1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 uint32_t devflags; /**< api level flags for device_get_flags() */ 124 u_int flags; /**< internal device flags */ 125 #define DF_ENABLED 0x01 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 127 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 129 #define DF_QUIET 0x10 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 132 #define DF_REBID 0x80 /* Can rebid after attach */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 /* Deprecated way to adjust queue length */ 354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 358 359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 364 0, sysctl_devctl_queue, "I", "devctl queue length"); 365 366 static d_open_t devopen; 367 static d_close_t devclose; 368 static d_read_t devread; 369 static d_ioctl_t devioctl; 370 static d_poll_t devpoll; 371 372 static struct cdevsw dev_cdevsw = { 373 .d_version = D_VERSION, 374 .d_flags = D_NEEDGIANT, 375 .d_open = devopen, 376 .d_close = devclose, 377 .d_read = devread, 378 .d_ioctl = devioctl, 379 .d_poll = devpoll, 380 .d_name = "devctl", 381 }; 382 383 struct dev_event_info 384 { 385 char *dei_data; 386 TAILQ_ENTRY(dev_event_info) dei_link; 387 }; 388 389 TAILQ_HEAD(devq, dev_event_info); 390 391 static struct dev_softc 392 { 393 int inuse; 394 int nonblock; 395 int queued; 396 struct mtx mtx; 397 struct cv cv; 398 struct selinfo sel; 399 struct devq devq; 400 struct proc *async_proc; 401 } devsoftc; 402 403 static struct cdev *devctl_dev; 404 405 static void 406 devinit(void) 407 { 408 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 409 UID_ROOT, GID_WHEEL, 0600, "devctl"); 410 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 411 cv_init(&devsoftc.cv, "dev cv"); 412 TAILQ_INIT(&devsoftc.devq); 413 } 414 415 static int 416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 417 { 418 if (devsoftc.inuse) 419 return (EBUSY); 420 /* move to init */ 421 devsoftc.inuse = 1; 422 devsoftc.nonblock = 0; 423 devsoftc.async_proc = NULL; 424 return (0); 425 } 426 427 static int 428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 429 { 430 devsoftc.inuse = 0; 431 mtx_lock(&devsoftc.mtx); 432 cv_broadcast(&devsoftc.cv); 433 mtx_unlock(&devsoftc.mtx); 434 devsoftc.async_proc = NULL; 435 return (0); 436 } 437 438 /* 439 * The read channel for this device is used to report changes to 440 * userland in realtime. We are required to free the data as well as 441 * the n1 object because we allocate them separately. Also note that 442 * we return one record at a time. If you try to read this device a 443 * character at a time, you will lose the rest of the data. Listening 444 * programs are expected to cope. 445 */ 446 static int 447 devread(struct cdev *dev, struct uio *uio, int ioflag) 448 { 449 struct dev_event_info *n1; 450 int rv; 451 452 mtx_lock(&devsoftc.mtx); 453 while (TAILQ_EMPTY(&devsoftc.devq)) { 454 if (devsoftc.nonblock) { 455 mtx_unlock(&devsoftc.mtx); 456 return (EAGAIN); 457 } 458 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 459 if (rv) { 460 /* 461 * Need to translate ERESTART to EINTR here? -- jake 462 */ 463 mtx_unlock(&devsoftc.mtx); 464 return (rv); 465 } 466 } 467 n1 = TAILQ_FIRST(&devsoftc.devq); 468 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 469 devsoftc.queued--; 470 mtx_unlock(&devsoftc.mtx); 471 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 472 free(n1->dei_data, M_BUS); 473 free(n1, M_BUS); 474 return (rv); 475 } 476 477 static int 478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 479 { 480 switch (cmd) { 481 482 case FIONBIO: 483 if (*(int*)data) 484 devsoftc.nonblock = 1; 485 else 486 devsoftc.nonblock = 0; 487 return (0); 488 case FIOASYNC: 489 if (*(int*)data) 490 devsoftc.async_proc = td->td_proc; 491 else 492 devsoftc.async_proc = NULL; 493 return (0); 494 495 /* (un)Support for other fcntl() calls. */ 496 case FIOCLEX: 497 case FIONCLEX: 498 case FIONREAD: 499 case FIOSETOWN: 500 case FIOGETOWN: 501 default: 502 break; 503 } 504 return (ENOTTY); 505 } 506 507 static int 508 devpoll(struct cdev *dev, int events, struct thread *td) 509 { 510 int revents = 0; 511 512 mtx_lock(&devsoftc.mtx); 513 if (events & (POLLIN | POLLRDNORM)) { 514 if (!TAILQ_EMPTY(&devsoftc.devq)) 515 revents = events & (POLLIN | POLLRDNORM); 516 else 517 selrecord(td, &devsoftc.sel); 518 } 519 mtx_unlock(&devsoftc.mtx); 520 521 return (revents); 522 } 523 524 /** 525 * @brief Return whether the userland process is running 526 */ 527 boolean_t 528 devctl_process_running(void) 529 { 530 return (devsoftc.inuse == 1); 531 } 532 533 /** 534 * @brief Queue data to be read from the devctl device 535 * 536 * Generic interface to queue data to the devctl device. It is 537 * assumed that @p data is properly formatted. It is further assumed 538 * that @p data is allocated using the M_BUS malloc type. 539 */ 540 void 541 devctl_queue_data_f(char *data, int flags) 542 { 543 struct dev_event_info *n1 = NULL, *n2 = NULL; 544 struct proc *p; 545 546 if (strlen(data) == 0) 547 goto out; 548 if (devctl_queue_length == 0) 549 goto out; 550 n1 = malloc(sizeof(*n1), M_BUS, flags); 551 if (n1 == NULL) 552 goto out; 553 n1->dei_data = data; 554 mtx_lock(&devsoftc.mtx); 555 if (devctl_queue_length == 0) { 556 mtx_unlock(&devsoftc.mtx); 557 free(n1->dei_data, M_BUS); 558 free(n1, M_BUS); 559 return; 560 } 561 /* Leave at least one spot in the queue... */ 562 while (devsoftc.queued > devctl_queue_length - 1) { 563 n2 = TAILQ_FIRST(&devsoftc.devq); 564 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 565 free(n2->dei_data, M_BUS); 566 free(n2, M_BUS); 567 devsoftc.queued--; 568 } 569 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 570 devsoftc.queued++; 571 cv_broadcast(&devsoftc.cv); 572 mtx_unlock(&devsoftc.mtx); 573 selwakeup(&devsoftc.sel); 574 p = devsoftc.async_proc; 575 if (p != NULL) { 576 PROC_LOCK(p); 577 kern_psignal(p, SIGIO); 578 PROC_UNLOCK(p); 579 } 580 return; 581 out: 582 /* 583 * We have to free data on all error paths since the caller 584 * assumes it will be free'd when this item is dequeued. 585 */ 586 free(data, M_BUS); 587 return; 588 } 589 590 void 591 devctl_queue_data(char *data) 592 { 593 594 devctl_queue_data_f(data, M_NOWAIT); 595 } 596 597 /** 598 * @brief Send a 'notification' to userland, using standard ways 599 */ 600 void 601 devctl_notify_f(const char *system, const char *subsystem, const char *type, 602 const char *data, int flags) 603 { 604 int len = 0; 605 char *msg; 606 607 if (system == NULL) 608 return; /* BOGUS! Must specify system. */ 609 if (subsystem == NULL) 610 return; /* BOGUS! Must specify subsystem. */ 611 if (type == NULL) 612 return; /* BOGUS! Must specify type. */ 613 len += strlen(" system=") + strlen(system); 614 len += strlen(" subsystem=") + strlen(subsystem); 615 len += strlen(" type=") + strlen(type); 616 /* add in the data message plus newline. */ 617 if (data != NULL) 618 len += strlen(data); 619 len += 3; /* '!', '\n', and NUL */ 620 msg = malloc(len, M_BUS, flags); 621 if (msg == NULL) 622 return; /* Drop it on the floor */ 623 if (data != NULL) 624 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 625 system, subsystem, type, data); 626 else 627 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 628 system, subsystem, type); 629 devctl_queue_data_f(msg, flags); 630 } 631 632 void 633 devctl_notify(const char *system, const char *subsystem, const char *type, 634 const char *data) 635 { 636 637 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 638 } 639 640 /* 641 * Common routine that tries to make sending messages as easy as possible. 642 * We allocate memory for the data, copy strings into that, but do not 643 * free it unless there's an error. The dequeue part of the driver should 644 * free the data. We don't send data when the device is disabled. We do 645 * send data, even when we have no listeners, because we wish to avoid 646 * races relating to startup and restart of listening applications. 647 * 648 * devaddq is designed to string together the type of event, with the 649 * object of that event, plus the plug and play info and location info 650 * for that event. This is likely most useful for devices, but less 651 * useful for other consumers of this interface. Those should use 652 * the devctl_queue_data() interface instead. 653 */ 654 static void 655 devaddq(const char *type, const char *what, device_t dev) 656 { 657 char *data = NULL; 658 char *loc = NULL; 659 char *pnp = NULL; 660 const char *parstr; 661 662 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 663 return; 664 data = malloc(1024, M_BUS, M_NOWAIT); 665 if (data == NULL) 666 goto bad; 667 668 /* get the bus specific location of this device */ 669 loc = malloc(1024, M_BUS, M_NOWAIT); 670 if (loc == NULL) 671 goto bad; 672 *loc = '\0'; 673 bus_child_location_str(dev, loc, 1024); 674 675 /* Get the bus specific pnp info of this device */ 676 pnp = malloc(1024, M_BUS, M_NOWAIT); 677 if (pnp == NULL) 678 goto bad; 679 *pnp = '\0'; 680 bus_child_pnpinfo_str(dev, pnp, 1024); 681 682 /* Get the parent of this device, or / if high enough in the tree. */ 683 if (device_get_parent(dev) == NULL) 684 parstr = "."; /* Or '/' ? */ 685 else 686 parstr = device_get_nameunit(device_get_parent(dev)); 687 /* String it all together. */ 688 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 689 parstr); 690 free(loc, M_BUS); 691 free(pnp, M_BUS); 692 devctl_queue_data(data); 693 return; 694 bad: 695 free(pnp, M_BUS); 696 free(loc, M_BUS); 697 free(data, M_BUS); 698 return; 699 } 700 701 /* 702 * A device was added to the tree. We are called just after it successfully 703 * attaches (that is, probe and attach success for this device). No call 704 * is made if a device is merely parented into the tree. See devnomatch 705 * if probe fails. If attach fails, no notification is sent (but maybe 706 * we should have a different message for this). 707 */ 708 static void 709 devadded(device_t dev) 710 { 711 devaddq("+", device_get_nameunit(dev), dev); 712 } 713 714 /* 715 * A device was removed from the tree. We are called just before this 716 * happens. 717 */ 718 static void 719 devremoved(device_t dev) 720 { 721 devaddq("-", device_get_nameunit(dev), dev); 722 } 723 724 /* 725 * Called when there's no match for this device. This is only called 726 * the first time that no match happens, so we don't keep getting this 727 * message. Should that prove to be undesirable, we can change it. 728 * This is called when all drivers that can attach to a given bus 729 * decline to accept this device. Other errors may not be detected. 730 */ 731 static void 732 devnomatch(device_t dev) 733 { 734 devaddq("?", "", dev); 735 } 736 737 static int 738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 739 { 740 struct dev_event_info *n1; 741 int dis, error; 742 743 dis = devctl_queue_length == 0; 744 error = sysctl_handle_int(oidp, &dis, 0, req); 745 if (error || !req->newptr) 746 return (error); 747 mtx_lock(&devsoftc.mtx); 748 if (dis) { 749 while (!TAILQ_EMPTY(&devsoftc.devq)) { 750 n1 = TAILQ_FIRST(&devsoftc.devq); 751 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 752 free(n1->dei_data, M_BUS); 753 free(n1, M_BUS); 754 } 755 devsoftc.queued = 0; 756 devctl_queue_length = 0; 757 } else { 758 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 759 } 760 mtx_unlock(&devsoftc.mtx); 761 return (0); 762 } 763 764 static int 765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 766 { 767 struct dev_event_info *n1; 768 int q, error; 769 770 q = devctl_queue_length; 771 error = sysctl_handle_int(oidp, &q, 0, req); 772 if (error || !req->newptr) 773 return (error); 774 if (q < 0) 775 return (EINVAL); 776 mtx_lock(&devsoftc.mtx); 777 devctl_queue_length = q; 778 while (devsoftc.queued > devctl_queue_length) { 779 n1 = TAILQ_FIRST(&devsoftc.devq); 780 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 781 free(n1->dei_data, M_BUS); 782 free(n1, M_BUS); 783 devsoftc.queued--; 784 } 785 mtx_unlock(&devsoftc.mtx); 786 return (0); 787 } 788 789 /* End of /dev/devctl code */ 790 791 static TAILQ_HEAD(,device) bus_data_devices; 792 static int bus_data_generation = 1; 793 794 static kobj_method_t null_methods[] = { 795 KOBJMETHOD_END 796 }; 797 798 DEFINE_CLASS(null, null_methods, 0); 799 800 /* 801 * Bus pass implementation 802 */ 803 804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 805 int bus_current_pass = BUS_PASS_ROOT; 806 807 /** 808 * @internal 809 * @brief Register the pass level of a new driver attachment 810 * 811 * Register a new driver attachment's pass level. If no driver 812 * attachment with the same pass level has been added, then @p new 813 * will be added to the global passes list. 814 * 815 * @param new the new driver attachment 816 */ 817 static void 818 driver_register_pass(struct driverlink *new) 819 { 820 struct driverlink *dl; 821 822 /* We only consider pass numbers during boot. */ 823 if (bus_current_pass == BUS_PASS_DEFAULT) 824 return; 825 826 /* 827 * Walk the passes list. If we already know about this pass 828 * then there is nothing to do. If we don't, then insert this 829 * driver link into the list. 830 */ 831 TAILQ_FOREACH(dl, &passes, passlink) { 832 if (dl->pass < new->pass) 833 continue; 834 if (dl->pass == new->pass) 835 return; 836 TAILQ_INSERT_BEFORE(dl, new, passlink); 837 return; 838 } 839 TAILQ_INSERT_TAIL(&passes, new, passlink); 840 } 841 842 /** 843 * @brief Raise the current bus pass 844 * 845 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 846 * method on the root bus to kick off a new device tree scan for each 847 * new pass level that has at least one driver. 848 */ 849 void 850 bus_set_pass(int pass) 851 { 852 struct driverlink *dl; 853 854 if (bus_current_pass > pass) 855 panic("Attempt to lower bus pass level"); 856 857 TAILQ_FOREACH(dl, &passes, passlink) { 858 /* Skip pass values below the current pass level. */ 859 if (dl->pass <= bus_current_pass) 860 continue; 861 862 /* 863 * Bail once we hit a driver with a pass level that is 864 * too high. 865 */ 866 if (dl->pass > pass) 867 break; 868 869 /* 870 * Raise the pass level to the next level and rescan 871 * the tree. 872 */ 873 bus_current_pass = dl->pass; 874 BUS_NEW_PASS(root_bus); 875 } 876 877 /* 878 * If there isn't a driver registered for the requested pass, 879 * then bus_current_pass might still be less than 'pass'. Set 880 * it to 'pass' in that case. 881 */ 882 if (bus_current_pass < pass) 883 bus_current_pass = pass; 884 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 885 } 886 887 /* 888 * Devclass implementation 889 */ 890 891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 892 893 /** 894 * @internal 895 * @brief Find or create a device class 896 * 897 * If a device class with the name @p classname exists, return it, 898 * otherwise if @p create is non-zero create and return a new device 899 * class. 900 * 901 * If @p parentname is non-NULL, the parent of the devclass is set to 902 * the devclass of that name. 903 * 904 * @param classname the devclass name to find or create 905 * @param parentname the parent devclass name or @c NULL 906 * @param create non-zero to create a devclass 907 */ 908 static devclass_t 909 devclass_find_internal(const char *classname, const char *parentname, 910 int create) 911 { 912 devclass_t dc; 913 914 PDEBUG(("looking for %s", classname)); 915 if (!classname) 916 return (NULL); 917 918 TAILQ_FOREACH(dc, &devclasses, link) { 919 if (!strcmp(dc->name, classname)) 920 break; 921 } 922 923 if (create && !dc) { 924 PDEBUG(("creating %s", classname)); 925 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 926 M_BUS, M_NOWAIT | M_ZERO); 927 if (!dc) 928 return (NULL); 929 dc->parent = NULL; 930 dc->name = (char*) (dc + 1); 931 strcpy(dc->name, classname); 932 TAILQ_INIT(&dc->drivers); 933 TAILQ_INSERT_TAIL(&devclasses, dc, link); 934 935 bus_data_generation_update(); 936 } 937 938 /* 939 * If a parent class is specified, then set that as our parent so 940 * that this devclass will support drivers for the parent class as 941 * well. If the parent class has the same name don't do this though 942 * as it creates a cycle that can trigger an infinite loop in 943 * device_probe_child() if a device exists for which there is no 944 * suitable driver. 945 */ 946 if (parentname && dc && !dc->parent && 947 strcmp(classname, parentname) != 0) { 948 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 949 dc->parent->flags |= DC_HAS_CHILDREN; 950 } 951 952 return (dc); 953 } 954 955 /** 956 * @brief Create a device class 957 * 958 * If a device class with the name @p classname exists, return it, 959 * otherwise create and return a new device class. 960 * 961 * @param classname the devclass name to find or create 962 */ 963 devclass_t 964 devclass_create(const char *classname) 965 { 966 return (devclass_find_internal(classname, NULL, TRUE)); 967 } 968 969 /** 970 * @brief Find a device class 971 * 972 * If a device class with the name @p classname exists, return it, 973 * otherwise return @c NULL. 974 * 975 * @param classname the devclass name to find 976 */ 977 devclass_t 978 devclass_find(const char *classname) 979 { 980 return (devclass_find_internal(classname, NULL, FALSE)); 981 } 982 983 /** 984 * @brief Register that a device driver has been added to a devclass 985 * 986 * Register that a device driver has been added to a devclass. This 987 * is called by devclass_add_driver to accomplish the recursive 988 * notification of all the children classes of dc, as well as dc. 989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 990 * the devclass. 991 * 992 * We do a full search here of the devclass list at each iteration 993 * level to save storing children-lists in the devclass structure. If 994 * we ever move beyond a few dozen devices doing this, we may need to 995 * reevaluate... 996 * 997 * @param dc the devclass to edit 998 * @param driver the driver that was just added 999 */ 1000 static void 1001 devclass_driver_added(devclass_t dc, driver_t *driver) 1002 { 1003 devclass_t parent; 1004 int i; 1005 1006 /* 1007 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1008 */ 1009 for (i = 0; i < dc->maxunit; i++) 1010 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1011 BUS_DRIVER_ADDED(dc->devices[i], driver); 1012 1013 /* 1014 * Walk through the children classes. Since we only keep a 1015 * single parent pointer around, we walk the entire list of 1016 * devclasses looking for children. We set the 1017 * DC_HAS_CHILDREN flag when a child devclass is created on 1018 * the parent, so we only walk the list for those devclasses 1019 * that have children. 1020 */ 1021 if (!(dc->flags & DC_HAS_CHILDREN)) 1022 return; 1023 parent = dc; 1024 TAILQ_FOREACH(dc, &devclasses, link) { 1025 if (dc->parent == parent) 1026 devclass_driver_added(dc, driver); 1027 } 1028 } 1029 1030 /** 1031 * @brief Add a device driver to a device class 1032 * 1033 * Add a device driver to a devclass. This is normally called 1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1035 * all devices in the devclass will be called to allow them to attempt 1036 * to re-probe any unmatched children. 1037 * 1038 * @param dc the devclass to edit 1039 * @param driver the driver to register 1040 */ 1041 int 1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1043 { 1044 driverlink_t dl; 1045 const char *parentname; 1046 1047 PDEBUG(("%s", DRIVERNAME(driver))); 1048 1049 /* Don't allow invalid pass values. */ 1050 if (pass <= BUS_PASS_ROOT) 1051 return (EINVAL); 1052 1053 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1054 if (!dl) 1055 return (ENOMEM); 1056 1057 /* 1058 * Compile the driver's methods. Also increase the reference count 1059 * so that the class doesn't get freed when the last instance 1060 * goes. This means we can safely use static methods and avoids a 1061 * double-free in devclass_delete_driver. 1062 */ 1063 kobj_class_compile((kobj_class_t) driver); 1064 1065 /* 1066 * If the driver has any base classes, make the 1067 * devclass inherit from the devclass of the driver's 1068 * first base class. This will allow the system to 1069 * search for drivers in both devclasses for children 1070 * of a device using this driver. 1071 */ 1072 if (driver->baseclasses) 1073 parentname = driver->baseclasses[0]->name; 1074 else 1075 parentname = NULL; 1076 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1077 1078 dl->driver = driver; 1079 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1080 driver->refs++; /* XXX: kobj_mtx */ 1081 dl->pass = pass; 1082 driver_register_pass(dl); 1083 1084 devclass_driver_added(dc, driver); 1085 bus_data_generation_update(); 1086 return (0); 1087 } 1088 1089 /** 1090 * @brief Register that a device driver has been deleted from a devclass 1091 * 1092 * Register that a device driver has been removed from a devclass. 1093 * This is called by devclass_delete_driver to accomplish the 1094 * recursive notification of all the children classes of busclass, as 1095 * well as busclass. Each layer will attempt to detach the driver 1096 * from any devices that are children of the bus's devclass. The function 1097 * will return an error if a device fails to detach. 1098 * 1099 * We do a full search here of the devclass list at each iteration 1100 * level to save storing children-lists in the devclass structure. If 1101 * we ever move beyond a few dozen devices doing this, we may need to 1102 * reevaluate... 1103 * 1104 * @param busclass the devclass of the parent bus 1105 * @param dc the devclass of the driver being deleted 1106 * @param driver the driver being deleted 1107 */ 1108 static int 1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1110 { 1111 devclass_t parent; 1112 device_t dev; 1113 int error, i; 1114 1115 /* 1116 * Disassociate from any devices. We iterate through all the 1117 * devices in the devclass of the driver and detach any which are 1118 * using the driver and which have a parent in the devclass which 1119 * we are deleting from. 1120 * 1121 * Note that since a driver can be in multiple devclasses, we 1122 * should not detach devices which are not children of devices in 1123 * the affected devclass. 1124 */ 1125 for (i = 0; i < dc->maxunit; i++) { 1126 if (dc->devices[i]) { 1127 dev = dc->devices[i]; 1128 if (dev->driver == driver && dev->parent && 1129 dev->parent->devclass == busclass) { 1130 if ((error = device_detach(dev)) != 0) 1131 return (error); 1132 BUS_PROBE_NOMATCH(dev->parent, dev); 1133 devnomatch(dev); 1134 dev->flags |= DF_DONENOMATCH; 1135 } 1136 } 1137 } 1138 1139 /* 1140 * Walk through the children classes. Since we only keep a 1141 * single parent pointer around, we walk the entire list of 1142 * devclasses looking for children. We set the 1143 * DC_HAS_CHILDREN flag when a child devclass is created on 1144 * the parent, so we only walk the list for those devclasses 1145 * that have children. 1146 */ 1147 if (!(busclass->flags & DC_HAS_CHILDREN)) 1148 return (0); 1149 parent = busclass; 1150 TAILQ_FOREACH(busclass, &devclasses, link) { 1151 if (busclass->parent == parent) { 1152 error = devclass_driver_deleted(busclass, dc, driver); 1153 if (error) 1154 return (error); 1155 } 1156 } 1157 return (0); 1158 } 1159 1160 /** 1161 * @brief Delete a device driver from a device class 1162 * 1163 * Delete a device driver from a devclass. This is normally called 1164 * automatically by DRIVER_MODULE(). 1165 * 1166 * If the driver is currently attached to any devices, 1167 * devclass_delete_driver() will first attempt to detach from each 1168 * device. If one of the detach calls fails, the driver will not be 1169 * deleted. 1170 * 1171 * @param dc the devclass to edit 1172 * @param driver the driver to unregister 1173 */ 1174 int 1175 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1176 { 1177 devclass_t dc = devclass_find(driver->name); 1178 driverlink_t dl; 1179 int error; 1180 1181 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1182 1183 if (!dc) 1184 return (0); 1185 1186 /* 1187 * Find the link structure in the bus' list of drivers. 1188 */ 1189 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1190 if (dl->driver == driver) 1191 break; 1192 } 1193 1194 if (!dl) { 1195 PDEBUG(("%s not found in %s list", driver->name, 1196 busclass->name)); 1197 return (ENOENT); 1198 } 1199 1200 error = devclass_driver_deleted(busclass, dc, driver); 1201 if (error != 0) 1202 return (error); 1203 1204 TAILQ_REMOVE(&busclass->drivers, dl, link); 1205 free(dl, M_BUS); 1206 1207 /* XXX: kobj_mtx */ 1208 driver->refs--; 1209 if (driver->refs == 0) 1210 kobj_class_free((kobj_class_t) driver); 1211 1212 bus_data_generation_update(); 1213 return (0); 1214 } 1215 1216 /** 1217 * @brief Quiesces a set of device drivers from a device class 1218 * 1219 * Quiesce a device driver from a devclass. This is normally called 1220 * automatically by DRIVER_MODULE(). 1221 * 1222 * If the driver is currently attached to any devices, 1223 * devclass_quiesece_driver() will first attempt to quiesce each 1224 * device. 1225 * 1226 * @param dc the devclass to edit 1227 * @param driver the driver to unregister 1228 */ 1229 static int 1230 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1231 { 1232 devclass_t dc = devclass_find(driver->name); 1233 driverlink_t dl; 1234 device_t dev; 1235 int i; 1236 int error; 1237 1238 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1239 1240 if (!dc) 1241 return (0); 1242 1243 /* 1244 * Find the link structure in the bus' list of drivers. 1245 */ 1246 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1247 if (dl->driver == driver) 1248 break; 1249 } 1250 1251 if (!dl) { 1252 PDEBUG(("%s not found in %s list", driver->name, 1253 busclass->name)); 1254 return (ENOENT); 1255 } 1256 1257 /* 1258 * Quiesce all devices. We iterate through all the devices in 1259 * the devclass of the driver and quiesce any which are using 1260 * the driver and which have a parent in the devclass which we 1261 * are quiescing. 1262 * 1263 * Note that since a driver can be in multiple devclasses, we 1264 * should not quiesce devices which are not children of 1265 * devices in the affected devclass. 1266 */ 1267 for (i = 0; i < dc->maxunit; i++) { 1268 if (dc->devices[i]) { 1269 dev = dc->devices[i]; 1270 if (dev->driver == driver && dev->parent && 1271 dev->parent->devclass == busclass) { 1272 if ((error = device_quiesce(dev)) != 0) 1273 return (error); 1274 } 1275 } 1276 } 1277 1278 return (0); 1279 } 1280 1281 /** 1282 * @internal 1283 */ 1284 static driverlink_t 1285 devclass_find_driver_internal(devclass_t dc, const char *classname) 1286 { 1287 driverlink_t dl; 1288 1289 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1290 1291 TAILQ_FOREACH(dl, &dc->drivers, link) { 1292 if (!strcmp(dl->driver->name, classname)) 1293 return (dl); 1294 } 1295 1296 PDEBUG(("not found")); 1297 return (NULL); 1298 } 1299 1300 /** 1301 * @brief Return the name of the devclass 1302 */ 1303 const char * 1304 devclass_get_name(devclass_t dc) 1305 { 1306 return (dc->name); 1307 } 1308 1309 /** 1310 * @brief Find a device given a unit number 1311 * 1312 * @param dc the devclass to search 1313 * @param unit the unit number to search for 1314 * 1315 * @returns the device with the given unit number or @c 1316 * NULL if there is no such device 1317 */ 1318 device_t 1319 devclass_get_device(devclass_t dc, int unit) 1320 { 1321 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1322 return (NULL); 1323 return (dc->devices[unit]); 1324 } 1325 1326 /** 1327 * @brief Find the softc field of a device given a unit number 1328 * 1329 * @param dc the devclass to search 1330 * @param unit the unit number to search for 1331 * 1332 * @returns the softc field of the device with the given 1333 * unit number or @c NULL if there is no such 1334 * device 1335 */ 1336 void * 1337 devclass_get_softc(devclass_t dc, int unit) 1338 { 1339 device_t dev; 1340 1341 dev = devclass_get_device(dc, unit); 1342 if (!dev) 1343 return (NULL); 1344 1345 return (device_get_softc(dev)); 1346 } 1347 1348 /** 1349 * @brief Get a list of devices in the devclass 1350 * 1351 * An array containing a list of all the devices in the given devclass 1352 * is allocated and returned in @p *devlistp. The number of devices 1353 * in the array is returned in @p *devcountp. The caller should free 1354 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1355 * 1356 * @param dc the devclass to examine 1357 * @param devlistp points at location for array pointer return 1358 * value 1359 * @param devcountp points at location for array size return value 1360 * 1361 * @retval 0 success 1362 * @retval ENOMEM the array allocation failed 1363 */ 1364 int 1365 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1366 { 1367 int count, i; 1368 device_t *list; 1369 1370 count = devclass_get_count(dc); 1371 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1372 if (!list) 1373 return (ENOMEM); 1374 1375 count = 0; 1376 for (i = 0; i < dc->maxunit; i++) { 1377 if (dc->devices[i]) { 1378 list[count] = dc->devices[i]; 1379 count++; 1380 } 1381 } 1382 1383 *devlistp = list; 1384 *devcountp = count; 1385 1386 return (0); 1387 } 1388 1389 /** 1390 * @brief Get a list of drivers in the devclass 1391 * 1392 * An array containing a list of pointers to all the drivers in the 1393 * given devclass is allocated and returned in @p *listp. The number 1394 * of drivers in the array is returned in @p *countp. The caller should 1395 * free the array using @c free(p, M_TEMP). 1396 * 1397 * @param dc the devclass to examine 1398 * @param listp gives location for array pointer return value 1399 * @param countp gives location for number of array elements 1400 * return value 1401 * 1402 * @retval 0 success 1403 * @retval ENOMEM the array allocation failed 1404 */ 1405 int 1406 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1407 { 1408 driverlink_t dl; 1409 driver_t **list; 1410 int count; 1411 1412 count = 0; 1413 TAILQ_FOREACH(dl, &dc->drivers, link) 1414 count++; 1415 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1416 if (list == NULL) 1417 return (ENOMEM); 1418 1419 count = 0; 1420 TAILQ_FOREACH(dl, &dc->drivers, link) { 1421 list[count] = dl->driver; 1422 count++; 1423 } 1424 *listp = list; 1425 *countp = count; 1426 1427 return (0); 1428 } 1429 1430 /** 1431 * @brief Get the number of devices in a devclass 1432 * 1433 * @param dc the devclass to examine 1434 */ 1435 int 1436 devclass_get_count(devclass_t dc) 1437 { 1438 int count, i; 1439 1440 count = 0; 1441 for (i = 0; i < dc->maxunit; i++) 1442 if (dc->devices[i]) 1443 count++; 1444 return (count); 1445 } 1446 1447 /** 1448 * @brief Get the maximum unit number used in a devclass 1449 * 1450 * Note that this is one greater than the highest currently-allocated 1451 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1452 * that not even the devclass has been allocated yet. 1453 * 1454 * @param dc the devclass to examine 1455 */ 1456 int 1457 devclass_get_maxunit(devclass_t dc) 1458 { 1459 if (dc == NULL) 1460 return (-1); 1461 return (dc->maxunit); 1462 } 1463 1464 /** 1465 * @brief Find a free unit number in a devclass 1466 * 1467 * This function searches for the first unused unit number greater 1468 * that or equal to @p unit. 1469 * 1470 * @param dc the devclass to examine 1471 * @param unit the first unit number to check 1472 */ 1473 int 1474 devclass_find_free_unit(devclass_t dc, int unit) 1475 { 1476 if (dc == NULL) 1477 return (unit); 1478 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1479 unit++; 1480 return (unit); 1481 } 1482 1483 /** 1484 * @brief Set the parent of a devclass 1485 * 1486 * The parent class is normally initialised automatically by 1487 * DRIVER_MODULE(). 1488 * 1489 * @param dc the devclass to edit 1490 * @param pdc the new parent devclass 1491 */ 1492 void 1493 devclass_set_parent(devclass_t dc, devclass_t pdc) 1494 { 1495 dc->parent = pdc; 1496 } 1497 1498 /** 1499 * @brief Get the parent of a devclass 1500 * 1501 * @param dc the devclass to examine 1502 */ 1503 devclass_t 1504 devclass_get_parent(devclass_t dc) 1505 { 1506 return (dc->parent); 1507 } 1508 1509 struct sysctl_ctx_list * 1510 devclass_get_sysctl_ctx(devclass_t dc) 1511 { 1512 return (&dc->sysctl_ctx); 1513 } 1514 1515 struct sysctl_oid * 1516 devclass_get_sysctl_tree(devclass_t dc) 1517 { 1518 return (dc->sysctl_tree); 1519 } 1520 1521 /** 1522 * @internal 1523 * @brief Allocate a unit number 1524 * 1525 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1526 * will do). The allocated unit number is returned in @p *unitp. 1527 1528 * @param dc the devclass to allocate from 1529 * @param unitp points at the location for the allocated unit 1530 * number 1531 * 1532 * @retval 0 success 1533 * @retval EEXIST the requested unit number is already allocated 1534 * @retval ENOMEM memory allocation failure 1535 */ 1536 static int 1537 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1538 { 1539 const char *s; 1540 int unit = *unitp; 1541 1542 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1543 1544 /* Ask the parent bus if it wants to wire this device. */ 1545 if (unit == -1) 1546 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1547 &unit); 1548 1549 /* If we were given a wired unit number, check for existing device */ 1550 /* XXX imp XXX */ 1551 if (unit != -1) { 1552 if (unit >= 0 && unit < dc->maxunit && 1553 dc->devices[unit] != NULL) { 1554 if (bootverbose) 1555 printf("%s: %s%d already exists; skipping it\n", 1556 dc->name, dc->name, *unitp); 1557 return (EEXIST); 1558 } 1559 } else { 1560 /* Unwired device, find the next available slot for it */ 1561 unit = 0; 1562 for (unit = 0;; unit++) { 1563 /* If there is an "at" hint for a unit then skip it. */ 1564 if (resource_string_value(dc->name, unit, "at", &s) == 1565 0) 1566 continue; 1567 1568 /* If this device slot is already in use, skip it. */ 1569 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1570 continue; 1571 1572 break; 1573 } 1574 } 1575 1576 /* 1577 * We've selected a unit beyond the length of the table, so let's 1578 * extend the table to make room for all units up to and including 1579 * this one. 1580 */ 1581 if (unit >= dc->maxunit) { 1582 device_t *newlist, *oldlist; 1583 int newsize; 1584 1585 oldlist = dc->devices; 1586 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1587 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1588 if (!newlist) 1589 return (ENOMEM); 1590 if (oldlist != NULL) 1591 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1592 bzero(newlist + dc->maxunit, 1593 sizeof(device_t) * (newsize - dc->maxunit)); 1594 dc->devices = newlist; 1595 dc->maxunit = newsize; 1596 if (oldlist != NULL) 1597 free(oldlist, M_BUS); 1598 } 1599 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1600 1601 *unitp = unit; 1602 return (0); 1603 } 1604 1605 /** 1606 * @internal 1607 * @brief Add a device to a devclass 1608 * 1609 * A unit number is allocated for the device (using the device's 1610 * preferred unit number if any) and the device is registered in the 1611 * devclass. This allows the device to be looked up by its unit 1612 * number, e.g. by decoding a dev_t minor number. 1613 * 1614 * @param dc the devclass to add to 1615 * @param dev the device to add 1616 * 1617 * @retval 0 success 1618 * @retval EEXIST the requested unit number is already allocated 1619 * @retval ENOMEM memory allocation failure 1620 */ 1621 static int 1622 devclass_add_device(devclass_t dc, device_t dev) 1623 { 1624 int buflen, error; 1625 1626 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1627 1628 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1629 if (buflen < 0) 1630 return (ENOMEM); 1631 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1632 if (!dev->nameunit) 1633 return (ENOMEM); 1634 1635 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1636 free(dev->nameunit, M_BUS); 1637 dev->nameunit = NULL; 1638 return (error); 1639 } 1640 dc->devices[dev->unit] = dev; 1641 dev->devclass = dc; 1642 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1643 1644 return (0); 1645 } 1646 1647 /** 1648 * @internal 1649 * @brief Delete a device from a devclass 1650 * 1651 * The device is removed from the devclass's device list and its unit 1652 * number is freed. 1653 1654 * @param dc the devclass to delete from 1655 * @param dev the device to delete 1656 * 1657 * @retval 0 success 1658 */ 1659 static int 1660 devclass_delete_device(devclass_t dc, device_t dev) 1661 { 1662 if (!dc || !dev) 1663 return (0); 1664 1665 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1666 1667 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1668 panic("devclass_delete_device: inconsistent device class"); 1669 dc->devices[dev->unit] = NULL; 1670 if (dev->flags & DF_WILDCARD) 1671 dev->unit = -1; 1672 dev->devclass = NULL; 1673 free(dev->nameunit, M_BUS); 1674 dev->nameunit = NULL; 1675 1676 return (0); 1677 } 1678 1679 /** 1680 * @internal 1681 * @brief Make a new device and add it as a child of @p parent 1682 * 1683 * @param parent the parent of the new device 1684 * @param name the devclass name of the new device or @c NULL 1685 * to leave the devclass unspecified 1686 * @parem unit the unit number of the new device of @c -1 to 1687 * leave the unit number unspecified 1688 * 1689 * @returns the new device 1690 */ 1691 static device_t 1692 make_device(device_t parent, const char *name, int unit) 1693 { 1694 device_t dev; 1695 devclass_t dc; 1696 1697 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1698 1699 if (name) { 1700 dc = devclass_find_internal(name, NULL, TRUE); 1701 if (!dc) { 1702 printf("make_device: can't find device class %s\n", 1703 name); 1704 return (NULL); 1705 } 1706 } else { 1707 dc = NULL; 1708 } 1709 1710 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1711 if (!dev) 1712 return (NULL); 1713 1714 dev->parent = parent; 1715 TAILQ_INIT(&dev->children); 1716 kobj_init((kobj_t) dev, &null_class); 1717 dev->driver = NULL; 1718 dev->devclass = NULL; 1719 dev->unit = unit; 1720 dev->nameunit = NULL; 1721 dev->desc = NULL; 1722 dev->busy = 0; 1723 dev->devflags = 0; 1724 dev->flags = DF_ENABLED; 1725 dev->order = 0; 1726 if (unit == -1) 1727 dev->flags |= DF_WILDCARD; 1728 if (name) { 1729 dev->flags |= DF_FIXEDCLASS; 1730 if (devclass_add_device(dc, dev)) { 1731 kobj_delete((kobj_t) dev, M_BUS); 1732 return (NULL); 1733 } 1734 } 1735 dev->ivars = NULL; 1736 dev->softc = NULL; 1737 1738 dev->state = DS_NOTPRESENT; 1739 1740 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1741 bus_data_generation_update(); 1742 1743 return (dev); 1744 } 1745 1746 /** 1747 * @internal 1748 * @brief Print a description of a device. 1749 */ 1750 static int 1751 device_print_child(device_t dev, device_t child) 1752 { 1753 int retval = 0; 1754 1755 if (device_is_alive(child)) 1756 retval += BUS_PRINT_CHILD(dev, child); 1757 else 1758 retval += device_printf(child, " not found\n"); 1759 1760 return (retval); 1761 } 1762 1763 /** 1764 * @brief Create a new device 1765 * 1766 * This creates a new device and adds it as a child of an existing 1767 * parent device. The new device will be added after the last existing 1768 * child with order zero. 1769 * 1770 * @param dev the device which will be the parent of the 1771 * new child device 1772 * @param name devclass name for new device or @c NULL if not 1773 * specified 1774 * @param unit unit number for new device or @c -1 if not 1775 * specified 1776 * 1777 * @returns the new device 1778 */ 1779 device_t 1780 device_add_child(device_t dev, const char *name, int unit) 1781 { 1782 return (device_add_child_ordered(dev, 0, name, unit)); 1783 } 1784 1785 /** 1786 * @brief Create a new device 1787 * 1788 * This creates a new device and adds it as a child of an existing 1789 * parent device. The new device will be added after the last existing 1790 * child with the same order. 1791 * 1792 * @param dev the device which will be the parent of the 1793 * new child device 1794 * @param order a value which is used to partially sort the 1795 * children of @p dev - devices created using 1796 * lower values of @p order appear first in @p 1797 * dev's list of children 1798 * @param name devclass name for new device or @c NULL if not 1799 * specified 1800 * @param unit unit number for new device or @c -1 if not 1801 * specified 1802 * 1803 * @returns the new device 1804 */ 1805 device_t 1806 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1807 { 1808 device_t child; 1809 device_t place; 1810 1811 PDEBUG(("%s at %s with order %u as unit %d", 1812 name, DEVICENAME(dev), order, unit)); 1813 KASSERT(name != NULL || unit == -1, 1814 ("child device with wildcard name and specific unit number")); 1815 1816 child = make_device(dev, name, unit); 1817 if (child == NULL) 1818 return (child); 1819 child->order = order; 1820 1821 TAILQ_FOREACH(place, &dev->children, link) { 1822 if (place->order > order) 1823 break; 1824 } 1825 1826 if (place) { 1827 /* 1828 * The device 'place' is the first device whose order is 1829 * greater than the new child. 1830 */ 1831 TAILQ_INSERT_BEFORE(place, child, link); 1832 } else { 1833 /* 1834 * The new child's order is greater or equal to the order of 1835 * any existing device. Add the child to the tail of the list. 1836 */ 1837 TAILQ_INSERT_TAIL(&dev->children, child, link); 1838 } 1839 1840 bus_data_generation_update(); 1841 return (child); 1842 } 1843 1844 /** 1845 * @brief Delete a device 1846 * 1847 * This function deletes a device along with all of its children. If 1848 * the device currently has a driver attached to it, the device is 1849 * detached first using device_detach(). 1850 * 1851 * @param dev the parent device 1852 * @param child the device to delete 1853 * 1854 * @retval 0 success 1855 * @retval non-zero a unit error code describing the error 1856 */ 1857 int 1858 device_delete_child(device_t dev, device_t child) 1859 { 1860 int error; 1861 device_t grandchild; 1862 1863 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1864 1865 /* remove children first */ 1866 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1867 error = device_delete_child(child, grandchild); 1868 if (error) 1869 return (error); 1870 } 1871 1872 if ((error = device_detach(child)) != 0) 1873 return (error); 1874 if (child->devclass) 1875 devclass_delete_device(child->devclass, child); 1876 if (child->parent) 1877 BUS_CHILD_DELETED(dev, child); 1878 TAILQ_REMOVE(&dev->children, child, link); 1879 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1880 kobj_delete((kobj_t) child, M_BUS); 1881 1882 bus_data_generation_update(); 1883 return (0); 1884 } 1885 1886 /** 1887 * @brief Delete all children devices of the given device, if any. 1888 * 1889 * This function deletes all children devices of the given device, if 1890 * any, using the device_delete_child() function for each device it 1891 * finds. If a child device cannot be deleted, this function will 1892 * return an error code. 1893 * 1894 * @param dev the parent device 1895 * 1896 * @retval 0 success 1897 * @retval non-zero a device would not detach 1898 */ 1899 int 1900 device_delete_children(device_t dev) 1901 { 1902 device_t child; 1903 int error; 1904 1905 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1906 1907 error = 0; 1908 1909 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1910 error = device_delete_child(dev, child); 1911 if (error) { 1912 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1913 break; 1914 } 1915 } 1916 return (error); 1917 } 1918 1919 /** 1920 * @brief Find a device given a unit number 1921 * 1922 * This is similar to devclass_get_devices() but only searches for 1923 * devices which have @p dev as a parent. 1924 * 1925 * @param dev the parent device to search 1926 * @param unit the unit number to search for. If the unit is -1, 1927 * return the first child of @p dev which has name 1928 * @p classname (that is, the one with the lowest unit.) 1929 * 1930 * @returns the device with the given unit number or @c 1931 * NULL if there is no such device 1932 */ 1933 device_t 1934 device_find_child(device_t dev, const char *classname, int unit) 1935 { 1936 devclass_t dc; 1937 device_t child; 1938 1939 dc = devclass_find(classname); 1940 if (!dc) 1941 return (NULL); 1942 1943 if (unit != -1) { 1944 child = devclass_get_device(dc, unit); 1945 if (child && child->parent == dev) 1946 return (child); 1947 } else { 1948 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1949 child = devclass_get_device(dc, unit); 1950 if (child && child->parent == dev) 1951 return (child); 1952 } 1953 } 1954 return (NULL); 1955 } 1956 1957 /** 1958 * @internal 1959 */ 1960 static driverlink_t 1961 first_matching_driver(devclass_t dc, device_t dev) 1962 { 1963 if (dev->devclass) 1964 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1965 return (TAILQ_FIRST(&dc->drivers)); 1966 } 1967 1968 /** 1969 * @internal 1970 */ 1971 static driverlink_t 1972 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1973 { 1974 if (dev->devclass) { 1975 driverlink_t dl; 1976 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1977 if (!strcmp(dev->devclass->name, dl->driver->name)) 1978 return (dl); 1979 return (NULL); 1980 } 1981 return (TAILQ_NEXT(last, link)); 1982 } 1983 1984 /** 1985 * @internal 1986 */ 1987 int 1988 device_probe_child(device_t dev, device_t child) 1989 { 1990 devclass_t dc; 1991 driverlink_t best = NULL; 1992 driverlink_t dl; 1993 int result, pri = 0; 1994 int hasclass = (child->devclass != NULL); 1995 1996 GIANT_REQUIRED; 1997 1998 dc = dev->devclass; 1999 if (!dc) 2000 panic("device_probe_child: parent device has no devclass"); 2001 2002 /* 2003 * If the state is already probed, then return. However, don't 2004 * return if we can rebid this object. 2005 */ 2006 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2007 return (0); 2008 2009 for (; dc; dc = dc->parent) { 2010 for (dl = first_matching_driver(dc, child); 2011 dl; 2012 dl = next_matching_driver(dc, child, dl)) { 2013 /* If this driver's pass is too high, then ignore it. */ 2014 if (dl->pass > bus_current_pass) 2015 continue; 2016 2017 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2018 result = device_set_driver(child, dl->driver); 2019 if (result == ENOMEM) 2020 return (result); 2021 else if (result != 0) 2022 continue; 2023 if (!hasclass) { 2024 if (device_set_devclass(child, 2025 dl->driver->name) != 0) { 2026 char const * devname = 2027 device_get_name(child); 2028 if (devname == NULL) 2029 devname = "(unknown)"; 2030 printf("driver bug: Unable to set " 2031 "devclass (class: %s " 2032 "devname: %s)\n", 2033 dl->driver->name, 2034 devname); 2035 (void)device_set_driver(child, NULL); 2036 continue; 2037 } 2038 } 2039 2040 /* Fetch any flags for the device before probing. */ 2041 resource_int_value(dl->driver->name, child->unit, 2042 "flags", &child->devflags); 2043 2044 result = DEVICE_PROBE(child); 2045 2046 /* Reset flags and devclass before the next probe. */ 2047 child->devflags = 0; 2048 if (!hasclass) 2049 (void)device_set_devclass(child, NULL); 2050 2051 /* 2052 * If the driver returns SUCCESS, there can be 2053 * no higher match for this device. 2054 */ 2055 if (result == 0) { 2056 best = dl; 2057 pri = 0; 2058 break; 2059 } 2060 2061 /* 2062 * The driver returned an error so it 2063 * certainly doesn't match. 2064 */ 2065 if (result > 0) { 2066 (void)device_set_driver(child, NULL); 2067 continue; 2068 } 2069 2070 /* 2071 * A priority lower than SUCCESS, remember the 2072 * best matching driver. Initialise the value 2073 * of pri for the first match. 2074 */ 2075 if (best == NULL || result > pri) { 2076 /* 2077 * Probes that return BUS_PROBE_NOWILDCARD 2078 * or lower only match when they are set 2079 * in stone by the parent bus. 2080 */ 2081 if (result <= BUS_PROBE_NOWILDCARD && 2082 child->flags & DF_WILDCARD) 2083 continue; 2084 best = dl; 2085 pri = result; 2086 continue; 2087 } 2088 } 2089 /* 2090 * If we have an unambiguous match in this devclass, 2091 * don't look in the parent. 2092 */ 2093 if (best && pri == 0) 2094 break; 2095 } 2096 2097 /* 2098 * If we found a driver, change state and initialise the devclass. 2099 */ 2100 /* XXX What happens if we rebid and got no best? */ 2101 if (best) { 2102 /* 2103 * If this device was attached, and we were asked to 2104 * rescan, and it is a different driver, then we have 2105 * to detach the old driver and reattach this new one. 2106 * Note, we don't have to check for DF_REBID here 2107 * because if the state is > DS_ALIVE, we know it must 2108 * be. 2109 * 2110 * This assumes that all DF_REBID drivers can have 2111 * their probe routine called at any time and that 2112 * they are idempotent as well as completely benign in 2113 * normal operations. 2114 * 2115 * We also have to make sure that the detach 2116 * succeeded, otherwise we fail the operation (or 2117 * maybe it should just fail silently? I'm torn). 2118 */ 2119 if (child->state > DS_ALIVE && best->driver != child->driver) 2120 if ((result = device_detach(dev)) != 0) 2121 return (result); 2122 2123 /* Set the winning driver, devclass, and flags. */ 2124 if (!child->devclass) { 2125 result = device_set_devclass(child, best->driver->name); 2126 if (result != 0) 2127 return (result); 2128 } 2129 result = device_set_driver(child, best->driver); 2130 if (result != 0) 2131 return (result); 2132 resource_int_value(best->driver->name, child->unit, 2133 "flags", &child->devflags); 2134 2135 if (pri < 0) { 2136 /* 2137 * A bit bogus. Call the probe method again to make 2138 * sure that we have the right description. 2139 */ 2140 DEVICE_PROBE(child); 2141 #if 0 2142 child->flags |= DF_REBID; 2143 #endif 2144 } else 2145 child->flags &= ~DF_REBID; 2146 child->state = DS_ALIVE; 2147 2148 bus_data_generation_update(); 2149 return (0); 2150 } 2151 2152 return (ENXIO); 2153 } 2154 2155 /** 2156 * @brief Return the parent of a device 2157 */ 2158 device_t 2159 device_get_parent(device_t dev) 2160 { 2161 return (dev->parent); 2162 } 2163 2164 /** 2165 * @brief Get a list of children of a device 2166 * 2167 * An array containing a list of all the children of the given device 2168 * is allocated and returned in @p *devlistp. The number of devices 2169 * in the array is returned in @p *devcountp. The caller should free 2170 * the array using @c free(p, M_TEMP). 2171 * 2172 * @param dev the device to examine 2173 * @param devlistp points at location for array pointer return 2174 * value 2175 * @param devcountp points at location for array size return value 2176 * 2177 * @retval 0 success 2178 * @retval ENOMEM the array allocation failed 2179 */ 2180 int 2181 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2182 { 2183 int count; 2184 device_t child; 2185 device_t *list; 2186 2187 count = 0; 2188 TAILQ_FOREACH(child, &dev->children, link) { 2189 count++; 2190 } 2191 if (count == 0) { 2192 *devlistp = NULL; 2193 *devcountp = 0; 2194 return (0); 2195 } 2196 2197 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2198 if (!list) 2199 return (ENOMEM); 2200 2201 count = 0; 2202 TAILQ_FOREACH(child, &dev->children, link) { 2203 list[count] = child; 2204 count++; 2205 } 2206 2207 *devlistp = list; 2208 *devcountp = count; 2209 2210 return (0); 2211 } 2212 2213 /** 2214 * @brief Return the current driver for the device or @c NULL if there 2215 * is no driver currently attached 2216 */ 2217 driver_t * 2218 device_get_driver(device_t dev) 2219 { 2220 return (dev->driver); 2221 } 2222 2223 /** 2224 * @brief Return the current devclass for the device or @c NULL if 2225 * there is none. 2226 */ 2227 devclass_t 2228 device_get_devclass(device_t dev) 2229 { 2230 return (dev->devclass); 2231 } 2232 2233 /** 2234 * @brief Return the name of the device's devclass or @c NULL if there 2235 * is none. 2236 */ 2237 const char * 2238 device_get_name(device_t dev) 2239 { 2240 if (dev != NULL && dev->devclass) 2241 return (devclass_get_name(dev->devclass)); 2242 return (NULL); 2243 } 2244 2245 /** 2246 * @brief Return a string containing the device's devclass name 2247 * followed by an ascii representation of the device's unit number 2248 * (e.g. @c "foo2"). 2249 */ 2250 const char * 2251 device_get_nameunit(device_t dev) 2252 { 2253 return (dev->nameunit); 2254 } 2255 2256 /** 2257 * @brief Return the device's unit number. 2258 */ 2259 int 2260 device_get_unit(device_t dev) 2261 { 2262 return (dev->unit); 2263 } 2264 2265 /** 2266 * @brief Return the device's description string 2267 */ 2268 const char * 2269 device_get_desc(device_t dev) 2270 { 2271 return (dev->desc); 2272 } 2273 2274 /** 2275 * @brief Return the device's flags 2276 */ 2277 uint32_t 2278 device_get_flags(device_t dev) 2279 { 2280 return (dev->devflags); 2281 } 2282 2283 struct sysctl_ctx_list * 2284 device_get_sysctl_ctx(device_t dev) 2285 { 2286 return (&dev->sysctl_ctx); 2287 } 2288 2289 struct sysctl_oid * 2290 device_get_sysctl_tree(device_t dev) 2291 { 2292 return (dev->sysctl_tree); 2293 } 2294 2295 /** 2296 * @brief Print the name of the device followed by a colon and a space 2297 * 2298 * @returns the number of characters printed 2299 */ 2300 int 2301 device_print_prettyname(device_t dev) 2302 { 2303 const char *name = device_get_name(dev); 2304 2305 if (name == NULL) 2306 return (printf("unknown: ")); 2307 return (printf("%s%d: ", name, device_get_unit(dev))); 2308 } 2309 2310 /** 2311 * @brief Print the name of the device followed by a colon, a space 2312 * and the result of calling vprintf() with the value of @p fmt and 2313 * the following arguments. 2314 * 2315 * @returns the number of characters printed 2316 */ 2317 int 2318 device_printf(device_t dev, const char * fmt, ...) 2319 { 2320 va_list ap; 2321 int retval; 2322 2323 retval = device_print_prettyname(dev); 2324 va_start(ap, fmt); 2325 retval += vprintf(fmt, ap); 2326 va_end(ap); 2327 return (retval); 2328 } 2329 2330 /** 2331 * @internal 2332 */ 2333 static void 2334 device_set_desc_internal(device_t dev, const char* desc, int copy) 2335 { 2336 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2337 free(dev->desc, M_BUS); 2338 dev->flags &= ~DF_DESCMALLOCED; 2339 dev->desc = NULL; 2340 } 2341 2342 if (copy && desc) { 2343 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2344 if (dev->desc) { 2345 strcpy(dev->desc, desc); 2346 dev->flags |= DF_DESCMALLOCED; 2347 } 2348 } else { 2349 /* Avoid a -Wcast-qual warning */ 2350 dev->desc = (char *)(uintptr_t) desc; 2351 } 2352 2353 bus_data_generation_update(); 2354 } 2355 2356 /** 2357 * @brief Set the device's description 2358 * 2359 * The value of @c desc should be a string constant that will not 2360 * change (at least until the description is changed in a subsequent 2361 * call to device_set_desc() or device_set_desc_copy()). 2362 */ 2363 void 2364 device_set_desc(device_t dev, const char* desc) 2365 { 2366 device_set_desc_internal(dev, desc, FALSE); 2367 } 2368 2369 /** 2370 * @brief Set the device's description 2371 * 2372 * The string pointed to by @c desc is copied. Use this function if 2373 * the device description is generated, (e.g. with sprintf()). 2374 */ 2375 void 2376 device_set_desc_copy(device_t dev, const char* desc) 2377 { 2378 device_set_desc_internal(dev, desc, TRUE); 2379 } 2380 2381 /** 2382 * @brief Set the device's flags 2383 */ 2384 void 2385 device_set_flags(device_t dev, uint32_t flags) 2386 { 2387 dev->devflags = flags; 2388 } 2389 2390 /** 2391 * @brief Return the device's softc field 2392 * 2393 * The softc is allocated and zeroed when a driver is attached, based 2394 * on the size field of the driver. 2395 */ 2396 void * 2397 device_get_softc(device_t dev) 2398 { 2399 return (dev->softc); 2400 } 2401 2402 /** 2403 * @brief Set the device's softc field 2404 * 2405 * Most drivers do not need to use this since the softc is allocated 2406 * automatically when the driver is attached. 2407 */ 2408 void 2409 device_set_softc(device_t dev, void *softc) 2410 { 2411 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2412 free(dev->softc, M_BUS_SC); 2413 dev->softc = softc; 2414 if (dev->softc) 2415 dev->flags |= DF_EXTERNALSOFTC; 2416 else 2417 dev->flags &= ~DF_EXTERNALSOFTC; 2418 } 2419 2420 /** 2421 * @brief Free claimed softc 2422 * 2423 * Most drivers do not need to use this since the softc is freed 2424 * automatically when the driver is detached. 2425 */ 2426 void 2427 device_free_softc(void *softc) 2428 { 2429 free(softc, M_BUS_SC); 2430 } 2431 2432 /** 2433 * @brief Claim softc 2434 * 2435 * This function can be used to let the driver free the automatically 2436 * allocated softc using "device_free_softc()". This function is 2437 * useful when the driver is refcounting the softc and the softc 2438 * cannot be freed when the "device_detach" method is called. 2439 */ 2440 void 2441 device_claim_softc(device_t dev) 2442 { 2443 if (dev->softc) 2444 dev->flags |= DF_EXTERNALSOFTC; 2445 else 2446 dev->flags &= ~DF_EXTERNALSOFTC; 2447 } 2448 2449 /** 2450 * @brief Get the device's ivars field 2451 * 2452 * The ivars field is used by the parent device to store per-device 2453 * state (e.g. the physical location of the device or a list of 2454 * resources). 2455 */ 2456 void * 2457 device_get_ivars(device_t dev) 2458 { 2459 2460 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2461 return (dev->ivars); 2462 } 2463 2464 /** 2465 * @brief Set the device's ivars field 2466 */ 2467 void 2468 device_set_ivars(device_t dev, void * ivars) 2469 { 2470 2471 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2472 dev->ivars = ivars; 2473 } 2474 2475 /** 2476 * @brief Return the device's state 2477 */ 2478 device_state_t 2479 device_get_state(device_t dev) 2480 { 2481 return (dev->state); 2482 } 2483 2484 /** 2485 * @brief Set the DF_ENABLED flag for the device 2486 */ 2487 void 2488 device_enable(device_t dev) 2489 { 2490 dev->flags |= DF_ENABLED; 2491 } 2492 2493 /** 2494 * @brief Clear the DF_ENABLED flag for the device 2495 */ 2496 void 2497 device_disable(device_t dev) 2498 { 2499 dev->flags &= ~DF_ENABLED; 2500 } 2501 2502 /** 2503 * @brief Increment the busy counter for the device 2504 */ 2505 void 2506 device_busy(device_t dev) 2507 { 2508 if (dev->state < DS_ATTACHING) 2509 panic("device_busy: called for unattached device"); 2510 if (dev->busy == 0 && dev->parent) 2511 device_busy(dev->parent); 2512 dev->busy++; 2513 if (dev->state == DS_ATTACHED) 2514 dev->state = DS_BUSY; 2515 } 2516 2517 /** 2518 * @brief Decrement the busy counter for the device 2519 */ 2520 void 2521 device_unbusy(device_t dev) 2522 { 2523 if (dev->busy != 0 && dev->state != DS_BUSY && 2524 dev->state != DS_ATTACHING) 2525 panic("device_unbusy: called for non-busy device %s", 2526 device_get_nameunit(dev)); 2527 dev->busy--; 2528 if (dev->busy == 0) { 2529 if (dev->parent) 2530 device_unbusy(dev->parent); 2531 if (dev->state == DS_BUSY) 2532 dev->state = DS_ATTACHED; 2533 } 2534 } 2535 2536 /** 2537 * @brief Set the DF_QUIET flag for the device 2538 */ 2539 void 2540 device_quiet(device_t dev) 2541 { 2542 dev->flags |= DF_QUIET; 2543 } 2544 2545 /** 2546 * @brief Clear the DF_QUIET flag for the device 2547 */ 2548 void 2549 device_verbose(device_t dev) 2550 { 2551 dev->flags &= ~DF_QUIET; 2552 } 2553 2554 /** 2555 * @brief Return non-zero if the DF_QUIET flag is set on the device 2556 */ 2557 int 2558 device_is_quiet(device_t dev) 2559 { 2560 return ((dev->flags & DF_QUIET) != 0); 2561 } 2562 2563 /** 2564 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2565 */ 2566 int 2567 device_is_enabled(device_t dev) 2568 { 2569 return ((dev->flags & DF_ENABLED) != 0); 2570 } 2571 2572 /** 2573 * @brief Return non-zero if the device was successfully probed 2574 */ 2575 int 2576 device_is_alive(device_t dev) 2577 { 2578 return (dev->state >= DS_ALIVE); 2579 } 2580 2581 /** 2582 * @brief Return non-zero if the device currently has a driver 2583 * attached to it 2584 */ 2585 int 2586 device_is_attached(device_t dev) 2587 { 2588 return (dev->state >= DS_ATTACHED); 2589 } 2590 2591 /** 2592 * @brief Set the devclass of a device 2593 * @see devclass_add_device(). 2594 */ 2595 int 2596 device_set_devclass(device_t dev, const char *classname) 2597 { 2598 devclass_t dc; 2599 int error; 2600 2601 if (!classname) { 2602 if (dev->devclass) 2603 devclass_delete_device(dev->devclass, dev); 2604 return (0); 2605 } 2606 2607 if (dev->devclass) { 2608 printf("device_set_devclass: device class already set\n"); 2609 return (EINVAL); 2610 } 2611 2612 dc = devclass_find_internal(classname, NULL, TRUE); 2613 if (!dc) 2614 return (ENOMEM); 2615 2616 error = devclass_add_device(dc, dev); 2617 2618 bus_data_generation_update(); 2619 return (error); 2620 } 2621 2622 /** 2623 * @brief Set the driver of a device 2624 * 2625 * @retval 0 success 2626 * @retval EBUSY the device already has a driver attached 2627 * @retval ENOMEM a memory allocation failure occurred 2628 */ 2629 int 2630 device_set_driver(device_t dev, driver_t *driver) 2631 { 2632 if (dev->state >= DS_ATTACHED) 2633 return (EBUSY); 2634 2635 if (dev->driver == driver) 2636 return (0); 2637 2638 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2639 free(dev->softc, M_BUS_SC); 2640 dev->softc = NULL; 2641 } 2642 device_set_desc(dev, NULL); 2643 kobj_delete((kobj_t) dev, NULL); 2644 dev->driver = driver; 2645 if (driver) { 2646 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2647 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2648 dev->softc = malloc(driver->size, M_BUS_SC, 2649 M_NOWAIT | M_ZERO); 2650 if (!dev->softc) { 2651 kobj_delete((kobj_t) dev, NULL); 2652 kobj_init((kobj_t) dev, &null_class); 2653 dev->driver = NULL; 2654 return (ENOMEM); 2655 } 2656 } 2657 } else { 2658 kobj_init((kobj_t) dev, &null_class); 2659 } 2660 2661 bus_data_generation_update(); 2662 return (0); 2663 } 2664 2665 /** 2666 * @brief Probe a device, and return this status. 2667 * 2668 * This function is the core of the device autoconfiguration 2669 * system. Its purpose is to select a suitable driver for a device and 2670 * then call that driver to initialise the hardware appropriately. The 2671 * driver is selected by calling the DEVICE_PROBE() method of a set of 2672 * candidate drivers and then choosing the driver which returned the 2673 * best value. This driver is then attached to the device using 2674 * device_attach(). 2675 * 2676 * The set of suitable drivers is taken from the list of drivers in 2677 * the parent device's devclass. If the device was originally created 2678 * with a specific class name (see device_add_child()), only drivers 2679 * with that name are probed, otherwise all drivers in the devclass 2680 * are probed. If no drivers return successful probe values in the 2681 * parent devclass, the search continues in the parent of that 2682 * devclass (see devclass_get_parent()) if any. 2683 * 2684 * @param dev the device to initialise 2685 * 2686 * @retval 0 success 2687 * @retval ENXIO no driver was found 2688 * @retval ENOMEM memory allocation failure 2689 * @retval non-zero some other unix error code 2690 * @retval -1 Device already attached 2691 */ 2692 int 2693 device_probe(device_t dev) 2694 { 2695 int error; 2696 2697 GIANT_REQUIRED; 2698 2699 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2700 return (-1); 2701 2702 if (!(dev->flags & DF_ENABLED)) { 2703 if (bootverbose && device_get_name(dev) != NULL) { 2704 device_print_prettyname(dev); 2705 printf("not probed (disabled)\n"); 2706 } 2707 return (-1); 2708 } 2709 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2710 if (bus_current_pass == BUS_PASS_DEFAULT && 2711 !(dev->flags & DF_DONENOMATCH)) { 2712 BUS_PROBE_NOMATCH(dev->parent, dev); 2713 devnomatch(dev); 2714 dev->flags |= DF_DONENOMATCH; 2715 } 2716 return (error); 2717 } 2718 return (0); 2719 } 2720 2721 /** 2722 * @brief Probe a device and attach a driver if possible 2723 * 2724 * calls device_probe() and attaches if that was successful. 2725 */ 2726 int 2727 device_probe_and_attach(device_t dev) 2728 { 2729 int error; 2730 2731 GIANT_REQUIRED; 2732 2733 error = device_probe(dev); 2734 if (error == -1) 2735 return (0); 2736 else if (error != 0) 2737 return (error); 2738 return (device_attach(dev)); 2739 } 2740 2741 /** 2742 * @brief Attach a device driver to a device 2743 * 2744 * This function is a wrapper around the DEVICE_ATTACH() driver 2745 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2746 * device's sysctl tree, optionally prints a description of the device 2747 * and queues a notification event for user-based device management 2748 * services. 2749 * 2750 * Normally this function is only called internally from 2751 * device_probe_and_attach(). 2752 * 2753 * @param dev the device to initialise 2754 * 2755 * @retval 0 success 2756 * @retval ENXIO no driver was found 2757 * @retval ENOMEM memory allocation failure 2758 * @retval non-zero some other unix error code 2759 */ 2760 int 2761 device_attach(device_t dev) 2762 { 2763 int error; 2764 2765 device_sysctl_init(dev); 2766 if (!device_is_quiet(dev)) 2767 device_print_child(dev->parent, dev); 2768 dev->state = DS_ATTACHING; 2769 if ((error = DEVICE_ATTACH(dev)) != 0) { 2770 printf("device_attach: %s%d attach returned %d\n", 2771 dev->driver->name, dev->unit, error); 2772 if (!(dev->flags & DF_FIXEDCLASS)) 2773 devclass_delete_device(dev->devclass, dev); 2774 (void)device_set_driver(dev, NULL); 2775 device_sysctl_fini(dev); 2776 KASSERT(dev->busy == 0, ("attach failed but busy")); 2777 dev->state = DS_NOTPRESENT; 2778 return (error); 2779 } 2780 device_sysctl_update(dev); 2781 if (dev->busy) 2782 dev->state = DS_BUSY; 2783 else 2784 dev->state = DS_ATTACHED; 2785 dev->flags &= ~DF_DONENOMATCH; 2786 devadded(dev); 2787 return (0); 2788 } 2789 2790 /** 2791 * @brief Detach a driver from a device 2792 * 2793 * This function is a wrapper around the DEVICE_DETACH() driver 2794 * method. If the call to DEVICE_DETACH() succeeds, it calls 2795 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2796 * notification event for user-based device management services and 2797 * cleans up the device's sysctl tree. 2798 * 2799 * @param dev the device to un-initialise 2800 * 2801 * @retval 0 success 2802 * @retval ENXIO no driver was found 2803 * @retval ENOMEM memory allocation failure 2804 * @retval non-zero some other unix error code 2805 */ 2806 int 2807 device_detach(device_t dev) 2808 { 2809 int error; 2810 2811 GIANT_REQUIRED; 2812 2813 PDEBUG(("%s", DEVICENAME(dev))); 2814 if (dev->state == DS_BUSY) 2815 return (EBUSY); 2816 if (dev->state != DS_ATTACHED) 2817 return (0); 2818 2819 if ((error = DEVICE_DETACH(dev)) != 0) 2820 return (error); 2821 devremoved(dev); 2822 if (!device_is_quiet(dev)) 2823 device_printf(dev, "detached\n"); 2824 if (dev->parent) 2825 BUS_CHILD_DETACHED(dev->parent, dev); 2826 2827 if (!(dev->flags & DF_FIXEDCLASS)) 2828 devclass_delete_device(dev->devclass, dev); 2829 2830 dev->state = DS_NOTPRESENT; 2831 (void)device_set_driver(dev, NULL); 2832 device_sysctl_fini(dev); 2833 2834 return (0); 2835 } 2836 2837 /** 2838 * @brief Tells a driver to quiesce itself. 2839 * 2840 * This function is a wrapper around the DEVICE_QUIESCE() driver 2841 * method. If the call to DEVICE_QUIESCE() succeeds. 2842 * 2843 * @param dev the device to quiesce 2844 * 2845 * @retval 0 success 2846 * @retval ENXIO no driver was found 2847 * @retval ENOMEM memory allocation failure 2848 * @retval non-zero some other unix error code 2849 */ 2850 int 2851 device_quiesce(device_t dev) 2852 { 2853 2854 PDEBUG(("%s", DEVICENAME(dev))); 2855 if (dev->state == DS_BUSY) 2856 return (EBUSY); 2857 if (dev->state != DS_ATTACHED) 2858 return (0); 2859 2860 return (DEVICE_QUIESCE(dev)); 2861 } 2862 2863 /** 2864 * @brief Notify a device of system shutdown 2865 * 2866 * This function calls the DEVICE_SHUTDOWN() driver method if the 2867 * device currently has an attached driver. 2868 * 2869 * @returns the value returned by DEVICE_SHUTDOWN() 2870 */ 2871 int 2872 device_shutdown(device_t dev) 2873 { 2874 if (dev->state < DS_ATTACHED) 2875 return (0); 2876 return (DEVICE_SHUTDOWN(dev)); 2877 } 2878 2879 /** 2880 * @brief Set the unit number of a device 2881 * 2882 * This function can be used to override the unit number used for a 2883 * device (e.g. to wire a device to a pre-configured unit number). 2884 */ 2885 int 2886 device_set_unit(device_t dev, int unit) 2887 { 2888 devclass_t dc; 2889 int err; 2890 2891 dc = device_get_devclass(dev); 2892 if (unit < dc->maxunit && dc->devices[unit]) 2893 return (EBUSY); 2894 err = devclass_delete_device(dc, dev); 2895 if (err) 2896 return (err); 2897 dev->unit = unit; 2898 err = devclass_add_device(dc, dev); 2899 if (err) 2900 return (err); 2901 2902 bus_data_generation_update(); 2903 return (0); 2904 } 2905 2906 /*======================================*/ 2907 /* 2908 * Some useful method implementations to make life easier for bus drivers. 2909 */ 2910 2911 /** 2912 * @brief Initialise a resource list. 2913 * 2914 * @param rl the resource list to initialise 2915 */ 2916 void 2917 resource_list_init(struct resource_list *rl) 2918 { 2919 STAILQ_INIT(rl); 2920 } 2921 2922 /** 2923 * @brief Reclaim memory used by a resource list. 2924 * 2925 * This function frees the memory for all resource entries on the list 2926 * (if any). 2927 * 2928 * @param rl the resource list to free 2929 */ 2930 void 2931 resource_list_free(struct resource_list *rl) 2932 { 2933 struct resource_list_entry *rle; 2934 2935 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2936 if (rle->res) 2937 panic("resource_list_free: resource entry is busy"); 2938 STAILQ_REMOVE_HEAD(rl, link); 2939 free(rle, M_BUS); 2940 } 2941 } 2942 2943 /** 2944 * @brief Add a resource entry. 2945 * 2946 * This function adds a resource entry using the given @p type, @p 2947 * start, @p end and @p count values. A rid value is chosen by 2948 * searching sequentially for the first unused rid starting at zero. 2949 * 2950 * @param rl the resource list to edit 2951 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2952 * @param start the start address of the resource 2953 * @param end the end address of the resource 2954 * @param count XXX end-start+1 2955 */ 2956 int 2957 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2958 u_long end, u_long count) 2959 { 2960 int rid; 2961 2962 rid = 0; 2963 while (resource_list_find(rl, type, rid) != NULL) 2964 rid++; 2965 resource_list_add(rl, type, rid, start, end, count); 2966 return (rid); 2967 } 2968 2969 /** 2970 * @brief Add or modify a resource entry. 2971 * 2972 * If an existing entry exists with the same type and rid, it will be 2973 * modified using the given values of @p start, @p end and @p 2974 * count. If no entry exists, a new one will be created using the 2975 * given values. The resource list entry that matches is then returned. 2976 * 2977 * @param rl the resource list to edit 2978 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2979 * @param rid the resource identifier 2980 * @param start the start address of the resource 2981 * @param end the end address of the resource 2982 * @param count XXX end-start+1 2983 */ 2984 struct resource_list_entry * 2985 resource_list_add(struct resource_list *rl, int type, int rid, 2986 u_long start, u_long end, u_long count) 2987 { 2988 struct resource_list_entry *rle; 2989 2990 rle = resource_list_find(rl, type, rid); 2991 if (!rle) { 2992 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2993 M_NOWAIT); 2994 if (!rle) 2995 panic("resource_list_add: can't record entry"); 2996 STAILQ_INSERT_TAIL(rl, rle, link); 2997 rle->type = type; 2998 rle->rid = rid; 2999 rle->res = NULL; 3000 rle->flags = 0; 3001 } 3002 3003 if (rle->res) 3004 panic("resource_list_add: resource entry is busy"); 3005 3006 rle->start = start; 3007 rle->end = end; 3008 rle->count = count; 3009 return (rle); 3010 } 3011 3012 /** 3013 * @brief Determine if a resource entry is busy. 3014 * 3015 * Returns true if a resource entry is busy meaning that it has an 3016 * associated resource that is not an unallocated "reserved" resource. 3017 * 3018 * @param rl the resource list to search 3019 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3020 * @param rid the resource identifier 3021 * 3022 * @returns Non-zero if the entry is busy, zero otherwise. 3023 */ 3024 int 3025 resource_list_busy(struct resource_list *rl, int type, int rid) 3026 { 3027 struct resource_list_entry *rle; 3028 3029 rle = resource_list_find(rl, type, rid); 3030 if (rle == NULL || rle->res == NULL) 3031 return (0); 3032 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3033 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3034 ("reserved resource is active")); 3035 return (0); 3036 } 3037 return (1); 3038 } 3039 3040 /** 3041 * @brief Determine if a resource entry is reserved. 3042 * 3043 * Returns true if a resource entry is reserved meaning that it has an 3044 * associated "reserved" resource. The resource can either be 3045 * allocated or unallocated. 3046 * 3047 * @param rl the resource list to search 3048 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3049 * @param rid the resource identifier 3050 * 3051 * @returns Non-zero if the entry is reserved, zero otherwise. 3052 */ 3053 int 3054 resource_list_reserved(struct resource_list *rl, int type, int rid) 3055 { 3056 struct resource_list_entry *rle; 3057 3058 rle = resource_list_find(rl, type, rid); 3059 if (rle != NULL && rle->flags & RLE_RESERVED) 3060 return (1); 3061 return (0); 3062 } 3063 3064 /** 3065 * @brief Find a resource entry by type and rid. 3066 * 3067 * @param rl the resource list to search 3068 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3069 * @param rid the resource identifier 3070 * 3071 * @returns the resource entry pointer or NULL if there is no such 3072 * entry. 3073 */ 3074 struct resource_list_entry * 3075 resource_list_find(struct resource_list *rl, int type, int rid) 3076 { 3077 struct resource_list_entry *rle; 3078 3079 STAILQ_FOREACH(rle, rl, link) { 3080 if (rle->type == type && rle->rid == rid) 3081 return (rle); 3082 } 3083 return (NULL); 3084 } 3085 3086 /** 3087 * @brief Delete a resource entry. 3088 * 3089 * @param rl the resource list to edit 3090 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3091 * @param rid the resource identifier 3092 */ 3093 void 3094 resource_list_delete(struct resource_list *rl, int type, int rid) 3095 { 3096 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3097 3098 if (rle) { 3099 if (rle->res != NULL) 3100 panic("resource_list_delete: resource has not been released"); 3101 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3102 free(rle, M_BUS); 3103 } 3104 } 3105 3106 /** 3107 * @brief Allocate a reserved resource 3108 * 3109 * This can be used by busses to force the allocation of resources 3110 * that are always active in the system even if they are not allocated 3111 * by a driver (e.g. PCI BARs). This function is usually called when 3112 * adding a new child to the bus. The resource is allocated from the 3113 * parent bus when it is reserved. The resource list entry is marked 3114 * with RLE_RESERVED to note that it is a reserved resource. 3115 * 3116 * Subsequent attempts to allocate the resource with 3117 * resource_list_alloc() will succeed the first time and will set 3118 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3119 * resource that has been allocated is released with 3120 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3121 * the actual resource remains allocated. The resource can be released to 3122 * the parent bus by calling resource_list_unreserve(). 3123 * 3124 * @param rl the resource list to allocate from 3125 * @param bus the parent device of @p child 3126 * @param child the device for which the resource is being reserved 3127 * @param type the type of resource to allocate 3128 * @param rid a pointer to the resource identifier 3129 * @param start hint at the start of the resource range - pass 3130 * @c 0UL for any start address 3131 * @param end hint at the end of the resource range - pass 3132 * @c ~0UL for any end address 3133 * @param count hint at the size of range required - pass @c 1 3134 * for any size 3135 * @param flags any extra flags to control the resource 3136 * allocation - see @c RF_XXX flags in 3137 * <sys/rman.h> for details 3138 * 3139 * @returns the resource which was allocated or @c NULL if no 3140 * resource could be allocated 3141 */ 3142 struct resource * 3143 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3144 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3145 { 3146 struct resource_list_entry *rle = NULL; 3147 int passthrough = (device_get_parent(child) != bus); 3148 struct resource *r; 3149 3150 if (passthrough) 3151 panic( 3152 "resource_list_reserve() should only be called for direct children"); 3153 if (flags & RF_ACTIVE) 3154 panic( 3155 "resource_list_reserve() should only reserve inactive resources"); 3156 3157 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3158 flags); 3159 if (r != NULL) { 3160 rle = resource_list_find(rl, type, *rid); 3161 rle->flags |= RLE_RESERVED; 3162 } 3163 return (r); 3164 } 3165 3166 /** 3167 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3168 * 3169 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3170 * and passing the allocation up to the parent of @p bus. This assumes 3171 * that the first entry of @c device_get_ivars(child) is a struct 3172 * resource_list. This also handles 'passthrough' allocations where a 3173 * child is a remote descendant of bus by passing the allocation up to 3174 * the parent of bus. 3175 * 3176 * Typically, a bus driver would store a list of child resources 3177 * somewhere in the child device's ivars (see device_get_ivars()) and 3178 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3179 * then call resource_list_alloc() to perform the allocation. 3180 * 3181 * @param rl the resource list to allocate from 3182 * @param bus the parent device of @p child 3183 * @param child the device which is requesting an allocation 3184 * @param type the type of resource to allocate 3185 * @param rid a pointer to the resource identifier 3186 * @param start hint at the start of the resource range - pass 3187 * @c 0UL for any start address 3188 * @param end hint at the end of the resource range - pass 3189 * @c ~0UL for any end address 3190 * @param count hint at the size of range required - pass @c 1 3191 * for any size 3192 * @param flags any extra flags to control the resource 3193 * allocation - see @c RF_XXX flags in 3194 * <sys/rman.h> for details 3195 * 3196 * @returns the resource which was allocated or @c NULL if no 3197 * resource could be allocated 3198 */ 3199 struct resource * 3200 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3201 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3202 { 3203 struct resource_list_entry *rle = NULL; 3204 int passthrough = (device_get_parent(child) != bus); 3205 int isdefault = (start == 0UL && end == ~0UL); 3206 3207 if (passthrough) { 3208 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3209 type, rid, start, end, count, flags)); 3210 } 3211 3212 rle = resource_list_find(rl, type, *rid); 3213 3214 if (!rle) 3215 return (NULL); /* no resource of that type/rid */ 3216 3217 if (rle->res) { 3218 if (rle->flags & RLE_RESERVED) { 3219 if (rle->flags & RLE_ALLOCATED) 3220 return (NULL); 3221 if ((flags & RF_ACTIVE) && 3222 bus_activate_resource(child, type, *rid, 3223 rle->res) != 0) 3224 return (NULL); 3225 rle->flags |= RLE_ALLOCATED; 3226 return (rle->res); 3227 } 3228 panic("resource_list_alloc: resource entry is busy"); 3229 } 3230 3231 if (isdefault) { 3232 start = rle->start; 3233 count = ulmax(count, rle->count); 3234 end = ulmax(rle->end, start + count - 1); 3235 } 3236 3237 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3238 type, rid, start, end, count, flags); 3239 3240 /* 3241 * Record the new range. 3242 */ 3243 if (rle->res) { 3244 rle->start = rman_get_start(rle->res); 3245 rle->end = rman_get_end(rle->res); 3246 rle->count = count; 3247 } 3248 3249 return (rle->res); 3250 } 3251 3252 /** 3253 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3254 * 3255 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3256 * used with resource_list_alloc(). 3257 * 3258 * @param rl the resource list which was allocated from 3259 * @param bus the parent device of @p child 3260 * @param child the device which is requesting a release 3261 * @param type the type of resource to release 3262 * @param rid the resource identifier 3263 * @param res the resource to release 3264 * 3265 * @retval 0 success 3266 * @retval non-zero a standard unix error code indicating what 3267 * error condition prevented the operation 3268 */ 3269 int 3270 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3271 int type, int rid, struct resource *res) 3272 { 3273 struct resource_list_entry *rle = NULL; 3274 int passthrough = (device_get_parent(child) != bus); 3275 int error; 3276 3277 if (passthrough) { 3278 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3279 type, rid, res)); 3280 } 3281 3282 rle = resource_list_find(rl, type, rid); 3283 3284 if (!rle) 3285 panic("resource_list_release: can't find resource"); 3286 if (!rle->res) 3287 panic("resource_list_release: resource entry is not busy"); 3288 if (rle->flags & RLE_RESERVED) { 3289 if (rle->flags & RLE_ALLOCATED) { 3290 if (rman_get_flags(res) & RF_ACTIVE) { 3291 error = bus_deactivate_resource(child, type, 3292 rid, res); 3293 if (error) 3294 return (error); 3295 } 3296 rle->flags &= ~RLE_ALLOCATED; 3297 return (0); 3298 } 3299 return (EINVAL); 3300 } 3301 3302 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3303 type, rid, res); 3304 if (error) 3305 return (error); 3306 3307 rle->res = NULL; 3308 return (0); 3309 } 3310 3311 /** 3312 * @brief Fully release a reserved resource 3313 * 3314 * Fully releases a resouce reserved via resource_list_reserve(). 3315 * 3316 * @param rl the resource list which was allocated from 3317 * @param bus the parent device of @p child 3318 * @param child the device whose reserved resource is being released 3319 * @param type the type of resource to release 3320 * @param rid the resource identifier 3321 * @param res the resource to release 3322 * 3323 * @retval 0 success 3324 * @retval non-zero a standard unix error code indicating what 3325 * error condition prevented the operation 3326 */ 3327 int 3328 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3329 int type, int rid) 3330 { 3331 struct resource_list_entry *rle = NULL; 3332 int passthrough = (device_get_parent(child) != bus); 3333 3334 if (passthrough) 3335 panic( 3336 "resource_list_unreserve() should only be called for direct children"); 3337 3338 rle = resource_list_find(rl, type, rid); 3339 3340 if (!rle) 3341 panic("resource_list_unreserve: can't find resource"); 3342 if (!(rle->flags & RLE_RESERVED)) 3343 return (EINVAL); 3344 if (rle->flags & RLE_ALLOCATED) 3345 return (EBUSY); 3346 rle->flags &= ~RLE_RESERVED; 3347 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3348 } 3349 3350 /** 3351 * @brief Print a description of resources in a resource list 3352 * 3353 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3354 * The name is printed if at least one resource of the given type is available. 3355 * The format is used to print resource start and end. 3356 * 3357 * @param rl the resource list to print 3358 * @param name the name of @p type, e.g. @c "memory" 3359 * @param type type type of resource entry to print 3360 * @param format printf(9) format string to print resource 3361 * start and end values 3362 * 3363 * @returns the number of characters printed 3364 */ 3365 int 3366 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3367 const char *format) 3368 { 3369 struct resource_list_entry *rle; 3370 int printed, retval; 3371 3372 printed = 0; 3373 retval = 0; 3374 /* Yes, this is kinda cheating */ 3375 STAILQ_FOREACH(rle, rl, link) { 3376 if (rle->type == type) { 3377 if (printed == 0) 3378 retval += printf(" %s ", name); 3379 else 3380 retval += printf(","); 3381 printed++; 3382 retval += printf(format, rle->start); 3383 if (rle->count > 1) { 3384 retval += printf("-"); 3385 retval += printf(format, rle->start + 3386 rle->count - 1); 3387 } 3388 } 3389 } 3390 return (retval); 3391 } 3392 3393 /** 3394 * @brief Releases all the resources in a list. 3395 * 3396 * @param rl The resource list to purge. 3397 * 3398 * @returns nothing 3399 */ 3400 void 3401 resource_list_purge(struct resource_list *rl) 3402 { 3403 struct resource_list_entry *rle; 3404 3405 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3406 if (rle->res) 3407 bus_release_resource(rman_get_device(rle->res), 3408 rle->type, rle->rid, rle->res); 3409 STAILQ_REMOVE_HEAD(rl, link); 3410 free(rle, M_BUS); 3411 } 3412 } 3413 3414 device_t 3415 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3416 { 3417 3418 return (device_add_child_ordered(dev, order, name, unit)); 3419 } 3420 3421 /** 3422 * @brief Helper function for implementing DEVICE_PROBE() 3423 * 3424 * This function can be used to help implement the DEVICE_PROBE() for 3425 * a bus (i.e. a device which has other devices attached to it). It 3426 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3427 * devclass. 3428 */ 3429 int 3430 bus_generic_probe(device_t dev) 3431 { 3432 devclass_t dc = dev->devclass; 3433 driverlink_t dl; 3434 3435 TAILQ_FOREACH(dl, &dc->drivers, link) { 3436 /* 3437 * If this driver's pass is too high, then ignore it. 3438 * For most drivers in the default pass, this will 3439 * never be true. For early-pass drivers they will 3440 * only call the identify routines of eligible drivers 3441 * when this routine is called. Drivers for later 3442 * passes should have their identify routines called 3443 * on early-pass busses during BUS_NEW_PASS(). 3444 */ 3445 if (dl->pass > bus_current_pass) 3446 continue; 3447 DEVICE_IDENTIFY(dl->driver, dev); 3448 } 3449 3450 return (0); 3451 } 3452 3453 /** 3454 * @brief Helper function for implementing DEVICE_ATTACH() 3455 * 3456 * This function can be used to help implement the DEVICE_ATTACH() for 3457 * a bus. It calls device_probe_and_attach() for each of the device's 3458 * children. 3459 */ 3460 int 3461 bus_generic_attach(device_t dev) 3462 { 3463 device_t child; 3464 3465 TAILQ_FOREACH(child, &dev->children, link) { 3466 device_probe_and_attach(child); 3467 } 3468 3469 return (0); 3470 } 3471 3472 /** 3473 * @brief Helper function for implementing DEVICE_DETACH() 3474 * 3475 * This function can be used to help implement the DEVICE_DETACH() for 3476 * a bus. It calls device_detach() for each of the device's 3477 * children. 3478 */ 3479 int 3480 bus_generic_detach(device_t dev) 3481 { 3482 device_t child; 3483 int error; 3484 3485 if (dev->state != DS_ATTACHED) 3486 return (EBUSY); 3487 3488 TAILQ_FOREACH(child, &dev->children, link) { 3489 if ((error = device_detach(child)) != 0) 3490 return (error); 3491 } 3492 3493 return (0); 3494 } 3495 3496 /** 3497 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3498 * 3499 * This function can be used to help implement the DEVICE_SHUTDOWN() 3500 * for a bus. It calls device_shutdown() for each of the device's 3501 * children. 3502 */ 3503 int 3504 bus_generic_shutdown(device_t dev) 3505 { 3506 device_t child; 3507 3508 TAILQ_FOREACH(child, &dev->children, link) { 3509 device_shutdown(child); 3510 } 3511 3512 return (0); 3513 } 3514 3515 /** 3516 * @brief Helper function for implementing DEVICE_SUSPEND() 3517 * 3518 * This function can be used to help implement the DEVICE_SUSPEND() 3519 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3520 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3521 * operation is aborted and any devices which were suspended are 3522 * resumed immediately by calling their DEVICE_RESUME() methods. 3523 */ 3524 int 3525 bus_generic_suspend(device_t dev) 3526 { 3527 int error; 3528 device_t child, child2; 3529 3530 TAILQ_FOREACH(child, &dev->children, link) { 3531 error = DEVICE_SUSPEND(child); 3532 if (error) { 3533 for (child2 = TAILQ_FIRST(&dev->children); 3534 child2 && child2 != child; 3535 child2 = TAILQ_NEXT(child2, link)) 3536 DEVICE_RESUME(child2); 3537 return (error); 3538 } 3539 } 3540 return (0); 3541 } 3542 3543 /** 3544 * @brief Helper function for implementing DEVICE_RESUME() 3545 * 3546 * This function can be used to help implement the DEVICE_RESUME() for 3547 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3548 */ 3549 int 3550 bus_generic_resume(device_t dev) 3551 { 3552 device_t child; 3553 3554 TAILQ_FOREACH(child, &dev->children, link) { 3555 DEVICE_RESUME(child); 3556 /* if resume fails, there's nothing we can usefully do... */ 3557 } 3558 return (0); 3559 } 3560 3561 /** 3562 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3563 * 3564 * This function prints the first part of the ascii representation of 3565 * @p child, including its name, unit and description (if any - see 3566 * device_set_desc()). 3567 * 3568 * @returns the number of characters printed 3569 */ 3570 int 3571 bus_print_child_header(device_t dev, device_t child) 3572 { 3573 int retval = 0; 3574 3575 if (device_get_desc(child)) { 3576 retval += device_printf(child, "<%s>", device_get_desc(child)); 3577 } else { 3578 retval += printf("%s", device_get_nameunit(child)); 3579 } 3580 3581 return (retval); 3582 } 3583 3584 /** 3585 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3586 * 3587 * This function prints the last part of the ascii representation of 3588 * @p child, which consists of the string @c " on " followed by the 3589 * name and unit of the @p dev. 3590 * 3591 * @returns the number of characters printed 3592 */ 3593 int 3594 bus_print_child_footer(device_t dev, device_t child) 3595 { 3596 return (printf(" on %s\n", device_get_nameunit(dev))); 3597 } 3598 3599 /** 3600 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3601 * 3602 * This function simply calls bus_print_child_header() followed by 3603 * bus_print_child_footer(). 3604 * 3605 * @returns the number of characters printed 3606 */ 3607 int 3608 bus_generic_print_child(device_t dev, device_t child) 3609 { 3610 int retval = 0; 3611 3612 retval += bus_print_child_header(dev, child); 3613 retval += bus_print_child_footer(dev, child); 3614 3615 return (retval); 3616 } 3617 3618 /** 3619 * @brief Stub function for implementing BUS_READ_IVAR(). 3620 * 3621 * @returns ENOENT 3622 */ 3623 int 3624 bus_generic_read_ivar(device_t dev, device_t child, int index, 3625 uintptr_t * result) 3626 { 3627 return (ENOENT); 3628 } 3629 3630 /** 3631 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3632 * 3633 * @returns ENOENT 3634 */ 3635 int 3636 bus_generic_write_ivar(device_t dev, device_t child, int index, 3637 uintptr_t value) 3638 { 3639 return (ENOENT); 3640 } 3641 3642 /** 3643 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3644 * 3645 * @returns NULL 3646 */ 3647 struct resource_list * 3648 bus_generic_get_resource_list(device_t dev, device_t child) 3649 { 3650 return (NULL); 3651 } 3652 3653 /** 3654 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3655 * 3656 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3657 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3658 * and then calls device_probe_and_attach() for each unattached child. 3659 */ 3660 void 3661 bus_generic_driver_added(device_t dev, driver_t *driver) 3662 { 3663 device_t child; 3664 3665 DEVICE_IDENTIFY(driver, dev); 3666 TAILQ_FOREACH(child, &dev->children, link) { 3667 if (child->state == DS_NOTPRESENT || 3668 (child->flags & DF_REBID)) 3669 device_probe_and_attach(child); 3670 } 3671 } 3672 3673 /** 3674 * @brief Helper function for implementing BUS_NEW_PASS(). 3675 * 3676 * This implementing of BUS_NEW_PASS() first calls the identify 3677 * routines for any drivers that probe at the current pass. Then it 3678 * walks the list of devices for this bus. If a device is already 3679 * attached, then it calls BUS_NEW_PASS() on that device. If the 3680 * device is not already attached, it attempts to attach a driver to 3681 * it. 3682 */ 3683 void 3684 bus_generic_new_pass(device_t dev) 3685 { 3686 driverlink_t dl; 3687 devclass_t dc; 3688 device_t child; 3689 3690 dc = dev->devclass; 3691 TAILQ_FOREACH(dl, &dc->drivers, link) { 3692 if (dl->pass == bus_current_pass) 3693 DEVICE_IDENTIFY(dl->driver, dev); 3694 } 3695 TAILQ_FOREACH(child, &dev->children, link) { 3696 if (child->state >= DS_ATTACHED) 3697 BUS_NEW_PASS(child); 3698 else if (child->state == DS_NOTPRESENT) 3699 device_probe_and_attach(child); 3700 } 3701 } 3702 3703 /** 3704 * @brief Helper function for implementing BUS_SETUP_INTR(). 3705 * 3706 * This simple implementation of BUS_SETUP_INTR() simply calls the 3707 * BUS_SETUP_INTR() method of the parent of @p dev. 3708 */ 3709 int 3710 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3711 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3712 void **cookiep) 3713 { 3714 /* Propagate up the bus hierarchy until someone handles it. */ 3715 if (dev->parent) 3716 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3717 filter, intr, arg, cookiep)); 3718 return (EINVAL); 3719 } 3720 3721 /** 3722 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3723 * 3724 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3725 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3726 */ 3727 int 3728 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3729 void *cookie) 3730 { 3731 /* Propagate up the bus hierarchy until someone handles it. */ 3732 if (dev->parent) 3733 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3734 return (EINVAL); 3735 } 3736 3737 /** 3738 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3739 * 3740 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3741 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3742 */ 3743 int 3744 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3745 struct resource *r, u_long start, u_long end) 3746 { 3747 /* Propagate up the bus hierarchy until someone handles it. */ 3748 if (dev->parent) 3749 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3750 end)); 3751 return (EINVAL); 3752 } 3753 3754 /** 3755 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3756 * 3757 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3758 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3759 */ 3760 struct resource * 3761 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3762 u_long start, u_long end, u_long count, u_int flags) 3763 { 3764 /* Propagate up the bus hierarchy until someone handles it. */ 3765 if (dev->parent) 3766 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3767 start, end, count, flags)); 3768 return (NULL); 3769 } 3770 3771 /** 3772 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3773 * 3774 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3775 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3776 */ 3777 int 3778 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3779 struct resource *r) 3780 { 3781 /* Propagate up the bus hierarchy until someone handles it. */ 3782 if (dev->parent) 3783 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3784 r)); 3785 return (EINVAL); 3786 } 3787 3788 /** 3789 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3790 * 3791 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3792 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3793 */ 3794 int 3795 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3796 struct resource *r) 3797 { 3798 /* Propagate up the bus hierarchy until someone handles it. */ 3799 if (dev->parent) 3800 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3801 r)); 3802 return (EINVAL); 3803 } 3804 3805 /** 3806 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3807 * 3808 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3809 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3810 */ 3811 int 3812 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3813 int rid, struct resource *r) 3814 { 3815 /* Propagate up the bus hierarchy until someone handles it. */ 3816 if (dev->parent) 3817 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3818 r)); 3819 return (EINVAL); 3820 } 3821 3822 /** 3823 * @brief Helper function for implementing BUS_BIND_INTR(). 3824 * 3825 * This simple implementation of BUS_BIND_INTR() simply calls the 3826 * BUS_BIND_INTR() method of the parent of @p dev. 3827 */ 3828 int 3829 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3830 int cpu) 3831 { 3832 3833 /* Propagate up the bus hierarchy until someone handles it. */ 3834 if (dev->parent) 3835 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3836 return (EINVAL); 3837 } 3838 3839 /** 3840 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3841 * 3842 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3843 * BUS_CONFIG_INTR() method of the parent of @p dev. 3844 */ 3845 int 3846 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3847 enum intr_polarity pol) 3848 { 3849 3850 /* Propagate up the bus hierarchy until someone handles it. */ 3851 if (dev->parent) 3852 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3853 return (EINVAL); 3854 } 3855 3856 /** 3857 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3858 * 3859 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3860 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3861 */ 3862 int 3863 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3864 void *cookie, const char *descr) 3865 { 3866 3867 /* Propagate up the bus hierarchy until someone handles it. */ 3868 if (dev->parent) 3869 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3870 descr)); 3871 return (EINVAL); 3872 } 3873 3874 /** 3875 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3876 * 3877 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3878 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3879 */ 3880 bus_dma_tag_t 3881 bus_generic_get_dma_tag(device_t dev, device_t child) 3882 { 3883 3884 /* Propagate up the bus hierarchy until someone handles it. */ 3885 if (dev->parent != NULL) 3886 return (BUS_GET_DMA_TAG(dev->parent, child)); 3887 return (NULL); 3888 } 3889 3890 /** 3891 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3892 * 3893 * This implementation of BUS_GET_RESOURCE() uses the 3894 * resource_list_find() function to do most of the work. It calls 3895 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3896 * search. 3897 */ 3898 int 3899 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3900 u_long *startp, u_long *countp) 3901 { 3902 struct resource_list * rl = NULL; 3903 struct resource_list_entry * rle = NULL; 3904 3905 rl = BUS_GET_RESOURCE_LIST(dev, child); 3906 if (!rl) 3907 return (EINVAL); 3908 3909 rle = resource_list_find(rl, type, rid); 3910 if (!rle) 3911 return (ENOENT); 3912 3913 if (startp) 3914 *startp = rle->start; 3915 if (countp) 3916 *countp = rle->count; 3917 3918 return (0); 3919 } 3920 3921 /** 3922 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3923 * 3924 * This implementation of BUS_SET_RESOURCE() uses the 3925 * resource_list_add() function to do most of the work. It calls 3926 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3927 * edit. 3928 */ 3929 int 3930 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3931 u_long start, u_long count) 3932 { 3933 struct resource_list * rl = NULL; 3934 3935 rl = BUS_GET_RESOURCE_LIST(dev, child); 3936 if (!rl) 3937 return (EINVAL); 3938 3939 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3940 3941 return (0); 3942 } 3943 3944 /** 3945 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3946 * 3947 * This implementation of BUS_DELETE_RESOURCE() uses the 3948 * resource_list_delete() function to do most of the work. It calls 3949 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3950 * edit. 3951 */ 3952 void 3953 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3954 { 3955 struct resource_list * rl = NULL; 3956 3957 rl = BUS_GET_RESOURCE_LIST(dev, child); 3958 if (!rl) 3959 return; 3960 3961 resource_list_delete(rl, type, rid); 3962 3963 return; 3964 } 3965 3966 /** 3967 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3968 * 3969 * This implementation of BUS_RELEASE_RESOURCE() uses the 3970 * resource_list_release() function to do most of the work. It calls 3971 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3972 */ 3973 int 3974 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3975 int rid, struct resource *r) 3976 { 3977 struct resource_list * rl = NULL; 3978 3979 if (device_get_parent(child) != dev) 3980 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3981 type, rid, r)); 3982 3983 rl = BUS_GET_RESOURCE_LIST(dev, child); 3984 if (!rl) 3985 return (EINVAL); 3986 3987 return (resource_list_release(rl, dev, child, type, rid, r)); 3988 } 3989 3990 /** 3991 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3992 * 3993 * This implementation of BUS_ALLOC_RESOURCE() uses the 3994 * resource_list_alloc() function to do most of the work. It calls 3995 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3996 */ 3997 struct resource * 3998 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3999 int *rid, u_long start, u_long end, u_long count, u_int flags) 4000 { 4001 struct resource_list * rl = NULL; 4002 4003 if (device_get_parent(child) != dev) 4004 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4005 type, rid, start, end, count, flags)); 4006 4007 rl = BUS_GET_RESOURCE_LIST(dev, child); 4008 if (!rl) 4009 return (NULL); 4010 4011 return (resource_list_alloc(rl, dev, child, type, rid, 4012 start, end, count, flags)); 4013 } 4014 4015 /** 4016 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4017 * 4018 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4019 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4020 */ 4021 int 4022 bus_generic_child_present(device_t dev, device_t child) 4023 { 4024 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4025 } 4026 4027 /* 4028 * Some convenience functions to make it easier for drivers to use the 4029 * resource-management functions. All these really do is hide the 4030 * indirection through the parent's method table, making for slightly 4031 * less-wordy code. In the future, it might make sense for this code 4032 * to maintain some sort of a list of resources allocated by each device. 4033 */ 4034 4035 int 4036 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4037 struct resource **res) 4038 { 4039 int i; 4040 4041 for (i = 0; rs[i].type != -1; i++) 4042 res[i] = NULL; 4043 for (i = 0; rs[i].type != -1; i++) { 4044 res[i] = bus_alloc_resource_any(dev, 4045 rs[i].type, &rs[i].rid, rs[i].flags); 4046 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4047 bus_release_resources(dev, rs, res); 4048 return (ENXIO); 4049 } 4050 } 4051 return (0); 4052 } 4053 4054 void 4055 bus_release_resources(device_t dev, const struct resource_spec *rs, 4056 struct resource **res) 4057 { 4058 int i; 4059 4060 for (i = 0; rs[i].type != -1; i++) 4061 if (res[i] != NULL) { 4062 bus_release_resource( 4063 dev, rs[i].type, rs[i].rid, res[i]); 4064 res[i] = NULL; 4065 } 4066 } 4067 4068 /** 4069 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4070 * 4071 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4072 * parent of @p dev. 4073 */ 4074 struct resource * 4075 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4076 u_long count, u_int flags) 4077 { 4078 if (dev->parent == NULL) 4079 return (NULL); 4080 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4081 count, flags)); 4082 } 4083 4084 /** 4085 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4086 * 4087 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4088 * parent of @p dev. 4089 */ 4090 int 4091 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4092 u_long end) 4093 { 4094 if (dev->parent == NULL) 4095 return (EINVAL); 4096 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4097 } 4098 4099 /** 4100 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4101 * 4102 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4103 * parent of @p dev. 4104 */ 4105 int 4106 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4107 { 4108 if (dev->parent == NULL) 4109 return (EINVAL); 4110 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4111 } 4112 4113 /** 4114 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4115 * 4116 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4117 * parent of @p dev. 4118 */ 4119 int 4120 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4121 { 4122 if (dev->parent == NULL) 4123 return (EINVAL); 4124 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4125 } 4126 4127 /** 4128 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4129 * 4130 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4131 * parent of @p dev. 4132 */ 4133 int 4134 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4135 { 4136 if (dev->parent == NULL) 4137 return (EINVAL); 4138 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4139 } 4140 4141 /** 4142 * @brief Wrapper function for BUS_SETUP_INTR(). 4143 * 4144 * This function simply calls the BUS_SETUP_INTR() method of the 4145 * parent of @p dev. 4146 */ 4147 int 4148 bus_setup_intr(device_t dev, struct resource *r, int flags, 4149 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4150 { 4151 int error; 4152 4153 if (dev->parent == NULL) 4154 return (EINVAL); 4155 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4156 arg, cookiep); 4157 if (error != 0) 4158 return (error); 4159 if (handler != NULL && !(flags & INTR_MPSAFE)) 4160 device_printf(dev, "[GIANT-LOCKED]\n"); 4161 return (0); 4162 } 4163 4164 /** 4165 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4166 * 4167 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4168 * parent of @p dev. 4169 */ 4170 int 4171 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4172 { 4173 if (dev->parent == NULL) 4174 return (EINVAL); 4175 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4176 } 4177 4178 /** 4179 * @brief Wrapper function for BUS_BIND_INTR(). 4180 * 4181 * This function simply calls the BUS_BIND_INTR() method of the 4182 * parent of @p dev. 4183 */ 4184 int 4185 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4186 { 4187 if (dev->parent == NULL) 4188 return (EINVAL); 4189 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4190 } 4191 4192 /** 4193 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4194 * 4195 * This function first formats the requested description into a 4196 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4197 * the parent of @p dev. 4198 */ 4199 int 4200 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4201 const char *fmt, ...) 4202 { 4203 va_list ap; 4204 char descr[MAXCOMLEN + 1]; 4205 4206 if (dev->parent == NULL) 4207 return (EINVAL); 4208 va_start(ap, fmt); 4209 vsnprintf(descr, sizeof(descr), fmt, ap); 4210 va_end(ap); 4211 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4212 } 4213 4214 /** 4215 * @brief Wrapper function for BUS_SET_RESOURCE(). 4216 * 4217 * This function simply calls the BUS_SET_RESOURCE() method of the 4218 * parent of @p dev. 4219 */ 4220 int 4221 bus_set_resource(device_t dev, int type, int rid, 4222 u_long start, u_long count) 4223 { 4224 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4225 start, count)); 4226 } 4227 4228 /** 4229 * @brief Wrapper function for BUS_GET_RESOURCE(). 4230 * 4231 * This function simply calls the BUS_GET_RESOURCE() method of the 4232 * parent of @p dev. 4233 */ 4234 int 4235 bus_get_resource(device_t dev, int type, int rid, 4236 u_long *startp, u_long *countp) 4237 { 4238 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4239 startp, countp)); 4240 } 4241 4242 /** 4243 * @brief Wrapper function for BUS_GET_RESOURCE(). 4244 * 4245 * This function simply calls the BUS_GET_RESOURCE() method of the 4246 * parent of @p dev and returns the start value. 4247 */ 4248 u_long 4249 bus_get_resource_start(device_t dev, int type, int rid) 4250 { 4251 u_long start, count; 4252 int error; 4253 4254 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4255 &start, &count); 4256 if (error) 4257 return (0); 4258 return (start); 4259 } 4260 4261 /** 4262 * @brief Wrapper function for BUS_GET_RESOURCE(). 4263 * 4264 * This function simply calls the BUS_GET_RESOURCE() method of the 4265 * parent of @p dev and returns the count value. 4266 */ 4267 u_long 4268 bus_get_resource_count(device_t dev, int type, int rid) 4269 { 4270 u_long start, count; 4271 int error; 4272 4273 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4274 &start, &count); 4275 if (error) 4276 return (0); 4277 return (count); 4278 } 4279 4280 /** 4281 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4282 * 4283 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4284 * parent of @p dev. 4285 */ 4286 void 4287 bus_delete_resource(device_t dev, int type, int rid) 4288 { 4289 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4290 } 4291 4292 /** 4293 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4294 * 4295 * This function simply calls the BUS_CHILD_PRESENT() method of the 4296 * parent of @p dev. 4297 */ 4298 int 4299 bus_child_present(device_t child) 4300 { 4301 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4302 } 4303 4304 /** 4305 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4306 * 4307 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4308 * parent of @p dev. 4309 */ 4310 int 4311 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4312 { 4313 device_t parent; 4314 4315 parent = device_get_parent(child); 4316 if (parent == NULL) { 4317 *buf = '\0'; 4318 return (0); 4319 } 4320 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4321 } 4322 4323 /** 4324 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4325 * 4326 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4327 * parent of @p dev. 4328 */ 4329 int 4330 bus_child_location_str(device_t child, char *buf, size_t buflen) 4331 { 4332 device_t parent; 4333 4334 parent = device_get_parent(child); 4335 if (parent == NULL) { 4336 *buf = '\0'; 4337 return (0); 4338 } 4339 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4340 } 4341 4342 /** 4343 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4344 * 4345 * This function simply calls the BUS_GET_DMA_TAG() method of the 4346 * parent of @p dev. 4347 */ 4348 bus_dma_tag_t 4349 bus_get_dma_tag(device_t dev) 4350 { 4351 device_t parent; 4352 4353 parent = device_get_parent(dev); 4354 if (parent == NULL) 4355 return (NULL); 4356 return (BUS_GET_DMA_TAG(parent, dev)); 4357 } 4358 4359 /* Resume all devices and then notify userland that we're up again. */ 4360 static int 4361 root_resume(device_t dev) 4362 { 4363 int error; 4364 4365 error = bus_generic_resume(dev); 4366 if (error == 0) 4367 devctl_notify("kern", "power", "resume", NULL); 4368 return (error); 4369 } 4370 4371 static int 4372 root_print_child(device_t dev, device_t child) 4373 { 4374 int retval = 0; 4375 4376 retval += bus_print_child_header(dev, child); 4377 retval += printf("\n"); 4378 4379 return (retval); 4380 } 4381 4382 static int 4383 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4384 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4385 { 4386 /* 4387 * If an interrupt mapping gets to here something bad has happened. 4388 */ 4389 panic("root_setup_intr"); 4390 } 4391 4392 /* 4393 * If we get here, assume that the device is permanant and really is 4394 * present in the system. Removable bus drivers are expected to intercept 4395 * this call long before it gets here. We return -1 so that drivers that 4396 * really care can check vs -1 or some ERRNO returned higher in the food 4397 * chain. 4398 */ 4399 static int 4400 root_child_present(device_t dev, device_t child) 4401 { 4402 return (-1); 4403 } 4404 4405 static kobj_method_t root_methods[] = { 4406 /* Device interface */ 4407 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4408 KOBJMETHOD(device_suspend, bus_generic_suspend), 4409 KOBJMETHOD(device_resume, root_resume), 4410 4411 /* Bus interface */ 4412 KOBJMETHOD(bus_print_child, root_print_child), 4413 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4414 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4415 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4416 KOBJMETHOD(bus_child_present, root_child_present), 4417 4418 KOBJMETHOD_END 4419 }; 4420 4421 static driver_t root_driver = { 4422 "root", 4423 root_methods, 4424 1, /* no softc */ 4425 }; 4426 4427 device_t root_bus; 4428 devclass_t root_devclass; 4429 4430 static int 4431 root_bus_module_handler(module_t mod, int what, void* arg) 4432 { 4433 switch (what) { 4434 case MOD_LOAD: 4435 TAILQ_INIT(&bus_data_devices); 4436 kobj_class_compile((kobj_class_t) &root_driver); 4437 root_bus = make_device(NULL, "root", 0); 4438 root_bus->desc = "System root bus"; 4439 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4440 root_bus->driver = &root_driver; 4441 root_bus->state = DS_ATTACHED; 4442 root_devclass = devclass_find_internal("root", NULL, FALSE); 4443 devinit(); 4444 return (0); 4445 4446 case MOD_SHUTDOWN: 4447 device_shutdown(root_bus); 4448 return (0); 4449 default: 4450 return (EOPNOTSUPP); 4451 } 4452 4453 return (0); 4454 } 4455 4456 static moduledata_t root_bus_mod = { 4457 "rootbus", 4458 root_bus_module_handler, 4459 NULL 4460 }; 4461 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4462 4463 /** 4464 * @brief Automatically configure devices 4465 * 4466 * This function begins the autoconfiguration process by calling 4467 * device_probe_and_attach() for each child of the @c root0 device. 4468 */ 4469 void 4470 root_bus_configure(void) 4471 { 4472 4473 PDEBUG((".")); 4474 4475 /* Eventually this will be split up, but this is sufficient for now. */ 4476 bus_set_pass(BUS_PASS_DEFAULT); 4477 } 4478 4479 /** 4480 * @brief Module handler for registering device drivers 4481 * 4482 * This module handler is used to automatically register device 4483 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4484 * devclass_add_driver() for the driver described by the 4485 * driver_module_data structure pointed to by @p arg 4486 */ 4487 int 4488 driver_module_handler(module_t mod, int what, void *arg) 4489 { 4490 struct driver_module_data *dmd; 4491 devclass_t bus_devclass; 4492 kobj_class_t driver; 4493 int error, pass; 4494 4495 dmd = (struct driver_module_data *)arg; 4496 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4497 error = 0; 4498 4499 switch (what) { 4500 case MOD_LOAD: 4501 if (dmd->dmd_chainevh) 4502 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4503 4504 pass = dmd->dmd_pass; 4505 driver = dmd->dmd_driver; 4506 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4507 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4508 error = devclass_add_driver(bus_devclass, driver, pass, 4509 dmd->dmd_devclass); 4510 break; 4511 4512 case MOD_UNLOAD: 4513 PDEBUG(("Unloading module: driver %s from bus %s", 4514 DRIVERNAME(dmd->dmd_driver), 4515 dmd->dmd_busname)); 4516 error = devclass_delete_driver(bus_devclass, 4517 dmd->dmd_driver); 4518 4519 if (!error && dmd->dmd_chainevh) 4520 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4521 break; 4522 case MOD_QUIESCE: 4523 PDEBUG(("Quiesce module: driver %s from bus %s", 4524 DRIVERNAME(dmd->dmd_driver), 4525 dmd->dmd_busname)); 4526 error = devclass_quiesce_driver(bus_devclass, 4527 dmd->dmd_driver); 4528 4529 if (!error && dmd->dmd_chainevh) 4530 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4531 break; 4532 default: 4533 error = EOPNOTSUPP; 4534 break; 4535 } 4536 4537 return (error); 4538 } 4539 4540 /** 4541 * @brief Enumerate all hinted devices for this bus. 4542 * 4543 * Walks through the hints for this bus and calls the bus_hinted_child 4544 * routine for each one it fines. It searches first for the specific 4545 * bus that's being probed for hinted children (eg isa0), and then for 4546 * generic children (eg isa). 4547 * 4548 * @param dev bus device to enumerate 4549 */ 4550 void 4551 bus_enumerate_hinted_children(device_t bus) 4552 { 4553 int i; 4554 const char *dname, *busname; 4555 int dunit; 4556 4557 /* 4558 * enumerate all devices on the specific bus 4559 */ 4560 busname = device_get_nameunit(bus); 4561 i = 0; 4562 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4563 BUS_HINTED_CHILD(bus, dname, dunit); 4564 4565 /* 4566 * and all the generic ones. 4567 */ 4568 busname = device_get_name(bus); 4569 i = 0; 4570 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4571 BUS_HINTED_CHILD(bus, dname, dunit); 4572 } 4573 4574 #ifdef BUS_DEBUG 4575 4576 /* the _short versions avoid iteration by not calling anything that prints 4577 * more than oneliners. I love oneliners. 4578 */ 4579 4580 static void 4581 print_device_short(device_t dev, int indent) 4582 { 4583 if (!dev) 4584 return; 4585 4586 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4587 dev->unit, dev->desc, 4588 (dev->parent? "":"no "), 4589 (TAILQ_EMPTY(&dev->children)? "no ":""), 4590 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4591 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4592 (dev->flags&DF_WILDCARD? "wildcard,":""), 4593 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4594 (dev->flags&DF_REBID? "rebiddable,":""), 4595 (dev->ivars? "":"no "), 4596 (dev->softc? "":"no "), 4597 dev->busy)); 4598 } 4599 4600 static void 4601 print_device(device_t dev, int indent) 4602 { 4603 if (!dev) 4604 return; 4605 4606 print_device_short(dev, indent); 4607 4608 indentprintf(("Parent:\n")); 4609 print_device_short(dev->parent, indent+1); 4610 indentprintf(("Driver:\n")); 4611 print_driver_short(dev->driver, indent+1); 4612 indentprintf(("Devclass:\n")); 4613 print_devclass_short(dev->devclass, indent+1); 4614 } 4615 4616 void 4617 print_device_tree_short(device_t dev, int indent) 4618 /* print the device and all its children (indented) */ 4619 { 4620 device_t child; 4621 4622 if (!dev) 4623 return; 4624 4625 print_device_short(dev, indent); 4626 4627 TAILQ_FOREACH(child, &dev->children, link) { 4628 print_device_tree_short(child, indent+1); 4629 } 4630 } 4631 4632 void 4633 print_device_tree(device_t dev, int indent) 4634 /* print the device and all its children (indented) */ 4635 { 4636 device_t child; 4637 4638 if (!dev) 4639 return; 4640 4641 print_device(dev, indent); 4642 4643 TAILQ_FOREACH(child, &dev->children, link) { 4644 print_device_tree(child, indent+1); 4645 } 4646 } 4647 4648 static void 4649 print_driver_short(driver_t *driver, int indent) 4650 { 4651 if (!driver) 4652 return; 4653 4654 indentprintf(("driver %s: softc size = %zd\n", 4655 driver->name, driver->size)); 4656 } 4657 4658 static void 4659 print_driver(driver_t *driver, int indent) 4660 { 4661 if (!driver) 4662 return; 4663 4664 print_driver_short(driver, indent); 4665 } 4666 4667 static void 4668 print_driver_list(driver_list_t drivers, int indent) 4669 { 4670 driverlink_t driver; 4671 4672 TAILQ_FOREACH(driver, &drivers, link) { 4673 print_driver(driver->driver, indent); 4674 } 4675 } 4676 4677 static void 4678 print_devclass_short(devclass_t dc, int indent) 4679 { 4680 if ( !dc ) 4681 return; 4682 4683 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4684 } 4685 4686 static void 4687 print_devclass(devclass_t dc, int indent) 4688 { 4689 int i; 4690 4691 if ( !dc ) 4692 return; 4693 4694 print_devclass_short(dc, indent); 4695 indentprintf(("Drivers:\n")); 4696 print_driver_list(dc->drivers, indent+1); 4697 4698 indentprintf(("Devices:\n")); 4699 for (i = 0; i < dc->maxunit; i++) 4700 if (dc->devices[i]) 4701 print_device(dc->devices[i], indent+1); 4702 } 4703 4704 void 4705 print_devclass_list_short(void) 4706 { 4707 devclass_t dc; 4708 4709 printf("Short listing of devclasses, drivers & devices:\n"); 4710 TAILQ_FOREACH(dc, &devclasses, link) { 4711 print_devclass_short(dc, 0); 4712 } 4713 } 4714 4715 void 4716 print_devclass_list(void) 4717 { 4718 devclass_t dc; 4719 4720 printf("Full listing of devclasses, drivers & devices:\n"); 4721 TAILQ_FOREACH(dc, &devclasses, link) { 4722 print_devclass(dc, 0); 4723 } 4724 } 4725 4726 #endif 4727 4728 /* 4729 * User-space access to the device tree. 4730 * 4731 * We implement a small set of nodes: 4732 * 4733 * hw.bus Single integer read method to obtain the 4734 * current generation count. 4735 * hw.bus.devices Reads the entire device tree in flat space. 4736 * hw.bus.rman Resource manager interface 4737 * 4738 * We might like to add the ability to scan devclasses and/or drivers to 4739 * determine what else is currently loaded/available. 4740 */ 4741 4742 static int 4743 sysctl_bus(SYSCTL_HANDLER_ARGS) 4744 { 4745 struct u_businfo ubus; 4746 4747 ubus.ub_version = BUS_USER_VERSION; 4748 ubus.ub_generation = bus_data_generation; 4749 4750 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4751 } 4752 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4753 "bus-related data"); 4754 4755 static int 4756 sysctl_devices(SYSCTL_HANDLER_ARGS) 4757 { 4758 int *name = (int *)arg1; 4759 u_int namelen = arg2; 4760 int index; 4761 struct device *dev; 4762 struct u_device udev; /* XXX this is a bit big */ 4763 int error; 4764 4765 if (namelen != 2) 4766 return (EINVAL); 4767 4768 if (bus_data_generation_check(name[0])) 4769 return (EINVAL); 4770 4771 index = name[1]; 4772 4773 /* 4774 * Scan the list of devices, looking for the requested index. 4775 */ 4776 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4777 if (index-- == 0) 4778 break; 4779 } 4780 if (dev == NULL) 4781 return (ENOENT); 4782 4783 /* 4784 * Populate the return array. 4785 */ 4786 bzero(&udev, sizeof(udev)); 4787 udev.dv_handle = (uintptr_t)dev; 4788 udev.dv_parent = (uintptr_t)dev->parent; 4789 if (dev->nameunit != NULL) 4790 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4791 if (dev->desc != NULL) 4792 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4793 if (dev->driver != NULL && dev->driver->name != NULL) 4794 strlcpy(udev.dv_drivername, dev->driver->name, 4795 sizeof(udev.dv_drivername)); 4796 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4797 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4798 udev.dv_devflags = dev->devflags; 4799 udev.dv_flags = dev->flags; 4800 udev.dv_state = dev->state; 4801 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4802 return (error); 4803 } 4804 4805 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4806 "system device tree"); 4807 4808 int 4809 bus_data_generation_check(int generation) 4810 { 4811 if (generation != bus_data_generation) 4812 return (1); 4813 4814 /* XXX generate optimised lists here? */ 4815 return (0); 4816 } 4817 4818 void 4819 bus_data_generation_update(void) 4820 { 4821 bus_data_generation++; 4822 } 4823 4824 int 4825 bus_free_resource(device_t dev, int type, struct resource *r) 4826 { 4827 if (r == NULL) 4828 return (0); 4829 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4830 } 4831