by type and rid.
2558  *
2559  * @param rl		the resource list to search
2560  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2561  * @param rid		the resource identifier
2562  *
2563  * @returns the resource entry pointer or NULL if there is no such
2564  * entry.
2565  */
2566 struct resource_list_entry *
2567 resource_list_find(struct resource_list *rl, int type, int rid)
2568 {
2569 	struct resource_list_entry *rle;
2570 
2571 	STAILQ_FOREACH(rle, rl, link) {
2572 		if (rle->type == type && rle->rid == rid)
2573 			return (rle);
2574 	}
2575 	return (NULL);
2576 }
2577 
2578 /**
2579  * @brief Delete a resource entry.
2580  *
2581  * @param rl		the resource list to edit
2582  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2583  * @param rid		the resource identifier
2584  */
2585 void
2586 resource_list_delete(struct resource_list *rl, int type, int rid)
2587 {
2588 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2589 
2590 	if (rle) {
2591 		if (rle->res != NULL)
2592 			panic("resource_list_delete: resource has not been released");
2593 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2594 		free(rle, M_BUS);
2595 	}
2596 }
2597 
2598 /**
2599  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2600  *
2601  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2602  * and passing the allocation up to the parent of @p bus. This assumes
2603  * that the first entry of @c device_get_ivars(child) is a struct
2604  * resource_list. This also handles 'passthrough' allocations where a
2605  * child is a remote descendant of bus by passing the allocation up to
2606  * the parent of bus.
2607  *
2608  * Typically, a bus driver would store a list of child resources
2609  * somewhere in the child device's ivars (see device_get_ivars()) and
2610  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2611  * then call resource_list_alloc() to perform the allocation.
2612  *
2613  * @param rl		the resource list to allocate from
2614  * @param bus		the parent device of @p child
2615  * @param child		the device which is requesting an allocation
2616  * @param type		the type of resource to allocate
2617  * @param rid		a pointer to the resource identifier
2618  * @param start		hint at the start of the resource range - pass
2619  *			@c 0UL for any start address
2620  * @param end		hint at the end of the resource range - pass
2621  *			@c ~0UL for any end address
2622  * @param count		hint at the size of range required - pass @c 1
2623  *			for any size
2624  * @param flags		any extra flags to control the resource
2625  *			allocation - see @c RF_XXX flags in
2626  *			<sys/rman.h> for details
2627  *
2628  * @returns		the resource which was allocated or @c NULL if no
2629  *			resource could be allocated
2630  */
2631 struct resource *
2632 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2633     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2634 {
2635 	struct resource_list_entry *rle = 0;
2636 	int passthrough = (device_get_parent(child) != bus);
2637 	int isdefault = (start == 0UL && end == ~0UL);
2638 
2639 	if (passthrough) {
2640 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2641 		    type, rid, start, end, count, flags));
2642 	}
2643 
2644 	rle = resource_list_find(rl, type, *rid);
2645 
2646 	if (!rle)
2647 		return (NULL);		/* no resource of that type/rid */
2648 
2649 	if (rle->res)
2650 		panic("resource_list_alloc: resource entry is busy");
2651 
2652 	if (isdefault) {
2653 		start = rle->start;
2654 		count = ulmax(count, rle->count);
2655 		end = ulmax(rle->end, start + count - 1);
2656 	}
2657 
2658 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2659 	    type, rid, start, end, count, flags);
2660 
2661 	/*
2662 	 * Record the new range.
2663 	 */
2664 	if (rle->res) {
2665 		rle->start = rman_get_start(rle->res);
2666 		rle->end = rman_get_end(rle->res);
2667 		rle->count = count;
2668 	}
2669 
2670 	return (rle->res);
2671 }
2672 
2673 /**
2674  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2675  *
2676  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2677  * used with resource_list_alloc().
2678  *
2679  * @param rl		the resource list which was allocated from
2680  * @param bus		the parent device of @p child
2681  * @param child		the device which is requesting a release
2682  * @param type		the type of resource to allocate
2683  * @param rid		the resource identifier
2684  * @param res		the resource to release
2685  *
2686  * @retval 0		success
2687  * @retval non-zero	a standard unix error code indicating what
2688  *			error condition prevented the operation
2689  */
2690 int
2691 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2692     int type, int rid, struct resource *res)
2693 {
2694 	struct resource_list_entry *rle = 0;
2695 	int passthrough = (device_get_parent(child) != bus);
2696 	int error;
2697 
2698 	if (passthrough) {
2699 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2700 		    type, rid, res));
2701 	}
2702 
2703 	rle = resource_list_find(rl, type, rid);
2704 
2705 	if (!rle)
2706 		panic("resource_list_release: can't find resource");
2707 	if (!rle->res)
2708 		panic("resource_list_release: resource entry is not busy");
2709 
2710 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2711 	    type, rid, res);
2712 	if (error)
2713 		return (error);
2714 
2715 	rle->res = NULL;
2716 	return (0);
2717 }
2718 
2719 /**
2720  * @brief Print a description of resources in a resource list
2721  *
2722  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2723  * The name is printed if at least one resource of the given type is available.
2724  * The format is used to print resource start and end.
2725  *
2726  * @param rl		the resource list to print
2727  * @param name		the name of @p type, e.g. @c "memory"
2728  * @param type		type type of resource entry to print
2729  * @param format	printf(9) format string to print resource
2730  *			start and end values
2731  *
2732  * @returns		the number of characters printed
2733  */
2734 int
2735 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2736     const char *format)
2737 {
2738 	struct resource_list_entry *rle;
2739 	int printed, retval;
2740 
2741 	printed = 0;
2742 	retval = 0;
2743 	/* Yes, this is kinda cheating */
2744 	STAILQ_FOREACH(rle, rl, link) {
2745 		if (rle->type == type) {
2746 			if (printed == 0)
2747 				retval += printf(" %s ", name);
2748 			else
2749 				retval += printf(",");
2750 			printed++;
2751 			retval += printf(format, rle->start);
2752 			if (rle->count > 1) {
2753 				retval += printf("-");
2754 				retval += printf(format, rle->start +
2755 						 rle->count - 1);
2756 			}
2757 		}
2758 	}
2759 	return (retval);
2760 }
2761 
2762 /**
2763  * @brief Helper function for implementing DEVICE_PROBE()
2764  *
2765  * This function can be used to help implement the DEVICE_PROBE() for
2766  * a bus (i.e. a device which has other devices attached to it). It
2767  * calls the DEVICE_IDENTIFY() method of each driver in the device's
2768  * devclass.
2769  */
2770 int
2771 bus_generic_probe(device_t dev)
2772 {
2773 	devclass_t dc = dev->devclass;
2774 	driverlink_t dl;
2775 
2776 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2777 		DEVICE_IDENTIFY(dl->driver, dev);
2778 	}
2779 
2780 	return (0);
2781 }
2782 
2783 /**
2784  * @brief Helper function for implementing DEVICE_ATTACH()
2785  *
2786  * This function can be used to help implement the DEVICE_ATTACH() for
2787  * a bus. It calls device_probe_and_attach() for each of the device's
2788  * children.
2789  */
2790 int
2791 bus_generic_attach(device_t dev)
2792 {
2793 	device_t child;
2794 
2795 	TAILQ_FOREACH(child, &dev->children, link) {
2796 		device_probe_and_attach(child);
2797 	}
2798 
2799 	return (0);
2800 }
2801 
2802 /**
2803  * @brief Helper function for implementing DEVICE_DETACH()
2804  *
2805  * This function can be used to help implement the DEVICE_DETACH() for
2806  * a bus. It calls device_detach() for each of the device's
2807  * children.
2808  */
2809 int
2810 bus_generic_detach(device_t dev)
2811 {
2812 	device_t child;
2813 	int error;
2814 
2815 	if (dev->state != DS_ATTACHED)
2816 		return (EBUSY);
2817 
2818 	TAILQ_FOREACH(child, &dev->children, link) {
2819 		if ((error = device_detach(child)) != 0)
2820 			return (error);
2821 	}
2822 
2823 	return (0);
2824 }
2825 
2826 /**
2827  * @brief Helper function for implementing DEVICE_SHUTDOWN()
2828  *
2829  * This function can be used to help implement the DEVICE_SHUTDOWN()
2830  * for a bus. It calls device_shutdown() for each of the device's
2831  * children.
2832  */
2833 int
2834 bus_generic_shutdown(device_t dev)
2835 {
2836 	device_t child;
2837 
2838 	TAILQ_FOREACH(child, &dev->children, link) {
2839 		device_shutdown(child);
2840 	}
2841 
2842 	return (0);
2843 }
2844 
2845 /**
2846  * @brief Helper function for implementing DEVICE_SUSPEND()
2847  *
2848  * This function can be used to help implement the DEVICE_SUSPEND()
2849  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2850  * children. If any call to DEVICE_SUSPEND() fails, the suspend
2851  * operation is aborted and any devices which were suspended are
2852  * resumed immediately by calling their DEVICE_RESUME() methods.
2853  */
2854 int
2855 bus_generic_suspend(device_t dev)
2856 {
2857 	int		error;
2858 	device_t	child, child2;
2859 
2860 	TAILQ_FOREACH(child, &dev->children, link) {
2861 		error = DEVICE_SUSPEND(child);
2862 		if (error) {
2863 			for (child2 = TAILQ_FIRST(&dev->children);
2864 			     child2 && child2 != child;
2865 			     child2 = TAILQ_NEXT(child2, link))
2866 				DEVICE_RESUME(child2);
2867 			return (error);
2868 		}
2869 	}
2870 	return (0);
2871 }
2872 
2873 /**
2874  * @brief Helper function for implementing DEVICE_RESUME()
2875  *
2876  * This function can be used to help implement the DEVICE_RESUME() for
2877  * a bus. It calls DEVICE_RESUME() on each of the device's children.
2878  */
2879 int
2880 bus_generic_resume(device_t dev)
2881 {
2882 	device_t	child;
2883 
2884 	TAILQ_FOREACH(child, &dev->children, link) {
2885 		DEVICE_RESUME(child);
2886 		/* if resume fails, there's nothing we can usefully do... */
2887 	}
2888 	return (0);
2889 }
2890 
2891 /**
2892  * @brief Helper function for implementing BUS_PRINT_CHILD().
2893  *
2894  * This function prints the first part of the ascii representation of
2895  * @p child, including its name, unit and description (if any - see
2896  * device_set_desc()).
2897  *
2898  * @returns the number of characters printed
2899  */
2900 int
2901 bus_print_child_header(device_t dev, device_t child)
2902 {
2903 	int	retval = 0;
2904 
2905 	if (device_get_desc(child)) {
2906 		retval += device_printf(child, "<%s>", device_get_desc(child));
2907 	} else {
2908 		retval += printf("%s", device_get_nameunit(child));
2909 	}
2910 
2911 	return (retval);
2912 }
2913 
2914 /**
2915  * @brief Helper function for implementing BUS_PRINT_CHILD().
2916  *
2917  * This function prints the last part of the ascii representation of
2918  * @p child, which consists of the string @c " on " followed by the
2919  * name and unit of the @p dev.
2920  *
2921  * @returns the number of characters printed
2922  */
2923 int
2924 bus_print_child_footer(device_t dev, device_t child)
2925 {
2926 	return (printf(" on %s\n", device_get_nameunit(dev)));
2927 }
2928 
2929 /**
2930  * @brief Helper function for implementing BUS_PRINT_CHILD().
2931  *
2932  * This function simply calls bus_print_child_header() followed by
2933  * bus_print_child_footer().
2934  *
2935  * @returns the number of characters printed
2936  */
2937 int
2938 bus_generic_print_child(device_t dev, device_t child)
2939 {
2940 	int	retval = 0;
2941 
2942 	retval += bus_print_child_header(dev, child);
2943 	retval += bus_print_child_footer(dev, child);
2944 
2945 	return (retval);
2946 }
2947 
2948 /**
2949  * @brief Stub function for implementing BUS_READ_IVAR().
2950  *
2951  * @returns ENOENT
2952  */
2953 int
2954 bus_generic_read_ivar(device_t dev, device_t child, int index,
2955     uintptr_t * result)
2956 {
2957 	return (ENOENT);
2958 }
2959 
2960 /**
2961  * @brief Stub function for implementing BUS_WRITE_IVAR().
2962  *
2963  * @returns ENOENT
2964  */
2965 int
2966 bus_generic_write_ivar(device_t dev, device_t child, int index,
2967     uintptr_t value)
2968 {
2969 	return (ENOENT);
2970 }
2971 
2972 /**
2973  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
2974  *
2975  * @returns NULL
2976  */
2977 struct resource_list *
2978 bus_generic_get_resource_list(device_t dev, device_t child)
2979 {
2980 	return (NULL);
2981 }
2982 
2983 /**
2984  * @brief Helper function for implementing BUS_DRIVER_ADDED().
2985  *
2986  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2987  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2988  * and then calls device_probe_and_attach() for each unattached child.
2989  */
2990 void
2991 bus_generic_driver_added(device_t dev, driver_t *driver)
2992 {
2993 	device_t child;
2994 
2995 	DEVICE_IDENTIFY(driver, dev);
2996 	TAILQ_FOREACH(child, &dev->children, link) {
2997 		if (child->state == DS_NOTPRESENT ||
2998 		    (child->flags & DF_REBID))
2999 			device_probe_and_attach(child);
3000 	}
3001 }
3002 
3003 /**
3004  * @brief Helper function for implementing BUS_SETUP_INTR().
3005  *
3006  * This simple implementation of BUS_SETUP_INTR() simply calls the
3007  * BUS_SETUP_INTR() method of the parent of @p dev.
3008  */
3009 int
3010 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3011     int flags, driver_intr_t *intr, void *arg, void **cookiep)
3012 {
3013 	/* Propagate up the bus hierarchy until someone handles it. */
3014 	if (dev->parent)
3015 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3016 		    intr, arg, cookiep));
3017 	return (EINVAL);
3018 }
3019 
3020 /**
3021  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3022  *
3023  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3024  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3025  */
3026 int
3027 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3028     void *cookie)
3029 {
3030 	/* Propagate up the bus hierarchy until someone handles it. */
3031 	if (dev->parent)
3032 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3033 	return (EINVAL);
3034 }
3035 
3036 /**
3037  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3038  *
3039  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3040  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3041  */
3042 struct resource *
3043 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3044     u_long start, u_long end, u_long count, u_int flags)
3045 {
3046 	/* Propagate up the bus hierarchy until someone handles it. */
3047 	if (dev->parent)
3048 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3049 		    start, end, count, flags));
3050 	return (NULL);
3051 }
3052 
3053 /**
3054  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3055  *
3056  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3057  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3058  */
3059 int
3060 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3061     struct resource *r)
3062 {
3063 	/* Propagate up the bus hierarchy until someone handles it. */
3064 	if (dev->parent)
3065 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3066 		    r));
3067 	return (EINVAL);
3068 }
3069 
3070 /**
3071  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3072  *
3073  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3074  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3075  */
3076 int
3077 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3078     struct resource *r)
3079 {
3080 	/* Propagate up the bus hierarchy until someone handles it. */
3081 	if (dev->parent)
3082 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3083 		    r));
3084 	return (EINVAL);
3085 }
3086 
3087 /**
3088  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3089  *
3090  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3091  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3092  */
3093 int
3094 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3095     int rid, struct resource *r)
3096 {
3097 	/* Propagate up the bus hierarchy until someone handles it. */
3098 	if (dev->parent)
3099 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3100 		    r));
3101 	return (EINVAL);
3102 }
3103 
3104 /**
3105  * @brief Helper function for implementing BUS_CONFIG_INTR().
3106  *
3107  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3108  * BUS_CONFIG_INTR() method of the parent of @p dev.
3109  */
3110 int
3111 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3112     enum intr_polarity pol)
3113 {
3114 
3115 	/* Propagate up the bus hierarchy until someone handles it. */
3116 	if (dev->parent)
3117 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3118 	return (EINVAL);
3119 }
3120 
3121 /**
3122  * @brief Helper function for implementing BUS_GET_RESOURCE().
3123  *
3124  * This implementation of BUS_GET_RESOURCE() uses the
3125  * resource_list_find() function to do most of the work. It calls
3126  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3127  * search.
3128  */
3129 int
3130 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3131     u_long *startp, u_long *countp)
3132 {
3133 	struct resource_list *		rl = NULL;
3134 	struct resource_list_entry *	rle = NULL;
3135 
3136 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3137 	if (!rl)
3138 		return (EINVAL);
3139 
3140 	rle = resource_list_find(rl, type, rid);
3141 	if (!rle)
3142 		return (ENOENT);
3143 
3144 	if (startp)
3145 		*startp = rle->start;
3146 	if (countp)
3147 		*countp = rle->count;
3148 
3149 	return (0);
3150 }
3151 
3152 /**
3153  * @brief Helper function for implementing BUS_SET_RESOURCE().
3154  *
3155  * This implementation of BUS_SET_RESOURCE() uses the
3156  * resource_list_add() function to do most of the work. It calls
3157  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3158  * edit.
3159  */
3160 int
3161 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3162     u_long start, u_long count)
3163 {
3164 	struct resource_list *		rl = NULL;
3165 
3166 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3167 	if (!rl)
3168 		return (EINVAL);
3169 
3170 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3171 
3172 	return (0);
3173 }
3174 
3175 /**
3176  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3177  *
3178  * This implementation of BUS_DELETE_RESOURCE() uses the
3179  * resource_list_delete() function to do most of the work. It calls
3180  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3181  * edit.
3182  */
3183 void
3184 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3185 {
3186 	struct resource_list *		rl = NULL;
3187 
3188 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3189 	if (!rl)
3190 		return;
3191 
3192 	resource_list_delete(rl, type, rid);
3193 
3194 	return;
3195 }
3196 
3197 /**
3198  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3199  *
3200  * This implementation of BUS_RELEASE_RESOURCE() uses the
3201  * resource_list_release() function to do most of the work. It calls
3202  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3203  */
3204 int
3205 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3206     int rid, struct resource *r)
3207 {
3208 	struct resource_list *		rl = NULL;
3209 
3210 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3211 	if (!rl)
3212 		return (EINVAL);
3213 
3214 	return (resource_list_release(rl, dev, child, type, rid, r));
3215 }
3216 
3217 /**
3218  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3219  *
3220  * This implementation of BUS_ALLOC_RESOURCE() uses the
3221  * resource_list_alloc() function to do most of the work. It calls
3222  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3223  */
3224 struct resource *
3225 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3226     int *rid, u_long start, u_long end, u_long count, u_int flags)
3227 {
3228 	struct resource_list *		rl = NULL;
3229 
3230 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3231 	if (!rl)
3232 		return (NULL);
3233 
3234 	return (resource_list_alloc(rl, dev, child, type, rid,
3235 	    start, end, count, flags));
3236 }
3237 
3238 /**
3239  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3240  *
3241  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3242  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3243  */
3244 int
3245 bus_generic_child_present(device_t dev, device_t child)
3246 {
3247 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3248 }
3249 
3250 /*
3251  * Some convenience functions to make it easier for drivers to use the
3252  * resource-management functions.  All these really do is hide the
3253  * indirection through the parent's method table, making for slightly
3254  * less-wordy code.  In the future, it might make sense for this code
3255  * to maintain some sort of a list of resources allocated by each device.
3256  */
3257 
3258 /**
3259  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3260  *
3261  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3262  * parent of @p dev.
3263  */
3264 struct resource *
3265 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3266     u_long count, u_int flags)
3267 {
3268 	if (dev->parent == 0)
3269 		return (0);
3270 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3271 	    count, flags));
3272 }
3273 
3274 /**
3275  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3276  *
3277  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3278  * parent of @p dev.
3279  */
3280 int
3281 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3282 {
3283 	if (dev->parent == 0)
3284 		return (EINVAL);
3285 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3286 }
3287 
3288 /**
3289  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3290  *
3291  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3292  * parent of @p dev.
3293  */
3294 int
3295 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3296 {
3297 	if (dev->parent == 0)
3298 		return (EINVAL);
3299 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3300 }
3301 
3302 /**
3303  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3304  *
3305  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3306  * parent of @p dev.
3307  */
3308 int
3309 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3310 {
3311 	if (dev->parent == 0)
3312 		return (EINVAL);
3313 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3314 }
3315 
3316 /**
3317  * @brief Wrapper function for BUS_SETUP_INTR().
3318  *
3319  * This function simply calls the BUS_SETUP_INTR() method of the
3320  * parent of @p dev.
3321  */
3322 int
3323 bus_setup_intr(device_t dev, struct resource *r, int flags,
3324     driver_intr_t handler, void *arg, void **cookiep)
3325 {
3326 	int error;
3327 
3328 	if (dev->parent != 0) {
3329 		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3330 		    !debug_mpsafenet)
3331 			flags &= ~INTR_MPSAFE;
3332 		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3333 		    handler, arg, cookiep);
3334 		if (error == 0) {
3335 			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3336 				device_printf(dev, "[GIANT-LOCKED]\n");
3337 			if (bootverbose && (flags & INTR_MPSAFE))
3338 				device_printf(dev, "[MPSAFE]\n");
3339 			if (flags & INTR_FAST)
3340 				device_printf(dev, "[FAST]\n");
3341 		}
3342 	} else
3343 		error = EINVAL;
3344 	return (error);
3345 }
3346 
3347 /**
3348  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3349  *
3350  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3351  * parent of @p dev.
3352  */
3353 int
3354 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3355 {
3356 	if (dev->parent == 0)
3357 		return (EINVAL);
3358 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3359 }
3360 
3361 /**
3362  * @brief Wrapper function for BUS_SET_RESOURCE().
3363  *
3364  * This function simply calls the BUS_SET_RESOURCE() method of the
3365  * parent of @p dev.
3366  */
3367 int
3368 bus_set_resource(device_t dev, int type, int rid,
3369     u_long start, u_long count)
3370 {
3371 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3372 	    start, count));
3373 }
3374 
3375 /**
3376  * @brief Wrapper function for BUS_GET_RESOURCE().
3377  *
3378  * This function simply calls the BUS_GET_RESOURCE() method of the
3379  * parent of @p dev.
3380  */
3381 int
3382 bus_get_resource(device_t dev, int type, int rid,
3383     u_long *startp, u_long *countp)
3384 {
3385 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3386 	    startp, countp));
3387 }
3388 
3389 /**
3390  * @brief Wrapper function for BUS_GET_RESOURCE().
3391  *
3392  * This function simply calls the BUS_GET_RESOURCE() method of the
3393  * parent of @p dev and returns the start value.
3394  */
3395 u_long
3396 bus_get_resource_start(device_t dev, int type, int rid)
3397 {
3398 	u_long start, count;
3399 	int error;
3400 
3401 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3402 	    &start, &count);
3403 	if (error)
3404 		return (0);
3405 	return (start);
3406 }
3407 
3408 /**
3409  * @brief Wrapper function for BUS_GET_RESOURCE().
3410  *
3411  * This function simply calls the BUS_GET_RESOURCE() method of the
3412  * parent of @p dev and returns the count value.
3413  */
3414 u_long
3415 bus_get_resource_count(device_t dev, int type, int rid)
3416 {
3417 	u_long start, count;
3418 	int error;
3419 
3420 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3421 	    &start, &count);
3422 	if (error)
3423 		return (0);
3424 	return (count);
3425 }
3426 
3427 /**
3428  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3429  *
3430  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3431  * parent of @p dev.
3432  */
3433 void
3434 bus_delete_resource(device_t dev, int type, int rid)
3435 {
3436 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3437 }
3438 
3439 /**
3440  * @brief Wrapper function for BUS_CHILD_PRESENT().
3441  *
3442  * This function simply calls the BUS_CHILD_PRESENT() method of the
3443  * parent of @p dev.
3444  */
3445 int
3446 bus_child_present(device_t child)
3447 {
3448 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3449 }
3450 
3451 /**
3452  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3453  *
3454  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3455  * parent of @p dev.
3456  */
3457 int
3458 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3459 {
3460 	device_t parent;
3461 
3462 	parent = device_get_parent(child);
3463 	if (parent == NULL) {
3464 		*buf = '\0';
3465 		return (0);
3466 	}
3467 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3468 }
3469 
3470 /**
3471  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3472  *
3473  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3474  * parent of @p dev.
3475  */
3476 int
3477 bus_child_location_str(device_t child, char *buf, size_t buflen)
3478 {
3479 	device_t parent;
3480 
3481 	parent = device_get_parent(child);
3482 	if (parent == NULL) {
3483 		*buf = '\0';
3484 		return (0);
3485 	}
3486 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3487 }
3488 
3489 static int
3490 root_print_child(device_t dev, device_t child)
3491 {
3492 	int	retval = 0;
3493 
3494 	retval += bus_print_child_header(dev, child);
3495 	retval += printf("\n");
3496 
3497 	return (retval);
3498 }
3499 
3500 static int
3501 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3502     void **cookiep)
3503 {
3504 	/*
3505 	 * If an interrupt mapping gets to here something bad has happened.
3506 	 */
3507 	panic("root_setup_intr");
3508 }
3509 
3510 /*
3511  * If we get here, assume that the device is permanant and really is
3512  * present in the system.  Removable bus drivers are expected to intercept
3513  * this call long before it gets here.  We return -1 so that drivers that
3514  * really care can check vs -1 or some ERRNO returned higher in the food
3515  * chain.
3516  */
3517 static int
3518 root_child_present(device_t dev, device_t child)
3519 {
3520 	return (-1);
3521 }
3522 
3523 static kobj_method_t root_methods[] = {
3524 	/* Device interface */
3525 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3526 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3527 	KOBJMETHOD(device_resume,	bus_generic_resume),
3528 
3529 	/* Bus interface */
3530 	KOBJMETHOD(bus_print_child,	root_print_child),
3531 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3532 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3533 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3534 	KOBJMETHOD(bus_child_present,	root_child_present),
3535 
3536 	{ 0, 0 }
3537 };
3538 
3539 static driver_t root_driver = {
3540 	"root",
3541 	root_methods,
3542 	1,			/* no softc */
3543 };
3544 
3545 device_t	root_bus;
3546 devclass_t	root_devclass;
3547 
3548 static int
3549 root_bus_module_handler(module_t mod, int what, void* arg)
3550 {
3551 	switch (what) {
3552 	case MOD_LOAD:
3553 		TAILQ_INIT(&bus_data_devices);
3554 		kobj_class_compile((kobj_class_t) &root_driver);
3555 		root_bus = make_device(NULL, "root", 0);
3556 		root_bus->desc = "System root bus";
3557 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3558 		root_bus->driver = &root_driver;
3559 		root_bus->state = DS_ATTACHED;
3560 		root_devclass = devclass_find_internal("root", 0, FALSE);
3561 		devinit();
3562 		return (0);
3563 
3564 	case MOD_SHUTDOWN:
3565 		device_shutdown(root_bus);
3566 		return (0);
3567 	default:
3568 		return (EOPNOTSUPP);
3569 	}
3570 
3571 	return (0);
3572 }
3573 
3574 static moduledata_t root_bus_mod = {
3575 	"rootbus",
3576 	root_bus_module_handler,
3577 	0
3578 };
3579 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3580 
3581 /**
3582  * @brief Automatically configure devices
3583  *
3584  * This function begins the autoconfiguration process by calling
3585  * device_probe_and_attach() for each child of the @c root0 device.
3586  */
3587 void
3588 root_bus_configure(void)
3589 {
3590 	device_t dev;
3591 
3592 	PDEBUG(("."));
3593 
3594 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3595 		device_probe_and_attach(dev);
3596 	}
3597 }
3598 
3599 /**
3600  * @brief Module handler for registering device drivers
3601  *
3602  * This module handler is used to automatically register device
3603  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3604  * devclass_add_driver() for the driver described by the
3605  * driver_module_data structure pointed to by @p arg
3606  */
3607 int
3608 driver_module_handler(module_t mod, int what, void *arg)
3609 {
3610 	int error;
3611 	struct driver_module_data *dmd;
3612 	devclass_t bus_devclass;
3613 	kobj_class_t driver;
3614 
3615 	dmd = (struct driver_module_data *)arg;
3616 	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3617 	error = 0;
3618 
3619 	switch (what) {
3620 	case MOD_LOAD:
3621 		if (dmd->dmd_chainevh)
3622 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3623 
3624 		driver = dmd->dmd_driver;
3625 		PDEBUG(("Loading module: driver %s on bus %s",
3626 		    DRIVERNAME(driver), dmd->dmd_busname));
3627 		error = devclass_add_driver(bus_devclass, driver);
3628 		if (error)
3629 			break;
3630 
3631 		/*
3632 		 * If the driver has any base classes, make the
3633 		 * devclass inherit from the devclass of the driver's
3634 		 * first base class. This will allow the system to
3635 		 * search for drivers in both devclasses for children
3636 		 * of a device using this driver.
3637 		 */
3638 		if (driver->baseclasses) {
3639 			const char *parentname;
3640 			parentname = driver->baseclasses[0]->name;
3641 			*dmd->dmd_devclass =
3642 				devclass_find_internal(driver->name,
3643 				    parentname, TRUE);
3644 		} else {
3645 			*dmd->dmd_devclass =
3646 				devclass_find_internal(driver->name, 0, TRUE);
3647 		}
3648 		break;
3649 
3650 	case MOD_UNLOAD:
3651 		PDEBUG(("Unloading module: driver %s from bus %s",
3652 		    DRIVERNAME(dmd->dmd_driver),
3653 		    dmd->dmd_busname));
3654 		error = devclass_delete_driver(bus_devclass,
3655 		    dmd->dmd_driver);
3656 
3657 		if (!error && dmd->dmd_chainevh)
3658 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3659 		break;
3660 	case MOD_QUIESCE:
3661 		PDEBUG(("Quiesce module: driver %s from bus %s",
3662 		    DRIVERNAME(dmd->dmd_driver),
3663 		    dmd->dmd_busname));
3664 		error = devclass_quiesce_driver(bus_devclass,
3665 		    dmd->dmd_driver);
3666 
3667 		if (!error && dmd->dmd_chainevh)
3668 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3669 		break;
3670 	default:
3671 		error = EOPNOTSUPP;
3672 		break;
3673 	}
3674 
3675 	return (error);
3676 }
3677 
3678 #ifdef BUS_DEBUG
3679 
3680 /* the _short versions avoid iteration by not calling anything that prints
3681  * more than oneliners. I love oneliners.
3682  */
3683 
3684 static void
3685 print_device_short(device_t dev, int indent)
3686 {
3687 	if (!dev)
3688 		return;
3689 
3690 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3691 	    dev->unit, dev->desc,
3692 	    (dev->parent? "":"no "),
3693 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3694 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3695 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3696 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3697 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3698 	    (dev->flags&DF_REBID? "rebiddable,":""),
3699 	    (dev->ivars? "":"no "),
3700 	    (dev->softc? "":"no "),
3701 	    dev->busy));
3702 }
3703 
3704 static void
3705 print_device(device_t dev, int indent)
3706 {
3707 	if (!dev)
3708 		return;
3709 
3710 	print_device_short(dev, indent);
3711 
3712 	indentprintf(("Parent:\n"));
3713 	print_device_short(dev->parent, indent+1);
3714 	indentprintf(("Driver:\n"));
3715 	print_driver_short(dev->driver, indent+1);
3716 	indentprintf(("Devclass:\n"));
3717 	print_devclass_short(dev->devclass, indent+1);
3718 }
3719 
3720 void
3721 print_device_tree_short(device_t dev, int indent)
3722 /* print the device and all its children (indented) */
3723 {
3724 	device_t child;
3725 
3726 	if (!dev)
3727 		return;
3728 
3729 	print_device_short(dev, indent);
3730 
3731 	TAILQ_FOREACH(child, &dev->children, link) {
3732 		print_device_tree_short(child, indent+1);
3733 	}
3734 }
3735 
3736 void
3737 print_device_tree(device_t dev, int indent)
3738 /* print the device and all its children (indented) */
3739 {
3740 	device_t child;
3741 
3742 	if (!dev)
3743 		return;
3744 
3745 	print_device(dev, indent);
3746 
3747 	TAILQ_FOREACH(child, &dev->children, link) {
3748 		print_device_tree(child, indent+1);
3749 	}
3750 }
3751 
3752 static void
3753 print_driver_short(driver_t *driver, int indent)
3754 {
3755 	if (!driver)
3756 		return;
3757 
3758 	indentprintf(("driver %s: softc size = %zd\n",
3759 	    driver->name, driver->size));
3760 }
3761 
3762 static void
3763 print_driver(driver_t *driver, int indent)
3764 {
3765 	if (!driver)
3766 		return;
3767 
3768 	print_driver_short(driver, indent);
3769 }
3770 
3771 
3772 static void
3773 print_driver_list(driver_list_t drivers, int indent)
3774 {
3775 	driverlink_t driver;
3776 
3777 	TAILQ_FOREACH(driver, &drivers, link) {
3778 		print_driver(driver->driver, indent);
3779 	}
3780 }
3781 
3782 static void
3783 print_devclass_short(devclass_t dc, int indent)
3784 {
3785 	if ( !dc )
3786 		return;
3787 
3788 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3789 }
3790 
3791 static void
3792 print_devclass(devclass_t dc, int indent)
3793 {
3794 	int i;
3795 
3796 	if ( !dc )
3797 		return;
3798 
3799 	print_devclass_short(dc, indent);
3800 	indentprintf(("Drivers:\n"));
3801 	print_driver_list(dc->drivers, indent+1);
3802 
3803 	indentprintf(("Devices:\n"));
3804 	for (i = 0; i < dc->maxunit; i++)
3805 		if (dc->devices[i])
3806 			print_device(dc->devices[i], indent+1);
3807 }
3808 
3809 void
3810 print_devclass_list_short(void)
3811 {
3812 	devclass_t dc;
3813 
3814 	printf("Short listing of devclasses, drivers & devices:\n");
3815 	TAILQ_FOREACH(dc, &devclasses, link) {
3816 		print_devclass_short(dc, 0);
3817 	}
3818 }
3819 
3820 void
3821 print_devclass_list(void)
3822 {
3823 	devclass_t dc;
3824 
3825 	printf("Full listing of devclasses, drivers & devices:\n");
3826 	TAILQ_FOREACH(dc, &devclasses, link) {
3827 		print_devclass(dc, 0);
3828 	}
3829 }
3830 
3831 #endif
3832 
3833 /*
3834  * User-space access to the device tree.
3835  *
3836  * We implement a small set of nodes:
3837  *
3838  * hw.bus			Single integer read method to obtain the
3839  *				current generation count.
3840  * hw.bus.devices		Reads the entire device tree in flat space.
3841  * hw.bus.rman			Resource manager interface
3842  *
3843  * We might like to add the ability to scan devclasses and/or drivers to
3844  * determine what else is currently loaded/available.
3845  */
3846 
3847 static int
3848 sysctl_bus(SYSCTL_HANDLER_ARGS)
3849 {
3850 	struct u_businfo	ubus;
3851 
3852 	ubus.ub_version = BUS_USER_VERSION;
3853 	ubus.ub_generation = bus_data_generation;
3854 
3855 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3856 }
3857 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3858     "bus-related data");
3859 
3860 static int
3861 sysctl_devices(SYSCTL_HANDLER_ARGS)
3862 {
3863 	int			*name = (int *)arg1;
3864 	u_int			namelen = arg2;
3865 	int			index;
3866 	struct device		*dev;
3867 	struct u_device		udev;	/* XXX this is a bit big */
3868 	int			error;
3869 
3870 	if (namelen != 2)
3871 		return (EINVAL);
3872 
3873 	if (bus_data_generation_check(name[0]))
3874 		return (EINVAL);
3875 
3876 	index = name[1];
3877 
3878 	/*
3879 	 * Scan the list of devices, looking for the requested index.
3880 	 */
3881 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3882 		if (index-- == 0)
3883 			break;
3884 	}
3885 	if (dev == NULL)
3886 		return (ENOENT);
3887 
3888 	/*
3889 	 * Populate the return array.
3890 	 */
3891 	udev.dv_handle = (uintptr_t)dev;
3892 	udev.dv_parent = (uintptr_t)dev->parent;
3893 	if (dev->nameunit == NULL)
3894 		udev.dv_name[0] = '\0';
3895 	else
3896 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3897 
3898 	if (dev->desc == NULL)
3899 		udev.dv_desc[0] = '\0';
3900 	else
3901 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3902 	if (dev->driver == NULL || dev->driver->name == NULL)
3903 		udev.dv_drivername[0] = '\0';
3904 	else
3905 		strlcpy(udev.dv_drivername, dev->driver->name,
3906 		    sizeof(udev.dv_drivername));
3907 	udev.dv_pnpinfo[0] = '\0';
3908 	udev.dv_location[0] = '\0';
3909 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3910 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3911 	udev.dv_devflags = dev->devflags;
3912 	udev.dv_flags = dev->flags;
3913 	udev.dv_state = dev->state;
3914 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3915 	return (error);
3916 }
3917 
3918 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3919     "system device tree");
3920 
3921 /*
3922  * Sysctl interface for scanning the resource lists.
3923  *
3924  * We take two input parameters; the index into the list of resource
3925  * managers, and the resource offset into the list.
3926  */
3927 static int
3928 sysctl_rman(SYSCTL_HANDLER_ARGS)
3929 {
3930 	int			*name = (int *)arg1;
3931 	u_int			namelen = arg2;
3932 	int			rman_idx, res_idx;
3933 	struct rman		*rm;
3934 	struct resource		*res;
3935 	struct u_rman		urm;
3936 	struct u_resource	ures;
3937 	int			error;
3938 
3939 	if (namelen != 3)
3940 		return (EINVAL);
3941 
3942 	if (bus_data_generation_check(name[0]))
3943 		return (EINVAL);
3944 	rman_idx = name[1];
3945 	res_idx = name[2];
3946 
3947 	/*
3948 	 * Find the indexed resource manager
3949 	 */
3950 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
3951 		if (rman_idx-- == 0)
3952 			break;
3953 	}
3954 	if (rm == NULL)
3955 		return (ENOENT);
3956 
3957 	/*
3958 	 * If the resource index is -1, we want details on the
3959 	 * resource manager.
3960 	 */
3961 	if (res_idx == -1) {
3962 		urm.rm_handle = (uintptr_t)rm;
3963 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
3964 		urm.rm_start = rm->rm_start;
3965 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
3966 		urm.rm_type = rm->rm_type;
3967 
3968 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
3969 		return (error);
3970 	}
3971 
3972 	/*
3973 	 * Find the indexed resource and return it.
3974 	 */
3975 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
3976 		if (res_idx-- == 0) {
3977 			ures.r_handle = (uintptr_t)res;
3978 			ures.r_parent = (uintptr_t)res->r_rm;
3979 			ures.r_device = (uintptr_t)res->r_dev;
3980 			if (res->r_dev != NULL) {
3981 				if (device_get_name(res->r_dev) != NULL) {
3982 					snprintf(ures.r_devname, RM_TEXTLEN,
3983 					    "%s%d",
3984 					    device_get_name(res->r_dev),
3985 					    device_get_unit(res->r_dev));
3986 				} else {
3987 					strlcpy(ures.r_devname, "nomatch",
3988 					    RM_TEXTLEN);
3989 				}
3990 			} else {
3991 				ures.r_devname[0] = '\0';
3992 			}
3993 			ures.r_start = res->r_start;
3994 			ures.r_size = res->r_end - res->r_start + 1;
3995 			ures.r_flags = res->r_flags;
3996 
3997 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
3998 			return (error);
3999 		}
4000 	}
4001 	return (ENOENT);
4002 }
4003 
4004 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
4005     "kernel resource manager");
4006 
4007 int
4008 bus_data_generation_check(int generation)
4009 {
4010 	if (generation != bus_data_generation)
4011 		return (1);
4012 
4013 	/* XXX generate optimised lists here? */
4014 	return (0);
4015 }
4016 
4017 void
4018 bus_data_generation_update(void)
4019 {
4020 	bus_data_generation++;
4021 }
4022 
4023 int
4024 bus_free_resource(device_t dev, int type, struct resource *r)
4025 {
4026 	if (r == NULL)
4027 		return (0);
4028 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4029 }
4030