xref: /freebsd/sys/kern/subr_bus.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		kern_psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	devaddq("+", device_get_nameunit(dev), dev);
712 }
713 
714 /*
715  * A device was removed from the tree.  We are called just before this
716  * happens.
717  */
718 static void
719 devremoved(device_t dev)
720 {
721 	devaddq("-", device_get_nameunit(dev), dev);
722 }
723 
724 /*
725  * Called when there's no match for this device.  This is only called
726  * the first time that no match happens, so we don't keep getting this
727  * message.  Should that prove to be undesirable, we can change it.
728  * This is called when all drivers that can attach to a given bus
729  * decline to accept this device.  Other errors may not be detected.
730  */
731 static void
732 devnomatch(device_t dev)
733 {
734 	devaddq("?", "", dev);
735 }
736 
737 static int
738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739 {
740 	struct dev_event_info *n1;
741 	int dis, error;
742 
743 	dis = devctl_queue_length == 0;
744 	error = sysctl_handle_int(oidp, &dis, 0, req);
745 	if (error || !req->newptr)
746 		return (error);
747 	mtx_lock(&devsoftc.mtx);
748 	if (dis) {
749 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750 			n1 = TAILQ_FIRST(&devsoftc.devq);
751 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752 			free(n1->dei_data, M_BUS);
753 			free(n1, M_BUS);
754 		}
755 		devsoftc.queued = 0;
756 		devctl_queue_length = 0;
757 	} else {
758 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759 	}
760 	mtx_unlock(&devsoftc.mtx);
761 	return (0);
762 }
763 
764 static int
765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766 {
767 	struct dev_event_info *n1;
768 	int q, error;
769 
770 	q = devctl_queue_length;
771 	error = sysctl_handle_int(oidp, &q, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 	if (q < 0)
775 		return (EINVAL);
776 	mtx_lock(&devsoftc.mtx);
777 	devctl_queue_length = q;
778 	while (devsoftc.queued > devctl_queue_length) {
779 		n1 = TAILQ_FIRST(&devsoftc.devq);
780 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781 		free(n1->dei_data, M_BUS);
782 		free(n1, M_BUS);
783 		devsoftc.queued--;
784 	}
785 	mtx_unlock(&devsoftc.mtx);
786 	return (0);
787 }
788 
789 /* End of /dev/devctl code */
790 
791 static TAILQ_HEAD(,device)	bus_data_devices;
792 static int bus_data_generation = 1;
793 
794 static kobj_method_t null_methods[] = {
795 	KOBJMETHOD_END
796 };
797 
798 DEFINE_CLASS(null, null_methods, 0);
799 
800 /*
801  * Bus pass implementation
802  */
803 
804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805 int bus_current_pass = BUS_PASS_ROOT;
806 
807 /**
808  * @internal
809  * @brief Register the pass level of a new driver attachment
810  *
811  * Register a new driver attachment's pass level.  If no driver
812  * attachment with the same pass level has been added, then @p new
813  * will be added to the global passes list.
814  *
815  * @param new		the new driver attachment
816  */
817 static void
818 driver_register_pass(struct driverlink *new)
819 {
820 	struct driverlink *dl;
821 
822 	/* We only consider pass numbers during boot. */
823 	if (bus_current_pass == BUS_PASS_DEFAULT)
824 		return;
825 
826 	/*
827 	 * Walk the passes list.  If we already know about this pass
828 	 * then there is nothing to do.  If we don't, then insert this
829 	 * driver link into the list.
830 	 */
831 	TAILQ_FOREACH(dl, &passes, passlink) {
832 		if (dl->pass < new->pass)
833 			continue;
834 		if (dl->pass == new->pass)
835 			return;
836 		TAILQ_INSERT_BEFORE(dl, new, passlink);
837 		return;
838 	}
839 	TAILQ_INSERT_TAIL(&passes, new, passlink);
840 }
841 
842 /**
843  * @brief Raise the current bus pass
844  *
845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846  * method on the root bus to kick off a new device tree scan for each
847  * new pass level that has at least one driver.
848  */
849 void
850 bus_set_pass(int pass)
851 {
852 	struct driverlink *dl;
853 
854 	if (bus_current_pass > pass)
855 		panic("Attempt to lower bus pass level");
856 
857 	TAILQ_FOREACH(dl, &passes, passlink) {
858 		/* Skip pass values below the current pass level. */
859 		if (dl->pass <= bus_current_pass)
860 			continue;
861 
862 		/*
863 		 * Bail once we hit a driver with a pass level that is
864 		 * too high.
865 		 */
866 		if (dl->pass > pass)
867 			break;
868 
869 		/*
870 		 * Raise the pass level to the next level and rescan
871 		 * the tree.
872 		 */
873 		bus_current_pass = dl->pass;
874 		BUS_NEW_PASS(root_bus);
875 	}
876 
877 	/*
878 	 * If there isn't a driver registered for the requested pass,
879 	 * then bus_current_pass might still be less than 'pass'.  Set
880 	 * it to 'pass' in that case.
881 	 */
882 	if (bus_current_pass < pass)
883 		bus_current_pass = pass;
884 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885 }
886 
887 /*
888  * Devclass implementation
889  */
890 
891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892 
893 /**
894  * @internal
895  * @brief Find or create a device class
896  *
897  * If a device class with the name @p classname exists, return it,
898  * otherwise if @p create is non-zero create and return a new device
899  * class.
900  *
901  * If @p parentname is non-NULL, the parent of the devclass is set to
902  * the devclass of that name.
903  *
904  * @param classname	the devclass name to find or create
905  * @param parentname	the parent devclass name or @c NULL
906  * @param create	non-zero to create a devclass
907  */
908 static devclass_t
909 devclass_find_internal(const char *classname, const char *parentname,
910 		       int create)
911 {
912 	devclass_t dc;
913 
914 	PDEBUG(("looking for %s", classname));
915 	if (!classname)
916 		return (NULL);
917 
918 	TAILQ_FOREACH(dc, &devclasses, link) {
919 		if (!strcmp(dc->name, classname))
920 			break;
921 	}
922 
923 	if (create && !dc) {
924 		PDEBUG(("creating %s", classname));
925 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926 		    M_BUS, M_NOWAIT | M_ZERO);
927 		if (!dc)
928 			return (NULL);
929 		dc->parent = NULL;
930 		dc->name = (char*) (dc + 1);
931 		strcpy(dc->name, classname);
932 		TAILQ_INIT(&dc->drivers);
933 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934 
935 		bus_data_generation_update();
936 	}
937 
938 	/*
939 	 * If a parent class is specified, then set that as our parent so
940 	 * that this devclass will support drivers for the parent class as
941 	 * well.  If the parent class has the same name don't do this though
942 	 * as it creates a cycle that can trigger an infinite loop in
943 	 * device_probe_child() if a device exists for which there is no
944 	 * suitable driver.
945 	 */
946 	if (parentname && dc && !dc->parent &&
947 	    strcmp(classname, parentname) != 0) {
948 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949 		dc->parent->flags |= DC_HAS_CHILDREN;
950 	}
951 
952 	return (dc);
953 }
954 
955 /**
956  * @brief Create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise create and return a new device class.
960  *
961  * @param classname	the devclass name to find or create
962  */
963 devclass_t
964 devclass_create(const char *classname)
965 {
966 	return (devclass_find_internal(classname, NULL, TRUE));
967 }
968 
969 /**
970  * @brief Find a device class
971  *
972  * If a device class with the name @p classname exists, return it,
973  * otherwise return @c NULL.
974  *
975  * @param classname	the devclass name to find
976  */
977 devclass_t
978 devclass_find(const char *classname)
979 {
980 	return (devclass_find_internal(classname, NULL, FALSE));
981 }
982 
983 /**
984  * @brief Register that a device driver has been added to a devclass
985  *
986  * Register that a device driver has been added to a devclass.  This
987  * is called by devclass_add_driver to accomplish the recursive
988  * notification of all the children classes of dc, as well as dc.
989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990  * the devclass.
991  *
992  * We do a full search here of the devclass list at each iteration
993  * level to save storing children-lists in the devclass structure.  If
994  * we ever move beyond a few dozen devices doing this, we may need to
995  * reevaluate...
996  *
997  * @param dc		the devclass to edit
998  * @param driver	the driver that was just added
999  */
1000 static void
1001 devclass_driver_added(devclass_t dc, driver_t *driver)
1002 {
1003 	devclass_t parent;
1004 	int i;
1005 
1006 	/*
1007 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008 	 */
1009 	for (i = 0; i < dc->maxunit; i++)
1010 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012 
1013 	/*
1014 	 * Walk through the children classes.  Since we only keep a
1015 	 * single parent pointer around, we walk the entire list of
1016 	 * devclasses looking for children.  We set the
1017 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018 	 * the parent, so we only walk the list for those devclasses
1019 	 * that have children.
1020 	 */
1021 	if (!(dc->flags & DC_HAS_CHILDREN))
1022 		return;
1023 	parent = dc;
1024 	TAILQ_FOREACH(dc, &devclasses, link) {
1025 		if (dc->parent == parent)
1026 			devclass_driver_added(dc, driver);
1027 	}
1028 }
1029 
1030 /**
1031  * @brief Add a device driver to a device class
1032  *
1033  * Add a device driver to a devclass. This is normally called
1034  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035  * all devices in the devclass will be called to allow them to attempt
1036  * to re-probe any unmatched children.
1037  *
1038  * @param dc		the devclass to edit
1039  * @param driver	the driver to register
1040  */
1041 int
1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043 {
1044 	driverlink_t dl;
1045 	const char *parentname;
1046 
1047 	PDEBUG(("%s", DRIVERNAME(driver)));
1048 
1049 	/* Don't allow invalid pass values. */
1050 	if (pass <= BUS_PASS_ROOT)
1051 		return (EINVAL);
1052 
1053 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054 	if (!dl)
1055 		return (ENOMEM);
1056 
1057 	/*
1058 	 * Compile the driver's methods. Also increase the reference count
1059 	 * so that the class doesn't get freed when the last instance
1060 	 * goes. This means we can safely use static methods and avoids a
1061 	 * double-free in devclass_delete_driver.
1062 	 */
1063 	kobj_class_compile((kobj_class_t) driver);
1064 
1065 	/*
1066 	 * If the driver has any base classes, make the
1067 	 * devclass inherit from the devclass of the driver's
1068 	 * first base class. This will allow the system to
1069 	 * search for drivers in both devclasses for children
1070 	 * of a device using this driver.
1071 	 */
1072 	if (driver->baseclasses)
1073 		parentname = driver->baseclasses[0]->name;
1074 	else
1075 		parentname = NULL;
1076 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077 
1078 	dl->driver = driver;
1079 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080 	driver->refs++;		/* XXX: kobj_mtx */
1081 	dl->pass = pass;
1082 	driver_register_pass(dl);
1083 
1084 	devclass_driver_added(dc, driver);
1085 	bus_data_generation_update();
1086 	return (0);
1087 }
1088 
1089 /**
1090  * @brief Register that a device driver has been deleted from a devclass
1091  *
1092  * Register that a device driver has been removed from a devclass.
1093  * This is called by devclass_delete_driver to accomplish the
1094  * recursive notification of all the children classes of busclass, as
1095  * well as busclass.  Each layer will attempt to detach the driver
1096  * from any devices that are children of the bus's devclass.  The function
1097  * will return an error if a device fails to detach.
1098  *
1099  * We do a full search here of the devclass list at each iteration
1100  * level to save storing children-lists in the devclass structure.  If
1101  * we ever move beyond a few dozen devices doing this, we may need to
1102  * reevaluate...
1103  *
1104  * @param busclass	the devclass of the parent bus
1105  * @param dc		the devclass of the driver being deleted
1106  * @param driver	the driver being deleted
1107  */
1108 static int
1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110 {
1111 	devclass_t parent;
1112 	device_t dev;
1113 	int error, i;
1114 
1115 	/*
1116 	 * Disassociate from any devices.  We iterate through all the
1117 	 * devices in the devclass of the driver and detach any which are
1118 	 * using the driver and which have a parent in the devclass which
1119 	 * we are deleting from.
1120 	 *
1121 	 * Note that since a driver can be in multiple devclasses, we
1122 	 * should not detach devices which are not children of devices in
1123 	 * the affected devclass.
1124 	 */
1125 	for (i = 0; i < dc->maxunit; i++) {
1126 		if (dc->devices[i]) {
1127 			dev = dc->devices[i];
1128 			if (dev->driver == driver && dev->parent &&
1129 			    dev->parent->devclass == busclass) {
1130 				if ((error = device_detach(dev)) != 0)
1131 					return (error);
1132 				BUS_PROBE_NOMATCH(dev->parent, dev);
1133 				devnomatch(dev);
1134 				dev->flags |= DF_DONENOMATCH;
1135 			}
1136 		}
1137 	}
1138 
1139 	/*
1140 	 * Walk through the children classes.  Since we only keep a
1141 	 * single parent pointer around, we walk the entire list of
1142 	 * devclasses looking for children.  We set the
1143 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1144 	 * the parent, so we only walk the list for those devclasses
1145 	 * that have children.
1146 	 */
1147 	if (!(busclass->flags & DC_HAS_CHILDREN))
1148 		return (0);
1149 	parent = busclass;
1150 	TAILQ_FOREACH(busclass, &devclasses, link) {
1151 		if (busclass->parent == parent) {
1152 			error = devclass_driver_deleted(busclass, dc, driver);
1153 			if (error)
1154 				return (error);
1155 		}
1156 	}
1157 	return (0);
1158 }
1159 
1160 /**
1161  * @brief Delete a device driver from a device class
1162  *
1163  * Delete a device driver from a devclass. This is normally called
1164  * automatically by DRIVER_MODULE().
1165  *
1166  * If the driver is currently attached to any devices,
1167  * devclass_delete_driver() will first attempt to detach from each
1168  * device. If one of the detach calls fails, the driver will not be
1169  * deleted.
1170  *
1171  * @param dc		the devclass to edit
1172  * @param driver	the driver to unregister
1173  */
1174 int
1175 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1176 {
1177 	devclass_t dc = devclass_find(driver->name);
1178 	driverlink_t dl;
1179 	int error;
1180 
1181 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1182 
1183 	if (!dc)
1184 		return (0);
1185 
1186 	/*
1187 	 * Find the link structure in the bus' list of drivers.
1188 	 */
1189 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1190 		if (dl->driver == driver)
1191 			break;
1192 	}
1193 
1194 	if (!dl) {
1195 		PDEBUG(("%s not found in %s list", driver->name,
1196 		    busclass->name));
1197 		return (ENOENT);
1198 	}
1199 
1200 	error = devclass_driver_deleted(busclass, dc, driver);
1201 	if (error != 0)
1202 		return (error);
1203 
1204 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1205 	free(dl, M_BUS);
1206 
1207 	/* XXX: kobj_mtx */
1208 	driver->refs--;
1209 	if (driver->refs == 0)
1210 		kobj_class_free((kobj_class_t) driver);
1211 
1212 	bus_data_generation_update();
1213 	return (0);
1214 }
1215 
1216 /**
1217  * @brief Quiesces a set of device drivers from a device class
1218  *
1219  * Quiesce a device driver from a devclass. This is normally called
1220  * automatically by DRIVER_MODULE().
1221  *
1222  * If the driver is currently attached to any devices,
1223  * devclass_quiesece_driver() will first attempt to quiesce each
1224  * device.
1225  *
1226  * @param dc		the devclass to edit
1227  * @param driver	the driver to unregister
1228  */
1229 static int
1230 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1231 {
1232 	devclass_t dc = devclass_find(driver->name);
1233 	driverlink_t dl;
1234 	device_t dev;
1235 	int i;
1236 	int error;
1237 
1238 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1239 
1240 	if (!dc)
1241 		return (0);
1242 
1243 	/*
1244 	 * Find the link structure in the bus' list of drivers.
1245 	 */
1246 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1247 		if (dl->driver == driver)
1248 			break;
1249 	}
1250 
1251 	if (!dl) {
1252 		PDEBUG(("%s not found in %s list", driver->name,
1253 		    busclass->name));
1254 		return (ENOENT);
1255 	}
1256 
1257 	/*
1258 	 * Quiesce all devices.  We iterate through all the devices in
1259 	 * the devclass of the driver and quiesce any which are using
1260 	 * the driver and which have a parent in the devclass which we
1261 	 * are quiescing.
1262 	 *
1263 	 * Note that since a driver can be in multiple devclasses, we
1264 	 * should not quiesce devices which are not children of
1265 	 * devices in the affected devclass.
1266 	 */
1267 	for (i = 0; i < dc->maxunit; i++) {
1268 		if (dc->devices[i]) {
1269 			dev = dc->devices[i];
1270 			if (dev->driver == driver && dev->parent &&
1271 			    dev->parent->devclass == busclass) {
1272 				if ((error = device_quiesce(dev)) != 0)
1273 					return (error);
1274 			}
1275 		}
1276 	}
1277 
1278 	return (0);
1279 }
1280 
1281 /**
1282  * @internal
1283  */
1284 static driverlink_t
1285 devclass_find_driver_internal(devclass_t dc, const char *classname)
1286 {
1287 	driverlink_t dl;
1288 
1289 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1290 
1291 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1292 		if (!strcmp(dl->driver->name, classname))
1293 			return (dl);
1294 	}
1295 
1296 	PDEBUG(("not found"));
1297 	return (NULL);
1298 }
1299 
1300 /**
1301  * @brief Return the name of the devclass
1302  */
1303 const char *
1304 devclass_get_name(devclass_t dc)
1305 {
1306 	return (dc->name);
1307 }
1308 
1309 /**
1310  * @brief Find a device given a unit number
1311  *
1312  * @param dc		the devclass to search
1313  * @param unit		the unit number to search for
1314  *
1315  * @returns		the device with the given unit number or @c
1316  *			NULL if there is no such device
1317  */
1318 device_t
1319 devclass_get_device(devclass_t dc, int unit)
1320 {
1321 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1322 		return (NULL);
1323 	return (dc->devices[unit]);
1324 }
1325 
1326 /**
1327  * @brief Find the softc field of a device given a unit number
1328  *
1329  * @param dc		the devclass to search
1330  * @param unit		the unit number to search for
1331  *
1332  * @returns		the softc field of the device with the given
1333  *			unit number or @c NULL if there is no such
1334  *			device
1335  */
1336 void *
1337 devclass_get_softc(devclass_t dc, int unit)
1338 {
1339 	device_t dev;
1340 
1341 	dev = devclass_get_device(dc, unit);
1342 	if (!dev)
1343 		return (NULL);
1344 
1345 	return (device_get_softc(dev));
1346 }
1347 
1348 /**
1349  * @brief Get a list of devices in the devclass
1350  *
1351  * An array containing a list of all the devices in the given devclass
1352  * is allocated and returned in @p *devlistp. The number of devices
1353  * in the array is returned in @p *devcountp. The caller should free
1354  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1355  *
1356  * @param dc		the devclass to examine
1357  * @param devlistp	points at location for array pointer return
1358  *			value
1359  * @param devcountp	points at location for array size return value
1360  *
1361  * @retval 0		success
1362  * @retval ENOMEM	the array allocation failed
1363  */
1364 int
1365 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1366 {
1367 	int count, i;
1368 	device_t *list;
1369 
1370 	count = devclass_get_count(dc);
1371 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1372 	if (!list)
1373 		return (ENOMEM);
1374 
1375 	count = 0;
1376 	for (i = 0; i < dc->maxunit; i++) {
1377 		if (dc->devices[i]) {
1378 			list[count] = dc->devices[i];
1379 			count++;
1380 		}
1381 	}
1382 
1383 	*devlistp = list;
1384 	*devcountp = count;
1385 
1386 	return (0);
1387 }
1388 
1389 /**
1390  * @brief Get a list of drivers in the devclass
1391  *
1392  * An array containing a list of pointers to all the drivers in the
1393  * given devclass is allocated and returned in @p *listp.  The number
1394  * of drivers in the array is returned in @p *countp. The caller should
1395  * free the array using @c free(p, M_TEMP).
1396  *
1397  * @param dc		the devclass to examine
1398  * @param listp		gives location for array pointer return value
1399  * @param countp	gives location for number of array elements
1400  *			return value
1401  *
1402  * @retval 0		success
1403  * @retval ENOMEM	the array allocation failed
1404  */
1405 int
1406 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1407 {
1408 	driverlink_t dl;
1409 	driver_t **list;
1410 	int count;
1411 
1412 	count = 0;
1413 	TAILQ_FOREACH(dl, &dc->drivers, link)
1414 		count++;
1415 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1416 	if (list == NULL)
1417 		return (ENOMEM);
1418 
1419 	count = 0;
1420 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1421 		list[count] = dl->driver;
1422 		count++;
1423 	}
1424 	*listp = list;
1425 	*countp = count;
1426 
1427 	return (0);
1428 }
1429 
1430 /**
1431  * @brief Get the number of devices in a devclass
1432  *
1433  * @param dc		the devclass to examine
1434  */
1435 int
1436 devclass_get_count(devclass_t dc)
1437 {
1438 	int count, i;
1439 
1440 	count = 0;
1441 	for (i = 0; i < dc->maxunit; i++)
1442 		if (dc->devices[i])
1443 			count++;
1444 	return (count);
1445 }
1446 
1447 /**
1448  * @brief Get the maximum unit number used in a devclass
1449  *
1450  * Note that this is one greater than the highest currently-allocated
1451  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1452  * that not even the devclass has been allocated yet.
1453  *
1454  * @param dc		the devclass to examine
1455  */
1456 int
1457 devclass_get_maxunit(devclass_t dc)
1458 {
1459 	if (dc == NULL)
1460 		return (-1);
1461 	return (dc->maxunit);
1462 }
1463 
1464 /**
1465  * @brief Find a free unit number in a devclass
1466  *
1467  * This function searches for the first unused unit number greater
1468  * that or equal to @p unit.
1469  *
1470  * @param dc		the devclass to examine
1471  * @param unit		the first unit number to check
1472  */
1473 int
1474 devclass_find_free_unit(devclass_t dc, int unit)
1475 {
1476 	if (dc == NULL)
1477 		return (unit);
1478 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1479 		unit++;
1480 	return (unit);
1481 }
1482 
1483 /**
1484  * @brief Set the parent of a devclass
1485  *
1486  * The parent class is normally initialised automatically by
1487  * DRIVER_MODULE().
1488  *
1489  * @param dc		the devclass to edit
1490  * @param pdc		the new parent devclass
1491  */
1492 void
1493 devclass_set_parent(devclass_t dc, devclass_t pdc)
1494 {
1495 	dc->parent = pdc;
1496 }
1497 
1498 /**
1499  * @brief Get the parent of a devclass
1500  *
1501  * @param dc		the devclass to examine
1502  */
1503 devclass_t
1504 devclass_get_parent(devclass_t dc)
1505 {
1506 	return (dc->parent);
1507 }
1508 
1509 struct sysctl_ctx_list *
1510 devclass_get_sysctl_ctx(devclass_t dc)
1511 {
1512 	return (&dc->sysctl_ctx);
1513 }
1514 
1515 struct sysctl_oid *
1516 devclass_get_sysctl_tree(devclass_t dc)
1517 {
1518 	return (dc->sysctl_tree);
1519 }
1520 
1521 /**
1522  * @internal
1523  * @brief Allocate a unit number
1524  *
1525  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1526  * will do). The allocated unit number is returned in @p *unitp.
1527 
1528  * @param dc		the devclass to allocate from
1529  * @param unitp		points at the location for the allocated unit
1530  *			number
1531  *
1532  * @retval 0		success
1533  * @retval EEXIST	the requested unit number is already allocated
1534  * @retval ENOMEM	memory allocation failure
1535  */
1536 static int
1537 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1538 {
1539 	const char *s;
1540 	int unit = *unitp;
1541 
1542 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1543 
1544 	/* Ask the parent bus if it wants to wire this device. */
1545 	if (unit == -1)
1546 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1547 		    &unit);
1548 
1549 	/* If we were given a wired unit number, check for existing device */
1550 	/* XXX imp XXX */
1551 	if (unit != -1) {
1552 		if (unit >= 0 && unit < dc->maxunit &&
1553 		    dc->devices[unit] != NULL) {
1554 			if (bootverbose)
1555 				printf("%s: %s%d already exists; skipping it\n",
1556 				    dc->name, dc->name, *unitp);
1557 			return (EEXIST);
1558 		}
1559 	} else {
1560 		/* Unwired device, find the next available slot for it */
1561 		unit = 0;
1562 		for (unit = 0;; unit++) {
1563 			/* If there is an "at" hint for a unit then skip it. */
1564 			if (resource_string_value(dc->name, unit, "at", &s) ==
1565 			    0)
1566 				continue;
1567 
1568 			/* If this device slot is already in use, skip it. */
1569 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1570 				continue;
1571 
1572 			break;
1573 		}
1574 	}
1575 
1576 	/*
1577 	 * We've selected a unit beyond the length of the table, so let's
1578 	 * extend the table to make room for all units up to and including
1579 	 * this one.
1580 	 */
1581 	if (unit >= dc->maxunit) {
1582 		device_t *newlist, *oldlist;
1583 		int newsize;
1584 
1585 		oldlist = dc->devices;
1586 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1587 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1588 		if (!newlist)
1589 			return (ENOMEM);
1590 		if (oldlist != NULL)
1591 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1592 		bzero(newlist + dc->maxunit,
1593 		    sizeof(device_t) * (newsize - dc->maxunit));
1594 		dc->devices = newlist;
1595 		dc->maxunit = newsize;
1596 		if (oldlist != NULL)
1597 			free(oldlist, M_BUS);
1598 	}
1599 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1600 
1601 	*unitp = unit;
1602 	return (0);
1603 }
1604 
1605 /**
1606  * @internal
1607  * @brief Add a device to a devclass
1608  *
1609  * A unit number is allocated for the device (using the device's
1610  * preferred unit number if any) and the device is registered in the
1611  * devclass. This allows the device to be looked up by its unit
1612  * number, e.g. by decoding a dev_t minor number.
1613  *
1614  * @param dc		the devclass to add to
1615  * @param dev		the device to add
1616  *
1617  * @retval 0		success
1618  * @retval EEXIST	the requested unit number is already allocated
1619  * @retval ENOMEM	memory allocation failure
1620  */
1621 static int
1622 devclass_add_device(devclass_t dc, device_t dev)
1623 {
1624 	int buflen, error;
1625 
1626 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1627 
1628 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1629 	if (buflen < 0)
1630 		return (ENOMEM);
1631 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1632 	if (!dev->nameunit)
1633 		return (ENOMEM);
1634 
1635 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1636 		free(dev->nameunit, M_BUS);
1637 		dev->nameunit = NULL;
1638 		return (error);
1639 	}
1640 	dc->devices[dev->unit] = dev;
1641 	dev->devclass = dc;
1642 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1643 
1644 	return (0);
1645 }
1646 
1647 /**
1648  * @internal
1649  * @brief Delete a device from a devclass
1650  *
1651  * The device is removed from the devclass's device list and its unit
1652  * number is freed.
1653 
1654  * @param dc		the devclass to delete from
1655  * @param dev		the device to delete
1656  *
1657  * @retval 0		success
1658  */
1659 static int
1660 devclass_delete_device(devclass_t dc, device_t dev)
1661 {
1662 	if (!dc || !dev)
1663 		return (0);
1664 
1665 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1666 
1667 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1668 		panic("devclass_delete_device: inconsistent device class");
1669 	dc->devices[dev->unit] = NULL;
1670 	if (dev->flags & DF_WILDCARD)
1671 		dev->unit = -1;
1672 	dev->devclass = NULL;
1673 	free(dev->nameunit, M_BUS);
1674 	dev->nameunit = NULL;
1675 
1676 	return (0);
1677 }
1678 
1679 /**
1680  * @internal
1681  * @brief Make a new device and add it as a child of @p parent
1682  *
1683  * @param parent	the parent of the new device
1684  * @param name		the devclass name of the new device or @c NULL
1685  *			to leave the devclass unspecified
1686  * @parem unit		the unit number of the new device of @c -1 to
1687  *			leave the unit number unspecified
1688  *
1689  * @returns the new device
1690  */
1691 static device_t
1692 make_device(device_t parent, const char *name, int unit)
1693 {
1694 	device_t dev;
1695 	devclass_t dc;
1696 
1697 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1698 
1699 	if (name) {
1700 		dc = devclass_find_internal(name, NULL, TRUE);
1701 		if (!dc) {
1702 			printf("make_device: can't find device class %s\n",
1703 			    name);
1704 			return (NULL);
1705 		}
1706 	} else {
1707 		dc = NULL;
1708 	}
1709 
1710 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1711 	if (!dev)
1712 		return (NULL);
1713 
1714 	dev->parent = parent;
1715 	TAILQ_INIT(&dev->children);
1716 	kobj_init((kobj_t) dev, &null_class);
1717 	dev->driver = NULL;
1718 	dev->devclass = NULL;
1719 	dev->unit = unit;
1720 	dev->nameunit = NULL;
1721 	dev->desc = NULL;
1722 	dev->busy = 0;
1723 	dev->devflags = 0;
1724 	dev->flags = DF_ENABLED;
1725 	dev->order = 0;
1726 	if (unit == -1)
1727 		dev->flags |= DF_WILDCARD;
1728 	if (name) {
1729 		dev->flags |= DF_FIXEDCLASS;
1730 		if (devclass_add_device(dc, dev)) {
1731 			kobj_delete((kobj_t) dev, M_BUS);
1732 			return (NULL);
1733 		}
1734 	}
1735 	dev->ivars = NULL;
1736 	dev->softc = NULL;
1737 
1738 	dev->state = DS_NOTPRESENT;
1739 
1740 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1741 	bus_data_generation_update();
1742 
1743 	return (dev);
1744 }
1745 
1746 /**
1747  * @internal
1748  * @brief Print a description of a device.
1749  */
1750 static int
1751 device_print_child(device_t dev, device_t child)
1752 {
1753 	int retval = 0;
1754 
1755 	if (device_is_alive(child))
1756 		retval += BUS_PRINT_CHILD(dev, child);
1757 	else
1758 		retval += device_printf(child, " not found\n");
1759 
1760 	return (retval);
1761 }
1762 
1763 /**
1764  * @brief Create a new device
1765  *
1766  * This creates a new device and adds it as a child of an existing
1767  * parent device. The new device will be added after the last existing
1768  * child with order zero.
1769  *
1770  * @param dev		the device which will be the parent of the
1771  *			new child device
1772  * @param name		devclass name for new device or @c NULL if not
1773  *			specified
1774  * @param unit		unit number for new device or @c -1 if not
1775  *			specified
1776  *
1777  * @returns		the new device
1778  */
1779 device_t
1780 device_add_child(device_t dev, const char *name, int unit)
1781 {
1782 	return (device_add_child_ordered(dev, 0, name, unit));
1783 }
1784 
1785 /**
1786  * @brief Create a new device
1787  *
1788  * This creates a new device and adds it as a child of an existing
1789  * parent device. The new device will be added after the last existing
1790  * child with the same order.
1791  *
1792  * @param dev		the device which will be the parent of the
1793  *			new child device
1794  * @param order		a value which is used to partially sort the
1795  *			children of @p dev - devices created using
1796  *			lower values of @p order appear first in @p
1797  *			dev's list of children
1798  * @param name		devclass name for new device or @c NULL if not
1799  *			specified
1800  * @param unit		unit number for new device or @c -1 if not
1801  *			specified
1802  *
1803  * @returns		the new device
1804  */
1805 device_t
1806 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1807 {
1808 	device_t child;
1809 	device_t place;
1810 
1811 	PDEBUG(("%s at %s with order %u as unit %d",
1812 	    name, DEVICENAME(dev), order, unit));
1813 	KASSERT(name != NULL || unit == -1,
1814 	    ("child device with wildcard name and specific unit number"));
1815 
1816 	child = make_device(dev, name, unit);
1817 	if (child == NULL)
1818 		return (child);
1819 	child->order = order;
1820 
1821 	TAILQ_FOREACH(place, &dev->children, link) {
1822 		if (place->order > order)
1823 			break;
1824 	}
1825 
1826 	if (place) {
1827 		/*
1828 		 * The device 'place' is the first device whose order is
1829 		 * greater than the new child.
1830 		 */
1831 		TAILQ_INSERT_BEFORE(place, child, link);
1832 	} else {
1833 		/*
1834 		 * The new child's order is greater or equal to the order of
1835 		 * any existing device. Add the child to the tail of the list.
1836 		 */
1837 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1838 	}
1839 
1840 	bus_data_generation_update();
1841 	return (child);
1842 }
1843 
1844 /**
1845  * @brief Delete a device
1846  *
1847  * This function deletes a device along with all of its children. If
1848  * the device currently has a driver attached to it, the device is
1849  * detached first using device_detach().
1850  *
1851  * @param dev		the parent device
1852  * @param child		the device to delete
1853  *
1854  * @retval 0		success
1855  * @retval non-zero	a unit error code describing the error
1856  */
1857 int
1858 device_delete_child(device_t dev, device_t child)
1859 {
1860 	int error;
1861 	device_t grandchild;
1862 
1863 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1864 
1865 	/* remove children first */
1866 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1867 		error = device_delete_child(child, grandchild);
1868 		if (error)
1869 			return (error);
1870 	}
1871 
1872 	if ((error = device_detach(child)) != 0)
1873 		return (error);
1874 	if (child->devclass)
1875 		devclass_delete_device(child->devclass, child);
1876 	if (child->parent)
1877 		BUS_CHILD_DELETED(dev, child);
1878 	TAILQ_REMOVE(&dev->children, child, link);
1879 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1880 	kobj_delete((kobj_t) child, M_BUS);
1881 
1882 	bus_data_generation_update();
1883 	return (0);
1884 }
1885 
1886 /**
1887  * @brief Delete all children devices of the given device, if any.
1888  *
1889  * This function deletes all children devices of the given device, if
1890  * any, using the device_delete_child() function for each device it
1891  * finds. If a child device cannot be deleted, this function will
1892  * return an error code.
1893  *
1894  * @param dev		the parent device
1895  *
1896  * @retval 0		success
1897  * @retval non-zero	a device would not detach
1898  */
1899 int
1900 device_delete_children(device_t dev)
1901 {
1902 	device_t child;
1903 	int error;
1904 
1905 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1906 
1907 	error = 0;
1908 
1909 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1910 		error = device_delete_child(dev, child);
1911 		if (error) {
1912 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1913 			break;
1914 		}
1915 	}
1916 	return (error);
1917 }
1918 
1919 /**
1920  * @brief Find a device given a unit number
1921  *
1922  * This is similar to devclass_get_devices() but only searches for
1923  * devices which have @p dev as a parent.
1924  *
1925  * @param dev		the parent device to search
1926  * @param unit		the unit number to search for.  If the unit is -1,
1927  *			return the first child of @p dev which has name
1928  *			@p classname (that is, the one with the lowest unit.)
1929  *
1930  * @returns		the device with the given unit number or @c
1931  *			NULL if there is no such device
1932  */
1933 device_t
1934 device_find_child(device_t dev, const char *classname, int unit)
1935 {
1936 	devclass_t dc;
1937 	device_t child;
1938 
1939 	dc = devclass_find(classname);
1940 	if (!dc)
1941 		return (NULL);
1942 
1943 	if (unit != -1) {
1944 		child = devclass_get_device(dc, unit);
1945 		if (child && child->parent == dev)
1946 			return (child);
1947 	} else {
1948 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1949 			child = devclass_get_device(dc, unit);
1950 			if (child && child->parent == dev)
1951 				return (child);
1952 		}
1953 	}
1954 	return (NULL);
1955 }
1956 
1957 /**
1958  * @internal
1959  */
1960 static driverlink_t
1961 first_matching_driver(devclass_t dc, device_t dev)
1962 {
1963 	if (dev->devclass)
1964 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1965 	return (TAILQ_FIRST(&dc->drivers));
1966 }
1967 
1968 /**
1969  * @internal
1970  */
1971 static driverlink_t
1972 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1973 {
1974 	if (dev->devclass) {
1975 		driverlink_t dl;
1976 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1977 			if (!strcmp(dev->devclass->name, dl->driver->name))
1978 				return (dl);
1979 		return (NULL);
1980 	}
1981 	return (TAILQ_NEXT(last, link));
1982 }
1983 
1984 /**
1985  * @internal
1986  */
1987 int
1988 device_probe_child(device_t dev, device_t child)
1989 {
1990 	devclass_t dc;
1991 	driverlink_t best = NULL;
1992 	driverlink_t dl;
1993 	int result, pri = 0;
1994 	int hasclass = (child->devclass != NULL);
1995 
1996 	GIANT_REQUIRED;
1997 
1998 	dc = dev->devclass;
1999 	if (!dc)
2000 		panic("device_probe_child: parent device has no devclass");
2001 
2002 	/*
2003 	 * If the state is already probed, then return.  However, don't
2004 	 * return if we can rebid this object.
2005 	 */
2006 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2007 		return (0);
2008 
2009 	for (; dc; dc = dc->parent) {
2010 		for (dl = first_matching_driver(dc, child);
2011 		     dl;
2012 		     dl = next_matching_driver(dc, child, dl)) {
2013 			/* If this driver's pass is too high, then ignore it. */
2014 			if (dl->pass > bus_current_pass)
2015 				continue;
2016 
2017 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2018 			result = device_set_driver(child, dl->driver);
2019 			if (result == ENOMEM)
2020 				return (result);
2021 			else if (result != 0)
2022 				continue;
2023 			if (!hasclass) {
2024 				if (device_set_devclass(child,
2025 				    dl->driver->name) != 0) {
2026 					char const * devname =
2027 					    device_get_name(child);
2028 					if (devname == NULL)
2029 						devname = "(unknown)";
2030 					printf("driver bug: Unable to set "
2031 					    "devclass (class: %s "
2032 					    "devname: %s)\n",
2033 					    dl->driver->name,
2034 					    devname);
2035 					(void)device_set_driver(child, NULL);
2036 					continue;
2037 				}
2038 			}
2039 
2040 			/* Fetch any flags for the device before probing. */
2041 			resource_int_value(dl->driver->name, child->unit,
2042 			    "flags", &child->devflags);
2043 
2044 			result = DEVICE_PROBE(child);
2045 
2046 			/* Reset flags and devclass before the next probe. */
2047 			child->devflags = 0;
2048 			if (!hasclass)
2049 				(void)device_set_devclass(child, NULL);
2050 
2051 			/*
2052 			 * If the driver returns SUCCESS, there can be
2053 			 * no higher match for this device.
2054 			 */
2055 			if (result == 0) {
2056 				best = dl;
2057 				pri = 0;
2058 				break;
2059 			}
2060 
2061 			/*
2062 			 * The driver returned an error so it
2063 			 * certainly doesn't match.
2064 			 */
2065 			if (result > 0) {
2066 				(void)device_set_driver(child, NULL);
2067 				continue;
2068 			}
2069 
2070 			/*
2071 			 * A priority lower than SUCCESS, remember the
2072 			 * best matching driver. Initialise the value
2073 			 * of pri for the first match.
2074 			 */
2075 			if (best == NULL || result > pri) {
2076 				/*
2077 				 * Probes that return BUS_PROBE_NOWILDCARD
2078 				 * or lower only match when they are set
2079 				 * in stone by the parent bus.
2080 				 */
2081 				if (result <= BUS_PROBE_NOWILDCARD &&
2082 				    child->flags & DF_WILDCARD)
2083 					continue;
2084 				best = dl;
2085 				pri = result;
2086 				continue;
2087 			}
2088 		}
2089 		/*
2090 		 * If we have an unambiguous match in this devclass,
2091 		 * don't look in the parent.
2092 		 */
2093 		if (best && pri == 0)
2094 			break;
2095 	}
2096 
2097 	/*
2098 	 * If we found a driver, change state and initialise the devclass.
2099 	 */
2100 	/* XXX What happens if we rebid and got no best? */
2101 	if (best) {
2102 		/*
2103 		 * If this device was attached, and we were asked to
2104 		 * rescan, and it is a different driver, then we have
2105 		 * to detach the old driver and reattach this new one.
2106 		 * Note, we don't have to check for DF_REBID here
2107 		 * because if the state is > DS_ALIVE, we know it must
2108 		 * be.
2109 		 *
2110 		 * This assumes that all DF_REBID drivers can have
2111 		 * their probe routine called at any time and that
2112 		 * they are idempotent as well as completely benign in
2113 		 * normal operations.
2114 		 *
2115 		 * We also have to make sure that the detach
2116 		 * succeeded, otherwise we fail the operation (or
2117 		 * maybe it should just fail silently?  I'm torn).
2118 		 */
2119 		if (child->state > DS_ALIVE && best->driver != child->driver)
2120 			if ((result = device_detach(dev)) != 0)
2121 				return (result);
2122 
2123 		/* Set the winning driver, devclass, and flags. */
2124 		if (!child->devclass) {
2125 			result = device_set_devclass(child, best->driver->name);
2126 			if (result != 0)
2127 				return (result);
2128 		}
2129 		result = device_set_driver(child, best->driver);
2130 		if (result != 0)
2131 			return (result);
2132 		resource_int_value(best->driver->name, child->unit,
2133 		    "flags", &child->devflags);
2134 
2135 		if (pri < 0) {
2136 			/*
2137 			 * A bit bogus. Call the probe method again to make
2138 			 * sure that we have the right description.
2139 			 */
2140 			DEVICE_PROBE(child);
2141 #if 0
2142 			child->flags |= DF_REBID;
2143 #endif
2144 		} else
2145 			child->flags &= ~DF_REBID;
2146 		child->state = DS_ALIVE;
2147 
2148 		bus_data_generation_update();
2149 		return (0);
2150 	}
2151 
2152 	return (ENXIO);
2153 }
2154 
2155 /**
2156  * @brief Return the parent of a device
2157  */
2158 device_t
2159 device_get_parent(device_t dev)
2160 {
2161 	return (dev->parent);
2162 }
2163 
2164 /**
2165  * @brief Get a list of children of a device
2166  *
2167  * An array containing a list of all the children of the given device
2168  * is allocated and returned in @p *devlistp. The number of devices
2169  * in the array is returned in @p *devcountp. The caller should free
2170  * the array using @c free(p, M_TEMP).
2171  *
2172  * @param dev		the device to examine
2173  * @param devlistp	points at location for array pointer return
2174  *			value
2175  * @param devcountp	points at location for array size return value
2176  *
2177  * @retval 0		success
2178  * @retval ENOMEM	the array allocation failed
2179  */
2180 int
2181 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2182 {
2183 	int count;
2184 	device_t child;
2185 	device_t *list;
2186 
2187 	count = 0;
2188 	TAILQ_FOREACH(child, &dev->children, link) {
2189 		count++;
2190 	}
2191 	if (count == 0) {
2192 		*devlistp = NULL;
2193 		*devcountp = 0;
2194 		return (0);
2195 	}
2196 
2197 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2198 	if (!list)
2199 		return (ENOMEM);
2200 
2201 	count = 0;
2202 	TAILQ_FOREACH(child, &dev->children, link) {
2203 		list[count] = child;
2204 		count++;
2205 	}
2206 
2207 	*devlistp = list;
2208 	*devcountp = count;
2209 
2210 	return (0);
2211 }
2212 
2213 /**
2214  * @brief Return the current driver for the device or @c NULL if there
2215  * is no driver currently attached
2216  */
2217 driver_t *
2218 device_get_driver(device_t dev)
2219 {
2220 	return (dev->driver);
2221 }
2222 
2223 /**
2224  * @brief Return the current devclass for the device or @c NULL if
2225  * there is none.
2226  */
2227 devclass_t
2228 device_get_devclass(device_t dev)
2229 {
2230 	return (dev->devclass);
2231 }
2232 
2233 /**
2234  * @brief Return the name of the device's devclass or @c NULL if there
2235  * is none.
2236  */
2237 const char *
2238 device_get_name(device_t dev)
2239 {
2240 	if (dev != NULL && dev->devclass)
2241 		return (devclass_get_name(dev->devclass));
2242 	return (NULL);
2243 }
2244 
2245 /**
2246  * @brief Return a string containing the device's devclass name
2247  * followed by an ascii representation of the device's unit number
2248  * (e.g. @c "foo2").
2249  */
2250 const char *
2251 device_get_nameunit(device_t dev)
2252 {
2253 	return (dev->nameunit);
2254 }
2255 
2256 /**
2257  * @brief Return the device's unit number.
2258  */
2259 int
2260 device_get_unit(device_t dev)
2261 {
2262 	return (dev->unit);
2263 }
2264 
2265 /**
2266  * @brief Return the device's description string
2267  */
2268 const char *
2269 device_get_desc(device_t dev)
2270 {
2271 	return (dev->desc);
2272 }
2273 
2274 /**
2275  * @brief Return the device's flags
2276  */
2277 uint32_t
2278 device_get_flags(device_t dev)
2279 {
2280 	return (dev->devflags);
2281 }
2282 
2283 struct sysctl_ctx_list *
2284 device_get_sysctl_ctx(device_t dev)
2285 {
2286 	return (&dev->sysctl_ctx);
2287 }
2288 
2289 struct sysctl_oid *
2290 device_get_sysctl_tree(device_t dev)
2291 {
2292 	return (dev->sysctl_tree);
2293 }
2294 
2295 /**
2296  * @brief Print the name of the device followed by a colon and a space
2297  *
2298  * @returns the number of characters printed
2299  */
2300 int
2301 device_print_prettyname(device_t dev)
2302 {
2303 	const char *name = device_get_name(dev);
2304 
2305 	if (name == NULL)
2306 		return (printf("unknown: "));
2307 	return (printf("%s%d: ", name, device_get_unit(dev)));
2308 }
2309 
2310 /**
2311  * @brief Print the name of the device followed by a colon, a space
2312  * and the result of calling vprintf() with the value of @p fmt and
2313  * the following arguments.
2314  *
2315  * @returns the number of characters printed
2316  */
2317 int
2318 device_printf(device_t dev, const char * fmt, ...)
2319 {
2320 	va_list ap;
2321 	int retval;
2322 
2323 	retval = device_print_prettyname(dev);
2324 	va_start(ap, fmt);
2325 	retval += vprintf(fmt, ap);
2326 	va_end(ap);
2327 	return (retval);
2328 }
2329 
2330 /**
2331  * @internal
2332  */
2333 static void
2334 device_set_desc_internal(device_t dev, const char* desc, int copy)
2335 {
2336 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2337 		free(dev->desc, M_BUS);
2338 		dev->flags &= ~DF_DESCMALLOCED;
2339 		dev->desc = NULL;
2340 	}
2341 
2342 	if (copy && desc) {
2343 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2344 		if (dev->desc) {
2345 			strcpy(dev->desc, desc);
2346 			dev->flags |= DF_DESCMALLOCED;
2347 		}
2348 	} else {
2349 		/* Avoid a -Wcast-qual warning */
2350 		dev->desc = (char *)(uintptr_t) desc;
2351 	}
2352 
2353 	bus_data_generation_update();
2354 }
2355 
2356 /**
2357  * @brief Set the device's description
2358  *
2359  * The value of @c desc should be a string constant that will not
2360  * change (at least until the description is changed in a subsequent
2361  * call to device_set_desc() or device_set_desc_copy()).
2362  */
2363 void
2364 device_set_desc(device_t dev, const char* desc)
2365 {
2366 	device_set_desc_internal(dev, desc, FALSE);
2367 }
2368 
2369 /**
2370  * @brief Set the device's description
2371  *
2372  * The string pointed to by @c desc is copied. Use this function if
2373  * the device description is generated, (e.g. with sprintf()).
2374  */
2375 void
2376 device_set_desc_copy(device_t dev, const char* desc)
2377 {
2378 	device_set_desc_internal(dev, desc, TRUE);
2379 }
2380 
2381 /**
2382  * @brief Set the device's flags
2383  */
2384 void
2385 device_set_flags(device_t dev, uint32_t flags)
2386 {
2387 	dev->devflags = flags;
2388 }
2389 
2390 /**
2391  * @brief Return the device's softc field
2392  *
2393  * The softc is allocated and zeroed when a driver is attached, based
2394  * on the size field of the driver.
2395  */
2396 void *
2397 device_get_softc(device_t dev)
2398 {
2399 	return (dev->softc);
2400 }
2401 
2402 /**
2403  * @brief Set the device's softc field
2404  *
2405  * Most drivers do not need to use this since the softc is allocated
2406  * automatically when the driver is attached.
2407  */
2408 void
2409 device_set_softc(device_t dev, void *softc)
2410 {
2411 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2412 		free(dev->softc, M_BUS_SC);
2413 	dev->softc = softc;
2414 	if (dev->softc)
2415 		dev->flags |= DF_EXTERNALSOFTC;
2416 	else
2417 		dev->flags &= ~DF_EXTERNALSOFTC;
2418 }
2419 
2420 /**
2421  * @brief Free claimed softc
2422  *
2423  * Most drivers do not need to use this since the softc is freed
2424  * automatically when the driver is detached.
2425  */
2426 void
2427 device_free_softc(void *softc)
2428 {
2429 	free(softc, M_BUS_SC);
2430 }
2431 
2432 /**
2433  * @brief Claim softc
2434  *
2435  * This function can be used to let the driver free the automatically
2436  * allocated softc using "device_free_softc()". This function is
2437  * useful when the driver is refcounting the softc and the softc
2438  * cannot be freed when the "device_detach" method is called.
2439  */
2440 void
2441 device_claim_softc(device_t dev)
2442 {
2443 	if (dev->softc)
2444 		dev->flags |= DF_EXTERNALSOFTC;
2445 	else
2446 		dev->flags &= ~DF_EXTERNALSOFTC;
2447 }
2448 
2449 /**
2450  * @brief Get the device's ivars field
2451  *
2452  * The ivars field is used by the parent device to store per-device
2453  * state (e.g. the physical location of the device or a list of
2454  * resources).
2455  */
2456 void *
2457 device_get_ivars(device_t dev)
2458 {
2459 
2460 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2461 	return (dev->ivars);
2462 }
2463 
2464 /**
2465  * @brief Set the device's ivars field
2466  */
2467 void
2468 device_set_ivars(device_t dev, void * ivars)
2469 {
2470 
2471 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2472 	dev->ivars = ivars;
2473 }
2474 
2475 /**
2476  * @brief Return the device's state
2477  */
2478 device_state_t
2479 device_get_state(device_t dev)
2480 {
2481 	return (dev->state);
2482 }
2483 
2484 /**
2485  * @brief Set the DF_ENABLED flag for the device
2486  */
2487 void
2488 device_enable(device_t dev)
2489 {
2490 	dev->flags |= DF_ENABLED;
2491 }
2492 
2493 /**
2494  * @brief Clear the DF_ENABLED flag for the device
2495  */
2496 void
2497 device_disable(device_t dev)
2498 {
2499 	dev->flags &= ~DF_ENABLED;
2500 }
2501 
2502 /**
2503  * @brief Increment the busy counter for the device
2504  */
2505 void
2506 device_busy(device_t dev)
2507 {
2508 	if (dev->state < DS_ATTACHING)
2509 		panic("device_busy: called for unattached device");
2510 	if (dev->busy == 0 && dev->parent)
2511 		device_busy(dev->parent);
2512 	dev->busy++;
2513 	if (dev->state == DS_ATTACHED)
2514 		dev->state = DS_BUSY;
2515 }
2516 
2517 /**
2518  * @brief Decrement the busy counter for the device
2519  */
2520 void
2521 device_unbusy(device_t dev)
2522 {
2523 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2524 	    dev->state != DS_ATTACHING)
2525 		panic("device_unbusy: called for non-busy device %s",
2526 		    device_get_nameunit(dev));
2527 	dev->busy--;
2528 	if (dev->busy == 0) {
2529 		if (dev->parent)
2530 			device_unbusy(dev->parent);
2531 		if (dev->state == DS_BUSY)
2532 			dev->state = DS_ATTACHED;
2533 	}
2534 }
2535 
2536 /**
2537  * @brief Set the DF_QUIET flag for the device
2538  */
2539 void
2540 device_quiet(device_t dev)
2541 {
2542 	dev->flags |= DF_QUIET;
2543 }
2544 
2545 /**
2546  * @brief Clear the DF_QUIET flag for the device
2547  */
2548 void
2549 device_verbose(device_t dev)
2550 {
2551 	dev->flags &= ~DF_QUIET;
2552 }
2553 
2554 /**
2555  * @brief Return non-zero if the DF_QUIET flag is set on the device
2556  */
2557 int
2558 device_is_quiet(device_t dev)
2559 {
2560 	return ((dev->flags & DF_QUIET) != 0);
2561 }
2562 
2563 /**
2564  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2565  */
2566 int
2567 device_is_enabled(device_t dev)
2568 {
2569 	return ((dev->flags & DF_ENABLED) != 0);
2570 }
2571 
2572 /**
2573  * @brief Return non-zero if the device was successfully probed
2574  */
2575 int
2576 device_is_alive(device_t dev)
2577 {
2578 	return (dev->state >= DS_ALIVE);
2579 }
2580 
2581 /**
2582  * @brief Return non-zero if the device currently has a driver
2583  * attached to it
2584  */
2585 int
2586 device_is_attached(device_t dev)
2587 {
2588 	return (dev->state >= DS_ATTACHED);
2589 }
2590 
2591 /**
2592  * @brief Set the devclass of a device
2593  * @see devclass_add_device().
2594  */
2595 int
2596 device_set_devclass(device_t dev, const char *classname)
2597 {
2598 	devclass_t dc;
2599 	int error;
2600 
2601 	if (!classname) {
2602 		if (dev->devclass)
2603 			devclass_delete_device(dev->devclass, dev);
2604 		return (0);
2605 	}
2606 
2607 	if (dev->devclass) {
2608 		printf("device_set_devclass: device class already set\n");
2609 		return (EINVAL);
2610 	}
2611 
2612 	dc = devclass_find_internal(classname, NULL, TRUE);
2613 	if (!dc)
2614 		return (ENOMEM);
2615 
2616 	error = devclass_add_device(dc, dev);
2617 
2618 	bus_data_generation_update();
2619 	return (error);
2620 }
2621 
2622 /**
2623  * @brief Set the driver of a device
2624  *
2625  * @retval 0		success
2626  * @retval EBUSY	the device already has a driver attached
2627  * @retval ENOMEM	a memory allocation failure occurred
2628  */
2629 int
2630 device_set_driver(device_t dev, driver_t *driver)
2631 {
2632 	if (dev->state >= DS_ATTACHED)
2633 		return (EBUSY);
2634 
2635 	if (dev->driver == driver)
2636 		return (0);
2637 
2638 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2639 		free(dev->softc, M_BUS_SC);
2640 		dev->softc = NULL;
2641 	}
2642 	device_set_desc(dev, NULL);
2643 	kobj_delete((kobj_t) dev, NULL);
2644 	dev->driver = driver;
2645 	if (driver) {
2646 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2647 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2648 			dev->softc = malloc(driver->size, M_BUS_SC,
2649 			    M_NOWAIT | M_ZERO);
2650 			if (!dev->softc) {
2651 				kobj_delete((kobj_t) dev, NULL);
2652 				kobj_init((kobj_t) dev, &null_class);
2653 				dev->driver = NULL;
2654 				return (ENOMEM);
2655 			}
2656 		}
2657 	} else {
2658 		kobj_init((kobj_t) dev, &null_class);
2659 	}
2660 
2661 	bus_data_generation_update();
2662 	return (0);
2663 }
2664 
2665 /**
2666  * @brief Probe a device, and return this status.
2667  *
2668  * This function is the core of the device autoconfiguration
2669  * system. Its purpose is to select a suitable driver for a device and
2670  * then call that driver to initialise the hardware appropriately. The
2671  * driver is selected by calling the DEVICE_PROBE() method of a set of
2672  * candidate drivers and then choosing the driver which returned the
2673  * best value. This driver is then attached to the device using
2674  * device_attach().
2675  *
2676  * The set of suitable drivers is taken from the list of drivers in
2677  * the parent device's devclass. If the device was originally created
2678  * with a specific class name (see device_add_child()), only drivers
2679  * with that name are probed, otherwise all drivers in the devclass
2680  * are probed. If no drivers return successful probe values in the
2681  * parent devclass, the search continues in the parent of that
2682  * devclass (see devclass_get_parent()) if any.
2683  *
2684  * @param dev		the device to initialise
2685  *
2686  * @retval 0		success
2687  * @retval ENXIO	no driver was found
2688  * @retval ENOMEM	memory allocation failure
2689  * @retval non-zero	some other unix error code
2690  * @retval -1		Device already attached
2691  */
2692 int
2693 device_probe(device_t dev)
2694 {
2695 	int error;
2696 
2697 	GIANT_REQUIRED;
2698 
2699 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2700 		return (-1);
2701 
2702 	if (!(dev->flags & DF_ENABLED)) {
2703 		if (bootverbose && device_get_name(dev) != NULL) {
2704 			device_print_prettyname(dev);
2705 			printf("not probed (disabled)\n");
2706 		}
2707 		return (-1);
2708 	}
2709 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2710 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2711 		    !(dev->flags & DF_DONENOMATCH)) {
2712 			BUS_PROBE_NOMATCH(dev->parent, dev);
2713 			devnomatch(dev);
2714 			dev->flags |= DF_DONENOMATCH;
2715 		}
2716 		return (error);
2717 	}
2718 	return (0);
2719 }
2720 
2721 /**
2722  * @brief Probe a device and attach a driver if possible
2723  *
2724  * calls device_probe() and attaches if that was successful.
2725  */
2726 int
2727 device_probe_and_attach(device_t dev)
2728 {
2729 	int error;
2730 
2731 	GIANT_REQUIRED;
2732 
2733 	error = device_probe(dev);
2734 	if (error == -1)
2735 		return (0);
2736 	else if (error != 0)
2737 		return (error);
2738 	return (device_attach(dev));
2739 }
2740 
2741 /**
2742  * @brief Attach a device driver to a device
2743  *
2744  * This function is a wrapper around the DEVICE_ATTACH() driver
2745  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2746  * device's sysctl tree, optionally prints a description of the device
2747  * and queues a notification event for user-based device management
2748  * services.
2749  *
2750  * Normally this function is only called internally from
2751  * device_probe_and_attach().
2752  *
2753  * @param dev		the device to initialise
2754  *
2755  * @retval 0		success
2756  * @retval ENXIO	no driver was found
2757  * @retval ENOMEM	memory allocation failure
2758  * @retval non-zero	some other unix error code
2759  */
2760 int
2761 device_attach(device_t dev)
2762 {
2763 	int error;
2764 
2765 	device_sysctl_init(dev);
2766 	if (!device_is_quiet(dev))
2767 		device_print_child(dev->parent, dev);
2768 	dev->state = DS_ATTACHING;
2769 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2770 		printf("device_attach: %s%d attach returned %d\n",
2771 		    dev->driver->name, dev->unit, error);
2772 		if (!(dev->flags & DF_FIXEDCLASS))
2773 			devclass_delete_device(dev->devclass, dev);
2774 		(void)device_set_driver(dev, NULL);
2775 		device_sysctl_fini(dev);
2776 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2777 		dev->state = DS_NOTPRESENT;
2778 		return (error);
2779 	}
2780 	device_sysctl_update(dev);
2781 	if (dev->busy)
2782 		dev->state = DS_BUSY;
2783 	else
2784 		dev->state = DS_ATTACHED;
2785 	dev->flags &= ~DF_DONENOMATCH;
2786 	devadded(dev);
2787 	return (0);
2788 }
2789 
2790 /**
2791  * @brief Detach a driver from a device
2792  *
2793  * This function is a wrapper around the DEVICE_DETACH() driver
2794  * method. If the call to DEVICE_DETACH() succeeds, it calls
2795  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2796  * notification event for user-based device management services and
2797  * cleans up the device's sysctl tree.
2798  *
2799  * @param dev		the device to un-initialise
2800  *
2801  * @retval 0		success
2802  * @retval ENXIO	no driver was found
2803  * @retval ENOMEM	memory allocation failure
2804  * @retval non-zero	some other unix error code
2805  */
2806 int
2807 device_detach(device_t dev)
2808 {
2809 	int error;
2810 
2811 	GIANT_REQUIRED;
2812 
2813 	PDEBUG(("%s", DEVICENAME(dev)));
2814 	if (dev->state == DS_BUSY)
2815 		return (EBUSY);
2816 	if (dev->state != DS_ATTACHED)
2817 		return (0);
2818 
2819 	if ((error = DEVICE_DETACH(dev)) != 0)
2820 		return (error);
2821 	devremoved(dev);
2822 	if (!device_is_quiet(dev))
2823 		device_printf(dev, "detached\n");
2824 	if (dev->parent)
2825 		BUS_CHILD_DETACHED(dev->parent, dev);
2826 
2827 	if (!(dev->flags & DF_FIXEDCLASS))
2828 		devclass_delete_device(dev->devclass, dev);
2829 
2830 	dev->state = DS_NOTPRESENT;
2831 	(void)device_set_driver(dev, NULL);
2832 	device_sysctl_fini(dev);
2833 
2834 	return (0);
2835 }
2836 
2837 /**
2838  * @brief Tells a driver to quiesce itself.
2839  *
2840  * This function is a wrapper around the DEVICE_QUIESCE() driver
2841  * method. If the call to DEVICE_QUIESCE() succeeds.
2842  *
2843  * @param dev		the device to quiesce
2844  *
2845  * @retval 0		success
2846  * @retval ENXIO	no driver was found
2847  * @retval ENOMEM	memory allocation failure
2848  * @retval non-zero	some other unix error code
2849  */
2850 int
2851 device_quiesce(device_t dev)
2852 {
2853 
2854 	PDEBUG(("%s", DEVICENAME(dev)));
2855 	if (dev->state == DS_BUSY)
2856 		return (EBUSY);
2857 	if (dev->state != DS_ATTACHED)
2858 		return (0);
2859 
2860 	return (DEVICE_QUIESCE(dev));
2861 }
2862 
2863 /**
2864  * @brief Notify a device of system shutdown
2865  *
2866  * This function calls the DEVICE_SHUTDOWN() driver method if the
2867  * device currently has an attached driver.
2868  *
2869  * @returns the value returned by DEVICE_SHUTDOWN()
2870  */
2871 int
2872 device_shutdown(device_t dev)
2873 {
2874 	if (dev->state < DS_ATTACHED)
2875 		return (0);
2876 	return (DEVICE_SHUTDOWN(dev));
2877 }
2878 
2879 /**
2880  * @brief Set the unit number of a device
2881  *
2882  * This function can be used to override the unit number used for a
2883  * device (e.g. to wire a device to a pre-configured unit number).
2884  */
2885 int
2886 device_set_unit(device_t dev, int unit)
2887 {
2888 	devclass_t dc;
2889 	int err;
2890 
2891 	dc = device_get_devclass(dev);
2892 	if (unit < dc->maxunit && dc->devices[unit])
2893 		return (EBUSY);
2894 	err = devclass_delete_device(dc, dev);
2895 	if (err)
2896 		return (err);
2897 	dev->unit = unit;
2898 	err = devclass_add_device(dc, dev);
2899 	if (err)
2900 		return (err);
2901 
2902 	bus_data_generation_update();
2903 	return (0);
2904 }
2905 
2906 /*======================================*/
2907 /*
2908  * Some useful method implementations to make life easier for bus drivers.
2909  */
2910 
2911 /**
2912  * @brief Initialise a resource list.
2913  *
2914  * @param rl		the resource list to initialise
2915  */
2916 void
2917 resource_list_init(struct resource_list *rl)
2918 {
2919 	STAILQ_INIT(rl);
2920 }
2921 
2922 /**
2923  * @brief Reclaim memory used by a resource list.
2924  *
2925  * This function frees the memory for all resource entries on the list
2926  * (if any).
2927  *
2928  * @param rl		the resource list to free
2929  */
2930 void
2931 resource_list_free(struct resource_list *rl)
2932 {
2933 	struct resource_list_entry *rle;
2934 
2935 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2936 		if (rle->res)
2937 			panic("resource_list_free: resource entry is busy");
2938 		STAILQ_REMOVE_HEAD(rl, link);
2939 		free(rle, M_BUS);
2940 	}
2941 }
2942 
2943 /**
2944  * @brief Add a resource entry.
2945  *
2946  * This function adds a resource entry using the given @p type, @p
2947  * start, @p end and @p count values. A rid value is chosen by
2948  * searching sequentially for the first unused rid starting at zero.
2949  *
2950  * @param rl		the resource list to edit
2951  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2952  * @param start		the start address of the resource
2953  * @param end		the end address of the resource
2954  * @param count		XXX end-start+1
2955  */
2956 int
2957 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2958     u_long end, u_long count)
2959 {
2960 	int rid;
2961 
2962 	rid = 0;
2963 	while (resource_list_find(rl, type, rid) != NULL)
2964 		rid++;
2965 	resource_list_add(rl, type, rid, start, end, count);
2966 	return (rid);
2967 }
2968 
2969 /**
2970  * @brief Add or modify a resource entry.
2971  *
2972  * If an existing entry exists with the same type and rid, it will be
2973  * modified using the given values of @p start, @p end and @p
2974  * count. If no entry exists, a new one will be created using the
2975  * given values.  The resource list entry that matches is then returned.
2976  *
2977  * @param rl		the resource list to edit
2978  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2979  * @param rid		the resource identifier
2980  * @param start		the start address of the resource
2981  * @param end		the end address of the resource
2982  * @param count		XXX end-start+1
2983  */
2984 struct resource_list_entry *
2985 resource_list_add(struct resource_list *rl, int type, int rid,
2986     u_long start, u_long end, u_long count)
2987 {
2988 	struct resource_list_entry *rle;
2989 
2990 	rle = resource_list_find(rl, type, rid);
2991 	if (!rle) {
2992 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2993 		    M_NOWAIT);
2994 		if (!rle)
2995 			panic("resource_list_add: can't record entry");
2996 		STAILQ_INSERT_TAIL(rl, rle, link);
2997 		rle->type = type;
2998 		rle->rid = rid;
2999 		rle->res = NULL;
3000 		rle->flags = 0;
3001 	}
3002 
3003 	if (rle->res)
3004 		panic("resource_list_add: resource entry is busy");
3005 
3006 	rle->start = start;
3007 	rle->end = end;
3008 	rle->count = count;
3009 	return (rle);
3010 }
3011 
3012 /**
3013  * @brief Determine if a resource entry is busy.
3014  *
3015  * Returns true if a resource entry is busy meaning that it has an
3016  * associated resource that is not an unallocated "reserved" resource.
3017  *
3018  * @param rl		the resource list to search
3019  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3020  * @param rid		the resource identifier
3021  *
3022  * @returns Non-zero if the entry is busy, zero otherwise.
3023  */
3024 int
3025 resource_list_busy(struct resource_list *rl, int type, int rid)
3026 {
3027 	struct resource_list_entry *rle;
3028 
3029 	rle = resource_list_find(rl, type, rid);
3030 	if (rle == NULL || rle->res == NULL)
3031 		return (0);
3032 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3033 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3034 		    ("reserved resource is active"));
3035 		return (0);
3036 	}
3037 	return (1);
3038 }
3039 
3040 /**
3041  * @brief Determine if a resource entry is reserved.
3042  *
3043  * Returns true if a resource entry is reserved meaning that it has an
3044  * associated "reserved" resource.  The resource can either be
3045  * allocated or unallocated.
3046  *
3047  * @param rl		the resource list to search
3048  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3049  * @param rid		the resource identifier
3050  *
3051  * @returns Non-zero if the entry is reserved, zero otherwise.
3052  */
3053 int
3054 resource_list_reserved(struct resource_list *rl, int type, int rid)
3055 {
3056 	struct resource_list_entry *rle;
3057 
3058 	rle = resource_list_find(rl, type, rid);
3059 	if (rle != NULL && rle->flags & RLE_RESERVED)
3060 		return (1);
3061 	return (0);
3062 }
3063 
3064 /**
3065  * @brief Find a resource entry by type and rid.
3066  *
3067  * @param rl		the resource list to search
3068  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3069  * @param rid		the resource identifier
3070  *
3071  * @returns the resource entry pointer or NULL if there is no such
3072  * entry.
3073  */
3074 struct resource_list_entry *
3075 resource_list_find(struct resource_list *rl, int type, int rid)
3076 {
3077 	struct resource_list_entry *rle;
3078 
3079 	STAILQ_FOREACH(rle, rl, link) {
3080 		if (rle->type == type && rle->rid == rid)
3081 			return (rle);
3082 	}
3083 	return (NULL);
3084 }
3085 
3086 /**
3087  * @brief Delete a resource entry.
3088  *
3089  * @param rl		the resource list to edit
3090  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3091  * @param rid		the resource identifier
3092  */
3093 void
3094 resource_list_delete(struct resource_list *rl, int type, int rid)
3095 {
3096 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3097 
3098 	if (rle) {
3099 		if (rle->res != NULL)
3100 			panic("resource_list_delete: resource has not been released");
3101 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3102 		free(rle, M_BUS);
3103 	}
3104 }
3105 
3106 /**
3107  * @brief Allocate a reserved resource
3108  *
3109  * This can be used by busses to force the allocation of resources
3110  * that are always active in the system even if they are not allocated
3111  * by a driver (e.g. PCI BARs).  This function is usually called when
3112  * adding a new child to the bus.  The resource is allocated from the
3113  * parent bus when it is reserved.  The resource list entry is marked
3114  * with RLE_RESERVED to note that it is a reserved resource.
3115  *
3116  * Subsequent attempts to allocate the resource with
3117  * resource_list_alloc() will succeed the first time and will set
3118  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3119  * resource that has been allocated is released with
3120  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3121  * the actual resource remains allocated.  The resource can be released to
3122  * the parent bus by calling resource_list_unreserve().
3123  *
3124  * @param rl		the resource list to allocate from
3125  * @param bus		the parent device of @p child
3126  * @param child		the device for which the resource is being reserved
3127  * @param type		the type of resource to allocate
3128  * @param rid		a pointer to the resource identifier
3129  * @param start		hint at the start of the resource range - pass
3130  *			@c 0UL for any start address
3131  * @param end		hint at the end of the resource range - pass
3132  *			@c ~0UL for any end address
3133  * @param count		hint at the size of range required - pass @c 1
3134  *			for any size
3135  * @param flags		any extra flags to control the resource
3136  *			allocation - see @c RF_XXX flags in
3137  *			<sys/rman.h> for details
3138  *
3139  * @returns		the resource which was allocated or @c NULL if no
3140  *			resource could be allocated
3141  */
3142 struct resource *
3143 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3144     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3145 {
3146 	struct resource_list_entry *rle = NULL;
3147 	int passthrough = (device_get_parent(child) != bus);
3148 	struct resource *r;
3149 
3150 	if (passthrough)
3151 		panic(
3152     "resource_list_reserve() should only be called for direct children");
3153 	if (flags & RF_ACTIVE)
3154 		panic(
3155     "resource_list_reserve() should only reserve inactive resources");
3156 
3157 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3158 	    flags);
3159 	if (r != NULL) {
3160 		rle = resource_list_find(rl, type, *rid);
3161 		rle->flags |= RLE_RESERVED;
3162 	}
3163 	return (r);
3164 }
3165 
3166 /**
3167  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3168  *
3169  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3170  * and passing the allocation up to the parent of @p bus. This assumes
3171  * that the first entry of @c device_get_ivars(child) is a struct
3172  * resource_list. This also handles 'passthrough' allocations where a
3173  * child is a remote descendant of bus by passing the allocation up to
3174  * the parent of bus.
3175  *
3176  * Typically, a bus driver would store a list of child resources
3177  * somewhere in the child device's ivars (see device_get_ivars()) and
3178  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3179  * then call resource_list_alloc() to perform the allocation.
3180  *
3181  * @param rl		the resource list to allocate from
3182  * @param bus		the parent device of @p child
3183  * @param child		the device which is requesting an allocation
3184  * @param type		the type of resource to allocate
3185  * @param rid		a pointer to the resource identifier
3186  * @param start		hint at the start of the resource range - pass
3187  *			@c 0UL for any start address
3188  * @param end		hint at the end of the resource range - pass
3189  *			@c ~0UL for any end address
3190  * @param count		hint at the size of range required - pass @c 1
3191  *			for any size
3192  * @param flags		any extra flags to control the resource
3193  *			allocation - see @c RF_XXX flags in
3194  *			<sys/rman.h> for details
3195  *
3196  * @returns		the resource which was allocated or @c NULL if no
3197  *			resource could be allocated
3198  */
3199 struct resource *
3200 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3201     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3202 {
3203 	struct resource_list_entry *rle = NULL;
3204 	int passthrough = (device_get_parent(child) != bus);
3205 	int isdefault = (start == 0UL && end == ~0UL);
3206 
3207 	if (passthrough) {
3208 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3209 		    type, rid, start, end, count, flags));
3210 	}
3211 
3212 	rle = resource_list_find(rl, type, *rid);
3213 
3214 	if (!rle)
3215 		return (NULL);		/* no resource of that type/rid */
3216 
3217 	if (rle->res) {
3218 		if (rle->flags & RLE_RESERVED) {
3219 			if (rle->flags & RLE_ALLOCATED)
3220 				return (NULL);
3221 			if ((flags & RF_ACTIVE) &&
3222 			    bus_activate_resource(child, type, *rid,
3223 			    rle->res) != 0)
3224 				return (NULL);
3225 			rle->flags |= RLE_ALLOCATED;
3226 			return (rle->res);
3227 		}
3228 		panic("resource_list_alloc: resource entry is busy");
3229 	}
3230 
3231 	if (isdefault) {
3232 		start = rle->start;
3233 		count = ulmax(count, rle->count);
3234 		end = ulmax(rle->end, start + count - 1);
3235 	}
3236 
3237 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3238 	    type, rid, start, end, count, flags);
3239 
3240 	/*
3241 	 * Record the new range.
3242 	 */
3243 	if (rle->res) {
3244 		rle->start = rman_get_start(rle->res);
3245 		rle->end = rman_get_end(rle->res);
3246 		rle->count = count;
3247 	}
3248 
3249 	return (rle->res);
3250 }
3251 
3252 /**
3253  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3254  *
3255  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3256  * used with resource_list_alloc().
3257  *
3258  * @param rl		the resource list which was allocated from
3259  * @param bus		the parent device of @p child
3260  * @param child		the device which is requesting a release
3261  * @param type		the type of resource to release
3262  * @param rid		the resource identifier
3263  * @param res		the resource to release
3264  *
3265  * @retval 0		success
3266  * @retval non-zero	a standard unix error code indicating what
3267  *			error condition prevented the operation
3268  */
3269 int
3270 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3271     int type, int rid, struct resource *res)
3272 {
3273 	struct resource_list_entry *rle = NULL;
3274 	int passthrough = (device_get_parent(child) != bus);
3275 	int error;
3276 
3277 	if (passthrough) {
3278 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3279 		    type, rid, res));
3280 	}
3281 
3282 	rle = resource_list_find(rl, type, rid);
3283 
3284 	if (!rle)
3285 		panic("resource_list_release: can't find resource");
3286 	if (!rle->res)
3287 		panic("resource_list_release: resource entry is not busy");
3288 	if (rle->flags & RLE_RESERVED) {
3289 		if (rle->flags & RLE_ALLOCATED) {
3290 			if (rman_get_flags(res) & RF_ACTIVE) {
3291 				error = bus_deactivate_resource(child, type,
3292 				    rid, res);
3293 				if (error)
3294 					return (error);
3295 			}
3296 			rle->flags &= ~RLE_ALLOCATED;
3297 			return (0);
3298 		}
3299 		return (EINVAL);
3300 	}
3301 
3302 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3303 	    type, rid, res);
3304 	if (error)
3305 		return (error);
3306 
3307 	rle->res = NULL;
3308 	return (0);
3309 }
3310 
3311 /**
3312  * @brief Fully release a reserved resource
3313  *
3314  * Fully releases a resouce reserved via resource_list_reserve().
3315  *
3316  * @param rl		the resource list which was allocated from
3317  * @param bus		the parent device of @p child
3318  * @param child		the device whose reserved resource is being released
3319  * @param type		the type of resource to release
3320  * @param rid		the resource identifier
3321  * @param res		the resource to release
3322  *
3323  * @retval 0		success
3324  * @retval non-zero	a standard unix error code indicating what
3325  *			error condition prevented the operation
3326  */
3327 int
3328 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3329     int type, int rid)
3330 {
3331 	struct resource_list_entry *rle = NULL;
3332 	int passthrough = (device_get_parent(child) != bus);
3333 
3334 	if (passthrough)
3335 		panic(
3336     "resource_list_unreserve() should only be called for direct children");
3337 
3338 	rle = resource_list_find(rl, type, rid);
3339 
3340 	if (!rle)
3341 		panic("resource_list_unreserve: can't find resource");
3342 	if (!(rle->flags & RLE_RESERVED))
3343 		return (EINVAL);
3344 	if (rle->flags & RLE_ALLOCATED)
3345 		return (EBUSY);
3346 	rle->flags &= ~RLE_RESERVED;
3347 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3348 }
3349 
3350 /**
3351  * @brief Print a description of resources in a resource list
3352  *
3353  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3354  * The name is printed if at least one resource of the given type is available.
3355  * The format is used to print resource start and end.
3356  *
3357  * @param rl		the resource list to print
3358  * @param name		the name of @p type, e.g. @c "memory"
3359  * @param type		type type of resource entry to print
3360  * @param format	printf(9) format string to print resource
3361  *			start and end values
3362  *
3363  * @returns		the number of characters printed
3364  */
3365 int
3366 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3367     const char *format)
3368 {
3369 	struct resource_list_entry *rle;
3370 	int printed, retval;
3371 
3372 	printed = 0;
3373 	retval = 0;
3374 	/* Yes, this is kinda cheating */
3375 	STAILQ_FOREACH(rle, rl, link) {
3376 		if (rle->type == type) {
3377 			if (printed == 0)
3378 				retval += printf(" %s ", name);
3379 			else
3380 				retval += printf(",");
3381 			printed++;
3382 			retval += printf(format, rle->start);
3383 			if (rle->count > 1) {
3384 				retval += printf("-");
3385 				retval += printf(format, rle->start +
3386 						 rle->count - 1);
3387 			}
3388 		}
3389 	}
3390 	return (retval);
3391 }
3392 
3393 /**
3394  * @brief Releases all the resources in a list.
3395  *
3396  * @param rl		The resource list to purge.
3397  *
3398  * @returns		nothing
3399  */
3400 void
3401 resource_list_purge(struct resource_list *rl)
3402 {
3403 	struct resource_list_entry *rle;
3404 
3405 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3406 		if (rle->res)
3407 			bus_release_resource(rman_get_device(rle->res),
3408 			    rle->type, rle->rid, rle->res);
3409 		STAILQ_REMOVE_HEAD(rl, link);
3410 		free(rle, M_BUS);
3411 	}
3412 }
3413 
3414 device_t
3415 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3416 {
3417 
3418 	return (device_add_child_ordered(dev, order, name, unit));
3419 }
3420 
3421 /**
3422  * @brief Helper function for implementing DEVICE_PROBE()
3423  *
3424  * This function can be used to help implement the DEVICE_PROBE() for
3425  * a bus (i.e. a device which has other devices attached to it). It
3426  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3427  * devclass.
3428  */
3429 int
3430 bus_generic_probe(device_t dev)
3431 {
3432 	devclass_t dc = dev->devclass;
3433 	driverlink_t dl;
3434 
3435 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3436 		/*
3437 		 * If this driver's pass is too high, then ignore it.
3438 		 * For most drivers in the default pass, this will
3439 		 * never be true.  For early-pass drivers they will
3440 		 * only call the identify routines of eligible drivers
3441 		 * when this routine is called.  Drivers for later
3442 		 * passes should have their identify routines called
3443 		 * on early-pass busses during BUS_NEW_PASS().
3444 		 */
3445 		if (dl->pass > bus_current_pass)
3446 			continue;
3447 		DEVICE_IDENTIFY(dl->driver, dev);
3448 	}
3449 
3450 	return (0);
3451 }
3452 
3453 /**
3454  * @brief Helper function for implementing DEVICE_ATTACH()
3455  *
3456  * This function can be used to help implement the DEVICE_ATTACH() for
3457  * a bus. It calls device_probe_and_attach() for each of the device's
3458  * children.
3459  */
3460 int
3461 bus_generic_attach(device_t dev)
3462 {
3463 	device_t child;
3464 
3465 	TAILQ_FOREACH(child, &dev->children, link) {
3466 		device_probe_and_attach(child);
3467 	}
3468 
3469 	return (0);
3470 }
3471 
3472 /**
3473  * @brief Helper function for implementing DEVICE_DETACH()
3474  *
3475  * This function can be used to help implement the DEVICE_DETACH() for
3476  * a bus. It calls device_detach() for each of the device's
3477  * children.
3478  */
3479 int
3480 bus_generic_detach(device_t dev)
3481 {
3482 	device_t child;
3483 	int error;
3484 
3485 	if (dev->state != DS_ATTACHED)
3486 		return (EBUSY);
3487 
3488 	TAILQ_FOREACH(child, &dev->children, link) {
3489 		if ((error = device_detach(child)) != 0)
3490 			return (error);
3491 	}
3492 
3493 	return (0);
3494 }
3495 
3496 /**
3497  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3498  *
3499  * This function can be used to help implement the DEVICE_SHUTDOWN()
3500  * for a bus. It calls device_shutdown() for each of the device's
3501  * children.
3502  */
3503 int
3504 bus_generic_shutdown(device_t dev)
3505 {
3506 	device_t child;
3507 
3508 	TAILQ_FOREACH(child, &dev->children, link) {
3509 		device_shutdown(child);
3510 	}
3511 
3512 	return (0);
3513 }
3514 
3515 /**
3516  * @brief Helper function for implementing DEVICE_SUSPEND()
3517  *
3518  * This function can be used to help implement the DEVICE_SUSPEND()
3519  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3520  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3521  * operation is aborted and any devices which were suspended are
3522  * resumed immediately by calling their DEVICE_RESUME() methods.
3523  */
3524 int
3525 bus_generic_suspend(device_t dev)
3526 {
3527 	int		error;
3528 	device_t	child, child2;
3529 
3530 	TAILQ_FOREACH(child, &dev->children, link) {
3531 		error = DEVICE_SUSPEND(child);
3532 		if (error) {
3533 			for (child2 = TAILQ_FIRST(&dev->children);
3534 			     child2 && child2 != child;
3535 			     child2 = TAILQ_NEXT(child2, link))
3536 				DEVICE_RESUME(child2);
3537 			return (error);
3538 		}
3539 	}
3540 	return (0);
3541 }
3542 
3543 /**
3544  * @brief Helper function for implementing DEVICE_RESUME()
3545  *
3546  * This function can be used to help implement the DEVICE_RESUME() for
3547  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3548  */
3549 int
3550 bus_generic_resume(device_t dev)
3551 {
3552 	device_t	child;
3553 
3554 	TAILQ_FOREACH(child, &dev->children, link) {
3555 		DEVICE_RESUME(child);
3556 		/* if resume fails, there's nothing we can usefully do... */
3557 	}
3558 	return (0);
3559 }
3560 
3561 /**
3562  * @brief Helper function for implementing BUS_PRINT_CHILD().
3563  *
3564  * This function prints the first part of the ascii representation of
3565  * @p child, including its name, unit and description (if any - see
3566  * device_set_desc()).
3567  *
3568  * @returns the number of characters printed
3569  */
3570 int
3571 bus_print_child_header(device_t dev, device_t child)
3572 {
3573 	int	retval = 0;
3574 
3575 	if (device_get_desc(child)) {
3576 		retval += device_printf(child, "<%s>", device_get_desc(child));
3577 	} else {
3578 		retval += printf("%s", device_get_nameunit(child));
3579 	}
3580 
3581 	return (retval);
3582 }
3583 
3584 /**
3585  * @brief Helper function for implementing BUS_PRINT_CHILD().
3586  *
3587  * This function prints the last part of the ascii representation of
3588  * @p child, which consists of the string @c " on " followed by the
3589  * name and unit of the @p dev.
3590  *
3591  * @returns the number of characters printed
3592  */
3593 int
3594 bus_print_child_footer(device_t dev, device_t child)
3595 {
3596 	return (printf(" on %s\n", device_get_nameunit(dev)));
3597 }
3598 
3599 /**
3600  * @brief Helper function for implementing BUS_PRINT_CHILD().
3601  *
3602  * This function simply calls bus_print_child_header() followed by
3603  * bus_print_child_footer().
3604  *
3605  * @returns the number of characters printed
3606  */
3607 int
3608 bus_generic_print_child(device_t dev, device_t child)
3609 {
3610 	int	retval = 0;
3611 
3612 	retval += bus_print_child_header(dev, child);
3613 	retval += bus_print_child_footer(dev, child);
3614 
3615 	return (retval);
3616 }
3617 
3618 /**
3619  * @brief Stub function for implementing BUS_READ_IVAR().
3620  *
3621  * @returns ENOENT
3622  */
3623 int
3624 bus_generic_read_ivar(device_t dev, device_t child, int index,
3625     uintptr_t * result)
3626 {
3627 	return (ENOENT);
3628 }
3629 
3630 /**
3631  * @brief Stub function for implementing BUS_WRITE_IVAR().
3632  *
3633  * @returns ENOENT
3634  */
3635 int
3636 bus_generic_write_ivar(device_t dev, device_t child, int index,
3637     uintptr_t value)
3638 {
3639 	return (ENOENT);
3640 }
3641 
3642 /**
3643  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3644  *
3645  * @returns NULL
3646  */
3647 struct resource_list *
3648 bus_generic_get_resource_list(device_t dev, device_t child)
3649 {
3650 	return (NULL);
3651 }
3652 
3653 /**
3654  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3655  *
3656  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3657  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3658  * and then calls device_probe_and_attach() for each unattached child.
3659  */
3660 void
3661 bus_generic_driver_added(device_t dev, driver_t *driver)
3662 {
3663 	device_t child;
3664 
3665 	DEVICE_IDENTIFY(driver, dev);
3666 	TAILQ_FOREACH(child, &dev->children, link) {
3667 		if (child->state == DS_NOTPRESENT ||
3668 		    (child->flags & DF_REBID))
3669 			device_probe_and_attach(child);
3670 	}
3671 }
3672 
3673 /**
3674  * @brief Helper function for implementing BUS_NEW_PASS().
3675  *
3676  * This implementing of BUS_NEW_PASS() first calls the identify
3677  * routines for any drivers that probe at the current pass.  Then it
3678  * walks the list of devices for this bus.  If a device is already
3679  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3680  * device is not already attached, it attempts to attach a driver to
3681  * it.
3682  */
3683 void
3684 bus_generic_new_pass(device_t dev)
3685 {
3686 	driverlink_t dl;
3687 	devclass_t dc;
3688 	device_t child;
3689 
3690 	dc = dev->devclass;
3691 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3692 		if (dl->pass == bus_current_pass)
3693 			DEVICE_IDENTIFY(dl->driver, dev);
3694 	}
3695 	TAILQ_FOREACH(child, &dev->children, link) {
3696 		if (child->state >= DS_ATTACHED)
3697 			BUS_NEW_PASS(child);
3698 		else if (child->state == DS_NOTPRESENT)
3699 			device_probe_and_attach(child);
3700 	}
3701 }
3702 
3703 /**
3704  * @brief Helper function for implementing BUS_SETUP_INTR().
3705  *
3706  * This simple implementation of BUS_SETUP_INTR() simply calls the
3707  * BUS_SETUP_INTR() method of the parent of @p dev.
3708  */
3709 int
3710 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3711     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3712     void **cookiep)
3713 {
3714 	/* Propagate up the bus hierarchy until someone handles it. */
3715 	if (dev->parent)
3716 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3717 		    filter, intr, arg, cookiep));
3718 	return (EINVAL);
3719 }
3720 
3721 /**
3722  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3723  *
3724  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3725  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3726  */
3727 int
3728 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3729     void *cookie)
3730 {
3731 	/* Propagate up the bus hierarchy until someone handles it. */
3732 	if (dev->parent)
3733 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3734 	return (EINVAL);
3735 }
3736 
3737 /**
3738  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3739  *
3740  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3741  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3742  */
3743 int
3744 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3745     struct resource *r, u_long start, u_long end)
3746 {
3747 	/* Propagate up the bus hierarchy until someone handles it. */
3748 	if (dev->parent)
3749 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3750 		    end));
3751 	return (EINVAL);
3752 }
3753 
3754 /**
3755  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3756  *
3757  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3758  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3759  */
3760 struct resource *
3761 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3762     u_long start, u_long end, u_long count, u_int flags)
3763 {
3764 	/* Propagate up the bus hierarchy until someone handles it. */
3765 	if (dev->parent)
3766 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3767 		    start, end, count, flags));
3768 	return (NULL);
3769 }
3770 
3771 /**
3772  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3773  *
3774  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3775  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3776  */
3777 int
3778 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3779     struct resource *r)
3780 {
3781 	/* Propagate up the bus hierarchy until someone handles it. */
3782 	if (dev->parent)
3783 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3784 		    r));
3785 	return (EINVAL);
3786 }
3787 
3788 /**
3789  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3790  *
3791  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3792  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3793  */
3794 int
3795 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3796     struct resource *r)
3797 {
3798 	/* Propagate up the bus hierarchy until someone handles it. */
3799 	if (dev->parent)
3800 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3801 		    r));
3802 	return (EINVAL);
3803 }
3804 
3805 /**
3806  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3807  *
3808  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3809  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3810  */
3811 int
3812 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3813     int rid, struct resource *r)
3814 {
3815 	/* Propagate up the bus hierarchy until someone handles it. */
3816 	if (dev->parent)
3817 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3818 		    r));
3819 	return (EINVAL);
3820 }
3821 
3822 /**
3823  * @brief Helper function for implementing BUS_BIND_INTR().
3824  *
3825  * This simple implementation of BUS_BIND_INTR() simply calls the
3826  * BUS_BIND_INTR() method of the parent of @p dev.
3827  */
3828 int
3829 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3830     int cpu)
3831 {
3832 
3833 	/* Propagate up the bus hierarchy until someone handles it. */
3834 	if (dev->parent)
3835 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3836 	return (EINVAL);
3837 }
3838 
3839 /**
3840  * @brief Helper function for implementing BUS_CONFIG_INTR().
3841  *
3842  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3843  * BUS_CONFIG_INTR() method of the parent of @p dev.
3844  */
3845 int
3846 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3847     enum intr_polarity pol)
3848 {
3849 
3850 	/* Propagate up the bus hierarchy until someone handles it. */
3851 	if (dev->parent)
3852 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3853 	return (EINVAL);
3854 }
3855 
3856 /**
3857  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3858  *
3859  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3860  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3861  */
3862 int
3863 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3864     void *cookie, const char *descr)
3865 {
3866 
3867 	/* Propagate up the bus hierarchy until someone handles it. */
3868 	if (dev->parent)
3869 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3870 		    descr));
3871 	return (EINVAL);
3872 }
3873 
3874 /**
3875  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3876  *
3877  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3878  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3879  */
3880 bus_dma_tag_t
3881 bus_generic_get_dma_tag(device_t dev, device_t child)
3882 {
3883 
3884 	/* Propagate up the bus hierarchy until someone handles it. */
3885 	if (dev->parent != NULL)
3886 		return (BUS_GET_DMA_TAG(dev->parent, child));
3887 	return (NULL);
3888 }
3889 
3890 /**
3891  * @brief Helper function for implementing BUS_GET_RESOURCE().
3892  *
3893  * This implementation of BUS_GET_RESOURCE() uses the
3894  * resource_list_find() function to do most of the work. It calls
3895  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3896  * search.
3897  */
3898 int
3899 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3900     u_long *startp, u_long *countp)
3901 {
3902 	struct resource_list *		rl = NULL;
3903 	struct resource_list_entry *	rle = NULL;
3904 
3905 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3906 	if (!rl)
3907 		return (EINVAL);
3908 
3909 	rle = resource_list_find(rl, type, rid);
3910 	if (!rle)
3911 		return (ENOENT);
3912 
3913 	if (startp)
3914 		*startp = rle->start;
3915 	if (countp)
3916 		*countp = rle->count;
3917 
3918 	return (0);
3919 }
3920 
3921 /**
3922  * @brief Helper function for implementing BUS_SET_RESOURCE().
3923  *
3924  * This implementation of BUS_SET_RESOURCE() uses the
3925  * resource_list_add() function to do most of the work. It calls
3926  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3927  * edit.
3928  */
3929 int
3930 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3931     u_long start, u_long count)
3932 {
3933 	struct resource_list *		rl = NULL;
3934 
3935 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3936 	if (!rl)
3937 		return (EINVAL);
3938 
3939 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3940 
3941 	return (0);
3942 }
3943 
3944 /**
3945  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3946  *
3947  * This implementation of BUS_DELETE_RESOURCE() uses the
3948  * resource_list_delete() function to do most of the work. It calls
3949  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3950  * edit.
3951  */
3952 void
3953 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3954 {
3955 	struct resource_list *		rl = NULL;
3956 
3957 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3958 	if (!rl)
3959 		return;
3960 
3961 	resource_list_delete(rl, type, rid);
3962 
3963 	return;
3964 }
3965 
3966 /**
3967  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3968  *
3969  * This implementation of BUS_RELEASE_RESOURCE() uses the
3970  * resource_list_release() function to do most of the work. It calls
3971  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3972  */
3973 int
3974 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3975     int rid, struct resource *r)
3976 {
3977 	struct resource_list *		rl = NULL;
3978 
3979 	if (device_get_parent(child) != dev)
3980 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3981 		    type, rid, r));
3982 
3983 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3984 	if (!rl)
3985 		return (EINVAL);
3986 
3987 	return (resource_list_release(rl, dev, child, type, rid, r));
3988 }
3989 
3990 /**
3991  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3992  *
3993  * This implementation of BUS_ALLOC_RESOURCE() uses the
3994  * resource_list_alloc() function to do most of the work. It calls
3995  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3996  */
3997 struct resource *
3998 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3999     int *rid, u_long start, u_long end, u_long count, u_int flags)
4000 {
4001 	struct resource_list *		rl = NULL;
4002 
4003 	if (device_get_parent(child) != dev)
4004 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4005 		    type, rid, start, end, count, flags));
4006 
4007 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4008 	if (!rl)
4009 		return (NULL);
4010 
4011 	return (resource_list_alloc(rl, dev, child, type, rid,
4012 	    start, end, count, flags));
4013 }
4014 
4015 /**
4016  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4017  *
4018  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4019  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4020  */
4021 int
4022 bus_generic_child_present(device_t dev, device_t child)
4023 {
4024 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4025 }
4026 
4027 /*
4028  * Some convenience functions to make it easier for drivers to use the
4029  * resource-management functions.  All these really do is hide the
4030  * indirection through the parent's method table, making for slightly
4031  * less-wordy code.  In the future, it might make sense for this code
4032  * to maintain some sort of a list of resources allocated by each device.
4033  */
4034 
4035 int
4036 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4037     struct resource **res)
4038 {
4039 	int i;
4040 
4041 	for (i = 0; rs[i].type != -1; i++)
4042 		res[i] = NULL;
4043 	for (i = 0; rs[i].type != -1; i++) {
4044 		res[i] = bus_alloc_resource_any(dev,
4045 		    rs[i].type, &rs[i].rid, rs[i].flags);
4046 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4047 			bus_release_resources(dev, rs, res);
4048 			return (ENXIO);
4049 		}
4050 	}
4051 	return (0);
4052 }
4053 
4054 void
4055 bus_release_resources(device_t dev, const struct resource_spec *rs,
4056     struct resource **res)
4057 {
4058 	int i;
4059 
4060 	for (i = 0; rs[i].type != -1; i++)
4061 		if (res[i] != NULL) {
4062 			bus_release_resource(
4063 			    dev, rs[i].type, rs[i].rid, res[i]);
4064 			res[i] = NULL;
4065 		}
4066 }
4067 
4068 /**
4069  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4070  *
4071  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4072  * parent of @p dev.
4073  */
4074 struct resource *
4075 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4076     u_long count, u_int flags)
4077 {
4078 	if (dev->parent == NULL)
4079 		return (NULL);
4080 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4081 	    count, flags));
4082 }
4083 
4084 /**
4085  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4086  *
4087  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4088  * parent of @p dev.
4089  */
4090 int
4091 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4092     u_long end)
4093 {
4094 	if (dev->parent == NULL)
4095 		return (EINVAL);
4096 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4097 }
4098 
4099 /**
4100  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4101  *
4102  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4103  * parent of @p dev.
4104  */
4105 int
4106 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4107 {
4108 	if (dev->parent == NULL)
4109 		return (EINVAL);
4110 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4111 }
4112 
4113 /**
4114  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4115  *
4116  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4117  * parent of @p dev.
4118  */
4119 int
4120 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4121 {
4122 	if (dev->parent == NULL)
4123 		return (EINVAL);
4124 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4125 }
4126 
4127 /**
4128  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4129  *
4130  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4131  * parent of @p dev.
4132  */
4133 int
4134 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4135 {
4136 	if (dev->parent == NULL)
4137 		return (EINVAL);
4138 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4139 }
4140 
4141 /**
4142  * @brief Wrapper function for BUS_SETUP_INTR().
4143  *
4144  * This function simply calls the BUS_SETUP_INTR() method of the
4145  * parent of @p dev.
4146  */
4147 int
4148 bus_setup_intr(device_t dev, struct resource *r, int flags,
4149     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4150 {
4151 	int error;
4152 
4153 	if (dev->parent == NULL)
4154 		return (EINVAL);
4155 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4156 	    arg, cookiep);
4157 	if (error != 0)
4158 		return (error);
4159 	if (handler != NULL && !(flags & INTR_MPSAFE))
4160 		device_printf(dev, "[GIANT-LOCKED]\n");
4161 	return (0);
4162 }
4163 
4164 /**
4165  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4166  *
4167  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4168  * parent of @p dev.
4169  */
4170 int
4171 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4172 {
4173 	if (dev->parent == NULL)
4174 		return (EINVAL);
4175 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4176 }
4177 
4178 /**
4179  * @brief Wrapper function for BUS_BIND_INTR().
4180  *
4181  * This function simply calls the BUS_BIND_INTR() method of the
4182  * parent of @p dev.
4183  */
4184 int
4185 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4186 {
4187 	if (dev->parent == NULL)
4188 		return (EINVAL);
4189 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4190 }
4191 
4192 /**
4193  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4194  *
4195  * This function first formats the requested description into a
4196  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4197  * the parent of @p dev.
4198  */
4199 int
4200 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4201     const char *fmt, ...)
4202 {
4203 	va_list ap;
4204 	char descr[MAXCOMLEN + 1];
4205 
4206 	if (dev->parent == NULL)
4207 		return (EINVAL);
4208 	va_start(ap, fmt);
4209 	vsnprintf(descr, sizeof(descr), fmt, ap);
4210 	va_end(ap);
4211 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4212 }
4213 
4214 /**
4215  * @brief Wrapper function for BUS_SET_RESOURCE().
4216  *
4217  * This function simply calls the BUS_SET_RESOURCE() method of the
4218  * parent of @p dev.
4219  */
4220 int
4221 bus_set_resource(device_t dev, int type, int rid,
4222     u_long start, u_long count)
4223 {
4224 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4225 	    start, count));
4226 }
4227 
4228 /**
4229  * @brief Wrapper function for BUS_GET_RESOURCE().
4230  *
4231  * This function simply calls the BUS_GET_RESOURCE() method of the
4232  * parent of @p dev.
4233  */
4234 int
4235 bus_get_resource(device_t dev, int type, int rid,
4236     u_long *startp, u_long *countp)
4237 {
4238 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4239 	    startp, countp));
4240 }
4241 
4242 /**
4243  * @brief Wrapper function for BUS_GET_RESOURCE().
4244  *
4245  * This function simply calls the BUS_GET_RESOURCE() method of the
4246  * parent of @p dev and returns the start value.
4247  */
4248 u_long
4249 bus_get_resource_start(device_t dev, int type, int rid)
4250 {
4251 	u_long start, count;
4252 	int error;
4253 
4254 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4255 	    &start, &count);
4256 	if (error)
4257 		return (0);
4258 	return (start);
4259 }
4260 
4261 /**
4262  * @brief Wrapper function for BUS_GET_RESOURCE().
4263  *
4264  * This function simply calls the BUS_GET_RESOURCE() method of the
4265  * parent of @p dev and returns the count value.
4266  */
4267 u_long
4268 bus_get_resource_count(device_t dev, int type, int rid)
4269 {
4270 	u_long start, count;
4271 	int error;
4272 
4273 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4274 	    &start, &count);
4275 	if (error)
4276 		return (0);
4277 	return (count);
4278 }
4279 
4280 /**
4281  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4282  *
4283  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4284  * parent of @p dev.
4285  */
4286 void
4287 bus_delete_resource(device_t dev, int type, int rid)
4288 {
4289 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4290 }
4291 
4292 /**
4293  * @brief Wrapper function for BUS_CHILD_PRESENT().
4294  *
4295  * This function simply calls the BUS_CHILD_PRESENT() method of the
4296  * parent of @p dev.
4297  */
4298 int
4299 bus_child_present(device_t child)
4300 {
4301 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4302 }
4303 
4304 /**
4305  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4306  *
4307  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4308  * parent of @p dev.
4309  */
4310 int
4311 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4312 {
4313 	device_t parent;
4314 
4315 	parent = device_get_parent(child);
4316 	if (parent == NULL) {
4317 		*buf = '\0';
4318 		return (0);
4319 	}
4320 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4321 }
4322 
4323 /**
4324  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4325  *
4326  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4327  * parent of @p dev.
4328  */
4329 int
4330 bus_child_location_str(device_t child, char *buf, size_t buflen)
4331 {
4332 	device_t parent;
4333 
4334 	parent = device_get_parent(child);
4335 	if (parent == NULL) {
4336 		*buf = '\0';
4337 		return (0);
4338 	}
4339 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4340 }
4341 
4342 /**
4343  * @brief Wrapper function for BUS_GET_DMA_TAG().
4344  *
4345  * This function simply calls the BUS_GET_DMA_TAG() method of the
4346  * parent of @p dev.
4347  */
4348 bus_dma_tag_t
4349 bus_get_dma_tag(device_t dev)
4350 {
4351 	device_t parent;
4352 
4353 	parent = device_get_parent(dev);
4354 	if (parent == NULL)
4355 		return (NULL);
4356 	return (BUS_GET_DMA_TAG(parent, dev));
4357 }
4358 
4359 /* Resume all devices and then notify userland that we're up again. */
4360 static int
4361 root_resume(device_t dev)
4362 {
4363 	int error;
4364 
4365 	error = bus_generic_resume(dev);
4366 	if (error == 0)
4367 		devctl_notify("kern", "power", "resume", NULL);
4368 	return (error);
4369 }
4370 
4371 static int
4372 root_print_child(device_t dev, device_t child)
4373 {
4374 	int	retval = 0;
4375 
4376 	retval += bus_print_child_header(dev, child);
4377 	retval += printf("\n");
4378 
4379 	return (retval);
4380 }
4381 
4382 static int
4383 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4384     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4385 {
4386 	/*
4387 	 * If an interrupt mapping gets to here something bad has happened.
4388 	 */
4389 	panic("root_setup_intr");
4390 }
4391 
4392 /*
4393  * If we get here, assume that the device is permanant and really is
4394  * present in the system.  Removable bus drivers are expected to intercept
4395  * this call long before it gets here.  We return -1 so that drivers that
4396  * really care can check vs -1 or some ERRNO returned higher in the food
4397  * chain.
4398  */
4399 static int
4400 root_child_present(device_t dev, device_t child)
4401 {
4402 	return (-1);
4403 }
4404 
4405 static kobj_method_t root_methods[] = {
4406 	/* Device interface */
4407 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4408 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4409 	KOBJMETHOD(device_resume,	root_resume),
4410 
4411 	/* Bus interface */
4412 	KOBJMETHOD(bus_print_child,	root_print_child),
4413 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4414 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4415 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4416 	KOBJMETHOD(bus_child_present,	root_child_present),
4417 
4418 	KOBJMETHOD_END
4419 };
4420 
4421 static driver_t root_driver = {
4422 	"root",
4423 	root_methods,
4424 	1,			/* no softc */
4425 };
4426 
4427 device_t	root_bus;
4428 devclass_t	root_devclass;
4429 
4430 static int
4431 root_bus_module_handler(module_t mod, int what, void* arg)
4432 {
4433 	switch (what) {
4434 	case MOD_LOAD:
4435 		TAILQ_INIT(&bus_data_devices);
4436 		kobj_class_compile((kobj_class_t) &root_driver);
4437 		root_bus = make_device(NULL, "root", 0);
4438 		root_bus->desc = "System root bus";
4439 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4440 		root_bus->driver = &root_driver;
4441 		root_bus->state = DS_ATTACHED;
4442 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4443 		devinit();
4444 		return (0);
4445 
4446 	case MOD_SHUTDOWN:
4447 		device_shutdown(root_bus);
4448 		return (0);
4449 	default:
4450 		return (EOPNOTSUPP);
4451 	}
4452 
4453 	return (0);
4454 }
4455 
4456 static moduledata_t root_bus_mod = {
4457 	"rootbus",
4458 	root_bus_module_handler,
4459 	NULL
4460 };
4461 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4462 
4463 /**
4464  * @brief Automatically configure devices
4465  *
4466  * This function begins the autoconfiguration process by calling
4467  * device_probe_and_attach() for each child of the @c root0 device.
4468  */
4469 void
4470 root_bus_configure(void)
4471 {
4472 
4473 	PDEBUG(("."));
4474 
4475 	/* Eventually this will be split up, but this is sufficient for now. */
4476 	bus_set_pass(BUS_PASS_DEFAULT);
4477 }
4478 
4479 /**
4480  * @brief Module handler for registering device drivers
4481  *
4482  * This module handler is used to automatically register device
4483  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4484  * devclass_add_driver() for the driver described by the
4485  * driver_module_data structure pointed to by @p arg
4486  */
4487 int
4488 driver_module_handler(module_t mod, int what, void *arg)
4489 {
4490 	struct driver_module_data *dmd;
4491 	devclass_t bus_devclass;
4492 	kobj_class_t driver;
4493 	int error, pass;
4494 
4495 	dmd = (struct driver_module_data *)arg;
4496 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4497 	error = 0;
4498 
4499 	switch (what) {
4500 	case MOD_LOAD:
4501 		if (dmd->dmd_chainevh)
4502 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4503 
4504 		pass = dmd->dmd_pass;
4505 		driver = dmd->dmd_driver;
4506 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4507 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4508 		error = devclass_add_driver(bus_devclass, driver, pass,
4509 		    dmd->dmd_devclass);
4510 		break;
4511 
4512 	case MOD_UNLOAD:
4513 		PDEBUG(("Unloading module: driver %s from bus %s",
4514 		    DRIVERNAME(dmd->dmd_driver),
4515 		    dmd->dmd_busname));
4516 		error = devclass_delete_driver(bus_devclass,
4517 		    dmd->dmd_driver);
4518 
4519 		if (!error && dmd->dmd_chainevh)
4520 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4521 		break;
4522 	case MOD_QUIESCE:
4523 		PDEBUG(("Quiesce module: driver %s from bus %s",
4524 		    DRIVERNAME(dmd->dmd_driver),
4525 		    dmd->dmd_busname));
4526 		error = devclass_quiesce_driver(bus_devclass,
4527 		    dmd->dmd_driver);
4528 
4529 		if (!error && dmd->dmd_chainevh)
4530 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4531 		break;
4532 	default:
4533 		error = EOPNOTSUPP;
4534 		break;
4535 	}
4536 
4537 	return (error);
4538 }
4539 
4540 /**
4541  * @brief Enumerate all hinted devices for this bus.
4542  *
4543  * Walks through the hints for this bus and calls the bus_hinted_child
4544  * routine for each one it fines.  It searches first for the specific
4545  * bus that's being probed for hinted children (eg isa0), and then for
4546  * generic children (eg isa).
4547  *
4548  * @param	dev	bus device to enumerate
4549  */
4550 void
4551 bus_enumerate_hinted_children(device_t bus)
4552 {
4553 	int i;
4554 	const char *dname, *busname;
4555 	int dunit;
4556 
4557 	/*
4558 	 * enumerate all devices on the specific bus
4559 	 */
4560 	busname = device_get_nameunit(bus);
4561 	i = 0;
4562 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4563 		BUS_HINTED_CHILD(bus, dname, dunit);
4564 
4565 	/*
4566 	 * and all the generic ones.
4567 	 */
4568 	busname = device_get_name(bus);
4569 	i = 0;
4570 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4571 		BUS_HINTED_CHILD(bus, dname, dunit);
4572 }
4573 
4574 #ifdef BUS_DEBUG
4575 
4576 /* the _short versions avoid iteration by not calling anything that prints
4577  * more than oneliners. I love oneliners.
4578  */
4579 
4580 static void
4581 print_device_short(device_t dev, int indent)
4582 {
4583 	if (!dev)
4584 		return;
4585 
4586 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4587 	    dev->unit, dev->desc,
4588 	    (dev->parent? "":"no "),
4589 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4590 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4591 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4592 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4593 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4594 	    (dev->flags&DF_REBID? "rebiddable,":""),
4595 	    (dev->ivars? "":"no "),
4596 	    (dev->softc? "":"no "),
4597 	    dev->busy));
4598 }
4599 
4600 static void
4601 print_device(device_t dev, int indent)
4602 {
4603 	if (!dev)
4604 		return;
4605 
4606 	print_device_short(dev, indent);
4607 
4608 	indentprintf(("Parent:\n"));
4609 	print_device_short(dev->parent, indent+1);
4610 	indentprintf(("Driver:\n"));
4611 	print_driver_short(dev->driver, indent+1);
4612 	indentprintf(("Devclass:\n"));
4613 	print_devclass_short(dev->devclass, indent+1);
4614 }
4615 
4616 void
4617 print_device_tree_short(device_t dev, int indent)
4618 /* print the device and all its children (indented) */
4619 {
4620 	device_t child;
4621 
4622 	if (!dev)
4623 		return;
4624 
4625 	print_device_short(dev, indent);
4626 
4627 	TAILQ_FOREACH(child, &dev->children, link) {
4628 		print_device_tree_short(child, indent+1);
4629 	}
4630 }
4631 
4632 void
4633 print_device_tree(device_t dev, int indent)
4634 /* print the device and all its children (indented) */
4635 {
4636 	device_t child;
4637 
4638 	if (!dev)
4639 		return;
4640 
4641 	print_device(dev, indent);
4642 
4643 	TAILQ_FOREACH(child, &dev->children, link) {
4644 		print_device_tree(child, indent+1);
4645 	}
4646 }
4647 
4648 static void
4649 print_driver_short(driver_t *driver, int indent)
4650 {
4651 	if (!driver)
4652 		return;
4653 
4654 	indentprintf(("driver %s: softc size = %zd\n",
4655 	    driver->name, driver->size));
4656 }
4657 
4658 static void
4659 print_driver(driver_t *driver, int indent)
4660 {
4661 	if (!driver)
4662 		return;
4663 
4664 	print_driver_short(driver, indent);
4665 }
4666 
4667 static void
4668 print_driver_list(driver_list_t drivers, int indent)
4669 {
4670 	driverlink_t driver;
4671 
4672 	TAILQ_FOREACH(driver, &drivers, link) {
4673 		print_driver(driver->driver, indent);
4674 	}
4675 }
4676 
4677 static void
4678 print_devclass_short(devclass_t dc, int indent)
4679 {
4680 	if ( !dc )
4681 		return;
4682 
4683 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4684 }
4685 
4686 static void
4687 print_devclass(devclass_t dc, int indent)
4688 {
4689 	int i;
4690 
4691 	if ( !dc )
4692 		return;
4693 
4694 	print_devclass_short(dc, indent);
4695 	indentprintf(("Drivers:\n"));
4696 	print_driver_list(dc->drivers, indent+1);
4697 
4698 	indentprintf(("Devices:\n"));
4699 	for (i = 0; i < dc->maxunit; i++)
4700 		if (dc->devices[i])
4701 			print_device(dc->devices[i], indent+1);
4702 }
4703 
4704 void
4705 print_devclass_list_short(void)
4706 {
4707 	devclass_t dc;
4708 
4709 	printf("Short listing of devclasses, drivers & devices:\n");
4710 	TAILQ_FOREACH(dc, &devclasses, link) {
4711 		print_devclass_short(dc, 0);
4712 	}
4713 }
4714 
4715 void
4716 print_devclass_list(void)
4717 {
4718 	devclass_t dc;
4719 
4720 	printf("Full listing of devclasses, drivers & devices:\n");
4721 	TAILQ_FOREACH(dc, &devclasses, link) {
4722 		print_devclass(dc, 0);
4723 	}
4724 }
4725 
4726 #endif
4727 
4728 /*
4729  * User-space access to the device tree.
4730  *
4731  * We implement a small set of nodes:
4732  *
4733  * hw.bus			Single integer read method to obtain the
4734  *				current generation count.
4735  * hw.bus.devices		Reads the entire device tree in flat space.
4736  * hw.bus.rman			Resource manager interface
4737  *
4738  * We might like to add the ability to scan devclasses and/or drivers to
4739  * determine what else is currently loaded/available.
4740  */
4741 
4742 static int
4743 sysctl_bus(SYSCTL_HANDLER_ARGS)
4744 {
4745 	struct u_businfo	ubus;
4746 
4747 	ubus.ub_version = BUS_USER_VERSION;
4748 	ubus.ub_generation = bus_data_generation;
4749 
4750 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4751 }
4752 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4753     "bus-related data");
4754 
4755 static int
4756 sysctl_devices(SYSCTL_HANDLER_ARGS)
4757 {
4758 	int			*name = (int *)arg1;
4759 	u_int			namelen = arg2;
4760 	int			index;
4761 	struct device		*dev;
4762 	struct u_device		udev;	/* XXX this is a bit big */
4763 	int			error;
4764 
4765 	if (namelen != 2)
4766 		return (EINVAL);
4767 
4768 	if (bus_data_generation_check(name[0]))
4769 		return (EINVAL);
4770 
4771 	index = name[1];
4772 
4773 	/*
4774 	 * Scan the list of devices, looking for the requested index.
4775 	 */
4776 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4777 		if (index-- == 0)
4778 			break;
4779 	}
4780 	if (dev == NULL)
4781 		return (ENOENT);
4782 
4783 	/*
4784 	 * Populate the return array.
4785 	 */
4786 	bzero(&udev, sizeof(udev));
4787 	udev.dv_handle = (uintptr_t)dev;
4788 	udev.dv_parent = (uintptr_t)dev->parent;
4789 	if (dev->nameunit != NULL)
4790 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4791 	if (dev->desc != NULL)
4792 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4793 	if (dev->driver != NULL && dev->driver->name != NULL)
4794 		strlcpy(udev.dv_drivername, dev->driver->name,
4795 		    sizeof(udev.dv_drivername));
4796 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4797 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4798 	udev.dv_devflags = dev->devflags;
4799 	udev.dv_flags = dev->flags;
4800 	udev.dv_state = dev->state;
4801 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4802 	return (error);
4803 }
4804 
4805 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4806     "system device tree");
4807 
4808 int
4809 bus_data_generation_check(int generation)
4810 {
4811 	if (generation != bus_data_generation)
4812 		return (1);
4813 
4814 	/* XXX generate optimised lists here? */
4815 	return (0);
4816 }
4817 
4818 void
4819 bus_data_generation_update(void)
4820 {
4821 	bus_data_generation++;
4822 }
4823 
4824 int
4825 bus_free_resource(device_t dev, int type, struct resource *r)
4826 {
4827 	if (r == NULL)
4828 		return (0);
4829 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4830 }
4831