1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 54 #include <machine/stdarg.h> 55 56 #include <vm/uma.h> 57 58 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 59 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 60 61 /* 62 * Used to attach drivers to devclasses. 63 */ 64 typedef struct driverlink *driverlink_t; 65 struct driverlink { 66 kobj_class_t driver; 67 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 68 }; 69 70 /* 71 * Forward declarations 72 */ 73 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 74 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 75 typedef TAILQ_HEAD(device_list, device) device_list_t; 76 77 struct devclass { 78 TAILQ_ENTRY(devclass) link; 79 devclass_t parent; /* parent in devclass hierarchy */ 80 driver_list_t drivers; /* bus devclasses store drivers for bus */ 81 char *name; 82 device_t *devices; /* array of devices indexed by unit */ 83 int maxunit; /* size of devices array */ 84 85 struct sysctl_ctx_list sysctl_ctx; 86 struct sysctl_oid *sysctl_tree; 87 }; 88 89 /** 90 * @brief Implementation of device. 91 */ 92 struct device { 93 /* 94 * A device is a kernel object. The first field must be the 95 * current ops table for the object. 96 */ 97 KOBJ_FIELDS; 98 99 /* 100 * Device hierarchy. 101 */ 102 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 103 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 104 device_t parent; /**< parent of this device */ 105 device_list_t children; /**< list of child devices */ 106 107 /* 108 * Details of this device. 109 */ 110 driver_t *driver; /**< current driver */ 111 devclass_t devclass; /**< current device class */ 112 int unit; /**< current unit number */ 113 char* nameunit; /**< name+unit e.g. foodev0 */ 114 char* desc; /**< driver specific description */ 115 int busy; /**< count of calls to device_busy() */ 116 device_state_t state; /**< current device state */ 117 u_int32_t devflags; /**< api level flags for device_get_flags() */ 118 u_short flags; /**< internal device flags */ 119 #define DF_ENABLED 1 /* device should be probed/attached */ 120 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 121 #define DF_WILDCARD 4 /* unit was originally wildcard */ 122 #define DF_DESCMALLOCED 8 /* description was malloced */ 123 #define DF_QUIET 16 /* don't print verbose attach message */ 124 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 125 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 126 #define DF_REBID 128 /* Can rebid after attach */ 127 u_char order; /**< order from device_add_child_ordered() */ 128 u_char pad; 129 void *ivars; /**< instance variables */ 130 void *softc; /**< current driver's variables */ 131 132 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 133 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 134 }; 135 136 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 137 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 138 139 #ifdef BUS_DEBUG 140 141 static int bus_debug = 1; 142 TUNABLE_INT("bus.debug", &bus_debug); 143 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 144 "Debug bus code"); 145 146 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 147 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 148 #define DRIVERNAME(d) ((d)? d->name : "no driver") 149 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 150 151 /** 152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 153 * prevent syslog from deleting initial spaces 154 */ 155 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 156 157 static void print_device_short(device_t dev, int indent); 158 static void print_device(device_t dev, int indent); 159 void print_device_tree_short(device_t dev, int indent); 160 void print_device_tree(device_t dev, int indent); 161 static void print_driver_short(driver_t *driver, int indent); 162 static void print_driver(driver_t *driver, int indent); 163 static void print_driver_list(driver_list_t drivers, int indent); 164 static void print_devclass_short(devclass_t dc, int indent); 165 static void print_devclass(devclass_t dc, int indent); 166 void print_devclass_list_short(void); 167 void print_devclass_list(void); 168 169 #else 170 /* Make the compiler ignore the function calls */ 171 #define PDEBUG(a) /* nop */ 172 #define DEVICENAME(d) /* nop */ 173 #define DRIVERNAME(d) /* nop */ 174 #define DEVCLANAME(d) /* nop */ 175 176 #define print_device_short(d,i) /* nop */ 177 #define print_device(d,i) /* nop */ 178 #define print_device_tree_short(d,i) /* nop */ 179 #define print_device_tree(d,i) /* nop */ 180 #define print_driver_short(d,i) /* nop */ 181 #define print_driver(d,i) /* nop */ 182 #define print_driver_list(d,i) /* nop */ 183 #define print_devclass_short(d,i) /* nop */ 184 #define print_devclass(d,i) /* nop */ 185 #define print_devclass_list_short() /* nop */ 186 #define print_devclass_list() /* nop */ 187 #endif 188 189 /* 190 * dev sysctl tree 191 */ 192 193 enum { 194 DEVCLASS_SYSCTL_PARENT, 195 }; 196 197 static int 198 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 199 { 200 devclass_t dc = (devclass_t)arg1; 201 const char *value; 202 203 switch (arg2) { 204 case DEVCLASS_SYSCTL_PARENT: 205 value = dc->parent ? dc->parent->name : ""; 206 break; 207 default: 208 return (EINVAL); 209 } 210 return (SYSCTL_OUT(req, value, strlen(value))); 211 } 212 213 static void 214 devclass_sysctl_init(devclass_t dc) 215 { 216 217 if (dc->sysctl_tree != NULL) 218 return; 219 sysctl_ctx_init(&dc->sysctl_ctx); 220 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 221 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 222 CTLFLAG_RD, 0, ""); 223 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 224 OID_AUTO, "%parent", CTLFLAG_RD, 225 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 226 "parent class"); 227 } 228 229 enum { 230 DEVICE_SYSCTL_DESC, 231 DEVICE_SYSCTL_DRIVER, 232 DEVICE_SYSCTL_LOCATION, 233 DEVICE_SYSCTL_PNPINFO, 234 DEVICE_SYSCTL_PARENT, 235 }; 236 237 static int 238 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 239 { 240 device_t dev = (device_t)arg1; 241 const char *value; 242 char *buf; 243 int error; 244 245 buf = NULL; 246 switch (arg2) { 247 case DEVICE_SYSCTL_DESC: 248 value = dev->desc ? dev->desc : ""; 249 break; 250 case DEVICE_SYSCTL_DRIVER: 251 value = dev->driver ? dev->driver->name : ""; 252 break; 253 case DEVICE_SYSCTL_LOCATION: 254 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 255 bus_child_location_str(dev, buf, 1024); 256 break; 257 case DEVICE_SYSCTL_PNPINFO: 258 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 259 bus_child_pnpinfo_str(dev, buf, 1024); 260 break; 261 case DEVICE_SYSCTL_PARENT: 262 value = dev->parent ? dev->parent->nameunit : ""; 263 break; 264 default: 265 return (EINVAL); 266 } 267 error = SYSCTL_OUT(req, value, strlen(value)); 268 if (buf != NULL) 269 free(buf, M_BUS); 270 return (error); 271 } 272 273 static void 274 device_sysctl_init(device_t dev) 275 { 276 devclass_t dc = dev->devclass; 277 278 if (dev->sysctl_tree != NULL) 279 return; 280 devclass_sysctl_init(dc); 281 sysctl_ctx_init(&dev->sysctl_ctx); 282 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 283 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 284 dev->nameunit + strlen(dc->name), 285 CTLFLAG_RD, 0, ""); 286 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 287 OID_AUTO, "%desc", CTLFLAG_RD, 288 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 289 "device description"); 290 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 291 OID_AUTO, "%driver", CTLFLAG_RD, 292 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 293 "device driver name"); 294 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 295 OID_AUTO, "%location", CTLFLAG_RD, 296 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 297 "device location relative to parent"); 298 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 299 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 300 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 301 "device identification"); 302 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 303 OID_AUTO, "%parent", CTLFLAG_RD, 304 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 305 "parent device"); 306 } 307 308 static void 309 device_sysctl_fini(device_t dev) 310 { 311 if (dev->sysctl_tree == NULL) 312 return; 313 sysctl_ctx_free(&dev->sysctl_ctx); 314 dev->sysctl_tree = NULL; 315 } 316 317 /* 318 * /dev/devctl implementation 319 */ 320 321 /* 322 * This design allows only one reader for /dev/devctl. This is not desirable 323 * in the long run, but will get a lot of hair out of this implementation. 324 * Maybe we should make this device a clonable device. 325 * 326 * Also note: we specifically do not attach a device to the device_t tree 327 * to avoid potential chicken and egg problems. One could argue that all 328 * of this belongs to the root node. One could also further argue that the 329 * sysctl interface that we have not might more properly be an ioctl 330 * interface, but at this stage of the game, I'm not inclined to rock that 331 * boat. 332 * 333 * I'm also not sure that the SIGIO support is done correctly or not, as 334 * I copied it from a driver that had SIGIO support that likely hasn't been 335 * tested since 3.4 or 2.2.8! 336 */ 337 338 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 339 static int devctl_disable = 0; 340 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 341 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 342 sysctl_devctl_disable, "I", "devctl disable"); 343 344 static d_open_t devopen; 345 static d_close_t devclose; 346 static d_read_t devread; 347 static d_ioctl_t devioctl; 348 static d_poll_t devpoll; 349 350 static struct cdevsw dev_cdevsw = { 351 .d_version = D_VERSION, 352 .d_flags = D_NEEDGIANT, 353 .d_open = devopen, 354 .d_close = devclose, 355 .d_read = devread, 356 .d_ioctl = devioctl, 357 .d_poll = devpoll, 358 .d_name = "devctl", 359 }; 360 361 struct dev_event_info 362 { 363 char *dei_data; 364 TAILQ_ENTRY(dev_event_info) dei_link; 365 }; 366 367 TAILQ_HEAD(devq, dev_event_info); 368 369 static struct dev_softc 370 { 371 int inuse; 372 int nonblock; 373 struct mtx mtx; 374 struct cv cv; 375 struct selinfo sel; 376 struct devq devq; 377 struct proc *async_proc; 378 } devsoftc; 379 380 static struct cdev *devctl_dev; 381 382 static void 383 devinit(void) 384 { 385 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 386 "devctl"); 387 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 388 cv_init(&devsoftc.cv, "dev cv"); 389 TAILQ_INIT(&devsoftc.devq); 390 } 391 392 static int 393 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 394 { 395 if (devsoftc.inuse) 396 return (EBUSY); 397 /* move to init */ 398 devsoftc.inuse = 1; 399 devsoftc.nonblock = 0; 400 devsoftc.async_proc = NULL; 401 return (0); 402 } 403 404 static int 405 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 406 { 407 devsoftc.inuse = 0; 408 mtx_lock(&devsoftc.mtx); 409 cv_broadcast(&devsoftc.cv); 410 mtx_unlock(&devsoftc.mtx); 411 412 return (0); 413 } 414 415 /* 416 * The read channel for this device is used to report changes to 417 * userland in realtime. We are required to free the data as well as 418 * the n1 object because we allocate them separately. Also note that 419 * we return one record at a time. If you try to read this device a 420 * character at a time, you will loose the rest of the data. Listening 421 * programs are expected to cope. 422 */ 423 static int 424 devread(struct cdev *dev, struct uio *uio, int ioflag) 425 { 426 struct dev_event_info *n1; 427 int rv; 428 429 mtx_lock(&devsoftc.mtx); 430 while (TAILQ_EMPTY(&devsoftc.devq)) { 431 if (devsoftc.nonblock) { 432 mtx_unlock(&devsoftc.mtx); 433 return (EAGAIN); 434 } 435 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 436 if (rv) { 437 /* 438 * Need to translate ERESTART to EINTR here? -- jake 439 */ 440 mtx_unlock(&devsoftc.mtx); 441 return (rv); 442 } 443 } 444 n1 = TAILQ_FIRST(&devsoftc.devq); 445 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 446 mtx_unlock(&devsoftc.mtx); 447 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 448 free(n1->dei_data, M_BUS); 449 free(n1, M_BUS); 450 return (rv); 451 } 452 453 static int 454 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 455 { 456 switch (cmd) { 457 458 case FIONBIO: 459 if (*(int*)data) 460 devsoftc.nonblock = 1; 461 else 462 devsoftc.nonblock = 0; 463 return (0); 464 case FIOASYNC: 465 if (*(int*)data) 466 devsoftc.async_proc = td->td_proc; 467 else 468 devsoftc.async_proc = NULL; 469 return (0); 470 471 /* (un)Support for other fcntl() calls. */ 472 case FIOCLEX: 473 case FIONCLEX: 474 case FIONREAD: 475 case FIOSETOWN: 476 case FIOGETOWN: 477 default: 478 break; 479 } 480 return (ENOTTY); 481 } 482 483 static int 484 devpoll(struct cdev *dev, int events, d_thread_t *td) 485 { 486 int revents = 0; 487 488 mtx_lock(&devsoftc.mtx); 489 if (events & (POLLIN | POLLRDNORM)) { 490 if (!TAILQ_EMPTY(&devsoftc.devq)) 491 revents = events & (POLLIN | POLLRDNORM); 492 else 493 selrecord(td, &devsoftc.sel); 494 } 495 mtx_unlock(&devsoftc.mtx); 496 497 return (revents); 498 } 499 500 /** 501 * @brief Queue data to be read from the devctl device 502 * 503 * Generic interface to queue data to the devctl device. It is 504 * assumed that @p data is properly formatted. It is further assumed 505 * that @p data is allocated using the M_BUS malloc type. 506 */ 507 void 508 devctl_queue_data(char *data) 509 { 510 struct dev_event_info *n1 = NULL; 511 struct proc *p; 512 513 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 514 if (n1 == NULL) 515 return; 516 n1->dei_data = data; 517 mtx_lock(&devsoftc.mtx); 518 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 519 cv_broadcast(&devsoftc.cv); 520 mtx_unlock(&devsoftc.mtx); 521 selwakeup(&devsoftc.sel); 522 p = devsoftc.async_proc; 523 if (p != NULL) { 524 PROC_LOCK(p); 525 psignal(p, SIGIO); 526 PROC_UNLOCK(p); 527 } 528 } 529 530 /** 531 * @brief Send a 'notification' to userland, using standard ways 532 */ 533 void 534 devctl_notify(const char *system, const char *subsystem, const char *type, 535 const char *data) 536 { 537 int len = 0; 538 char *msg; 539 540 if (system == NULL) 541 return; /* BOGUS! Must specify system. */ 542 if (subsystem == NULL) 543 return; /* BOGUS! Must specify subsystem. */ 544 if (type == NULL) 545 return; /* BOGUS! Must specify type. */ 546 len += strlen(" system=") + strlen(system); 547 len += strlen(" subsystem=") + strlen(subsystem); 548 len += strlen(" type=") + strlen(type); 549 /* add in the data message plus newline. */ 550 if (data != NULL) 551 len += strlen(data); 552 len += 3; /* '!', '\n', and NUL */ 553 msg = malloc(len, M_BUS, M_NOWAIT); 554 if (msg == NULL) 555 return; /* Drop it on the floor */ 556 if (data != NULL) 557 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 558 system, subsystem, type, data); 559 else 560 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 561 system, subsystem, type); 562 devctl_queue_data(msg); 563 } 564 565 /* 566 * Common routine that tries to make sending messages as easy as possible. 567 * We allocate memory for the data, copy strings into that, but do not 568 * free it unless there's an error. The dequeue part of the driver should 569 * free the data. We don't send data when the device is disabled. We do 570 * send data, even when we have no listeners, because we wish to avoid 571 * races relating to startup and restart of listening applications. 572 * 573 * devaddq is designed to string together the type of event, with the 574 * object of that event, plus the plug and play info and location info 575 * for that event. This is likely most useful for devices, but less 576 * useful for other consumers of this interface. Those should use 577 * the devctl_queue_data() interface instead. 578 */ 579 static void 580 devaddq(const char *type, const char *what, device_t dev) 581 { 582 char *data = NULL; 583 char *loc = NULL; 584 char *pnp = NULL; 585 const char *parstr; 586 587 if (devctl_disable) 588 return; 589 data = malloc(1024, M_BUS, M_NOWAIT); 590 if (data == NULL) 591 goto bad; 592 593 /* get the bus specific location of this device */ 594 loc = malloc(1024, M_BUS, M_NOWAIT); 595 if (loc == NULL) 596 goto bad; 597 *loc = '\0'; 598 bus_child_location_str(dev, loc, 1024); 599 600 /* Get the bus specific pnp info of this device */ 601 pnp = malloc(1024, M_BUS, M_NOWAIT); 602 if (pnp == NULL) 603 goto bad; 604 *pnp = '\0'; 605 bus_child_pnpinfo_str(dev, pnp, 1024); 606 607 /* Get the parent of this device, or / if high enough in the tree. */ 608 if (device_get_parent(dev) == NULL) 609 parstr = "."; /* Or '/' ? */ 610 else 611 parstr = device_get_nameunit(device_get_parent(dev)); 612 /* String it all together. */ 613 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 614 parstr); 615 free(loc, M_BUS); 616 free(pnp, M_BUS); 617 devctl_queue_data(data); 618 return; 619 bad: 620 free(pnp, M_BUS); 621 free(loc, M_BUS); 622 free(data, M_BUS); 623 return; 624 } 625 626 /* 627 * A device was added to the tree. We are called just after it successfully 628 * attaches (that is, probe and attach success for this device). No call 629 * is made if a device is merely parented into the tree. See devnomatch 630 * if probe fails. If attach fails, no notification is sent (but maybe 631 * we should have a different message for this). 632 */ 633 static void 634 devadded(device_t dev) 635 { 636 char *pnp = NULL; 637 char *tmp = NULL; 638 639 pnp = malloc(1024, M_BUS, M_NOWAIT); 640 if (pnp == NULL) 641 goto fail; 642 tmp = malloc(1024, M_BUS, M_NOWAIT); 643 if (tmp == NULL) 644 goto fail; 645 *pnp = '\0'; 646 bus_child_pnpinfo_str(dev, pnp, 1024); 647 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 648 devaddq("+", tmp, dev); 649 fail: 650 if (pnp != NULL) 651 free(pnp, M_BUS); 652 if (tmp != NULL) 653 free(tmp, M_BUS); 654 return; 655 } 656 657 /* 658 * A device was removed from the tree. We are called just before this 659 * happens. 660 */ 661 static void 662 devremoved(device_t dev) 663 { 664 char *pnp = NULL; 665 char *tmp = NULL; 666 667 pnp = malloc(1024, M_BUS, M_NOWAIT); 668 if (pnp == NULL) 669 goto fail; 670 tmp = malloc(1024, M_BUS, M_NOWAIT); 671 if (tmp == NULL) 672 goto fail; 673 *pnp = '\0'; 674 bus_child_pnpinfo_str(dev, pnp, 1024); 675 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 676 devaddq("-", tmp, dev); 677 fail: 678 if (pnp != NULL) 679 free(pnp, M_BUS); 680 if (tmp != NULL) 681 free(tmp, M_BUS); 682 return; 683 } 684 685 /* 686 * Called when there's no match for this device. This is only called 687 * the first time that no match happens, so we don't keep getitng this 688 * message. Should that prove to be undesirable, we can change it. 689 * This is called when all drivers that can attach to a given bus 690 * decline to accept this device. Other errrors may not be detected. 691 */ 692 static void 693 devnomatch(device_t dev) 694 { 695 devaddq("?", "", dev); 696 } 697 698 static int 699 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 700 { 701 struct dev_event_info *n1; 702 int dis, error; 703 704 dis = devctl_disable; 705 error = sysctl_handle_int(oidp, &dis, 0, req); 706 if (error || !req->newptr) 707 return (error); 708 mtx_lock(&devsoftc.mtx); 709 devctl_disable = dis; 710 if (dis) { 711 while (!TAILQ_EMPTY(&devsoftc.devq)) { 712 n1 = TAILQ_FIRST(&devsoftc.devq); 713 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 714 free(n1->dei_data, M_BUS); 715 free(n1, M_BUS); 716 } 717 } 718 mtx_unlock(&devsoftc.mtx); 719 return (0); 720 } 721 722 /* End of /dev/devctl code */ 723 724 TAILQ_HEAD(,device) bus_data_devices; 725 static int bus_data_generation = 1; 726 727 kobj_method_t null_methods[] = { 728 { 0, 0 } 729 }; 730 731 DEFINE_CLASS(null, null_methods, 0); 732 733 /* 734 * Devclass implementation 735 */ 736 737 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 738 739 740 /** 741 * @internal 742 * @brief Find or create a device class 743 * 744 * If a device class with the name @p classname exists, return it, 745 * otherwise if @p create is non-zero create and return a new device 746 * class. 747 * 748 * If @p parentname is non-NULL, the parent of the devclass is set to 749 * the devclass of that name. 750 * 751 * @param classname the devclass name to find or create 752 * @param parentname the parent devclass name or @c NULL 753 * @param create non-zero to create a devclass 754 */ 755 static devclass_t 756 devclass_find_internal(const char *classname, const char *parentname, 757 int create) 758 { 759 devclass_t dc; 760 761 PDEBUG(("looking for %s", classname)); 762 if (!classname) 763 return (NULL); 764 765 TAILQ_FOREACH(dc, &devclasses, link) { 766 if (!strcmp(dc->name, classname)) 767 break; 768 } 769 770 if (create && !dc) { 771 PDEBUG(("creating %s", classname)); 772 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 773 M_BUS, M_NOWAIT|M_ZERO); 774 if (!dc) 775 return (NULL); 776 dc->parent = NULL; 777 dc->name = (char*) (dc + 1); 778 strcpy(dc->name, classname); 779 TAILQ_INIT(&dc->drivers); 780 TAILQ_INSERT_TAIL(&devclasses, dc, link); 781 782 bus_data_generation_update(); 783 } 784 if (parentname && dc && !dc->parent) { 785 dc->parent = devclass_find_internal(parentname, 0, FALSE); 786 } 787 788 return (dc); 789 } 790 791 /** 792 * @brief Create a device class 793 * 794 * If a device class with the name @p classname exists, return it, 795 * otherwise create and return a new device class. 796 * 797 * @param classname the devclass name to find or create 798 */ 799 devclass_t 800 devclass_create(const char *classname) 801 { 802 return (devclass_find_internal(classname, 0, TRUE)); 803 } 804 805 /** 806 * @brief Find a device class 807 * 808 * If a device class with the name @p classname exists, return it, 809 * otherwise return @c NULL. 810 * 811 * @param classname the devclass name to find 812 */ 813 devclass_t 814 devclass_find(const char *classname) 815 { 816 return (devclass_find_internal(classname, 0, FALSE)); 817 } 818 819 /** 820 * @brief Add a device driver to a device class 821 * 822 * Add a device driver to a devclass. This is normally called 823 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 824 * all devices in the devclass will be called to allow them to attempt 825 * to re-probe any unmatched children. 826 * 827 * @param dc the devclass to edit 828 * @param driver the driver to register 829 */ 830 int 831 devclass_add_driver(devclass_t dc, driver_t *driver) 832 { 833 driverlink_t dl; 834 int i; 835 836 PDEBUG(("%s", DRIVERNAME(driver))); 837 838 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 839 if (!dl) 840 return (ENOMEM); 841 842 /* 843 * Compile the driver's methods. Also increase the reference count 844 * so that the class doesn't get freed when the last instance 845 * goes. This means we can safely use static methods and avoids a 846 * double-free in devclass_delete_driver. 847 */ 848 kobj_class_compile((kobj_class_t) driver); 849 850 /* 851 * Make sure the devclass which the driver is implementing exists. 852 */ 853 devclass_find_internal(driver->name, 0, TRUE); 854 855 dl->driver = driver; 856 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 857 driver->refs++; /* XXX: kobj_mtx */ 858 859 /* 860 * Call BUS_DRIVER_ADDED for any existing busses in this class. 861 */ 862 for (i = 0; i < dc->maxunit; i++) 863 if (dc->devices[i]) 864 BUS_DRIVER_ADDED(dc->devices[i], driver); 865 866 bus_data_generation_update(); 867 return (0); 868 } 869 870 /** 871 * @brief Delete a device driver from a device class 872 * 873 * Delete a device driver from a devclass. This is normally called 874 * automatically by DRIVER_MODULE(). 875 * 876 * If the driver is currently attached to any devices, 877 * devclass_delete_driver() will first attempt to detach from each 878 * device. If one of the detach calls fails, the driver will not be 879 * deleted. 880 * 881 * @param dc the devclass to edit 882 * @param driver the driver to unregister 883 */ 884 int 885 devclass_delete_driver(devclass_t busclass, driver_t *driver) 886 { 887 devclass_t dc = devclass_find(driver->name); 888 driverlink_t dl; 889 device_t dev; 890 int i; 891 int error; 892 893 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 894 895 if (!dc) 896 return (0); 897 898 /* 899 * Find the link structure in the bus' list of drivers. 900 */ 901 TAILQ_FOREACH(dl, &busclass->drivers, link) { 902 if (dl->driver == driver) 903 break; 904 } 905 906 if (!dl) { 907 PDEBUG(("%s not found in %s list", driver->name, 908 busclass->name)); 909 return (ENOENT); 910 } 911 912 /* 913 * Disassociate from any devices. We iterate through all the 914 * devices in the devclass of the driver and detach any which are 915 * using the driver and which have a parent in the devclass which 916 * we are deleting from. 917 * 918 * Note that since a driver can be in multiple devclasses, we 919 * should not detach devices which are not children of devices in 920 * the affected devclass. 921 */ 922 for (i = 0; i < dc->maxunit; i++) { 923 if (dc->devices[i]) { 924 dev = dc->devices[i]; 925 if (dev->driver == driver && dev->parent && 926 dev->parent->devclass == busclass) { 927 if ((error = device_detach(dev)) != 0) 928 return (error); 929 device_set_driver(dev, NULL); 930 } 931 } 932 } 933 934 TAILQ_REMOVE(&busclass->drivers, dl, link); 935 free(dl, M_BUS); 936 937 /* XXX: kobj_mtx */ 938 driver->refs--; 939 if (driver->refs == 0) 940 kobj_class_free((kobj_class_t) driver); 941 942 bus_data_generation_update(); 943 return (0); 944 } 945 946 /** 947 * @brief Quiesces a set of device drivers from a device class 948 * 949 * Quiesce a device driver from a devclass. This is normally called 950 * automatically by DRIVER_MODULE(). 951 * 952 * If the driver is currently attached to any devices, 953 * devclass_quiesece_driver() will first attempt to quiesce each 954 * device. 955 * 956 * @param dc the devclass to edit 957 * @param driver the driver to unregister 958 */ 959 int 960 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 961 { 962 devclass_t dc = devclass_find(driver->name); 963 driverlink_t dl; 964 device_t dev; 965 int i; 966 int error; 967 968 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 969 970 if (!dc) 971 return (0); 972 973 /* 974 * Find the link structure in the bus' list of drivers. 975 */ 976 TAILQ_FOREACH(dl, &busclass->drivers, link) { 977 if (dl->driver == driver) 978 break; 979 } 980 981 if (!dl) { 982 PDEBUG(("%s not found in %s list", driver->name, 983 busclass->name)); 984 return (ENOENT); 985 } 986 987 /* 988 * Quiesce all devices. We iterate through all the devices in 989 * the devclass of the driver and quiesce any which are using 990 * the driver and which have a parent in the devclass which we 991 * are quiescing. 992 * 993 * Note that since a driver can be in multiple devclasses, we 994 * should not quiesce devices which are not children of 995 * devices in the affected devclass. 996 */ 997 for (i = 0; i < dc->maxunit; i++) { 998 if (dc->devices[i]) { 999 dev = dc->devices[i]; 1000 if (dev->driver == driver && dev->parent && 1001 dev->parent->devclass == busclass) { 1002 if ((error = device_quiesce(dev)) != 0) 1003 return (error); 1004 } 1005 } 1006 } 1007 1008 return (0); 1009 } 1010 1011 /** 1012 * @internal 1013 */ 1014 static driverlink_t 1015 devclass_find_driver_internal(devclass_t dc, const char *classname) 1016 { 1017 driverlink_t dl; 1018 1019 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1020 1021 TAILQ_FOREACH(dl, &dc->drivers, link) { 1022 if (!strcmp(dl->driver->name, classname)) 1023 return (dl); 1024 } 1025 1026 PDEBUG(("not found")); 1027 return (NULL); 1028 } 1029 1030 /** 1031 * @brief Search a devclass for a driver 1032 * 1033 * This function searches the devclass's list of drivers and returns 1034 * the first driver whose name is @p classname or @c NULL if there is 1035 * no driver of that name. 1036 * 1037 * @param dc the devclass to search 1038 * @param classname the driver name to search for 1039 */ 1040 kobj_class_t 1041 devclass_find_driver(devclass_t dc, const char *classname) 1042 { 1043 driverlink_t dl; 1044 1045 dl = devclass_find_driver_internal(dc, classname); 1046 if (dl) 1047 return (dl->driver); 1048 return (NULL); 1049 } 1050 1051 /** 1052 * @brief Return the name of the devclass 1053 */ 1054 const char * 1055 devclass_get_name(devclass_t dc) 1056 { 1057 return (dc->name); 1058 } 1059 1060 /** 1061 * @brief Find a device given a unit number 1062 * 1063 * @param dc the devclass to search 1064 * @param unit the unit number to search for 1065 * 1066 * @returns the device with the given unit number or @c 1067 * NULL if there is no such device 1068 */ 1069 device_t 1070 devclass_get_device(devclass_t dc, int unit) 1071 { 1072 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1073 return (NULL); 1074 return (dc->devices[unit]); 1075 } 1076 1077 /** 1078 * @brief Find the softc field of a device given a unit number 1079 * 1080 * @param dc the devclass to search 1081 * @param unit the unit number to search for 1082 * 1083 * @returns the softc field of the device with the given 1084 * unit number or @c NULL if there is no such 1085 * device 1086 */ 1087 void * 1088 devclass_get_softc(devclass_t dc, int unit) 1089 { 1090 device_t dev; 1091 1092 dev = devclass_get_device(dc, unit); 1093 if (!dev) 1094 return (NULL); 1095 1096 return (device_get_softc(dev)); 1097 } 1098 1099 /** 1100 * @brief Get a list of devices in the devclass 1101 * 1102 * An array containing a list of all the devices in the given devclass 1103 * is allocated and returned in @p *devlistp. The number of devices 1104 * in the array is returned in @p *devcountp. The caller should free 1105 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1106 * 1107 * @param dc the devclass to examine 1108 * @param devlistp points at location for array pointer return 1109 * value 1110 * @param devcountp points at location for array size return value 1111 * 1112 * @retval 0 success 1113 * @retval ENOMEM the array allocation failed 1114 */ 1115 int 1116 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1117 { 1118 int count, i; 1119 device_t *list; 1120 1121 count = devclass_get_count(dc); 1122 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1123 if (!list) 1124 return (ENOMEM); 1125 1126 count = 0; 1127 for (i = 0; i < dc->maxunit; i++) { 1128 if (dc->devices[i]) { 1129 list[count] = dc->devices[i]; 1130 count++; 1131 } 1132 } 1133 1134 *devlistp = list; 1135 *devcountp = count; 1136 1137 return (0); 1138 } 1139 1140 /** 1141 * @brief Get a list of drivers in the devclass 1142 * 1143 * An array containing a list of pointers to all the drivers in the 1144 * given devclass is allocated and returned in @p *listp. The number 1145 * of drivers in the array is returned in @p *countp. The caller should 1146 * free the array using @c free(p, M_TEMP). 1147 * 1148 * @param dc the devclass to examine 1149 * @param listp gives location for array pointer return value 1150 * @param countp gives location for number of array elements 1151 * return value 1152 * 1153 * @retval 0 success 1154 * @retval ENOMEM the array allocation failed 1155 */ 1156 int 1157 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1158 { 1159 driverlink_t dl; 1160 driver_t **list; 1161 int count; 1162 1163 count = 0; 1164 TAILQ_FOREACH(dl, &dc->drivers, link) 1165 count++; 1166 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1167 if (list == NULL) 1168 return (ENOMEM); 1169 1170 count = 0; 1171 TAILQ_FOREACH(dl, &dc->drivers, link) { 1172 list[count] = dl->driver; 1173 count++; 1174 } 1175 *listp = list; 1176 *countp = count; 1177 1178 return (0); 1179 } 1180 1181 /** 1182 * @brief Get the number of devices in a devclass 1183 * 1184 * @param dc the devclass to examine 1185 */ 1186 int 1187 devclass_get_count(devclass_t dc) 1188 { 1189 int count, i; 1190 1191 count = 0; 1192 for (i = 0; i < dc->maxunit; i++) 1193 if (dc->devices[i]) 1194 count++; 1195 return (count); 1196 } 1197 1198 /** 1199 * @brief Get the maximum unit number used in a devclass 1200 * 1201 * Note that this is one greater than the highest currently-allocated 1202 * unit. 1203 * 1204 * @param dc the devclass to examine 1205 */ 1206 int 1207 devclass_get_maxunit(devclass_t dc) 1208 { 1209 return (dc->maxunit); 1210 } 1211 1212 /** 1213 * @brief Find a free unit number in a devclass 1214 * 1215 * This function searches for the first unused unit number greater 1216 * that or equal to @p unit. 1217 * 1218 * @param dc the devclass to examine 1219 * @param unit the first unit number to check 1220 */ 1221 int 1222 devclass_find_free_unit(devclass_t dc, int unit) 1223 { 1224 if (dc == NULL) 1225 return (unit); 1226 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1227 unit++; 1228 return (unit); 1229 } 1230 1231 /** 1232 * @brief Set the parent of a devclass 1233 * 1234 * The parent class is normally initialised automatically by 1235 * DRIVER_MODULE(). 1236 * 1237 * @param dc the devclass to edit 1238 * @param pdc the new parent devclass 1239 */ 1240 void 1241 devclass_set_parent(devclass_t dc, devclass_t pdc) 1242 { 1243 dc->parent = pdc; 1244 } 1245 1246 /** 1247 * @brief Get the parent of a devclass 1248 * 1249 * @param dc the devclass to examine 1250 */ 1251 devclass_t 1252 devclass_get_parent(devclass_t dc) 1253 { 1254 return (dc->parent); 1255 } 1256 1257 struct sysctl_ctx_list * 1258 devclass_get_sysctl_ctx(devclass_t dc) 1259 { 1260 return (&dc->sysctl_ctx); 1261 } 1262 1263 struct sysctl_oid * 1264 devclass_get_sysctl_tree(devclass_t dc) 1265 { 1266 return (dc->sysctl_tree); 1267 } 1268 1269 /** 1270 * @internal 1271 * @brief Allocate a unit number 1272 * 1273 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1274 * will do). The allocated unit number is returned in @p *unitp. 1275 1276 * @param dc the devclass to allocate from 1277 * @param unitp points at the location for the allocated unit 1278 * number 1279 * 1280 * @retval 0 success 1281 * @retval EEXIST the requested unit number is already allocated 1282 * @retval ENOMEM memory allocation failure 1283 */ 1284 static int 1285 devclass_alloc_unit(devclass_t dc, int *unitp) 1286 { 1287 int unit = *unitp; 1288 1289 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1290 1291 /* If we were given a wired unit number, check for existing device */ 1292 /* XXX imp XXX */ 1293 if (unit != -1) { 1294 if (unit >= 0 && unit < dc->maxunit && 1295 dc->devices[unit] != NULL) { 1296 if (bootverbose) 1297 printf("%s: %s%d already exists; skipping it\n", 1298 dc->name, dc->name, *unitp); 1299 return (EEXIST); 1300 } 1301 } else { 1302 /* Unwired device, find the next available slot for it */ 1303 unit = 0; 1304 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1305 unit++; 1306 } 1307 1308 /* 1309 * We've selected a unit beyond the length of the table, so let's 1310 * extend the table to make room for all units up to and including 1311 * this one. 1312 */ 1313 if (unit >= dc->maxunit) { 1314 device_t *newlist; 1315 int newsize; 1316 1317 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1318 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1319 if (!newlist) 1320 return (ENOMEM); 1321 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1322 bzero(newlist + dc->maxunit, 1323 sizeof(device_t) * (newsize - dc->maxunit)); 1324 if (dc->devices) 1325 free(dc->devices, M_BUS); 1326 dc->devices = newlist; 1327 dc->maxunit = newsize; 1328 } 1329 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1330 1331 *unitp = unit; 1332 return (0); 1333 } 1334 1335 /** 1336 * @internal 1337 * @brief Add a device to a devclass 1338 * 1339 * A unit number is allocated for the device (using the device's 1340 * preferred unit number if any) and the device is registered in the 1341 * devclass. This allows the device to be looked up by its unit 1342 * number, e.g. by decoding a dev_t minor number. 1343 * 1344 * @param dc the devclass to add to 1345 * @param dev the device to add 1346 * 1347 * @retval 0 success 1348 * @retval EEXIST the requested unit number is already allocated 1349 * @retval ENOMEM memory allocation failure 1350 */ 1351 static int 1352 devclass_add_device(devclass_t dc, device_t dev) 1353 { 1354 int buflen, error; 1355 1356 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1357 1358 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1359 if (buflen < 0) 1360 return (ENOMEM); 1361 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1362 if (!dev->nameunit) 1363 return (ENOMEM); 1364 1365 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1366 free(dev->nameunit, M_BUS); 1367 dev->nameunit = NULL; 1368 return (error); 1369 } 1370 dc->devices[dev->unit] = dev; 1371 dev->devclass = dc; 1372 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1373 1374 return (0); 1375 } 1376 1377 /** 1378 * @internal 1379 * @brief Delete a device from a devclass 1380 * 1381 * The device is removed from the devclass's device list and its unit 1382 * number is freed. 1383 1384 * @param dc the devclass to delete from 1385 * @param dev the device to delete 1386 * 1387 * @retval 0 success 1388 */ 1389 static int 1390 devclass_delete_device(devclass_t dc, device_t dev) 1391 { 1392 if (!dc || !dev) 1393 return (0); 1394 1395 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1396 1397 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1398 panic("devclass_delete_device: inconsistent device class"); 1399 dc->devices[dev->unit] = NULL; 1400 if (dev->flags & DF_WILDCARD) 1401 dev->unit = -1; 1402 dev->devclass = NULL; 1403 free(dev->nameunit, M_BUS); 1404 dev->nameunit = NULL; 1405 1406 return (0); 1407 } 1408 1409 /** 1410 * @internal 1411 * @brief Make a new device and add it as a child of @p parent 1412 * 1413 * @param parent the parent of the new device 1414 * @param name the devclass name of the new device or @c NULL 1415 * to leave the devclass unspecified 1416 * @parem unit the unit number of the new device of @c -1 to 1417 * leave the unit number unspecified 1418 * 1419 * @returns the new device 1420 */ 1421 static device_t 1422 make_device(device_t parent, const char *name, int unit) 1423 { 1424 device_t dev; 1425 devclass_t dc; 1426 1427 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1428 1429 if (name) { 1430 dc = devclass_find_internal(name, 0, TRUE); 1431 if (!dc) { 1432 printf("make_device: can't find device class %s\n", 1433 name); 1434 return (NULL); 1435 } 1436 } else { 1437 dc = NULL; 1438 } 1439 1440 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1441 if (!dev) 1442 return (NULL); 1443 1444 dev->parent = parent; 1445 TAILQ_INIT(&dev->children); 1446 kobj_init((kobj_t) dev, &null_class); 1447 dev->driver = NULL; 1448 dev->devclass = NULL; 1449 dev->unit = unit; 1450 dev->nameunit = NULL; 1451 dev->desc = NULL; 1452 dev->busy = 0; 1453 dev->devflags = 0; 1454 dev->flags = DF_ENABLED; 1455 dev->order = 0; 1456 if (unit == -1) 1457 dev->flags |= DF_WILDCARD; 1458 if (name) { 1459 dev->flags |= DF_FIXEDCLASS; 1460 if (devclass_add_device(dc, dev)) { 1461 kobj_delete((kobj_t) dev, M_BUS); 1462 return (NULL); 1463 } 1464 } 1465 dev->ivars = NULL; 1466 dev->softc = NULL; 1467 1468 dev->state = DS_NOTPRESENT; 1469 1470 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1471 bus_data_generation_update(); 1472 1473 return (dev); 1474 } 1475 1476 /** 1477 * @internal 1478 * @brief Print a description of a device. 1479 */ 1480 static int 1481 device_print_child(device_t dev, device_t child) 1482 { 1483 int retval = 0; 1484 1485 if (device_is_alive(child)) 1486 retval += BUS_PRINT_CHILD(dev, child); 1487 else 1488 retval += device_printf(child, " not found\n"); 1489 1490 return (retval); 1491 } 1492 1493 /** 1494 * @brief Create a new device 1495 * 1496 * This creates a new device and adds it as a child of an existing 1497 * parent device. The new device will be added after the last existing 1498 * child with order zero. 1499 * 1500 * @param dev the device which will be the parent of the 1501 * new child device 1502 * @param name devclass name for new device or @c NULL if not 1503 * specified 1504 * @param unit unit number for new device or @c -1 if not 1505 * specified 1506 * 1507 * @returns the new device 1508 */ 1509 device_t 1510 device_add_child(device_t dev, const char *name, int unit) 1511 { 1512 return (device_add_child_ordered(dev, 0, name, unit)); 1513 } 1514 1515 /** 1516 * @brief Create a new device 1517 * 1518 * This creates a new device and adds it as a child of an existing 1519 * parent device. The new device will be added after the last existing 1520 * child with the same order. 1521 * 1522 * @param dev the device which will be the parent of the 1523 * new child device 1524 * @param order a value which is used to partially sort the 1525 * children of @p dev - devices created using 1526 * lower values of @p order appear first in @p 1527 * dev's list of children 1528 * @param name devclass name for new device or @c NULL if not 1529 * specified 1530 * @param unit unit number for new device or @c -1 if not 1531 * specified 1532 * 1533 * @returns the new device 1534 */ 1535 device_t 1536 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1537 { 1538 device_t child; 1539 device_t place; 1540 1541 PDEBUG(("%s at %s with order %d as unit %d", 1542 name, DEVICENAME(dev), order, unit)); 1543 1544 child = make_device(dev, name, unit); 1545 if (child == NULL) 1546 return (child); 1547 child->order = order; 1548 1549 TAILQ_FOREACH(place, &dev->children, link) { 1550 if (place->order > order) 1551 break; 1552 } 1553 1554 if (place) { 1555 /* 1556 * The device 'place' is the first device whose order is 1557 * greater than the new child. 1558 */ 1559 TAILQ_INSERT_BEFORE(place, child, link); 1560 } else { 1561 /* 1562 * The new child's order is greater or equal to the order of 1563 * any existing device. Add the child to the tail of the list. 1564 */ 1565 TAILQ_INSERT_TAIL(&dev->children, child, link); 1566 } 1567 1568 bus_data_generation_update(); 1569 return (child); 1570 } 1571 1572 /** 1573 * @brief Delete a device 1574 * 1575 * This function deletes a device along with all of its children. If 1576 * the device currently has a driver attached to it, the device is 1577 * detached first using device_detach(). 1578 * 1579 * @param dev the parent device 1580 * @param child the device to delete 1581 * 1582 * @retval 0 success 1583 * @retval non-zero a unit error code describing the error 1584 */ 1585 int 1586 device_delete_child(device_t dev, device_t child) 1587 { 1588 int error; 1589 device_t grandchild; 1590 1591 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1592 1593 /* remove children first */ 1594 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1595 error = device_delete_child(child, grandchild); 1596 if (error) 1597 return (error); 1598 } 1599 1600 if ((error = device_detach(child)) != 0) 1601 return (error); 1602 if (child->devclass) 1603 devclass_delete_device(child->devclass, child); 1604 TAILQ_REMOVE(&dev->children, child, link); 1605 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1606 kobj_delete((kobj_t) child, M_BUS); 1607 1608 bus_data_generation_update(); 1609 return (0); 1610 } 1611 1612 /** 1613 * @brief Find a device given a unit number 1614 * 1615 * This is similar to devclass_get_devices() but only searches for 1616 * devices which have @p dev as a parent. 1617 * 1618 * @param dev the parent device to search 1619 * @param unit the unit number to search for. If the unit is -1, 1620 * return the first child of @p dev which has name 1621 * @p classname (that is, the one with the lowest unit.) 1622 * 1623 * @returns the device with the given unit number or @c 1624 * NULL if there is no such device 1625 */ 1626 device_t 1627 device_find_child(device_t dev, const char *classname, int unit) 1628 { 1629 devclass_t dc; 1630 device_t child; 1631 1632 dc = devclass_find(classname); 1633 if (!dc) 1634 return (NULL); 1635 1636 if (unit != -1) { 1637 child = devclass_get_device(dc, unit); 1638 if (child && child->parent == dev) 1639 return (child); 1640 } else { 1641 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1642 child = devclass_get_device(dc, unit); 1643 if (child && child->parent == dev) 1644 return (child); 1645 } 1646 } 1647 return (NULL); 1648 } 1649 1650 /** 1651 * @internal 1652 */ 1653 static driverlink_t 1654 first_matching_driver(devclass_t dc, device_t dev) 1655 { 1656 if (dev->devclass) 1657 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1658 return (TAILQ_FIRST(&dc->drivers)); 1659 } 1660 1661 /** 1662 * @internal 1663 */ 1664 static driverlink_t 1665 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1666 { 1667 if (dev->devclass) { 1668 driverlink_t dl; 1669 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1670 if (!strcmp(dev->devclass->name, dl->driver->name)) 1671 return (dl); 1672 return (NULL); 1673 } 1674 return (TAILQ_NEXT(last, link)); 1675 } 1676 1677 /** 1678 * @internal 1679 */ 1680 int 1681 device_probe_child(device_t dev, device_t child) 1682 { 1683 devclass_t dc; 1684 driverlink_t best = 0; 1685 driverlink_t dl; 1686 int result, pri = 0; 1687 int hasclass = (child->devclass != 0); 1688 1689 GIANT_REQUIRED; 1690 1691 dc = dev->devclass; 1692 if (!dc) 1693 panic("device_probe_child: parent device has no devclass"); 1694 1695 /* 1696 * If the state is already probed, then return. However, don't 1697 * return if we can rebid this object. 1698 */ 1699 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1700 return (0); 1701 1702 for (; dc; dc = dc->parent) { 1703 for (dl = first_matching_driver(dc, child); 1704 dl; 1705 dl = next_matching_driver(dc, child, dl)) { 1706 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1707 device_set_driver(child, dl->driver); 1708 if (!hasclass) 1709 device_set_devclass(child, dl->driver->name); 1710 1711 /* Fetch any flags for the device before probing. */ 1712 resource_int_value(dl->driver->name, child->unit, 1713 "flags", &child->devflags); 1714 1715 result = DEVICE_PROBE(child); 1716 1717 /* Reset flags and devclass before the next probe. */ 1718 child->devflags = 0; 1719 if (!hasclass) 1720 device_set_devclass(child, 0); 1721 1722 /* 1723 * If the driver returns SUCCESS, there can be 1724 * no higher match for this device. 1725 */ 1726 if (result == 0) { 1727 best = dl; 1728 pri = 0; 1729 break; 1730 } 1731 1732 /* 1733 * The driver returned an error so it 1734 * certainly doesn't match. 1735 */ 1736 if (result > 0) { 1737 device_set_driver(child, 0); 1738 continue; 1739 } 1740 1741 /* 1742 * A priority lower than SUCCESS, remember the 1743 * best matching driver. Initialise the value 1744 * of pri for the first match. 1745 */ 1746 if (best == 0 || result > pri) { 1747 best = dl; 1748 pri = result; 1749 continue; 1750 } 1751 } 1752 /* 1753 * If we have an unambiguous match in this devclass, 1754 * don't look in the parent. 1755 */ 1756 if (best && pri == 0) 1757 break; 1758 } 1759 1760 /* 1761 * If we found a driver, change state and initialise the devclass. 1762 */ 1763 /* XXX What happens if we rebid and got no best? */ 1764 if (best) { 1765 /* 1766 * If this device was atached, and we were asked to 1767 * rescan, and it is a different driver, then we have 1768 * to detach the old driver and reattach this new one. 1769 * Note, we don't have to check for DF_REBID here 1770 * because if the state is > DS_ALIVE, we know it must 1771 * be. 1772 * 1773 * This assumes that all DF_REBID drivers can have 1774 * their probe routine called at any time and that 1775 * they are idempotent as well as completely benign in 1776 * normal operations. 1777 * 1778 * We also have to make sure that the detach 1779 * succeeded, otherwise we fail the operation (or 1780 * maybe it should just fail silently? I'm torn). 1781 */ 1782 if (child->state > DS_ALIVE && best->driver != child->driver) 1783 if ((result = device_detach(dev)) != 0) 1784 return (result); 1785 1786 /* Set the winning driver, devclass, and flags. */ 1787 if (!child->devclass) 1788 device_set_devclass(child, best->driver->name); 1789 device_set_driver(child, best->driver); 1790 resource_int_value(best->driver->name, child->unit, 1791 "flags", &child->devflags); 1792 1793 if (pri < 0) { 1794 /* 1795 * A bit bogus. Call the probe method again to make 1796 * sure that we have the right description. 1797 */ 1798 DEVICE_PROBE(child); 1799 #if 0 1800 child->flags |= DF_REBID; 1801 #endif 1802 } else 1803 child->flags &= ~DF_REBID; 1804 child->state = DS_ALIVE; 1805 1806 bus_data_generation_update(); 1807 return (0); 1808 } 1809 1810 return (ENXIO); 1811 } 1812 1813 /** 1814 * @brief Return the parent of a device 1815 */ 1816 device_t 1817 device_get_parent(device_t dev) 1818 { 1819 return (dev->parent); 1820 } 1821 1822 /** 1823 * @brief Get a list of children of a device 1824 * 1825 * An array containing a list of all the children of the given device 1826 * is allocated and returned in @p *devlistp. The number of devices 1827 * in the array is returned in @p *devcountp. The caller should free 1828 * the array using @c free(p, M_TEMP). 1829 * 1830 * @param dev the device to examine 1831 * @param devlistp points at location for array pointer return 1832 * value 1833 * @param devcountp points at location for array size return value 1834 * 1835 * @retval 0 success 1836 * @retval ENOMEM the array allocation failed 1837 */ 1838 int 1839 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1840 { 1841 int count; 1842 device_t child; 1843 device_t *list; 1844 1845 count = 0; 1846 TAILQ_FOREACH(child, &dev->children, link) { 1847 count++; 1848 } 1849 1850 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1851 if (!list) 1852 return (ENOMEM); 1853 1854 count = 0; 1855 TAILQ_FOREACH(child, &dev->children, link) { 1856 list[count] = child; 1857 count++; 1858 } 1859 1860 *devlistp = list; 1861 *devcountp = count; 1862 1863 return (0); 1864 } 1865 1866 /** 1867 * @brief Return the current driver for the device or @c NULL if there 1868 * is no driver currently attached 1869 */ 1870 driver_t * 1871 device_get_driver(device_t dev) 1872 { 1873 return (dev->driver); 1874 } 1875 1876 /** 1877 * @brief Return the current devclass for the device or @c NULL if 1878 * there is none. 1879 */ 1880 devclass_t 1881 device_get_devclass(device_t dev) 1882 { 1883 return (dev->devclass); 1884 } 1885 1886 /** 1887 * @brief Return the name of the device's devclass or @c NULL if there 1888 * is none. 1889 */ 1890 const char * 1891 device_get_name(device_t dev) 1892 { 1893 if (dev != NULL && dev->devclass) 1894 return (devclass_get_name(dev->devclass)); 1895 return (NULL); 1896 } 1897 1898 /** 1899 * @brief Return a string containing the device's devclass name 1900 * followed by an ascii representation of the device's unit number 1901 * (e.g. @c "foo2"). 1902 */ 1903 const char * 1904 device_get_nameunit(device_t dev) 1905 { 1906 return (dev->nameunit); 1907 } 1908 1909 /** 1910 * @brief Return the device's unit number. 1911 */ 1912 int 1913 device_get_unit(device_t dev) 1914 { 1915 return (dev->unit); 1916 } 1917 1918 /** 1919 * @brief Return the device's description string 1920 */ 1921 const char * 1922 device_get_desc(device_t dev) 1923 { 1924 return (dev->desc); 1925 } 1926 1927 /** 1928 * @brief Return the device's flags 1929 */ 1930 u_int32_t 1931 device_get_flags(device_t dev) 1932 { 1933 return (dev->devflags); 1934 } 1935 1936 struct sysctl_ctx_list * 1937 device_get_sysctl_ctx(device_t dev) 1938 { 1939 return (&dev->sysctl_ctx); 1940 } 1941 1942 struct sysctl_oid * 1943 device_get_sysctl_tree(device_t dev) 1944 { 1945 return (dev->sysctl_tree); 1946 } 1947 1948 /** 1949 * @brief Print the name of the device followed by a colon and a space 1950 * 1951 * @returns the number of characters printed 1952 */ 1953 int 1954 device_print_prettyname(device_t dev) 1955 { 1956 const char *name = device_get_name(dev); 1957 1958 if (name == 0) 1959 return (printf("unknown: ")); 1960 return (printf("%s%d: ", name, device_get_unit(dev))); 1961 } 1962 1963 /** 1964 * @brief Print the name of the device followed by a colon, a space 1965 * and the result of calling vprintf() with the value of @p fmt and 1966 * the following arguments. 1967 * 1968 * @returns the number of characters printed 1969 */ 1970 int 1971 device_printf(device_t dev, const char * fmt, ...) 1972 { 1973 va_list ap; 1974 int retval; 1975 1976 retval = device_print_prettyname(dev); 1977 va_start(ap, fmt); 1978 retval += vprintf(fmt, ap); 1979 va_end(ap); 1980 return (retval); 1981 } 1982 1983 /** 1984 * @internal 1985 */ 1986 static void 1987 device_set_desc_internal(device_t dev, const char* desc, int copy) 1988 { 1989 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1990 free(dev->desc, M_BUS); 1991 dev->flags &= ~DF_DESCMALLOCED; 1992 dev->desc = NULL; 1993 } 1994 1995 if (copy && desc) { 1996 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 1997 if (dev->desc) { 1998 strcpy(dev->desc, desc); 1999 dev->flags |= DF_DESCMALLOCED; 2000 } 2001 } else { 2002 /* Avoid a -Wcast-qual warning */ 2003 dev->desc = (char *)(uintptr_t) desc; 2004 } 2005 2006 bus_data_generation_update(); 2007 } 2008 2009 /** 2010 * @brief Set the device's description 2011 * 2012 * The value of @c desc should be a string constant that will not 2013 * change (at least until the description is changed in a subsequent 2014 * call to device_set_desc() or device_set_desc_copy()). 2015 */ 2016 void 2017 device_set_desc(device_t dev, const char* desc) 2018 { 2019 device_set_desc_internal(dev, desc, FALSE); 2020 } 2021 2022 /** 2023 * @brief Set the device's description 2024 * 2025 * The string pointed to by @c desc is copied. Use this function if 2026 * the device description is generated, (e.g. with sprintf()). 2027 */ 2028 void 2029 device_set_desc_copy(device_t dev, const char* desc) 2030 { 2031 device_set_desc_internal(dev, desc, TRUE); 2032 } 2033 2034 /** 2035 * @brief Set the device's flags 2036 */ 2037 void 2038 device_set_flags(device_t dev, u_int32_t flags) 2039 { 2040 dev->devflags = flags; 2041 } 2042 2043 /** 2044 * @brief Return the device's softc field 2045 * 2046 * The softc is allocated and zeroed when a driver is attached, based 2047 * on the size field of the driver. 2048 */ 2049 void * 2050 device_get_softc(device_t dev) 2051 { 2052 return (dev->softc); 2053 } 2054 2055 /** 2056 * @brief Set the device's softc field 2057 * 2058 * Most drivers do not need to use this since the softc is allocated 2059 * automatically when the driver is attached. 2060 */ 2061 void 2062 device_set_softc(device_t dev, void *softc) 2063 { 2064 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2065 free(dev->softc, M_BUS_SC); 2066 dev->softc = softc; 2067 if (dev->softc) 2068 dev->flags |= DF_EXTERNALSOFTC; 2069 else 2070 dev->flags &= ~DF_EXTERNALSOFTC; 2071 } 2072 2073 /** 2074 * @brief Get the device's ivars field 2075 * 2076 * The ivars field is used by the parent device to store per-device 2077 * state (e.g. the physical location of the device or a list of 2078 * resources). 2079 */ 2080 void * 2081 device_get_ivars(device_t dev) 2082 { 2083 2084 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2085 return (dev->ivars); 2086 } 2087 2088 /** 2089 * @brief Set the device's ivars field 2090 */ 2091 void 2092 device_set_ivars(device_t dev, void * ivars) 2093 { 2094 2095 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2096 dev->ivars = ivars; 2097 } 2098 2099 /** 2100 * @brief Return the device's state 2101 */ 2102 device_state_t 2103 device_get_state(device_t dev) 2104 { 2105 return (dev->state); 2106 } 2107 2108 /** 2109 * @brief Set the DF_ENABLED flag for the device 2110 */ 2111 void 2112 device_enable(device_t dev) 2113 { 2114 dev->flags |= DF_ENABLED; 2115 } 2116 2117 /** 2118 * @brief Clear the DF_ENABLED flag for the device 2119 */ 2120 void 2121 device_disable(device_t dev) 2122 { 2123 dev->flags &= ~DF_ENABLED; 2124 } 2125 2126 /** 2127 * @brief Increment the busy counter for the device 2128 */ 2129 void 2130 device_busy(device_t dev) 2131 { 2132 if (dev->state < DS_ATTACHED) 2133 panic("device_busy: called for unattached device"); 2134 if (dev->busy == 0 && dev->parent) 2135 device_busy(dev->parent); 2136 dev->busy++; 2137 dev->state = DS_BUSY; 2138 } 2139 2140 /** 2141 * @brief Decrement the busy counter for the device 2142 */ 2143 void 2144 device_unbusy(device_t dev) 2145 { 2146 if (dev->state != DS_BUSY) 2147 panic("device_unbusy: called for non-busy device %s", 2148 device_get_nameunit(dev)); 2149 dev->busy--; 2150 if (dev->busy == 0) { 2151 if (dev->parent) 2152 device_unbusy(dev->parent); 2153 dev->state = DS_ATTACHED; 2154 } 2155 } 2156 2157 /** 2158 * @brief Set the DF_QUIET flag for the device 2159 */ 2160 void 2161 device_quiet(device_t dev) 2162 { 2163 dev->flags |= DF_QUIET; 2164 } 2165 2166 /** 2167 * @brief Clear the DF_QUIET flag for the device 2168 */ 2169 void 2170 device_verbose(device_t dev) 2171 { 2172 dev->flags &= ~DF_QUIET; 2173 } 2174 2175 /** 2176 * @brief Return non-zero if the DF_QUIET flag is set on the device 2177 */ 2178 int 2179 device_is_quiet(device_t dev) 2180 { 2181 return ((dev->flags & DF_QUIET) != 0); 2182 } 2183 2184 /** 2185 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2186 */ 2187 int 2188 device_is_enabled(device_t dev) 2189 { 2190 return ((dev->flags & DF_ENABLED) != 0); 2191 } 2192 2193 /** 2194 * @brief Return non-zero if the device was successfully probed 2195 */ 2196 int 2197 device_is_alive(device_t dev) 2198 { 2199 return (dev->state >= DS_ALIVE); 2200 } 2201 2202 /** 2203 * @brief Return non-zero if the device currently has a driver 2204 * attached to it 2205 */ 2206 int 2207 device_is_attached(device_t dev) 2208 { 2209 return (dev->state >= DS_ATTACHED); 2210 } 2211 2212 /** 2213 * @brief Set the devclass of a device 2214 * @see devclass_add_device(). 2215 */ 2216 int 2217 device_set_devclass(device_t dev, const char *classname) 2218 { 2219 devclass_t dc; 2220 int error; 2221 2222 if (!classname) { 2223 if (dev->devclass) 2224 devclass_delete_device(dev->devclass, dev); 2225 return (0); 2226 } 2227 2228 if (dev->devclass) { 2229 printf("device_set_devclass: device class already set\n"); 2230 return (EINVAL); 2231 } 2232 2233 dc = devclass_find_internal(classname, 0, TRUE); 2234 if (!dc) 2235 return (ENOMEM); 2236 2237 error = devclass_add_device(dc, dev); 2238 2239 bus_data_generation_update(); 2240 return (error); 2241 } 2242 2243 /** 2244 * @brief Set the driver of a device 2245 * 2246 * @retval 0 success 2247 * @retval EBUSY the device already has a driver attached 2248 * @retval ENOMEM a memory allocation failure occurred 2249 */ 2250 int 2251 device_set_driver(device_t dev, driver_t *driver) 2252 { 2253 if (dev->state >= DS_ATTACHED) 2254 return (EBUSY); 2255 2256 if (dev->driver == driver) 2257 return (0); 2258 2259 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2260 free(dev->softc, M_BUS_SC); 2261 dev->softc = NULL; 2262 } 2263 kobj_delete((kobj_t) dev, 0); 2264 dev->driver = driver; 2265 if (driver) { 2266 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2267 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2268 dev->softc = malloc(driver->size, M_BUS_SC, 2269 M_NOWAIT | M_ZERO); 2270 if (!dev->softc) { 2271 kobj_delete((kobj_t) dev, 0); 2272 kobj_init((kobj_t) dev, &null_class); 2273 dev->driver = NULL; 2274 return (ENOMEM); 2275 } 2276 } 2277 } else { 2278 kobj_init((kobj_t) dev, &null_class); 2279 } 2280 2281 bus_data_generation_update(); 2282 return (0); 2283 } 2284 2285 /** 2286 * @brief Probe a device and attach a driver if possible 2287 * 2288 * This function is the core of the device autoconfiguration 2289 * system. Its purpose is to select a suitable driver for a device and 2290 * then call that driver to initialise the hardware appropriately. The 2291 * driver is selected by calling the DEVICE_PROBE() method of a set of 2292 * candidate drivers and then choosing the driver which returned the 2293 * best value. This driver is then attached to the device using 2294 * device_attach(). 2295 * 2296 * The set of suitable drivers is taken from the list of drivers in 2297 * the parent device's devclass. If the device was originally created 2298 * with a specific class name (see device_add_child()), only drivers 2299 * with that name are probed, otherwise all drivers in the devclass 2300 * are probed. If no drivers return successful probe values in the 2301 * parent devclass, the search continues in the parent of that 2302 * devclass (see devclass_get_parent()) if any. 2303 * 2304 * @param dev the device to initialise 2305 * 2306 * @retval 0 success 2307 * @retval ENXIO no driver was found 2308 * @retval ENOMEM memory allocation failure 2309 * @retval non-zero some other unix error code 2310 */ 2311 int 2312 device_probe_and_attach(device_t dev) 2313 { 2314 int error; 2315 2316 GIANT_REQUIRED; 2317 2318 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2319 return (0); 2320 2321 if (!(dev->flags & DF_ENABLED)) { 2322 if (bootverbose && device_get_name(dev) != NULL) { 2323 device_print_prettyname(dev); 2324 printf("not probed (disabled)\n"); 2325 } 2326 return (0); 2327 } 2328 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2329 if (!(dev->flags & DF_DONENOMATCH)) { 2330 BUS_PROBE_NOMATCH(dev->parent, dev); 2331 devnomatch(dev); 2332 dev->flags |= DF_DONENOMATCH; 2333 } 2334 return (error); 2335 } 2336 error = device_attach(dev); 2337 2338 return (error); 2339 } 2340 2341 /** 2342 * @brief Attach a device driver to a device 2343 * 2344 * This function is a wrapper around the DEVICE_ATTACH() driver 2345 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2346 * device's sysctl tree, optionally prints a description of the device 2347 * and queues a notification event for user-based device management 2348 * services. 2349 * 2350 * Normally this function is only called internally from 2351 * device_probe_and_attach(). 2352 * 2353 * @param dev the device to initialise 2354 * 2355 * @retval 0 success 2356 * @retval ENXIO no driver was found 2357 * @retval ENOMEM memory allocation failure 2358 * @retval non-zero some other unix error code 2359 */ 2360 int 2361 device_attach(device_t dev) 2362 { 2363 int error; 2364 2365 device_sysctl_init(dev); 2366 if (!device_is_quiet(dev)) 2367 device_print_child(dev->parent, dev); 2368 if ((error = DEVICE_ATTACH(dev)) != 0) { 2369 printf("device_attach: %s%d attach returned %d\n", 2370 dev->driver->name, dev->unit, error); 2371 /* Unset the class; set in device_probe_child */ 2372 if (dev->devclass == 0) 2373 device_set_devclass(dev, 0); 2374 device_set_driver(dev, NULL); 2375 device_sysctl_fini(dev); 2376 dev->state = DS_NOTPRESENT; 2377 return (error); 2378 } 2379 dev->state = DS_ATTACHED; 2380 devadded(dev); 2381 return (0); 2382 } 2383 2384 /** 2385 * @brief Detach a driver from a device 2386 * 2387 * This function is a wrapper around the DEVICE_DETACH() driver 2388 * method. If the call to DEVICE_DETACH() succeeds, it calls 2389 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2390 * notification event for user-based device management services and 2391 * cleans up the device's sysctl tree. 2392 * 2393 * @param dev the device to un-initialise 2394 * 2395 * @retval 0 success 2396 * @retval ENXIO no driver was found 2397 * @retval ENOMEM memory allocation failure 2398 * @retval non-zero some other unix error code 2399 */ 2400 int 2401 device_detach(device_t dev) 2402 { 2403 int error; 2404 2405 GIANT_REQUIRED; 2406 2407 PDEBUG(("%s", DEVICENAME(dev))); 2408 if (dev->state == DS_BUSY) 2409 return (EBUSY); 2410 if (dev->state != DS_ATTACHED) 2411 return (0); 2412 2413 if ((error = DEVICE_DETACH(dev)) != 0) 2414 return (error); 2415 devremoved(dev); 2416 device_printf(dev, "detached\n"); 2417 if (dev->parent) 2418 BUS_CHILD_DETACHED(dev->parent, dev); 2419 2420 if (!(dev->flags & DF_FIXEDCLASS)) 2421 devclass_delete_device(dev->devclass, dev); 2422 2423 dev->state = DS_NOTPRESENT; 2424 device_set_driver(dev, NULL); 2425 device_set_desc(dev, NULL); 2426 device_sysctl_fini(dev); 2427 2428 return (0); 2429 } 2430 2431 /** 2432 * @brief Tells a driver to quiesce itself. 2433 * 2434 * This function is a wrapper around the DEVICE_QUIESCE() driver 2435 * method. If the call to DEVICE_QUIESCE() succeeds. 2436 * 2437 * @param dev the device to quiesce 2438 * 2439 * @retval 0 success 2440 * @retval ENXIO no driver was found 2441 * @retval ENOMEM memory allocation failure 2442 * @retval non-zero some other unix error code 2443 */ 2444 int 2445 device_quiesce(device_t dev) 2446 { 2447 2448 PDEBUG(("%s", DEVICENAME(dev))); 2449 if (dev->state == DS_BUSY) 2450 return (EBUSY); 2451 if (dev->state != DS_ATTACHED) 2452 return (0); 2453 2454 return (DEVICE_QUIESCE(dev)); 2455 } 2456 2457 /** 2458 * @brief Notify a device of system shutdown 2459 * 2460 * This function calls the DEVICE_SHUTDOWN() driver method if the 2461 * device currently has an attached driver. 2462 * 2463 * @returns the value returned by DEVICE_SHUTDOWN() 2464 */ 2465 int 2466 device_shutdown(device_t dev) 2467 { 2468 if (dev->state < DS_ATTACHED) 2469 return (0); 2470 return (DEVICE_SHUTDOWN(dev)); 2471 } 2472 2473 /** 2474 * @brief Set the unit number of a device 2475 * 2476 * This function can be used to override the unit number used for a 2477 * device (e.g. to wire a device to a pre-configured unit number). 2478 */ 2479 int 2480 device_set_unit(device_t dev, int unit) 2481 { 2482 devclass_t dc; 2483 int err; 2484 2485 dc = device_get_devclass(dev); 2486 if (unit < dc->maxunit && dc->devices[unit]) 2487 return (EBUSY); 2488 err = devclass_delete_device(dc, dev); 2489 if (err) 2490 return (err); 2491 dev->unit = unit; 2492 err = devclass_add_device(dc, dev); 2493 if (err) 2494 return (err); 2495 2496 bus_data_generation_update(); 2497 return (0); 2498 } 2499 2500 /*======================================*/ 2501 /* 2502 * Some useful method implementations to make life easier for bus drivers. 2503 */ 2504 2505 /** 2506 * @brief Initialise a resource list. 2507 * 2508 * @param rl the resource list to initialise 2509 */ 2510 void 2511 resource_list_init(struct resource_list *rl) 2512 { 2513 STAILQ_INIT(rl); 2514 } 2515 2516 /** 2517 * @brief Reclaim memory used by a resource list. 2518 * 2519 * This function frees the memory for all resource entries on the list 2520 * (if any). 2521 * 2522 * @param rl the resource list to free 2523 */ 2524 void 2525 resource_list_free(struct resource_list *rl) 2526 { 2527 struct resource_list_entry *rle; 2528 2529 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2530 if (rle->res) 2531 panic("resource_list_free: resource entry is busy"); 2532 STAILQ_REMOVE_HEAD(rl, link); 2533 free(rle, M_BUS); 2534 } 2535 } 2536 2537 /** 2538 * @brief Add a resource entry. 2539 * 2540 * This function adds a resource entry using the given @p type, @p 2541 * start, @p end and @p count values. A rid value is chosen by 2542 * searching sequentially for the first unused rid starting at zero. 2543 * 2544 * @param rl the resource list to edit 2545 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2546 * @param start the start address of the resource 2547 * @param end the end address of the resource 2548 * @param count XXX end-start+1 2549 */ 2550 int 2551 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2552 u_long end, u_long count) 2553 { 2554 int rid; 2555 2556 rid = 0; 2557 while (resource_list_find(rl, type, rid) != NULL) 2558 rid++; 2559 resource_list_add(rl, type, rid, start, end, count); 2560 return (rid); 2561 } 2562 2563 /** 2564 * @brief Add or modify a resource entry. 2565 * 2566 * If an existing entry exists with the same type and rid, it will be 2567 * modified using the given values of @p start, @p end and @p 2568 * count. If no entry exists, a new one will be created using the 2569 * given values. The resource list entry that matches is then returned. 2570 * 2571 * @param rl the resource list to edit 2572 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2573 * @param rid the resource identifier 2574 * @param start the start address of the resource 2575 * @param end the end address of the resource 2576 * @param count XXX end-start+1 2577 */ 2578 struct resource_list_entry * 2579 resource_list_add(struct resource_list *rl, int type, int rid, 2580 u_long start, u_long end, u_long count) 2581 { 2582 struct resource_list_entry *rle; 2583 2584 rle = resource_list_find(rl, type, rid); 2585 if (!rle) { 2586 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2587 M_NOWAIT); 2588 if (!rle) 2589 panic("resource_list_add: can't record entry"); 2590 STAILQ_INSERT_TAIL(rl, rle, link); 2591 rle->type = type; 2592 rle->rid = rid; 2593 rle->res = NULL; 2594 } 2595 2596 if (rle->res) 2597 panic("resource_list_add: resource entry is busy"); 2598 2599 rle->start = start; 2600 rle->end = end; 2601 rle->count = count; 2602 return (rle); 2603 } 2604 2605 /** 2606 * @brief Find a resource entry by type and rid. 2607 * 2608 * @param rl the resource list to search 2609 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2610 * @param rid the resource identifier 2611 * 2612 * @returns the resource entry pointer or NULL if there is no such 2613 * entry. 2614 */ 2615 struct resource_list_entry * 2616 resource_list_find(struct resource_list *rl, int type, int rid) 2617 { 2618 struct resource_list_entry *rle; 2619 2620 STAILQ_FOREACH(rle, rl, link) { 2621 if (rle->type == type && rle->rid == rid) 2622 return (rle); 2623 } 2624 return (NULL); 2625 } 2626 2627 /** 2628 * @brief Delete a resource entry. 2629 * 2630 * @param rl the resource list to edit 2631 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2632 * @param rid the resource identifier 2633 */ 2634 void 2635 resource_list_delete(struct resource_list *rl, int type, int rid) 2636 { 2637 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2638 2639 if (rle) { 2640 if (rle->res != NULL) 2641 panic("resource_list_delete: resource has not been released"); 2642 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2643 free(rle, M_BUS); 2644 } 2645 } 2646 2647 /** 2648 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2649 * 2650 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2651 * and passing the allocation up to the parent of @p bus. This assumes 2652 * that the first entry of @c device_get_ivars(child) is a struct 2653 * resource_list. This also handles 'passthrough' allocations where a 2654 * child is a remote descendant of bus by passing the allocation up to 2655 * the parent of bus. 2656 * 2657 * Typically, a bus driver would store a list of child resources 2658 * somewhere in the child device's ivars (see device_get_ivars()) and 2659 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2660 * then call resource_list_alloc() to perform the allocation. 2661 * 2662 * @param rl the resource list to allocate from 2663 * @param bus the parent device of @p child 2664 * @param child the device which is requesting an allocation 2665 * @param type the type of resource to allocate 2666 * @param rid a pointer to the resource identifier 2667 * @param start hint at the start of the resource range - pass 2668 * @c 0UL for any start address 2669 * @param end hint at the end of the resource range - pass 2670 * @c ~0UL for any end address 2671 * @param count hint at the size of range required - pass @c 1 2672 * for any size 2673 * @param flags any extra flags to control the resource 2674 * allocation - see @c RF_XXX flags in 2675 * <sys/rman.h> for details 2676 * 2677 * @returns the resource which was allocated or @c NULL if no 2678 * resource could be allocated 2679 */ 2680 struct resource * 2681 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2682 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2683 { 2684 struct resource_list_entry *rle = 0; 2685 int passthrough = (device_get_parent(child) != bus); 2686 int isdefault = (start == 0UL && end == ~0UL); 2687 2688 if (passthrough) { 2689 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2690 type, rid, start, end, count, flags)); 2691 } 2692 2693 rle = resource_list_find(rl, type, *rid); 2694 2695 if (!rle) 2696 return (NULL); /* no resource of that type/rid */ 2697 2698 if (rle->res) 2699 panic("resource_list_alloc: resource entry is busy"); 2700 2701 if (isdefault) { 2702 start = rle->start; 2703 count = ulmax(count, rle->count); 2704 end = ulmax(rle->end, start + count - 1); 2705 } 2706 2707 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2708 type, rid, start, end, count, flags); 2709 2710 /* 2711 * Record the new range. 2712 */ 2713 if (rle->res) { 2714 rle->start = rman_get_start(rle->res); 2715 rle->end = rman_get_end(rle->res); 2716 rle->count = count; 2717 } 2718 2719 return (rle->res); 2720 } 2721 2722 /** 2723 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2724 * 2725 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2726 * used with resource_list_alloc(). 2727 * 2728 * @param rl the resource list which was allocated from 2729 * @param bus the parent device of @p child 2730 * @param child the device which is requesting a release 2731 * @param type the type of resource to allocate 2732 * @param rid the resource identifier 2733 * @param res the resource to release 2734 * 2735 * @retval 0 success 2736 * @retval non-zero a standard unix error code indicating what 2737 * error condition prevented the operation 2738 */ 2739 int 2740 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2741 int type, int rid, struct resource *res) 2742 { 2743 struct resource_list_entry *rle = 0; 2744 int passthrough = (device_get_parent(child) != bus); 2745 int error; 2746 2747 if (passthrough) { 2748 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2749 type, rid, res)); 2750 } 2751 2752 rle = resource_list_find(rl, type, rid); 2753 2754 if (!rle) 2755 panic("resource_list_release: can't find resource"); 2756 if (!rle->res) 2757 panic("resource_list_release: resource entry is not busy"); 2758 2759 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2760 type, rid, res); 2761 if (error) 2762 return (error); 2763 2764 rle->res = NULL; 2765 return (0); 2766 } 2767 2768 /** 2769 * @brief Print a description of resources in a resource list 2770 * 2771 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2772 * The name is printed if at least one resource of the given type is available. 2773 * The format is used to print resource start and end. 2774 * 2775 * @param rl the resource list to print 2776 * @param name the name of @p type, e.g. @c "memory" 2777 * @param type type type of resource entry to print 2778 * @param format printf(9) format string to print resource 2779 * start and end values 2780 * 2781 * @returns the number of characters printed 2782 */ 2783 int 2784 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2785 const char *format) 2786 { 2787 struct resource_list_entry *rle; 2788 int printed, retval; 2789 2790 printed = 0; 2791 retval = 0; 2792 /* Yes, this is kinda cheating */ 2793 STAILQ_FOREACH(rle, rl, link) { 2794 if (rle->type == type) { 2795 if (printed == 0) 2796 retval += printf(" %s ", name); 2797 else 2798 retval += printf(","); 2799 printed++; 2800 retval += printf(format, rle->start); 2801 if (rle->count > 1) { 2802 retval += printf("-"); 2803 retval += printf(format, rle->start + 2804 rle->count - 1); 2805 } 2806 } 2807 } 2808 return (retval); 2809 } 2810 2811 /** 2812 * @brief Releases all the resources in a list. 2813 * 2814 * @param rl The resource list to purge. 2815 * 2816 * @returns nothing 2817 */ 2818 void 2819 resource_list_purge(struct resource_list *rl) 2820 { 2821 struct resource_list_entry *rle; 2822 2823 STAILQ_FOREACH(rle, rl, link) { 2824 if (rle->res) 2825 bus_release_resource(rman_get_device(rle->res), 2826 rle->type, rle->rid, rle->res); 2827 STAILQ_REMOVE_HEAD(rl, link); 2828 free(rle, M_BUS); 2829 } 2830 } 2831 2832 /** 2833 * @brief Helper function for implementing DEVICE_PROBE() 2834 * 2835 * This function can be used to help implement the DEVICE_PROBE() for 2836 * a bus (i.e. a device which has other devices attached to it). It 2837 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2838 * devclass. 2839 */ 2840 int 2841 bus_generic_probe(device_t dev) 2842 { 2843 devclass_t dc = dev->devclass; 2844 driverlink_t dl; 2845 2846 TAILQ_FOREACH(dl, &dc->drivers, link) { 2847 DEVICE_IDENTIFY(dl->driver, dev); 2848 } 2849 2850 return (0); 2851 } 2852 2853 /** 2854 * @brief Helper function for implementing DEVICE_ATTACH() 2855 * 2856 * This function can be used to help implement the DEVICE_ATTACH() for 2857 * a bus. It calls device_probe_and_attach() for each of the device's 2858 * children. 2859 */ 2860 int 2861 bus_generic_attach(device_t dev) 2862 { 2863 device_t child; 2864 2865 TAILQ_FOREACH(child, &dev->children, link) { 2866 device_probe_and_attach(child); 2867 } 2868 2869 return (0); 2870 } 2871 2872 /** 2873 * @brief Helper function for implementing DEVICE_DETACH() 2874 * 2875 * This function can be used to help implement the DEVICE_DETACH() for 2876 * a bus. It calls device_detach() for each of the device's 2877 * children. 2878 */ 2879 int 2880 bus_generic_detach(device_t dev) 2881 { 2882 device_t child; 2883 int error; 2884 2885 if (dev->state != DS_ATTACHED) 2886 return (EBUSY); 2887 2888 TAILQ_FOREACH(child, &dev->children, link) { 2889 if ((error = device_detach(child)) != 0) 2890 return (error); 2891 } 2892 2893 return (0); 2894 } 2895 2896 /** 2897 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2898 * 2899 * This function can be used to help implement the DEVICE_SHUTDOWN() 2900 * for a bus. It calls device_shutdown() for each of the device's 2901 * children. 2902 */ 2903 int 2904 bus_generic_shutdown(device_t dev) 2905 { 2906 device_t child; 2907 2908 TAILQ_FOREACH(child, &dev->children, link) { 2909 device_shutdown(child); 2910 } 2911 2912 return (0); 2913 } 2914 2915 /** 2916 * @brief Helper function for implementing DEVICE_SUSPEND() 2917 * 2918 * This function can be used to help implement the DEVICE_SUSPEND() 2919 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2920 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2921 * operation is aborted and any devices which were suspended are 2922 * resumed immediately by calling their DEVICE_RESUME() methods. 2923 */ 2924 int 2925 bus_generic_suspend(device_t dev) 2926 { 2927 int error; 2928 device_t child, child2; 2929 2930 TAILQ_FOREACH(child, &dev->children, link) { 2931 error = DEVICE_SUSPEND(child); 2932 if (error) { 2933 for (child2 = TAILQ_FIRST(&dev->children); 2934 child2 && child2 != child; 2935 child2 = TAILQ_NEXT(child2, link)) 2936 DEVICE_RESUME(child2); 2937 return (error); 2938 } 2939 } 2940 return (0); 2941 } 2942 2943 /** 2944 * @brief Helper function for implementing DEVICE_RESUME() 2945 * 2946 * This function can be used to help implement the DEVICE_RESUME() for 2947 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2948 */ 2949 int 2950 bus_generic_resume(device_t dev) 2951 { 2952 device_t child; 2953 2954 TAILQ_FOREACH(child, &dev->children, link) { 2955 DEVICE_RESUME(child); 2956 /* if resume fails, there's nothing we can usefully do... */ 2957 } 2958 return (0); 2959 } 2960 2961 /** 2962 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2963 * 2964 * This function prints the first part of the ascii representation of 2965 * @p child, including its name, unit and description (if any - see 2966 * device_set_desc()). 2967 * 2968 * @returns the number of characters printed 2969 */ 2970 int 2971 bus_print_child_header(device_t dev, device_t child) 2972 { 2973 int retval = 0; 2974 2975 if (device_get_desc(child)) { 2976 retval += device_printf(child, "<%s>", device_get_desc(child)); 2977 } else { 2978 retval += printf("%s", device_get_nameunit(child)); 2979 } 2980 2981 return (retval); 2982 } 2983 2984 /** 2985 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2986 * 2987 * This function prints the last part of the ascii representation of 2988 * @p child, which consists of the string @c " on " followed by the 2989 * name and unit of the @p dev. 2990 * 2991 * @returns the number of characters printed 2992 */ 2993 int 2994 bus_print_child_footer(device_t dev, device_t child) 2995 { 2996 return (printf(" on %s\n", device_get_nameunit(dev))); 2997 } 2998 2999 /** 3000 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3001 * 3002 * This function simply calls bus_print_child_header() followed by 3003 * bus_print_child_footer(). 3004 * 3005 * @returns the number of characters printed 3006 */ 3007 int 3008 bus_generic_print_child(device_t dev, device_t child) 3009 { 3010 int retval = 0; 3011 3012 retval += bus_print_child_header(dev, child); 3013 retval += bus_print_child_footer(dev, child); 3014 3015 return (retval); 3016 } 3017 3018 /** 3019 * @brief Stub function for implementing BUS_READ_IVAR(). 3020 * 3021 * @returns ENOENT 3022 */ 3023 int 3024 bus_generic_read_ivar(device_t dev, device_t child, int index, 3025 uintptr_t * result) 3026 { 3027 return (ENOENT); 3028 } 3029 3030 /** 3031 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3032 * 3033 * @returns ENOENT 3034 */ 3035 int 3036 bus_generic_write_ivar(device_t dev, device_t child, int index, 3037 uintptr_t value) 3038 { 3039 return (ENOENT); 3040 } 3041 3042 /** 3043 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3044 * 3045 * @returns NULL 3046 */ 3047 struct resource_list * 3048 bus_generic_get_resource_list(device_t dev, device_t child) 3049 { 3050 return (NULL); 3051 } 3052 3053 /** 3054 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3055 * 3056 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3057 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3058 * and then calls device_probe_and_attach() for each unattached child. 3059 */ 3060 void 3061 bus_generic_driver_added(device_t dev, driver_t *driver) 3062 { 3063 device_t child; 3064 3065 DEVICE_IDENTIFY(driver, dev); 3066 TAILQ_FOREACH(child, &dev->children, link) { 3067 if (child->state == DS_NOTPRESENT || 3068 (child->flags & DF_REBID)) 3069 device_probe_and_attach(child); 3070 } 3071 } 3072 3073 /** 3074 * @brief Helper function for implementing BUS_SETUP_INTR(). 3075 * 3076 * This simple implementation of BUS_SETUP_INTR() simply calls the 3077 * BUS_SETUP_INTR() method of the parent of @p dev. 3078 */ 3079 int 3080 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3081 int flags, driver_intr_t *intr, void *arg, void **cookiep) 3082 { 3083 /* Propagate up the bus hierarchy until someone handles it. */ 3084 if (dev->parent) 3085 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3086 intr, arg, cookiep)); 3087 return (EINVAL); 3088 } 3089 3090 /** 3091 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3092 * 3093 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3094 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3095 */ 3096 int 3097 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3098 void *cookie) 3099 { 3100 /* Propagate up the bus hierarchy until someone handles it. */ 3101 if (dev->parent) 3102 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3103 return (EINVAL); 3104 } 3105 3106 /** 3107 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3108 * 3109 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3110 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3111 */ 3112 struct resource * 3113 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3114 u_long start, u_long end, u_long count, u_int flags) 3115 { 3116 /* Propagate up the bus hierarchy until someone handles it. */ 3117 if (dev->parent) 3118 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3119 start, end, count, flags)); 3120 return (NULL); 3121 } 3122 3123 /** 3124 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3125 * 3126 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3127 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3128 */ 3129 int 3130 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3131 struct resource *r) 3132 { 3133 /* Propagate up the bus hierarchy until someone handles it. */ 3134 if (dev->parent) 3135 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3136 r)); 3137 return (EINVAL); 3138 } 3139 3140 /** 3141 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3142 * 3143 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3144 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3145 */ 3146 int 3147 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3148 struct resource *r) 3149 { 3150 /* Propagate up the bus hierarchy until someone handles it. */ 3151 if (dev->parent) 3152 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3153 r)); 3154 return (EINVAL); 3155 } 3156 3157 /** 3158 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3159 * 3160 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3161 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3162 */ 3163 int 3164 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3165 int rid, struct resource *r) 3166 { 3167 /* Propagate up the bus hierarchy until someone handles it. */ 3168 if (dev->parent) 3169 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3170 r)); 3171 return (EINVAL); 3172 } 3173 3174 /** 3175 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3176 * 3177 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3178 * BUS_CONFIG_INTR() method of the parent of @p dev. 3179 */ 3180 int 3181 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3182 enum intr_polarity pol) 3183 { 3184 3185 /* Propagate up the bus hierarchy until someone handles it. */ 3186 if (dev->parent) 3187 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3188 return (EINVAL); 3189 } 3190 3191 /** 3192 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3193 * 3194 * This implementation of BUS_GET_RESOURCE() uses the 3195 * resource_list_find() function to do most of the work. It calls 3196 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3197 * search. 3198 */ 3199 int 3200 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3201 u_long *startp, u_long *countp) 3202 { 3203 struct resource_list * rl = NULL; 3204 struct resource_list_entry * rle = NULL; 3205 3206 rl = BUS_GET_RESOURCE_LIST(dev, child); 3207 if (!rl) 3208 return (EINVAL); 3209 3210 rle = resource_list_find(rl, type, rid); 3211 if (!rle) 3212 return (ENOENT); 3213 3214 if (startp) 3215 *startp = rle->start; 3216 if (countp) 3217 *countp = rle->count; 3218 3219 return (0); 3220 } 3221 3222 /** 3223 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3224 * 3225 * This implementation of BUS_SET_RESOURCE() uses the 3226 * resource_list_add() function to do most of the work. It calls 3227 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3228 * edit. 3229 */ 3230 int 3231 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3232 u_long start, u_long count) 3233 { 3234 struct resource_list * rl = NULL; 3235 3236 rl = BUS_GET_RESOURCE_LIST(dev, child); 3237 if (!rl) 3238 return (EINVAL); 3239 3240 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3241 3242 return (0); 3243 } 3244 3245 /** 3246 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3247 * 3248 * This implementation of BUS_DELETE_RESOURCE() uses the 3249 * resource_list_delete() function to do most of the work. It calls 3250 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3251 * edit. 3252 */ 3253 void 3254 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3255 { 3256 struct resource_list * rl = NULL; 3257 3258 rl = BUS_GET_RESOURCE_LIST(dev, child); 3259 if (!rl) 3260 return; 3261 3262 resource_list_delete(rl, type, rid); 3263 3264 return; 3265 } 3266 3267 /** 3268 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3269 * 3270 * This implementation of BUS_RELEASE_RESOURCE() uses the 3271 * resource_list_release() function to do most of the work. It calls 3272 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3273 */ 3274 int 3275 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3276 int rid, struct resource *r) 3277 { 3278 struct resource_list * rl = NULL; 3279 3280 rl = BUS_GET_RESOURCE_LIST(dev, child); 3281 if (!rl) 3282 return (EINVAL); 3283 3284 return (resource_list_release(rl, dev, child, type, rid, r)); 3285 } 3286 3287 /** 3288 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3289 * 3290 * This implementation of BUS_ALLOC_RESOURCE() uses the 3291 * resource_list_alloc() function to do most of the work. It calls 3292 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3293 */ 3294 struct resource * 3295 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3296 int *rid, u_long start, u_long end, u_long count, u_int flags) 3297 { 3298 struct resource_list * rl = NULL; 3299 3300 rl = BUS_GET_RESOURCE_LIST(dev, child); 3301 if (!rl) 3302 return (NULL); 3303 3304 return (resource_list_alloc(rl, dev, child, type, rid, 3305 start, end, count, flags)); 3306 } 3307 3308 /** 3309 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3310 * 3311 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3312 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3313 */ 3314 int 3315 bus_generic_child_present(device_t dev, device_t child) 3316 { 3317 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3318 } 3319 3320 /* 3321 * Some convenience functions to make it easier for drivers to use the 3322 * resource-management functions. All these really do is hide the 3323 * indirection through the parent's method table, making for slightly 3324 * less-wordy code. In the future, it might make sense for this code 3325 * to maintain some sort of a list of resources allocated by each device. 3326 */ 3327 3328 int 3329 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3330 struct resource **res) 3331 { 3332 int i; 3333 3334 for (i = 0; rs[i].type != -1; i++) 3335 res[i] = NULL; 3336 for (i = 0; rs[i].type != -1; i++) { 3337 res[i] = bus_alloc_resource_any(dev, 3338 rs[i].type, &rs[i].rid, rs[i].flags); 3339 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3340 bus_release_resources(dev, rs, res); 3341 return (ENXIO); 3342 } 3343 } 3344 return (0); 3345 } 3346 3347 void 3348 bus_release_resources(device_t dev, struct resource_spec *rs, 3349 struct resource **res) 3350 { 3351 int i; 3352 3353 for (i = 0; rs[i].type != -1; i++) 3354 if (res[i] != NULL) 3355 bus_release_resource( 3356 dev, rs[i].type, rs[i].rid, res[i]); 3357 } 3358 3359 /** 3360 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3361 * 3362 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3363 * parent of @p dev. 3364 */ 3365 struct resource * 3366 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3367 u_long count, u_int flags) 3368 { 3369 if (dev->parent == 0) 3370 return (0); 3371 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3372 count, flags)); 3373 } 3374 3375 /** 3376 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3377 * 3378 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3379 * parent of @p dev. 3380 */ 3381 int 3382 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3383 { 3384 if (dev->parent == 0) 3385 return (EINVAL); 3386 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3387 } 3388 3389 /** 3390 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3391 * 3392 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3393 * parent of @p dev. 3394 */ 3395 int 3396 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3397 { 3398 if (dev->parent == 0) 3399 return (EINVAL); 3400 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3401 } 3402 3403 /** 3404 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3405 * 3406 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3407 * parent of @p dev. 3408 */ 3409 int 3410 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3411 { 3412 if (dev->parent == 0) 3413 return (EINVAL); 3414 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3415 } 3416 3417 /** 3418 * @brief Wrapper function for BUS_SETUP_INTR(). 3419 * 3420 * This function simply calls the BUS_SETUP_INTR() method of the 3421 * parent of @p dev. 3422 */ 3423 int 3424 bus_setup_intr(device_t dev, struct resource *r, int flags, 3425 driver_intr_t handler, void *arg, void **cookiep) 3426 { 3427 int error; 3428 3429 if (dev->parent != 0) { 3430 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) && 3431 !debug_mpsafenet) 3432 flags &= ~INTR_MPSAFE; 3433 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3434 handler, arg, cookiep); 3435 if (error == 0) { 3436 if (!(flags & (INTR_MPSAFE | INTR_FAST))) 3437 device_printf(dev, "[GIANT-LOCKED]\n"); 3438 if (bootverbose && (flags & INTR_MPSAFE)) 3439 device_printf(dev, "[MPSAFE]\n"); 3440 if (flags & INTR_FAST) 3441 device_printf(dev, "[FAST]\n"); 3442 } 3443 } else 3444 error = EINVAL; 3445 return (error); 3446 } 3447 3448 /** 3449 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3450 * 3451 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3452 * parent of @p dev. 3453 */ 3454 int 3455 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3456 { 3457 if (dev->parent == 0) 3458 return (EINVAL); 3459 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3460 } 3461 3462 /** 3463 * @brief Wrapper function for BUS_SET_RESOURCE(). 3464 * 3465 * This function simply calls the BUS_SET_RESOURCE() method of the 3466 * parent of @p dev. 3467 */ 3468 int 3469 bus_set_resource(device_t dev, int type, int rid, 3470 u_long start, u_long count) 3471 { 3472 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3473 start, count)); 3474 } 3475 3476 /** 3477 * @brief Wrapper function for BUS_GET_RESOURCE(). 3478 * 3479 * This function simply calls the BUS_GET_RESOURCE() method of the 3480 * parent of @p dev. 3481 */ 3482 int 3483 bus_get_resource(device_t dev, int type, int rid, 3484 u_long *startp, u_long *countp) 3485 { 3486 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3487 startp, countp)); 3488 } 3489 3490 /** 3491 * @brief Wrapper function for BUS_GET_RESOURCE(). 3492 * 3493 * This function simply calls the BUS_GET_RESOURCE() method of the 3494 * parent of @p dev and returns the start value. 3495 */ 3496 u_long 3497 bus_get_resource_start(device_t dev, int type, int rid) 3498 { 3499 u_long start, count; 3500 int error; 3501 3502 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3503 &start, &count); 3504 if (error) 3505 return (0); 3506 return (start); 3507 } 3508 3509 /** 3510 * @brief Wrapper function for BUS_GET_RESOURCE(). 3511 * 3512 * This function simply calls the BUS_GET_RESOURCE() method of the 3513 * parent of @p dev and returns the count value. 3514 */ 3515 u_long 3516 bus_get_resource_count(device_t dev, int type, int rid) 3517 { 3518 u_long start, count; 3519 int error; 3520 3521 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3522 &start, &count); 3523 if (error) 3524 return (0); 3525 return (count); 3526 } 3527 3528 /** 3529 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3530 * 3531 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3532 * parent of @p dev. 3533 */ 3534 void 3535 bus_delete_resource(device_t dev, int type, int rid) 3536 { 3537 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3538 } 3539 3540 /** 3541 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3542 * 3543 * This function simply calls the BUS_CHILD_PRESENT() method of the 3544 * parent of @p dev. 3545 */ 3546 int 3547 bus_child_present(device_t child) 3548 { 3549 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3550 } 3551 3552 /** 3553 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3554 * 3555 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3556 * parent of @p dev. 3557 */ 3558 int 3559 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3560 { 3561 device_t parent; 3562 3563 parent = device_get_parent(child); 3564 if (parent == NULL) { 3565 *buf = '\0'; 3566 return (0); 3567 } 3568 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3569 } 3570 3571 /** 3572 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3573 * 3574 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3575 * parent of @p dev. 3576 */ 3577 int 3578 bus_child_location_str(device_t child, char *buf, size_t buflen) 3579 { 3580 device_t parent; 3581 3582 parent = device_get_parent(child); 3583 if (parent == NULL) { 3584 *buf = '\0'; 3585 return (0); 3586 } 3587 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3588 } 3589 3590 static int 3591 root_print_child(device_t dev, device_t child) 3592 { 3593 int retval = 0; 3594 3595 retval += bus_print_child_header(dev, child); 3596 retval += printf("\n"); 3597 3598 return (retval); 3599 } 3600 3601 static int 3602 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3603 void **cookiep) 3604 { 3605 /* 3606 * If an interrupt mapping gets to here something bad has happened. 3607 */ 3608 panic("root_setup_intr"); 3609 } 3610 3611 /* 3612 * If we get here, assume that the device is permanant and really is 3613 * present in the system. Removable bus drivers are expected to intercept 3614 * this call long before it gets here. We return -1 so that drivers that 3615 * really care can check vs -1 or some ERRNO returned higher in the food 3616 * chain. 3617 */ 3618 static int 3619 root_child_present(device_t dev, device_t child) 3620 { 3621 return (-1); 3622 } 3623 3624 static kobj_method_t root_methods[] = { 3625 /* Device interface */ 3626 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3627 KOBJMETHOD(device_suspend, bus_generic_suspend), 3628 KOBJMETHOD(device_resume, bus_generic_resume), 3629 3630 /* Bus interface */ 3631 KOBJMETHOD(bus_print_child, root_print_child), 3632 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3633 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3634 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3635 KOBJMETHOD(bus_child_present, root_child_present), 3636 3637 { 0, 0 } 3638 }; 3639 3640 static driver_t root_driver = { 3641 "root", 3642 root_methods, 3643 1, /* no softc */ 3644 }; 3645 3646 device_t root_bus; 3647 devclass_t root_devclass; 3648 3649 static int 3650 root_bus_module_handler(module_t mod, int what, void* arg) 3651 { 3652 switch (what) { 3653 case MOD_LOAD: 3654 TAILQ_INIT(&bus_data_devices); 3655 kobj_class_compile((kobj_class_t) &root_driver); 3656 root_bus = make_device(NULL, "root", 0); 3657 root_bus->desc = "System root bus"; 3658 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3659 root_bus->driver = &root_driver; 3660 root_bus->state = DS_ATTACHED; 3661 root_devclass = devclass_find_internal("root", 0, FALSE); 3662 devinit(); 3663 return (0); 3664 3665 case MOD_SHUTDOWN: 3666 device_shutdown(root_bus); 3667 return (0); 3668 default: 3669 return (EOPNOTSUPP); 3670 } 3671 3672 return (0); 3673 } 3674 3675 static moduledata_t root_bus_mod = { 3676 "rootbus", 3677 root_bus_module_handler, 3678 0 3679 }; 3680 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3681 3682 /** 3683 * @brief Automatically configure devices 3684 * 3685 * This function begins the autoconfiguration process by calling 3686 * device_probe_and_attach() for each child of the @c root0 device. 3687 */ 3688 void 3689 root_bus_configure(void) 3690 { 3691 device_t dev; 3692 3693 PDEBUG((".")); 3694 3695 TAILQ_FOREACH(dev, &root_bus->children, link) { 3696 device_probe_and_attach(dev); 3697 } 3698 } 3699 3700 /** 3701 * @brief Module handler for registering device drivers 3702 * 3703 * This module handler is used to automatically register device 3704 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3705 * devclass_add_driver() for the driver described by the 3706 * driver_module_data structure pointed to by @p arg 3707 */ 3708 int 3709 driver_module_handler(module_t mod, int what, void *arg) 3710 { 3711 int error; 3712 struct driver_module_data *dmd; 3713 devclass_t bus_devclass; 3714 kobj_class_t driver; 3715 3716 dmd = (struct driver_module_data *)arg; 3717 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE); 3718 error = 0; 3719 3720 switch (what) { 3721 case MOD_LOAD: 3722 if (dmd->dmd_chainevh) 3723 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3724 3725 driver = dmd->dmd_driver; 3726 PDEBUG(("Loading module: driver %s on bus %s", 3727 DRIVERNAME(driver), dmd->dmd_busname)); 3728 error = devclass_add_driver(bus_devclass, driver); 3729 if (error) 3730 break; 3731 3732 /* 3733 * If the driver has any base classes, make the 3734 * devclass inherit from the devclass of the driver's 3735 * first base class. This will allow the system to 3736 * search for drivers in both devclasses for children 3737 * of a device using this driver. 3738 */ 3739 if (driver->baseclasses) { 3740 const char *parentname; 3741 parentname = driver->baseclasses[0]->name; 3742 *dmd->dmd_devclass = 3743 devclass_find_internal(driver->name, 3744 parentname, TRUE); 3745 } else { 3746 *dmd->dmd_devclass = 3747 devclass_find_internal(driver->name, 0, TRUE); 3748 } 3749 break; 3750 3751 case MOD_UNLOAD: 3752 PDEBUG(("Unloading module: driver %s from bus %s", 3753 DRIVERNAME(dmd->dmd_driver), 3754 dmd->dmd_busname)); 3755 error = devclass_delete_driver(bus_devclass, 3756 dmd->dmd_driver); 3757 3758 if (!error && dmd->dmd_chainevh) 3759 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3760 break; 3761 case MOD_QUIESCE: 3762 PDEBUG(("Quiesce module: driver %s from bus %s", 3763 DRIVERNAME(dmd->dmd_driver), 3764 dmd->dmd_busname)); 3765 error = devclass_quiesce_driver(bus_devclass, 3766 dmd->dmd_driver); 3767 3768 if (!error && dmd->dmd_chainevh) 3769 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3770 break; 3771 default: 3772 error = EOPNOTSUPP; 3773 break; 3774 } 3775 3776 return (error); 3777 } 3778 3779 #ifdef BUS_DEBUG 3780 3781 /* the _short versions avoid iteration by not calling anything that prints 3782 * more than oneliners. I love oneliners. 3783 */ 3784 3785 static void 3786 print_device_short(device_t dev, int indent) 3787 { 3788 if (!dev) 3789 return; 3790 3791 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3792 dev->unit, dev->desc, 3793 (dev->parent? "":"no "), 3794 (TAILQ_EMPTY(&dev->children)? "no ":""), 3795 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3796 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3797 (dev->flags&DF_WILDCARD? "wildcard,":""), 3798 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3799 (dev->flags&DF_REBID? "rebiddable,":""), 3800 (dev->ivars? "":"no "), 3801 (dev->softc? "":"no "), 3802 dev->busy)); 3803 } 3804 3805 static void 3806 print_device(device_t dev, int indent) 3807 { 3808 if (!dev) 3809 return; 3810 3811 print_device_short(dev, indent); 3812 3813 indentprintf(("Parent:\n")); 3814 print_device_short(dev->parent, indent+1); 3815 indentprintf(("Driver:\n")); 3816 print_driver_short(dev->driver, indent+1); 3817 indentprintf(("Devclass:\n")); 3818 print_devclass_short(dev->devclass, indent+1); 3819 } 3820 3821 void 3822 print_device_tree_short(device_t dev, int indent) 3823 /* print the device and all its children (indented) */ 3824 { 3825 device_t child; 3826 3827 if (!dev) 3828 return; 3829 3830 print_device_short(dev, indent); 3831 3832 TAILQ_FOREACH(child, &dev->children, link) { 3833 print_device_tree_short(child, indent+1); 3834 } 3835 } 3836 3837 void 3838 print_device_tree(device_t dev, int indent) 3839 /* print the device and all its children (indented) */ 3840 { 3841 device_t child; 3842 3843 if (!dev) 3844 return; 3845 3846 print_device(dev, indent); 3847 3848 TAILQ_FOREACH(child, &dev->children, link) { 3849 print_device_tree(child, indent+1); 3850 } 3851 } 3852 3853 static void 3854 print_driver_short(driver_t *driver, int indent) 3855 { 3856 if (!driver) 3857 return; 3858 3859 indentprintf(("driver %s: softc size = %zd\n", 3860 driver->name, driver->size)); 3861 } 3862 3863 static void 3864 print_driver(driver_t *driver, int indent) 3865 { 3866 if (!driver) 3867 return; 3868 3869 print_driver_short(driver, indent); 3870 } 3871 3872 3873 static void 3874 print_driver_list(driver_list_t drivers, int indent) 3875 { 3876 driverlink_t driver; 3877 3878 TAILQ_FOREACH(driver, &drivers, link) { 3879 print_driver(driver->driver, indent); 3880 } 3881 } 3882 3883 static void 3884 print_devclass_short(devclass_t dc, int indent) 3885 { 3886 if ( !dc ) 3887 return; 3888 3889 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3890 } 3891 3892 static void 3893 print_devclass(devclass_t dc, int indent) 3894 { 3895 int i; 3896 3897 if ( !dc ) 3898 return; 3899 3900 print_devclass_short(dc, indent); 3901 indentprintf(("Drivers:\n")); 3902 print_driver_list(dc->drivers, indent+1); 3903 3904 indentprintf(("Devices:\n")); 3905 for (i = 0; i < dc->maxunit; i++) 3906 if (dc->devices[i]) 3907 print_device(dc->devices[i], indent+1); 3908 } 3909 3910 void 3911 print_devclass_list_short(void) 3912 { 3913 devclass_t dc; 3914 3915 printf("Short listing of devclasses, drivers & devices:\n"); 3916 TAILQ_FOREACH(dc, &devclasses, link) { 3917 print_devclass_short(dc, 0); 3918 } 3919 } 3920 3921 void 3922 print_devclass_list(void) 3923 { 3924 devclass_t dc; 3925 3926 printf("Full listing of devclasses, drivers & devices:\n"); 3927 TAILQ_FOREACH(dc, &devclasses, link) { 3928 print_devclass(dc, 0); 3929 } 3930 } 3931 3932 #endif 3933 3934 /* 3935 * User-space access to the device tree. 3936 * 3937 * We implement a small set of nodes: 3938 * 3939 * hw.bus Single integer read method to obtain the 3940 * current generation count. 3941 * hw.bus.devices Reads the entire device tree in flat space. 3942 * hw.bus.rman Resource manager interface 3943 * 3944 * We might like to add the ability to scan devclasses and/or drivers to 3945 * determine what else is currently loaded/available. 3946 */ 3947 3948 static int 3949 sysctl_bus(SYSCTL_HANDLER_ARGS) 3950 { 3951 struct u_businfo ubus; 3952 3953 ubus.ub_version = BUS_USER_VERSION; 3954 ubus.ub_generation = bus_data_generation; 3955 3956 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3957 } 3958 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3959 "bus-related data"); 3960 3961 static int 3962 sysctl_devices(SYSCTL_HANDLER_ARGS) 3963 { 3964 int *name = (int *)arg1; 3965 u_int namelen = arg2; 3966 int index; 3967 struct device *dev; 3968 struct u_device udev; /* XXX this is a bit big */ 3969 int error; 3970 3971 if (namelen != 2) 3972 return (EINVAL); 3973 3974 if (bus_data_generation_check(name[0])) 3975 return (EINVAL); 3976 3977 index = name[1]; 3978 3979 /* 3980 * Scan the list of devices, looking for the requested index. 3981 */ 3982 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3983 if (index-- == 0) 3984 break; 3985 } 3986 if (dev == NULL) 3987 return (ENOENT); 3988 3989 /* 3990 * Populate the return array. 3991 */ 3992 bzero(&udev, sizeof(udev)); 3993 udev.dv_handle = (uintptr_t)dev; 3994 udev.dv_parent = (uintptr_t)dev->parent; 3995 if (dev->nameunit != NULL) 3996 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3997 if (dev->desc != NULL) 3998 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3999 if (dev->driver != NULL && dev->driver->name != NULL) 4000 strlcpy(udev.dv_drivername, dev->driver->name, 4001 sizeof(udev.dv_drivername)); 4002 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4003 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4004 udev.dv_devflags = dev->devflags; 4005 udev.dv_flags = dev->flags; 4006 udev.dv_state = dev->state; 4007 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4008 return (error); 4009 } 4010 4011 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4012 "system device tree"); 4013 4014 int 4015 bus_data_generation_check(int generation) 4016 { 4017 if (generation != bus_data_generation) 4018 return (1); 4019 4020 /* XXX generate optimised lists here? */ 4021 return (0); 4022 } 4023 4024 void 4025 bus_data_generation_update(void) 4026 { 4027 bus_data_generation++; 4028 } 4029 4030 int 4031 bus_free_resource(device_t dev, int type, struct resource *r) 4032 { 4033 if (r == NULL) 4034 return (0); 4035 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4036 } 4037