1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/eventhandler.h> 38 #include <sys/filio.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/kobj.h> 42 #include <sys/limits.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/poll.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/condvar.h> 50 #include <sys/queue.h> 51 #include <machine/bus.h> 52 #include <sys/random.h> 53 #include <sys/rman.h> 54 #include <sys/sbuf.h> 55 #include <sys/selinfo.h> 56 #include <sys/signalvar.h> 57 #include <sys/smp.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 #include <sys/uio.h> 61 #include <sys/bus.h> 62 #include <sys/cpuset.h> 63 64 #include <net/vnet.h> 65 66 #include <machine/cpu.h> 67 #include <machine/stdarg.h> 68 69 #include <vm/uma.h> 70 #include <vm/vm.h> 71 72 #include <ddb/ddb.h> 73 74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 76 77 /* 78 * Used to attach drivers to devclasses. 79 */ 80 typedef struct driverlink *driverlink_t; 81 struct driverlink { 82 kobj_class_t driver; 83 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 84 int pass; 85 int flags; 86 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 87 TAILQ_ENTRY(driverlink) passlink; 88 }; 89 90 /* 91 * Forward declarations 92 */ 93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 95 typedef TAILQ_HEAD(device_list, device) device_list_t; 96 97 struct devclass { 98 TAILQ_ENTRY(devclass) link; 99 devclass_t parent; /* parent in devclass hierarchy */ 100 driver_list_t drivers; /* bus devclasses store drivers for bus */ 101 char *name; 102 device_t *devices; /* array of devices indexed by unit */ 103 int maxunit; /* size of devices array */ 104 int flags; 105 #define DC_HAS_CHILDREN 1 106 107 struct sysctl_ctx_list sysctl_ctx; 108 struct sysctl_oid *sysctl_tree; 109 }; 110 111 /** 112 * @brief Implementation of device. 113 */ 114 struct device { 115 /* 116 * A device is a kernel object. The first field must be the 117 * current ops table for the object. 118 */ 119 KOBJ_FIELDS; 120 121 /* 122 * Device hierarchy. 123 */ 124 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 125 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 126 device_t parent; /**< parent of this device */ 127 device_list_t children; /**< list of child devices */ 128 129 /* 130 * Details of this device. 131 */ 132 driver_t *driver; /**< current driver */ 133 devclass_t devclass; /**< current device class */ 134 int unit; /**< current unit number */ 135 char* nameunit; /**< name+unit e.g. foodev0 */ 136 char* desc; /**< driver specific description */ 137 int busy; /**< count of calls to device_busy() */ 138 device_state_t state; /**< current device state */ 139 uint32_t devflags; /**< api level flags for device_get_flags() */ 140 u_int flags; /**< internal device flags */ 141 u_int order; /**< order from device_add_child_ordered() */ 142 void *ivars; /**< instance variables */ 143 void *softc; /**< current driver's variables */ 144 145 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 146 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 147 }; 148 149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 151 152 EVENTHANDLER_LIST_DEFINE(device_attach); 153 EVENTHANDLER_LIST_DEFINE(device_detach); 154 EVENTHANDLER_LIST_DEFINE(dev_lookup); 155 156 static void devctl2_init(void); 157 static bool device_frozen; 158 159 #define DRIVERNAME(d) ((d)? d->name : "no driver") 160 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 161 162 #ifdef BUS_DEBUG 163 164 static int bus_debug = 1; 165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 166 "Bus debug level"); 167 168 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 169 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 170 171 /** 172 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 173 * prevent syslog from deleting initial spaces 174 */ 175 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 176 177 static void print_device_short(device_t dev, int indent); 178 static void print_device(device_t dev, int indent); 179 void print_device_tree_short(device_t dev, int indent); 180 void print_device_tree(device_t dev, int indent); 181 static void print_driver_short(driver_t *driver, int indent); 182 static void print_driver(driver_t *driver, int indent); 183 static void print_driver_list(driver_list_t drivers, int indent); 184 static void print_devclass_short(devclass_t dc, int indent); 185 static void print_devclass(devclass_t dc, int indent); 186 void print_devclass_list_short(void); 187 void print_devclass_list(void); 188 189 #else 190 /* Make the compiler ignore the function calls */ 191 #define PDEBUG(a) /* nop */ 192 #define DEVICENAME(d) /* nop */ 193 194 #define print_device_short(d,i) /* nop */ 195 #define print_device(d,i) /* nop */ 196 #define print_device_tree_short(d,i) /* nop */ 197 #define print_device_tree(d,i) /* nop */ 198 #define print_driver_short(d,i) /* nop */ 199 #define print_driver(d,i) /* nop */ 200 #define print_driver_list(d,i) /* nop */ 201 #define print_devclass_short(d,i) /* nop */ 202 #define print_devclass(d,i) /* nop */ 203 #define print_devclass_list_short() /* nop */ 204 #define print_devclass_list() /* nop */ 205 #endif 206 207 /* 208 * dev sysctl tree 209 */ 210 211 enum { 212 DEVCLASS_SYSCTL_PARENT, 213 }; 214 215 static int 216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 217 { 218 devclass_t dc = (devclass_t)arg1; 219 const char *value; 220 221 switch (arg2) { 222 case DEVCLASS_SYSCTL_PARENT: 223 value = dc->parent ? dc->parent->name : ""; 224 break; 225 default: 226 return (EINVAL); 227 } 228 return (SYSCTL_OUT_STR(req, value)); 229 } 230 231 static void 232 devclass_sysctl_init(devclass_t dc) 233 { 234 235 if (dc->sysctl_tree != NULL) 236 return; 237 sysctl_ctx_init(&dc->sysctl_ctx); 238 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 239 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 240 CTLFLAG_RD, NULL, ""); 241 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 242 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 243 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 244 "parent class"); 245 } 246 247 enum { 248 DEVICE_SYSCTL_DESC, 249 DEVICE_SYSCTL_DRIVER, 250 DEVICE_SYSCTL_LOCATION, 251 DEVICE_SYSCTL_PNPINFO, 252 DEVICE_SYSCTL_PARENT, 253 }; 254 255 static int 256 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 257 { 258 device_t dev = (device_t)arg1; 259 const char *value; 260 char *buf; 261 int error; 262 263 buf = NULL; 264 switch (arg2) { 265 case DEVICE_SYSCTL_DESC: 266 value = dev->desc ? dev->desc : ""; 267 break; 268 case DEVICE_SYSCTL_DRIVER: 269 value = dev->driver ? dev->driver->name : ""; 270 break; 271 case DEVICE_SYSCTL_LOCATION: 272 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 273 bus_child_location_str(dev, buf, 1024); 274 break; 275 case DEVICE_SYSCTL_PNPINFO: 276 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 277 bus_child_pnpinfo_str(dev, buf, 1024); 278 break; 279 case DEVICE_SYSCTL_PARENT: 280 value = dev->parent ? dev->parent->nameunit : ""; 281 break; 282 default: 283 return (EINVAL); 284 } 285 error = SYSCTL_OUT_STR(req, value); 286 if (buf != NULL) 287 free(buf, M_BUS); 288 return (error); 289 } 290 291 static void 292 device_sysctl_init(device_t dev) 293 { 294 devclass_t dc = dev->devclass; 295 int domain; 296 297 if (dev->sysctl_tree != NULL) 298 return; 299 devclass_sysctl_init(dc); 300 sysctl_ctx_init(&dev->sysctl_ctx); 301 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 302 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 303 dev->nameunit + strlen(dc->name), 304 CTLFLAG_RD, NULL, "", "device_index"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 308 "device description"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 315 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 316 "device location relative to parent"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 319 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 320 "device identification"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 323 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 324 "parent device"); 325 if (bus_get_domain(dev, &domain) == 0) 326 SYSCTL_ADD_INT(&dev->sysctl_ctx, 327 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 328 CTLFLAG_RD, NULL, domain, "NUMA domain"); 329 } 330 331 static void 332 device_sysctl_update(device_t dev) 333 { 334 devclass_t dc = dev->devclass; 335 336 if (dev->sysctl_tree == NULL) 337 return; 338 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 339 } 340 341 static void 342 device_sysctl_fini(device_t dev) 343 { 344 if (dev->sysctl_tree == NULL) 345 return; 346 sysctl_ctx_free(&dev->sysctl_ctx); 347 dev->sysctl_tree = NULL; 348 } 349 350 /* 351 * /dev/devctl implementation 352 */ 353 354 /* 355 * This design allows only one reader for /dev/devctl. This is not desirable 356 * in the long run, but will get a lot of hair out of this implementation. 357 * Maybe we should make this device a clonable device. 358 * 359 * Also note: we specifically do not attach a device to the device_t tree 360 * to avoid potential chicken and egg problems. One could argue that all 361 * of this belongs to the root node. One could also further argue that the 362 * sysctl interface that we have not might more properly be an ioctl 363 * interface, but at this stage of the game, I'm not inclined to rock that 364 * boat. 365 * 366 * I'm also not sure that the SIGIO support is done correctly or not, as 367 * I copied it from a driver that had SIGIO support that likely hasn't been 368 * tested since 3.4 or 2.2.8! 369 */ 370 371 /* Deprecated way to adjust queue length */ 372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 374 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 375 "devctl disable -- deprecated"); 376 377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 381 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 382 383 static d_open_t devopen; 384 static d_close_t devclose; 385 static d_read_t devread; 386 static d_ioctl_t devioctl; 387 static d_poll_t devpoll; 388 static d_kqfilter_t devkqfilter; 389 390 static struct cdevsw dev_cdevsw = { 391 .d_version = D_VERSION, 392 .d_open = devopen, 393 .d_close = devclose, 394 .d_read = devread, 395 .d_ioctl = devioctl, 396 .d_poll = devpoll, 397 .d_kqfilter = devkqfilter, 398 .d_name = "devctl", 399 }; 400 401 struct dev_event_info 402 { 403 char *dei_data; 404 TAILQ_ENTRY(dev_event_info) dei_link; 405 }; 406 407 TAILQ_HEAD(devq, dev_event_info); 408 409 static struct dev_softc 410 { 411 int inuse; 412 int nonblock; 413 int queued; 414 int async; 415 struct mtx mtx; 416 struct cv cv; 417 struct selinfo sel; 418 struct devq devq; 419 struct sigio *sigio; 420 } devsoftc; 421 422 static void filt_devctl_detach(struct knote *kn); 423 static int filt_devctl_read(struct knote *kn, long hint); 424 425 struct filterops devctl_rfiltops = { 426 .f_isfd = 1, 427 .f_detach = filt_devctl_detach, 428 .f_event = filt_devctl_read, 429 }; 430 431 static struct cdev *devctl_dev; 432 433 static void 434 devinit(void) 435 { 436 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 437 UID_ROOT, GID_WHEEL, 0600, "devctl"); 438 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 439 cv_init(&devsoftc.cv, "dev cv"); 440 TAILQ_INIT(&devsoftc.devq); 441 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 442 devctl2_init(); 443 } 444 445 static int 446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 447 { 448 449 mtx_lock(&devsoftc.mtx); 450 if (devsoftc.inuse) { 451 mtx_unlock(&devsoftc.mtx); 452 return (EBUSY); 453 } 454 /* move to init */ 455 devsoftc.inuse = 1; 456 mtx_unlock(&devsoftc.mtx); 457 return (0); 458 } 459 460 static int 461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 462 { 463 464 mtx_lock(&devsoftc.mtx); 465 devsoftc.inuse = 0; 466 devsoftc.nonblock = 0; 467 devsoftc.async = 0; 468 cv_broadcast(&devsoftc.cv); 469 funsetown(&devsoftc.sigio); 470 mtx_unlock(&devsoftc.mtx); 471 return (0); 472 } 473 474 /* 475 * The read channel for this device is used to report changes to 476 * userland in realtime. We are required to free the data as well as 477 * the n1 object because we allocate them separately. Also note that 478 * we return one record at a time. If you try to read this device a 479 * character at a time, you will lose the rest of the data. Listening 480 * programs are expected to cope. 481 */ 482 static int 483 devread(struct cdev *dev, struct uio *uio, int ioflag) 484 { 485 struct dev_event_info *n1; 486 int rv; 487 488 mtx_lock(&devsoftc.mtx); 489 while (TAILQ_EMPTY(&devsoftc.devq)) { 490 if (devsoftc.nonblock) { 491 mtx_unlock(&devsoftc.mtx); 492 return (EAGAIN); 493 } 494 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 495 if (rv) { 496 /* 497 * Need to translate ERESTART to EINTR here? -- jake 498 */ 499 mtx_unlock(&devsoftc.mtx); 500 return (rv); 501 } 502 } 503 n1 = TAILQ_FIRST(&devsoftc.devq); 504 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 505 devsoftc.queued--; 506 mtx_unlock(&devsoftc.mtx); 507 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 508 free(n1->dei_data, M_BUS); 509 free(n1, M_BUS); 510 return (rv); 511 } 512 513 static int 514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 515 { 516 switch (cmd) { 517 518 case FIONBIO: 519 if (*(int*)data) 520 devsoftc.nonblock = 1; 521 else 522 devsoftc.nonblock = 0; 523 return (0); 524 case FIOASYNC: 525 if (*(int*)data) 526 devsoftc.async = 1; 527 else 528 devsoftc.async = 0; 529 return (0); 530 case FIOSETOWN: 531 return fsetown(*(int *)data, &devsoftc.sigio); 532 case FIOGETOWN: 533 *(int *)data = fgetown(&devsoftc.sigio); 534 return (0); 535 536 /* (un)Support for other fcntl() calls. */ 537 case FIOCLEX: 538 case FIONCLEX: 539 case FIONREAD: 540 default: 541 break; 542 } 543 return (ENOTTY); 544 } 545 546 static int 547 devpoll(struct cdev *dev, int events, struct thread *td) 548 { 549 int revents = 0; 550 551 mtx_lock(&devsoftc.mtx); 552 if (events & (POLLIN | POLLRDNORM)) { 553 if (!TAILQ_EMPTY(&devsoftc.devq)) 554 revents = events & (POLLIN | POLLRDNORM); 555 else 556 selrecord(td, &devsoftc.sel); 557 } 558 mtx_unlock(&devsoftc.mtx); 559 560 return (revents); 561 } 562 563 static int 564 devkqfilter(struct cdev *dev, struct knote *kn) 565 { 566 int error; 567 568 if (kn->kn_filter == EVFILT_READ) { 569 kn->kn_fop = &devctl_rfiltops; 570 knlist_add(&devsoftc.sel.si_note, kn, 0); 571 error = 0; 572 } else 573 error = EINVAL; 574 return (error); 575 } 576 577 static void 578 filt_devctl_detach(struct knote *kn) 579 { 580 581 knlist_remove(&devsoftc.sel.si_note, kn, 0); 582 } 583 584 static int 585 filt_devctl_read(struct knote *kn, long hint) 586 { 587 kn->kn_data = devsoftc.queued; 588 return (kn->kn_data != 0); 589 } 590 591 /** 592 * @brief Return whether the userland process is running 593 */ 594 boolean_t 595 devctl_process_running(void) 596 { 597 return (devsoftc.inuse == 1); 598 } 599 600 /** 601 * @brief Queue data to be read from the devctl device 602 * 603 * Generic interface to queue data to the devctl device. It is 604 * assumed that @p data is properly formatted. It is further assumed 605 * that @p data is allocated using the M_BUS malloc type. 606 */ 607 void 608 devctl_queue_data_f(char *data, int flags) 609 { 610 struct dev_event_info *n1 = NULL, *n2 = NULL; 611 612 if (strlen(data) == 0) 613 goto out; 614 if (devctl_queue_length == 0) 615 goto out; 616 n1 = malloc(sizeof(*n1), M_BUS, flags); 617 if (n1 == NULL) 618 goto out; 619 n1->dei_data = data; 620 mtx_lock(&devsoftc.mtx); 621 if (devctl_queue_length == 0) { 622 mtx_unlock(&devsoftc.mtx); 623 free(n1->dei_data, M_BUS); 624 free(n1, M_BUS); 625 return; 626 } 627 /* Leave at least one spot in the queue... */ 628 while (devsoftc.queued > devctl_queue_length - 1) { 629 n2 = TAILQ_FIRST(&devsoftc.devq); 630 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 631 free(n2->dei_data, M_BUS); 632 free(n2, M_BUS); 633 devsoftc.queued--; 634 } 635 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 636 devsoftc.queued++; 637 cv_broadcast(&devsoftc.cv); 638 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 639 mtx_unlock(&devsoftc.mtx); 640 selwakeup(&devsoftc.sel); 641 if (devsoftc.async && devsoftc.sigio != NULL) 642 pgsigio(&devsoftc.sigio, SIGIO, 0); 643 return; 644 out: 645 /* 646 * We have to free data on all error paths since the caller 647 * assumes it will be free'd when this item is dequeued. 648 */ 649 free(data, M_BUS); 650 return; 651 } 652 653 void 654 devctl_queue_data(char *data) 655 { 656 657 devctl_queue_data_f(data, M_NOWAIT); 658 } 659 660 /** 661 * @brief Send a 'notification' to userland, using standard ways 662 */ 663 void 664 devctl_notify_f(const char *system, const char *subsystem, const char *type, 665 const char *data, int flags) 666 { 667 int len = 0; 668 char *msg; 669 670 if (system == NULL) 671 return; /* BOGUS! Must specify system. */ 672 if (subsystem == NULL) 673 return; /* BOGUS! Must specify subsystem. */ 674 if (type == NULL) 675 return; /* BOGUS! Must specify type. */ 676 len += strlen(" system=") + strlen(system); 677 len += strlen(" subsystem=") + strlen(subsystem); 678 len += strlen(" type=") + strlen(type); 679 /* add in the data message plus newline. */ 680 if (data != NULL) 681 len += strlen(data); 682 len += 3; /* '!', '\n', and NUL */ 683 msg = malloc(len, M_BUS, flags); 684 if (msg == NULL) 685 return; /* Drop it on the floor */ 686 if (data != NULL) 687 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 688 system, subsystem, type, data); 689 else 690 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 691 system, subsystem, type); 692 devctl_queue_data_f(msg, flags); 693 } 694 695 void 696 devctl_notify(const char *system, const char *subsystem, const char *type, 697 const char *data) 698 { 699 700 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 701 } 702 703 /* 704 * Common routine that tries to make sending messages as easy as possible. 705 * We allocate memory for the data, copy strings into that, but do not 706 * free it unless there's an error. The dequeue part of the driver should 707 * free the data. We don't send data when the device is disabled. We do 708 * send data, even when we have no listeners, because we wish to avoid 709 * races relating to startup and restart of listening applications. 710 * 711 * devaddq is designed to string together the type of event, with the 712 * object of that event, plus the plug and play info and location info 713 * for that event. This is likely most useful for devices, but less 714 * useful for other consumers of this interface. Those should use 715 * the devctl_queue_data() interface instead. 716 */ 717 static void 718 devaddq(const char *type, const char *what, device_t dev) 719 { 720 char *data = NULL; 721 char *loc = NULL; 722 char *pnp = NULL; 723 const char *parstr; 724 725 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 726 return; 727 data = malloc(1024, M_BUS, M_NOWAIT); 728 if (data == NULL) 729 goto bad; 730 731 /* get the bus specific location of this device */ 732 loc = malloc(1024, M_BUS, M_NOWAIT); 733 if (loc == NULL) 734 goto bad; 735 *loc = '\0'; 736 bus_child_location_str(dev, loc, 1024); 737 738 /* Get the bus specific pnp info of this device */ 739 pnp = malloc(1024, M_BUS, M_NOWAIT); 740 if (pnp == NULL) 741 goto bad; 742 *pnp = '\0'; 743 bus_child_pnpinfo_str(dev, pnp, 1024); 744 745 /* Get the parent of this device, or / if high enough in the tree. */ 746 if (device_get_parent(dev) == NULL) 747 parstr = "."; /* Or '/' ? */ 748 else 749 parstr = device_get_nameunit(device_get_parent(dev)); 750 /* String it all together. */ 751 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 752 parstr); 753 free(loc, M_BUS); 754 free(pnp, M_BUS); 755 devctl_queue_data(data); 756 return; 757 bad: 758 free(pnp, M_BUS); 759 free(loc, M_BUS); 760 free(data, M_BUS); 761 return; 762 } 763 764 /* 765 * A device was added to the tree. We are called just after it successfully 766 * attaches (that is, probe and attach success for this device). No call 767 * is made if a device is merely parented into the tree. See devnomatch 768 * if probe fails. If attach fails, no notification is sent (but maybe 769 * we should have a different message for this). 770 */ 771 static void 772 devadded(device_t dev) 773 { 774 devaddq("+", device_get_nameunit(dev), dev); 775 } 776 777 /* 778 * A device was removed from the tree. We are called just before this 779 * happens. 780 */ 781 static void 782 devremoved(device_t dev) 783 { 784 devaddq("-", device_get_nameunit(dev), dev); 785 } 786 787 /* 788 * Called when there's no match for this device. This is only called 789 * the first time that no match happens, so we don't keep getting this 790 * message. Should that prove to be undesirable, we can change it. 791 * This is called when all drivers that can attach to a given bus 792 * decline to accept this device. Other errors may not be detected. 793 */ 794 static void 795 devnomatch(device_t dev) 796 { 797 devaddq("?", "", dev); 798 } 799 800 static int 801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 802 { 803 struct dev_event_info *n1; 804 int dis, error; 805 806 dis = (devctl_queue_length == 0); 807 error = sysctl_handle_int(oidp, &dis, 0, req); 808 if (error || !req->newptr) 809 return (error); 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_lock(&devsoftc.mtx); 812 if (dis) { 813 while (!TAILQ_EMPTY(&devsoftc.devq)) { 814 n1 = TAILQ_FIRST(&devsoftc.devq); 815 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 816 free(n1->dei_data, M_BUS); 817 free(n1, M_BUS); 818 } 819 devsoftc.queued = 0; 820 devctl_queue_length = 0; 821 } else { 822 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 823 } 824 if (mtx_initialized(&devsoftc.mtx)) 825 mtx_unlock(&devsoftc.mtx); 826 return (0); 827 } 828 829 static int 830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 831 { 832 struct dev_event_info *n1; 833 int q, error; 834 835 q = devctl_queue_length; 836 error = sysctl_handle_int(oidp, &q, 0, req); 837 if (error || !req->newptr) 838 return (error); 839 if (q < 0) 840 return (EINVAL); 841 if (mtx_initialized(&devsoftc.mtx)) 842 mtx_lock(&devsoftc.mtx); 843 devctl_queue_length = q; 844 while (devsoftc.queued > devctl_queue_length) { 845 n1 = TAILQ_FIRST(&devsoftc.devq); 846 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 847 free(n1->dei_data, M_BUS); 848 free(n1, M_BUS); 849 devsoftc.queued--; 850 } 851 if (mtx_initialized(&devsoftc.mtx)) 852 mtx_unlock(&devsoftc.mtx); 853 return (0); 854 } 855 856 /** 857 * @brief safely quotes strings that might have double quotes in them. 858 * 859 * The devctl protocol relies on quoted strings having matching quotes. 860 * This routine quotes any internal quotes so the resulting string 861 * is safe to pass to snprintf to construct, for example pnp info strings. 862 * Strings are always terminated with a NUL, but may be truncated if longer 863 * than @p len bytes after quotes. 864 * 865 * @param sb sbuf to place the characters into 866 * @param src Original buffer. 867 */ 868 void 869 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 870 { 871 872 while (*src != '\0') { 873 if (*src == '"' || *src == '\\') 874 sbuf_putc(sb, '\\'); 875 sbuf_putc(sb, *src++); 876 } 877 } 878 879 /* End of /dev/devctl code */ 880 881 static TAILQ_HEAD(,device) bus_data_devices; 882 static int bus_data_generation = 1; 883 884 static kobj_method_t null_methods[] = { 885 KOBJMETHOD_END 886 }; 887 888 DEFINE_CLASS(null, null_methods, 0); 889 890 /* 891 * Bus pass implementation 892 */ 893 894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 895 int bus_current_pass = BUS_PASS_ROOT; 896 897 /** 898 * @internal 899 * @brief Register the pass level of a new driver attachment 900 * 901 * Register a new driver attachment's pass level. If no driver 902 * attachment with the same pass level has been added, then @p new 903 * will be added to the global passes list. 904 * 905 * @param new the new driver attachment 906 */ 907 static void 908 driver_register_pass(struct driverlink *new) 909 { 910 struct driverlink *dl; 911 912 /* We only consider pass numbers during boot. */ 913 if (bus_current_pass == BUS_PASS_DEFAULT) 914 return; 915 916 /* 917 * Walk the passes list. If we already know about this pass 918 * then there is nothing to do. If we don't, then insert this 919 * driver link into the list. 920 */ 921 TAILQ_FOREACH(dl, &passes, passlink) { 922 if (dl->pass < new->pass) 923 continue; 924 if (dl->pass == new->pass) 925 return; 926 TAILQ_INSERT_BEFORE(dl, new, passlink); 927 return; 928 } 929 TAILQ_INSERT_TAIL(&passes, new, passlink); 930 } 931 932 /** 933 * @brief Raise the current bus pass 934 * 935 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 936 * method on the root bus to kick off a new device tree scan for each 937 * new pass level that has at least one driver. 938 */ 939 void 940 bus_set_pass(int pass) 941 { 942 struct driverlink *dl; 943 944 if (bus_current_pass > pass) 945 panic("Attempt to lower bus pass level"); 946 947 TAILQ_FOREACH(dl, &passes, passlink) { 948 /* Skip pass values below the current pass level. */ 949 if (dl->pass <= bus_current_pass) 950 continue; 951 952 /* 953 * Bail once we hit a driver with a pass level that is 954 * too high. 955 */ 956 if (dl->pass > pass) 957 break; 958 959 /* 960 * Raise the pass level to the next level and rescan 961 * the tree. 962 */ 963 bus_current_pass = dl->pass; 964 BUS_NEW_PASS(root_bus); 965 } 966 967 /* 968 * If there isn't a driver registered for the requested pass, 969 * then bus_current_pass might still be less than 'pass'. Set 970 * it to 'pass' in that case. 971 */ 972 if (bus_current_pass < pass) 973 bus_current_pass = pass; 974 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 975 } 976 977 /* 978 * Devclass implementation 979 */ 980 981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 982 983 /** 984 * @internal 985 * @brief Find or create a device class 986 * 987 * If a device class with the name @p classname exists, return it, 988 * otherwise if @p create is non-zero create and return a new device 989 * class. 990 * 991 * If @p parentname is non-NULL, the parent of the devclass is set to 992 * the devclass of that name. 993 * 994 * @param classname the devclass name to find or create 995 * @param parentname the parent devclass name or @c NULL 996 * @param create non-zero to create a devclass 997 */ 998 static devclass_t 999 devclass_find_internal(const char *classname, const char *parentname, 1000 int create) 1001 { 1002 devclass_t dc; 1003 1004 PDEBUG(("looking for %s", classname)); 1005 if (!classname) 1006 return (NULL); 1007 1008 TAILQ_FOREACH(dc, &devclasses, link) { 1009 if (!strcmp(dc->name, classname)) 1010 break; 1011 } 1012 1013 if (create && !dc) { 1014 PDEBUG(("creating %s", classname)); 1015 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1016 M_BUS, M_NOWAIT | M_ZERO); 1017 if (!dc) 1018 return (NULL); 1019 dc->parent = NULL; 1020 dc->name = (char*) (dc + 1); 1021 strcpy(dc->name, classname); 1022 TAILQ_INIT(&dc->drivers); 1023 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1024 1025 bus_data_generation_update(); 1026 } 1027 1028 /* 1029 * If a parent class is specified, then set that as our parent so 1030 * that this devclass will support drivers for the parent class as 1031 * well. If the parent class has the same name don't do this though 1032 * as it creates a cycle that can trigger an infinite loop in 1033 * device_probe_child() if a device exists for which there is no 1034 * suitable driver. 1035 */ 1036 if (parentname && dc && !dc->parent && 1037 strcmp(classname, parentname) != 0) { 1038 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1039 dc->parent->flags |= DC_HAS_CHILDREN; 1040 } 1041 1042 return (dc); 1043 } 1044 1045 /** 1046 * @brief Create a device class 1047 * 1048 * If a device class with the name @p classname exists, return it, 1049 * otherwise create and return a new device class. 1050 * 1051 * @param classname the devclass name to find or create 1052 */ 1053 devclass_t 1054 devclass_create(const char *classname) 1055 { 1056 return (devclass_find_internal(classname, NULL, TRUE)); 1057 } 1058 1059 /** 1060 * @brief Find a device class 1061 * 1062 * If a device class with the name @p classname exists, return it, 1063 * otherwise return @c NULL. 1064 * 1065 * @param classname the devclass name to find 1066 */ 1067 devclass_t 1068 devclass_find(const char *classname) 1069 { 1070 return (devclass_find_internal(classname, NULL, FALSE)); 1071 } 1072 1073 /** 1074 * @brief Register that a device driver has been added to a devclass 1075 * 1076 * Register that a device driver has been added to a devclass. This 1077 * is called by devclass_add_driver to accomplish the recursive 1078 * notification of all the children classes of dc, as well as dc. 1079 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1080 * the devclass. 1081 * 1082 * We do a full search here of the devclass list at each iteration 1083 * level to save storing children-lists in the devclass structure. If 1084 * we ever move beyond a few dozen devices doing this, we may need to 1085 * reevaluate... 1086 * 1087 * @param dc the devclass to edit 1088 * @param driver the driver that was just added 1089 */ 1090 static void 1091 devclass_driver_added(devclass_t dc, driver_t *driver) 1092 { 1093 devclass_t parent; 1094 int i; 1095 1096 /* 1097 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1098 */ 1099 for (i = 0; i < dc->maxunit; i++) 1100 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1101 BUS_DRIVER_ADDED(dc->devices[i], driver); 1102 1103 /* 1104 * Walk through the children classes. Since we only keep a 1105 * single parent pointer around, we walk the entire list of 1106 * devclasses looking for children. We set the 1107 * DC_HAS_CHILDREN flag when a child devclass is created on 1108 * the parent, so we only walk the list for those devclasses 1109 * that have children. 1110 */ 1111 if (!(dc->flags & DC_HAS_CHILDREN)) 1112 return; 1113 parent = dc; 1114 TAILQ_FOREACH(dc, &devclasses, link) { 1115 if (dc->parent == parent) 1116 devclass_driver_added(dc, driver); 1117 } 1118 } 1119 1120 /** 1121 * @brief Add a device driver to a device class 1122 * 1123 * Add a device driver to a devclass. This is normally called 1124 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1125 * all devices in the devclass will be called to allow them to attempt 1126 * to re-probe any unmatched children. 1127 * 1128 * @param dc the devclass to edit 1129 * @param driver the driver to register 1130 */ 1131 int 1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1133 { 1134 driverlink_t dl; 1135 const char *parentname; 1136 1137 PDEBUG(("%s", DRIVERNAME(driver))); 1138 1139 /* Don't allow invalid pass values. */ 1140 if (pass <= BUS_PASS_ROOT) 1141 return (EINVAL); 1142 1143 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1144 if (!dl) 1145 return (ENOMEM); 1146 1147 /* 1148 * Compile the driver's methods. Also increase the reference count 1149 * so that the class doesn't get freed when the last instance 1150 * goes. This means we can safely use static methods and avoids a 1151 * double-free in devclass_delete_driver. 1152 */ 1153 kobj_class_compile((kobj_class_t) driver); 1154 1155 /* 1156 * If the driver has any base classes, make the 1157 * devclass inherit from the devclass of the driver's 1158 * first base class. This will allow the system to 1159 * search for drivers in both devclasses for children 1160 * of a device using this driver. 1161 */ 1162 if (driver->baseclasses) 1163 parentname = driver->baseclasses[0]->name; 1164 else 1165 parentname = NULL; 1166 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1167 1168 dl->driver = driver; 1169 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1170 driver->refs++; /* XXX: kobj_mtx */ 1171 dl->pass = pass; 1172 driver_register_pass(dl); 1173 1174 if (device_frozen) { 1175 dl->flags |= DL_DEFERRED_PROBE; 1176 } else { 1177 devclass_driver_added(dc, driver); 1178 } 1179 bus_data_generation_update(); 1180 return (0); 1181 } 1182 1183 /** 1184 * @brief Register that a device driver has been deleted from a devclass 1185 * 1186 * Register that a device driver has been removed from a devclass. 1187 * This is called by devclass_delete_driver to accomplish the 1188 * recursive notification of all the children classes of busclass, as 1189 * well as busclass. Each layer will attempt to detach the driver 1190 * from any devices that are children of the bus's devclass. The function 1191 * will return an error if a device fails to detach. 1192 * 1193 * We do a full search here of the devclass list at each iteration 1194 * level to save storing children-lists in the devclass structure. If 1195 * we ever move beyond a few dozen devices doing this, we may need to 1196 * reevaluate... 1197 * 1198 * @param busclass the devclass of the parent bus 1199 * @param dc the devclass of the driver being deleted 1200 * @param driver the driver being deleted 1201 */ 1202 static int 1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1204 { 1205 devclass_t parent; 1206 device_t dev; 1207 int error, i; 1208 1209 /* 1210 * Disassociate from any devices. We iterate through all the 1211 * devices in the devclass of the driver and detach any which are 1212 * using the driver and which have a parent in the devclass which 1213 * we are deleting from. 1214 * 1215 * Note that since a driver can be in multiple devclasses, we 1216 * should not detach devices which are not children of devices in 1217 * the affected devclass. 1218 * 1219 * If we're frozen, we don't generate NOMATCH events. Mark to 1220 * generate later. 1221 */ 1222 for (i = 0; i < dc->maxunit; i++) { 1223 if (dc->devices[i]) { 1224 dev = dc->devices[i]; 1225 if (dev->driver == driver && dev->parent && 1226 dev->parent->devclass == busclass) { 1227 if ((error = device_detach(dev)) != 0) 1228 return (error); 1229 if (device_frozen) { 1230 dev->flags &= ~DF_DONENOMATCH; 1231 dev->flags |= DF_NEEDNOMATCH; 1232 } else { 1233 BUS_PROBE_NOMATCH(dev->parent, dev); 1234 devnomatch(dev); 1235 dev->flags |= DF_DONENOMATCH; 1236 } 1237 } 1238 } 1239 } 1240 1241 /* 1242 * Walk through the children classes. Since we only keep a 1243 * single parent pointer around, we walk the entire list of 1244 * devclasses looking for children. We set the 1245 * DC_HAS_CHILDREN flag when a child devclass is created on 1246 * the parent, so we only walk the list for those devclasses 1247 * that have children. 1248 */ 1249 if (!(busclass->flags & DC_HAS_CHILDREN)) 1250 return (0); 1251 parent = busclass; 1252 TAILQ_FOREACH(busclass, &devclasses, link) { 1253 if (busclass->parent == parent) { 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error) 1256 return (error); 1257 } 1258 } 1259 return (0); 1260 } 1261 1262 /** 1263 * @brief Delete a device driver from a device class 1264 * 1265 * Delete a device driver from a devclass. This is normally called 1266 * automatically by DRIVER_MODULE(). 1267 * 1268 * If the driver is currently attached to any devices, 1269 * devclass_delete_driver() will first attempt to detach from each 1270 * device. If one of the detach calls fails, the driver will not be 1271 * deleted. 1272 * 1273 * @param dc the devclass to edit 1274 * @param driver the driver to unregister 1275 */ 1276 int 1277 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1278 { 1279 devclass_t dc = devclass_find(driver->name); 1280 driverlink_t dl; 1281 int error; 1282 1283 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1284 1285 if (!dc) 1286 return (0); 1287 1288 /* 1289 * Find the link structure in the bus' list of drivers. 1290 */ 1291 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1292 if (dl->driver == driver) 1293 break; 1294 } 1295 1296 if (!dl) { 1297 PDEBUG(("%s not found in %s list", driver->name, 1298 busclass->name)); 1299 return (ENOENT); 1300 } 1301 1302 error = devclass_driver_deleted(busclass, dc, driver); 1303 if (error != 0) 1304 return (error); 1305 1306 TAILQ_REMOVE(&busclass->drivers, dl, link); 1307 free(dl, M_BUS); 1308 1309 /* XXX: kobj_mtx */ 1310 driver->refs--; 1311 if (driver->refs == 0) 1312 kobj_class_free((kobj_class_t) driver); 1313 1314 bus_data_generation_update(); 1315 return (0); 1316 } 1317 1318 /** 1319 * @brief Quiesces a set of device drivers from a device class 1320 * 1321 * Quiesce a device driver from a devclass. This is normally called 1322 * automatically by DRIVER_MODULE(). 1323 * 1324 * If the driver is currently attached to any devices, 1325 * devclass_quiesece_driver() will first attempt to quiesce each 1326 * device. 1327 * 1328 * @param dc the devclass to edit 1329 * @param driver the driver to unregister 1330 */ 1331 static int 1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1333 { 1334 devclass_t dc = devclass_find(driver->name); 1335 driverlink_t dl; 1336 device_t dev; 1337 int i; 1338 int error; 1339 1340 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1341 1342 if (!dc) 1343 return (0); 1344 1345 /* 1346 * Find the link structure in the bus' list of drivers. 1347 */ 1348 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1349 if (dl->driver == driver) 1350 break; 1351 } 1352 1353 if (!dl) { 1354 PDEBUG(("%s not found in %s list", driver->name, 1355 busclass->name)); 1356 return (ENOENT); 1357 } 1358 1359 /* 1360 * Quiesce all devices. We iterate through all the devices in 1361 * the devclass of the driver and quiesce any which are using 1362 * the driver and which have a parent in the devclass which we 1363 * are quiescing. 1364 * 1365 * Note that since a driver can be in multiple devclasses, we 1366 * should not quiesce devices which are not children of 1367 * devices in the affected devclass. 1368 */ 1369 for (i = 0; i < dc->maxunit; i++) { 1370 if (dc->devices[i]) { 1371 dev = dc->devices[i]; 1372 if (dev->driver == driver && dev->parent && 1373 dev->parent->devclass == busclass) { 1374 if ((error = device_quiesce(dev)) != 0) 1375 return (error); 1376 } 1377 } 1378 } 1379 1380 return (0); 1381 } 1382 1383 /** 1384 * @internal 1385 */ 1386 static driverlink_t 1387 devclass_find_driver_internal(devclass_t dc, const char *classname) 1388 { 1389 driverlink_t dl; 1390 1391 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1392 1393 TAILQ_FOREACH(dl, &dc->drivers, link) { 1394 if (!strcmp(dl->driver->name, classname)) 1395 return (dl); 1396 } 1397 1398 PDEBUG(("not found")); 1399 return (NULL); 1400 } 1401 1402 /** 1403 * @brief Return the name of the devclass 1404 */ 1405 const char * 1406 devclass_get_name(devclass_t dc) 1407 { 1408 return (dc->name); 1409 } 1410 1411 /** 1412 * @brief Find a device given a unit number 1413 * 1414 * @param dc the devclass to search 1415 * @param unit the unit number to search for 1416 * 1417 * @returns the device with the given unit number or @c 1418 * NULL if there is no such device 1419 */ 1420 device_t 1421 devclass_get_device(devclass_t dc, int unit) 1422 { 1423 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1424 return (NULL); 1425 return (dc->devices[unit]); 1426 } 1427 1428 /** 1429 * @brief Find the softc field of a device given a unit number 1430 * 1431 * @param dc the devclass to search 1432 * @param unit the unit number to search for 1433 * 1434 * @returns the softc field of the device with the given 1435 * unit number or @c NULL if there is no such 1436 * device 1437 */ 1438 void * 1439 devclass_get_softc(devclass_t dc, int unit) 1440 { 1441 device_t dev; 1442 1443 dev = devclass_get_device(dc, unit); 1444 if (!dev) 1445 return (NULL); 1446 1447 return (device_get_softc(dev)); 1448 } 1449 1450 /** 1451 * @brief Get a list of devices in the devclass 1452 * 1453 * An array containing a list of all the devices in the given devclass 1454 * is allocated and returned in @p *devlistp. The number of devices 1455 * in the array is returned in @p *devcountp. The caller should free 1456 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1457 * 1458 * @param dc the devclass to examine 1459 * @param devlistp points at location for array pointer return 1460 * value 1461 * @param devcountp points at location for array size return value 1462 * 1463 * @retval 0 success 1464 * @retval ENOMEM the array allocation failed 1465 */ 1466 int 1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1468 { 1469 int count, i; 1470 device_t *list; 1471 1472 count = devclass_get_count(dc); 1473 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1474 if (!list) 1475 return (ENOMEM); 1476 1477 count = 0; 1478 for (i = 0; i < dc->maxunit; i++) { 1479 if (dc->devices[i]) { 1480 list[count] = dc->devices[i]; 1481 count++; 1482 } 1483 } 1484 1485 *devlistp = list; 1486 *devcountp = count; 1487 1488 return (0); 1489 } 1490 1491 /** 1492 * @brief Get a list of drivers in the devclass 1493 * 1494 * An array containing a list of pointers to all the drivers in the 1495 * given devclass is allocated and returned in @p *listp. The number 1496 * of drivers in the array is returned in @p *countp. The caller should 1497 * free the array using @c free(p, M_TEMP). 1498 * 1499 * @param dc the devclass to examine 1500 * @param listp gives location for array pointer return value 1501 * @param countp gives location for number of array elements 1502 * return value 1503 * 1504 * @retval 0 success 1505 * @retval ENOMEM the array allocation failed 1506 */ 1507 int 1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1509 { 1510 driverlink_t dl; 1511 driver_t **list; 1512 int count; 1513 1514 count = 0; 1515 TAILQ_FOREACH(dl, &dc->drivers, link) 1516 count++; 1517 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1518 if (list == NULL) 1519 return (ENOMEM); 1520 1521 count = 0; 1522 TAILQ_FOREACH(dl, &dc->drivers, link) { 1523 list[count] = dl->driver; 1524 count++; 1525 } 1526 *listp = list; 1527 *countp = count; 1528 1529 return (0); 1530 } 1531 1532 /** 1533 * @brief Get the number of devices in a devclass 1534 * 1535 * @param dc the devclass to examine 1536 */ 1537 int 1538 devclass_get_count(devclass_t dc) 1539 { 1540 int count, i; 1541 1542 count = 0; 1543 for (i = 0; i < dc->maxunit; i++) 1544 if (dc->devices[i]) 1545 count++; 1546 return (count); 1547 } 1548 1549 /** 1550 * @brief Get the maximum unit number used in a devclass 1551 * 1552 * Note that this is one greater than the highest currently-allocated 1553 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1554 * that not even the devclass has been allocated yet. 1555 * 1556 * @param dc the devclass to examine 1557 */ 1558 int 1559 devclass_get_maxunit(devclass_t dc) 1560 { 1561 if (dc == NULL) 1562 return (-1); 1563 return (dc->maxunit); 1564 } 1565 1566 /** 1567 * @brief Find a free unit number in a devclass 1568 * 1569 * This function searches for the first unused unit number greater 1570 * that or equal to @p unit. 1571 * 1572 * @param dc the devclass to examine 1573 * @param unit the first unit number to check 1574 */ 1575 int 1576 devclass_find_free_unit(devclass_t dc, int unit) 1577 { 1578 if (dc == NULL) 1579 return (unit); 1580 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1581 unit++; 1582 return (unit); 1583 } 1584 1585 /** 1586 * @brief Set the parent of a devclass 1587 * 1588 * The parent class is normally initialised automatically by 1589 * DRIVER_MODULE(). 1590 * 1591 * @param dc the devclass to edit 1592 * @param pdc the new parent devclass 1593 */ 1594 void 1595 devclass_set_parent(devclass_t dc, devclass_t pdc) 1596 { 1597 dc->parent = pdc; 1598 } 1599 1600 /** 1601 * @brief Get the parent of a devclass 1602 * 1603 * @param dc the devclass to examine 1604 */ 1605 devclass_t 1606 devclass_get_parent(devclass_t dc) 1607 { 1608 return (dc->parent); 1609 } 1610 1611 struct sysctl_ctx_list * 1612 devclass_get_sysctl_ctx(devclass_t dc) 1613 { 1614 return (&dc->sysctl_ctx); 1615 } 1616 1617 struct sysctl_oid * 1618 devclass_get_sysctl_tree(devclass_t dc) 1619 { 1620 return (dc->sysctl_tree); 1621 } 1622 1623 /** 1624 * @internal 1625 * @brief Allocate a unit number 1626 * 1627 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1628 * will do). The allocated unit number is returned in @p *unitp. 1629 1630 * @param dc the devclass to allocate from 1631 * @param unitp points at the location for the allocated unit 1632 * number 1633 * 1634 * @retval 0 success 1635 * @retval EEXIST the requested unit number is already allocated 1636 * @retval ENOMEM memory allocation failure 1637 */ 1638 static int 1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1640 { 1641 const char *s; 1642 int unit = *unitp; 1643 1644 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1645 1646 /* Ask the parent bus if it wants to wire this device. */ 1647 if (unit == -1) 1648 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1649 &unit); 1650 1651 /* If we were given a wired unit number, check for existing device */ 1652 /* XXX imp XXX */ 1653 if (unit != -1) { 1654 if (unit >= 0 && unit < dc->maxunit && 1655 dc->devices[unit] != NULL) { 1656 if (bootverbose) 1657 printf("%s: %s%d already exists; skipping it\n", 1658 dc->name, dc->name, *unitp); 1659 return (EEXIST); 1660 } 1661 } else { 1662 /* Unwired device, find the next available slot for it */ 1663 unit = 0; 1664 for (unit = 0;; unit++) { 1665 /* If there is an "at" hint for a unit then skip it. */ 1666 if (resource_string_value(dc->name, unit, "at", &s) == 1667 0) 1668 continue; 1669 1670 /* If this device slot is already in use, skip it. */ 1671 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1672 continue; 1673 1674 break; 1675 } 1676 } 1677 1678 /* 1679 * We've selected a unit beyond the length of the table, so let's 1680 * extend the table to make room for all units up to and including 1681 * this one. 1682 */ 1683 if (unit >= dc->maxunit) { 1684 device_t *newlist, *oldlist; 1685 int newsize; 1686 1687 oldlist = dc->devices; 1688 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1689 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1690 if (!newlist) 1691 return (ENOMEM); 1692 if (oldlist != NULL) 1693 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1694 bzero(newlist + dc->maxunit, 1695 sizeof(device_t) * (newsize - dc->maxunit)); 1696 dc->devices = newlist; 1697 dc->maxunit = newsize; 1698 if (oldlist != NULL) 1699 free(oldlist, M_BUS); 1700 } 1701 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1702 1703 *unitp = unit; 1704 return (0); 1705 } 1706 1707 /** 1708 * @internal 1709 * @brief Add a device to a devclass 1710 * 1711 * A unit number is allocated for the device (using the device's 1712 * preferred unit number if any) and the device is registered in the 1713 * devclass. This allows the device to be looked up by its unit 1714 * number, e.g. by decoding a dev_t minor number. 1715 * 1716 * @param dc the devclass to add to 1717 * @param dev the device to add 1718 * 1719 * @retval 0 success 1720 * @retval EEXIST the requested unit number is already allocated 1721 * @retval ENOMEM memory allocation failure 1722 */ 1723 static int 1724 devclass_add_device(devclass_t dc, device_t dev) 1725 { 1726 int buflen, error; 1727 1728 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1729 1730 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1731 if (buflen < 0) 1732 return (ENOMEM); 1733 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1734 if (!dev->nameunit) 1735 return (ENOMEM); 1736 1737 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1738 free(dev->nameunit, M_BUS); 1739 dev->nameunit = NULL; 1740 return (error); 1741 } 1742 dc->devices[dev->unit] = dev; 1743 dev->devclass = dc; 1744 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1745 1746 return (0); 1747 } 1748 1749 /** 1750 * @internal 1751 * @brief Delete a device from a devclass 1752 * 1753 * The device is removed from the devclass's device list and its unit 1754 * number is freed. 1755 1756 * @param dc the devclass to delete from 1757 * @param dev the device to delete 1758 * 1759 * @retval 0 success 1760 */ 1761 static int 1762 devclass_delete_device(devclass_t dc, device_t dev) 1763 { 1764 if (!dc || !dev) 1765 return (0); 1766 1767 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1768 1769 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1770 panic("devclass_delete_device: inconsistent device class"); 1771 dc->devices[dev->unit] = NULL; 1772 if (dev->flags & DF_WILDCARD) 1773 dev->unit = -1; 1774 dev->devclass = NULL; 1775 free(dev->nameunit, M_BUS); 1776 dev->nameunit = NULL; 1777 1778 return (0); 1779 } 1780 1781 /** 1782 * @internal 1783 * @brief Make a new device and add it as a child of @p parent 1784 * 1785 * @param parent the parent of the new device 1786 * @param name the devclass name of the new device or @c NULL 1787 * to leave the devclass unspecified 1788 * @parem unit the unit number of the new device of @c -1 to 1789 * leave the unit number unspecified 1790 * 1791 * @returns the new device 1792 */ 1793 static device_t 1794 make_device(device_t parent, const char *name, int unit) 1795 { 1796 device_t dev; 1797 devclass_t dc; 1798 1799 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1800 1801 if (name) { 1802 dc = devclass_find_internal(name, NULL, TRUE); 1803 if (!dc) { 1804 printf("make_device: can't find device class %s\n", 1805 name); 1806 return (NULL); 1807 } 1808 } else { 1809 dc = NULL; 1810 } 1811 1812 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1813 if (!dev) 1814 return (NULL); 1815 1816 dev->parent = parent; 1817 TAILQ_INIT(&dev->children); 1818 kobj_init((kobj_t) dev, &null_class); 1819 dev->driver = NULL; 1820 dev->devclass = NULL; 1821 dev->unit = unit; 1822 dev->nameunit = NULL; 1823 dev->desc = NULL; 1824 dev->busy = 0; 1825 dev->devflags = 0; 1826 dev->flags = DF_ENABLED; 1827 dev->order = 0; 1828 if (unit == -1) 1829 dev->flags |= DF_WILDCARD; 1830 if (name) { 1831 dev->flags |= DF_FIXEDCLASS; 1832 if (devclass_add_device(dc, dev)) { 1833 kobj_delete((kobj_t) dev, M_BUS); 1834 return (NULL); 1835 } 1836 } 1837 if (parent != NULL && device_has_quiet_children(parent)) 1838 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1839 dev->ivars = NULL; 1840 dev->softc = NULL; 1841 1842 dev->state = DS_NOTPRESENT; 1843 1844 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1845 bus_data_generation_update(); 1846 1847 return (dev); 1848 } 1849 1850 /** 1851 * @internal 1852 * @brief Print a description of a device. 1853 */ 1854 static int 1855 device_print_child(device_t dev, device_t child) 1856 { 1857 int retval = 0; 1858 1859 if (device_is_alive(child)) 1860 retval += BUS_PRINT_CHILD(dev, child); 1861 else 1862 retval += device_printf(child, " not found\n"); 1863 1864 return (retval); 1865 } 1866 1867 /** 1868 * @brief Create a new device 1869 * 1870 * This creates a new device and adds it as a child of an existing 1871 * parent device. The new device will be added after the last existing 1872 * child with order zero. 1873 * 1874 * @param dev the device which will be the parent of the 1875 * new child device 1876 * @param name devclass name for new device or @c NULL if not 1877 * specified 1878 * @param unit unit number for new device or @c -1 if not 1879 * specified 1880 * 1881 * @returns the new device 1882 */ 1883 device_t 1884 device_add_child(device_t dev, const char *name, int unit) 1885 { 1886 return (device_add_child_ordered(dev, 0, name, unit)); 1887 } 1888 1889 /** 1890 * @brief Create a new device 1891 * 1892 * This creates a new device and adds it as a child of an existing 1893 * parent device. The new device will be added after the last existing 1894 * child with the same order. 1895 * 1896 * @param dev the device which will be the parent of the 1897 * new child device 1898 * @param order a value which is used to partially sort the 1899 * children of @p dev - devices created using 1900 * lower values of @p order appear first in @p 1901 * dev's list of children 1902 * @param name devclass name for new device or @c NULL if not 1903 * specified 1904 * @param unit unit number for new device or @c -1 if not 1905 * specified 1906 * 1907 * @returns the new device 1908 */ 1909 device_t 1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1911 { 1912 device_t child; 1913 device_t place; 1914 1915 PDEBUG(("%s at %s with order %u as unit %d", 1916 name, DEVICENAME(dev), order, unit)); 1917 KASSERT(name != NULL || unit == -1, 1918 ("child device with wildcard name and specific unit number")); 1919 1920 child = make_device(dev, name, unit); 1921 if (child == NULL) 1922 return (child); 1923 child->order = order; 1924 1925 TAILQ_FOREACH(place, &dev->children, link) { 1926 if (place->order > order) 1927 break; 1928 } 1929 1930 if (place) { 1931 /* 1932 * The device 'place' is the first device whose order is 1933 * greater than the new child. 1934 */ 1935 TAILQ_INSERT_BEFORE(place, child, link); 1936 } else { 1937 /* 1938 * The new child's order is greater or equal to the order of 1939 * any existing device. Add the child to the tail of the list. 1940 */ 1941 TAILQ_INSERT_TAIL(&dev->children, child, link); 1942 } 1943 1944 bus_data_generation_update(); 1945 return (child); 1946 } 1947 1948 /** 1949 * @brief Delete a device 1950 * 1951 * This function deletes a device along with all of its children. If 1952 * the device currently has a driver attached to it, the device is 1953 * detached first using device_detach(). 1954 * 1955 * @param dev the parent device 1956 * @param child the device to delete 1957 * 1958 * @retval 0 success 1959 * @retval non-zero a unit error code describing the error 1960 */ 1961 int 1962 device_delete_child(device_t dev, device_t child) 1963 { 1964 int error; 1965 device_t grandchild; 1966 1967 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1968 1969 /* detach parent before deleting children, if any */ 1970 if ((error = device_detach(child)) != 0) 1971 return (error); 1972 1973 /* remove children second */ 1974 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1975 error = device_delete_child(child, grandchild); 1976 if (error) 1977 return (error); 1978 } 1979 1980 if (child->devclass) 1981 devclass_delete_device(child->devclass, child); 1982 if (child->parent) 1983 BUS_CHILD_DELETED(dev, child); 1984 TAILQ_REMOVE(&dev->children, child, link); 1985 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1986 kobj_delete((kobj_t) child, M_BUS); 1987 1988 bus_data_generation_update(); 1989 return (0); 1990 } 1991 1992 /** 1993 * @brief Delete all children devices of the given device, if any. 1994 * 1995 * This function deletes all children devices of the given device, if 1996 * any, using the device_delete_child() function for each device it 1997 * finds. If a child device cannot be deleted, this function will 1998 * return an error code. 1999 * 2000 * @param dev the parent device 2001 * 2002 * @retval 0 success 2003 * @retval non-zero a device would not detach 2004 */ 2005 int 2006 device_delete_children(device_t dev) 2007 { 2008 device_t child; 2009 int error; 2010 2011 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2012 2013 error = 0; 2014 2015 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2016 error = device_delete_child(dev, child); 2017 if (error) { 2018 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2019 break; 2020 } 2021 } 2022 return (error); 2023 } 2024 2025 /** 2026 * @brief Find a device given a unit number 2027 * 2028 * This is similar to devclass_get_devices() but only searches for 2029 * devices which have @p dev as a parent. 2030 * 2031 * @param dev the parent device to search 2032 * @param unit the unit number to search for. If the unit is -1, 2033 * return the first child of @p dev which has name 2034 * @p classname (that is, the one with the lowest unit.) 2035 * 2036 * @returns the device with the given unit number or @c 2037 * NULL if there is no such device 2038 */ 2039 device_t 2040 device_find_child(device_t dev, const char *classname, int unit) 2041 { 2042 devclass_t dc; 2043 device_t child; 2044 2045 dc = devclass_find(classname); 2046 if (!dc) 2047 return (NULL); 2048 2049 if (unit != -1) { 2050 child = devclass_get_device(dc, unit); 2051 if (child && child->parent == dev) 2052 return (child); 2053 } else { 2054 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2055 child = devclass_get_device(dc, unit); 2056 if (child && child->parent == dev) 2057 return (child); 2058 } 2059 } 2060 return (NULL); 2061 } 2062 2063 /** 2064 * @internal 2065 */ 2066 static driverlink_t 2067 first_matching_driver(devclass_t dc, device_t dev) 2068 { 2069 if (dev->devclass) 2070 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2071 return (TAILQ_FIRST(&dc->drivers)); 2072 } 2073 2074 /** 2075 * @internal 2076 */ 2077 static driverlink_t 2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2079 { 2080 if (dev->devclass) { 2081 driverlink_t dl; 2082 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2083 if (!strcmp(dev->devclass->name, dl->driver->name)) 2084 return (dl); 2085 return (NULL); 2086 } 2087 return (TAILQ_NEXT(last, link)); 2088 } 2089 2090 /** 2091 * @internal 2092 */ 2093 int 2094 device_probe_child(device_t dev, device_t child) 2095 { 2096 devclass_t dc; 2097 driverlink_t best = NULL; 2098 driverlink_t dl; 2099 int result, pri = 0; 2100 int hasclass = (child->devclass != NULL); 2101 2102 GIANT_REQUIRED; 2103 2104 dc = dev->devclass; 2105 if (!dc) 2106 panic("device_probe_child: parent device has no devclass"); 2107 2108 /* 2109 * If the state is already probed, then return. However, don't 2110 * return if we can rebid this object. 2111 */ 2112 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2113 return (0); 2114 2115 for (; dc; dc = dc->parent) { 2116 for (dl = first_matching_driver(dc, child); 2117 dl; 2118 dl = next_matching_driver(dc, child, dl)) { 2119 /* If this driver's pass is too high, then ignore it. */ 2120 if (dl->pass > bus_current_pass) 2121 continue; 2122 2123 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2124 result = device_set_driver(child, dl->driver); 2125 if (result == ENOMEM) 2126 return (result); 2127 else if (result != 0) 2128 continue; 2129 if (!hasclass) { 2130 if (device_set_devclass(child, 2131 dl->driver->name) != 0) { 2132 char const * devname = 2133 device_get_name(child); 2134 if (devname == NULL) 2135 devname = "(unknown)"; 2136 printf("driver bug: Unable to set " 2137 "devclass (class: %s " 2138 "devname: %s)\n", 2139 dl->driver->name, 2140 devname); 2141 (void)device_set_driver(child, NULL); 2142 continue; 2143 } 2144 } 2145 2146 /* Fetch any flags for the device before probing. */ 2147 resource_int_value(dl->driver->name, child->unit, 2148 "flags", &child->devflags); 2149 2150 result = DEVICE_PROBE(child); 2151 2152 /* Reset flags and devclass before the next probe. */ 2153 child->devflags = 0; 2154 if (!hasclass) 2155 (void)device_set_devclass(child, NULL); 2156 2157 /* 2158 * If the driver returns SUCCESS, there can be 2159 * no higher match for this device. 2160 */ 2161 if (result == 0) { 2162 best = dl; 2163 pri = 0; 2164 break; 2165 } 2166 2167 /* 2168 * Reset DF_QUIET in case this driver doesn't 2169 * end up as the best driver. 2170 */ 2171 device_verbose(child); 2172 2173 /* 2174 * Probes that return BUS_PROBE_NOWILDCARD or lower 2175 * only match on devices whose driver was explicitly 2176 * specified. 2177 */ 2178 if (result <= BUS_PROBE_NOWILDCARD && 2179 !(child->flags & DF_FIXEDCLASS)) { 2180 result = ENXIO; 2181 } 2182 2183 /* 2184 * The driver returned an error so it 2185 * certainly doesn't match. 2186 */ 2187 if (result > 0) { 2188 (void)device_set_driver(child, NULL); 2189 continue; 2190 } 2191 2192 /* 2193 * A priority lower than SUCCESS, remember the 2194 * best matching driver. Initialise the value 2195 * of pri for the first match. 2196 */ 2197 if (best == NULL || result > pri) { 2198 best = dl; 2199 pri = result; 2200 continue; 2201 } 2202 } 2203 /* 2204 * If we have an unambiguous match in this devclass, 2205 * don't look in the parent. 2206 */ 2207 if (best && pri == 0) 2208 break; 2209 } 2210 2211 /* 2212 * If we found a driver, change state and initialise the devclass. 2213 */ 2214 /* XXX What happens if we rebid and got no best? */ 2215 if (best) { 2216 /* 2217 * If this device was attached, and we were asked to 2218 * rescan, and it is a different driver, then we have 2219 * to detach the old driver and reattach this new one. 2220 * Note, we don't have to check for DF_REBID here 2221 * because if the state is > DS_ALIVE, we know it must 2222 * be. 2223 * 2224 * This assumes that all DF_REBID drivers can have 2225 * their probe routine called at any time and that 2226 * they are idempotent as well as completely benign in 2227 * normal operations. 2228 * 2229 * We also have to make sure that the detach 2230 * succeeded, otherwise we fail the operation (or 2231 * maybe it should just fail silently? I'm torn). 2232 */ 2233 if (child->state > DS_ALIVE && best->driver != child->driver) 2234 if ((result = device_detach(dev)) != 0) 2235 return (result); 2236 2237 /* Set the winning driver, devclass, and flags. */ 2238 if (!child->devclass) { 2239 result = device_set_devclass(child, best->driver->name); 2240 if (result != 0) 2241 return (result); 2242 } 2243 result = device_set_driver(child, best->driver); 2244 if (result != 0) 2245 return (result); 2246 resource_int_value(best->driver->name, child->unit, 2247 "flags", &child->devflags); 2248 2249 if (pri < 0) { 2250 /* 2251 * A bit bogus. Call the probe method again to make 2252 * sure that we have the right description. 2253 */ 2254 DEVICE_PROBE(child); 2255 #if 0 2256 child->flags |= DF_REBID; 2257 #endif 2258 } else 2259 child->flags &= ~DF_REBID; 2260 child->state = DS_ALIVE; 2261 2262 bus_data_generation_update(); 2263 return (0); 2264 } 2265 2266 return (ENXIO); 2267 } 2268 2269 /** 2270 * @brief Return the parent of a device 2271 */ 2272 device_t 2273 device_get_parent(device_t dev) 2274 { 2275 return (dev->parent); 2276 } 2277 2278 /** 2279 * @brief Get a list of children of a device 2280 * 2281 * An array containing a list of all the children of the given device 2282 * is allocated and returned in @p *devlistp. The number of devices 2283 * in the array is returned in @p *devcountp. The caller should free 2284 * the array using @c free(p, M_TEMP). 2285 * 2286 * @param dev the device to examine 2287 * @param devlistp points at location for array pointer return 2288 * value 2289 * @param devcountp points at location for array size return value 2290 * 2291 * @retval 0 success 2292 * @retval ENOMEM the array allocation failed 2293 */ 2294 int 2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2296 { 2297 int count; 2298 device_t child; 2299 device_t *list; 2300 2301 count = 0; 2302 TAILQ_FOREACH(child, &dev->children, link) { 2303 count++; 2304 } 2305 if (count == 0) { 2306 *devlistp = NULL; 2307 *devcountp = 0; 2308 return (0); 2309 } 2310 2311 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2312 if (!list) 2313 return (ENOMEM); 2314 2315 count = 0; 2316 TAILQ_FOREACH(child, &dev->children, link) { 2317 list[count] = child; 2318 count++; 2319 } 2320 2321 *devlistp = list; 2322 *devcountp = count; 2323 2324 return (0); 2325 } 2326 2327 /** 2328 * @brief Return the current driver for the device or @c NULL if there 2329 * is no driver currently attached 2330 */ 2331 driver_t * 2332 device_get_driver(device_t dev) 2333 { 2334 return (dev->driver); 2335 } 2336 2337 /** 2338 * @brief Return the current devclass for the device or @c NULL if 2339 * there is none. 2340 */ 2341 devclass_t 2342 device_get_devclass(device_t dev) 2343 { 2344 return (dev->devclass); 2345 } 2346 2347 /** 2348 * @brief Return the name of the device's devclass or @c NULL if there 2349 * is none. 2350 */ 2351 const char * 2352 device_get_name(device_t dev) 2353 { 2354 if (dev != NULL && dev->devclass) 2355 return (devclass_get_name(dev->devclass)); 2356 return (NULL); 2357 } 2358 2359 /** 2360 * @brief Return a string containing the device's devclass name 2361 * followed by an ascii representation of the device's unit number 2362 * (e.g. @c "foo2"). 2363 */ 2364 const char * 2365 device_get_nameunit(device_t dev) 2366 { 2367 return (dev->nameunit); 2368 } 2369 2370 /** 2371 * @brief Return the device's unit number. 2372 */ 2373 int 2374 device_get_unit(device_t dev) 2375 { 2376 return (dev->unit); 2377 } 2378 2379 /** 2380 * @brief Return the device's description string 2381 */ 2382 const char * 2383 device_get_desc(device_t dev) 2384 { 2385 return (dev->desc); 2386 } 2387 2388 /** 2389 * @brief Return the device's flags 2390 */ 2391 uint32_t 2392 device_get_flags(device_t dev) 2393 { 2394 return (dev->devflags); 2395 } 2396 2397 struct sysctl_ctx_list * 2398 device_get_sysctl_ctx(device_t dev) 2399 { 2400 return (&dev->sysctl_ctx); 2401 } 2402 2403 struct sysctl_oid * 2404 device_get_sysctl_tree(device_t dev) 2405 { 2406 return (dev->sysctl_tree); 2407 } 2408 2409 /** 2410 * @brief Print the name of the device followed by a colon and a space 2411 * 2412 * @returns the number of characters printed 2413 */ 2414 int 2415 device_print_prettyname(device_t dev) 2416 { 2417 const char *name = device_get_name(dev); 2418 2419 if (name == NULL) 2420 return (printf("unknown: ")); 2421 return (printf("%s%d: ", name, device_get_unit(dev))); 2422 } 2423 2424 /** 2425 * @brief Print the name of the device followed by a colon, a space 2426 * and the result of calling vprintf() with the value of @p fmt and 2427 * the following arguments. 2428 * 2429 * @returns the number of characters printed 2430 */ 2431 int 2432 device_printf(device_t dev, const char * fmt, ...) 2433 { 2434 va_list ap; 2435 int retval; 2436 2437 retval = device_print_prettyname(dev); 2438 va_start(ap, fmt); 2439 retval += vprintf(fmt, ap); 2440 va_end(ap); 2441 return (retval); 2442 } 2443 2444 /** 2445 * @internal 2446 */ 2447 static void 2448 device_set_desc_internal(device_t dev, const char* desc, int copy) 2449 { 2450 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2451 free(dev->desc, M_BUS); 2452 dev->flags &= ~DF_DESCMALLOCED; 2453 dev->desc = NULL; 2454 } 2455 2456 if (copy && desc) { 2457 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2458 if (dev->desc) { 2459 strcpy(dev->desc, desc); 2460 dev->flags |= DF_DESCMALLOCED; 2461 } 2462 } else { 2463 /* Avoid a -Wcast-qual warning */ 2464 dev->desc = (char *)(uintptr_t) desc; 2465 } 2466 2467 bus_data_generation_update(); 2468 } 2469 2470 /** 2471 * @brief Set the device's description 2472 * 2473 * The value of @c desc should be a string constant that will not 2474 * change (at least until the description is changed in a subsequent 2475 * call to device_set_desc() or device_set_desc_copy()). 2476 */ 2477 void 2478 device_set_desc(device_t dev, const char* desc) 2479 { 2480 device_set_desc_internal(dev, desc, FALSE); 2481 } 2482 2483 /** 2484 * @brief Set the device's description 2485 * 2486 * The string pointed to by @c desc is copied. Use this function if 2487 * the device description is generated, (e.g. with sprintf()). 2488 */ 2489 void 2490 device_set_desc_copy(device_t dev, const char* desc) 2491 { 2492 device_set_desc_internal(dev, desc, TRUE); 2493 } 2494 2495 /** 2496 * @brief Set the device's flags 2497 */ 2498 void 2499 device_set_flags(device_t dev, uint32_t flags) 2500 { 2501 dev->devflags = flags; 2502 } 2503 2504 /** 2505 * @brief Return the device's softc field 2506 * 2507 * The softc is allocated and zeroed when a driver is attached, based 2508 * on the size field of the driver. 2509 */ 2510 void * 2511 device_get_softc(device_t dev) 2512 { 2513 return (dev->softc); 2514 } 2515 2516 /** 2517 * @brief Set the device's softc field 2518 * 2519 * Most drivers do not need to use this since the softc is allocated 2520 * automatically when the driver is attached. 2521 */ 2522 void 2523 device_set_softc(device_t dev, void *softc) 2524 { 2525 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2526 free(dev->softc, M_BUS_SC); 2527 dev->softc = softc; 2528 if (dev->softc) 2529 dev->flags |= DF_EXTERNALSOFTC; 2530 else 2531 dev->flags &= ~DF_EXTERNALSOFTC; 2532 } 2533 2534 /** 2535 * @brief Free claimed softc 2536 * 2537 * Most drivers do not need to use this since the softc is freed 2538 * automatically when the driver is detached. 2539 */ 2540 void 2541 device_free_softc(void *softc) 2542 { 2543 free(softc, M_BUS_SC); 2544 } 2545 2546 /** 2547 * @brief Claim softc 2548 * 2549 * This function can be used to let the driver free the automatically 2550 * allocated softc using "device_free_softc()". This function is 2551 * useful when the driver is refcounting the softc and the softc 2552 * cannot be freed when the "device_detach" method is called. 2553 */ 2554 void 2555 device_claim_softc(device_t dev) 2556 { 2557 if (dev->softc) 2558 dev->flags |= DF_EXTERNALSOFTC; 2559 else 2560 dev->flags &= ~DF_EXTERNALSOFTC; 2561 } 2562 2563 /** 2564 * @brief Get the device's ivars field 2565 * 2566 * The ivars field is used by the parent device to store per-device 2567 * state (e.g. the physical location of the device or a list of 2568 * resources). 2569 */ 2570 void * 2571 device_get_ivars(device_t dev) 2572 { 2573 2574 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2575 return (dev->ivars); 2576 } 2577 2578 /** 2579 * @brief Set the device's ivars field 2580 */ 2581 void 2582 device_set_ivars(device_t dev, void * ivars) 2583 { 2584 2585 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2586 dev->ivars = ivars; 2587 } 2588 2589 /** 2590 * @brief Return the device's state 2591 */ 2592 device_state_t 2593 device_get_state(device_t dev) 2594 { 2595 return (dev->state); 2596 } 2597 2598 /** 2599 * @brief Set the DF_ENABLED flag for the device 2600 */ 2601 void 2602 device_enable(device_t dev) 2603 { 2604 dev->flags |= DF_ENABLED; 2605 } 2606 2607 /** 2608 * @brief Clear the DF_ENABLED flag for the device 2609 */ 2610 void 2611 device_disable(device_t dev) 2612 { 2613 dev->flags &= ~DF_ENABLED; 2614 } 2615 2616 /** 2617 * @brief Increment the busy counter for the device 2618 */ 2619 void 2620 device_busy(device_t dev) 2621 { 2622 if (dev->state < DS_ATTACHING) 2623 panic("device_busy: called for unattached device"); 2624 if (dev->busy == 0 && dev->parent) 2625 device_busy(dev->parent); 2626 dev->busy++; 2627 if (dev->state == DS_ATTACHED) 2628 dev->state = DS_BUSY; 2629 } 2630 2631 /** 2632 * @brief Decrement the busy counter for the device 2633 */ 2634 void 2635 device_unbusy(device_t dev) 2636 { 2637 if (dev->busy != 0 && dev->state != DS_BUSY && 2638 dev->state != DS_ATTACHING) 2639 panic("device_unbusy: called for non-busy device %s", 2640 device_get_nameunit(dev)); 2641 dev->busy--; 2642 if (dev->busy == 0) { 2643 if (dev->parent) 2644 device_unbusy(dev->parent); 2645 if (dev->state == DS_BUSY) 2646 dev->state = DS_ATTACHED; 2647 } 2648 } 2649 2650 /** 2651 * @brief Set the DF_QUIET flag for the device 2652 */ 2653 void 2654 device_quiet(device_t dev) 2655 { 2656 dev->flags |= DF_QUIET; 2657 } 2658 2659 /** 2660 * @brief Set the DF_QUIET_CHILDREN flag for the device 2661 */ 2662 void 2663 device_quiet_children(device_t dev) 2664 { 2665 dev->flags |= DF_QUIET_CHILDREN; 2666 } 2667 2668 /** 2669 * @brief Clear the DF_QUIET flag for the device 2670 */ 2671 void 2672 device_verbose(device_t dev) 2673 { 2674 dev->flags &= ~DF_QUIET; 2675 } 2676 2677 /** 2678 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2679 */ 2680 int 2681 device_has_quiet_children(device_t dev) 2682 { 2683 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2684 } 2685 2686 /** 2687 * @brief Return non-zero if the DF_QUIET flag is set on the device 2688 */ 2689 int 2690 device_is_quiet(device_t dev) 2691 { 2692 return ((dev->flags & DF_QUIET) != 0); 2693 } 2694 2695 /** 2696 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2697 */ 2698 int 2699 device_is_enabled(device_t dev) 2700 { 2701 return ((dev->flags & DF_ENABLED) != 0); 2702 } 2703 2704 /** 2705 * @brief Return non-zero if the device was successfully probed 2706 */ 2707 int 2708 device_is_alive(device_t dev) 2709 { 2710 return (dev->state >= DS_ALIVE); 2711 } 2712 2713 /** 2714 * @brief Return non-zero if the device currently has a driver 2715 * attached to it 2716 */ 2717 int 2718 device_is_attached(device_t dev) 2719 { 2720 return (dev->state >= DS_ATTACHED); 2721 } 2722 2723 /** 2724 * @brief Return non-zero if the device is currently suspended. 2725 */ 2726 int 2727 device_is_suspended(device_t dev) 2728 { 2729 return ((dev->flags & DF_SUSPENDED) != 0); 2730 } 2731 2732 /** 2733 * @brief Set the devclass of a device 2734 * @see devclass_add_device(). 2735 */ 2736 int 2737 device_set_devclass(device_t dev, const char *classname) 2738 { 2739 devclass_t dc; 2740 int error; 2741 2742 if (!classname) { 2743 if (dev->devclass) 2744 devclass_delete_device(dev->devclass, dev); 2745 return (0); 2746 } 2747 2748 if (dev->devclass) { 2749 printf("device_set_devclass: device class already set\n"); 2750 return (EINVAL); 2751 } 2752 2753 dc = devclass_find_internal(classname, NULL, TRUE); 2754 if (!dc) 2755 return (ENOMEM); 2756 2757 error = devclass_add_device(dc, dev); 2758 2759 bus_data_generation_update(); 2760 return (error); 2761 } 2762 2763 /** 2764 * @brief Set the devclass of a device and mark the devclass fixed. 2765 * @see device_set_devclass() 2766 */ 2767 int 2768 device_set_devclass_fixed(device_t dev, const char *classname) 2769 { 2770 int error; 2771 2772 if (classname == NULL) 2773 return (EINVAL); 2774 2775 error = device_set_devclass(dev, classname); 2776 if (error) 2777 return (error); 2778 dev->flags |= DF_FIXEDCLASS; 2779 return (0); 2780 } 2781 2782 /** 2783 * @brief Set the driver of a device 2784 * 2785 * @retval 0 success 2786 * @retval EBUSY the device already has a driver attached 2787 * @retval ENOMEM a memory allocation failure occurred 2788 */ 2789 int 2790 device_set_driver(device_t dev, driver_t *driver) 2791 { 2792 if (dev->state >= DS_ATTACHED) 2793 return (EBUSY); 2794 2795 if (dev->driver == driver) 2796 return (0); 2797 2798 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2799 free(dev->softc, M_BUS_SC); 2800 dev->softc = NULL; 2801 } 2802 device_set_desc(dev, NULL); 2803 kobj_delete((kobj_t) dev, NULL); 2804 dev->driver = driver; 2805 if (driver) { 2806 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2807 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2808 dev->softc = malloc(driver->size, M_BUS_SC, 2809 M_NOWAIT | M_ZERO); 2810 if (!dev->softc) { 2811 kobj_delete((kobj_t) dev, NULL); 2812 kobj_init((kobj_t) dev, &null_class); 2813 dev->driver = NULL; 2814 return (ENOMEM); 2815 } 2816 } 2817 } else { 2818 kobj_init((kobj_t) dev, &null_class); 2819 } 2820 2821 bus_data_generation_update(); 2822 return (0); 2823 } 2824 2825 /** 2826 * @brief Probe a device, and return this status. 2827 * 2828 * This function is the core of the device autoconfiguration 2829 * system. Its purpose is to select a suitable driver for a device and 2830 * then call that driver to initialise the hardware appropriately. The 2831 * driver is selected by calling the DEVICE_PROBE() method of a set of 2832 * candidate drivers and then choosing the driver which returned the 2833 * best value. This driver is then attached to the device using 2834 * device_attach(). 2835 * 2836 * The set of suitable drivers is taken from the list of drivers in 2837 * the parent device's devclass. If the device was originally created 2838 * with a specific class name (see device_add_child()), only drivers 2839 * with that name are probed, otherwise all drivers in the devclass 2840 * are probed. If no drivers return successful probe values in the 2841 * parent devclass, the search continues in the parent of that 2842 * devclass (see devclass_get_parent()) if any. 2843 * 2844 * @param dev the device to initialise 2845 * 2846 * @retval 0 success 2847 * @retval ENXIO no driver was found 2848 * @retval ENOMEM memory allocation failure 2849 * @retval non-zero some other unix error code 2850 * @retval -1 Device already attached 2851 */ 2852 int 2853 device_probe(device_t dev) 2854 { 2855 int error; 2856 2857 GIANT_REQUIRED; 2858 2859 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2860 return (-1); 2861 2862 if (!(dev->flags & DF_ENABLED)) { 2863 if (bootverbose && device_get_name(dev) != NULL) { 2864 device_print_prettyname(dev); 2865 printf("not probed (disabled)\n"); 2866 } 2867 return (-1); 2868 } 2869 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2870 if (bus_current_pass == BUS_PASS_DEFAULT && 2871 !(dev->flags & DF_DONENOMATCH)) { 2872 BUS_PROBE_NOMATCH(dev->parent, dev); 2873 devnomatch(dev); 2874 dev->flags |= DF_DONENOMATCH; 2875 } 2876 return (error); 2877 } 2878 return (0); 2879 } 2880 2881 /** 2882 * @brief Probe a device and attach a driver if possible 2883 * 2884 * calls device_probe() and attaches if that was successful. 2885 */ 2886 int 2887 device_probe_and_attach(device_t dev) 2888 { 2889 int error; 2890 2891 GIANT_REQUIRED; 2892 2893 error = device_probe(dev); 2894 if (error == -1) 2895 return (0); 2896 else if (error != 0) 2897 return (error); 2898 2899 CURVNET_SET_QUIET(vnet0); 2900 error = device_attach(dev); 2901 CURVNET_RESTORE(); 2902 return error; 2903 } 2904 2905 /** 2906 * @brief Attach a device driver to a device 2907 * 2908 * This function is a wrapper around the DEVICE_ATTACH() driver 2909 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2910 * device's sysctl tree, optionally prints a description of the device 2911 * and queues a notification event for user-based device management 2912 * services. 2913 * 2914 * Normally this function is only called internally from 2915 * device_probe_and_attach(). 2916 * 2917 * @param dev the device to initialise 2918 * 2919 * @retval 0 success 2920 * @retval ENXIO no driver was found 2921 * @retval ENOMEM memory allocation failure 2922 * @retval non-zero some other unix error code 2923 */ 2924 int 2925 device_attach(device_t dev) 2926 { 2927 uint64_t attachtime; 2928 uint16_t attachentropy; 2929 int error; 2930 2931 if (resource_disabled(dev->driver->name, dev->unit)) { 2932 device_disable(dev); 2933 if (bootverbose) 2934 device_printf(dev, "disabled via hints entry\n"); 2935 return (ENXIO); 2936 } 2937 2938 device_sysctl_init(dev); 2939 if (!device_is_quiet(dev)) 2940 device_print_child(dev->parent, dev); 2941 attachtime = get_cyclecount(); 2942 dev->state = DS_ATTACHING; 2943 if ((error = DEVICE_ATTACH(dev)) != 0) { 2944 printf("device_attach: %s%d attach returned %d\n", 2945 dev->driver->name, dev->unit, error); 2946 if (!(dev->flags & DF_FIXEDCLASS)) 2947 devclass_delete_device(dev->devclass, dev); 2948 (void)device_set_driver(dev, NULL); 2949 device_sysctl_fini(dev); 2950 KASSERT(dev->busy == 0, ("attach failed but busy")); 2951 dev->state = DS_NOTPRESENT; 2952 return (error); 2953 } 2954 dev->flags |= DF_ATTACHED_ONCE; 2955 /* We only need the low bits of this time, but ranges from tens to thousands 2956 * have been seen, so keep 2 bytes' worth. 2957 */ 2958 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2959 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2960 device_sysctl_update(dev); 2961 if (dev->busy) 2962 dev->state = DS_BUSY; 2963 else 2964 dev->state = DS_ATTACHED; 2965 dev->flags &= ~DF_DONENOMATCH; 2966 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2967 devadded(dev); 2968 return (0); 2969 } 2970 2971 /** 2972 * @brief Detach a driver from a device 2973 * 2974 * This function is a wrapper around the DEVICE_DETACH() driver 2975 * method. If the call to DEVICE_DETACH() succeeds, it calls 2976 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2977 * notification event for user-based device management services and 2978 * cleans up the device's sysctl tree. 2979 * 2980 * @param dev the device to un-initialise 2981 * 2982 * @retval 0 success 2983 * @retval ENXIO no driver was found 2984 * @retval ENOMEM memory allocation failure 2985 * @retval non-zero some other unix error code 2986 */ 2987 int 2988 device_detach(device_t dev) 2989 { 2990 int error; 2991 2992 GIANT_REQUIRED; 2993 2994 PDEBUG(("%s", DEVICENAME(dev))); 2995 if (dev->state == DS_BUSY) 2996 return (EBUSY); 2997 if (dev->state != DS_ATTACHED) 2998 return (0); 2999 3000 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3001 if ((error = DEVICE_DETACH(dev)) != 0) { 3002 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3003 EVHDEV_DETACH_FAILED); 3004 return (error); 3005 } else { 3006 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3007 EVHDEV_DETACH_COMPLETE); 3008 } 3009 devremoved(dev); 3010 if (!device_is_quiet(dev)) 3011 device_printf(dev, "detached\n"); 3012 if (dev->parent) 3013 BUS_CHILD_DETACHED(dev->parent, dev); 3014 3015 if (!(dev->flags & DF_FIXEDCLASS)) 3016 devclass_delete_device(dev->devclass, dev); 3017 3018 device_verbose(dev); 3019 dev->state = DS_NOTPRESENT; 3020 (void)device_set_driver(dev, NULL); 3021 device_sysctl_fini(dev); 3022 3023 return (0); 3024 } 3025 3026 /** 3027 * @brief Tells a driver to quiesce itself. 3028 * 3029 * This function is a wrapper around the DEVICE_QUIESCE() driver 3030 * method. If the call to DEVICE_QUIESCE() succeeds. 3031 * 3032 * @param dev the device to quiesce 3033 * 3034 * @retval 0 success 3035 * @retval ENXIO no driver was found 3036 * @retval ENOMEM memory allocation failure 3037 * @retval non-zero some other unix error code 3038 */ 3039 int 3040 device_quiesce(device_t dev) 3041 { 3042 3043 PDEBUG(("%s", DEVICENAME(dev))); 3044 if (dev->state == DS_BUSY) 3045 return (EBUSY); 3046 if (dev->state != DS_ATTACHED) 3047 return (0); 3048 3049 return (DEVICE_QUIESCE(dev)); 3050 } 3051 3052 /** 3053 * @brief Notify a device of system shutdown 3054 * 3055 * This function calls the DEVICE_SHUTDOWN() driver method if the 3056 * device currently has an attached driver. 3057 * 3058 * @returns the value returned by DEVICE_SHUTDOWN() 3059 */ 3060 int 3061 device_shutdown(device_t dev) 3062 { 3063 if (dev->state < DS_ATTACHED) 3064 return (0); 3065 return (DEVICE_SHUTDOWN(dev)); 3066 } 3067 3068 /** 3069 * @brief Set the unit number of a device 3070 * 3071 * This function can be used to override the unit number used for a 3072 * device (e.g. to wire a device to a pre-configured unit number). 3073 */ 3074 int 3075 device_set_unit(device_t dev, int unit) 3076 { 3077 devclass_t dc; 3078 int err; 3079 3080 dc = device_get_devclass(dev); 3081 if (unit < dc->maxunit && dc->devices[unit]) 3082 return (EBUSY); 3083 err = devclass_delete_device(dc, dev); 3084 if (err) 3085 return (err); 3086 dev->unit = unit; 3087 err = devclass_add_device(dc, dev); 3088 if (err) 3089 return (err); 3090 3091 bus_data_generation_update(); 3092 return (0); 3093 } 3094 3095 /*======================================*/ 3096 /* 3097 * Some useful method implementations to make life easier for bus drivers. 3098 */ 3099 3100 void 3101 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3102 { 3103 3104 bzero(args, sz); 3105 args->size = sz; 3106 args->memattr = VM_MEMATTR_UNCACHEABLE; 3107 } 3108 3109 /** 3110 * @brief Initialise a resource list. 3111 * 3112 * @param rl the resource list to initialise 3113 */ 3114 void 3115 resource_list_init(struct resource_list *rl) 3116 { 3117 STAILQ_INIT(rl); 3118 } 3119 3120 /** 3121 * @brief Reclaim memory used by a resource list. 3122 * 3123 * This function frees the memory for all resource entries on the list 3124 * (if any). 3125 * 3126 * @param rl the resource list to free 3127 */ 3128 void 3129 resource_list_free(struct resource_list *rl) 3130 { 3131 struct resource_list_entry *rle; 3132 3133 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3134 if (rle->res) 3135 panic("resource_list_free: resource entry is busy"); 3136 STAILQ_REMOVE_HEAD(rl, link); 3137 free(rle, M_BUS); 3138 } 3139 } 3140 3141 /** 3142 * @brief Add a resource entry. 3143 * 3144 * This function adds a resource entry using the given @p type, @p 3145 * start, @p end and @p count values. A rid value is chosen by 3146 * searching sequentially for the first unused rid starting at zero. 3147 * 3148 * @param rl the resource list to edit 3149 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3150 * @param start the start address of the resource 3151 * @param end the end address of the resource 3152 * @param count XXX end-start+1 3153 */ 3154 int 3155 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3156 rman_res_t end, rman_res_t count) 3157 { 3158 int rid; 3159 3160 rid = 0; 3161 while (resource_list_find(rl, type, rid) != NULL) 3162 rid++; 3163 resource_list_add(rl, type, rid, start, end, count); 3164 return (rid); 3165 } 3166 3167 /** 3168 * @brief Add or modify a resource entry. 3169 * 3170 * If an existing entry exists with the same type and rid, it will be 3171 * modified using the given values of @p start, @p end and @p 3172 * count. If no entry exists, a new one will be created using the 3173 * given values. The resource list entry that matches is then returned. 3174 * 3175 * @param rl the resource list to edit 3176 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3177 * @param rid the resource identifier 3178 * @param start the start address of the resource 3179 * @param end the end address of the resource 3180 * @param count XXX end-start+1 3181 */ 3182 struct resource_list_entry * 3183 resource_list_add(struct resource_list *rl, int type, int rid, 3184 rman_res_t start, rman_res_t end, rman_res_t count) 3185 { 3186 struct resource_list_entry *rle; 3187 3188 rle = resource_list_find(rl, type, rid); 3189 if (!rle) { 3190 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3191 M_NOWAIT); 3192 if (!rle) 3193 panic("resource_list_add: can't record entry"); 3194 STAILQ_INSERT_TAIL(rl, rle, link); 3195 rle->type = type; 3196 rle->rid = rid; 3197 rle->res = NULL; 3198 rle->flags = 0; 3199 } 3200 3201 if (rle->res) 3202 panic("resource_list_add: resource entry is busy"); 3203 3204 rle->start = start; 3205 rle->end = end; 3206 rle->count = count; 3207 return (rle); 3208 } 3209 3210 /** 3211 * @brief Determine if a resource entry is busy. 3212 * 3213 * Returns true if a resource entry is busy meaning that it has an 3214 * associated resource that is not an unallocated "reserved" resource. 3215 * 3216 * @param rl the resource list to search 3217 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3218 * @param rid the resource identifier 3219 * 3220 * @returns Non-zero if the entry is busy, zero otherwise. 3221 */ 3222 int 3223 resource_list_busy(struct resource_list *rl, int type, int rid) 3224 { 3225 struct resource_list_entry *rle; 3226 3227 rle = resource_list_find(rl, type, rid); 3228 if (rle == NULL || rle->res == NULL) 3229 return (0); 3230 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3231 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3232 ("reserved resource is active")); 3233 return (0); 3234 } 3235 return (1); 3236 } 3237 3238 /** 3239 * @brief Determine if a resource entry is reserved. 3240 * 3241 * Returns true if a resource entry is reserved meaning that it has an 3242 * associated "reserved" resource. The resource can either be 3243 * allocated or unallocated. 3244 * 3245 * @param rl the resource list to search 3246 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3247 * @param rid the resource identifier 3248 * 3249 * @returns Non-zero if the entry is reserved, zero otherwise. 3250 */ 3251 int 3252 resource_list_reserved(struct resource_list *rl, int type, int rid) 3253 { 3254 struct resource_list_entry *rle; 3255 3256 rle = resource_list_find(rl, type, rid); 3257 if (rle != NULL && rle->flags & RLE_RESERVED) 3258 return (1); 3259 return (0); 3260 } 3261 3262 /** 3263 * @brief Find a resource entry by type and rid. 3264 * 3265 * @param rl the resource list to search 3266 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3267 * @param rid the resource identifier 3268 * 3269 * @returns the resource entry pointer or NULL if there is no such 3270 * entry. 3271 */ 3272 struct resource_list_entry * 3273 resource_list_find(struct resource_list *rl, int type, int rid) 3274 { 3275 struct resource_list_entry *rle; 3276 3277 STAILQ_FOREACH(rle, rl, link) { 3278 if (rle->type == type && rle->rid == rid) 3279 return (rle); 3280 } 3281 return (NULL); 3282 } 3283 3284 /** 3285 * @brief Delete a resource entry. 3286 * 3287 * @param rl the resource list to edit 3288 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3289 * @param rid the resource identifier 3290 */ 3291 void 3292 resource_list_delete(struct resource_list *rl, int type, int rid) 3293 { 3294 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3295 3296 if (rle) { 3297 if (rle->res != NULL) 3298 panic("resource_list_delete: resource has not been released"); 3299 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3300 free(rle, M_BUS); 3301 } 3302 } 3303 3304 /** 3305 * @brief Allocate a reserved resource 3306 * 3307 * This can be used by buses to force the allocation of resources 3308 * that are always active in the system even if they are not allocated 3309 * by a driver (e.g. PCI BARs). This function is usually called when 3310 * adding a new child to the bus. The resource is allocated from the 3311 * parent bus when it is reserved. The resource list entry is marked 3312 * with RLE_RESERVED to note that it is a reserved resource. 3313 * 3314 * Subsequent attempts to allocate the resource with 3315 * resource_list_alloc() will succeed the first time and will set 3316 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3317 * resource that has been allocated is released with 3318 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3319 * the actual resource remains allocated. The resource can be released to 3320 * the parent bus by calling resource_list_unreserve(). 3321 * 3322 * @param rl the resource list to allocate from 3323 * @param bus the parent device of @p child 3324 * @param child the device for which the resource is being reserved 3325 * @param type the type of resource to allocate 3326 * @param rid a pointer to the resource identifier 3327 * @param start hint at the start of the resource range - pass 3328 * @c 0 for any start address 3329 * @param end hint at the end of the resource range - pass 3330 * @c ~0 for any end address 3331 * @param count hint at the size of range required - pass @c 1 3332 * for any size 3333 * @param flags any extra flags to control the resource 3334 * allocation - see @c RF_XXX flags in 3335 * <sys/rman.h> for details 3336 * 3337 * @returns the resource which was allocated or @c NULL if no 3338 * resource could be allocated 3339 */ 3340 struct resource * 3341 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3342 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3343 { 3344 struct resource_list_entry *rle = NULL; 3345 int passthrough = (device_get_parent(child) != bus); 3346 struct resource *r; 3347 3348 if (passthrough) 3349 panic( 3350 "resource_list_reserve() should only be called for direct children"); 3351 if (flags & RF_ACTIVE) 3352 panic( 3353 "resource_list_reserve() should only reserve inactive resources"); 3354 3355 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3356 flags); 3357 if (r != NULL) { 3358 rle = resource_list_find(rl, type, *rid); 3359 rle->flags |= RLE_RESERVED; 3360 } 3361 return (r); 3362 } 3363 3364 /** 3365 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3366 * 3367 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3368 * and passing the allocation up to the parent of @p bus. This assumes 3369 * that the first entry of @c device_get_ivars(child) is a struct 3370 * resource_list. This also handles 'passthrough' allocations where a 3371 * child is a remote descendant of bus by passing the allocation up to 3372 * the parent of bus. 3373 * 3374 * Typically, a bus driver would store a list of child resources 3375 * somewhere in the child device's ivars (see device_get_ivars()) and 3376 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3377 * then call resource_list_alloc() to perform the allocation. 3378 * 3379 * @param rl the resource list to allocate from 3380 * @param bus the parent device of @p child 3381 * @param child the device which is requesting an allocation 3382 * @param type the type of resource to allocate 3383 * @param rid a pointer to the resource identifier 3384 * @param start hint at the start of the resource range - pass 3385 * @c 0 for any start address 3386 * @param end hint at the end of the resource range - pass 3387 * @c ~0 for any end address 3388 * @param count hint at the size of range required - pass @c 1 3389 * for any size 3390 * @param flags any extra flags to control the resource 3391 * allocation - see @c RF_XXX flags in 3392 * <sys/rman.h> for details 3393 * 3394 * @returns the resource which was allocated or @c NULL if no 3395 * resource could be allocated 3396 */ 3397 struct resource * 3398 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3399 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3400 { 3401 struct resource_list_entry *rle = NULL; 3402 int passthrough = (device_get_parent(child) != bus); 3403 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3404 3405 if (passthrough) { 3406 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3407 type, rid, start, end, count, flags)); 3408 } 3409 3410 rle = resource_list_find(rl, type, *rid); 3411 3412 if (!rle) 3413 return (NULL); /* no resource of that type/rid */ 3414 3415 if (rle->res) { 3416 if (rle->flags & RLE_RESERVED) { 3417 if (rle->flags & RLE_ALLOCATED) 3418 return (NULL); 3419 if ((flags & RF_ACTIVE) && 3420 bus_activate_resource(child, type, *rid, 3421 rle->res) != 0) 3422 return (NULL); 3423 rle->flags |= RLE_ALLOCATED; 3424 return (rle->res); 3425 } 3426 device_printf(bus, 3427 "resource entry %#x type %d for child %s is busy\n", *rid, 3428 type, device_get_nameunit(child)); 3429 return (NULL); 3430 } 3431 3432 if (isdefault) { 3433 start = rle->start; 3434 count = ulmax(count, rle->count); 3435 end = ulmax(rle->end, start + count - 1); 3436 } 3437 3438 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3439 type, rid, start, end, count, flags); 3440 3441 /* 3442 * Record the new range. 3443 */ 3444 if (rle->res) { 3445 rle->start = rman_get_start(rle->res); 3446 rle->end = rman_get_end(rle->res); 3447 rle->count = count; 3448 } 3449 3450 return (rle->res); 3451 } 3452 3453 /** 3454 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3455 * 3456 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3457 * used with resource_list_alloc(). 3458 * 3459 * @param rl the resource list which was allocated from 3460 * @param bus the parent device of @p child 3461 * @param child the device which is requesting a release 3462 * @param type the type of resource to release 3463 * @param rid the resource identifier 3464 * @param res the resource to release 3465 * 3466 * @retval 0 success 3467 * @retval non-zero a standard unix error code indicating what 3468 * error condition prevented the operation 3469 */ 3470 int 3471 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3472 int type, int rid, struct resource *res) 3473 { 3474 struct resource_list_entry *rle = NULL; 3475 int passthrough = (device_get_parent(child) != bus); 3476 int error; 3477 3478 if (passthrough) { 3479 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3480 type, rid, res)); 3481 } 3482 3483 rle = resource_list_find(rl, type, rid); 3484 3485 if (!rle) 3486 panic("resource_list_release: can't find resource"); 3487 if (!rle->res) 3488 panic("resource_list_release: resource entry is not busy"); 3489 if (rle->flags & RLE_RESERVED) { 3490 if (rle->flags & RLE_ALLOCATED) { 3491 if (rman_get_flags(res) & RF_ACTIVE) { 3492 error = bus_deactivate_resource(child, type, 3493 rid, res); 3494 if (error) 3495 return (error); 3496 } 3497 rle->flags &= ~RLE_ALLOCATED; 3498 return (0); 3499 } 3500 return (EINVAL); 3501 } 3502 3503 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3504 type, rid, res); 3505 if (error) 3506 return (error); 3507 3508 rle->res = NULL; 3509 return (0); 3510 } 3511 3512 /** 3513 * @brief Release all active resources of a given type 3514 * 3515 * Release all active resources of a specified type. This is intended 3516 * to be used to cleanup resources leaked by a driver after detach or 3517 * a failed attach. 3518 * 3519 * @param rl the resource list which was allocated from 3520 * @param bus the parent device of @p child 3521 * @param child the device whose active resources are being released 3522 * @param type the type of resources to release 3523 * 3524 * @retval 0 success 3525 * @retval EBUSY at least one resource was active 3526 */ 3527 int 3528 resource_list_release_active(struct resource_list *rl, device_t bus, 3529 device_t child, int type) 3530 { 3531 struct resource_list_entry *rle; 3532 int error, retval; 3533 3534 retval = 0; 3535 STAILQ_FOREACH(rle, rl, link) { 3536 if (rle->type != type) 3537 continue; 3538 if (rle->res == NULL) 3539 continue; 3540 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3541 RLE_RESERVED) 3542 continue; 3543 retval = EBUSY; 3544 error = resource_list_release(rl, bus, child, type, 3545 rman_get_rid(rle->res), rle->res); 3546 if (error != 0) 3547 device_printf(bus, 3548 "Failed to release active resource: %d\n", error); 3549 } 3550 return (retval); 3551 } 3552 3553 3554 /** 3555 * @brief Fully release a reserved resource 3556 * 3557 * Fully releases a resource reserved via resource_list_reserve(). 3558 * 3559 * @param rl the resource list which was allocated from 3560 * @param bus the parent device of @p child 3561 * @param child the device whose reserved resource is being released 3562 * @param type the type of resource to release 3563 * @param rid the resource identifier 3564 * @param res the resource to release 3565 * 3566 * @retval 0 success 3567 * @retval non-zero a standard unix error code indicating what 3568 * error condition prevented the operation 3569 */ 3570 int 3571 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3572 int type, int rid) 3573 { 3574 struct resource_list_entry *rle = NULL; 3575 int passthrough = (device_get_parent(child) != bus); 3576 3577 if (passthrough) 3578 panic( 3579 "resource_list_unreserve() should only be called for direct children"); 3580 3581 rle = resource_list_find(rl, type, rid); 3582 3583 if (!rle) 3584 panic("resource_list_unreserve: can't find resource"); 3585 if (!(rle->flags & RLE_RESERVED)) 3586 return (EINVAL); 3587 if (rle->flags & RLE_ALLOCATED) 3588 return (EBUSY); 3589 rle->flags &= ~RLE_RESERVED; 3590 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3591 } 3592 3593 /** 3594 * @brief Print a description of resources in a resource list 3595 * 3596 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3597 * The name is printed if at least one resource of the given type is available. 3598 * The format is used to print resource start and end. 3599 * 3600 * @param rl the resource list to print 3601 * @param name the name of @p type, e.g. @c "memory" 3602 * @param type type type of resource entry to print 3603 * @param format printf(9) format string to print resource 3604 * start and end values 3605 * 3606 * @returns the number of characters printed 3607 */ 3608 int 3609 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3610 const char *format) 3611 { 3612 struct resource_list_entry *rle; 3613 int printed, retval; 3614 3615 printed = 0; 3616 retval = 0; 3617 /* Yes, this is kinda cheating */ 3618 STAILQ_FOREACH(rle, rl, link) { 3619 if (rle->type == type) { 3620 if (printed == 0) 3621 retval += printf(" %s ", name); 3622 else 3623 retval += printf(","); 3624 printed++; 3625 retval += printf(format, rle->start); 3626 if (rle->count > 1) { 3627 retval += printf("-"); 3628 retval += printf(format, rle->start + 3629 rle->count - 1); 3630 } 3631 } 3632 } 3633 return (retval); 3634 } 3635 3636 /** 3637 * @brief Releases all the resources in a list. 3638 * 3639 * @param rl The resource list to purge. 3640 * 3641 * @returns nothing 3642 */ 3643 void 3644 resource_list_purge(struct resource_list *rl) 3645 { 3646 struct resource_list_entry *rle; 3647 3648 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3649 if (rle->res) 3650 bus_release_resource(rman_get_device(rle->res), 3651 rle->type, rle->rid, rle->res); 3652 STAILQ_REMOVE_HEAD(rl, link); 3653 free(rle, M_BUS); 3654 } 3655 } 3656 3657 device_t 3658 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3659 { 3660 3661 return (device_add_child_ordered(dev, order, name, unit)); 3662 } 3663 3664 /** 3665 * @brief Helper function for implementing DEVICE_PROBE() 3666 * 3667 * This function can be used to help implement the DEVICE_PROBE() for 3668 * a bus (i.e. a device which has other devices attached to it). It 3669 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3670 * devclass. 3671 */ 3672 int 3673 bus_generic_probe(device_t dev) 3674 { 3675 devclass_t dc = dev->devclass; 3676 driverlink_t dl; 3677 3678 TAILQ_FOREACH(dl, &dc->drivers, link) { 3679 /* 3680 * If this driver's pass is too high, then ignore it. 3681 * For most drivers in the default pass, this will 3682 * never be true. For early-pass drivers they will 3683 * only call the identify routines of eligible drivers 3684 * when this routine is called. Drivers for later 3685 * passes should have their identify routines called 3686 * on early-pass buses during BUS_NEW_PASS(). 3687 */ 3688 if (dl->pass > bus_current_pass) 3689 continue; 3690 DEVICE_IDENTIFY(dl->driver, dev); 3691 } 3692 3693 return (0); 3694 } 3695 3696 /** 3697 * @brief Helper function for implementing DEVICE_ATTACH() 3698 * 3699 * This function can be used to help implement the DEVICE_ATTACH() for 3700 * a bus. It calls device_probe_and_attach() for each of the device's 3701 * children. 3702 */ 3703 int 3704 bus_generic_attach(device_t dev) 3705 { 3706 device_t child; 3707 3708 TAILQ_FOREACH(child, &dev->children, link) { 3709 device_probe_and_attach(child); 3710 } 3711 3712 return (0); 3713 } 3714 3715 /** 3716 * @brief Helper function for implementing DEVICE_DETACH() 3717 * 3718 * This function can be used to help implement the DEVICE_DETACH() for 3719 * a bus. It calls device_detach() for each of the device's 3720 * children. 3721 */ 3722 int 3723 bus_generic_detach(device_t dev) 3724 { 3725 device_t child; 3726 int error; 3727 3728 if (dev->state != DS_ATTACHED) 3729 return (EBUSY); 3730 3731 /* 3732 * Detach children in the reverse order. 3733 * See bus_generic_suspend for details. 3734 */ 3735 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3736 if ((error = device_detach(child)) != 0) 3737 return (error); 3738 } 3739 3740 return (0); 3741 } 3742 3743 /** 3744 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3745 * 3746 * This function can be used to help implement the DEVICE_SHUTDOWN() 3747 * for a bus. It calls device_shutdown() for each of the device's 3748 * children. 3749 */ 3750 int 3751 bus_generic_shutdown(device_t dev) 3752 { 3753 device_t child; 3754 3755 /* 3756 * Shut down children in the reverse order. 3757 * See bus_generic_suspend for details. 3758 */ 3759 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3760 device_shutdown(child); 3761 } 3762 3763 return (0); 3764 } 3765 3766 /** 3767 * @brief Default function for suspending a child device. 3768 * 3769 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3770 */ 3771 int 3772 bus_generic_suspend_child(device_t dev, device_t child) 3773 { 3774 int error; 3775 3776 error = DEVICE_SUSPEND(child); 3777 3778 if (error == 0) 3779 child->flags |= DF_SUSPENDED; 3780 3781 return (error); 3782 } 3783 3784 /** 3785 * @brief Default function for resuming a child device. 3786 * 3787 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3788 */ 3789 int 3790 bus_generic_resume_child(device_t dev, device_t child) 3791 { 3792 3793 DEVICE_RESUME(child); 3794 child->flags &= ~DF_SUSPENDED; 3795 3796 return (0); 3797 } 3798 3799 /** 3800 * @brief Helper function for implementing DEVICE_SUSPEND() 3801 * 3802 * This function can be used to help implement the DEVICE_SUSPEND() 3803 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3804 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3805 * operation is aborted and any devices which were suspended are 3806 * resumed immediately by calling their DEVICE_RESUME() methods. 3807 */ 3808 int 3809 bus_generic_suspend(device_t dev) 3810 { 3811 int error; 3812 device_t child; 3813 3814 /* 3815 * Suspend children in the reverse order. 3816 * For most buses all children are equal, so the order does not matter. 3817 * Other buses, such as acpi, carefully order their child devices to 3818 * express implicit dependencies between them. For such buses it is 3819 * safer to bring down devices in the reverse order. 3820 */ 3821 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3822 error = BUS_SUSPEND_CHILD(dev, child); 3823 if (error != 0) { 3824 child = TAILQ_NEXT(child, link); 3825 if (child != NULL) { 3826 TAILQ_FOREACH_FROM(child, &dev->children, link) 3827 BUS_RESUME_CHILD(dev, child); 3828 } 3829 return (error); 3830 } 3831 } 3832 return (0); 3833 } 3834 3835 /** 3836 * @brief Helper function for implementing DEVICE_RESUME() 3837 * 3838 * This function can be used to help implement the DEVICE_RESUME() for 3839 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3840 */ 3841 int 3842 bus_generic_resume(device_t dev) 3843 { 3844 device_t child; 3845 3846 TAILQ_FOREACH(child, &dev->children, link) { 3847 BUS_RESUME_CHILD(dev, child); 3848 /* if resume fails, there's nothing we can usefully do... */ 3849 } 3850 return (0); 3851 } 3852 3853 /** 3854 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3855 * 3856 * This function prints the first part of the ascii representation of 3857 * @p child, including its name, unit and description (if any - see 3858 * device_set_desc()). 3859 * 3860 * @returns the number of characters printed 3861 */ 3862 int 3863 bus_print_child_header(device_t dev, device_t child) 3864 { 3865 int retval = 0; 3866 3867 if (device_get_desc(child)) { 3868 retval += device_printf(child, "<%s>", device_get_desc(child)); 3869 } else { 3870 retval += printf("%s", device_get_nameunit(child)); 3871 } 3872 3873 return (retval); 3874 } 3875 3876 /** 3877 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3878 * 3879 * This function prints the last part of the ascii representation of 3880 * @p child, which consists of the string @c " on " followed by the 3881 * name and unit of the @p dev. 3882 * 3883 * @returns the number of characters printed 3884 */ 3885 int 3886 bus_print_child_footer(device_t dev, device_t child) 3887 { 3888 return (printf(" on %s\n", device_get_nameunit(dev))); 3889 } 3890 3891 /** 3892 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3893 * 3894 * This function prints out the VM domain for the given device. 3895 * 3896 * @returns the number of characters printed 3897 */ 3898 int 3899 bus_print_child_domain(device_t dev, device_t child) 3900 { 3901 int domain; 3902 3903 /* No domain? Don't print anything */ 3904 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3905 return (0); 3906 3907 return (printf(" numa-domain %d", domain)); 3908 } 3909 3910 /** 3911 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3912 * 3913 * This function simply calls bus_print_child_header() followed by 3914 * bus_print_child_footer(). 3915 * 3916 * @returns the number of characters printed 3917 */ 3918 int 3919 bus_generic_print_child(device_t dev, device_t child) 3920 { 3921 int retval = 0; 3922 3923 retval += bus_print_child_header(dev, child); 3924 retval += bus_print_child_domain(dev, child); 3925 retval += bus_print_child_footer(dev, child); 3926 3927 return (retval); 3928 } 3929 3930 /** 3931 * @brief Stub function for implementing BUS_READ_IVAR(). 3932 * 3933 * @returns ENOENT 3934 */ 3935 int 3936 bus_generic_read_ivar(device_t dev, device_t child, int index, 3937 uintptr_t * result) 3938 { 3939 return (ENOENT); 3940 } 3941 3942 /** 3943 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3944 * 3945 * @returns ENOENT 3946 */ 3947 int 3948 bus_generic_write_ivar(device_t dev, device_t child, int index, 3949 uintptr_t value) 3950 { 3951 return (ENOENT); 3952 } 3953 3954 /** 3955 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3956 * 3957 * @returns NULL 3958 */ 3959 struct resource_list * 3960 bus_generic_get_resource_list(device_t dev, device_t child) 3961 { 3962 return (NULL); 3963 } 3964 3965 /** 3966 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3967 * 3968 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3969 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3970 * and then calls device_probe_and_attach() for each unattached child. 3971 */ 3972 void 3973 bus_generic_driver_added(device_t dev, driver_t *driver) 3974 { 3975 device_t child; 3976 3977 DEVICE_IDENTIFY(driver, dev); 3978 TAILQ_FOREACH(child, &dev->children, link) { 3979 if (child->state == DS_NOTPRESENT || 3980 (child->flags & DF_REBID)) 3981 device_probe_and_attach(child); 3982 } 3983 } 3984 3985 /** 3986 * @brief Helper function for implementing BUS_NEW_PASS(). 3987 * 3988 * This implementing of BUS_NEW_PASS() first calls the identify 3989 * routines for any drivers that probe at the current pass. Then it 3990 * walks the list of devices for this bus. If a device is already 3991 * attached, then it calls BUS_NEW_PASS() on that device. If the 3992 * device is not already attached, it attempts to attach a driver to 3993 * it. 3994 */ 3995 void 3996 bus_generic_new_pass(device_t dev) 3997 { 3998 driverlink_t dl; 3999 devclass_t dc; 4000 device_t child; 4001 4002 dc = dev->devclass; 4003 TAILQ_FOREACH(dl, &dc->drivers, link) { 4004 if (dl->pass == bus_current_pass) 4005 DEVICE_IDENTIFY(dl->driver, dev); 4006 } 4007 TAILQ_FOREACH(child, &dev->children, link) { 4008 if (child->state >= DS_ATTACHED) 4009 BUS_NEW_PASS(child); 4010 else if (child->state == DS_NOTPRESENT) 4011 device_probe_and_attach(child); 4012 } 4013 } 4014 4015 /** 4016 * @brief Helper function for implementing BUS_SETUP_INTR(). 4017 * 4018 * This simple implementation of BUS_SETUP_INTR() simply calls the 4019 * BUS_SETUP_INTR() method of the parent of @p dev. 4020 */ 4021 int 4022 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4023 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4024 void **cookiep) 4025 { 4026 /* Propagate up the bus hierarchy until someone handles it. */ 4027 if (dev->parent) 4028 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4029 filter, intr, arg, cookiep)); 4030 return (EINVAL); 4031 } 4032 4033 /** 4034 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4035 * 4036 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4037 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4038 */ 4039 int 4040 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4041 void *cookie) 4042 { 4043 /* Propagate up the bus hierarchy until someone handles it. */ 4044 if (dev->parent) 4045 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4046 return (EINVAL); 4047 } 4048 4049 /** 4050 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4051 * 4052 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4053 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4054 */ 4055 int 4056 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4057 struct resource *r, rman_res_t start, rman_res_t end) 4058 { 4059 /* Propagate up the bus hierarchy until someone handles it. */ 4060 if (dev->parent) 4061 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4062 end)); 4063 return (EINVAL); 4064 } 4065 4066 /** 4067 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4068 * 4069 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4070 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4071 */ 4072 struct resource * 4073 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4074 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4075 { 4076 /* Propagate up the bus hierarchy until someone handles it. */ 4077 if (dev->parent) 4078 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4079 start, end, count, flags)); 4080 return (NULL); 4081 } 4082 4083 /** 4084 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4085 * 4086 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4087 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4088 */ 4089 int 4090 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4091 struct resource *r) 4092 { 4093 /* Propagate up the bus hierarchy until someone handles it. */ 4094 if (dev->parent) 4095 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4096 r)); 4097 return (EINVAL); 4098 } 4099 4100 /** 4101 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4102 * 4103 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4104 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4105 */ 4106 int 4107 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4108 struct resource *r) 4109 { 4110 /* Propagate up the bus hierarchy until someone handles it. */ 4111 if (dev->parent) 4112 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4113 r)); 4114 return (EINVAL); 4115 } 4116 4117 /** 4118 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4119 * 4120 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4121 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4122 */ 4123 int 4124 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4125 int rid, struct resource *r) 4126 { 4127 /* Propagate up the bus hierarchy until someone handles it. */ 4128 if (dev->parent) 4129 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4130 r)); 4131 return (EINVAL); 4132 } 4133 4134 /** 4135 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4136 * 4137 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4138 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4139 */ 4140 int 4141 bus_generic_map_resource(device_t dev, device_t child, int type, 4142 struct resource *r, struct resource_map_request *args, 4143 struct resource_map *map) 4144 { 4145 /* Propagate up the bus hierarchy until someone handles it. */ 4146 if (dev->parent) 4147 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4148 map)); 4149 return (EINVAL); 4150 } 4151 4152 /** 4153 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4154 * 4155 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4156 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4157 */ 4158 int 4159 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4160 struct resource *r, struct resource_map *map) 4161 { 4162 /* Propagate up the bus hierarchy until someone handles it. */ 4163 if (dev->parent) 4164 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4165 return (EINVAL); 4166 } 4167 4168 /** 4169 * @brief Helper function for implementing BUS_BIND_INTR(). 4170 * 4171 * This simple implementation of BUS_BIND_INTR() simply calls the 4172 * BUS_BIND_INTR() method of the parent of @p dev. 4173 */ 4174 int 4175 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4176 int cpu) 4177 { 4178 4179 /* Propagate up the bus hierarchy until someone handles it. */ 4180 if (dev->parent) 4181 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4182 return (EINVAL); 4183 } 4184 4185 /** 4186 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4187 * 4188 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4189 * BUS_CONFIG_INTR() method of the parent of @p dev. 4190 */ 4191 int 4192 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4193 enum intr_polarity pol) 4194 { 4195 4196 /* Propagate up the bus hierarchy until someone handles it. */ 4197 if (dev->parent) 4198 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4199 return (EINVAL); 4200 } 4201 4202 /** 4203 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4204 * 4205 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4206 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4207 */ 4208 int 4209 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4210 void *cookie, const char *descr) 4211 { 4212 4213 /* Propagate up the bus hierarchy until someone handles it. */ 4214 if (dev->parent) 4215 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4216 descr)); 4217 return (EINVAL); 4218 } 4219 4220 /** 4221 * @brief Helper function for implementing BUS_GET_CPUS(). 4222 * 4223 * This simple implementation of BUS_GET_CPUS() simply calls the 4224 * BUS_GET_CPUS() method of the parent of @p dev. 4225 */ 4226 int 4227 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4228 size_t setsize, cpuset_t *cpuset) 4229 { 4230 4231 /* Propagate up the bus hierarchy until someone handles it. */ 4232 if (dev->parent != NULL) 4233 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4234 return (EINVAL); 4235 } 4236 4237 /** 4238 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4239 * 4240 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4241 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4242 */ 4243 bus_dma_tag_t 4244 bus_generic_get_dma_tag(device_t dev, device_t child) 4245 { 4246 4247 /* Propagate up the bus hierarchy until someone handles it. */ 4248 if (dev->parent != NULL) 4249 return (BUS_GET_DMA_TAG(dev->parent, child)); 4250 return (NULL); 4251 } 4252 4253 /** 4254 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4255 * 4256 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4257 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4258 */ 4259 bus_space_tag_t 4260 bus_generic_get_bus_tag(device_t dev, device_t child) 4261 { 4262 4263 /* Propagate up the bus hierarchy until someone handles it. */ 4264 if (dev->parent != NULL) 4265 return (BUS_GET_BUS_TAG(dev->parent, child)); 4266 return ((bus_space_tag_t)0); 4267 } 4268 4269 /** 4270 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4271 * 4272 * This implementation of BUS_GET_RESOURCE() uses the 4273 * resource_list_find() function to do most of the work. It calls 4274 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4275 * search. 4276 */ 4277 int 4278 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4279 rman_res_t *startp, rman_res_t *countp) 4280 { 4281 struct resource_list * rl = NULL; 4282 struct resource_list_entry * rle = NULL; 4283 4284 rl = BUS_GET_RESOURCE_LIST(dev, child); 4285 if (!rl) 4286 return (EINVAL); 4287 4288 rle = resource_list_find(rl, type, rid); 4289 if (!rle) 4290 return (ENOENT); 4291 4292 if (startp) 4293 *startp = rle->start; 4294 if (countp) 4295 *countp = rle->count; 4296 4297 return (0); 4298 } 4299 4300 /** 4301 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4302 * 4303 * This implementation of BUS_SET_RESOURCE() uses the 4304 * resource_list_add() function to do most of the work. It calls 4305 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4306 * edit. 4307 */ 4308 int 4309 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4310 rman_res_t start, rman_res_t count) 4311 { 4312 struct resource_list * rl = NULL; 4313 4314 rl = BUS_GET_RESOURCE_LIST(dev, child); 4315 if (!rl) 4316 return (EINVAL); 4317 4318 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4319 4320 return (0); 4321 } 4322 4323 /** 4324 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4325 * 4326 * This implementation of BUS_DELETE_RESOURCE() uses the 4327 * resource_list_delete() function to do most of the work. It calls 4328 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4329 * edit. 4330 */ 4331 void 4332 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4333 { 4334 struct resource_list * rl = NULL; 4335 4336 rl = BUS_GET_RESOURCE_LIST(dev, child); 4337 if (!rl) 4338 return; 4339 4340 resource_list_delete(rl, type, rid); 4341 4342 return; 4343 } 4344 4345 /** 4346 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4347 * 4348 * This implementation of BUS_RELEASE_RESOURCE() uses the 4349 * resource_list_release() function to do most of the work. It calls 4350 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4351 */ 4352 int 4353 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4354 int rid, struct resource *r) 4355 { 4356 struct resource_list * rl = NULL; 4357 4358 if (device_get_parent(child) != dev) 4359 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4360 type, rid, r)); 4361 4362 rl = BUS_GET_RESOURCE_LIST(dev, child); 4363 if (!rl) 4364 return (EINVAL); 4365 4366 return (resource_list_release(rl, dev, child, type, rid, r)); 4367 } 4368 4369 /** 4370 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4371 * 4372 * This implementation of BUS_ALLOC_RESOURCE() uses the 4373 * resource_list_alloc() function to do most of the work. It calls 4374 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4375 */ 4376 struct resource * 4377 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4378 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4379 { 4380 struct resource_list * rl = NULL; 4381 4382 if (device_get_parent(child) != dev) 4383 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4384 type, rid, start, end, count, flags)); 4385 4386 rl = BUS_GET_RESOURCE_LIST(dev, child); 4387 if (!rl) 4388 return (NULL); 4389 4390 return (resource_list_alloc(rl, dev, child, type, rid, 4391 start, end, count, flags)); 4392 } 4393 4394 /** 4395 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4396 * 4397 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4398 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4399 */ 4400 int 4401 bus_generic_child_present(device_t dev, device_t child) 4402 { 4403 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4404 } 4405 4406 int 4407 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4408 { 4409 4410 if (dev->parent) 4411 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4412 4413 return (ENOENT); 4414 } 4415 4416 /** 4417 * @brief Helper function for implementing BUS_RESCAN(). 4418 * 4419 * This null implementation of BUS_RESCAN() always fails to indicate 4420 * the bus does not support rescanning. 4421 */ 4422 int 4423 bus_null_rescan(device_t dev) 4424 { 4425 4426 return (ENXIO); 4427 } 4428 4429 /* 4430 * Some convenience functions to make it easier for drivers to use the 4431 * resource-management functions. All these really do is hide the 4432 * indirection through the parent's method table, making for slightly 4433 * less-wordy code. In the future, it might make sense for this code 4434 * to maintain some sort of a list of resources allocated by each device. 4435 */ 4436 4437 int 4438 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4439 struct resource **res) 4440 { 4441 int i; 4442 4443 for (i = 0; rs[i].type != -1; i++) 4444 res[i] = NULL; 4445 for (i = 0; rs[i].type != -1; i++) { 4446 res[i] = bus_alloc_resource_any(dev, 4447 rs[i].type, &rs[i].rid, rs[i].flags); 4448 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4449 bus_release_resources(dev, rs, res); 4450 return (ENXIO); 4451 } 4452 } 4453 return (0); 4454 } 4455 4456 void 4457 bus_release_resources(device_t dev, const struct resource_spec *rs, 4458 struct resource **res) 4459 { 4460 int i; 4461 4462 for (i = 0; rs[i].type != -1; i++) 4463 if (res[i] != NULL) { 4464 bus_release_resource( 4465 dev, rs[i].type, rs[i].rid, res[i]); 4466 res[i] = NULL; 4467 } 4468 } 4469 4470 /** 4471 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4472 * 4473 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4474 * parent of @p dev. 4475 */ 4476 struct resource * 4477 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4478 rman_res_t end, rman_res_t count, u_int flags) 4479 { 4480 struct resource *res; 4481 4482 if (dev->parent == NULL) 4483 return (NULL); 4484 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4485 count, flags); 4486 return (res); 4487 } 4488 4489 /** 4490 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4491 * 4492 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4493 * parent of @p dev. 4494 */ 4495 int 4496 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4497 rman_res_t end) 4498 { 4499 if (dev->parent == NULL) 4500 return (EINVAL); 4501 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4502 } 4503 4504 /** 4505 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4506 * 4507 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4508 * parent of @p dev. 4509 */ 4510 int 4511 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4512 { 4513 if (dev->parent == NULL) 4514 return (EINVAL); 4515 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4516 } 4517 4518 /** 4519 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4520 * 4521 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4522 * parent of @p dev. 4523 */ 4524 int 4525 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4526 { 4527 if (dev->parent == NULL) 4528 return (EINVAL); 4529 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4530 } 4531 4532 /** 4533 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4534 * 4535 * This function simply calls the BUS_MAP_RESOURCE() method of the 4536 * parent of @p dev. 4537 */ 4538 int 4539 bus_map_resource(device_t dev, int type, struct resource *r, 4540 struct resource_map_request *args, struct resource_map *map) 4541 { 4542 if (dev->parent == NULL) 4543 return (EINVAL); 4544 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4545 } 4546 4547 /** 4548 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4549 * 4550 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4551 * parent of @p dev. 4552 */ 4553 int 4554 bus_unmap_resource(device_t dev, int type, struct resource *r, 4555 struct resource_map *map) 4556 { 4557 if (dev->parent == NULL) 4558 return (EINVAL); 4559 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4560 } 4561 4562 /** 4563 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4564 * 4565 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4566 * parent of @p dev. 4567 */ 4568 int 4569 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4570 { 4571 int rv; 4572 4573 if (dev->parent == NULL) 4574 return (EINVAL); 4575 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4576 return (rv); 4577 } 4578 4579 /** 4580 * @brief Wrapper function for BUS_SETUP_INTR(). 4581 * 4582 * This function simply calls the BUS_SETUP_INTR() method of the 4583 * parent of @p dev. 4584 */ 4585 int 4586 bus_setup_intr(device_t dev, struct resource *r, int flags, 4587 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4588 { 4589 int error; 4590 4591 if (dev->parent == NULL) 4592 return (EINVAL); 4593 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4594 arg, cookiep); 4595 if (error != 0) 4596 return (error); 4597 if (handler != NULL && !(flags & INTR_MPSAFE)) 4598 device_printf(dev, "[GIANT-LOCKED]\n"); 4599 return (0); 4600 } 4601 4602 /** 4603 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4604 * 4605 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4606 * parent of @p dev. 4607 */ 4608 int 4609 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4610 { 4611 if (dev->parent == NULL) 4612 return (EINVAL); 4613 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4614 } 4615 4616 /** 4617 * @brief Wrapper function for BUS_BIND_INTR(). 4618 * 4619 * This function simply calls the BUS_BIND_INTR() method of the 4620 * parent of @p dev. 4621 */ 4622 int 4623 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4624 { 4625 if (dev->parent == NULL) 4626 return (EINVAL); 4627 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4628 } 4629 4630 /** 4631 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4632 * 4633 * This function first formats the requested description into a 4634 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4635 * the parent of @p dev. 4636 */ 4637 int 4638 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4639 const char *fmt, ...) 4640 { 4641 va_list ap; 4642 char descr[MAXCOMLEN + 1]; 4643 4644 if (dev->parent == NULL) 4645 return (EINVAL); 4646 va_start(ap, fmt); 4647 vsnprintf(descr, sizeof(descr), fmt, ap); 4648 va_end(ap); 4649 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4650 } 4651 4652 /** 4653 * @brief Wrapper function for BUS_SET_RESOURCE(). 4654 * 4655 * This function simply calls the BUS_SET_RESOURCE() method of the 4656 * parent of @p dev. 4657 */ 4658 int 4659 bus_set_resource(device_t dev, int type, int rid, 4660 rman_res_t start, rman_res_t count) 4661 { 4662 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4663 start, count)); 4664 } 4665 4666 /** 4667 * @brief Wrapper function for BUS_GET_RESOURCE(). 4668 * 4669 * This function simply calls the BUS_GET_RESOURCE() method of the 4670 * parent of @p dev. 4671 */ 4672 int 4673 bus_get_resource(device_t dev, int type, int rid, 4674 rman_res_t *startp, rman_res_t *countp) 4675 { 4676 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4677 startp, countp)); 4678 } 4679 4680 /** 4681 * @brief Wrapper function for BUS_GET_RESOURCE(). 4682 * 4683 * This function simply calls the BUS_GET_RESOURCE() method of the 4684 * parent of @p dev and returns the start value. 4685 */ 4686 rman_res_t 4687 bus_get_resource_start(device_t dev, int type, int rid) 4688 { 4689 rman_res_t start; 4690 rman_res_t count; 4691 int error; 4692 4693 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4694 &start, &count); 4695 if (error) 4696 return (0); 4697 return (start); 4698 } 4699 4700 /** 4701 * @brief Wrapper function for BUS_GET_RESOURCE(). 4702 * 4703 * This function simply calls the BUS_GET_RESOURCE() method of the 4704 * parent of @p dev and returns the count value. 4705 */ 4706 rman_res_t 4707 bus_get_resource_count(device_t dev, int type, int rid) 4708 { 4709 rman_res_t start; 4710 rman_res_t count; 4711 int error; 4712 4713 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4714 &start, &count); 4715 if (error) 4716 return (0); 4717 return (count); 4718 } 4719 4720 /** 4721 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4722 * 4723 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4724 * parent of @p dev. 4725 */ 4726 void 4727 bus_delete_resource(device_t dev, int type, int rid) 4728 { 4729 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4730 } 4731 4732 /** 4733 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4734 * 4735 * This function simply calls the BUS_CHILD_PRESENT() method of the 4736 * parent of @p dev. 4737 */ 4738 int 4739 bus_child_present(device_t child) 4740 { 4741 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4742 } 4743 4744 /** 4745 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4746 * 4747 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4748 * parent of @p dev. 4749 */ 4750 int 4751 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4752 { 4753 device_t parent; 4754 4755 parent = device_get_parent(child); 4756 if (parent == NULL) { 4757 *buf = '\0'; 4758 return (0); 4759 } 4760 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4761 } 4762 4763 /** 4764 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4765 * 4766 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4767 * parent of @p dev. 4768 */ 4769 int 4770 bus_child_location_str(device_t child, char *buf, size_t buflen) 4771 { 4772 device_t parent; 4773 4774 parent = device_get_parent(child); 4775 if (parent == NULL) { 4776 *buf = '\0'; 4777 return (0); 4778 } 4779 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4780 } 4781 4782 /** 4783 * @brief Wrapper function for BUS_GET_CPUS(). 4784 * 4785 * This function simply calls the BUS_GET_CPUS() method of the 4786 * parent of @p dev. 4787 */ 4788 int 4789 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4790 { 4791 device_t parent; 4792 4793 parent = device_get_parent(dev); 4794 if (parent == NULL) 4795 return (EINVAL); 4796 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4797 } 4798 4799 /** 4800 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4801 * 4802 * This function simply calls the BUS_GET_DMA_TAG() method of the 4803 * parent of @p dev. 4804 */ 4805 bus_dma_tag_t 4806 bus_get_dma_tag(device_t dev) 4807 { 4808 device_t parent; 4809 4810 parent = device_get_parent(dev); 4811 if (parent == NULL) 4812 return (NULL); 4813 return (BUS_GET_DMA_TAG(parent, dev)); 4814 } 4815 4816 /** 4817 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4818 * 4819 * This function simply calls the BUS_GET_BUS_TAG() method of the 4820 * parent of @p dev. 4821 */ 4822 bus_space_tag_t 4823 bus_get_bus_tag(device_t dev) 4824 { 4825 device_t parent; 4826 4827 parent = device_get_parent(dev); 4828 if (parent == NULL) 4829 return ((bus_space_tag_t)0); 4830 return (BUS_GET_BUS_TAG(parent, dev)); 4831 } 4832 4833 /** 4834 * @brief Wrapper function for BUS_GET_DOMAIN(). 4835 * 4836 * This function simply calls the BUS_GET_DOMAIN() method of the 4837 * parent of @p dev. 4838 */ 4839 int 4840 bus_get_domain(device_t dev, int *domain) 4841 { 4842 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4843 } 4844 4845 /* Resume all devices and then notify userland that we're up again. */ 4846 static int 4847 root_resume(device_t dev) 4848 { 4849 int error; 4850 4851 error = bus_generic_resume(dev); 4852 if (error == 0) 4853 devctl_notify("kern", "power", "resume", NULL); 4854 return (error); 4855 } 4856 4857 static int 4858 root_print_child(device_t dev, device_t child) 4859 { 4860 int retval = 0; 4861 4862 retval += bus_print_child_header(dev, child); 4863 retval += printf("\n"); 4864 4865 return (retval); 4866 } 4867 4868 static int 4869 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4870 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4871 { 4872 /* 4873 * If an interrupt mapping gets to here something bad has happened. 4874 */ 4875 panic("root_setup_intr"); 4876 } 4877 4878 /* 4879 * If we get here, assume that the device is permanent and really is 4880 * present in the system. Removable bus drivers are expected to intercept 4881 * this call long before it gets here. We return -1 so that drivers that 4882 * really care can check vs -1 or some ERRNO returned higher in the food 4883 * chain. 4884 */ 4885 static int 4886 root_child_present(device_t dev, device_t child) 4887 { 4888 return (-1); 4889 } 4890 4891 static int 4892 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4893 cpuset_t *cpuset) 4894 { 4895 4896 switch (op) { 4897 case INTR_CPUS: 4898 /* Default to returning the set of all CPUs. */ 4899 if (setsize != sizeof(cpuset_t)) 4900 return (EINVAL); 4901 *cpuset = all_cpus; 4902 return (0); 4903 default: 4904 return (EINVAL); 4905 } 4906 } 4907 4908 static kobj_method_t root_methods[] = { 4909 /* Device interface */ 4910 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4911 KOBJMETHOD(device_suspend, bus_generic_suspend), 4912 KOBJMETHOD(device_resume, root_resume), 4913 4914 /* Bus interface */ 4915 KOBJMETHOD(bus_print_child, root_print_child), 4916 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4917 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4918 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4919 KOBJMETHOD(bus_child_present, root_child_present), 4920 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4921 4922 KOBJMETHOD_END 4923 }; 4924 4925 static driver_t root_driver = { 4926 "root", 4927 root_methods, 4928 1, /* no softc */ 4929 }; 4930 4931 device_t root_bus; 4932 devclass_t root_devclass; 4933 4934 static int 4935 root_bus_module_handler(module_t mod, int what, void* arg) 4936 { 4937 switch (what) { 4938 case MOD_LOAD: 4939 TAILQ_INIT(&bus_data_devices); 4940 kobj_class_compile((kobj_class_t) &root_driver); 4941 root_bus = make_device(NULL, "root", 0); 4942 root_bus->desc = "System root bus"; 4943 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4944 root_bus->driver = &root_driver; 4945 root_bus->state = DS_ATTACHED; 4946 root_devclass = devclass_find_internal("root", NULL, FALSE); 4947 devinit(); 4948 return (0); 4949 4950 case MOD_SHUTDOWN: 4951 device_shutdown(root_bus); 4952 return (0); 4953 default: 4954 return (EOPNOTSUPP); 4955 } 4956 4957 return (0); 4958 } 4959 4960 static moduledata_t root_bus_mod = { 4961 "rootbus", 4962 root_bus_module_handler, 4963 NULL 4964 }; 4965 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4966 4967 /** 4968 * @brief Automatically configure devices 4969 * 4970 * This function begins the autoconfiguration process by calling 4971 * device_probe_and_attach() for each child of the @c root0 device. 4972 */ 4973 void 4974 root_bus_configure(void) 4975 { 4976 4977 PDEBUG((".")); 4978 4979 /* Eventually this will be split up, but this is sufficient for now. */ 4980 bus_set_pass(BUS_PASS_DEFAULT); 4981 } 4982 4983 /** 4984 * @brief Module handler for registering device drivers 4985 * 4986 * This module handler is used to automatically register device 4987 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4988 * devclass_add_driver() for the driver described by the 4989 * driver_module_data structure pointed to by @p arg 4990 */ 4991 int 4992 driver_module_handler(module_t mod, int what, void *arg) 4993 { 4994 struct driver_module_data *dmd; 4995 devclass_t bus_devclass; 4996 kobj_class_t driver; 4997 int error, pass; 4998 4999 dmd = (struct driver_module_data *)arg; 5000 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5001 error = 0; 5002 5003 switch (what) { 5004 case MOD_LOAD: 5005 if (dmd->dmd_chainevh) 5006 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5007 5008 pass = dmd->dmd_pass; 5009 driver = dmd->dmd_driver; 5010 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5011 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5012 error = devclass_add_driver(bus_devclass, driver, pass, 5013 dmd->dmd_devclass); 5014 break; 5015 5016 case MOD_UNLOAD: 5017 PDEBUG(("Unloading module: driver %s from bus %s", 5018 DRIVERNAME(dmd->dmd_driver), 5019 dmd->dmd_busname)); 5020 error = devclass_delete_driver(bus_devclass, 5021 dmd->dmd_driver); 5022 5023 if (!error && dmd->dmd_chainevh) 5024 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5025 break; 5026 case MOD_QUIESCE: 5027 PDEBUG(("Quiesce module: driver %s from bus %s", 5028 DRIVERNAME(dmd->dmd_driver), 5029 dmd->dmd_busname)); 5030 error = devclass_quiesce_driver(bus_devclass, 5031 dmd->dmd_driver); 5032 5033 if (!error && dmd->dmd_chainevh) 5034 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5035 break; 5036 default: 5037 error = EOPNOTSUPP; 5038 break; 5039 } 5040 5041 return (error); 5042 } 5043 5044 /** 5045 * @brief Enumerate all hinted devices for this bus. 5046 * 5047 * Walks through the hints for this bus and calls the bus_hinted_child 5048 * routine for each one it fines. It searches first for the specific 5049 * bus that's being probed for hinted children (eg isa0), and then for 5050 * generic children (eg isa). 5051 * 5052 * @param dev bus device to enumerate 5053 */ 5054 void 5055 bus_enumerate_hinted_children(device_t bus) 5056 { 5057 int i; 5058 const char *dname, *busname; 5059 int dunit; 5060 5061 /* 5062 * enumerate all devices on the specific bus 5063 */ 5064 busname = device_get_nameunit(bus); 5065 i = 0; 5066 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5067 BUS_HINTED_CHILD(bus, dname, dunit); 5068 5069 /* 5070 * and all the generic ones. 5071 */ 5072 busname = device_get_name(bus); 5073 i = 0; 5074 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5075 BUS_HINTED_CHILD(bus, dname, dunit); 5076 } 5077 5078 #ifdef BUS_DEBUG 5079 5080 /* the _short versions avoid iteration by not calling anything that prints 5081 * more than oneliners. I love oneliners. 5082 */ 5083 5084 static void 5085 print_device_short(device_t dev, int indent) 5086 { 5087 if (!dev) 5088 return; 5089 5090 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5091 dev->unit, dev->desc, 5092 (dev->parent? "":"no "), 5093 (TAILQ_EMPTY(&dev->children)? "no ":""), 5094 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5095 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5096 (dev->flags&DF_WILDCARD? "wildcard,":""), 5097 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5098 (dev->flags&DF_REBID? "rebiddable,":""), 5099 (dev->flags&DF_SUSPENDED? "suspended,":""), 5100 (dev->ivars? "":"no "), 5101 (dev->softc? "":"no "), 5102 dev->busy)); 5103 } 5104 5105 static void 5106 print_device(device_t dev, int indent) 5107 { 5108 if (!dev) 5109 return; 5110 5111 print_device_short(dev, indent); 5112 5113 indentprintf(("Parent:\n")); 5114 print_device_short(dev->parent, indent+1); 5115 indentprintf(("Driver:\n")); 5116 print_driver_short(dev->driver, indent+1); 5117 indentprintf(("Devclass:\n")); 5118 print_devclass_short(dev->devclass, indent+1); 5119 } 5120 5121 void 5122 print_device_tree_short(device_t dev, int indent) 5123 /* print the device and all its children (indented) */ 5124 { 5125 device_t child; 5126 5127 if (!dev) 5128 return; 5129 5130 print_device_short(dev, indent); 5131 5132 TAILQ_FOREACH(child, &dev->children, link) { 5133 print_device_tree_short(child, indent+1); 5134 } 5135 } 5136 5137 void 5138 print_device_tree(device_t dev, int indent) 5139 /* print the device and all its children (indented) */ 5140 { 5141 device_t child; 5142 5143 if (!dev) 5144 return; 5145 5146 print_device(dev, indent); 5147 5148 TAILQ_FOREACH(child, &dev->children, link) { 5149 print_device_tree(child, indent+1); 5150 } 5151 } 5152 5153 static void 5154 print_driver_short(driver_t *driver, int indent) 5155 { 5156 if (!driver) 5157 return; 5158 5159 indentprintf(("driver %s: softc size = %zd\n", 5160 driver->name, driver->size)); 5161 } 5162 5163 static void 5164 print_driver(driver_t *driver, int indent) 5165 { 5166 if (!driver) 5167 return; 5168 5169 print_driver_short(driver, indent); 5170 } 5171 5172 static void 5173 print_driver_list(driver_list_t drivers, int indent) 5174 { 5175 driverlink_t driver; 5176 5177 TAILQ_FOREACH(driver, &drivers, link) { 5178 print_driver(driver->driver, indent); 5179 } 5180 } 5181 5182 static void 5183 print_devclass_short(devclass_t dc, int indent) 5184 { 5185 if ( !dc ) 5186 return; 5187 5188 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5189 } 5190 5191 static void 5192 print_devclass(devclass_t dc, int indent) 5193 { 5194 int i; 5195 5196 if ( !dc ) 5197 return; 5198 5199 print_devclass_short(dc, indent); 5200 indentprintf(("Drivers:\n")); 5201 print_driver_list(dc->drivers, indent+1); 5202 5203 indentprintf(("Devices:\n")); 5204 for (i = 0; i < dc->maxunit; i++) 5205 if (dc->devices[i]) 5206 print_device(dc->devices[i], indent+1); 5207 } 5208 5209 void 5210 print_devclass_list_short(void) 5211 { 5212 devclass_t dc; 5213 5214 printf("Short listing of devclasses, drivers & devices:\n"); 5215 TAILQ_FOREACH(dc, &devclasses, link) { 5216 print_devclass_short(dc, 0); 5217 } 5218 } 5219 5220 void 5221 print_devclass_list(void) 5222 { 5223 devclass_t dc; 5224 5225 printf("Full listing of devclasses, drivers & devices:\n"); 5226 TAILQ_FOREACH(dc, &devclasses, link) { 5227 print_devclass(dc, 0); 5228 } 5229 } 5230 5231 #endif 5232 5233 /* 5234 * User-space access to the device tree. 5235 * 5236 * We implement a small set of nodes: 5237 * 5238 * hw.bus Single integer read method to obtain the 5239 * current generation count. 5240 * hw.bus.devices Reads the entire device tree in flat space. 5241 * hw.bus.rman Resource manager interface 5242 * 5243 * We might like to add the ability to scan devclasses and/or drivers to 5244 * determine what else is currently loaded/available. 5245 */ 5246 5247 static int 5248 sysctl_bus(SYSCTL_HANDLER_ARGS) 5249 { 5250 struct u_businfo ubus; 5251 5252 ubus.ub_version = BUS_USER_VERSION; 5253 ubus.ub_generation = bus_data_generation; 5254 5255 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5256 } 5257 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5258 "bus-related data"); 5259 5260 static int 5261 sysctl_devices(SYSCTL_HANDLER_ARGS) 5262 { 5263 int *name = (int *)arg1; 5264 u_int namelen = arg2; 5265 int index; 5266 device_t dev; 5267 struct u_device *udev; 5268 int error; 5269 char *walker, *ep; 5270 5271 if (namelen != 2) 5272 return (EINVAL); 5273 5274 if (bus_data_generation_check(name[0])) 5275 return (EINVAL); 5276 5277 index = name[1]; 5278 5279 /* 5280 * Scan the list of devices, looking for the requested index. 5281 */ 5282 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5283 if (index-- == 0) 5284 break; 5285 } 5286 if (dev == NULL) 5287 return (ENOENT); 5288 5289 /* 5290 * Populate the return item, careful not to overflow the buffer. 5291 */ 5292 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5293 if (udev == NULL) 5294 return (ENOMEM); 5295 udev->dv_handle = (uintptr_t)dev; 5296 udev->dv_parent = (uintptr_t)dev->parent; 5297 udev->dv_devflags = dev->devflags; 5298 udev->dv_flags = dev->flags; 5299 udev->dv_state = dev->state; 5300 walker = udev->dv_fields; 5301 ep = walker + sizeof(udev->dv_fields); 5302 #define CP(src) \ 5303 if ((src) == NULL) \ 5304 *walker++ = '\0'; \ 5305 else { \ 5306 strlcpy(walker, (src), ep - walker); \ 5307 walker += strlen(walker) + 1; \ 5308 } \ 5309 if (walker >= ep) \ 5310 break; 5311 5312 do { 5313 CP(dev->nameunit); 5314 CP(dev->desc); 5315 CP(dev->driver != NULL ? dev->driver->name : NULL); 5316 bus_child_pnpinfo_str(dev, walker, ep - walker); 5317 walker += strlen(walker) + 1; 5318 if (walker >= ep) 5319 break; 5320 bus_child_location_str(dev, walker, ep - walker); 5321 walker += strlen(walker) + 1; 5322 if (walker >= ep) 5323 break; 5324 *walker++ = '\0'; 5325 } while (0); 5326 #undef CP 5327 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5328 free(udev, M_BUS); 5329 return (error); 5330 } 5331 5332 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5333 "system device tree"); 5334 5335 int 5336 bus_data_generation_check(int generation) 5337 { 5338 if (generation != bus_data_generation) 5339 return (1); 5340 5341 /* XXX generate optimised lists here? */ 5342 return (0); 5343 } 5344 5345 void 5346 bus_data_generation_update(void) 5347 { 5348 bus_data_generation++; 5349 } 5350 5351 int 5352 bus_free_resource(device_t dev, int type, struct resource *r) 5353 { 5354 if (r == NULL) 5355 return (0); 5356 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5357 } 5358 5359 device_t 5360 device_lookup_by_name(const char *name) 5361 { 5362 device_t dev; 5363 5364 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5365 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5366 return (dev); 5367 } 5368 return (NULL); 5369 } 5370 5371 /* 5372 * /dev/devctl2 implementation. The existing /dev/devctl device has 5373 * implicit semantics on open, so it could not be reused for this. 5374 * Another option would be to call this /dev/bus? 5375 */ 5376 static int 5377 find_device(struct devreq *req, device_t *devp) 5378 { 5379 device_t dev; 5380 5381 /* 5382 * First, ensure that the name is nul terminated. 5383 */ 5384 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5385 return (EINVAL); 5386 5387 /* 5388 * Second, try to find an attached device whose name matches 5389 * 'name'. 5390 */ 5391 dev = device_lookup_by_name(req->dr_name); 5392 if (dev != NULL) { 5393 *devp = dev; 5394 return (0); 5395 } 5396 5397 /* Finally, give device enumerators a chance. */ 5398 dev = NULL; 5399 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5400 if (dev == NULL) 5401 return (ENOENT); 5402 *devp = dev; 5403 return (0); 5404 } 5405 5406 static bool 5407 driver_exists(device_t bus, const char *driver) 5408 { 5409 devclass_t dc; 5410 5411 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5412 if (devclass_find_driver_internal(dc, driver) != NULL) 5413 return (true); 5414 } 5415 return (false); 5416 } 5417 5418 static void 5419 device_gen_nomatch(device_t dev) 5420 { 5421 device_t child; 5422 5423 if (dev->flags & DF_NEEDNOMATCH && 5424 dev->state == DS_NOTPRESENT) { 5425 BUS_PROBE_NOMATCH(dev->parent, dev); 5426 devnomatch(dev); 5427 dev->flags |= DF_DONENOMATCH; 5428 } 5429 dev->flags &= ~DF_NEEDNOMATCH; 5430 TAILQ_FOREACH(child, &dev->children, link) { 5431 device_gen_nomatch(child); 5432 } 5433 } 5434 5435 static void 5436 device_do_deferred_actions(void) 5437 { 5438 devclass_t dc; 5439 driverlink_t dl; 5440 5441 /* 5442 * Walk through the devclasses to find all the drivers we've tagged as 5443 * deferred during the freeze and call the driver added routines. They 5444 * have already been added to the lists in the background, so the driver 5445 * added routines that trigger a probe will have all the right bidders 5446 * for the probe auction. 5447 */ 5448 TAILQ_FOREACH(dc, &devclasses, link) { 5449 TAILQ_FOREACH(dl, &dc->drivers, link) { 5450 if (dl->flags & DL_DEFERRED_PROBE) { 5451 devclass_driver_added(dc, dl->driver); 5452 dl->flags &= ~DL_DEFERRED_PROBE; 5453 } 5454 } 5455 } 5456 5457 /* 5458 * We also defer no-match events during a freeze. Walk the tree and 5459 * generate all the pent-up events that are still relevant. 5460 */ 5461 device_gen_nomatch(root_bus); 5462 bus_data_generation_update(); 5463 } 5464 5465 static int 5466 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5467 struct thread *td) 5468 { 5469 struct devreq *req; 5470 device_t dev; 5471 int error, old; 5472 5473 /* Locate the device to control. */ 5474 mtx_lock(&Giant); 5475 req = (struct devreq *)data; 5476 switch (cmd) { 5477 case DEV_ATTACH: 5478 case DEV_DETACH: 5479 case DEV_ENABLE: 5480 case DEV_DISABLE: 5481 case DEV_SUSPEND: 5482 case DEV_RESUME: 5483 case DEV_SET_DRIVER: 5484 case DEV_CLEAR_DRIVER: 5485 case DEV_RESCAN: 5486 case DEV_DELETE: 5487 error = priv_check(td, PRIV_DRIVER); 5488 if (error == 0) 5489 error = find_device(req, &dev); 5490 break; 5491 case DEV_FREEZE: 5492 case DEV_THAW: 5493 error = priv_check(td, PRIV_DRIVER); 5494 break; 5495 default: 5496 error = ENOTTY; 5497 break; 5498 } 5499 if (error) { 5500 mtx_unlock(&Giant); 5501 return (error); 5502 } 5503 5504 /* Perform the requested operation. */ 5505 switch (cmd) { 5506 case DEV_ATTACH: 5507 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5508 error = EBUSY; 5509 else if (!device_is_enabled(dev)) 5510 error = ENXIO; 5511 else 5512 error = device_probe_and_attach(dev); 5513 break; 5514 case DEV_DETACH: 5515 if (!device_is_attached(dev)) { 5516 error = ENXIO; 5517 break; 5518 } 5519 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5520 error = device_quiesce(dev); 5521 if (error) 5522 break; 5523 } 5524 error = device_detach(dev); 5525 break; 5526 case DEV_ENABLE: 5527 if (device_is_enabled(dev)) { 5528 error = EBUSY; 5529 break; 5530 } 5531 5532 /* 5533 * If the device has been probed but not attached (e.g. 5534 * when it has been disabled by a loader hint), just 5535 * attach the device rather than doing a full probe. 5536 */ 5537 device_enable(dev); 5538 if (device_is_alive(dev)) { 5539 /* 5540 * If the device was disabled via a hint, clear 5541 * the hint. 5542 */ 5543 if (resource_disabled(dev->driver->name, dev->unit)) 5544 resource_unset_value(dev->driver->name, 5545 dev->unit, "disabled"); 5546 error = device_attach(dev); 5547 } else 5548 error = device_probe_and_attach(dev); 5549 break; 5550 case DEV_DISABLE: 5551 if (!device_is_enabled(dev)) { 5552 error = ENXIO; 5553 break; 5554 } 5555 5556 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5557 error = device_quiesce(dev); 5558 if (error) 5559 break; 5560 } 5561 5562 /* 5563 * Force DF_FIXEDCLASS on around detach to preserve 5564 * the existing name. 5565 */ 5566 old = dev->flags; 5567 dev->flags |= DF_FIXEDCLASS; 5568 error = device_detach(dev); 5569 if (!(old & DF_FIXEDCLASS)) 5570 dev->flags &= ~DF_FIXEDCLASS; 5571 if (error == 0) 5572 device_disable(dev); 5573 break; 5574 case DEV_SUSPEND: 5575 if (device_is_suspended(dev)) { 5576 error = EBUSY; 5577 break; 5578 } 5579 if (device_get_parent(dev) == NULL) { 5580 error = EINVAL; 5581 break; 5582 } 5583 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5584 break; 5585 case DEV_RESUME: 5586 if (!device_is_suspended(dev)) { 5587 error = EINVAL; 5588 break; 5589 } 5590 if (device_get_parent(dev) == NULL) { 5591 error = EINVAL; 5592 break; 5593 } 5594 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5595 break; 5596 case DEV_SET_DRIVER: { 5597 devclass_t dc; 5598 char driver[128]; 5599 5600 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5601 if (error) 5602 break; 5603 if (driver[0] == '\0') { 5604 error = EINVAL; 5605 break; 5606 } 5607 if (dev->devclass != NULL && 5608 strcmp(driver, dev->devclass->name) == 0) 5609 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5610 break; 5611 5612 /* 5613 * Scan drivers for this device's bus looking for at 5614 * least one matching driver. 5615 */ 5616 if (dev->parent == NULL) { 5617 error = EINVAL; 5618 break; 5619 } 5620 if (!driver_exists(dev->parent, driver)) { 5621 error = ENOENT; 5622 break; 5623 } 5624 dc = devclass_create(driver); 5625 if (dc == NULL) { 5626 error = ENOMEM; 5627 break; 5628 } 5629 5630 /* Detach device if necessary. */ 5631 if (device_is_attached(dev)) { 5632 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5633 error = device_detach(dev); 5634 else 5635 error = EBUSY; 5636 if (error) 5637 break; 5638 } 5639 5640 /* Clear any previously-fixed device class and unit. */ 5641 if (dev->flags & DF_FIXEDCLASS) 5642 devclass_delete_device(dev->devclass, dev); 5643 dev->flags |= DF_WILDCARD; 5644 dev->unit = -1; 5645 5646 /* Force the new device class. */ 5647 error = devclass_add_device(dc, dev); 5648 if (error) 5649 break; 5650 dev->flags |= DF_FIXEDCLASS; 5651 error = device_probe_and_attach(dev); 5652 break; 5653 } 5654 case DEV_CLEAR_DRIVER: 5655 if (!(dev->flags & DF_FIXEDCLASS)) { 5656 error = 0; 5657 break; 5658 } 5659 if (device_is_attached(dev)) { 5660 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5661 error = device_detach(dev); 5662 else 5663 error = EBUSY; 5664 if (error) 5665 break; 5666 } 5667 5668 dev->flags &= ~DF_FIXEDCLASS; 5669 dev->flags |= DF_WILDCARD; 5670 devclass_delete_device(dev->devclass, dev); 5671 error = device_probe_and_attach(dev); 5672 break; 5673 case DEV_RESCAN: 5674 if (!device_is_attached(dev)) { 5675 error = ENXIO; 5676 break; 5677 } 5678 error = BUS_RESCAN(dev); 5679 break; 5680 case DEV_DELETE: { 5681 device_t parent; 5682 5683 parent = device_get_parent(dev); 5684 if (parent == NULL) { 5685 error = EINVAL; 5686 break; 5687 } 5688 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5689 if (bus_child_present(dev) != 0) { 5690 error = EBUSY; 5691 break; 5692 } 5693 } 5694 5695 error = device_delete_child(parent, dev); 5696 break; 5697 } 5698 case DEV_FREEZE: 5699 if (device_frozen) 5700 error = EBUSY; 5701 else 5702 device_frozen = true; 5703 break; 5704 case DEV_THAW: 5705 if (!device_frozen) 5706 error = EBUSY; 5707 else { 5708 device_do_deferred_actions(); 5709 device_frozen = false; 5710 } 5711 break; 5712 } 5713 mtx_unlock(&Giant); 5714 return (error); 5715 } 5716 5717 static struct cdevsw devctl2_cdevsw = { 5718 .d_version = D_VERSION, 5719 .d_ioctl = devctl2_ioctl, 5720 .d_name = "devctl2", 5721 }; 5722 5723 static void 5724 devctl2_init(void) 5725 { 5726 5727 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5728 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5729 } 5730 5731 /* 5732 * APIs to manage deprecation and obsolescence. 5733 */ 5734 static int obsolete_panic = 0; 5735 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5736 "Bus debug level"); 5737 /* 0 - don't panic, 1 - panic if already obsolete, 2 - panic if deprecated */ 5738 static void 5739 gone_panic(int major, int running, const char *msg) 5740 { 5741 5742 switch (obsolete_panic) 5743 { 5744 case 0: 5745 return; 5746 case 1: 5747 if (running < major) 5748 return; 5749 /* FALLTHROUGH */ 5750 default: 5751 panic("%s", msg); 5752 } 5753 } 5754 5755 void 5756 _gone_in(int major, const char *msg) 5757 { 5758 5759 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5760 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5761 printf("Obsolete code will removed soon: %s\n", msg); 5762 else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major) 5763 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5764 major, msg); 5765 } 5766 5767 void 5768 _gone_in_dev(device_t dev, int major, const char *msg) 5769 { 5770 5771 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5772 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5773 device_printf(dev, 5774 "Obsolete code will removed soon: %s\n", msg); 5775 else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major) 5776 device_printf(dev, 5777 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5778 major, msg); 5779 } 5780 5781 #ifdef DDB 5782 DB_SHOW_COMMAND(device, db_show_device) 5783 { 5784 device_t dev; 5785 5786 if (!have_addr) 5787 return; 5788 5789 dev = (device_t)addr; 5790 5791 db_printf("name: %s\n", device_get_nameunit(dev)); 5792 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5793 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5794 db_printf(" addr: %p\n", dev); 5795 db_printf(" parent: %p\n", dev->parent); 5796 db_printf(" softc: %p\n", dev->softc); 5797 db_printf(" ivars: %p\n", dev->ivars); 5798 } 5799 5800 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5801 { 5802 device_t dev; 5803 5804 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5805 db_show_device((db_expr_t)dev, true, count, modif); 5806 } 5807 } 5808 #endif 5809