1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/condvar.h> 47 #include <sys/queue.h> 48 #include <machine/bus.h> 49 #include <sys/random.h> 50 #include <sys/rman.h> 51 #include <sys/selinfo.h> 52 #include <sys/signalvar.h> 53 #include <sys/smp.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 #include <sys/uio.h> 57 #include <sys/bus.h> 58 #include <sys/interrupt.h> 59 #include <sys/cpuset.h> 60 61 #include <net/vnet.h> 62 63 #include <machine/cpu.h> 64 #include <machine/stdarg.h> 65 66 #include <vm/uma.h> 67 #include <vm/vm.h> 68 69 #include <ddb/ddb.h> 70 71 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 72 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 73 74 /* 75 * Used to attach drivers to devclasses. 76 */ 77 typedef struct driverlink *driverlink_t; 78 struct driverlink { 79 kobj_class_t driver; 80 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 81 int pass; 82 TAILQ_ENTRY(driverlink) passlink; 83 }; 84 85 /* 86 * Forward declarations 87 */ 88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 90 typedef TAILQ_HEAD(device_list, device) device_list_t; 91 92 struct devclass { 93 TAILQ_ENTRY(devclass) link; 94 devclass_t parent; /* parent in devclass hierarchy */ 95 driver_list_t drivers; /* bus devclasses store drivers for bus */ 96 char *name; 97 device_t *devices; /* array of devices indexed by unit */ 98 int maxunit; /* size of devices array */ 99 int flags; 100 #define DC_HAS_CHILDREN 1 101 102 struct sysctl_ctx_list sysctl_ctx; 103 struct sysctl_oid *sysctl_tree; 104 }; 105 106 /** 107 * @brief Implementation of device. 108 */ 109 struct device { 110 /* 111 * A device is a kernel object. The first field must be the 112 * current ops table for the object. 113 */ 114 KOBJ_FIELDS; 115 116 /* 117 * Device hierarchy. 118 */ 119 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 120 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 121 device_t parent; /**< parent of this device */ 122 device_list_t children; /**< list of child devices */ 123 124 /* 125 * Details of this device. 126 */ 127 driver_t *driver; /**< current driver */ 128 devclass_t devclass; /**< current device class */ 129 int unit; /**< current unit number */ 130 char* nameunit; /**< name+unit e.g. foodev0 */ 131 char* desc; /**< driver specific description */ 132 int busy; /**< count of calls to device_busy() */ 133 device_state_t state; /**< current device state */ 134 uint32_t devflags; /**< api level flags for device_get_flags() */ 135 u_int flags; /**< internal device flags */ 136 u_int order; /**< order from device_add_child_ordered() */ 137 void *ivars; /**< instance variables */ 138 void *softc; /**< current driver's variables */ 139 140 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 141 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 142 }; 143 144 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 145 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 146 147 static void devctl2_init(void); 148 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 #ifdef BUS_DEBUG 153 154 static int bus_debug = 1; 155 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 156 "Bus debug level"); 157 158 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 159 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 160 161 /** 162 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 163 * prevent syslog from deleting initial spaces 164 */ 165 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 166 167 static void print_device_short(device_t dev, int indent); 168 static void print_device(device_t dev, int indent); 169 void print_device_tree_short(device_t dev, int indent); 170 void print_device_tree(device_t dev, int indent); 171 static void print_driver_short(driver_t *driver, int indent); 172 static void print_driver(driver_t *driver, int indent); 173 static void print_driver_list(driver_list_t drivers, int indent); 174 static void print_devclass_short(devclass_t dc, int indent); 175 static void print_devclass(devclass_t dc, int indent); 176 void print_devclass_list_short(void); 177 void print_devclass_list(void); 178 179 #else 180 /* Make the compiler ignore the function calls */ 181 #define PDEBUG(a) /* nop */ 182 #define DEVICENAME(d) /* nop */ 183 184 #define print_device_short(d,i) /* nop */ 185 #define print_device(d,i) /* nop */ 186 #define print_device_tree_short(d,i) /* nop */ 187 #define print_device_tree(d,i) /* nop */ 188 #define print_driver_short(d,i) /* nop */ 189 #define print_driver(d,i) /* nop */ 190 #define print_driver_list(d,i) /* nop */ 191 #define print_devclass_short(d,i) /* nop */ 192 #define print_devclass(d,i) /* nop */ 193 #define print_devclass_list_short() /* nop */ 194 #define print_devclass_list() /* nop */ 195 #endif 196 197 /* 198 * dev sysctl tree 199 */ 200 201 enum { 202 DEVCLASS_SYSCTL_PARENT, 203 }; 204 205 static int 206 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 207 { 208 devclass_t dc = (devclass_t)arg1; 209 const char *value; 210 211 switch (arg2) { 212 case DEVCLASS_SYSCTL_PARENT: 213 value = dc->parent ? dc->parent->name : ""; 214 break; 215 default: 216 return (EINVAL); 217 } 218 return (SYSCTL_OUT_STR(req, value)); 219 } 220 221 static void 222 devclass_sysctl_init(devclass_t dc) 223 { 224 225 if (dc->sysctl_tree != NULL) 226 return; 227 sysctl_ctx_init(&dc->sysctl_ctx); 228 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 229 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 230 CTLFLAG_RD, NULL, ""); 231 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 232 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 233 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 234 "parent class"); 235 } 236 237 enum { 238 DEVICE_SYSCTL_DESC, 239 DEVICE_SYSCTL_DRIVER, 240 DEVICE_SYSCTL_LOCATION, 241 DEVICE_SYSCTL_PNPINFO, 242 DEVICE_SYSCTL_PARENT, 243 }; 244 245 static int 246 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 247 { 248 device_t dev = (device_t)arg1; 249 const char *value; 250 char *buf; 251 int error; 252 253 buf = NULL; 254 switch (arg2) { 255 case DEVICE_SYSCTL_DESC: 256 value = dev->desc ? dev->desc : ""; 257 break; 258 case DEVICE_SYSCTL_DRIVER: 259 value = dev->driver ? dev->driver->name : ""; 260 break; 261 case DEVICE_SYSCTL_LOCATION: 262 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 263 bus_child_location_str(dev, buf, 1024); 264 break; 265 case DEVICE_SYSCTL_PNPINFO: 266 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 267 bus_child_pnpinfo_str(dev, buf, 1024); 268 break; 269 case DEVICE_SYSCTL_PARENT: 270 value = dev->parent ? dev->parent->nameunit : ""; 271 break; 272 default: 273 return (EINVAL); 274 } 275 error = SYSCTL_OUT_STR(req, value); 276 if (buf != NULL) 277 free(buf, M_BUS); 278 return (error); 279 } 280 281 static void 282 device_sysctl_init(device_t dev) 283 { 284 devclass_t dc = dev->devclass; 285 int domain; 286 287 if (dev->sysctl_tree != NULL) 288 return; 289 devclass_sysctl_init(dc); 290 sysctl_ctx_init(&dev->sysctl_ctx); 291 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 292 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 293 dev->nameunit + strlen(dc->name), 294 CTLFLAG_RD, NULL, "", "device_index"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 298 "device description"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 302 "device driver name"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 306 "device location relative to parent"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 310 "device identification"); 311 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 312 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 313 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 314 "parent device"); 315 if (bus_get_domain(dev, &domain) == 0) 316 SYSCTL_ADD_INT(&dev->sysctl_ctx, 317 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 318 CTLFLAG_RD, NULL, domain, "NUMA domain"); 319 } 320 321 static void 322 device_sysctl_update(device_t dev) 323 { 324 devclass_t dc = dev->devclass; 325 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 329 } 330 331 static void 332 device_sysctl_fini(device_t dev) 333 { 334 if (dev->sysctl_tree == NULL) 335 return; 336 sysctl_ctx_free(&dev->sysctl_ctx); 337 dev->sysctl_tree = NULL; 338 } 339 340 /* 341 * /dev/devctl implementation 342 */ 343 344 /* 345 * This design allows only one reader for /dev/devctl. This is not desirable 346 * in the long run, but will get a lot of hair out of this implementation. 347 * Maybe we should make this device a clonable device. 348 * 349 * Also note: we specifically do not attach a device to the device_t tree 350 * to avoid potential chicken and egg problems. One could argue that all 351 * of this belongs to the root node. One could also further argue that the 352 * sysctl interface that we have not might more properly be an ioctl 353 * interface, but at this stage of the game, I'm not inclined to rock that 354 * boat. 355 * 356 * I'm also not sure that the SIGIO support is done correctly or not, as 357 * I copied it from a driver that had SIGIO support that likely hasn't been 358 * tested since 3.4 or 2.2.8! 359 */ 360 361 /* Deprecated way to adjust queue length */ 362 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 364 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 365 "devctl disable -- deprecated"); 366 367 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 368 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 369 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 370 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 371 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 372 373 static d_open_t devopen; 374 static d_close_t devclose; 375 static d_read_t devread; 376 static d_ioctl_t devioctl; 377 static d_poll_t devpoll; 378 static d_kqfilter_t devkqfilter; 379 380 static struct cdevsw dev_cdevsw = { 381 .d_version = D_VERSION, 382 .d_open = devopen, 383 .d_close = devclose, 384 .d_read = devread, 385 .d_ioctl = devioctl, 386 .d_poll = devpoll, 387 .d_kqfilter = devkqfilter, 388 .d_name = "devctl", 389 }; 390 391 struct dev_event_info 392 { 393 char *dei_data; 394 TAILQ_ENTRY(dev_event_info) dei_link; 395 }; 396 397 TAILQ_HEAD(devq, dev_event_info); 398 399 static struct dev_softc 400 { 401 int inuse; 402 int nonblock; 403 int queued; 404 int async; 405 struct mtx mtx; 406 struct cv cv; 407 struct selinfo sel; 408 struct devq devq; 409 struct sigio *sigio; 410 } devsoftc; 411 412 static void filt_devctl_detach(struct knote *kn); 413 static int filt_devctl_read(struct knote *kn, long hint); 414 415 struct filterops devctl_rfiltops = { 416 .f_isfd = 1, 417 .f_detach = filt_devctl_detach, 418 .f_event = filt_devctl_read, 419 }; 420 421 static struct cdev *devctl_dev; 422 423 static void 424 devinit(void) 425 { 426 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 427 UID_ROOT, GID_WHEEL, 0600, "devctl"); 428 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 429 cv_init(&devsoftc.cv, "dev cv"); 430 TAILQ_INIT(&devsoftc.devq); 431 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 432 devctl2_init(); 433 } 434 435 static int 436 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 437 { 438 439 mtx_lock(&devsoftc.mtx); 440 if (devsoftc.inuse) { 441 mtx_unlock(&devsoftc.mtx); 442 return (EBUSY); 443 } 444 /* move to init */ 445 devsoftc.inuse = 1; 446 mtx_unlock(&devsoftc.mtx); 447 return (0); 448 } 449 450 static int 451 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 452 { 453 454 mtx_lock(&devsoftc.mtx); 455 devsoftc.inuse = 0; 456 devsoftc.nonblock = 0; 457 devsoftc.async = 0; 458 cv_broadcast(&devsoftc.cv); 459 funsetown(&devsoftc.sigio); 460 mtx_unlock(&devsoftc.mtx); 461 return (0); 462 } 463 464 /* 465 * The read channel for this device is used to report changes to 466 * userland in realtime. We are required to free the data as well as 467 * the n1 object because we allocate them separately. Also note that 468 * we return one record at a time. If you try to read this device a 469 * character at a time, you will lose the rest of the data. Listening 470 * programs are expected to cope. 471 */ 472 static int 473 devread(struct cdev *dev, struct uio *uio, int ioflag) 474 { 475 struct dev_event_info *n1; 476 int rv; 477 478 mtx_lock(&devsoftc.mtx); 479 while (TAILQ_EMPTY(&devsoftc.devq)) { 480 if (devsoftc.nonblock) { 481 mtx_unlock(&devsoftc.mtx); 482 return (EAGAIN); 483 } 484 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 485 if (rv) { 486 /* 487 * Need to translate ERESTART to EINTR here? -- jake 488 */ 489 mtx_unlock(&devsoftc.mtx); 490 return (rv); 491 } 492 } 493 n1 = TAILQ_FIRST(&devsoftc.devq); 494 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 495 devsoftc.queued--; 496 mtx_unlock(&devsoftc.mtx); 497 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 498 free(n1->dei_data, M_BUS); 499 free(n1, M_BUS); 500 return (rv); 501 } 502 503 static int 504 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 505 { 506 switch (cmd) { 507 508 case FIONBIO: 509 if (*(int*)data) 510 devsoftc.nonblock = 1; 511 else 512 devsoftc.nonblock = 0; 513 return (0); 514 case FIOASYNC: 515 if (*(int*)data) 516 devsoftc.async = 1; 517 else 518 devsoftc.async = 0; 519 return (0); 520 case FIOSETOWN: 521 return fsetown(*(int *)data, &devsoftc.sigio); 522 case FIOGETOWN: 523 *(int *)data = fgetown(&devsoftc.sigio); 524 return (0); 525 526 /* (un)Support for other fcntl() calls. */ 527 case FIOCLEX: 528 case FIONCLEX: 529 case FIONREAD: 530 default: 531 break; 532 } 533 return (ENOTTY); 534 } 535 536 static int 537 devpoll(struct cdev *dev, int events, struct thread *td) 538 { 539 int revents = 0; 540 541 mtx_lock(&devsoftc.mtx); 542 if (events & (POLLIN | POLLRDNORM)) { 543 if (!TAILQ_EMPTY(&devsoftc.devq)) 544 revents = events & (POLLIN | POLLRDNORM); 545 else 546 selrecord(td, &devsoftc.sel); 547 } 548 mtx_unlock(&devsoftc.mtx); 549 550 return (revents); 551 } 552 553 static int 554 devkqfilter(struct cdev *dev, struct knote *kn) 555 { 556 int error; 557 558 if (kn->kn_filter == EVFILT_READ) { 559 kn->kn_fop = &devctl_rfiltops; 560 knlist_add(&devsoftc.sel.si_note, kn, 0); 561 error = 0; 562 } else 563 error = EINVAL; 564 return (error); 565 } 566 567 static void 568 filt_devctl_detach(struct knote *kn) 569 { 570 571 knlist_remove(&devsoftc.sel.si_note, kn, 0); 572 } 573 574 static int 575 filt_devctl_read(struct knote *kn, long hint) 576 { 577 kn->kn_data = devsoftc.queued; 578 return (kn->kn_data != 0); 579 } 580 581 /** 582 * @brief Return whether the userland process is running 583 */ 584 boolean_t 585 devctl_process_running(void) 586 { 587 return (devsoftc.inuse == 1); 588 } 589 590 /** 591 * @brief Queue data to be read from the devctl device 592 * 593 * Generic interface to queue data to the devctl device. It is 594 * assumed that @p data is properly formatted. It is further assumed 595 * that @p data is allocated using the M_BUS malloc type. 596 */ 597 void 598 devctl_queue_data_f(char *data, int flags) 599 { 600 struct dev_event_info *n1 = NULL, *n2 = NULL; 601 602 if (strlen(data) == 0) 603 goto out; 604 if (devctl_queue_length == 0) 605 goto out; 606 n1 = malloc(sizeof(*n1), M_BUS, flags); 607 if (n1 == NULL) 608 goto out; 609 n1->dei_data = data; 610 mtx_lock(&devsoftc.mtx); 611 if (devctl_queue_length == 0) { 612 mtx_unlock(&devsoftc.mtx); 613 free(n1->dei_data, M_BUS); 614 free(n1, M_BUS); 615 return; 616 } 617 /* Leave at least one spot in the queue... */ 618 while (devsoftc.queued > devctl_queue_length - 1) { 619 n2 = TAILQ_FIRST(&devsoftc.devq); 620 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 621 free(n2->dei_data, M_BUS); 622 free(n2, M_BUS); 623 devsoftc.queued--; 624 } 625 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 626 devsoftc.queued++; 627 cv_broadcast(&devsoftc.cv); 628 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 629 mtx_unlock(&devsoftc.mtx); 630 selwakeup(&devsoftc.sel); 631 if (devsoftc.async && devsoftc.sigio != NULL) 632 pgsigio(&devsoftc.sigio, SIGIO, 0); 633 return; 634 out: 635 /* 636 * We have to free data on all error paths since the caller 637 * assumes it will be free'd when this item is dequeued. 638 */ 639 free(data, M_BUS); 640 return; 641 } 642 643 void 644 devctl_queue_data(char *data) 645 { 646 647 devctl_queue_data_f(data, M_NOWAIT); 648 } 649 650 /** 651 * @brief Send a 'notification' to userland, using standard ways 652 */ 653 void 654 devctl_notify_f(const char *system, const char *subsystem, const char *type, 655 const char *data, int flags) 656 { 657 int len = 0; 658 char *msg; 659 660 if (system == NULL) 661 return; /* BOGUS! Must specify system. */ 662 if (subsystem == NULL) 663 return; /* BOGUS! Must specify subsystem. */ 664 if (type == NULL) 665 return; /* BOGUS! Must specify type. */ 666 len += strlen(" system=") + strlen(system); 667 len += strlen(" subsystem=") + strlen(subsystem); 668 len += strlen(" type=") + strlen(type); 669 /* add in the data message plus newline. */ 670 if (data != NULL) 671 len += strlen(data); 672 len += 3; /* '!', '\n', and NUL */ 673 msg = malloc(len, M_BUS, flags); 674 if (msg == NULL) 675 return; /* Drop it on the floor */ 676 if (data != NULL) 677 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 678 system, subsystem, type, data); 679 else 680 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 681 system, subsystem, type); 682 devctl_queue_data_f(msg, flags); 683 } 684 685 void 686 devctl_notify(const char *system, const char *subsystem, const char *type, 687 const char *data) 688 { 689 690 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 691 } 692 693 /* 694 * Common routine that tries to make sending messages as easy as possible. 695 * We allocate memory for the data, copy strings into that, but do not 696 * free it unless there's an error. The dequeue part of the driver should 697 * free the data. We don't send data when the device is disabled. We do 698 * send data, even when we have no listeners, because we wish to avoid 699 * races relating to startup and restart of listening applications. 700 * 701 * devaddq is designed to string together the type of event, with the 702 * object of that event, plus the plug and play info and location info 703 * for that event. This is likely most useful for devices, but less 704 * useful for other consumers of this interface. Those should use 705 * the devctl_queue_data() interface instead. 706 */ 707 static void 708 devaddq(const char *type, const char *what, device_t dev) 709 { 710 char *data = NULL; 711 char *loc = NULL; 712 char *pnp = NULL; 713 const char *parstr; 714 715 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 716 return; 717 data = malloc(1024, M_BUS, M_NOWAIT); 718 if (data == NULL) 719 goto bad; 720 721 /* get the bus specific location of this device */ 722 loc = malloc(1024, M_BUS, M_NOWAIT); 723 if (loc == NULL) 724 goto bad; 725 *loc = '\0'; 726 bus_child_location_str(dev, loc, 1024); 727 728 /* Get the bus specific pnp info of this device */ 729 pnp = malloc(1024, M_BUS, M_NOWAIT); 730 if (pnp == NULL) 731 goto bad; 732 *pnp = '\0'; 733 bus_child_pnpinfo_str(dev, pnp, 1024); 734 735 /* Get the parent of this device, or / if high enough in the tree. */ 736 if (device_get_parent(dev) == NULL) 737 parstr = "."; /* Or '/' ? */ 738 else 739 parstr = device_get_nameunit(device_get_parent(dev)); 740 /* String it all together. */ 741 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 742 parstr); 743 free(loc, M_BUS); 744 free(pnp, M_BUS); 745 devctl_queue_data(data); 746 return; 747 bad: 748 free(pnp, M_BUS); 749 free(loc, M_BUS); 750 free(data, M_BUS); 751 return; 752 } 753 754 /* 755 * A device was added to the tree. We are called just after it successfully 756 * attaches (that is, probe and attach success for this device). No call 757 * is made if a device is merely parented into the tree. See devnomatch 758 * if probe fails. If attach fails, no notification is sent (but maybe 759 * we should have a different message for this). 760 */ 761 static void 762 devadded(device_t dev) 763 { 764 devaddq("+", device_get_nameunit(dev), dev); 765 } 766 767 /* 768 * A device was removed from the tree. We are called just before this 769 * happens. 770 */ 771 static void 772 devremoved(device_t dev) 773 { 774 devaddq("-", device_get_nameunit(dev), dev); 775 } 776 777 /* 778 * Called when there's no match for this device. This is only called 779 * the first time that no match happens, so we don't keep getting this 780 * message. Should that prove to be undesirable, we can change it. 781 * This is called when all drivers that can attach to a given bus 782 * decline to accept this device. Other errors may not be detected. 783 */ 784 static void 785 devnomatch(device_t dev) 786 { 787 devaddq("?", "", dev); 788 } 789 790 static int 791 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 792 { 793 struct dev_event_info *n1; 794 int dis, error; 795 796 dis = (devctl_queue_length == 0); 797 error = sysctl_handle_int(oidp, &dis, 0, req); 798 if (error || !req->newptr) 799 return (error); 800 if (mtx_initialized(&devsoftc.mtx)) 801 mtx_lock(&devsoftc.mtx); 802 if (dis) { 803 while (!TAILQ_EMPTY(&devsoftc.devq)) { 804 n1 = TAILQ_FIRST(&devsoftc.devq); 805 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 806 free(n1->dei_data, M_BUS); 807 free(n1, M_BUS); 808 } 809 devsoftc.queued = 0; 810 devctl_queue_length = 0; 811 } else { 812 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 813 } 814 if (mtx_initialized(&devsoftc.mtx)) 815 mtx_unlock(&devsoftc.mtx); 816 return (0); 817 } 818 819 static int 820 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 821 { 822 struct dev_event_info *n1; 823 int q, error; 824 825 q = devctl_queue_length; 826 error = sysctl_handle_int(oidp, &q, 0, req); 827 if (error || !req->newptr) 828 return (error); 829 if (q < 0) 830 return (EINVAL); 831 if (mtx_initialized(&devsoftc.mtx)) 832 mtx_lock(&devsoftc.mtx); 833 devctl_queue_length = q; 834 while (devsoftc.queued > devctl_queue_length) { 835 n1 = TAILQ_FIRST(&devsoftc.devq); 836 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 837 free(n1->dei_data, M_BUS); 838 free(n1, M_BUS); 839 devsoftc.queued--; 840 } 841 if (mtx_initialized(&devsoftc.mtx)) 842 mtx_unlock(&devsoftc.mtx); 843 return (0); 844 } 845 846 /** 847 * @brief safely quotes strings that might have double quotes in them. 848 * 849 * The devctl protocol relies on quoted strings having matching quotes. 850 * This routine quotes any internal quotes so the resulting string 851 * is safe to pass to snprintf to construct, for example pnp info strings. 852 * Strings are always terminated with a NUL, but may be truncated if longer 853 * than @p len bytes after quotes. 854 * 855 * @param dst Buffer to hold the string. Must be at least @p len bytes long 856 * @param src Original buffer. 857 * @param len Length of buffer pointed to by @dst, including trailing NUL 858 */ 859 void 860 devctl_safe_quote(char *dst, const char *src, size_t len) 861 { 862 char *walker = dst, *ep = dst + len - 1; 863 864 if (len == 0) 865 return; 866 while (src != NULL && walker < ep) 867 { 868 if (*src == '"' || *src == '\\') { 869 if (ep - walker < 2) 870 break; 871 *walker++ = '\\'; 872 } 873 *walker++ = *src++; 874 } 875 *walker = '\0'; 876 } 877 878 /* End of /dev/devctl code */ 879 880 static TAILQ_HEAD(,device) bus_data_devices; 881 static int bus_data_generation = 1; 882 883 static kobj_method_t null_methods[] = { 884 KOBJMETHOD_END 885 }; 886 887 DEFINE_CLASS(null, null_methods, 0); 888 889 /* 890 * Bus pass implementation 891 */ 892 893 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 894 int bus_current_pass = BUS_PASS_ROOT; 895 896 /** 897 * @internal 898 * @brief Register the pass level of a new driver attachment 899 * 900 * Register a new driver attachment's pass level. If no driver 901 * attachment with the same pass level has been added, then @p new 902 * will be added to the global passes list. 903 * 904 * @param new the new driver attachment 905 */ 906 static void 907 driver_register_pass(struct driverlink *new) 908 { 909 struct driverlink *dl; 910 911 /* We only consider pass numbers during boot. */ 912 if (bus_current_pass == BUS_PASS_DEFAULT) 913 return; 914 915 /* 916 * Walk the passes list. If we already know about this pass 917 * then there is nothing to do. If we don't, then insert this 918 * driver link into the list. 919 */ 920 TAILQ_FOREACH(dl, &passes, passlink) { 921 if (dl->pass < new->pass) 922 continue; 923 if (dl->pass == new->pass) 924 return; 925 TAILQ_INSERT_BEFORE(dl, new, passlink); 926 return; 927 } 928 TAILQ_INSERT_TAIL(&passes, new, passlink); 929 } 930 931 /** 932 * @brief Raise the current bus pass 933 * 934 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 935 * method on the root bus to kick off a new device tree scan for each 936 * new pass level that has at least one driver. 937 */ 938 void 939 bus_set_pass(int pass) 940 { 941 struct driverlink *dl; 942 943 if (bus_current_pass > pass) 944 panic("Attempt to lower bus pass level"); 945 946 TAILQ_FOREACH(dl, &passes, passlink) { 947 /* Skip pass values below the current pass level. */ 948 if (dl->pass <= bus_current_pass) 949 continue; 950 951 /* 952 * Bail once we hit a driver with a pass level that is 953 * too high. 954 */ 955 if (dl->pass > pass) 956 break; 957 958 /* 959 * Raise the pass level to the next level and rescan 960 * the tree. 961 */ 962 bus_current_pass = dl->pass; 963 BUS_NEW_PASS(root_bus); 964 } 965 966 /* 967 * If there isn't a driver registered for the requested pass, 968 * then bus_current_pass might still be less than 'pass'. Set 969 * it to 'pass' in that case. 970 */ 971 if (bus_current_pass < pass) 972 bus_current_pass = pass; 973 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 974 } 975 976 /* 977 * Devclass implementation 978 */ 979 980 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 981 982 /** 983 * @internal 984 * @brief Find or create a device class 985 * 986 * If a device class with the name @p classname exists, return it, 987 * otherwise if @p create is non-zero create and return a new device 988 * class. 989 * 990 * If @p parentname is non-NULL, the parent of the devclass is set to 991 * the devclass of that name. 992 * 993 * @param classname the devclass name to find or create 994 * @param parentname the parent devclass name or @c NULL 995 * @param create non-zero to create a devclass 996 */ 997 static devclass_t 998 devclass_find_internal(const char *classname, const char *parentname, 999 int create) 1000 { 1001 devclass_t dc; 1002 1003 PDEBUG(("looking for %s", classname)); 1004 if (!classname) 1005 return (NULL); 1006 1007 TAILQ_FOREACH(dc, &devclasses, link) { 1008 if (!strcmp(dc->name, classname)) 1009 break; 1010 } 1011 1012 if (create && !dc) { 1013 PDEBUG(("creating %s", classname)); 1014 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1015 M_BUS, M_NOWAIT | M_ZERO); 1016 if (!dc) 1017 return (NULL); 1018 dc->parent = NULL; 1019 dc->name = (char*) (dc + 1); 1020 strcpy(dc->name, classname); 1021 TAILQ_INIT(&dc->drivers); 1022 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1023 1024 bus_data_generation_update(); 1025 } 1026 1027 /* 1028 * If a parent class is specified, then set that as our parent so 1029 * that this devclass will support drivers for the parent class as 1030 * well. If the parent class has the same name don't do this though 1031 * as it creates a cycle that can trigger an infinite loop in 1032 * device_probe_child() if a device exists for which there is no 1033 * suitable driver. 1034 */ 1035 if (parentname && dc && !dc->parent && 1036 strcmp(classname, parentname) != 0) { 1037 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1038 dc->parent->flags |= DC_HAS_CHILDREN; 1039 } 1040 1041 return (dc); 1042 } 1043 1044 /** 1045 * @brief Create a device class 1046 * 1047 * If a device class with the name @p classname exists, return it, 1048 * otherwise create and return a new device class. 1049 * 1050 * @param classname the devclass name to find or create 1051 */ 1052 devclass_t 1053 devclass_create(const char *classname) 1054 { 1055 return (devclass_find_internal(classname, NULL, TRUE)); 1056 } 1057 1058 /** 1059 * @brief Find a device class 1060 * 1061 * If a device class with the name @p classname exists, return it, 1062 * otherwise return @c NULL. 1063 * 1064 * @param classname the devclass name to find 1065 */ 1066 devclass_t 1067 devclass_find(const char *classname) 1068 { 1069 return (devclass_find_internal(classname, NULL, FALSE)); 1070 } 1071 1072 /** 1073 * @brief Register that a device driver has been added to a devclass 1074 * 1075 * Register that a device driver has been added to a devclass. This 1076 * is called by devclass_add_driver to accomplish the recursive 1077 * notification of all the children classes of dc, as well as dc. 1078 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1079 * the devclass. 1080 * 1081 * We do a full search here of the devclass list at each iteration 1082 * level to save storing children-lists in the devclass structure. If 1083 * we ever move beyond a few dozen devices doing this, we may need to 1084 * reevaluate... 1085 * 1086 * @param dc the devclass to edit 1087 * @param driver the driver that was just added 1088 */ 1089 static void 1090 devclass_driver_added(devclass_t dc, driver_t *driver) 1091 { 1092 devclass_t parent; 1093 int i; 1094 1095 /* 1096 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1097 */ 1098 for (i = 0; i < dc->maxunit; i++) 1099 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1100 BUS_DRIVER_ADDED(dc->devices[i], driver); 1101 1102 /* 1103 * Walk through the children classes. Since we only keep a 1104 * single parent pointer around, we walk the entire list of 1105 * devclasses looking for children. We set the 1106 * DC_HAS_CHILDREN flag when a child devclass is created on 1107 * the parent, so we only walk the list for those devclasses 1108 * that have children. 1109 */ 1110 if (!(dc->flags & DC_HAS_CHILDREN)) 1111 return; 1112 parent = dc; 1113 TAILQ_FOREACH(dc, &devclasses, link) { 1114 if (dc->parent == parent) 1115 devclass_driver_added(dc, driver); 1116 } 1117 } 1118 1119 /** 1120 * @brief Add a device driver to a device class 1121 * 1122 * Add a device driver to a devclass. This is normally called 1123 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1124 * all devices in the devclass will be called to allow them to attempt 1125 * to re-probe any unmatched children. 1126 * 1127 * @param dc the devclass to edit 1128 * @param driver the driver to register 1129 */ 1130 int 1131 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1132 { 1133 driverlink_t dl; 1134 const char *parentname; 1135 1136 PDEBUG(("%s", DRIVERNAME(driver))); 1137 1138 /* Don't allow invalid pass values. */ 1139 if (pass <= BUS_PASS_ROOT) 1140 return (EINVAL); 1141 1142 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1143 if (!dl) 1144 return (ENOMEM); 1145 1146 /* 1147 * Compile the driver's methods. Also increase the reference count 1148 * so that the class doesn't get freed when the last instance 1149 * goes. This means we can safely use static methods and avoids a 1150 * double-free in devclass_delete_driver. 1151 */ 1152 kobj_class_compile((kobj_class_t) driver); 1153 1154 /* 1155 * If the driver has any base classes, make the 1156 * devclass inherit from the devclass of the driver's 1157 * first base class. This will allow the system to 1158 * search for drivers in both devclasses for children 1159 * of a device using this driver. 1160 */ 1161 if (driver->baseclasses) 1162 parentname = driver->baseclasses[0]->name; 1163 else 1164 parentname = NULL; 1165 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1166 1167 dl->driver = driver; 1168 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1169 driver->refs++; /* XXX: kobj_mtx */ 1170 dl->pass = pass; 1171 driver_register_pass(dl); 1172 1173 devclass_driver_added(dc, driver); 1174 bus_data_generation_update(); 1175 return (0); 1176 } 1177 1178 /** 1179 * @brief Register that a device driver has been deleted from a devclass 1180 * 1181 * Register that a device driver has been removed from a devclass. 1182 * This is called by devclass_delete_driver to accomplish the 1183 * recursive notification of all the children classes of busclass, as 1184 * well as busclass. Each layer will attempt to detach the driver 1185 * from any devices that are children of the bus's devclass. The function 1186 * will return an error if a device fails to detach. 1187 * 1188 * We do a full search here of the devclass list at each iteration 1189 * level to save storing children-lists in the devclass structure. If 1190 * we ever move beyond a few dozen devices doing this, we may need to 1191 * reevaluate... 1192 * 1193 * @param busclass the devclass of the parent bus 1194 * @param dc the devclass of the driver being deleted 1195 * @param driver the driver being deleted 1196 */ 1197 static int 1198 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1199 { 1200 devclass_t parent; 1201 device_t dev; 1202 int error, i; 1203 1204 /* 1205 * Disassociate from any devices. We iterate through all the 1206 * devices in the devclass of the driver and detach any which are 1207 * using the driver and which have a parent in the devclass which 1208 * we are deleting from. 1209 * 1210 * Note that since a driver can be in multiple devclasses, we 1211 * should not detach devices which are not children of devices in 1212 * the affected devclass. 1213 */ 1214 for (i = 0; i < dc->maxunit; i++) { 1215 if (dc->devices[i]) { 1216 dev = dc->devices[i]; 1217 if (dev->driver == driver && dev->parent && 1218 dev->parent->devclass == busclass) { 1219 if ((error = device_detach(dev)) != 0) 1220 return (error); 1221 BUS_PROBE_NOMATCH(dev->parent, dev); 1222 devnomatch(dev); 1223 dev->flags |= DF_DONENOMATCH; 1224 } 1225 } 1226 } 1227 1228 /* 1229 * Walk through the children classes. Since we only keep a 1230 * single parent pointer around, we walk the entire list of 1231 * devclasses looking for children. We set the 1232 * DC_HAS_CHILDREN flag when a child devclass is created on 1233 * the parent, so we only walk the list for those devclasses 1234 * that have children. 1235 */ 1236 if (!(busclass->flags & DC_HAS_CHILDREN)) 1237 return (0); 1238 parent = busclass; 1239 TAILQ_FOREACH(busclass, &devclasses, link) { 1240 if (busclass->parent == parent) { 1241 error = devclass_driver_deleted(busclass, dc, driver); 1242 if (error) 1243 return (error); 1244 } 1245 } 1246 return (0); 1247 } 1248 1249 /** 1250 * @brief Delete a device driver from a device class 1251 * 1252 * Delete a device driver from a devclass. This is normally called 1253 * automatically by DRIVER_MODULE(). 1254 * 1255 * If the driver is currently attached to any devices, 1256 * devclass_delete_driver() will first attempt to detach from each 1257 * device. If one of the detach calls fails, the driver will not be 1258 * deleted. 1259 * 1260 * @param dc the devclass to edit 1261 * @param driver the driver to unregister 1262 */ 1263 int 1264 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1265 { 1266 devclass_t dc = devclass_find(driver->name); 1267 driverlink_t dl; 1268 int error; 1269 1270 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1271 1272 if (!dc) 1273 return (0); 1274 1275 /* 1276 * Find the link structure in the bus' list of drivers. 1277 */ 1278 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1279 if (dl->driver == driver) 1280 break; 1281 } 1282 1283 if (!dl) { 1284 PDEBUG(("%s not found in %s list", driver->name, 1285 busclass->name)); 1286 return (ENOENT); 1287 } 1288 1289 error = devclass_driver_deleted(busclass, dc, driver); 1290 if (error != 0) 1291 return (error); 1292 1293 TAILQ_REMOVE(&busclass->drivers, dl, link); 1294 free(dl, M_BUS); 1295 1296 /* XXX: kobj_mtx */ 1297 driver->refs--; 1298 if (driver->refs == 0) 1299 kobj_class_free((kobj_class_t) driver); 1300 1301 bus_data_generation_update(); 1302 return (0); 1303 } 1304 1305 /** 1306 * @brief Quiesces a set of device drivers from a device class 1307 * 1308 * Quiesce a device driver from a devclass. This is normally called 1309 * automatically by DRIVER_MODULE(). 1310 * 1311 * If the driver is currently attached to any devices, 1312 * devclass_quiesece_driver() will first attempt to quiesce each 1313 * device. 1314 * 1315 * @param dc the devclass to edit 1316 * @param driver the driver to unregister 1317 */ 1318 static int 1319 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1320 { 1321 devclass_t dc = devclass_find(driver->name); 1322 driverlink_t dl; 1323 device_t dev; 1324 int i; 1325 int error; 1326 1327 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1328 1329 if (!dc) 1330 return (0); 1331 1332 /* 1333 * Find the link structure in the bus' list of drivers. 1334 */ 1335 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1336 if (dl->driver == driver) 1337 break; 1338 } 1339 1340 if (!dl) { 1341 PDEBUG(("%s not found in %s list", driver->name, 1342 busclass->name)); 1343 return (ENOENT); 1344 } 1345 1346 /* 1347 * Quiesce all devices. We iterate through all the devices in 1348 * the devclass of the driver and quiesce any which are using 1349 * the driver and which have a parent in the devclass which we 1350 * are quiescing. 1351 * 1352 * Note that since a driver can be in multiple devclasses, we 1353 * should not quiesce devices which are not children of 1354 * devices in the affected devclass. 1355 */ 1356 for (i = 0; i < dc->maxunit; i++) { 1357 if (dc->devices[i]) { 1358 dev = dc->devices[i]; 1359 if (dev->driver == driver && dev->parent && 1360 dev->parent->devclass == busclass) { 1361 if ((error = device_quiesce(dev)) != 0) 1362 return (error); 1363 } 1364 } 1365 } 1366 1367 return (0); 1368 } 1369 1370 /** 1371 * @internal 1372 */ 1373 static driverlink_t 1374 devclass_find_driver_internal(devclass_t dc, const char *classname) 1375 { 1376 driverlink_t dl; 1377 1378 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1379 1380 TAILQ_FOREACH(dl, &dc->drivers, link) { 1381 if (!strcmp(dl->driver->name, classname)) 1382 return (dl); 1383 } 1384 1385 PDEBUG(("not found")); 1386 return (NULL); 1387 } 1388 1389 /** 1390 * @brief Return the name of the devclass 1391 */ 1392 const char * 1393 devclass_get_name(devclass_t dc) 1394 { 1395 return (dc->name); 1396 } 1397 1398 /** 1399 * @brief Find a device given a unit number 1400 * 1401 * @param dc the devclass to search 1402 * @param unit the unit number to search for 1403 * 1404 * @returns the device with the given unit number or @c 1405 * NULL if there is no such device 1406 */ 1407 device_t 1408 devclass_get_device(devclass_t dc, int unit) 1409 { 1410 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1411 return (NULL); 1412 return (dc->devices[unit]); 1413 } 1414 1415 /** 1416 * @brief Find the softc field of a device given a unit number 1417 * 1418 * @param dc the devclass to search 1419 * @param unit the unit number to search for 1420 * 1421 * @returns the softc field of the device with the given 1422 * unit number or @c NULL if there is no such 1423 * device 1424 */ 1425 void * 1426 devclass_get_softc(devclass_t dc, int unit) 1427 { 1428 device_t dev; 1429 1430 dev = devclass_get_device(dc, unit); 1431 if (!dev) 1432 return (NULL); 1433 1434 return (device_get_softc(dev)); 1435 } 1436 1437 /** 1438 * @brief Get a list of devices in the devclass 1439 * 1440 * An array containing a list of all the devices in the given devclass 1441 * is allocated and returned in @p *devlistp. The number of devices 1442 * in the array is returned in @p *devcountp. The caller should free 1443 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1444 * 1445 * @param dc the devclass to examine 1446 * @param devlistp points at location for array pointer return 1447 * value 1448 * @param devcountp points at location for array size return value 1449 * 1450 * @retval 0 success 1451 * @retval ENOMEM the array allocation failed 1452 */ 1453 int 1454 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1455 { 1456 int count, i; 1457 device_t *list; 1458 1459 count = devclass_get_count(dc); 1460 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1461 if (!list) 1462 return (ENOMEM); 1463 1464 count = 0; 1465 for (i = 0; i < dc->maxunit; i++) { 1466 if (dc->devices[i]) { 1467 list[count] = dc->devices[i]; 1468 count++; 1469 } 1470 } 1471 1472 *devlistp = list; 1473 *devcountp = count; 1474 1475 return (0); 1476 } 1477 1478 /** 1479 * @brief Get a list of drivers in the devclass 1480 * 1481 * An array containing a list of pointers to all the drivers in the 1482 * given devclass is allocated and returned in @p *listp. The number 1483 * of drivers in the array is returned in @p *countp. The caller should 1484 * free the array using @c free(p, M_TEMP). 1485 * 1486 * @param dc the devclass to examine 1487 * @param listp gives location for array pointer return value 1488 * @param countp gives location for number of array elements 1489 * return value 1490 * 1491 * @retval 0 success 1492 * @retval ENOMEM the array allocation failed 1493 */ 1494 int 1495 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1496 { 1497 driverlink_t dl; 1498 driver_t **list; 1499 int count; 1500 1501 count = 0; 1502 TAILQ_FOREACH(dl, &dc->drivers, link) 1503 count++; 1504 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1505 if (list == NULL) 1506 return (ENOMEM); 1507 1508 count = 0; 1509 TAILQ_FOREACH(dl, &dc->drivers, link) { 1510 list[count] = dl->driver; 1511 count++; 1512 } 1513 *listp = list; 1514 *countp = count; 1515 1516 return (0); 1517 } 1518 1519 /** 1520 * @brief Get the number of devices in a devclass 1521 * 1522 * @param dc the devclass to examine 1523 */ 1524 int 1525 devclass_get_count(devclass_t dc) 1526 { 1527 int count, i; 1528 1529 count = 0; 1530 for (i = 0; i < dc->maxunit; i++) 1531 if (dc->devices[i]) 1532 count++; 1533 return (count); 1534 } 1535 1536 /** 1537 * @brief Get the maximum unit number used in a devclass 1538 * 1539 * Note that this is one greater than the highest currently-allocated 1540 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1541 * that not even the devclass has been allocated yet. 1542 * 1543 * @param dc the devclass to examine 1544 */ 1545 int 1546 devclass_get_maxunit(devclass_t dc) 1547 { 1548 if (dc == NULL) 1549 return (-1); 1550 return (dc->maxunit); 1551 } 1552 1553 /** 1554 * @brief Find a free unit number in a devclass 1555 * 1556 * This function searches for the first unused unit number greater 1557 * that or equal to @p unit. 1558 * 1559 * @param dc the devclass to examine 1560 * @param unit the first unit number to check 1561 */ 1562 int 1563 devclass_find_free_unit(devclass_t dc, int unit) 1564 { 1565 if (dc == NULL) 1566 return (unit); 1567 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1568 unit++; 1569 return (unit); 1570 } 1571 1572 /** 1573 * @brief Set the parent of a devclass 1574 * 1575 * The parent class is normally initialised automatically by 1576 * DRIVER_MODULE(). 1577 * 1578 * @param dc the devclass to edit 1579 * @param pdc the new parent devclass 1580 */ 1581 void 1582 devclass_set_parent(devclass_t dc, devclass_t pdc) 1583 { 1584 dc->parent = pdc; 1585 } 1586 1587 /** 1588 * @brief Get the parent of a devclass 1589 * 1590 * @param dc the devclass to examine 1591 */ 1592 devclass_t 1593 devclass_get_parent(devclass_t dc) 1594 { 1595 return (dc->parent); 1596 } 1597 1598 struct sysctl_ctx_list * 1599 devclass_get_sysctl_ctx(devclass_t dc) 1600 { 1601 return (&dc->sysctl_ctx); 1602 } 1603 1604 struct sysctl_oid * 1605 devclass_get_sysctl_tree(devclass_t dc) 1606 { 1607 return (dc->sysctl_tree); 1608 } 1609 1610 /** 1611 * @internal 1612 * @brief Allocate a unit number 1613 * 1614 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1615 * will do). The allocated unit number is returned in @p *unitp. 1616 1617 * @param dc the devclass to allocate from 1618 * @param unitp points at the location for the allocated unit 1619 * number 1620 * 1621 * @retval 0 success 1622 * @retval EEXIST the requested unit number is already allocated 1623 * @retval ENOMEM memory allocation failure 1624 */ 1625 static int 1626 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1627 { 1628 const char *s; 1629 int unit = *unitp; 1630 1631 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1632 1633 /* Ask the parent bus if it wants to wire this device. */ 1634 if (unit == -1) 1635 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1636 &unit); 1637 1638 /* If we were given a wired unit number, check for existing device */ 1639 /* XXX imp XXX */ 1640 if (unit != -1) { 1641 if (unit >= 0 && unit < dc->maxunit && 1642 dc->devices[unit] != NULL) { 1643 if (bootverbose) 1644 printf("%s: %s%d already exists; skipping it\n", 1645 dc->name, dc->name, *unitp); 1646 return (EEXIST); 1647 } 1648 } else { 1649 /* Unwired device, find the next available slot for it */ 1650 unit = 0; 1651 for (unit = 0;; unit++) { 1652 /* If there is an "at" hint for a unit then skip it. */ 1653 if (resource_string_value(dc->name, unit, "at", &s) == 1654 0) 1655 continue; 1656 1657 /* If this device slot is already in use, skip it. */ 1658 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1659 continue; 1660 1661 break; 1662 } 1663 } 1664 1665 /* 1666 * We've selected a unit beyond the length of the table, so let's 1667 * extend the table to make room for all units up to and including 1668 * this one. 1669 */ 1670 if (unit >= dc->maxunit) { 1671 device_t *newlist, *oldlist; 1672 int newsize; 1673 1674 oldlist = dc->devices; 1675 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1676 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1677 if (!newlist) 1678 return (ENOMEM); 1679 if (oldlist != NULL) 1680 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1681 bzero(newlist + dc->maxunit, 1682 sizeof(device_t) * (newsize - dc->maxunit)); 1683 dc->devices = newlist; 1684 dc->maxunit = newsize; 1685 if (oldlist != NULL) 1686 free(oldlist, M_BUS); 1687 } 1688 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1689 1690 *unitp = unit; 1691 return (0); 1692 } 1693 1694 /** 1695 * @internal 1696 * @brief Add a device to a devclass 1697 * 1698 * A unit number is allocated for the device (using the device's 1699 * preferred unit number if any) and the device is registered in the 1700 * devclass. This allows the device to be looked up by its unit 1701 * number, e.g. by decoding a dev_t minor number. 1702 * 1703 * @param dc the devclass to add to 1704 * @param dev the device to add 1705 * 1706 * @retval 0 success 1707 * @retval EEXIST the requested unit number is already allocated 1708 * @retval ENOMEM memory allocation failure 1709 */ 1710 static int 1711 devclass_add_device(devclass_t dc, device_t dev) 1712 { 1713 int buflen, error; 1714 1715 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1716 1717 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1718 if (buflen < 0) 1719 return (ENOMEM); 1720 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1721 if (!dev->nameunit) 1722 return (ENOMEM); 1723 1724 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1725 free(dev->nameunit, M_BUS); 1726 dev->nameunit = NULL; 1727 return (error); 1728 } 1729 dc->devices[dev->unit] = dev; 1730 dev->devclass = dc; 1731 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1732 1733 return (0); 1734 } 1735 1736 /** 1737 * @internal 1738 * @brief Delete a device from a devclass 1739 * 1740 * The device is removed from the devclass's device list and its unit 1741 * number is freed. 1742 1743 * @param dc the devclass to delete from 1744 * @param dev the device to delete 1745 * 1746 * @retval 0 success 1747 */ 1748 static int 1749 devclass_delete_device(devclass_t dc, device_t dev) 1750 { 1751 if (!dc || !dev) 1752 return (0); 1753 1754 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1755 1756 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1757 panic("devclass_delete_device: inconsistent device class"); 1758 dc->devices[dev->unit] = NULL; 1759 if (dev->flags & DF_WILDCARD) 1760 dev->unit = -1; 1761 dev->devclass = NULL; 1762 free(dev->nameunit, M_BUS); 1763 dev->nameunit = NULL; 1764 1765 return (0); 1766 } 1767 1768 /** 1769 * @internal 1770 * @brief Make a new device and add it as a child of @p parent 1771 * 1772 * @param parent the parent of the new device 1773 * @param name the devclass name of the new device or @c NULL 1774 * to leave the devclass unspecified 1775 * @parem unit the unit number of the new device of @c -1 to 1776 * leave the unit number unspecified 1777 * 1778 * @returns the new device 1779 */ 1780 static device_t 1781 make_device(device_t parent, const char *name, int unit) 1782 { 1783 device_t dev; 1784 devclass_t dc; 1785 1786 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1787 1788 if (name) { 1789 dc = devclass_find_internal(name, NULL, TRUE); 1790 if (!dc) { 1791 printf("make_device: can't find device class %s\n", 1792 name); 1793 return (NULL); 1794 } 1795 } else { 1796 dc = NULL; 1797 } 1798 1799 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1800 if (!dev) 1801 return (NULL); 1802 1803 dev->parent = parent; 1804 TAILQ_INIT(&dev->children); 1805 kobj_init((kobj_t) dev, &null_class); 1806 dev->driver = NULL; 1807 dev->devclass = NULL; 1808 dev->unit = unit; 1809 dev->nameunit = NULL; 1810 dev->desc = NULL; 1811 dev->busy = 0; 1812 dev->devflags = 0; 1813 dev->flags = DF_ENABLED; 1814 dev->order = 0; 1815 if (unit == -1) 1816 dev->flags |= DF_WILDCARD; 1817 if (name) { 1818 dev->flags |= DF_FIXEDCLASS; 1819 if (devclass_add_device(dc, dev)) { 1820 kobj_delete((kobj_t) dev, M_BUS); 1821 return (NULL); 1822 } 1823 } 1824 dev->ivars = NULL; 1825 dev->softc = NULL; 1826 1827 dev->state = DS_NOTPRESENT; 1828 1829 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1830 bus_data_generation_update(); 1831 1832 return (dev); 1833 } 1834 1835 /** 1836 * @internal 1837 * @brief Print a description of a device. 1838 */ 1839 static int 1840 device_print_child(device_t dev, device_t child) 1841 { 1842 int retval = 0; 1843 1844 if (device_is_alive(child)) 1845 retval += BUS_PRINT_CHILD(dev, child); 1846 else 1847 retval += device_printf(child, " not found\n"); 1848 1849 return (retval); 1850 } 1851 1852 /** 1853 * @brief Create a new device 1854 * 1855 * This creates a new device and adds it as a child of an existing 1856 * parent device. The new device will be added after the last existing 1857 * child with order zero. 1858 * 1859 * @param dev the device which will be the parent of the 1860 * new child device 1861 * @param name devclass name for new device or @c NULL if not 1862 * specified 1863 * @param unit unit number for new device or @c -1 if not 1864 * specified 1865 * 1866 * @returns the new device 1867 */ 1868 device_t 1869 device_add_child(device_t dev, const char *name, int unit) 1870 { 1871 return (device_add_child_ordered(dev, 0, name, unit)); 1872 } 1873 1874 /** 1875 * @brief Create a new device 1876 * 1877 * This creates a new device and adds it as a child of an existing 1878 * parent device. The new device will be added after the last existing 1879 * child with the same order. 1880 * 1881 * @param dev the device which will be the parent of the 1882 * new child device 1883 * @param order a value which is used to partially sort the 1884 * children of @p dev - devices created using 1885 * lower values of @p order appear first in @p 1886 * dev's list of children 1887 * @param name devclass name for new device or @c NULL if not 1888 * specified 1889 * @param unit unit number for new device or @c -1 if not 1890 * specified 1891 * 1892 * @returns the new device 1893 */ 1894 device_t 1895 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1896 { 1897 device_t child; 1898 device_t place; 1899 1900 PDEBUG(("%s at %s with order %u as unit %d", 1901 name, DEVICENAME(dev), order, unit)); 1902 KASSERT(name != NULL || unit == -1, 1903 ("child device with wildcard name and specific unit number")); 1904 1905 child = make_device(dev, name, unit); 1906 if (child == NULL) 1907 return (child); 1908 child->order = order; 1909 1910 TAILQ_FOREACH(place, &dev->children, link) { 1911 if (place->order > order) 1912 break; 1913 } 1914 1915 if (place) { 1916 /* 1917 * The device 'place' is the first device whose order is 1918 * greater than the new child. 1919 */ 1920 TAILQ_INSERT_BEFORE(place, child, link); 1921 } else { 1922 /* 1923 * The new child's order is greater or equal to the order of 1924 * any existing device. Add the child to the tail of the list. 1925 */ 1926 TAILQ_INSERT_TAIL(&dev->children, child, link); 1927 } 1928 1929 bus_data_generation_update(); 1930 return (child); 1931 } 1932 1933 /** 1934 * @brief Delete a device 1935 * 1936 * This function deletes a device along with all of its children. If 1937 * the device currently has a driver attached to it, the device is 1938 * detached first using device_detach(). 1939 * 1940 * @param dev the parent device 1941 * @param child the device to delete 1942 * 1943 * @retval 0 success 1944 * @retval non-zero a unit error code describing the error 1945 */ 1946 int 1947 device_delete_child(device_t dev, device_t child) 1948 { 1949 int error; 1950 device_t grandchild; 1951 1952 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1953 1954 /* detach parent before deleting children, if any */ 1955 if ((error = device_detach(child)) != 0) 1956 return (error); 1957 1958 /* remove children second */ 1959 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1960 error = device_delete_child(child, grandchild); 1961 if (error) 1962 return (error); 1963 } 1964 1965 if (child->devclass) 1966 devclass_delete_device(child->devclass, child); 1967 if (child->parent) 1968 BUS_CHILD_DELETED(dev, child); 1969 TAILQ_REMOVE(&dev->children, child, link); 1970 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1971 kobj_delete((kobj_t) child, M_BUS); 1972 1973 bus_data_generation_update(); 1974 return (0); 1975 } 1976 1977 /** 1978 * @brief Delete all children devices of the given device, if any. 1979 * 1980 * This function deletes all children devices of the given device, if 1981 * any, using the device_delete_child() function for each device it 1982 * finds. If a child device cannot be deleted, this function will 1983 * return an error code. 1984 * 1985 * @param dev the parent device 1986 * 1987 * @retval 0 success 1988 * @retval non-zero a device would not detach 1989 */ 1990 int 1991 device_delete_children(device_t dev) 1992 { 1993 device_t child; 1994 int error; 1995 1996 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1997 1998 error = 0; 1999 2000 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2001 error = device_delete_child(dev, child); 2002 if (error) { 2003 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2004 break; 2005 } 2006 } 2007 return (error); 2008 } 2009 2010 /** 2011 * @brief Find a device given a unit number 2012 * 2013 * This is similar to devclass_get_devices() but only searches for 2014 * devices which have @p dev as a parent. 2015 * 2016 * @param dev the parent device to search 2017 * @param unit the unit number to search for. If the unit is -1, 2018 * return the first child of @p dev which has name 2019 * @p classname (that is, the one with the lowest unit.) 2020 * 2021 * @returns the device with the given unit number or @c 2022 * NULL if there is no such device 2023 */ 2024 device_t 2025 device_find_child(device_t dev, const char *classname, int unit) 2026 { 2027 devclass_t dc; 2028 device_t child; 2029 2030 dc = devclass_find(classname); 2031 if (!dc) 2032 return (NULL); 2033 2034 if (unit != -1) { 2035 child = devclass_get_device(dc, unit); 2036 if (child && child->parent == dev) 2037 return (child); 2038 } else { 2039 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2040 child = devclass_get_device(dc, unit); 2041 if (child && child->parent == dev) 2042 return (child); 2043 } 2044 } 2045 return (NULL); 2046 } 2047 2048 /** 2049 * @internal 2050 */ 2051 static driverlink_t 2052 first_matching_driver(devclass_t dc, device_t dev) 2053 { 2054 if (dev->devclass) 2055 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2056 return (TAILQ_FIRST(&dc->drivers)); 2057 } 2058 2059 /** 2060 * @internal 2061 */ 2062 static driverlink_t 2063 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2064 { 2065 if (dev->devclass) { 2066 driverlink_t dl; 2067 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2068 if (!strcmp(dev->devclass->name, dl->driver->name)) 2069 return (dl); 2070 return (NULL); 2071 } 2072 return (TAILQ_NEXT(last, link)); 2073 } 2074 2075 /** 2076 * @internal 2077 */ 2078 int 2079 device_probe_child(device_t dev, device_t child) 2080 { 2081 devclass_t dc; 2082 driverlink_t best = NULL; 2083 driverlink_t dl; 2084 int result, pri = 0; 2085 int hasclass = (child->devclass != NULL); 2086 2087 GIANT_REQUIRED; 2088 2089 dc = dev->devclass; 2090 if (!dc) 2091 panic("device_probe_child: parent device has no devclass"); 2092 2093 /* 2094 * If the state is already probed, then return. However, don't 2095 * return if we can rebid this object. 2096 */ 2097 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2098 return (0); 2099 2100 for (; dc; dc = dc->parent) { 2101 for (dl = first_matching_driver(dc, child); 2102 dl; 2103 dl = next_matching_driver(dc, child, dl)) { 2104 /* If this driver's pass is too high, then ignore it. */ 2105 if (dl->pass > bus_current_pass) 2106 continue; 2107 2108 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2109 result = device_set_driver(child, dl->driver); 2110 if (result == ENOMEM) 2111 return (result); 2112 else if (result != 0) 2113 continue; 2114 if (!hasclass) { 2115 if (device_set_devclass(child, 2116 dl->driver->name) != 0) { 2117 char const * devname = 2118 device_get_name(child); 2119 if (devname == NULL) 2120 devname = "(unknown)"; 2121 printf("driver bug: Unable to set " 2122 "devclass (class: %s " 2123 "devname: %s)\n", 2124 dl->driver->name, 2125 devname); 2126 (void)device_set_driver(child, NULL); 2127 continue; 2128 } 2129 } 2130 2131 /* Fetch any flags for the device before probing. */ 2132 resource_int_value(dl->driver->name, child->unit, 2133 "flags", &child->devflags); 2134 2135 result = DEVICE_PROBE(child); 2136 2137 /* Reset flags and devclass before the next probe. */ 2138 child->devflags = 0; 2139 if (!hasclass) 2140 (void)device_set_devclass(child, NULL); 2141 2142 /* 2143 * If the driver returns SUCCESS, there can be 2144 * no higher match for this device. 2145 */ 2146 if (result == 0) { 2147 best = dl; 2148 pri = 0; 2149 break; 2150 } 2151 2152 /* 2153 * Reset DF_QUIET in case this driver doesn't 2154 * end up as the best driver. 2155 */ 2156 device_verbose(child); 2157 2158 /* 2159 * Probes that return BUS_PROBE_NOWILDCARD or lower 2160 * only match on devices whose driver was explicitly 2161 * specified. 2162 */ 2163 if (result <= BUS_PROBE_NOWILDCARD && 2164 !(child->flags & DF_FIXEDCLASS)) { 2165 result = ENXIO; 2166 } 2167 2168 /* 2169 * The driver returned an error so it 2170 * certainly doesn't match. 2171 */ 2172 if (result > 0) { 2173 (void)device_set_driver(child, NULL); 2174 continue; 2175 } 2176 2177 /* 2178 * A priority lower than SUCCESS, remember the 2179 * best matching driver. Initialise the value 2180 * of pri for the first match. 2181 */ 2182 if (best == NULL || result > pri) { 2183 best = dl; 2184 pri = result; 2185 continue; 2186 } 2187 } 2188 /* 2189 * If we have an unambiguous match in this devclass, 2190 * don't look in the parent. 2191 */ 2192 if (best && pri == 0) 2193 break; 2194 } 2195 2196 /* 2197 * If we found a driver, change state and initialise the devclass. 2198 */ 2199 /* XXX What happens if we rebid and got no best? */ 2200 if (best) { 2201 /* 2202 * If this device was attached, and we were asked to 2203 * rescan, and it is a different driver, then we have 2204 * to detach the old driver and reattach this new one. 2205 * Note, we don't have to check for DF_REBID here 2206 * because if the state is > DS_ALIVE, we know it must 2207 * be. 2208 * 2209 * This assumes that all DF_REBID drivers can have 2210 * their probe routine called at any time and that 2211 * they are idempotent as well as completely benign in 2212 * normal operations. 2213 * 2214 * We also have to make sure that the detach 2215 * succeeded, otherwise we fail the operation (or 2216 * maybe it should just fail silently? I'm torn). 2217 */ 2218 if (child->state > DS_ALIVE && best->driver != child->driver) 2219 if ((result = device_detach(dev)) != 0) 2220 return (result); 2221 2222 /* Set the winning driver, devclass, and flags. */ 2223 if (!child->devclass) { 2224 result = device_set_devclass(child, best->driver->name); 2225 if (result != 0) 2226 return (result); 2227 } 2228 result = device_set_driver(child, best->driver); 2229 if (result != 0) 2230 return (result); 2231 resource_int_value(best->driver->name, child->unit, 2232 "flags", &child->devflags); 2233 2234 if (pri < 0) { 2235 /* 2236 * A bit bogus. Call the probe method again to make 2237 * sure that we have the right description. 2238 */ 2239 DEVICE_PROBE(child); 2240 #if 0 2241 child->flags |= DF_REBID; 2242 #endif 2243 } else 2244 child->flags &= ~DF_REBID; 2245 child->state = DS_ALIVE; 2246 2247 bus_data_generation_update(); 2248 return (0); 2249 } 2250 2251 return (ENXIO); 2252 } 2253 2254 /** 2255 * @brief Return the parent of a device 2256 */ 2257 device_t 2258 device_get_parent(device_t dev) 2259 { 2260 return (dev->parent); 2261 } 2262 2263 /** 2264 * @brief Get a list of children of a device 2265 * 2266 * An array containing a list of all the children of the given device 2267 * is allocated and returned in @p *devlistp. The number of devices 2268 * in the array is returned in @p *devcountp. The caller should free 2269 * the array using @c free(p, M_TEMP). 2270 * 2271 * @param dev the device to examine 2272 * @param devlistp points at location for array pointer return 2273 * value 2274 * @param devcountp points at location for array size return value 2275 * 2276 * @retval 0 success 2277 * @retval ENOMEM the array allocation failed 2278 */ 2279 int 2280 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2281 { 2282 int count; 2283 device_t child; 2284 device_t *list; 2285 2286 count = 0; 2287 TAILQ_FOREACH(child, &dev->children, link) { 2288 count++; 2289 } 2290 if (count == 0) { 2291 *devlistp = NULL; 2292 *devcountp = 0; 2293 return (0); 2294 } 2295 2296 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2297 if (!list) 2298 return (ENOMEM); 2299 2300 count = 0; 2301 TAILQ_FOREACH(child, &dev->children, link) { 2302 list[count] = child; 2303 count++; 2304 } 2305 2306 *devlistp = list; 2307 *devcountp = count; 2308 2309 return (0); 2310 } 2311 2312 /** 2313 * @brief Return the current driver for the device or @c NULL if there 2314 * is no driver currently attached 2315 */ 2316 driver_t * 2317 device_get_driver(device_t dev) 2318 { 2319 return (dev->driver); 2320 } 2321 2322 /** 2323 * @brief Return the current devclass for the device or @c NULL if 2324 * there is none. 2325 */ 2326 devclass_t 2327 device_get_devclass(device_t dev) 2328 { 2329 return (dev->devclass); 2330 } 2331 2332 /** 2333 * @brief Return the name of the device's devclass or @c NULL if there 2334 * is none. 2335 */ 2336 const char * 2337 device_get_name(device_t dev) 2338 { 2339 if (dev != NULL && dev->devclass) 2340 return (devclass_get_name(dev->devclass)); 2341 return (NULL); 2342 } 2343 2344 /** 2345 * @brief Return a string containing the device's devclass name 2346 * followed by an ascii representation of the device's unit number 2347 * (e.g. @c "foo2"). 2348 */ 2349 const char * 2350 device_get_nameunit(device_t dev) 2351 { 2352 return (dev->nameunit); 2353 } 2354 2355 /** 2356 * @brief Return the device's unit number. 2357 */ 2358 int 2359 device_get_unit(device_t dev) 2360 { 2361 return (dev->unit); 2362 } 2363 2364 /** 2365 * @brief Return the device's description string 2366 */ 2367 const char * 2368 device_get_desc(device_t dev) 2369 { 2370 return (dev->desc); 2371 } 2372 2373 /** 2374 * @brief Return the device's flags 2375 */ 2376 uint32_t 2377 device_get_flags(device_t dev) 2378 { 2379 return (dev->devflags); 2380 } 2381 2382 struct sysctl_ctx_list * 2383 device_get_sysctl_ctx(device_t dev) 2384 { 2385 return (&dev->sysctl_ctx); 2386 } 2387 2388 struct sysctl_oid * 2389 device_get_sysctl_tree(device_t dev) 2390 { 2391 return (dev->sysctl_tree); 2392 } 2393 2394 /** 2395 * @brief Print the name of the device followed by a colon and a space 2396 * 2397 * @returns the number of characters printed 2398 */ 2399 int 2400 device_print_prettyname(device_t dev) 2401 { 2402 const char *name = device_get_name(dev); 2403 2404 if (name == NULL) 2405 return (printf("unknown: ")); 2406 return (printf("%s%d: ", name, device_get_unit(dev))); 2407 } 2408 2409 /** 2410 * @brief Print the name of the device followed by a colon, a space 2411 * and the result of calling vprintf() with the value of @p fmt and 2412 * the following arguments. 2413 * 2414 * @returns the number of characters printed 2415 */ 2416 int 2417 device_printf(device_t dev, const char * fmt, ...) 2418 { 2419 va_list ap; 2420 int retval; 2421 2422 retval = device_print_prettyname(dev); 2423 va_start(ap, fmt); 2424 retval += vprintf(fmt, ap); 2425 va_end(ap); 2426 return (retval); 2427 } 2428 2429 /** 2430 * @internal 2431 */ 2432 static void 2433 device_set_desc_internal(device_t dev, const char* desc, int copy) 2434 { 2435 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2436 free(dev->desc, M_BUS); 2437 dev->flags &= ~DF_DESCMALLOCED; 2438 dev->desc = NULL; 2439 } 2440 2441 if (copy && desc) { 2442 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2443 if (dev->desc) { 2444 strcpy(dev->desc, desc); 2445 dev->flags |= DF_DESCMALLOCED; 2446 } 2447 } else { 2448 /* Avoid a -Wcast-qual warning */ 2449 dev->desc = (char *)(uintptr_t) desc; 2450 } 2451 2452 bus_data_generation_update(); 2453 } 2454 2455 /** 2456 * @brief Set the device's description 2457 * 2458 * The value of @c desc should be a string constant that will not 2459 * change (at least until the description is changed in a subsequent 2460 * call to device_set_desc() or device_set_desc_copy()). 2461 */ 2462 void 2463 device_set_desc(device_t dev, const char* desc) 2464 { 2465 device_set_desc_internal(dev, desc, FALSE); 2466 } 2467 2468 /** 2469 * @brief Set the device's description 2470 * 2471 * The string pointed to by @c desc is copied. Use this function if 2472 * the device description is generated, (e.g. with sprintf()). 2473 */ 2474 void 2475 device_set_desc_copy(device_t dev, const char* desc) 2476 { 2477 device_set_desc_internal(dev, desc, TRUE); 2478 } 2479 2480 /** 2481 * @brief Set the device's flags 2482 */ 2483 void 2484 device_set_flags(device_t dev, uint32_t flags) 2485 { 2486 dev->devflags = flags; 2487 } 2488 2489 /** 2490 * @brief Return the device's softc field 2491 * 2492 * The softc is allocated and zeroed when a driver is attached, based 2493 * on the size field of the driver. 2494 */ 2495 void * 2496 device_get_softc(device_t dev) 2497 { 2498 return (dev->softc); 2499 } 2500 2501 /** 2502 * @brief Set the device's softc field 2503 * 2504 * Most drivers do not need to use this since the softc is allocated 2505 * automatically when the driver is attached. 2506 */ 2507 void 2508 device_set_softc(device_t dev, void *softc) 2509 { 2510 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2511 free(dev->softc, M_BUS_SC); 2512 dev->softc = softc; 2513 if (dev->softc) 2514 dev->flags |= DF_EXTERNALSOFTC; 2515 else 2516 dev->flags &= ~DF_EXTERNALSOFTC; 2517 } 2518 2519 /** 2520 * @brief Free claimed softc 2521 * 2522 * Most drivers do not need to use this since the softc is freed 2523 * automatically when the driver is detached. 2524 */ 2525 void 2526 device_free_softc(void *softc) 2527 { 2528 free(softc, M_BUS_SC); 2529 } 2530 2531 /** 2532 * @brief Claim softc 2533 * 2534 * This function can be used to let the driver free the automatically 2535 * allocated softc using "device_free_softc()". This function is 2536 * useful when the driver is refcounting the softc and the softc 2537 * cannot be freed when the "device_detach" method is called. 2538 */ 2539 void 2540 device_claim_softc(device_t dev) 2541 { 2542 if (dev->softc) 2543 dev->flags |= DF_EXTERNALSOFTC; 2544 else 2545 dev->flags &= ~DF_EXTERNALSOFTC; 2546 } 2547 2548 /** 2549 * @brief Get the device's ivars field 2550 * 2551 * The ivars field is used by the parent device to store per-device 2552 * state (e.g. the physical location of the device or a list of 2553 * resources). 2554 */ 2555 void * 2556 device_get_ivars(device_t dev) 2557 { 2558 2559 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2560 return (dev->ivars); 2561 } 2562 2563 /** 2564 * @brief Set the device's ivars field 2565 */ 2566 void 2567 device_set_ivars(device_t dev, void * ivars) 2568 { 2569 2570 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2571 dev->ivars = ivars; 2572 } 2573 2574 /** 2575 * @brief Return the device's state 2576 */ 2577 device_state_t 2578 device_get_state(device_t dev) 2579 { 2580 return (dev->state); 2581 } 2582 2583 /** 2584 * @brief Set the DF_ENABLED flag for the device 2585 */ 2586 void 2587 device_enable(device_t dev) 2588 { 2589 dev->flags |= DF_ENABLED; 2590 } 2591 2592 /** 2593 * @brief Clear the DF_ENABLED flag for the device 2594 */ 2595 void 2596 device_disable(device_t dev) 2597 { 2598 dev->flags &= ~DF_ENABLED; 2599 } 2600 2601 /** 2602 * @brief Increment the busy counter for the device 2603 */ 2604 void 2605 device_busy(device_t dev) 2606 { 2607 if (dev->state < DS_ATTACHING) 2608 panic("device_busy: called for unattached device"); 2609 if (dev->busy == 0 && dev->parent) 2610 device_busy(dev->parent); 2611 dev->busy++; 2612 if (dev->state == DS_ATTACHED) 2613 dev->state = DS_BUSY; 2614 } 2615 2616 /** 2617 * @brief Decrement the busy counter for the device 2618 */ 2619 void 2620 device_unbusy(device_t dev) 2621 { 2622 if (dev->busy != 0 && dev->state != DS_BUSY && 2623 dev->state != DS_ATTACHING) 2624 panic("device_unbusy: called for non-busy device %s", 2625 device_get_nameunit(dev)); 2626 dev->busy--; 2627 if (dev->busy == 0) { 2628 if (dev->parent) 2629 device_unbusy(dev->parent); 2630 if (dev->state == DS_BUSY) 2631 dev->state = DS_ATTACHED; 2632 } 2633 } 2634 2635 /** 2636 * @brief Set the DF_QUIET flag for the device 2637 */ 2638 void 2639 device_quiet(device_t dev) 2640 { 2641 dev->flags |= DF_QUIET; 2642 } 2643 2644 /** 2645 * @brief Clear the DF_QUIET flag for the device 2646 */ 2647 void 2648 device_verbose(device_t dev) 2649 { 2650 dev->flags &= ~DF_QUIET; 2651 } 2652 2653 /** 2654 * @brief Return non-zero if the DF_QUIET flag is set on the device 2655 */ 2656 int 2657 device_is_quiet(device_t dev) 2658 { 2659 return ((dev->flags & DF_QUIET) != 0); 2660 } 2661 2662 /** 2663 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2664 */ 2665 int 2666 device_is_enabled(device_t dev) 2667 { 2668 return ((dev->flags & DF_ENABLED) != 0); 2669 } 2670 2671 /** 2672 * @brief Return non-zero if the device was successfully probed 2673 */ 2674 int 2675 device_is_alive(device_t dev) 2676 { 2677 return (dev->state >= DS_ALIVE); 2678 } 2679 2680 /** 2681 * @brief Return non-zero if the device currently has a driver 2682 * attached to it 2683 */ 2684 int 2685 device_is_attached(device_t dev) 2686 { 2687 return (dev->state >= DS_ATTACHED); 2688 } 2689 2690 /** 2691 * @brief Return non-zero if the device is currently suspended. 2692 */ 2693 int 2694 device_is_suspended(device_t dev) 2695 { 2696 return ((dev->flags & DF_SUSPENDED) != 0); 2697 } 2698 2699 /** 2700 * @brief Set the devclass of a device 2701 * @see devclass_add_device(). 2702 */ 2703 int 2704 device_set_devclass(device_t dev, const char *classname) 2705 { 2706 devclass_t dc; 2707 int error; 2708 2709 if (!classname) { 2710 if (dev->devclass) 2711 devclass_delete_device(dev->devclass, dev); 2712 return (0); 2713 } 2714 2715 if (dev->devclass) { 2716 printf("device_set_devclass: device class already set\n"); 2717 return (EINVAL); 2718 } 2719 2720 dc = devclass_find_internal(classname, NULL, TRUE); 2721 if (!dc) 2722 return (ENOMEM); 2723 2724 error = devclass_add_device(dc, dev); 2725 2726 bus_data_generation_update(); 2727 return (error); 2728 } 2729 2730 /** 2731 * @brief Set the devclass of a device and mark the devclass fixed. 2732 * @see device_set_devclass() 2733 */ 2734 int 2735 device_set_devclass_fixed(device_t dev, const char *classname) 2736 { 2737 int error; 2738 2739 if (classname == NULL) 2740 return (EINVAL); 2741 2742 error = device_set_devclass(dev, classname); 2743 if (error) 2744 return (error); 2745 dev->flags |= DF_FIXEDCLASS; 2746 return (0); 2747 } 2748 2749 /** 2750 * @brief Set the driver of a device 2751 * 2752 * @retval 0 success 2753 * @retval EBUSY the device already has a driver attached 2754 * @retval ENOMEM a memory allocation failure occurred 2755 */ 2756 int 2757 device_set_driver(device_t dev, driver_t *driver) 2758 { 2759 if (dev->state >= DS_ATTACHED) 2760 return (EBUSY); 2761 2762 if (dev->driver == driver) 2763 return (0); 2764 2765 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2766 free(dev->softc, M_BUS_SC); 2767 dev->softc = NULL; 2768 } 2769 device_set_desc(dev, NULL); 2770 kobj_delete((kobj_t) dev, NULL); 2771 dev->driver = driver; 2772 if (driver) { 2773 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2774 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2775 dev->softc = malloc(driver->size, M_BUS_SC, 2776 M_NOWAIT | M_ZERO); 2777 if (!dev->softc) { 2778 kobj_delete((kobj_t) dev, NULL); 2779 kobj_init((kobj_t) dev, &null_class); 2780 dev->driver = NULL; 2781 return (ENOMEM); 2782 } 2783 } 2784 } else { 2785 kobj_init((kobj_t) dev, &null_class); 2786 } 2787 2788 bus_data_generation_update(); 2789 return (0); 2790 } 2791 2792 /** 2793 * @brief Probe a device, and return this status. 2794 * 2795 * This function is the core of the device autoconfiguration 2796 * system. Its purpose is to select a suitable driver for a device and 2797 * then call that driver to initialise the hardware appropriately. The 2798 * driver is selected by calling the DEVICE_PROBE() method of a set of 2799 * candidate drivers and then choosing the driver which returned the 2800 * best value. This driver is then attached to the device using 2801 * device_attach(). 2802 * 2803 * The set of suitable drivers is taken from the list of drivers in 2804 * the parent device's devclass. If the device was originally created 2805 * with a specific class name (see device_add_child()), only drivers 2806 * with that name are probed, otherwise all drivers in the devclass 2807 * are probed. If no drivers return successful probe values in the 2808 * parent devclass, the search continues in the parent of that 2809 * devclass (see devclass_get_parent()) if any. 2810 * 2811 * @param dev the device to initialise 2812 * 2813 * @retval 0 success 2814 * @retval ENXIO no driver was found 2815 * @retval ENOMEM memory allocation failure 2816 * @retval non-zero some other unix error code 2817 * @retval -1 Device already attached 2818 */ 2819 int 2820 device_probe(device_t dev) 2821 { 2822 int error; 2823 2824 GIANT_REQUIRED; 2825 2826 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2827 return (-1); 2828 2829 if (!(dev->flags & DF_ENABLED)) { 2830 if (bootverbose && device_get_name(dev) != NULL) { 2831 device_print_prettyname(dev); 2832 printf("not probed (disabled)\n"); 2833 } 2834 return (-1); 2835 } 2836 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2837 if (bus_current_pass == BUS_PASS_DEFAULT && 2838 !(dev->flags & DF_DONENOMATCH)) { 2839 BUS_PROBE_NOMATCH(dev->parent, dev); 2840 devnomatch(dev); 2841 dev->flags |= DF_DONENOMATCH; 2842 } 2843 return (error); 2844 } 2845 return (0); 2846 } 2847 2848 /** 2849 * @brief Probe a device and attach a driver if possible 2850 * 2851 * calls device_probe() and attaches if that was successful. 2852 */ 2853 int 2854 device_probe_and_attach(device_t dev) 2855 { 2856 int error; 2857 2858 GIANT_REQUIRED; 2859 2860 error = device_probe(dev); 2861 if (error == -1) 2862 return (0); 2863 else if (error != 0) 2864 return (error); 2865 2866 CURVNET_SET_QUIET(vnet0); 2867 error = device_attach(dev); 2868 CURVNET_RESTORE(); 2869 return error; 2870 } 2871 2872 /** 2873 * @brief Attach a device driver to a device 2874 * 2875 * This function is a wrapper around the DEVICE_ATTACH() driver 2876 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2877 * device's sysctl tree, optionally prints a description of the device 2878 * and queues a notification event for user-based device management 2879 * services. 2880 * 2881 * Normally this function is only called internally from 2882 * device_probe_and_attach(). 2883 * 2884 * @param dev the device to initialise 2885 * 2886 * @retval 0 success 2887 * @retval ENXIO no driver was found 2888 * @retval ENOMEM memory allocation failure 2889 * @retval non-zero some other unix error code 2890 */ 2891 int 2892 device_attach(device_t dev) 2893 { 2894 uint64_t attachtime; 2895 int error; 2896 2897 if (resource_disabled(dev->driver->name, dev->unit)) { 2898 device_disable(dev); 2899 if (bootverbose) 2900 device_printf(dev, "disabled via hints entry\n"); 2901 return (ENXIO); 2902 } 2903 2904 device_sysctl_init(dev); 2905 if (!device_is_quiet(dev)) 2906 device_print_child(dev->parent, dev); 2907 attachtime = get_cyclecount(); 2908 dev->state = DS_ATTACHING; 2909 if ((error = DEVICE_ATTACH(dev)) != 0) { 2910 printf("device_attach: %s%d attach returned %d\n", 2911 dev->driver->name, dev->unit, error); 2912 if (!(dev->flags & DF_FIXEDCLASS)) 2913 devclass_delete_device(dev->devclass, dev); 2914 (void)device_set_driver(dev, NULL); 2915 device_sysctl_fini(dev); 2916 KASSERT(dev->busy == 0, ("attach failed but busy")); 2917 dev->state = DS_NOTPRESENT; 2918 return (error); 2919 } 2920 attachtime = get_cyclecount() - attachtime; 2921 /* 2922 * 4 bits per device is a reasonable value for desktop and server 2923 * hardware with good get_cyclecount() implementations, but WILL 2924 * need to be adjusted on other platforms. 2925 */ 2926 #define RANDOM_PROBE_BIT_GUESS 4 2927 if (bootverbose) 2928 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2929 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2930 dev->driver->name, dev->unit); 2931 random_harvest_direct(&attachtime, sizeof(attachtime), 2932 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2933 device_sysctl_update(dev); 2934 if (dev->busy) 2935 dev->state = DS_BUSY; 2936 else 2937 dev->state = DS_ATTACHED; 2938 dev->flags &= ~DF_DONENOMATCH; 2939 EVENTHANDLER_INVOKE(device_attach, dev); 2940 devadded(dev); 2941 return (0); 2942 } 2943 2944 /** 2945 * @brief Detach a driver from a device 2946 * 2947 * This function is a wrapper around the DEVICE_DETACH() driver 2948 * method. If the call to DEVICE_DETACH() succeeds, it calls 2949 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2950 * notification event for user-based device management services and 2951 * cleans up the device's sysctl tree. 2952 * 2953 * @param dev the device to un-initialise 2954 * 2955 * @retval 0 success 2956 * @retval ENXIO no driver was found 2957 * @retval ENOMEM memory allocation failure 2958 * @retval non-zero some other unix error code 2959 */ 2960 int 2961 device_detach(device_t dev) 2962 { 2963 int error; 2964 2965 GIANT_REQUIRED; 2966 2967 PDEBUG(("%s", DEVICENAME(dev))); 2968 if (dev->state == DS_BUSY) 2969 return (EBUSY); 2970 if (dev->state != DS_ATTACHED) 2971 return (0); 2972 2973 EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2974 if ((error = DEVICE_DETACH(dev)) != 0) { 2975 EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_FAILED); 2976 return (error); 2977 } else { 2978 EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_COMPLETE); 2979 } 2980 devremoved(dev); 2981 if (!device_is_quiet(dev)) 2982 device_printf(dev, "detached\n"); 2983 if (dev->parent) 2984 BUS_CHILD_DETACHED(dev->parent, dev); 2985 2986 if (!(dev->flags & DF_FIXEDCLASS)) 2987 devclass_delete_device(dev->devclass, dev); 2988 2989 device_verbose(dev); 2990 dev->state = DS_NOTPRESENT; 2991 (void)device_set_driver(dev, NULL); 2992 device_sysctl_fini(dev); 2993 2994 return (0); 2995 } 2996 2997 /** 2998 * @brief Tells a driver to quiesce itself. 2999 * 3000 * This function is a wrapper around the DEVICE_QUIESCE() driver 3001 * method. If the call to DEVICE_QUIESCE() succeeds. 3002 * 3003 * @param dev the device to quiesce 3004 * 3005 * @retval 0 success 3006 * @retval ENXIO no driver was found 3007 * @retval ENOMEM memory allocation failure 3008 * @retval non-zero some other unix error code 3009 */ 3010 int 3011 device_quiesce(device_t dev) 3012 { 3013 3014 PDEBUG(("%s", DEVICENAME(dev))); 3015 if (dev->state == DS_BUSY) 3016 return (EBUSY); 3017 if (dev->state != DS_ATTACHED) 3018 return (0); 3019 3020 return (DEVICE_QUIESCE(dev)); 3021 } 3022 3023 /** 3024 * @brief Notify a device of system shutdown 3025 * 3026 * This function calls the DEVICE_SHUTDOWN() driver method if the 3027 * device currently has an attached driver. 3028 * 3029 * @returns the value returned by DEVICE_SHUTDOWN() 3030 */ 3031 int 3032 device_shutdown(device_t dev) 3033 { 3034 if (dev->state < DS_ATTACHED) 3035 return (0); 3036 return (DEVICE_SHUTDOWN(dev)); 3037 } 3038 3039 /** 3040 * @brief Set the unit number of a device 3041 * 3042 * This function can be used to override the unit number used for a 3043 * device (e.g. to wire a device to a pre-configured unit number). 3044 */ 3045 int 3046 device_set_unit(device_t dev, int unit) 3047 { 3048 devclass_t dc; 3049 int err; 3050 3051 dc = device_get_devclass(dev); 3052 if (unit < dc->maxunit && dc->devices[unit]) 3053 return (EBUSY); 3054 err = devclass_delete_device(dc, dev); 3055 if (err) 3056 return (err); 3057 dev->unit = unit; 3058 err = devclass_add_device(dc, dev); 3059 if (err) 3060 return (err); 3061 3062 bus_data_generation_update(); 3063 return (0); 3064 } 3065 3066 /*======================================*/ 3067 /* 3068 * Some useful method implementations to make life easier for bus drivers. 3069 */ 3070 3071 void 3072 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3073 { 3074 3075 bzero(args, sz); 3076 args->size = sz; 3077 args->memattr = VM_MEMATTR_UNCACHEABLE; 3078 } 3079 3080 /** 3081 * @brief Initialise a resource list. 3082 * 3083 * @param rl the resource list to initialise 3084 */ 3085 void 3086 resource_list_init(struct resource_list *rl) 3087 { 3088 STAILQ_INIT(rl); 3089 } 3090 3091 /** 3092 * @brief Reclaim memory used by a resource list. 3093 * 3094 * This function frees the memory for all resource entries on the list 3095 * (if any). 3096 * 3097 * @param rl the resource list to free 3098 */ 3099 void 3100 resource_list_free(struct resource_list *rl) 3101 { 3102 struct resource_list_entry *rle; 3103 3104 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3105 if (rle->res) 3106 panic("resource_list_free: resource entry is busy"); 3107 STAILQ_REMOVE_HEAD(rl, link); 3108 free(rle, M_BUS); 3109 } 3110 } 3111 3112 /** 3113 * @brief Add a resource entry. 3114 * 3115 * This function adds a resource entry using the given @p type, @p 3116 * start, @p end and @p count values. A rid value is chosen by 3117 * searching sequentially for the first unused rid starting at zero. 3118 * 3119 * @param rl the resource list to edit 3120 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3121 * @param start the start address of the resource 3122 * @param end the end address of the resource 3123 * @param count XXX end-start+1 3124 */ 3125 int 3126 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3127 rman_res_t end, rman_res_t count) 3128 { 3129 int rid; 3130 3131 rid = 0; 3132 while (resource_list_find(rl, type, rid) != NULL) 3133 rid++; 3134 resource_list_add(rl, type, rid, start, end, count); 3135 return (rid); 3136 } 3137 3138 /** 3139 * @brief Add or modify a resource entry. 3140 * 3141 * If an existing entry exists with the same type and rid, it will be 3142 * modified using the given values of @p start, @p end and @p 3143 * count. If no entry exists, a new one will be created using the 3144 * given values. The resource list entry that matches is then returned. 3145 * 3146 * @param rl the resource list to edit 3147 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3148 * @param rid the resource identifier 3149 * @param start the start address of the resource 3150 * @param end the end address of the resource 3151 * @param count XXX end-start+1 3152 */ 3153 struct resource_list_entry * 3154 resource_list_add(struct resource_list *rl, int type, int rid, 3155 rman_res_t start, rman_res_t end, rman_res_t count) 3156 { 3157 struct resource_list_entry *rle; 3158 3159 rle = resource_list_find(rl, type, rid); 3160 if (!rle) { 3161 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3162 M_NOWAIT); 3163 if (!rle) 3164 panic("resource_list_add: can't record entry"); 3165 STAILQ_INSERT_TAIL(rl, rle, link); 3166 rle->type = type; 3167 rle->rid = rid; 3168 rle->res = NULL; 3169 rle->flags = 0; 3170 } 3171 3172 if (rle->res) 3173 panic("resource_list_add: resource entry is busy"); 3174 3175 rle->start = start; 3176 rle->end = end; 3177 rle->count = count; 3178 return (rle); 3179 } 3180 3181 /** 3182 * @brief Determine if a resource entry is busy. 3183 * 3184 * Returns true if a resource entry is busy meaning that it has an 3185 * associated resource that is not an unallocated "reserved" resource. 3186 * 3187 * @param rl the resource list to search 3188 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3189 * @param rid the resource identifier 3190 * 3191 * @returns Non-zero if the entry is busy, zero otherwise. 3192 */ 3193 int 3194 resource_list_busy(struct resource_list *rl, int type, int rid) 3195 { 3196 struct resource_list_entry *rle; 3197 3198 rle = resource_list_find(rl, type, rid); 3199 if (rle == NULL || rle->res == NULL) 3200 return (0); 3201 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3202 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3203 ("reserved resource is active")); 3204 return (0); 3205 } 3206 return (1); 3207 } 3208 3209 /** 3210 * @brief Determine if a resource entry is reserved. 3211 * 3212 * Returns true if a resource entry is reserved meaning that it has an 3213 * associated "reserved" resource. The resource can either be 3214 * allocated or unallocated. 3215 * 3216 * @param rl the resource list to search 3217 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3218 * @param rid the resource identifier 3219 * 3220 * @returns Non-zero if the entry is reserved, zero otherwise. 3221 */ 3222 int 3223 resource_list_reserved(struct resource_list *rl, int type, int rid) 3224 { 3225 struct resource_list_entry *rle; 3226 3227 rle = resource_list_find(rl, type, rid); 3228 if (rle != NULL && rle->flags & RLE_RESERVED) 3229 return (1); 3230 return (0); 3231 } 3232 3233 /** 3234 * @brief Find a resource entry by type and rid. 3235 * 3236 * @param rl the resource list to search 3237 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3238 * @param rid the resource identifier 3239 * 3240 * @returns the resource entry pointer or NULL if there is no such 3241 * entry. 3242 */ 3243 struct resource_list_entry * 3244 resource_list_find(struct resource_list *rl, int type, int rid) 3245 { 3246 struct resource_list_entry *rle; 3247 3248 STAILQ_FOREACH(rle, rl, link) { 3249 if (rle->type == type && rle->rid == rid) 3250 return (rle); 3251 } 3252 return (NULL); 3253 } 3254 3255 /** 3256 * @brief Delete a resource entry. 3257 * 3258 * @param rl the resource list to edit 3259 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3260 * @param rid the resource identifier 3261 */ 3262 void 3263 resource_list_delete(struct resource_list *rl, int type, int rid) 3264 { 3265 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3266 3267 if (rle) { 3268 if (rle->res != NULL) 3269 panic("resource_list_delete: resource has not been released"); 3270 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3271 free(rle, M_BUS); 3272 } 3273 } 3274 3275 /** 3276 * @brief Allocate a reserved resource 3277 * 3278 * This can be used by buses to force the allocation of resources 3279 * that are always active in the system even if they are not allocated 3280 * by a driver (e.g. PCI BARs). This function is usually called when 3281 * adding a new child to the bus. The resource is allocated from the 3282 * parent bus when it is reserved. The resource list entry is marked 3283 * with RLE_RESERVED to note that it is a reserved resource. 3284 * 3285 * Subsequent attempts to allocate the resource with 3286 * resource_list_alloc() will succeed the first time and will set 3287 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3288 * resource that has been allocated is released with 3289 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3290 * the actual resource remains allocated. The resource can be released to 3291 * the parent bus by calling resource_list_unreserve(). 3292 * 3293 * @param rl the resource list to allocate from 3294 * @param bus the parent device of @p child 3295 * @param child the device for which the resource is being reserved 3296 * @param type the type of resource to allocate 3297 * @param rid a pointer to the resource identifier 3298 * @param start hint at the start of the resource range - pass 3299 * @c 0 for any start address 3300 * @param end hint at the end of the resource range - pass 3301 * @c ~0 for any end address 3302 * @param count hint at the size of range required - pass @c 1 3303 * for any size 3304 * @param flags any extra flags to control the resource 3305 * allocation - see @c RF_XXX flags in 3306 * <sys/rman.h> for details 3307 * 3308 * @returns the resource which was allocated or @c NULL if no 3309 * resource could be allocated 3310 */ 3311 struct resource * 3312 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3313 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3314 { 3315 struct resource_list_entry *rle = NULL; 3316 int passthrough = (device_get_parent(child) != bus); 3317 struct resource *r; 3318 3319 if (passthrough) 3320 panic( 3321 "resource_list_reserve() should only be called for direct children"); 3322 if (flags & RF_ACTIVE) 3323 panic( 3324 "resource_list_reserve() should only reserve inactive resources"); 3325 3326 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3327 flags); 3328 if (r != NULL) { 3329 rle = resource_list_find(rl, type, *rid); 3330 rle->flags |= RLE_RESERVED; 3331 } 3332 return (r); 3333 } 3334 3335 /** 3336 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3337 * 3338 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3339 * and passing the allocation up to the parent of @p bus. This assumes 3340 * that the first entry of @c device_get_ivars(child) is a struct 3341 * resource_list. This also handles 'passthrough' allocations where a 3342 * child is a remote descendant of bus by passing the allocation up to 3343 * the parent of bus. 3344 * 3345 * Typically, a bus driver would store a list of child resources 3346 * somewhere in the child device's ivars (see device_get_ivars()) and 3347 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3348 * then call resource_list_alloc() to perform the allocation. 3349 * 3350 * @param rl the resource list to allocate from 3351 * @param bus the parent device of @p child 3352 * @param child the device which is requesting an allocation 3353 * @param type the type of resource to allocate 3354 * @param rid a pointer to the resource identifier 3355 * @param start hint at the start of the resource range - pass 3356 * @c 0 for any start address 3357 * @param end hint at the end of the resource range - pass 3358 * @c ~0 for any end address 3359 * @param count hint at the size of range required - pass @c 1 3360 * for any size 3361 * @param flags any extra flags to control the resource 3362 * allocation - see @c RF_XXX flags in 3363 * <sys/rman.h> for details 3364 * 3365 * @returns the resource which was allocated or @c NULL if no 3366 * resource could be allocated 3367 */ 3368 struct resource * 3369 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3370 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3371 { 3372 struct resource_list_entry *rle = NULL; 3373 int passthrough = (device_get_parent(child) != bus); 3374 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3375 3376 if (passthrough) { 3377 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3378 type, rid, start, end, count, flags)); 3379 } 3380 3381 rle = resource_list_find(rl, type, *rid); 3382 3383 if (!rle) 3384 return (NULL); /* no resource of that type/rid */ 3385 3386 if (rle->res) { 3387 if (rle->flags & RLE_RESERVED) { 3388 if (rle->flags & RLE_ALLOCATED) 3389 return (NULL); 3390 if ((flags & RF_ACTIVE) && 3391 bus_activate_resource(child, type, *rid, 3392 rle->res) != 0) 3393 return (NULL); 3394 rle->flags |= RLE_ALLOCATED; 3395 return (rle->res); 3396 } 3397 device_printf(bus, 3398 "resource entry %#x type %d for child %s is busy\n", *rid, 3399 type, device_get_nameunit(child)); 3400 return (NULL); 3401 } 3402 3403 if (isdefault) { 3404 start = rle->start; 3405 count = ulmax(count, rle->count); 3406 end = ulmax(rle->end, start + count - 1); 3407 } 3408 3409 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3410 type, rid, start, end, count, flags); 3411 3412 /* 3413 * Record the new range. 3414 */ 3415 if (rle->res) { 3416 rle->start = rman_get_start(rle->res); 3417 rle->end = rman_get_end(rle->res); 3418 rle->count = count; 3419 } 3420 3421 return (rle->res); 3422 } 3423 3424 /** 3425 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3426 * 3427 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3428 * used with resource_list_alloc(). 3429 * 3430 * @param rl the resource list which was allocated from 3431 * @param bus the parent device of @p child 3432 * @param child the device which is requesting a release 3433 * @param type the type of resource to release 3434 * @param rid the resource identifier 3435 * @param res the resource to release 3436 * 3437 * @retval 0 success 3438 * @retval non-zero a standard unix error code indicating what 3439 * error condition prevented the operation 3440 */ 3441 int 3442 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3443 int type, int rid, struct resource *res) 3444 { 3445 struct resource_list_entry *rle = NULL; 3446 int passthrough = (device_get_parent(child) != bus); 3447 int error; 3448 3449 if (passthrough) { 3450 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3451 type, rid, res)); 3452 } 3453 3454 rle = resource_list_find(rl, type, rid); 3455 3456 if (!rle) 3457 panic("resource_list_release: can't find resource"); 3458 if (!rle->res) 3459 panic("resource_list_release: resource entry is not busy"); 3460 if (rle->flags & RLE_RESERVED) { 3461 if (rle->flags & RLE_ALLOCATED) { 3462 if (rman_get_flags(res) & RF_ACTIVE) { 3463 error = bus_deactivate_resource(child, type, 3464 rid, res); 3465 if (error) 3466 return (error); 3467 } 3468 rle->flags &= ~RLE_ALLOCATED; 3469 return (0); 3470 } 3471 return (EINVAL); 3472 } 3473 3474 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3475 type, rid, res); 3476 if (error) 3477 return (error); 3478 3479 rle->res = NULL; 3480 return (0); 3481 } 3482 3483 /** 3484 * @brief Release all active resources of a given type 3485 * 3486 * Release all active resources of a specified type. This is intended 3487 * to be used to cleanup resources leaked by a driver after detach or 3488 * a failed attach. 3489 * 3490 * @param rl the resource list which was allocated from 3491 * @param bus the parent device of @p child 3492 * @param child the device whose active resources are being released 3493 * @param type the type of resources to release 3494 * 3495 * @retval 0 success 3496 * @retval EBUSY at least one resource was active 3497 */ 3498 int 3499 resource_list_release_active(struct resource_list *rl, device_t bus, 3500 device_t child, int type) 3501 { 3502 struct resource_list_entry *rle; 3503 int error, retval; 3504 3505 retval = 0; 3506 STAILQ_FOREACH(rle, rl, link) { 3507 if (rle->type != type) 3508 continue; 3509 if (rle->res == NULL) 3510 continue; 3511 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3512 RLE_RESERVED) 3513 continue; 3514 retval = EBUSY; 3515 error = resource_list_release(rl, bus, child, type, 3516 rman_get_rid(rle->res), rle->res); 3517 if (error != 0) 3518 device_printf(bus, 3519 "Failed to release active resource: %d\n", error); 3520 } 3521 return (retval); 3522 } 3523 3524 3525 /** 3526 * @brief Fully release a reserved resource 3527 * 3528 * Fully releases a resource reserved via resource_list_reserve(). 3529 * 3530 * @param rl the resource list which was allocated from 3531 * @param bus the parent device of @p child 3532 * @param child the device whose reserved resource is being released 3533 * @param type the type of resource to release 3534 * @param rid the resource identifier 3535 * @param res the resource to release 3536 * 3537 * @retval 0 success 3538 * @retval non-zero a standard unix error code indicating what 3539 * error condition prevented the operation 3540 */ 3541 int 3542 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3543 int type, int rid) 3544 { 3545 struct resource_list_entry *rle = NULL; 3546 int passthrough = (device_get_parent(child) != bus); 3547 3548 if (passthrough) 3549 panic( 3550 "resource_list_unreserve() should only be called for direct children"); 3551 3552 rle = resource_list_find(rl, type, rid); 3553 3554 if (!rle) 3555 panic("resource_list_unreserve: can't find resource"); 3556 if (!(rle->flags & RLE_RESERVED)) 3557 return (EINVAL); 3558 if (rle->flags & RLE_ALLOCATED) 3559 return (EBUSY); 3560 rle->flags &= ~RLE_RESERVED; 3561 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3562 } 3563 3564 /** 3565 * @brief Print a description of resources in a resource list 3566 * 3567 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3568 * The name is printed if at least one resource of the given type is available. 3569 * The format is used to print resource start and end. 3570 * 3571 * @param rl the resource list to print 3572 * @param name the name of @p type, e.g. @c "memory" 3573 * @param type type type of resource entry to print 3574 * @param format printf(9) format string to print resource 3575 * start and end values 3576 * 3577 * @returns the number of characters printed 3578 */ 3579 int 3580 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3581 const char *format) 3582 { 3583 struct resource_list_entry *rle; 3584 int printed, retval; 3585 3586 printed = 0; 3587 retval = 0; 3588 /* Yes, this is kinda cheating */ 3589 STAILQ_FOREACH(rle, rl, link) { 3590 if (rle->type == type) { 3591 if (printed == 0) 3592 retval += printf(" %s ", name); 3593 else 3594 retval += printf(","); 3595 printed++; 3596 retval += printf(format, rle->start); 3597 if (rle->count > 1) { 3598 retval += printf("-"); 3599 retval += printf(format, rle->start + 3600 rle->count - 1); 3601 } 3602 } 3603 } 3604 return (retval); 3605 } 3606 3607 /** 3608 * @brief Releases all the resources in a list. 3609 * 3610 * @param rl The resource list to purge. 3611 * 3612 * @returns nothing 3613 */ 3614 void 3615 resource_list_purge(struct resource_list *rl) 3616 { 3617 struct resource_list_entry *rle; 3618 3619 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3620 if (rle->res) 3621 bus_release_resource(rman_get_device(rle->res), 3622 rle->type, rle->rid, rle->res); 3623 STAILQ_REMOVE_HEAD(rl, link); 3624 free(rle, M_BUS); 3625 } 3626 } 3627 3628 device_t 3629 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3630 { 3631 3632 return (device_add_child_ordered(dev, order, name, unit)); 3633 } 3634 3635 /** 3636 * @brief Helper function for implementing DEVICE_PROBE() 3637 * 3638 * This function can be used to help implement the DEVICE_PROBE() for 3639 * a bus (i.e. a device which has other devices attached to it). It 3640 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3641 * devclass. 3642 */ 3643 int 3644 bus_generic_probe(device_t dev) 3645 { 3646 devclass_t dc = dev->devclass; 3647 driverlink_t dl; 3648 3649 TAILQ_FOREACH(dl, &dc->drivers, link) { 3650 /* 3651 * If this driver's pass is too high, then ignore it. 3652 * For most drivers in the default pass, this will 3653 * never be true. For early-pass drivers they will 3654 * only call the identify routines of eligible drivers 3655 * when this routine is called. Drivers for later 3656 * passes should have their identify routines called 3657 * on early-pass buses during BUS_NEW_PASS(). 3658 */ 3659 if (dl->pass > bus_current_pass) 3660 continue; 3661 DEVICE_IDENTIFY(dl->driver, dev); 3662 } 3663 3664 return (0); 3665 } 3666 3667 /** 3668 * @brief Helper function for implementing DEVICE_ATTACH() 3669 * 3670 * This function can be used to help implement the DEVICE_ATTACH() for 3671 * a bus. It calls device_probe_and_attach() for each of the device's 3672 * children. 3673 */ 3674 int 3675 bus_generic_attach(device_t dev) 3676 { 3677 device_t child; 3678 3679 TAILQ_FOREACH(child, &dev->children, link) { 3680 device_probe_and_attach(child); 3681 } 3682 3683 return (0); 3684 } 3685 3686 /** 3687 * @brief Helper function for implementing DEVICE_DETACH() 3688 * 3689 * This function can be used to help implement the DEVICE_DETACH() for 3690 * a bus. It calls device_detach() for each of the device's 3691 * children. 3692 */ 3693 int 3694 bus_generic_detach(device_t dev) 3695 { 3696 device_t child; 3697 int error; 3698 3699 if (dev->state != DS_ATTACHED) 3700 return (EBUSY); 3701 3702 TAILQ_FOREACH(child, &dev->children, link) { 3703 if ((error = device_detach(child)) != 0) 3704 return (error); 3705 } 3706 3707 return (0); 3708 } 3709 3710 /** 3711 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3712 * 3713 * This function can be used to help implement the DEVICE_SHUTDOWN() 3714 * for a bus. It calls device_shutdown() for each of the device's 3715 * children. 3716 */ 3717 int 3718 bus_generic_shutdown(device_t dev) 3719 { 3720 device_t child; 3721 3722 TAILQ_FOREACH(child, &dev->children, link) { 3723 device_shutdown(child); 3724 } 3725 3726 return (0); 3727 } 3728 3729 /** 3730 * @brief Default function for suspending a child device. 3731 * 3732 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3733 */ 3734 int 3735 bus_generic_suspend_child(device_t dev, device_t child) 3736 { 3737 int error; 3738 3739 error = DEVICE_SUSPEND(child); 3740 3741 if (error == 0) 3742 child->flags |= DF_SUSPENDED; 3743 3744 return (error); 3745 } 3746 3747 /** 3748 * @brief Default function for resuming a child device. 3749 * 3750 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3751 */ 3752 int 3753 bus_generic_resume_child(device_t dev, device_t child) 3754 { 3755 3756 DEVICE_RESUME(child); 3757 child->flags &= ~DF_SUSPENDED; 3758 3759 return (0); 3760 } 3761 3762 /** 3763 * @brief Helper function for implementing DEVICE_SUSPEND() 3764 * 3765 * This function can be used to help implement the DEVICE_SUSPEND() 3766 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3767 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3768 * operation is aborted and any devices which were suspended are 3769 * resumed immediately by calling their DEVICE_RESUME() methods. 3770 */ 3771 int 3772 bus_generic_suspend(device_t dev) 3773 { 3774 int error; 3775 device_t child, child2; 3776 3777 TAILQ_FOREACH(child, &dev->children, link) { 3778 error = BUS_SUSPEND_CHILD(dev, child); 3779 if (error) { 3780 for (child2 = TAILQ_FIRST(&dev->children); 3781 child2 && child2 != child; 3782 child2 = TAILQ_NEXT(child2, link)) 3783 BUS_RESUME_CHILD(dev, child2); 3784 return (error); 3785 } 3786 } 3787 return (0); 3788 } 3789 3790 /** 3791 * @brief Helper function for implementing DEVICE_RESUME() 3792 * 3793 * This function can be used to help implement the DEVICE_RESUME() for 3794 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3795 */ 3796 int 3797 bus_generic_resume(device_t dev) 3798 { 3799 device_t child; 3800 3801 TAILQ_FOREACH(child, &dev->children, link) { 3802 BUS_RESUME_CHILD(dev, child); 3803 /* if resume fails, there's nothing we can usefully do... */ 3804 } 3805 return (0); 3806 } 3807 3808 /** 3809 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3810 * 3811 * This function prints the first part of the ascii representation of 3812 * @p child, including its name, unit and description (if any - see 3813 * device_set_desc()). 3814 * 3815 * @returns the number of characters printed 3816 */ 3817 int 3818 bus_print_child_header(device_t dev, device_t child) 3819 { 3820 int retval = 0; 3821 3822 if (device_get_desc(child)) { 3823 retval += device_printf(child, "<%s>", device_get_desc(child)); 3824 } else { 3825 retval += printf("%s", device_get_nameunit(child)); 3826 } 3827 3828 return (retval); 3829 } 3830 3831 /** 3832 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3833 * 3834 * This function prints the last part of the ascii representation of 3835 * @p child, which consists of the string @c " on " followed by the 3836 * name and unit of the @p dev. 3837 * 3838 * @returns the number of characters printed 3839 */ 3840 int 3841 bus_print_child_footer(device_t dev, device_t child) 3842 { 3843 return (printf(" on %s\n", device_get_nameunit(dev))); 3844 } 3845 3846 /** 3847 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3848 * 3849 * This function prints out the VM domain for the given device. 3850 * 3851 * @returns the number of characters printed 3852 */ 3853 int 3854 bus_print_child_domain(device_t dev, device_t child) 3855 { 3856 int domain; 3857 3858 /* No domain? Don't print anything */ 3859 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3860 return (0); 3861 3862 return (printf(" numa-domain %d", domain)); 3863 } 3864 3865 /** 3866 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3867 * 3868 * This function simply calls bus_print_child_header() followed by 3869 * bus_print_child_footer(). 3870 * 3871 * @returns the number of characters printed 3872 */ 3873 int 3874 bus_generic_print_child(device_t dev, device_t child) 3875 { 3876 int retval = 0; 3877 3878 retval += bus_print_child_header(dev, child); 3879 retval += bus_print_child_domain(dev, child); 3880 retval += bus_print_child_footer(dev, child); 3881 3882 return (retval); 3883 } 3884 3885 /** 3886 * @brief Stub function for implementing BUS_READ_IVAR(). 3887 * 3888 * @returns ENOENT 3889 */ 3890 int 3891 bus_generic_read_ivar(device_t dev, device_t child, int index, 3892 uintptr_t * result) 3893 { 3894 return (ENOENT); 3895 } 3896 3897 /** 3898 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3899 * 3900 * @returns ENOENT 3901 */ 3902 int 3903 bus_generic_write_ivar(device_t dev, device_t child, int index, 3904 uintptr_t value) 3905 { 3906 return (ENOENT); 3907 } 3908 3909 /** 3910 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3911 * 3912 * @returns NULL 3913 */ 3914 struct resource_list * 3915 bus_generic_get_resource_list(device_t dev, device_t child) 3916 { 3917 return (NULL); 3918 } 3919 3920 /** 3921 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3922 * 3923 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3924 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3925 * and then calls device_probe_and_attach() for each unattached child. 3926 */ 3927 void 3928 bus_generic_driver_added(device_t dev, driver_t *driver) 3929 { 3930 device_t child; 3931 3932 DEVICE_IDENTIFY(driver, dev); 3933 TAILQ_FOREACH(child, &dev->children, link) { 3934 if (child->state == DS_NOTPRESENT || 3935 (child->flags & DF_REBID)) 3936 device_probe_and_attach(child); 3937 } 3938 } 3939 3940 /** 3941 * @brief Helper function for implementing BUS_NEW_PASS(). 3942 * 3943 * This implementing of BUS_NEW_PASS() first calls the identify 3944 * routines for any drivers that probe at the current pass. Then it 3945 * walks the list of devices for this bus. If a device is already 3946 * attached, then it calls BUS_NEW_PASS() on that device. If the 3947 * device is not already attached, it attempts to attach a driver to 3948 * it. 3949 */ 3950 void 3951 bus_generic_new_pass(device_t dev) 3952 { 3953 driverlink_t dl; 3954 devclass_t dc; 3955 device_t child; 3956 3957 dc = dev->devclass; 3958 TAILQ_FOREACH(dl, &dc->drivers, link) { 3959 if (dl->pass == bus_current_pass) 3960 DEVICE_IDENTIFY(dl->driver, dev); 3961 } 3962 TAILQ_FOREACH(child, &dev->children, link) { 3963 if (child->state >= DS_ATTACHED) 3964 BUS_NEW_PASS(child); 3965 else if (child->state == DS_NOTPRESENT) 3966 device_probe_and_attach(child); 3967 } 3968 } 3969 3970 /** 3971 * @brief Helper function for implementing BUS_SETUP_INTR(). 3972 * 3973 * This simple implementation of BUS_SETUP_INTR() simply calls the 3974 * BUS_SETUP_INTR() method of the parent of @p dev. 3975 */ 3976 int 3977 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3978 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3979 void **cookiep) 3980 { 3981 /* Propagate up the bus hierarchy until someone handles it. */ 3982 if (dev->parent) 3983 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3984 filter, intr, arg, cookiep)); 3985 return (EINVAL); 3986 } 3987 3988 /** 3989 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3990 * 3991 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3992 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3993 */ 3994 int 3995 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3996 void *cookie) 3997 { 3998 /* Propagate up the bus hierarchy until someone handles it. */ 3999 if (dev->parent) 4000 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4001 return (EINVAL); 4002 } 4003 4004 /** 4005 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4006 * 4007 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4008 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4009 */ 4010 int 4011 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4012 struct resource *r, rman_res_t start, rman_res_t end) 4013 { 4014 /* Propagate up the bus hierarchy until someone handles it. */ 4015 if (dev->parent) 4016 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4017 end)); 4018 return (EINVAL); 4019 } 4020 4021 /** 4022 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4023 * 4024 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4025 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4026 */ 4027 struct resource * 4028 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4029 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4030 { 4031 /* Propagate up the bus hierarchy until someone handles it. */ 4032 if (dev->parent) 4033 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4034 start, end, count, flags)); 4035 return (NULL); 4036 } 4037 4038 /** 4039 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4040 * 4041 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4042 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4043 */ 4044 int 4045 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4046 struct resource *r) 4047 { 4048 /* Propagate up the bus hierarchy until someone handles it. */ 4049 if (dev->parent) 4050 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4051 r)); 4052 return (EINVAL); 4053 } 4054 4055 /** 4056 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4057 * 4058 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4059 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4060 */ 4061 int 4062 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4063 struct resource *r) 4064 { 4065 /* Propagate up the bus hierarchy until someone handles it. */ 4066 if (dev->parent) 4067 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4068 r)); 4069 return (EINVAL); 4070 } 4071 4072 /** 4073 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4074 * 4075 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4076 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4077 */ 4078 int 4079 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4080 int rid, struct resource *r) 4081 { 4082 /* Propagate up the bus hierarchy until someone handles it. */ 4083 if (dev->parent) 4084 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4085 r)); 4086 return (EINVAL); 4087 } 4088 4089 /** 4090 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4091 * 4092 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4093 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4094 */ 4095 int 4096 bus_generic_map_resource(device_t dev, device_t child, int type, 4097 struct resource *r, struct resource_map_request *args, 4098 struct resource_map *map) 4099 { 4100 /* Propagate up the bus hierarchy until someone handles it. */ 4101 if (dev->parent) 4102 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4103 map)); 4104 return (EINVAL); 4105 } 4106 4107 /** 4108 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4109 * 4110 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4111 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4112 */ 4113 int 4114 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4115 struct resource *r, struct resource_map *map) 4116 { 4117 /* Propagate up the bus hierarchy until someone handles it. */ 4118 if (dev->parent) 4119 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4120 return (EINVAL); 4121 } 4122 4123 /** 4124 * @brief Helper function for implementing BUS_BIND_INTR(). 4125 * 4126 * This simple implementation of BUS_BIND_INTR() simply calls the 4127 * BUS_BIND_INTR() method of the parent of @p dev. 4128 */ 4129 int 4130 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4131 int cpu) 4132 { 4133 4134 /* Propagate up the bus hierarchy until someone handles it. */ 4135 if (dev->parent) 4136 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4137 return (EINVAL); 4138 } 4139 4140 /** 4141 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4142 * 4143 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4144 * BUS_CONFIG_INTR() method of the parent of @p dev. 4145 */ 4146 int 4147 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4148 enum intr_polarity pol) 4149 { 4150 4151 /* Propagate up the bus hierarchy until someone handles it. */ 4152 if (dev->parent) 4153 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4154 return (EINVAL); 4155 } 4156 4157 /** 4158 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4159 * 4160 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4161 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4162 */ 4163 int 4164 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4165 void *cookie, const char *descr) 4166 { 4167 4168 /* Propagate up the bus hierarchy until someone handles it. */ 4169 if (dev->parent) 4170 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4171 descr)); 4172 return (EINVAL); 4173 } 4174 4175 /** 4176 * @brief Helper function for implementing BUS_GET_CPUS(). 4177 * 4178 * This simple implementation of BUS_GET_CPUS() simply calls the 4179 * BUS_GET_CPUS() method of the parent of @p dev. 4180 */ 4181 int 4182 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4183 size_t setsize, cpuset_t *cpuset) 4184 { 4185 4186 /* Propagate up the bus hierarchy until someone handles it. */ 4187 if (dev->parent != NULL) 4188 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4189 return (EINVAL); 4190 } 4191 4192 /** 4193 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4194 * 4195 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4196 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4197 */ 4198 bus_dma_tag_t 4199 bus_generic_get_dma_tag(device_t dev, device_t child) 4200 { 4201 4202 /* Propagate up the bus hierarchy until someone handles it. */ 4203 if (dev->parent != NULL) 4204 return (BUS_GET_DMA_TAG(dev->parent, child)); 4205 return (NULL); 4206 } 4207 4208 /** 4209 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4210 * 4211 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4212 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4213 */ 4214 bus_space_tag_t 4215 bus_generic_get_bus_tag(device_t dev, device_t child) 4216 { 4217 4218 /* Propagate up the bus hierarchy until someone handles it. */ 4219 if (dev->parent != NULL) 4220 return (BUS_GET_BUS_TAG(dev->parent, child)); 4221 return ((bus_space_tag_t)0); 4222 } 4223 4224 /** 4225 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4226 * 4227 * This implementation of BUS_GET_RESOURCE() uses the 4228 * resource_list_find() function to do most of the work. It calls 4229 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4230 * search. 4231 */ 4232 int 4233 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4234 rman_res_t *startp, rman_res_t *countp) 4235 { 4236 struct resource_list * rl = NULL; 4237 struct resource_list_entry * rle = NULL; 4238 4239 rl = BUS_GET_RESOURCE_LIST(dev, child); 4240 if (!rl) 4241 return (EINVAL); 4242 4243 rle = resource_list_find(rl, type, rid); 4244 if (!rle) 4245 return (ENOENT); 4246 4247 if (startp) 4248 *startp = rle->start; 4249 if (countp) 4250 *countp = rle->count; 4251 4252 return (0); 4253 } 4254 4255 /** 4256 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4257 * 4258 * This implementation of BUS_SET_RESOURCE() uses the 4259 * resource_list_add() function to do most of the work. It calls 4260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4261 * edit. 4262 */ 4263 int 4264 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4265 rman_res_t start, rman_res_t count) 4266 { 4267 struct resource_list * rl = NULL; 4268 4269 rl = BUS_GET_RESOURCE_LIST(dev, child); 4270 if (!rl) 4271 return (EINVAL); 4272 4273 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4274 4275 return (0); 4276 } 4277 4278 /** 4279 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4280 * 4281 * This implementation of BUS_DELETE_RESOURCE() uses the 4282 * resource_list_delete() function to do most of the work. It calls 4283 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4284 * edit. 4285 */ 4286 void 4287 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4288 { 4289 struct resource_list * rl = NULL; 4290 4291 rl = BUS_GET_RESOURCE_LIST(dev, child); 4292 if (!rl) 4293 return; 4294 4295 resource_list_delete(rl, type, rid); 4296 4297 return; 4298 } 4299 4300 /** 4301 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4302 * 4303 * This implementation of BUS_RELEASE_RESOURCE() uses the 4304 * resource_list_release() function to do most of the work. It calls 4305 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4306 */ 4307 int 4308 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4309 int rid, struct resource *r) 4310 { 4311 struct resource_list * rl = NULL; 4312 4313 if (device_get_parent(child) != dev) 4314 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4315 type, rid, r)); 4316 4317 rl = BUS_GET_RESOURCE_LIST(dev, child); 4318 if (!rl) 4319 return (EINVAL); 4320 4321 return (resource_list_release(rl, dev, child, type, rid, r)); 4322 } 4323 4324 /** 4325 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4326 * 4327 * This implementation of BUS_ALLOC_RESOURCE() uses the 4328 * resource_list_alloc() function to do most of the work. It calls 4329 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4330 */ 4331 struct resource * 4332 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4333 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4334 { 4335 struct resource_list * rl = NULL; 4336 4337 if (device_get_parent(child) != dev) 4338 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4339 type, rid, start, end, count, flags)); 4340 4341 rl = BUS_GET_RESOURCE_LIST(dev, child); 4342 if (!rl) 4343 return (NULL); 4344 4345 return (resource_list_alloc(rl, dev, child, type, rid, 4346 start, end, count, flags)); 4347 } 4348 4349 /** 4350 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4351 * 4352 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4353 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4354 */ 4355 int 4356 bus_generic_child_present(device_t dev, device_t child) 4357 { 4358 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4359 } 4360 4361 int 4362 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4363 { 4364 4365 if (dev->parent) 4366 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4367 4368 return (ENOENT); 4369 } 4370 4371 /** 4372 * @brief Helper function for implementing BUS_RESCAN(). 4373 * 4374 * This null implementation of BUS_RESCAN() always fails to indicate 4375 * the bus does not support rescanning. 4376 */ 4377 int 4378 bus_null_rescan(device_t dev) 4379 { 4380 4381 return (ENXIO); 4382 } 4383 4384 /* 4385 * Some convenience functions to make it easier for drivers to use the 4386 * resource-management functions. All these really do is hide the 4387 * indirection through the parent's method table, making for slightly 4388 * less-wordy code. In the future, it might make sense for this code 4389 * to maintain some sort of a list of resources allocated by each device. 4390 */ 4391 4392 int 4393 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4394 struct resource **res) 4395 { 4396 int i; 4397 4398 for (i = 0; rs[i].type != -1; i++) 4399 res[i] = NULL; 4400 for (i = 0; rs[i].type != -1; i++) { 4401 res[i] = bus_alloc_resource_any(dev, 4402 rs[i].type, &rs[i].rid, rs[i].flags); 4403 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4404 bus_release_resources(dev, rs, res); 4405 return (ENXIO); 4406 } 4407 } 4408 return (0); 4409 } 4410 4411 void 4412 bus_release_resources(device_t dev, const struct resource_spec *rs, 4413 struct resource **res) 4414 { 4415 int i; 4416 4417 for (i = 0; rs[i].type != -1; i++) 4418 if (res[i] != NULL) { 4419 bus_release_resource( 4420 dev, rs[i].type, rs[i].rid, res[i]); 4421 res[i] = NULL; 4422 } 4423 } 4424 4425 /** 4426 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4427 * 4428 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4429 * parent of @p dev. 4430 */ 4431 struct resource * 4432 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4433 rman_res_t end, rman_res_t count, u_int flags) 4434 { 4435 struct resource *res; 4436 4437 if (dev->parent == NULL) 4438 return (NULL); 4439 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4440 count, flags); 4441 return (res); 4442 } 4443 4444 /** 4445 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4446 * 4447 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4448 * parent of @p dev. 4449 */ 4450 int 4451 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4452 rman_res_t end) 4453 { 4454 if (dev->parent == NULL) 4455 return (EINVAL); 4456 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4457 } 4458 4459 /** 4460 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4461 * 4462 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4463 * parent of @p dev. 4464 */ 4465 int 4466 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4467 { 4468 if (dev->parent == NULL) 4469 return (EINVAL); 4470 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4471 } 4472 4473 /** 4474 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4475 * 4476 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4477 * parent of @p dev. 4478 */ 4479 int 4480 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4481 { 4482 if (dev->parent == NULL) 4483 return (EINVAL); 4484 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4485 } 4486 4487 /** 4488 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4489 * 4490 * This function simply calls the BUS_MAP_RESOURCE() method of the 4491 * parent of @p dev. 4492 */ 4493 int 4494 bus_map_resource(device_t dev, int type, struct resource *r, 4495 struct resource_map_request *args, struct resource_map *map) 4496 { 4497 if (dev->parent == NULL) 4498 return (EINVAL); 4499 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4500 } 4501 4502 /** 4503 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4504 * 4505 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4506 * parent of @p dev. 4507 */ 4508 int 4509 bus_unmap_resource(device_t dev, int type, struct resource *r, 4510 struct resource_map *map) 4511 { 4512 if (dev->parent == NULL) 4513 return (EINVAL); 4514 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4515 } 4516 4517 /** 4518 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4519 * 4520 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4521 * parent of @p dev. 4522 */ 4523 int 4524 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4525 { 4526 int rv; 4527 4528 if (dev->parent == NULL) 4529 return (EINVAL); 4530 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4531 return (rv); 4532 } 4533 4534 /** 4535 * @brief Wrapper function for BUS_SETUP_INTR(). 4536 * 4537 * This function simply calls the BUS_SETUP_INTR() method of the 4538 * parent of @p dev. 4539 */ 4540 int 4541 bus_setup_intr(device_t dev, struct resource *r, int flags, 4542 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4543 { 4544 int error; 4545 4546 if (dev->parent == NULL) 4547 return (EINVAL); 4548 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4549 arg, cookiep); 4550 if (error != 0) 4551 return (error); 4552 if (handler != NULL && !(flags & INTR_MPSAFE)) 4553 device_printf(dev, "[GIANT-LOCKED]\n"); 4554 return (0); 4555 } 4556 4557 /** 4558 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4559 * 4560 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4561 * parent of @p dev. 4562 */ 4563 int 4564 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4565 { 4566 if (dev->parent == NULL) 4567 return (EINVAL); 4568 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4569 } 4570 4571 /** 4572 * @brief Wrapper function for BUS_BIND_INTR(). 4573 * 4574 * This function simply calls the BUS_BIND_INTR() method of the 4575 * parent of @p dev. 4576 */ 4577 int 4578 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4579 { 4580 if (dev->parent == NULL) 4581 return (EINVAL); 4582 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4583 } 4584 4585 /** 4586 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4587 * 4588 * This function first formats the requested description into a 4589 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4590 * the parent of @p dev. 4591 */ 4592 int 4593 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4594 const char *fmt, ...) 4595 { 4596 va_list ap; 4597 char descr[MAXCOMLEN + 1]; 4598 4599 if (dev->parent == NULL) 4600 return (EINVAL); 4601 va_start(ap, fmt); 4602 vsnprintf(descr, sizeof(descr), fmt, ap); 4603 va_end(ap); 4604 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4605 } 4606 4607 /** 4608 * @brief Wrapper function for BUS_SET_RESOURCE(). 4609 * 4610 * This function simply calls the BUS_SET_RESOURCE() method of the 4611 * parent of @p dev. 4612 */ 4613 int 4614 bus_set_resource(device_t dev, int type, int rid, 4615 rman_res_t start, rman_res_t count) 4616 { 4617 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4618 start, count)); 4619 } 4620 4621 /** 4622 * @brief Wrapper function for BUS_GET_RESOURCE(). 4623 * 4624 * This function simply calls the BUS_GET_RESOURCE() method of the 4625 * parent of @p dev. 4626 */ 4627 int 4628 bus_get_resource(device_t dev, int type, int rid, 4629 rman_res_t *startp, rman_res_t *countp) 4630 { 4631 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4632 startp, countp)); 4633 } 4634 4635 /** 4636 * @brief Wrapper function for BUS_GET_RESOURCE(). 4637 * 4638 * This function simply calls the BUS_GET_RESOURCE() method of the 4639 * parent of @p dev and returns the start value. 4640 */ 4641 rman_res_t 4642 bus_get_resource_start(device_t dev, int type, int rid) 4643 { 4644 rman_res_t start; 4645 rman_res_t count; 4646 int error; 4647 4648 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4649 &start, &count); 4650 if (error) 4651 return (0); 4652 return (start); 4653 } 4654 4655 /** 4656 * @brief Wrapper function for BUS_GET_RESOURCE(). 4657 * 4658 * This function simply calls the BUS_GET_RESOURCE() method of the 4659 * parent of @p dev and returns the count value. 4660 */ 4661 rman_res_t 4662 bus_get_resource_count(device_t dev, int type, int rid) 4663 { 4664 rman_res_t start; 4665 rman_res_t count; 4666 int error; 4667 4668 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4669 &start, &count); 4670 if (error) 4671 return (0); 4672 return (count); 4673 } 4674 4675 /** 4676 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4677 * 4678 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4679 * parent of @p dev. 4680 */ 4681 void 4682 bus_delete_resource(device_t dev, int type, int rid) 4683 { 4684 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4685 } 4686 4687 /** 4688 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4689 * 4690 * This function simply calls the BUS_CHILD_PRESENT() method of the 4691 * parent of @p dev. 4692 */ 4693 int 4694 bus_child_present(device_t child) 4695 { 4696 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4697 } 4698 4699 /** 4700 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4701 * 4702 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4703 * parent of @p dev. 4704 */ 4705 int 4706 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4707 { 4708 device_t parent; 4709 4710 parent = device_get_parent(child); 4711 if (parent == NULL) { 4712 *buf = '\0'; 4713 return (0); 4714 } 4715 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4716 } 4717 4718 /** 4719 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4720 * 4721 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4722 * parent of @p dev. 4723 */ 4724 int 4725 bus_child_location_str(device_t child, char *buf, size_t buflen) 4726 { 4727 device_t parent; 4728 4729 parent = device_get_parent(child); 4730 if (parent == NULL) { 4731 *buf = '\0'; 4732 return (0); 4733 } 4734 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4735 } 4736 4737 /** 4738 * @brief Wrapper function for BUS_GET_CPUS(). 4739 * 4740 * This function simply calls the BUS_GET_CPUS() method of the 4741 * parent of @p dev. 4742 */ 4743 int 4744 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4745 { 4746 device_t parent; 4747 4748 parent = device_get_parent(dev); 4749 if (parent == NULL) 4750 return (EINVAL); 4751 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4752 } 4753 4754 /** 4755 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4756 * 4757 * This function simply calls the BUS_GET_DMA_TAG() method of the 4758 * parent of @p dev. 4759 */ 4760 bus_dma_tag_t 4761 bus_get_dma_tag(device_t dev) 4762 { 4763 device_t parent; 4764 4765 parent = device_get_parent(dev); 4766 if (parent == NULL) 4767 return (NULL); 4768 return (BUS_GET_DMA_TAG(parent, dev)); 4769 } 4770 4771 /** 4772 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4773 * 4774 * This function simply calls the BUS_GET_BUS_TAG() method of the 4775 * parent of @p dev. 4776 */ 4777 bus_space_tag_t 4778 bus_get_bus_tag(device_t dev) 4779 { 4780 device_t parent; 4781 4782 parent = device_get_parent(dev); 4783 if (parent == NULL) 4784 return ((bus_space_tag_t)0); 4785 return (BUS_GET_BUS_TAG(parent, dev)); 4786 } 4787 4788 /** 4789 * @brief Wrapper function for BUS_GET_DOMAIN(). 4790 * 4791 * This function simply calls the BUS_GET_DOMAIN() method of the 4792 * parent of @p dev. 4793 */ 4794 int 4795 bus_get_domain(device_t dev, int *domain) 4796 { 4797 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4798 } 4799 4800 /* Resume all devices and then notify userland that we're up again. */ 4801 static int 4802 root_resume(device_t dev) 4803 { 4804 int error; 4805 4806 error = bus_generic_resume(dev); 4807 if (error == 0) 4808 devctl_notify("kern", "power", "resume", NULL); 4809 return (error); 4810 } 4811 4812 static int 4813 root_print_child(device_t dev, device_t child) 4814 { 4815 int retval = 0; 4816 4817 retval += bus_print_child_header(dev, child); 4818 retval += printf("\n"); 4819 4820 return (retval); 4821 } 4822 4823 static int 4824 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4825 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4826 { 4827 /* 4828 * If an interrupt mapping gets to here something bad has happened. 4829 */ 4830 panic("root_setup_intr"); 4831 } 4832 4833 /* 4834 * If we get here, assume that the device is permanent and really is 4835 * present in the system. Removable bus drivers are expected to intercept 4836 * this call long before it gets here. We return -1 so that drivers that 4837 * really care can check vs -1 or some ERRNO returned higher in the food 4838 * chain. 4839 */ 4840 static int 4841 root_child_present(device_t dev, device_t child) 4842 { 4843 return (-1); 4844 } 4845 4846 static int 4847 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4848 cpuset_t *cpuset) 4849 { 4850 4851 switch (op) { 4852 case INTR_CPUS: 4853 /* Default to returning the set of all CPUs. */ 4854 if (setsize != sizeof(cpuset_t)) 4855 return (EINVAL); 4856 *cpuset = all_cpus; 4857 return (0); 4858 default: 4859 return (EINVAL); 4860 } 4861 } 4862 4863 static kobj_method_t root_methods[] = { 4864 /* Device interface */ 4865 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4866 KOBJMETHOD(device_suspend, bus_generic_suspend), 4867 KOBJMETHOD(device_resume, root_resume), 4868 4869 /* Bus interface */ 4870 KOBJMETHOD(bus_print_child, root_print_child), 4871 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4872 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4873 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4874 KOBJMETHOD(bus_child_present, root_child_present), 4875 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4876 4877 KOBJMETHOD_END 4878 }; 4879 4880 static driver_t root_driver = { 4881 "root", 4882 root_methods, 4883 1, /* no softc */ 4884 }; 4885 4886 device_t root_bus; 4887 devclass_t root_devclass; 4888 4889 static int 4890 root_bus_module_handler(module_t mod, int what, void* arg) 4891 { 4892 switch (what) { 4893 case MOD_LOAD: 4894 TAILQ_INIT(&bus_data_devices); 4895 kobj_class_compile((kobj_class_t) &root_driver); 4896 root_bus = make_device(NULL, "root", 0); 4897 root_bus->desc = "System root bus"; 4898 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4899 root_bus->driver = &root_driver; 4900 root_bus->state = DS_ATTACHED; 4901 root_devclass = devclass_find_internal("root", NULL, FALSE); 4902 devinit(); 4903 return (0); 4904 4905 case MOD_SHUTDOWN: 4906 device_shutdown(root_bus); 4907 return (0); 4908 default: 4909 return (EOPNOTSUPP); 4910 } 4911 4912 return (0); 4913 } 4914 4915 static moduledata_t root_bus_mod = { 4916 "rootbus", 4917 root_bus_module_handler, 4918 NULL 4919 }; 4920 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4921 4922 /** 4923 * @brief Automatically configure devices 4924 * 4925 * This function begins the autoconfiguration process by calling 4926 * device_probe_and_attach() for each child of the @c root0 device. 4927 */ 4928 void 4929 root_bus_configure(void) 4930 { 4931 4932 PDEBUG((".")); 4933 4934 /* Eventually this will be split up, but this is sufficient for now. */ 4935 bus_set_pass(BUS_PASS_DEFAULT); 4936 } 4937 4938 /** 4939 * @brief Module handler for registering device drivers 4940 * 4941 * This module handler is used to automatically register device 4942 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4943 * devclass_add_driver() for the driver described by the 4944 * driver_module_data structure pointed to by @p arg 4945 */ 4946 int 4947 driver_module_handler(module_t mod, int what, void *arg) 4948 { 4949 struct driver_module_data *dmd; 4950 devclass_t bus_devclass; 4951 kobj_class_t driver; 4952 int error, pass; 4953 4954 dmd = (struct driver_module_data *)arg; 4955 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4956 error = 0; 4957 4958 switch (what) { 4959 case MOD_LOAD: 4960 if (dmd->dmd_chainevh) 4961 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4962 4963 pass = dmd->dmd_pass; 4964 driver = dmd->dmd_driver; 4965 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4966 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4967 error = devclass_add_driver(bus_devclass, driver, pass, 4968 dmd->dmd_devclass); 4969 break; 4970 4971 case MOD_UNLOAD: 4972 PDEBUG(("Unloading module: driver %s from bus %s", 4973 DRIVERNAME(dmd->dmd_driver), 4974 dmd->dmd_busname)); 4975 error = devclass_delete_driver(bus_devclass, 4976 dmd->dmd_driver); 4977 4978 if (!error && dmd->dmd_chainevh) 4979 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4980 break; 4981 case MOD_QUIESCE: 4982 PDEBUG(("Quiesce module: driver %s from bus %s", 4983 DRIVERNAME(dmd->dmd_driver), 4984 dmd->dmd_busname)); 4985 error = devclass_quiesce_driver(bus_devclass, 4986 dmd->dmd_driver); 4987 4988 if (!error && dmd->dmd_chainevh) 4989 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4990 break; 4991 default: 4992 error = EOPNOTSUPP; 4993 break; 4994 } 4995 4996 return (error); 4997 } 4998 4999 /** 5000 * @brief Enumerate all hinted devices for this bus. 5001 * 5002 * Walks through the hints for this bus and calls the bus_hinted_child 5003 * routine for each one it fines. It searches first for the specific 5004 * bus that's being probed for hinted children (eg isa0), and then for 5005 * generic children (eg isa). 5006 * 5007 * @param dev bus device to enumerate 5008 */ 5009 void 5010 bus_enumerate_hinted_children(device_t bus) 5011 { 5012 int i; 5013 const char *dname, *busname; 5014 int dunit; 5015 5016 /* 5017 * enumerate all devices on the specific bus 5018 */ 5019 busname = device_get_nameunit(bus); 5020 i = 0; 5021 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5022 BUS_HINTED_CHILD(bus, dname, dunit); 5023 5024 /* 5025 * and all the generic ones. 5026 */ 5027 busname = device_get_name(bus); 5028 i = 0; 5029 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5030 BUS_HINTED_CHILD(bus, dname, dunit); 5031 } 5032 5033 #ifdef BUS_DEBUG 5034 5035 /* the _short versions avoid iteration by not calling anything that prints 5036 * more than oneliners. I love oneliners. 5037 */ 5038 5039 static void 5040 print_device_short(device_t dev, int indent) 5041 { 5042 if (!dev) 5043 return; 5044 5045 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5046 dev->unit, dev->desc, 5047 (dev->parent? "":"no "), 5048 (TAILQ_EMPTY(&dev->children)? "no ":""), 5049 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5050 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5051 (dev->flags&DF_WILDCARD? "wildcard,":""), 5052 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5053 (dev->flags&DF_REBID? "rebiddable,":""), 5054 (dev->ivars? "":"no "), 5055 (dev->softc? "":"no "), 5056 dev->busy)); 5057 } 5058 5059 static void 5060 print_device(device_t dev, int indent) 5061 { 5062 if (!dev) 5063 return; 5064 5065 print_device_short(dev, indent); 5066 5067 indentprintf(("Parent:\n")); 5068 print_device_short(dev->parent, indent+1); 5069 indentprintf(("Driver:\n")); 5070 print_driver_short(dev->driver, indent+1); 5071 indentprintf(("Devclass:\n")); 5072 print_devclass_short(dev->devclass, indent+1); 5073 } 5074 5075 void 5076 print_device_tree_short(device_t dev, int indent) 5077 /* print the device and all its children (indented) */ 5078 { 5079 device_t child; 5080 5081 if (!dev) 5082 return; 5083 5084 print_device_short(dev, indent); 5085 5086 TAILQ_FOREACH(child, &dev->children, link) { 5087 print_device_tree_short(child, indent+1); 5088 } 5089 } 5090 5091 void 5092 print_device_tree(device_t dev, int indent) 5093 /* print the device and all its children (indented) */ 5094 { 5095 device_t child; 5096 5097 if (!dev) 5098 return; 5099 5100 print_device(dev, indent); 5101 5102 TAILQ_FOREACH(child, &dev->children, link) { 5103 print_device_tree(child, indent+1); 5104 } 5105 } 5106 5107 static void 5108 print_driver_short(driver_t *driver, int indent) 5109 { 5110 if (!driver) 5111 return; 5112 5113 indentprintf(("driver %s: softc size = %zd\n", 5114 driver->name, driver->size)); 5115 } 5116 5117 static void 5118 print_driver(driver_t *driver, int indent) 5119 { 5120 if (!driver) 5121 return; 5122 5123 print_driver_short(driver, indent); 5124 } 5125 5126 static void 5127 print_driver_list(driver_list_t drivers, int indent) 5128 { 5129 driverlink_t driver; 5130 5131 TAILQ_FOREACH(driver, &drivers, link) { 5132 print_driver(driver->driver, indent); 5133 } 5134 } 5135 5136 static void 5137 print_devclass_short(devclass_t dc, int indent) 5138 { 5139 if ( !dc ) 5140 return; 5141 5142 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5143 } 5144 5145 static void 5146 print_devclass(devclass_t dc, int indent) 5147 { 5148 int i; 5149 5150 if ( !dc ) 5151 return; 5152 5153 print_devclass_short(dc, indent); 5154 indentprintf(("Drivers:\n")); 5155 print_driver_list(dc->drivers, indent+1); 5156 5157 indentprintf(("Devices:\n")); 5158 for (i = 0; i < dc->maxunit; i++) 5159 if (dc->devices[i]) 5160 print_device(dc->devices[i], indent+1); 5161 } 5162 5163 void 5164 print_devclass_list_short(void) 5165 { 5166 devclass_t dc; 5167 5168 printf("Short listing of devclasses, drivers & devices:\n"); 5169 TAILQ_FOREACH(dc, &devclasses, link) { 5170 print_devclass_short(dc, 0); 5171 } 5172 } 5173 5174 void 5175 print_devclass_list(void) 5176 { 5177 devclass_t dc; 5178 5179 printf("Full listing of devclasses, drivers & devices:\n"); 5180 TAILQ_FOREACH(dc, &devclasses, link) { 5181 print_devclass(dc, 0); 5182 } 5183 } 5184 5185 #endif 5186 5187 /* 5188 * User-space access to the device tree. 5189 * 5190 * We implement a small set of nodes: 5191 * 5192 * hw.bus Single integer read method to obtain the 5193 * current generation count. 5194 * hw.bus.devices Reads the entire device tree in flat space. 5195 * hw.bus.rman Resource manager interface 5196 * 5197 * We might like to add the ability to scan devclasses and/or drivers to 5198 * determine what else is currently loaded/available. 5199 */ 5200 5201 static int 5202 sysctl_bus(SYSCTL_HANDLER_ARGS) 5203 { 5204 struct u_businfo ubus; 5205 5206 ubus.ub_version = BUS_USER_VERSION; 5207 ubus.ub_generation = bus_data_generation; 5208 5209 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5210 } 5211 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5212 "bus-related data"); 5213 5214 static int 5215 sysctl_devices(SYSCTL_HANDLER_ARGS) 5216 { 5217 int *name = (int *)arg1; 5218 u_int namelen = arg2; 5219 int index; 5220 device_t dev; 5221 struct u_device udev; /* XXX this is a bit big */ 5222 int error; 5223 5224 if (namelen != 2) 5225 return (EINVAL); 5226 5227 if (bus_data_generation_check(name[0])) 5228 return (EINVAL); 5229 5230 index = name[1]; 5231 5232 /* 5233 * Scan the list of devices, looking for the requested index. 5234 */ 5235 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5236 if (index-- == 0) 5237 break; 5238 } 5239 if (dev == NULL) 5240 return (ENOENT); 5241 5242 /* 5243 * Populate the return array. 5244 */ 5245 bzero(&udev, sizeof(udev)); 5246 udev.dv_handle = (uintptr_t)dev; 5247 udev.dv_parent = (uintptr_t)dev->parent; 5248 if (dev->nameunit != NULL) 5249 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5250 if (dev->desc != NULL) 5251 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5252 if (dev->driver != NULL && dev->driver->name != NULL) 5253 strlcpy(udev.dv_drivername, dev->driver->name, 5254 sizeof(udev.dv_drivername)); 5255 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5256 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5257 udev.dv_devflags = dev->devflags; 5258 udev.dv_flags = dev->flags; 5259 udev.dv_state = dev->state; 5260 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5261 return (error); 5262 } 5263 5264 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5265 "system device tree"); 5266 5267 int 5268 bus_data_generation_check(int generation) 5269 { 5270 if (generation != bus_data_generation) 5271 return (1); 5272 5273 /* XXX generate optimised lists here? */ 5274 return (0); 5275 } 5276 5277 void 5278 bus_data_generation_update(void) 5279 { 5280 bus_data_generation++; 5281 } 5282 5283 int 5284 bus_free_resource(device_t dev, int type, struct resource *r) 5285 { 5286 if (r == NULL) 5287 return (0); 5288 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5289 } 5290 5291 device_t 5292 device_lookup_by_name(const char *name) 5293 { 5294 device_t dev; 5295 5296 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5297 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5298 return (dev); 5299 } 5300 return (NULL); 5301 } 5302 5303 /* 5304 * /dev/devctl2 implementation. The existing /dev/devctl device has 5305 * implicit semantics on open, so it could not be reused for this. 5306 * Another option would be to call this /dev/bus? 5307 */ 5308 static int 5309 find_device(struct devreq *req, device_t *devp) 5310 { 5311 device_t dev; 5312 5313 /* 5314 * First, ensure that the name is nul terminated. 5315 */ 5316 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5317 return (EINVAL); 5318 5319 /* 5320 * Second, try to find an attached device whose name matches 5321 * 'name'. 5322 */ 5323 dev = device_lookup_by_name(req->dr_name); 5324 if (dev != NULL) { 5325 *devp = dev; 5326 return (0); 5327 } 5328 5329 /* Finally, give device enumerators a chance. */ 5330 dev = NULL; 5331 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5332 if (dev == NULL) 5333 return (ENOENT); 5334 *devp = dev; 5335 return (0); 5336 } 5337 5338 static bool 5339 driver_exists(device_t bus, const char *driver) 5340 { 5341 devclass_t dc; 5342 5343 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5344 if (devclass_find_driver_internal(dc, driver) != NULL) 5345 return (true); 5346 } 5347 return (false); 5348 } 5349 5350 static int 5351 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5352 struct thread *td) 5353 { 5354 struct devreq *req; 5355 device_t dev; 5356 int error, old; 5357 5358 /* Locate the device to control. */ 5359 mtx_lock(&Giant); 5360 req = (struct devreq *)data; 5361 switch (cmd) { 5362 case DEV_ATTACH: 5363 case DEV_DETACH: 5364 case DEV_ENABLE: 5365 case DEV_DISABLE: 5366 case DEV_SUSPEND: 5367 case DEV_RESUME: 5368 case DEV_SET_DRIVER: 5369 case DEV_CLEAR_DRIVER: 5370 case DEV_RESCAN: 5371 case DEV_DELETE: 5372 error = priv_check(td, PRIV_DRIVER); 5373 if (error == 0) 5374 error = find_device(req, &dev); 5375 break; 5376 default: 5377 error = ENOTTY; 5378 break; 5379 } 5380 if (error) { 5381 mtx_unlock(&Giant); 5382 return (error); 5383 } 5384 5385 /* Perform the requested operation. */ 5386 switch (cmd) { 5387 case DEV_ATTACH: 5388 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5389 error = EBUSY; 5390 else if (!device_is_enabled(dev)) 5391 error = ENXIO; 5392 else 5393 error = device_probe_and_attach(dev); 5394 break; 5395 case DEV_DETACH: 5396 if (!device_is_attached(dev)) { 5397 error = ENXIO; 5398 break; 5399 } 5400 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5401 error = device_quiesce(dev); 5402 if (error) 5403 break; 5404 } 5405 error = device_detach(dev); 5406 break; 5407 case DEV_ENABLE: 5408 if (device_is_enabled(dev)) { 5409 error = EBUSY; 5410 break; 5411 } 5412 5413 /* 5414 * If the device has been probed but not attached (e.g. 5415 * when it has been disabled by a loader hint), just 5416 * attach the device rather than doing a full probe. 5417 */ 5418 device_enable(dev); 5419 if (device_is_alive(dev)) { 5420 /* 5421 * If the device was disabled via a hint, clear 5422 * the hint. 5423 */ 5424 if (resource_disabled(dev->driver->name, dev->unit)) 5425 resource_unset_value(dev->driver->name, 5426 dev->unit, "disabled"); 5427 error = device_attach(dev); 5428 } else 5429 error = device_probe_and_attach(dev); 5430 break; 5431 case DEV_DISABLE: 5432 if (!device_is_enabled(dev)) { 5433 error = ENXIO; 5434 break; 5435 } 5436 5437 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5438 error = device_quiesce(dev); 5439 if (error) 5440 break; 5441 } 5442 5443 /* 5444 * Force DF_FIXEDCLASS on around detach to preserve 5445 * the existing name. 5446 */ 5447 old = dev->flags; 5448 dev->flags |= DF_FIXEDCLASS; 5449 error = device_detach(dev); 5450 if (!(old & DF_FIXEDCLASS)) 5451 dev->flags &= ~DF_FIXEDCLASS; 5452 if (error == 0) 5453 device_disable(dev); 5454 break; 5455 case DEV_SUSPEND: 5456 if (device_is_suspended(dev)) { 5457 error = EBUSY; 5458 break; 5459 } 5460 if (device_get_parent(dev) == NULL) { 5461 error = EINVAL; 5462 break; 5463 } 5464 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5465 break; 5466 case DEV_RESUME: 5467 if (!device_is_suspended(dev)) { 5468 error = EINVAL; 5469 break; 5470 } 5471 if (device_get_parent(dev) == NULL) { 5472 error = EINVAL; 5473 break; 5474 } 5475 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5476 break; 5477 case DEV_SET_DRIVER: { 5478 devclass_t dc; 5479 char driver[128]; 5480 5481 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5482 if (error) 5483 break; 5484 if (driver[0] == '\0') { 5485 error = EINVAL; 5486 break; 5487 } 5488 if (dev->devclass != NULL && 5489 strcmp(driver, dev->devclass->name) == 0) 5490 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5491 break; 5492 5493 /* 5494 * Scan drivers for this device's bus looking for at 5495 * least one matching driver. 5496 */ 5497 if (dev->parent == NULL) { 5498 error = EINVAL; 5499 break; 5500 } 5501 if (!driver_exists(dev->parent, driver)) { 5502 error = ENOENT; 5503 break; 5504 } 5505 dc = devclass_create(driver); 5506 if (dc == NULL) { 5507 error = ENOMEM; 5508 break; 5509 } 5510 5511 /* Detach device if necessary. */ 5512 if (device_is_attached(dev)) { 5513 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5514 error = device_detach(dev); 5515 else 5516 error = EBUSY; 5517 if (error) 5518 break; 5519 } 5520 5521 /* Clear any previously-fixed device class and unit. */ 5522 if (dev->flags & DF_FIXEDCLASS) 5523 devclass_delete_device(dev->devclass, dev); 5524 dev->flags |= DF_WILDCARD; 5525 dev->unit = -1; 5526 5527 /* Force the new device class. */ 5528 error = devclass_add_device(dc, dev); 5529 if (error) 5530 break; 5531 dev->flags |= DF_FIXEDCLASS; 5532 error = device_probe_and_attach(dev); 5533 break; 5534 } 5535 case DEV_CLEAR_DRIVER: 5536 if (!(dev->flags & DF_FIXEDCLASS)) { 5537 error = 0; 5538 break; 5539 } 5540 if (device_is_attached(dev)) { 5541 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5542 error = device_detach(dev); 5543 else 5544 error = EBUSY; 5545 if (error) 5546 break; 5547 } 5548 5549 dev->flags &= ~DF_FIXEDCLASS; 5550 dev->flags |= DF_WILDCARD; 5551 devclass_delete_device(dev->devclass, dev); 5552 error = device_probe_and_attach(dev); 5553 break; 5554 case DEV_RESCAN: 5555 if (!device_is_attached(dev)) { 5556 error = ENXIO; 5557 break; 5558 } 5559 error = BUS_RESCAN(dev); 5560 break; 5561 case DEV_DELETE: { 5562 device_t parent; 5563 5564 parent = device_get_parent(dev); 5565 if (parent == NULL) { 5566 error = EINVAL; 5567 break; 5568 } 5569 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5570 if (bus_child_present(dev) != 0) { 5571 error = EBUSY; 5572 break; 5573 } 5574 } 5575 5576 error = device_delete_child(parent, dev); 5577 break; 5578 } 5579 } 5580 mtx_unlock(&Giant); 5581 return (error); 5582 } 5583 5584 static struct cdevsw devctl2_cdevsw = { 5585 .d_version = D_VERSION, 5586 .d_ioctl = devctl2_ioctl, 5587 .d_name = "devctl2", 5588 }; 5589 5590 static void 5591 devctl2_init(void) 5592 { 5593 5594 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5595 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5596 } 5597 5598 #ifdef DDB 5599 DB_SHOW_COMMAND(device, db_show_device) 5600 { 5601 device_t dev; 5602 5603 if (!have_addr) 5604 return; 5605 5606 dev = (device_t)addr; 5607 5608 db_printf("name: %s\n", device_get_nameunit(dev)); 5609 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5610 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5611 db_printf(" addr: %p\n", dev); 5612 db_printf(" parent: %p\n", dev->parent); 5613 db_printf(" softc: %p\n", dev->softc); 5614 db_printf(" ivars: %p\n", dev->ivars); 5615 } 5616 5617 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5618 { 5619 device_t dev; 5620 5621 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5622 db_show_device((db_expr_t)dev, true, count, modif); 5623 } 5624 } 5625 #endif 5626