1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 uint32_t devflags; /**< api level flags for device_get_flags() */ 124 u_int flags; /**< internal device flags */ 125 #define DF_ENABLED 0x01 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 127 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 129 #define DF_QUIET 0x10 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 132 #define DF_REBID 0x80 /* Can rebid after attach */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 /* Deprecated way to adjust queue length */ 354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 358 359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 364 0, sysctl_devctl_queue, "I", "devctl queue length"); 365 366 static d_open_t devopen; 367 static d_close_t devclose; 368 static d_read_t devread; 369 static d_ioctl_t devioctl; 370 static d_poll_t devpoll; 371 372 static struct cdevsw dev_cdevsw = { 373 .d_version = D_VERSION, 374 .d_flags = D_NEEDGIANT, 375 .d_open = devopen, 376 .d_close = devclose, 377 .d_read = devread, 378 .d_ioctl = devioctl, 379 .d_poll = devpoll, 380 .d_name = "devctl", 381 }; 382 383 struct dev_event_info 384 { 385 char *dei_data; 386 TAILQ_ENTRY(dev_event_info) dei_link; 387 }; 388 389 TAILQ_HEAD(devq, dev_event_info); 390 391 static struct dev_softc 392 { 393 int inuse; 394 int nonblock; 395 int queued; 396 struct mtx mtx; 397 struct cv cv; 398 struct selinfo sel; 399 struct devq devq; 400 struct proc *async_proc; 401 } devsoftc; 402 403 static struct cdev *devctl_dev; 404 405 static void 406 devinit(void) 407 { 408 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 409 UID_ROOT, GID_WHEEL, 0600, "devctl"); 410 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 411 cv_init(&devsoftc.cv, "dev cv"); 412 TAILQ_INIT(&devsoftc.devq); 413 } 414 415 static int 416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 417 { 418 if (devsoftc.inuse) 419 return (EBUSY); 420 /* move to init */ 421 devsoftc.inuse = 1; 422 devsoftc.nonblock = 0; 423 devsoftc.async_proc = NULL; 424 return (0); 425 } 426 427 static int 428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 429 { 430 devsoftc.inuse = 0; 431 mtx_lock(&devsoftc.mtx); 432 cv_broadcast(&devsoftc.cv); 433 mtx_unlock(&devsoftc.mtx); 434 devsoftc.async_proc = NULL; 435 return (0); 436 } 437 438 /* 439 * The read channel for this device is used to report changes to 440 * userland in realtime. We are required to free the data as well as 441 * the n1 object because we allocate them separately. Also note that 442 * we return one record at a time. If you try to read this device a 443 * character at a time, you will lose the rest of the data. Listening 444 * programs are expected to cope. 445 */ 446 static int 447 devread(struct cdev *dev, struct uio *uio, int ioflag) 448 { 449 struct dev_event_info *n1; 450 int rv; 451 452 mtx_lock(&devsoftc.mtx); 453 while (TAILQ_EMPTY(&devsoftc.devq)) { 454 if (devsoftc.nonblock) { 455 mtx_unlock(&devsoftc.mtx); 456 return (EAGAIN); 457 } 458 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 459 if (rv) { 460 /* 461 * Need to translate ERESTART to EINTR here? -- jake 462 */ 463 mtx_unlock(&devsoftc.mtx); 464 return (rv); 465 } 466 } 467 n1 = TAILQ_FIRST(&devsoftc.devq); 468 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 469 devsoftc.queued--; 470 mtx_unlock(&devsoftc.mtx); 471 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 472 free(n1->dei_data, M_BUS); 473 free(n1, M_BUS); 474 return (rv); 475 } 476 477 static int 478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 479 { 480 switch (cmd) { 481 482 case FIONBIO: 483 if (*(int*)data) 484 devsoftc.nonblock = 1; 485 else 486 devsoftc.nonblock = 0; 487 return (0); 488 case FIOASYNC: 489 if (*(int*)data) 490 devsoftc.async_proc = td->td_proc; 491 else 492 devsoftc.async_proc = NULL; 493 return (0); 494 495 /* (un)Support for other fcntl() calls. */ 496 case FIOCLEX: 497 case FIONCLEX: 498 case FIONREAD: 499 case FIOSETOWN: 500 case FIOGETOWN: 501 default: 502 break; 503 } 504 return (ENOTTY); 505 } 506 507 static int 508 devpoll(struct cdev *dev, int events, struct thread *td) 509 { 510 int revents = 0; 511 512 mtx_lock(&devsoftc.mtx); 513 if (events & (POLLIN | POLLRDNORM)) { 514 if (!TAILQ_EMPTY(&devsoftc.devq)) 515 revents = events & (POLLIN | POLLRDNORM); 516 else 517 selrecord(td, &devsoftc.sel); 518 } 519 mtx_unlock(&devsoftc.mtx); 520 521 return (revents); 522 } 523 524 /** 525 * @brief Return whether the userland process is running 526 */ 527 boolean_t 528 devctl_process_running(void) 529 { 530 return (devsoftc.inuse == 1); 531 } 532 533 /** 534 * @brief Queue data to be read from the devctl device 535 * 536 * Generic interface to queue data to the devctl device. It is 537 * assumed that @p data is properly formatted. It is further assumed 538 * that @p data is allocated using the M_BUS malloc type. 539 */ 540 void 541 devctl_queue_data_f(char *data, int flags) 542 { 543 struct dev_event_info *n1 = NULL, *n2 = NULL; 544 struct proc *p; 545 546 if (strlen(data) == 0) 547 goto out; 548 if (devctl_queue_length == 0) 549 goto out; 550 n1 = malloc(sizeof(*n1), M_BUS, flags); 551 if (n1 == NULL) 552 goto out; 553 n1->dei_data = data; 554 mtx_lock(&devsoftc.mtx); 555 if (devctl_queue_length == 0) { 556 mtx_unlock(&devsoftc.mtx); 557 free(n1->dei_data, M_BUS); 558 free(n1, M_BUS); 559 return; 560 } 561 /* Leave at least one spot in the queue... */ 562 while (devsoftc.queued > devctl_queue_length - 1) { 563 n2 = TAILQ_FIRST(&devsoftc.devq); 564 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 565 free(n2->dei_data, M_BUS); 566 free(n2, M_BUS); 567 devsoftc.queued--; 568 } 569 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 570 devsoftc.queued++; 571 cv_broadcast(&devsoftc.cv); 572 mtx_unlock(&devsoftc.mtx); 573 selwakeup(&devsoftc.sel); 574 p = devsoftc.async_proc; 575 if (p != NULL) { 576 PROC_LOCK(p); 577 kern_psignal(p, SIGIO); 578 PROC_UNLOCK(p); 579 } 580 return; 581 out: 582 /* 583 * We have to free data on all error paths since the caller 584 * assumes it will be free'd when this item is dequeued. 585 */ 586 free(data, M_BUS); 587 return; 588 } 589 590 void 591 devctl_queue_data(char *data) 592 { 593 594 devctl_queue_data_f(data, M_NOWAIT); 595 } 596 597 /** 598 * @brief Send a 'notification' to userland, using standard ways 599 */ 600 void 601 devctl_notify_f(const char *system, const char *subsystem, const char *type, 602 const char *data, int flags) 603 { 604 int len = 0; 605 char *msg; 606 607 if (system == NULL) 608 return; /* BOGUS! Must specify system. */ 609 if (subsystem == NULL) 610 return; /* BOGUS! Must specify subsystem. */ 611 if (type == NULL) 612 return; /* BOGUS! Must specify type. */ 613 len += strlen(" system=") + strlen(system); 614 len += strlen(" subsystem=") + strlen(subsystem); 615 len += strlen(" type=") + strlen(type); 616 /* add in the data message plus newline. */ 617 if (data != NULL) 618 len += strlen(data); 619 len += 3; /* '!', '\n', and NUL */ 620 msg = malloc(len, M_BUS, flags); 621 if (msg == NULL) 622 return; /* Drop it on the floor */ 623 if (data != NULL) 624 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 625 system, subsystem, type, data); 626 else 627 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 628 system, subsystem, type); 629 devctl_queue_data_f(msg, flags); 630 } 631 632 void 633 devctl_notify(const char *system, const char *subsystem, const char *type, 634 const char *data) 635 { 636 637 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 638 } 639 640 /* 641 * Common routine that tries to make sending messages as easy as possible. 642 * We allocate memory for the data, copy strings into that, but do not 643 * free it unless there's an error. The dequeue part of the driver should 644 * free the data. We don't send data when the device is disabled. We do 645 * send data, even when we have no listeners, because we wish to avoid 646 * races relating to startup and restart of listening applications. 647 * 648 * devaddq is designed to string together the type of event, with the 649 * object of that event, plus the plug and play info and location info 650 * for that event. This is likely most useful for devices, but less 651 * useful for other consumers of this interface. Those should use 652 * the devctl_queue_data() interface instead. 653 */ 654 static void 655 devaddq(const char *type, const char *what, device_t dev) 656 { 657 char *data = NULL; 658 char *loc = NULL; 659 char *pnp = NULL; 660 const char *parstr; 661 662 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 663 return; 664 data = malloc(1024, M_BUS, M_NOWAIT); 665 if (data == NULL) 666 goto bad; 667 668 /* get the bus specific location of this device */ 669 loc = malloc(1024, M_BUS, M_NOWAIT); 670 if (loc == NULL) 671 goto bad; 672 *loc = '\0'; 673 bus_child_location_str(dev, loc, 1024); 674 675 /* Get the bus specific pnp info of this device */ 676 pnp = malloc(1024, M_BUS, M_NOWAIT); 677 if (pnp == NULL) 678 goto bad; 679 *pnp = '\0'; 680 bus_child_pnpinfo_str(dev, pnp, 1024); 681 682 /* Get the parent of this device, or / if high enough in the tree. */ 683 if (device_get_parent(dev) == NULL) 684 parstr = "."; /* Or '/' ? */ 685 else 686 parstr = device_get_nameunit(device_get_parent(dev)); 687 /* String it all together. */ 688 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 689 parstr); 690 free(loc, M_BUS); 691 free(pnp, M_BUS); 692 devctl_queue_data(data); 693 return; 694 bad: 695 free(pnp, M_BUS); 696 free(loc, M_BUS); 697 free(data, M_BUS); 698 return; 699 } 700 701 /* 702 * A device was added to the tree. We are called just after it successfully 703 * attaches (that is, probe and attach success for this device). No call 704 * is made if a device is merely parented into the tree. See devnomatch 705 * if probe fails. If attach fails, no notification is sent (but maybe 706 * we should have a different message for this). 707 */ 708 static void 709 devadded(device_t dev) 710 { 711 devaddq("+", device_get_nameunit(dev), dev); 712 } 713 714 /* 715 * A device was removed from the tree. We are called just before this 716 * happens. 717 */ 718 static void 719 devremoved(device_t dev) 720 { 721 devaddq("-", device_get_nameunit(dev), dev); 722 } 723 724 /* 725 * Called when there's no match for this device. This is only called 726 * the first time that no match happens, so we don't keep getting this 727 * message. Should that prove to be undesirable, we can change it. 728 * This is called when all drivers that can attach to a given bus 729 * decline to accept this device. Other errors may not be detected. 730 */ 731 static void 732 devnomatch(device_t dev) 733 { 734 devaddq("?", "", dev); 735 } 736 737 static int 738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 739 { 740 struct dev_event_info *n1; 741 int dis, error; 742 743 dis = devctl_queue_length == 0; 744 error = sysctl_handle_int(oidp, &dis, 0, req); 745 if (error || !req->newptr) 746 return (error); 747 mtx_lock(&devsoftc.mtx); 748 if (dis) { 749 while (!TAILQ_EMPTY(&devsoftc.devq)) { 750 n1 = TAILQ_FIRST(&devsoftc.devq); 751 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 752 free(n1->dei_data, M_BUS); 753 free(n1, M_BUS); 754 } 755 devsoftc.queued = 0; 756 devctl_queue_length = 0; 757 } else { 758 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 759 } 760 mtx_unlock(&devsoftc.mtx); 761 return (0); 762 } 763 764 static int 765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 766 { 767 struct dev_event_info *n1; 768 int q, error; 769 770 q = devctl_queue_length; 771 error = sysctl_handle_int(oidp, &q, 0, req); 772 if (error || !req->newptr) 773 return (error); 774 if (q < 0) 775 return (EINVAL); 776 mtx_lock(&devsoftc.mtx); 777 devctl_queue_length = q; 778 while (devsoftc.queued > devctl_queue_length) { 779 n1 = TAILQ_FIRST(&devsoftc.devq); 780 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 781 free(n1->dei_data, M_BUS); 782 free(n1, M_BUS); 783 devsoftc.queued--; 784 } 785 mtx_unlock(&devsoftc.mtx); 786 return (0); 787 } 788 789 /* End of /dev/devctl code */ 790 791 static TAILQ_HEAD(,device) bus_data_devices; 792 static int bus_data_generation = 1; 793 794 static kobj_method_t null_methods[] = { 795 KOBJMETHOD_END 796 }; 797 798 DEFINE_CLASS(null, null_methods, 0); 799 800 /* 801 * Bus pass implementation 802 */ 803 804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 805 int bus_current_pass = BUS_PASS_ROOT; 806 807 /** 808 * @internal 809 * @brief Register the pass level of a new driver attachment 810 * 811 * Register a new driver attachment's pass level. If no driver 812 * attachment with the same pass level has been added, then @p new 813 * will be added to the global passes list. 814 * 815 * @param new the new driver attachment 816 */ 817 static void 818 driver_register_pass(struct driverlink *new) 819 { 820 struct driverlink *dl; 821 822 /* We only consider pass numbers during boot. */ 823 if (bus_current_pass == BUS_PASS_DEFAULT) 824 return; 825 826 /* 827 * Walk the passes list. If we already know about this pass 828 * then there is nothing to do. If we don't, then insert this 829 * driver link into the list. 830 */ 831 TAILQ_FOREACH(dl, &passes, passlink) { 832 if (dl->pass < new->pass) 833 continue; 834 if (dl->pass == new->pass) 835 return; 836 TAILQ_INSERT_BEFORE(dl, new, passlink); 837 return; 838 } 839 TAILQ_INSERT_TAIL(&passes, new, passlink); 840 } 841 842 /** 843 * @brief Raise the current bus pass 844 * 845 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 846 * method on the root bus to kick off a new device tree scan for each 847 * new pass level that has at least one driver. 848 */ 849 void 850 bus_set_pass(int pass) 851 { 852 struct driverlink *dl; 853 854 if (bus_current_pass > pass) 855 panic("Attempt to lower bus pass level"); 856 857 TAILQ_FOREACH(dl, &passes, passlink) { 858 /* Skip pass values below the current pass level. */ 859 if (dl->pass <= bus_current_pass) 860 continue; 861 862 /* 863 * Bail once we hit a driver with a pass level that is 864 * too high. 865 */ 866 if (dl->pass > pass) 867 break; 868 869 /* 870 * Raise the pass level to the next level and rescan 871 * the tree. 872 */ 873 bus_current_pass = dl->pass; 874 BUS_NEW_PASS(root_bus); 875 } 876 877 /* 878 * If there isn't a driver registered for the requested pass, 879 * then bus_current_pass might still be less than 'pass'. Set 880 * it to 'pass' in that case. 881 */ 882 if (bus_current_pass < pass) 883 bus_current_pass = pass; 884 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 885 } 886 887 /* 888 * Devclass implementation 889 */ 890 891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 892 893 /** 894 * @internal 895 * @brief Find or create a device class 896 * 897 * If a device class with the name @p classname exists, return it, 898 * otherwise if @p create is non-zero create and return a new device 899 * class. 900 * 901 * If @p parentname is non-NULL, the parent of the devclass is set to 902 * the devclass of that name. 903 * 904 * @param classname the devclass name to find or create 905 * @param parentname the parent devclass name or @c NULL 906 * @param create non-zero to create a devclass 907 */ 908 static devclass_t 909 devclass_find_internal(const char *classname, const char *parentname, 910 int create) 911 { 912 devclass_t dc; 913 914 PDEBUG(("looking for %s", classname)); 915 if (!classname) 916 return (NULL); 917 918 TAILQ_FOREACH(dc, &devclasses, link) { 919 if (!strcmp(dc->name, classname)) 920 break; 921 } 922 923 if (create && !dc) { 924 PDEBUG(("creating %s", classname)); 925 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 926 M_BUS, M_NOWAIT | M_ZERO); 927 if (!dc) 928 return (NULL); 929 dc->parent = NULL; 930 dc->name = (char*) (dc + 1); 931 strcpy(dc->name, classname); 932 TAILQ_INIT(&dc->drivers); 933 TAILQ_INSERT_TAIL(&devclasses, dc, link); 934 935 bus_data_generation_update(); 936 } 937 938 /* 939 * If a parent class is specified, then set that as our parent so 940 * that this devclass will support drivers for the parent class as 941 * well. If the parent class has the same name don't do this though 942 * as it creates a cycle that can trigger an infinite loop in 943 * device_probe_child() if a device exists for which there is no 944 * suitable driver. 945 */ 946 if (parentname && dc && !dc->parent && 947 strcmp(classname, parentname) != 0) { 948 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 949 dc->parent->flags |= DC_HAS_CHILDREN; 950 } 951 952 return (dc); 953 } 954 955 /** 956 * @brief Create a device class 957 * 958 * If a device class with the name @p classname exists, return it, 959 * otherwise create and return a new device class. 960 * 961 * @param classname the devclass name to find or create 962 */ 963 devclass_t 964 devclass_create(const char *classname) 965 { 966 return (devclass_find_internal(classname, NULL, TRUE)); 967 } 968 969 /** 970 * @brief Find a device class 971 * 972 * If a device class with the name @p classname exists, return it, 973 * otherwise return @c NULL. 974 * 975 * @param classname the devclass name to find 976 */ 977 devclass_t 978 devclass_find(const char *classname) 979 { 980 return (devclass_find_internal(classname, NULL, FALSE)); 981 } 982 983 /** 984 * @brief Register that a device driver has been added to a devclass 985 * 986 * Register that a device driver has been added to a devclass. This 987 * is called by devclass_add_driver to accomplish the recursive 988 * notification of all the children classes of dc, as well as dc. 989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 990 * the devclass. 991 * 992 * We do a full search here of the devclass list at each iteration 993 * level to save storing children-lists in the devclass structure. If 994 * we ever move beyond a few dozen devices doing this, we may need to 995 * reevaluate... 996 * 997 * @param dc the devclass to edit 998 * @param driver the driver that was just added 999 */ 1000 static void 1001 devclass_driver_added(devclass_t dc, driver_t *driver) 1002 { 1003 devclass_t parent; 1004 int i; 1005 1006 /* 1007 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1008 */ 1009 for (i = 0; i < dc->maxunit; i++) 1010 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1011 BUS_DRIVER_ADDED(dc->devices[i], driver); 1012 1013 /* 1014 * Walk through the children classes. Since we only keep a 1015 * single parent pointer around, we walk the entire list of 1016 * devclasses looking for children. We set the 1017 * DC_HAS_CHILDREN flag when a child devclass is created on 1018 * the parent, so we only walk the list for those devclasses 1019 * that have children. 1020 */ 1021 if (!(dc->flags & DC_HAS_CHILDREN)) 1022 return; 1023 parent = dc; 1024 TAILQ_FOREACH(dc, &devclasses, link) { 1025 if (dc->parent == parent) 1026 devclass_driver_added(dc, driver); 1027 } 1028 } 1029 1030 /** 1031 * @brief Add a device driver to a device class 1032 * 1033 * Add a device driver to a devclass. This is normally called 1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1035 * all devices in the devclass will be called to allow them to attempt 1036 * to re-probe any unmatched children. 1037 * 1038 * @param dc the devclass to edit 1039 * @param driver the driver to register 1040 */ 1041 int 1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1043 { 1044 driverlink_t dl; 1045 const char *parentname; 1046 1047 PDEBUG(("%s", DRIVERNAME(driver))); 1048 1049 /* Don't allow invalid pass values. */ 1050 if (pass <= BUS_PASS_ROOT) 1051 return (EINVAL); 1052 1053 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1054 if (!dl) 1055 return (ENOMEM); 1056 1057 /* 1058 * Compile the driver's methods. Also increase the reference count 1059 * so that the class doesn't get freed when the last instance 1060 * goes. This means we can safely use static methods and avoids a 1061 * double-free in devclass_delete_driver. 1062 */ 1063 kobj_class_compile((kobj_class_t) driver); 1064 1065 /* 1066 * If the driver has any base classes, make the 1067 * devclass inherit from the devclass of the driver's 1068 * first base class. This will allow the system to 1069 * search for drivers in both devclasses for children 1070 * of a device using this driver. 1071 */ 1072 if (driver->baseclasses) 1073 parentname = driver->baseclasses[0]->name; 1074 else 1075 parentname = NULL; 1076 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1077 1078 dl->driver = driver; 1079 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1080 driver->refs++; /* XXX: kobj_mtx */ 1081 dl->pass = pass; 1082 driver_register_pass(dl); 1083 1084 devclass_driver_added(dc, driver); 1085 bus_data_generation_update(); 1086 return (0); 1087 } 1088 1089 /** 1090 * @brief Register that a device driver has been deleted from a devclass 1091 * 1092 * Register that a device driver has been removed from a devclass. 1093 * This is called by devclass_delete_driver to accomplish the 1094 * recursive notification of all the children classes of busclass, as 1095 * well as busclass. Each layer will attempt to detach the driver 1096 * from any devices that are children of the bus's devclass. The function 1097 * will return an error if a device fails to detach. 1098 * 1099 * We do a full search here of the devclass list at each iteration 1100 * level to save storing children-lists in the devclass structure. If 1101 * we ever move beyond a few dozen devices doing this, we may need to 1102 * reevaluate... 1103 * 1104 * @param busclass the devclass of the parent bus 1105 * @param dc the devclass of the driver being deleted 1106 * @param driver the driver being deleted 1107 */ 1108 static int 1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1110 { 1111 devclass_t parent; 1112 device_t dev; 1113 int error, i; 1114 1115 /* 1116 * Disassociate from any devices. We iterate through all the 1117 * devices in the devclass of the driver and detach any which are 1118 * using the driver and which have a parent in the devclass which 1119 * we are deleting from. 1120 * 1121 * Note that since a driver can be in multiple devclasses, we 1122 * should not detach devices which are not children of devices in 1123 * the affected devclass. 1124 */ 1125 for (i = 0; i < dc->maxunit; i++) { 1126 if (dc->devices[i]) { 1127 dev = dc->devices[i]; 1128 if (dev->driver == driver && dev->parent && 1129 dev->parent->devclass == busclass) { 1130 if ((error = device_detach(dev)) != 0) 1131 return (error); 1132 (void)device_set_driver(dev, NULL); 1133 BUS_PROBE_NOMATCH(dev->parent, dev); 1134 devnomatch(dev); 1135 dev->flags |= DF_DONENOMATCH; 1136 } 1137 } 1138 } 1139 1140 /* 1141 * Walk through the children classes. Since we only keep a 1142 * single parent pointer around, we walk the entire list of 1143 * devclasses looking for children. We set the 1144 * DC_HAS_CHILDREN flag when a child devclass is created on 1145 * the parent, so we only walk the list for those devclasses 1146 * that have children. 1147 */ 1148 if (!(busclass->flags & DC_HAS_CHILDREN)) 1149 return (0); 1150 parent = busclass; 1151 TAILQ_FOREACH(busclass, &devclasses, link) { 1152 if (busclass->parent == parent) { 1153 error = devclass_driver_deleted(busclass, dc, driver); 1154 if (error) 1155 return (error); 1156 } 1157 } 1158 return (0); 1159 } 1160 1161 /** 1162 * @brief Delete a device driver from a device class 1163 * 1164 * Delete a device driver from a devclass. This is normally called 1165 * automatically by DRIVER_MODULE(). 1166 * 1167 * If the driver is currently attached to any devices, 1168 * devclass_delete_driver() will first attempt to detach from each 1169 * device. If one of the detach calls fails, the driver will not be 1170 * deleted. 1171 * 1172 * @param dc the devclass to edit 1173 * @param driver the driver to unregister 1174 */ 1175 int 1176 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1177 { 1178 devclass_t dc = devclass_find(driver->name); 1179 driverlink_t dl; 1180 int error; 1181 1182 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1183 1184 if (!dc) 1185 return (0); 1186 1187 /* 1188 * Find the link structure in the bus' list of drivers. 1189 */ 1190 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1191 if (dl->driver == driver) 1192 break; 1193 } 1194 1195 if (!dl) { 1196 PDEBUG(("%s not found in %s list", driver->name, 1197 busclass->name)); 1198 return (ENOENT); 1199 } 1200 1201 error = devclass_driver_deleted(busclass, dc, driver); 1202 if (error != 0) 1203 return (error); 1204 1205 TAILQ_REMOVE(&busclass->drivers, dl, link); 1206 free(dl, M_BUS); 1207 1208 /* XXX: kobj_mtx */ 1209 driver->refs--; 1210 if (driver->refs == 0) 1211 kobj_class_free((kobj_class_t) driver); 1212 1213 bus_data_generation_update(); 1214 return (0); 1215 } 1216 1217 /** 1218 * @brief Quiesces a set of device drivers from a device class 1219 * 1220 * Quiesce a device driver from a devclass. This is normally called 1221 * automatically by DRIVER_MODULE(). 1222 * 1223 * If the driver is currently attached to any devices, 1224 * devclass_quiesece_driver() will first attempt to quiesce each 1225 * device. 1226 * 1227 * @param dc the devclass to edit 1228 * @param driver the driver to unregister 1229 */ 1230 static int 1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1232 { 1233 devclass_t dc = devclass_find(driver->name); 1234 driverlink_t dl; 1235 device_t dev; 1236 int i; 1237 int error; 1238 1239 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1240 1241 if (!dc) 1242 return (0); 1243 1244 /* 1245 * Find the link structure in the bus' list of drivers. 1246 */ 1247 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1248 if (dl->driver == driver) 1249 break; 1250 } 1251 1252 if (!dl) { 1253 PDEBUG(("%s not found in %s list", driver->name, 1254 busclass->name)); 1255 return (ENOENT); 1256 } 1257 1258 /* 1259 * Quiesce all devices. We iterate through all the devices in 1260 * the devclass of the driver and quiesce any which are using 1261 * the driver and which have a parent in the devclass which we 1262 * are quiescing. 1263 * 1264 * Note that since a driver can be in multiple devclasses, we 1265 * should not quiesce devices which are not children of 1266 * devices in the affected devclass. 1267 */ 1268 for (i = 0; i < dc->maxunit; i++) { 1269 if (dc->devices[i]) { 1270 dev = dc->devices[i]; 1271 if (dev->driver == driver && dev->parent && 1272 dev->parent->devclass == busclass) { 1273 if ((error = device_quiesce(dev)) != 0) 1274 return (error); 1275 } 1276 } 1277 } 1278 1279 return (0); 1280 } 1281 1282 /** 1283 * @internal 1284 */ 1285 static driverlink_t 1286 devclass_find_driver_internal(devclass_t dc, const char *classname) 1287 { 1288 driverlink_t dl; 1289 1290 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1291 1292 TAILQ_FOREACH(dl, &dc->drivers, link) { 1293 if (!strcmp(dl->driver->name, classname)) 1294 return (dl); 1295 } 1296 1297 PDEBUG(("not found")); 1298 return (NULL); 1299 } 1300 1301 /** 1302 * @brief Return the name of the devclass 1303 */ 1304 const char * 1305 devclass_get_name(devclass_t dc) 1306 { 1307 return (dc->name); 1308 } 1309 1310 /** 1311 * @brief Find a device given a unit number 1312 * 1313 * @param dc the devclass to search 1314 * @param unit the unit number to search for 1315 * 1316 * @returns the device with the given unit number or @c 1317 * NULL if there is no such device 1318 */ 1319 device_t 1320 devclass_get_device(devclass_t dc, int unit) 1321 { 1322 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1323 return (NULL); 1324 return (dc->devices[unit]); 1325 } 1326 1327 /** 1328 * @brief Find the softc field of a device given a unit number 1329 * 1330 * @param dc the devclass to search 1331 * @param unit the unit number to search for 1332 * 1333 * @returns the softc field of the device with the given 1334 * unit number or @c NULL if there is no such 1335 * device 1336 */ 1337 void * 1338 devclass_get_softc(devclass_t dc, int unit) 1339 { 1340 device_t dev; 1341 1342 dev = devclass_get_device(dc, unit); 1343 if (!dev) 1344 return (NULL); 1345 1346 return (device_get_softc(dev)); 1347 } 1348 1349 /** 1350 * @brief Get a list of devices in the devclass 1351 * 1352 * An array containing a list of all the devices in the given devclass 1353 * is allocated and returned in @p *devlistp. The number of devices 1354 * in the array is returned in @p *devcountp. The caller should free 1355 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1356 * 1357 * @param dc the devclass to examine 1358 * @param devlistp points at location for array pointer return 1359 * value 1360 * @param devcountp points at location for array size return value 1361 * 1362 * @retval 0 success 1363 * @retval ENOMEM the array allocation failed 1364 */ 1365 int 1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1367 { 1368 int count, i; 1369 device_t *list; 1370 1371 count = devclass_get_count(dc); 1372 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1373 if (!list) 1374 return (ENOMEM); 1375 1376 count = 0; 1377 for (i = 0; i < dc->maxunit; i++) { 1378 if (dc->devices[i]) { 1379 list[count] = dc->devices[i]; 1380 count++; 1381 } 1382 } 1383 1384 *devlistp = list; 1385 *devcountp = count; 1386 1387 return (0); 1388 } 1389 1390 /** 1391 * @brief Get a list of drivers in the devclass 1392 * 1393 * An array containing a list of pointers to all the drivers in the 1394 * given devclass is allocated and returned in @p *listp. The number 1395 * of drivers in the array is returned in @p *countp. The caller should 1396 * free the array using @c free(p, M_TEMP). 1397 * 1398 * @param dc the devclass to examine 1399 * @param listp gives location for array pointer return value 1400 * @param countp gives location for number of array elements 1401 * return value 1402 * 1403 * @retval 0 success 1404 * @retval ENOMEM the array allocation failed 1405 */ 1406 int 1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1408 { 1409 driverlink_t dl; 1410 driver_t **list; 1411 int count; 1412 1413 count = 0; 1414 TAILQ_FOREACH(dl, &dc->drivers, link) 1415 count++; 1416 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1417 if (list == NULL) 1418 return (ENOMEM); 1419 1420 count = 0; 1421 TAILQ_FOREACH(dl, &dc->drivers, link) { 1422 list[count] = dl->driver; 1423 count++; 1424 } 1425 *listp = list; 1426 *countp = count; 1427 1428 return (0); 1429 } 1430 1431 /** 1432 * @brief Get the number of devices in a devclass 1433 * 1434 * @param dc the devclass to examine 1435 */ 1436 int 1437 devclass_get_count(devclass_t dc) 1438 { 1439 int count, i; 1440 1441 count = 0; 1442 for (i = 0; i < dc->maxunit; i++) 1443 if (dc->devices[i]) 1444 count++; 1445 return (count); 1446 } 1447 1448 /** 1449 * @brief Get the maximum unit number used in a devclass 1450 * 1451 * Note that this is one greater than the highest currently-allocated 1452 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1453 * that not even the devclass has been allocated yet. 1454 * 1455 * @param dc the devclass to examine 1456 */ 1457 int 1458 devclass_get_maxunit(devclass_t dc) 1459 { 1460 if (dc == NULL) 1461 return (-1); 1462 return (dc->maxunit); 1463 } 1464 1465 /** 1466 * @brief Find a free unit number in a devclass 1467 * 1468 * This function searches for the first unused unit number greater 1469 * that or equal to @p unit. 1470 * 1471 * @param dc the devclass to examine 1472 * @param unit the first unit number to check 1473 */ 1474 int 1475 devclass_find_free_unit(devclass_t dc, int unit) 1476 { 1477 if (dc == NULL) 1478 return (unit); 1479 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1480 unit++; 1481 return (unit); 1482 } 1483 1484 /** 1485 * @brief Set the parent of a devclass 1486 * 1487 * The parent class is normally initialised automatically by 1488 * DRIVER_MODULE(). 1489 * 1490 * @param dc the devclass to edit 1491 * @param pdc the new parent devclass 1492 */ 1493 void 1494 devclass_set_parent(devclass_t dc, devclass_t pdc) 1495 { 1496 dc->parent = pdc; 1497 } 1498 1499 /** 1500 * @brief Get the parent of a devclass 1501 * 1502 * @param dc the devclass to examine 1503 */ 1504 devclass_t 1505 devclass_get_parent(devclass_t dc) 1506 { 1507 return (dc->parent); 1508 } 1509 1510 struct sysctl_ctx_list * 1511 devclass_get_sysctl_ctx(devclass_t dc) 1512 { 1513 return (&dc->sysctl_ctx); 1514 } 1515 1516 struct sysctl_oid * 1517 devclass_get_sysctl_tree(devclass_t dc) 1518 { 1519 return (dc->sysctl_tree); 1520 } 1521 1522 /** 1523 * @internal 1524 * @brief Allocate a unit number 1525 * 1526 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1527 * will do). The allocated unit number is returned in @p *unitp. 1528 1529 * @param dc the devclass to allocate from 1530 * @param unitp points at the location for the allocated unit 1531 * number 1532 * 1533 * @retval 0 success 1534 * @retval EEXIST the requested unit number is already allocated 1535 * @retval ENOMEM memory allocation failure 1536 */ 1537 static int 1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1539 { 1540 const char *s; 1541 int unit = *unitp; 1542 1543 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1544 1545 /* Ask the parent bus if it wants to wire this device. */ 1546 if (unit == -1) 1547 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1548 &unit); 1549 1550 /* If we were given a wired unit number, check for existing device */ 1551 /* XXX imp XXX */ 1552 if (unit != -1) { 1553 if (unit >= 0 && unit < dc->maxunit && 1554 dc->devices[unit] != NULL) { 1555 if (bootverbose) 1556 printf("%s: %s%d already exists; skipping it\n", 1557 dc->name, dc->name, *unitp); 1558 return (EEXIST); 1559 } 1560 } else { 1561 /* Unwired device, find the next available slot for it */ 1562 unit = 0; 1563 for (unit = 0;; unit++) { 1564 /* If there is an "at" hint for a unit then skip it. */ 1565 if (resource_string_value(dc->name, unit, "at", &s) == 1566 0) 1567 continue; 1568 1569 /* If this device slot is already in use, skip it. */ 1570 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1571 continue; 1572 1573 break; 1574 } 1575 } 1576 1577 /* 1578 * We've selected a unit beyond the length of the table, so let's 1579 * extend the table to make room for all units up to and including 1580 * this one. 1581 */ 1582 if (unit >= dc->maxunit) { 1583 device_t *newlist, *oldlist; 1584 int newsize; 1585 1586 oldlist = dc->devices; 1587 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1588 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1589 if (!newlist) 1590 return (ENOMEM); 1591 if (oldlist != NULL) 1592 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1593 bzero(newlist + dc->maxunit, 1594 sizeof(device_t) * (newsize - dc->maxunit)); 1595 dc->devices = newlist; 1596 dc->maxunit = newsize; 1597 if (oldlist != NULL) 1598 free(oldlist, M_BUS); 1599 } 1600 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1601 1602 *unitp = unit; 1603 return (0); 1604 } 1605 1606 /** 1607 * @internal 1608 * @brief Add a device to a devclass 1609 * 1610 * A unit number is allocated for the device (using the device's 1611 * preferred unit number if any) and the device is registered in the 1612 * devclass. This allows the device to be looked up by its unit 1613 * number, e.g. by decoding a dev_t minor number. 1614 * 1615 * @param dc the devclass to add to 1616 * @param dev the device to add 1617 * 1618 * @retval 0 success 1619 * @retval EEXIST the requested unit number is already allocated 1620 * @retval ENOMEM memory allocation failure 1621 */ 1622 static int 1623 devclass_add_device(devclass_t dc, device_t dev) 1624 { 1625 int buflen, error; 1626 1627 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1628 1629 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1630 if (buflen < 0) 1631 return (ENOMEM); 1632 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1633 if (!dev->nameunit) 1634 return (ENOMEM); 1635 1636 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1637 free(dev->nameunit, M_BUS); 1638 dev->nameunit = NULL; 1639 return (error); 1640 } 1641 dc->devices[dev->unit] = dev; 1642 dev->devclass = dc; 1643 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1644 1645 return (0); 1646 } 1647 1648 /** 1649 * @internal 1650 * @brief Delete a device from a devclass 1651 * 1652 * The device is removed from the devclass's device list and its unit 1653 * number is freed. 1654 1655 * @param dc the devclass to delete from 1656 * @param dev the device to delete 1657 * 1658 * @retval 0 success 1659 */ 1660 static int 1661 devclass_delete_device(devclass_t dc, device_t dev) 1662 { 1663 if (!dc || !dev) 1664 return (0); 1665 1666 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1667 1668 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1669 panic("devclass_delete_device: inconsistent device class"); 1670 dc->devices[dev->unit] = NULL; 1671 if (dev->flags & DF_WILDCARD) 1672 dev->unit = -1; 1673 dev->devclass = NULL; 1674 free(dev->nameunit, M_BUS); 1675 dev->nameunit = NULL; 1676 1677 return (0); 1678 } 1679 1680 /** 1681 * @internal 1682 * @brief Make a new device and add it as a child of @p parent 1683 * 1684 * @param parent the parent of the new device 1685 * @param name the devclass name of the new device or @c NULL 1686 * to leave the devclass unspecified 1687 * @parem unit the unit number of the new device of @c -1 to 1688 * leave the unit number unspecified 1689 * 1690 * @returns the new device 1691 */ 1692 static device_t 1693 make_device(device_t parent, const char *name, int unit) 1694 { 1695 device_t dev; 1696 devclass_t dc; 1697 1698 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1699 1700 if (name) { 1701 dc = devclass_find_internal(name, NULL, TRUE); 1702 if (!dc) { 1703 printf("make_device: can't find device class %s\n", 1704 name); 1705 return (NULL); 1706 } 1707 } else { 1708 dc = NULL; 1709 } 1710 1711 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1712 if (!dev) 1713 return (NULL); 1714 1715 dev->parent = parent; 1716 TAILQ_INIT(&dev->children); 1717 kobj_init((kobj_t) dev, &null_class); 1718 dev->driver = NULL; 1719 dev->devclass = NULL; 1720 dev->unit = unit; 1721 dev->nameunit = NULL; 1722 dev->desc = NULL; 1723 dev->busy = 0; 1724 dev->devflags = 0; 1725 dev->flags = DF_ENABLED; 1726 dev->order = 0; 1727 if (unit == -1) 1728 dev->flags |= DF_WILDCARD; 1729 if (name) { 1730 dev->flags |= DF_FIXEDCLASS; 1731 if (devclass_add_device(dc, dev)) { 1732 kobj_delete((kobj_t) dev, M_BUS); 1733 return (NULL); 1734 } 1735 } 1736 dev->ivars = NULL; 1737 dev->softc = NULL; 1738 1739 dev->state = DS_NOTPRESENT; 1740 1741 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1742 bus_data_generation_update(); 1743 1744 return (dev); 1745 } 1746 1747 /** 1748 * @internal 1749 * @brief Print a description of a device. 1750 */ 1751 static int 1752 device_print_child(device_t dev, device_t child) 1753 { 1754 int retval = 0; 1755 1756 if (device_is_alive(child)) 1757 retval += BUS_PRINT_CHILD(dev, child); 1758 else 1759 retval += device_printf(child, " not found\n"); 1760 1761 return (retval); 1762 } 1763 1764 /** 1765 * @brief Create a new device 1766 * 1767 * This creates a new device and adds it as a child of an existing 1768 * parent device. The new device will be added after the last existing 1769 * child with order zero. 1770 * 1771 * @param dev the device which will be the parent of the 1772 * new child device 1773 * @param name devclass name for new device or @c NULL if not 1774 * specified 1775 * @param unit unit number for new device or @c -1 if not 1776 * specified 1777 * 1778 * @returns the new device 1779 */ 1780 device_t 1781 device_add_child(device_t dev, const char *name, int unit) 1782 { 1783 return (device_add_child_ordered(dev, 0, name, unit)); 1784 } 1785 1786 /** 1787 * @brief Create a new device 1788 * 1789 * This creates a new device and adds it as a child of an existing 1790 * parent device. The new device will be added after the last existing 1791 * child with the same order. 1792 * 1793 * @param dev the device which will be the parent of the 1794 * new child device 1795 * @param order a value which is used to partially sort the 1796 * children of @p dev - devices created using 1797 * lower values of @p order appear first in @p 1798 * dev's list of children 1799 * @param name devclass name for new device or @c NULL if not 1800 * specified 1801 * @param unit unit number for new device or @c -1 if not 1802 * specified 1803 * 1804 * @returns the new device 1805 */ 1806 device_t 1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1808 { 1809 device_t child; 1810 device_t place; 1811 1812 PDEBUG(("%s at %s with order %u as unit %d", 1813 name, DEVICENAME(dev), order, unit)); 1814 1815 child = make_device(dev, name, unit); 1816 if (child == NULL) 1817 return (child); 1818 child->order = order; 1819 1820 TAILQ_FOREACH(place, &dev->children, link) { 1821 if (place->order > order) 1822 break; 1823 } 1824 1825 if (place) { 1826 /* 1827 * The device 'place' is the first device whose order is 1828 * greater than the new child. 1829 */ 1830 TAILQ_INSERT_BEFORE(place, child, link); 1831 } else { 1832 /* 1833 * The new child's order is greater or equal to the order of 1834 * any existing device. Add the child to the tail of the list. 1835 */ 1836 TAILQ_INSERT_TAIL(&dev->children, child, link); 1837 } 1838 1839 bus_data_generation_update(); 1840 return (child); 1841 } 1842 1843 /** 1844 * @brief Delete a device 1845 * 1846 * This function deletes a device along with all of its children. If 1847 * the device currently has a driver attached to it, the device is 1848 * detached first using device_detach(). 1849 * 1850 * @param dev the parent device 1851 * @param child the device to delete 1852 * 1853 * @retval 0 success 1854 * @retval non-zero a unit error code describing the error 1855 */ 1856 int 1857 device_delete_child(device_t dev, device_t child) 1858 { 1859 int error; 1860 device_t grandchild; 1861 1862 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1863 1864 /* remove children first */ 1865 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1866 error = device_delete_child(child, grandchild); 1867 if (error) 1868 return (error); 1869 } 1870 1871 if ((error = device_detach(child)) != 0) 1872 return (error); 1873 if (child->devclass) 1874 devclass_delete_device(child->devclass, child); 1875 TAILQ_REMOVE(&dev->children, child, link); 1876 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1877 kobj_delete((kobj_t) child, M_BUS); 1878 1879 bus_data_generation_update(); 1880 return (0); 1881 } 1882 1883 /** 1884 * @brief Delete all children devices of the given device, if any. 1885 * 1886 * This function deletes all children devices of the given device, if 1887 * any, using the device_delete_child() function for each device it 1888 * finds. If a child device cannot be deleted, this function will 1889 * return an error code. 1890 * 1891 * @param dev the parent device 1892 * 1893 * @retval 0 success 1894 * @retval non-zero a device would not detach 1895 */ 1896 int 1897 device_delete_children(device_t dev) 1898 { 1899 device_t child; 1900 int error; 1901 1902 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1903 1904 error = 0; 1905 1906 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1907 error = device_delete_child(dev, child); 1908 if (error) { 1909 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1910 break; 1911 } 1912 } 1913 return (error); 1914 } 1915 1916 /** 1917 * @brief Find a device given a unit number 1918 * 1919 * This is similar to devclass_get_devices() but only searches for 1920 * devices which have @p dev as a parent. 1921 * 1922 * @param dev the parent device to search 1923 * @param unit the unit number to search for. If the unit is -1, 1924 * return the first child of @p dev which has name 1925 * @p classname (that is, the one with the lowest unit.) 1926 * 1927 * @returns the device with the given unit number or @c 1928 * NULL if there is no such device 1929 */ 1930 device_t 1931 device_find_child(device_t dev, const char *classname, int unit) 1932 { 1933 devclass_t dc; 1934 device_t child; 1935 1936 dc = devclass_find(classname); 1937 if (!dc) 1938 return (NULL); 1939 1940 if (unit != -1) { 1941 child = devclass_get_device(dc, unit); 1942 if (child && child->parent == dev) 1943 return (child); 1944 } else { 1945 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1946 child = devclass_get_device(dc, unit); 1947 if (child && child->parent == dev) 1948 return (child); 1949 } 1950 } 1951 return (NULL); 1952 } 1953 1954 /** 1955 * @internal 1956 */ 1957 static driverlink_t 1958 first_matching_driver(devclass_t dc, device_t dev) 1959 { 1960 if (dev->devclass) 1961 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1962 return (TAILQ_FIRST(&dc->drivers)); 1963 } 1964 1965 /** 1966 * @internal 1967 */ 1968 static driverlink_t 1969 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1970 { 1971 if (dev->devclass) { 1972 driverlink_t dl; 1973 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1974 if (!strcmp(dev->devclass->name, dl->driver->name)) 1975 return (dl); 1976 return (NULL); 1977 } 1978 return (TAILQ_NEXT(last, link)); 1979 } 1980 1981 /** 1982 * @internal 1983 */ 1984 int 1985 device_probe_child(device_t dev, device_t child) 1986 { 1987 devclass_t dc; 1988 driverlink_t best = NULL; 1989 driverlink_t dl; 1990 int result, pri = 0; 1991 int hasclass = (child->devclass != NULL); 1992 1993 GIANT_REQUIRED; 1994 1995 dc = dev->devclass; 1996 if (!dc) 1997 panic("device_probe_child: parent device has no devclass"); 1998 1999 /* 2000 * If the state is already probed, then return. However, don't 2001 * return if we can rebid this object. 2002 */ 2003 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2004 return (0); 2005 2006 for (; dc; dc = dc->parent) { 2007 for (dl = first_matching_driver(dc, child); 2008 dl; 2009 dl = next_matching_driver(dc, child, dl)) { 2010 /* If this driver's pass is too high, then ignore it. */ 2011 if (dl->pass > bus_current_pass) 2012 continue; 2013 2014 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2015 result = device_set_driver(child, dl->driver); 2016 if (result == ENOMEM) 2017 return (result); 2018 else if (result != 0) 2019 continue; 2020 if (!hasclass) { 2021 if (device_set_devclass(child, 2022 dl->driver->name) != 0) { 2023 printf("driver bug: Unable to set " 2024 "devclass (devname: %s)\n", 2025 device_get_name(child)); 2026 (void)device_set_driver(child, NULL); 2027 continue; 2028 } 2029 } 2030 2031 /* Fetch any flags for the device before probing. */ 2032 resource_int_value(dl->driver->name, child->unit, 2033 "flags", &child->devflags); 2034 2035 result = DEVICE_PROBE(child); 2036 2037 /* Reset flags and devclass before the next probe. */ 2038 child->devflags = 0; 2039 if (!hasclass) 2040 (void)device_set_devclass(child, NULL); 2041 2042 /* 2043 * If the driver returns SUCCESS, there can be 2044 * no higher match for this device. 2045 */ 2046 if (result == 0) { 2047 best = dl; 2048 pri = 0; 2049 break; 2050 } 2051 2052 /* 2053 * The driver returned an error so it 2054 * certainly doesn't match. 2055 */ 2056 if (result > 0) { 2057 (void)device_set_driver(child, NULL); 2058 continue; 2059 } 2060 2061 /* 2062 * A priority lower than SUCCESS, remember the 2063 * best matching driver. Initialise the value 2064 * of pri for the first match. 2065 */ 2066 if (best == NULL || result > pri) { 2067 /* 2068 * Probes that return BUS_PROBE_NOWILDCARD 2069 * or lower only match when they are set 2070 * in stone by the parent bus. 2071 */ 2072 if (result <= BUS_PROBE_NOWILDCARD && 2073 child->flags & DF_WILDCARD) 2074 continue; 2075 best = dl; 2076 pri = result; 2077 continue; 2078 } 2079 } 2080 /* 2081 * If we have an unambiguous match in this devclass, 2082 * don't look in the parent. 2083 */ 2084 if (best && pri == 0) 2085 break; 2086 } 2087 2088 /* 2089 * If we found a driver, change state and initialise the devclass. 2090 */ 2091 /* XXX What happens if we rebid and got no best? */ 2092 if (best) { 2093 /* 2094 * If this device was atached, and we were asked to 2095 * rescan, and it is a different driver, then we have 2096 * to detach the old driver and reattach this new one. 2097 * Note, we don't have to check for DF_REBID here 2098 * because if the state is > DS_ALIVE, we know it must 2099 * be. 2100 * 2101 * This assumes that all DF_REBID drivers can have 2102 * their probe routine called at any time and that 2103 * they are idempotent as well as completely benign in 2104 * normal operations. 2105 * 2106 * We also have to make sure that the detach 2107 * succeeded, otherwise we fail the operation (or 2108 * maybe it should just fail silently? I'm torn). 2109 */ 2110 if (child->state > DS_ALIVE && best->driver != child->driver) 2111 if ((result = device_detach(dev)) != 0) 2112 return (result); 2113 2114 /* Set the winning driver, devclass, and flags. */ 2115 if (!child->devclass) { 2116 result = device_set_devclass(child, best->driver->name); 2117 if (result != 0) 2118 return (result); 2119 } 2120 result = device_set_driver(child, best->driver); 2121 if (result != 0) 2122 return (result); 2123 resource_int_value(best->driver->name, child->unit, 2124 "flags", &child->devflags); 2125 2126 if (pri < 0) { 2127 /* 2128 * A bit bogus. Call the probe method again to make 2129 * sure that we have the right description. 2130 */ 2131 DEVICE_PROBE(child); 2132 #if 0 2133 child->flags |= DF_REBID; 2134 #endif 2135 } else 2136 child->flags &= ~DF_REBID; 2137 child->state = DS_ALIVE; 2138 2139 bus_data_generation_update(); 2140 return (0); 2141 } 2142 2143 return (ENXIO); 2144 } 2145 2146 /** 2147 * @brief Return the parent of a device 2148 */ 2149 device_t 2150 device_get_parent(device_t dev) 2151 { 2152 return (dev->parent); 2153 } 2154 2155 /** 2156 * @brief Get a list of children of a device 2157 * 2158 * An array containing a list of all the children of the given device 2159 * is allocated and returned in @p *devlistp. The number of devices 2160 * in the array is returned in @p *devcountp. The caller should free 2161 * the array using @c free(p, M_TEMP). 2162 * 2163 * @param dev the device to examine 2164 * @param devlistp points at location for array pointer return 2165 * value 2166 * @param devcountp points at location for array size return value 2167 * 2168 * @retval 0 success 2169 * @retval ENOMEM the array allocation failed 2170 */ 2171 int 2172 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2173 { 2174 int count; 2175 device_t child; 2176 device_t *list; 2177 2178 count = 0; 2179 TAILQ_FOREACH(child, &dev->children, link) { 2180 count++; 2181 } 2182 if (count == 0) { 2183 *devlistp = NULL; 2184 *devcountp = 0; 2185 return (0); 2186 } 2187 2188 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2189 if (!list) 2190 return (ENOMEM); 2191 2192 count = 0; 2193 TAILQ_FOREACH(child, &dev->children, link) { 2194 list[count] = child; 2195 count++; 2196 } 2197 2198 *devlistp = list; 2199 *devcountp = count; 2200 2201 return (0); 2202 } 2203 2204 /** 2205 * @brief Return the current driver for the device or @c NULL if there 2206 * is no driver currently attached 2207 */ 2208 driver_t * 2209 device_get_driver(device_t dev) 2210 { 2211 return (dev->driver); 2212 } 2213 2214 /** 2215 * @brief Return the current devclass for the device or @c NULL if 2216 * there is none. 2217 */ 2218 devclass_t 2219 device_get_devclass(device_t dev) 2220 { 2221 return (dev->devclass); 2222 } 2223 2224 /** 2225 * @brief Return the name of the device's devclass or @c NULL if there 2226 * is none. 2227 */ 2228 const char * 2229 device_get_name(device_t dev) 2230 { 2231 if (dev != NULL && dev->devclass) 2232 return (devclass_get_name(dev->devclass)); 2233 return (NULL); 2234 } 2235 2236 /** 2237 * @brief Return a string containing the device's devclass name 2238 * followed by an ascii representation of the device's unit number 2239 * (e.g. @c "foo2"). 2240 */ 2241 const char * 2242 device_get_nameunit(device_t dev) 2243 { 2244 return (dev->nameunit); 2245 } 2246 2247 /** 2248 * @brief Return the device's unit number. 2249 */ 2250 int 2251 device_get_unit(device_t dev) 2252 { 2253 return (dev->unit); 2254 } 2255 2256 /** 2257 * @brief Return the device's description string 2258 */ 2259 const char * 2260 device_get_desc(device_t dev) 2261 { 2262 return (dev->desc); 2263 } 2264 2265 /** 2266 * @brief Return the device's flags 2267 */ 2268 uint32_t 2269 device_get_flags(device_t dev) 2270 { 2271 return (dev->devflags); 2272 } 2273 2274 struct sysctl_ctx_list * 2275 device_get_sysctl_ctx(device_t dev) 2276 { 2277 return (&dev->sysctl_ctx); 2278 } 2279 2280 struct sysctl_oid * 2281 device_get_sysctl_tree(device_t dev) 2282 { 2283 return (dev->sysctl_tree); 2284 } 2285 2286 /** 2287 * @brief Print the name of the device followed by a colon and a space 2288 * 2289 * @returns the number of characters printed 2290 */ 2291 int 2292 device_print_prettyname(device_t dev) 2293 { 2294 const char *name = device_get_name(dev); 2295 2296 if (name == NULL) 2297 return (printf("unknown: ")); 2298 return (printf("%s%d: ", name, device_get_unit(dev))); 2299 } 2300 2301 /** 2302 * @brief Print the name of the device followed by a colon, a space 2303 * and the result of calling vprintf() with the value of @p fmt and 2304 * the following arguments. 2305 * 2306 * @returns the number of characters printed 2307 */ 2308 int 2309 device_printf(device_t dev, const char * fmt, ...) 2310 { 2311 va_list ap; 2312 int retval; 2313 2314 retval = device_print_prettyname(dev); 2315 va_start(ap, fmt); 2316 retval += vprintf(fmt, ap); 2317 va_end(ap); 2318 return (retval); 2319 } 2320 2321 /** 2322 * @internal 2323 */ 2324 static void 2325 device_set_desc_internal(device_t dev, const char* desc, int copy) 2326 { 2327 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2328 free(dev->desc, M_BUS); 2329 dev->flags &= ~DF_DESCMALLOCED; 2330 dev->desc = NULL; 2331 } 2332 2333 if (copy && desc) { 2334 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2335 if (dev->desc) { 2336 strcpy(dev->desc, desc); 2337 dev->flags |= DF_DESCMALLOCED; 2338 } 2339 } else { 2340 /* Avoid a -Wcast-qual warning */ 2341 dev->desc = (char *)(uintptr_t) desc; 2342 } 2343 2344 bus_data_generation_update(); 2345 } 2346 2347 /** 2348 * @brief Set the device's description 2349 * 2350 * The value of @c desc should be a string constant that will not 2351 * change (at least until the description is changed in a subsequent 2352 * call to device_set_desc() or device_set_desc_copy()). 2353 */ 2354 void 2355 device_set_desc(device_t dev, const char* desc) 2356 { 2357 device_set_desc_internal(dev, desc, FALSE); 2358 } 2359 2360 /** 2361 * @brief Set the device's description 2362 * 2363 * The string pointed to by @c desc is copied. Use this function if 2364 * the device description is generated, (e.g. with sprintf()). 2365 */ 2366 void 2367 device_set_desc_copy(device_t dev, const char* desc) 2368 { 2369 device_set_desc_internal(dev, desc, TRUE); 2370 } 2371 2372 /** 2373 * @brief Set the device's flags 2374 */ 2375 void 2376 device_set_flags(device_t dev, uint32_t flags) 2377 { 2378 dev->devflags = flags; 2379 } 2380 2381 /** 2382 * @brief Return the device's softc field 2383 * 2384 * The softc is allocated and zeroed when a driver is attached, based 2385 * on the size field of the driver. 2386 */ 2387 void * 2388 device_get_softc(device_t dev) 2389 { 2390 return (dev->softc); 2391 } 2392 2393 /** 2394 * @brief Set the device's softc field 2395 * 2396 * Most drivers do not need to use this since the softc is allocated 2397 * automatically when the driver is attached. 2398 */ 2399 void 2400 device_set_softc(device_t dev, void *softc) 2401 { 2402 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2403 free(dev->softc, M_BUS_SC); 2404 dev->softc = softc; 2405 if (dev->softc) 2406 dev->flags |= DF_EXTERNALSOFTC; 2407 else 2408 dev->flags &= ~DF_EXTERNALSOFTC; 2409 } 2410 2411 /** 2412 * @brief Get the device's ivars field 2413 * 2414 * The ivars field is used by the parent device to store per-device 2415 * state (e.g. the physical location of the device or a list of 2416 * resources). 2417 */ 2418 void * 2419 device_get_ivars(device_t dev) 2420 { 2421 2422 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2423 return (dev->ivars); 2424 } 2425 2426 /** 2427 * @brief Set the device's ivars field 2428 */ 2429 void 2430 device_set_ivars(device_t dev, void * ivars) 2431 { 2432 2433 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2434 dev->ivars = ivars; 2435 } 2436 2437 /** 2438 * @brief Return the device's state 2439 */ 2440 device_state_t 2441 device_get_state(device_t dev) 2442 { 2443 return (dev->state); 2444 } 2445 2446 /** 2447 * @brief Set the DF_ENABLED flag for the device 2448 */ 2449 void 2450 device_enable(device_t dev) 2451 { 2452 dev->flags |= DF_ENABLED; 2453 } 2454 2455 /** 2456 * @brief Clear the DF_ENABLED flag for the device 2457 */ 2458 void 2459 device_disable(device_t dev) 2460 { 2461 dev->flags &= ~DF_ENABLED; 2462 } 2463 2464 /** 2465 * @brief Increment the busy counter for the device 2466 */ 2467 void 2468 device_busy(device_t dev) 2469 { 2470 if (dev->state < DS_ATTACHED) 2471 panic("device_busy: called for unattached device"); 2472 if (dev->busy == 0 && dev->parent) 2473 device_busy(dev->parent); 2474 dev->busy++; 2475 dev->state = DS_BUSY; 2476 } 2477 2478 /** 2479 * @brief Decrement the busy counter for the device 2480 */ 2481 void 2482 device_unbusy(device_t dev) 2483 { 2484 if (dev->state != DS_BUSY) 2485 panic("device_unbusy: called for non-busy device %s", 2486 device_get_nameunit(dev)); 2487 dev->busy--; 2488 if (dev->busy == 0) { 2489 if (dev->parent) 2490 device_unbusy(dev->parent); 2491 dev->state = DS_ATTACHED; 2492 } 2493 } 2494 2495 /** 2496 * @brief Set the DF_QUIET flag for the device 2497 */ 2498 void 2499 device_quiet(device_t dev) 2500 { 2501 dev->flags |= DF_QUIET; 2502 } 2503 2504 /** 2505 * @brief Clear the DF_QUIET flag for the device 2506 */ 2507 void 2508 device_verbose(device_t dev) 2509 { 2510 dev->flags &= ~DF_QUIET; 2511 } 2512 2513 /** 2514 * @brief Return non-zero if the DF_QUIET flag is set on the device 2515 */ 2516 int 2517 device_is_quiet(device_t dev) 2518 { 2519 return ((dev->flags & DF_QUIET) != 0); 2520 } 2521 2522 /** 2523 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2524 */ 2525 int 2526 device_is_enabled(device_t dev) 2527 { 2528 return ((dev->flags & DF_ENABLED) != 0); 2529 } 2530 2531 /** 2532 * @brief Return non-zero if the device was successfully probed 2533 */ 2534 int 2535 device_is_alive(device_t dev) 2536 { 2537 return (dev->state >= DS_ALIVE); 2538 } 2539 2540 /** 2541 * @brief Return non-zero if the device currently has a driver 2542 * attached to it 2543 */ 2544 int 2545 device_is_attached(device_t dev) 2546 { 2547 return (dev->state >= DS_ATTACHED); 2548 } 2549 2550 /** 2551 * @brief Set the devclass of a device 2552 * @see devclass_add_device(). 2553 */ 2554 int 2555 device_set_devclass(device_t dev, const char *classname) 2556 { 2557 devclass_t dc; 2558 int error; 2559 2560 if (!classname) { 2561 if (dev->devclass) 2562 devclass_delete_device(dev->devclass, dev); 2563 return (0); 2564 } 2565 2566 if (dev->devclass) { 2567 printf("device_set_devclass: device class already set\n"); 2568 return (EINVAL); 2569 } 2570 2571 dc = devclass_find_internal(classname, NULL, TRUE); 2572 if (!dc) 2573 return (ENOMEM); 2574 2575 error = devclass_add_device(dc, dev); 2576 2577 bus_data_generation_update(); 2578 return (error); 2579 } 2580 2581 /** 2582 * @brief Set the driver of a device 2583 * 2584 * @retval 0 success 2585 * @retval EBUSY the device already has a driver attached 2586 * @retval ENOMEM a memory allocation failure occurred 2587 */ 2588 int 2589 device_set_driver(device_t dev, driver_t *driver) 2590 { 2591 if (dev->state >= DS_ATTACHED) 2592 return (EBUSY); 2593 2594 if (dev->driver == driver) 2595 return (0); 2596 2597 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2598 free(dev->softc, M_BUS_SC); 2599 dev->softc = NULL; 2600 } 2601 kobj_delete((kobj_t) dev, NULL); 2602 dev->driver = driver; 2603 if (driver) { 2604 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2605 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2606 dev->softc = malloc(driver->size, M_BUS_SC, 2607 M_NOWAIT | M_ZERO); 2608 if (!dev->softc) { 2609 kobj_delete((kobj_t) dev, NULL); 2610 kobj_init((kobj_t) dev, &null_class); 2611 dev->driver = NULL; 2612 return (ENOMEM); 2613 } 2614 } 2615 } else { 2616 kobj_init((kobj_t) dev, &null_class); 2617 } 2618 2619 bus_data_generation_update(); 2620 return (0); 2621 } 2622 2623 /** 2624 * @brief Probe a device, and return this status. 2625 * 2626 * This function is the core of the device autoconfiguration 2627 * system. Its purpose is to select a suitable driver for a device and 2628 * then call that driver to initialise the hardware appropriately. The 2629 * driver is selected by calling the DEVICE_PROBE() method of a set of 2630 * candidate drivers and then choosing the driver which returned the 2631 * best value. This driver is then attached to the device using 2632 * device_attach(). 2633 * 2634 * The set of suitable drivers is taken from the list of drivers in 2635 * the parent device's devclass. If the device was originally created 2636 * with a specific class name (see device_add_child()), only drivers 2637 * with that name are probed, otherwise all drivers in the devclass 2638 * are probed. If no drivers return successful probe values in the 2639 * parent devclass, the search continues in the parent of that 2640 * devclass (see devclass_get_parent()) if any. 2641 * 2642 * @param dev the device to initialise 2643 * 2644 * @retval 0 success 2645 * @retval ENXIO no driver was found 2646 * @retval ENOMEM memory allocation failure 2647 * @retval non-zero some other unix error code 2648 * @retval -1 Device already attached 2649 */ 2650 int 2651 device_probe(device_t dev) 2652 { 2653 int error; 2654 2655 GIANT_REQUIRED; 2656 2657 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2658 return (-1); 2659 2660 if (!(dev->flags & DF_ENABLED)) { 2661 if (bootverbose && device_get_name(dev) != NULL) { 2662 device_print_prettyname(dev); 2663 printf("not probed (disabled)\n"); 2664 } 2665 return (-1); 2666 } 2667 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2668 if (bus_current_pass == BUS_PASS_DEFAULT && 2669 !(dev->flags & DF_DONENOMATCH)) { 2670 BUS_PROBE_NOMATCH(dev->parent, dev); 2671 devnomatch(dev); 2672 dev->flags |= DF_DONENOMATCH; 2673 } 2674 return (error); 2675 } 2676 return (0); 2677 } 2678 2679 /** 2680 * @brief Probe a device and attach a driver if possible 2681 * 2682 * calls device_probe() and attaches if that was successful. 2683 */ 2684 int 2685 device_probe_and_attach(device_t dev) 2686 { 2687 int error; 2688 2689 GIANT_REQUIRED; 2690 2691 error = device_probe(dev); 2692 if (error == -1) 2693 return (0); 2694 else if (error != 0) 2695 return (error); 2696 return (device_attach(dev)); 2697 } 2698 2699 /** 2700 * @brief Attach a device driver to a device 2701 * 2702 * This function is a wrapper around the DEVICE_ATTACH() driver 2703 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2704 * device's sysctl tree, optionally prints a description of the device 2705 * and queues a notification event for user-based device management 2706 * services. 2707 * 2708 * Normally this function is only called internally from 2709 * device_probe_and_attach(). 2710 * 2711 * @param dev the device to initialise 2712 * 2713 * @retval 0 success 2714 * @retval ENXIO no driver was found 2715 * @retval ENOMEM memory allocation failure 2716 * @retval non-zero some other unix error code 2717 */ 2718 int 2719 device_attach(device_t dev) 2720 { 2721 int error; 2722 2723 device_sysctl_init(dev); 2724 if (!device_is_quiet(dev)) 2725 device_print_child(dev->parent, dev); 2726 if ((error = DEVICE_ATTACH(dev)) != 0) { 2727 printf("device_attach: %s%d attach returned %d\n", 2728 dev->driver->name, dev->unit, error); 2729 /* Unset the class; set in device_probe_child */ 2730 if (dev->devclass == NULL) 2731 (void)device_set_devclass(dev, NULL); 2732 (void)device_set_driver(dev, NULL); 2733 device_sysctl_fini(dev); 2734 dev->state = DS_NOTPRESENT; 2735 return (error); 2736 } 2737 device_sysctl_update(dev); 2738 dev->state = DS_ATTACHED; 2739 dev->flags &= ~DF_DONENOMATCH; 2740 devadded(dev); 2741 return (0); 2742 } 2743 2744 /** 2745 * @brief Detach a driver from a device 2746 * 2747 * This function is a wrapper around the DEVICE_DETACH() driver 2748 * method. If the call to DEVICE_DETACH() succeeds, it calls 2749 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2750 * notification event for user-based device management services and 2751 * cleans up the device's sysctl tree. 2752 * 2753 * @param dev the device to un-initialise 2754 * 2755 * @retval 0 success 2756 * @retval ENXIO no driver was found 2757 * @retval ENOMEM memory allocation failure 2758 * @retval non-zero some other unix error code 2759 */ 2760 int 2761 device_detach(device_t dev) 2762 { 2763 int error; 2764 2765 GIANT_REQUIRED; 2766 2767 PDEBUG(("%s", DEVICENAME(dev))); 2768 if (dev->state == DS_BUSY) 2769 return (EBUSY); 2770 if (dev->state != DS_ATTACHED) 2771 return (0); 2772 2773 if ((error = DEVICE_DETACH(dev)) != 0) 2774 return (error); 2775 devremoved(dev); 2776 if (!device_is_quiet(dev)) 2777 device_printf(dev, "detached\n"); 2778 if (dev->parent) 2779 BUS_CHILD_DETACHED(dev->parent, dev); 2780 2781 if (!(dev->flags & DF_FIXEDCLASS)) 2782 devclass_delete_device(dev->devclass, dev); 2783 2784 dev->state = DS_NOTPRESENT; 2785 (void)device_set_driver(dev, NULL); 2786 device_set_desc(dev, NULL); 2787 device_sysctl_fini(dev); 2788 2789 return (0); 2790 } 2791 2792 /** 2793 * @brief Tells a driver to quiesce itself. 2794 * 2795 * This function is a wrapper around the DEVICE_QUIESCE() driver 2796 * method. If the call to DEVICE_QUIESCE() succeeds. 2797 * 2798 * @param dev the device to quiesce 2799 * 2800 * @retval 0 success 2801 * @retval ENXIO no driver was found 2802 * @retval ENOMEM memory allocation failure 2803 * @retval non-zero some other unix error code 2804 */ 2805 int 2806 device_quiesce(device_t dev) 2807 { 2808 2809 PDEBUG(("%s", DEVICENAME(dev))); 2810 if (dev->state == DS_BUSY) 2811 return (EBUSY); 2812 if (dev->state != DS_ATTACHED) 2813 return (0); 2814 2815 return (DEVICE_QUIESCE(dev)); 2816 } 2817 2818 /** 2819 * @brief Notify a device of system shutdown 2820 * 2821 * This function calls the DEVICE_SHUTDOWN() driver method if the 2822 * device currently has an attached driver. 2823 * 2824 * @returns the value returned by DEVICE_SHUTDOWN() 2825 */ 2826 int 2827 device_shutdown(device_t dev) 2828 { 2829 if (dev->state < DS_ATTACHED) 2830 return (0); 2831 return (DEVICE_SHUTDOWN(dev)); 2832 } 2833 2834 /** 2835 * @brief Set the unit number of a device 2836 * 2837 * This function can be used to override the unit number used for a 2838 * device (e.g. to wire a device to a pre-configured unit number). 2839 */ 2840 int 2841 device_set_unit(device_t dev, int unit) 2842 { 2843 devclass_t dc; 2844 int err; 2845 2846 dc = device_get_devclass(dev); 2847 if (unit < dc->maxunit && dc->devices[unit]) 2848 return (EBUSY); 2849 err = devclass_delete_device(dc, dev); 2850 if (err) 2851 return (err); 2852 dev->unit = unit; 2853 err = devclass_add_device(dc, dev); 2854 if (err) 2855 return (err); 2856 2857 bus_data_generation_update(); 2858 return (0); 2859 } 2860 2861 /*======================================*/ 2862 /* 2863 * Some useful method implementations to make life easier for bus drivers. 2864 */ 2865 2866 /** 2867 * @brief Initialise a resource list. 2868 * 2869 * @param rl the resource list to initialise 2870 */ 2871 void 2872 resource_list_init(struct resource_list *rl) 2873 { 2874 STAILQ_INIT(rl); 2875 } 2876 2877 /** 2878 * @brief Reclaim memory used by a resource list. 2879 * 2880 * This function frees the memory for all resource entries on the list 2881 * (if any). 2882 * 2883 * @param rl the resource list to free 2884 */ 2885 void 2886 resource_list_free(struct resource_list *rl) 2887 { 2888 struct resource_list_entry *rle; 2889 2890 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2891 if (rle->res) 2892 panic("resource_list_free: resource entry is busy"); 2893 STAILQ_REMOVE_HEAD(rl, link); 2894 free(rle, M_BUS); 2895 } 2896 } 2897 2898 /** 2899 * @brief Add a resource entry. 2900 * 2901 * This function adds a resource entry using the given @p type, @p 2902 * start, @p end and @p count values. A rid value is chosen by 2903 * searching sequentially for the first unused rid starting at zero. 2904 * 2905 * @param rl the resource list to edit 2906 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2907 * @param start the start address of the resource 2908 * @param end the end address of the resource 2909 * @param count XXX end-start+1 2910 */ 2911 int 2912 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2913 u_long end, u_long count) 2914 { 2915 int rid; 2916 2917 rid = 0; 2918 while (resource_list_find(rl, type, rid) != NULL) 2919 rid++; 2920 resource_list_add(rl, type, rid, start, end, count); 2921 return (rid); 2922 } 2923 2924 /** 2925 * @brief Add or modify a resource entry. 2926 * 2927 * If an existing entry exists with the same type and rid, it will be 2928 * modified using the given values of @p start, @p end and @p 2929 * count. If no entry exists, a new one will be created using the 2930 * given values. The resource list entry that matches is then returned. 2931 * 2932 * @param rl the resource list to edit 2933 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2934 * @param rid the resource identifier 2935 * @param start the start address of the resource 2936 * @param end the end address of the resource 2937 * @param count XXX end-start+1 2938 */ 2939 struct resource_list_entry * 2940 resource_list_add(struct resource_list *rl, int type, int rid, 2941 u_long start, u_long end, u_long count) 2942 { 2943 struct resource_list_entry *rle; 2944 2945 rle = resource_list_find(rl, type, rid); 2946 if (!rle) { 2947 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2948 M_NOWAIT); 2949 if (!rle) 2950 panic("resource_list_add: can't record entry"); 2951 STAILQ_INSERT_TAIL(rl, rle, link); 2952 rle->type = type; 2953 rle->rid = rid; 2954 rle->res = NULL; 2955 rle->flags = 0; 2956 } 2957 2958 if (rle->res) 2959 panic("resource_list_add: resource entry is busy"); 2960 2961 rle->start = start; 2962 rle->end = end; 2963 rle->count = count; 2964 return (rle); 2965 } 2966 2967 /** 2968 * @brief Determine if a resource entry is busy. 2969 * 2970 * Returns true if a resource entry is busy meaning that it has an 2971 * associated resource that is not an unallocated "reserved" resource. 2972 * 2973 * @param rl the resource list to search 2974 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2975 * @param rid the resource identifier 2976 * 2977 * @returns Non-zero if the entry is busy, zero otherwise. 2978 */ 2979 int 2980 resource_list_busy(struct resource_list *rl, int type, int rid) 2981 { 2982 struct resource_list_entry *rle; 2983 2984 rle = resource_list_find(rl, type, rid); 2985 if (rle == NULL || rle->res == NULL) 2986 return (0); 2987 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2988 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2989 ("reserved resource is active")); 2990 return (0); 2991 } 2992 return (1); 2993 } 2994 2995 /** 2996 * @brief Determine if a resource entry is reserved. 2997 * 2998 * Returns true if a resource entry is reserved meaning that it has an 2999 * associated "reserved" resource. The resource can either be 3000 * allocated or unallocated. 3001 * 3002 * @param rl the resource list to search 3003 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3004 * @param rid the resource identifier 3005 * 3006 * @returns Non-zero if the entry is reserved, zero otherwise. 3007 */ 3008 int 3009 resource_list_reserved(struct resource_list *rl, int type, int rid) 3010 { 3011 struct resource_list_entry *rle; 3012 3013 rle = resource_list_find(rl, type, rid); 3014 if (rle != NULL && rle->flags & RLE_RESERVED) 3015 return (1); 3016 return (0); 3017 } 3018 3019 /** 3020 * @brief Find a resource entry by type and rid. 3021 * 3022 * @param rl the resource list to search 3023 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3024 * @param rid the resource identifier 3025 * 3026 * @returns the resource entry pointer or NULL if there is no such 3027 * entry. 3028 */ 3029 struct resource_list_entry * 3030 resource_list_find(struct resource_list *rl, int type, int rid) 3031 { 3032 struct resource_list_entry *rle; 3033 3034 STAILQ_FOREACH(rle, rl, link) { 3035 if (rle->type == type && rle->rid == rid) 3036 return (rle); 3037 } 3038 return (NULL); 3039 } 3040 3041 /** 3042 * @brief Delete a resource entry. 3043 * 3044 * @param rl the resource list to edit 3045 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3046 * @param rid the resource identifier 3047 */ 3048 void 3049 resource_list_delete(struct resource_list *rl, int type, int rid) 3050 { 3051 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3052 3053 if (rle) { 3054 if (rle->res != NULL) 3055 panic("resource_list_delete: resource has not been released"); 3056 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3057 free(rle, M_BUS); 3058 } 3059 } 3060 3061 /** 3062 * @brief Allocate a reserved resource 3063 * 3064 * This can be used by busses to force the allocation of resources 3065 * that are always active in the system even if they are not allocated 3066 * by a driver (e.g. PCI BARs). This function is usually called when 3067 * adding a new child to the bus. The resource is allocated from the 3068 * parent bus when it is reserved. The resource list entry is marked 3069 * with RLE_RESERVED to note that it is a reserved resource. 3070 * 3071 * Subsequent attempts to allocate the resource with 3072 * resource_list_alloc() will succeed the first time and will set 3073 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3074 * resource that has been allocated is released with 3075 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3076 * the actual resource remains allocated. The resource can be released to 3077 * the parent bus by calling resource_list_unreserve(). 3078 * 3079 * @param rl the resource list to allocate from 3080 * @param bus the parent device of @p child 3081 * @param child the device for which the resource is being reserved 3082 * @param type the type of resource to allocate 3083 * @param rid a pointer to the resource identifier 3084 * @param start hint at the start of the resource range - pass 3085 * @c 0UL for any start address 3086 * @param end hint at the end of the resource range - pass 3087 * @c ~0UL for any end address 3088 * @param count hint at the size of range required - pass @c 1 3089 * for any size 3090 * @param flags any extra flags to control the resource 3091 * allocation - see @c RF_XXX flags in 3092 * <sys/rman.h> for details 3093 * 3094 * @returns the resource which was allocated or @c NULL if no 3095 * resource could be allocated 3096 */ 3097 struct resource * 3098 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3099 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3100 { 3101 struct resource_list_entry *rle = NULL; 3102 int passthrough = (device_get_parent(child) != bus); 3103 struct resource *r; 3104 3105 if (passthrough) 3106 panic( 3107 "resource_list_reserve() should only be called for direct children"); 3108 if (flags & RF_ACTIVE) 3109 panic( 3110 "resource_list_reserve() should only reserve inactive resources"); 3111 3112 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3113 flags); 3114 if (r != NULL) { 3115 rle = resource_list_find(rl, type, *rid); 3116 rle->flags |= RLE_RESERVED; 3117 } 3118 return (r); 3119 } 3120 3121 /** 3122 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3123 * 3124 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3125 * and passing the allocation up to the parent of @p bus. This assumes 3126 * that the first entry of @c device_get_ivars(child) is a struct 3127 * resource_list. This also handles 'passthrough' allocations where a 3128 * child is a remote descendant of bus by passing the allocation up to 3129 * the parent of bus. 3130 * 3131 * Typically, a bus driver would store a list of child resources 3132 * somewhere in the child device's ivars (see device_get_ivars()) and 3133 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3134 * then call resource_list_alloc() to perform the allocation. 3135 * 3136 * @param rl the resource list to allocate from 3137 * @param bus the parent device of @p child 3138 * @param child the device which is requesting an allocation 3139 * @param type the type of resource to allocate 3140 * @param rid a pointer to the resource identifier 3141 * @param start hint at the start of the resource range - pass 3142 * @c 0UL for any start address 3143 * @param end hint at the end of the resource range - pass 3144 * @c ~0UL for any end address 3145 * @param count hint at the size of range required - pass @c 1 3146 * for any size 3147 * @param flags any extra flags to control the resource 3148 * allocation - see @c RF_XXX flags in 3149 * <sys/rman.h> for details 3150 * 3151 * @returns the resource which was allocated or @c NULL if no 3152 * resource could be allocated 3153 */ 3154 struct resource * 3155 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3156 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3157 { 3158 struct resource_list_entry *rle = NULL; 3159 int passthrough = (device_get_parent(child) != bus); 3160 int isdefault = (start == 0UL && end == ~0UL); 3161 3162 if (passthrough) { 3163 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3164 type, rid, start, end, count, flags)); 3165 } 3166 3167 rle = resource_list_find(rl, type, *rid); 3168 3169 if (!rle) 3170 return (NULL); /* no resource of that type/rid */ 3171 3172 if (rle->res) { 3173 if (rle->flags & RLE_RESERVED) { 3174 if (rle->flags & RLE_ALLOCATED) 3175 return (NULL); 3176 if ((flags & RF_ACTIVE) && 3177 bus_activate_resource(child, type, *rid, 3178 rle->res) != 0) 3179 return (NULL); 3180 rle->flags |= RLE_ALLOCATED; 3181 return (rle->res); 3182 } 3183 panic("resource_list_alloc: resource entry is busy"); 3184 } 3185 3186 if (isdefault) { 3187 start = rle->start; 3188 count = ulmax(count, rle->count); 3189 end = ulmax(rle->end, start + count - 1); 3190 } 3191 3192 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3193 type, rid, start, end, count, flags); 3194 3195 /* 3196 * Record the new range. 3197 */ 3198 if (rle->res) { 3199 rle->start = rman_get_start(rle->res); 3200 rle->end = rman_get_end(rle->res); 3201 rle->count = count; 3202 } 3203 3204 return (rle->res); 3205 } 3206 3207 /** 3208 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3209 * 3210 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3211 * used with resource_list_alloc(). 3212 * 3213 * @param rl the resource list which was allocated from 3214 * @param bus the parent device of @p child 3215 * @param child the device which is requesting a release 3216 * @param type the type of resource to release 3217 * @param rid the resource identifier 3218 * @param res the resource to release 3219 * 3220 * @retval 0 success 3221 * @retval non-zero a standard unix error code indicating what 3222 * error condition prevented the operation 3223 */ 3224 int 3225 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3226 int type, int rid, struct resource *res) 3227 { 3228 struct resource_list_entry *rle = NULL; 3229 int passthrough = (device_get_parent(child) != bus); 3230 int error; 3231 3232 if (passthrough) { 3233 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3234 type, rid, res)); 3235 } 3236 3237 rle = resource_list_find(rl, type, rid); 3238 3239 if (!rle) 3240 panic("resource_list_release: can't find resource"); 3241 if (!rle->res) 3242 panic("resource_list_release: resource entry is not busy"); 3243 if (rle->flags & RLE_RESERVED) { 3244 if (rle->flags & RLE_ALLOCATED) { 3245 if (rman_get_flags(res) & RF_ACTIVE) { 3246 error = bus_deactivate_resource(child, type, 3247 rid, res); 3248 if (error) 3249 return (error); 3250 } 3251 rle->flags &= ~RLE_ALLOCATED; 3252 return (0); 3253 } 3254 return (EINVAL); 3255 } 3256 3257 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3258 type, rid, res); 3259 if (error) 3260 return (error); 3261 3262 rle->res = NULL; 3263 return (0); 3264 } 3265 3266 /** 3267 * @brief Fully release a reserved resource 3268 * 3269 * Fully releases a resouce reserved via resource_list_reserve(). 3270 * 3271 * @param rl the resource list which was allocated from 3272 * @param bus the parent device of @p child 3273 * @param child the device whose reserved resource is being released 3274 * @param type the type of resource to release 3275 * @param rid the resource identifier 3276 * @param res the resource to release 3277 * 3278 * @retval 0 success 3279 * @retval non-zero a standard unix error code indicating what 3280 * error condition prevented the operation 3281 */ 3282 int 3283 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3284 int type, int rid) 3285 { 3286 struct resource_list_entry *rle = NULL; 3287 int passthrough = (device_get_parent(child) != bus); 3288 3289 if (passthrough) 3290 panic( 3291 "resource_list_unreserve() should only be called for direct children"); 3292 3293 rle = resource_list_find(rl, type, rid); 3294 3295 if (!rle) 3296 panic("resource_list_unreserve: can't find resource"); 3297 if (!(rle->flags & RLE_RESERVED)) 3298 return (EINVAL); 3299 if (rle->flags & RLE_ALLOCATED) 3300 return (EBUSY); 3301 rle->flags &= ~RLE_RESERVED; 3302 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3303 } 3304 3305 /** 3306 * @brief Print a description of resources in a resource list 3307 * 3308 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3309 * The name is printed if at least one resource of the given type is available. 3310 * The format is used to print resource start and end. 3311 * 3312 * @param rl the resource list to print 3313 * @param name the name of @p type, e.g. @c "memory" 3314 * @param type type type of resource entry to print 3315 * @param format printf(9) format string to print resource 3316 * start and end values 3317 * 3318 * @returns the number of characters printed 3319 */ 3320 int 3321 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3322 const char *format) 3323 { 3324 struct resource_list_entry *rle; 3325 int printed, retval; 3326 3327 printed = 0; 3328 retval = 0; 3329 /* Yes, this is kinda cheating */ 3330 STAILQ_FOREACH(rle, rl, link) { 3331 if (rle->type == type) { 3332 if (printed == 0) 3333 retval += printf(" %s ", name); 3334 else 3335 retval += printf(","); 3336 printed++; 3337 retval += printf(format, rle->start); 3338 if (rle->count > 1) { 3339 retval += printf("-"); 3340 retval += printf(format, rle->start + 3341 rle->count - 1); 3342 } 3343 } 3344 } 3345 return (retval); 3346 } 3347 3348 /** 3349 * @brief Releases all the resources in a list. 3350 * 3351 * @param rl The resource list to purge. 3352 * 3353 * @returns nothing 3354 */ 3355 void 3356 resource_list_purge(struct resource_list *rl) 3357 { 3358 struct resource_list_entry *rle; 3359 3360 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3361 if (rle->res) 3362 bus_release_resource(rman_get_device(rle->res), 3363 rle->type, rle->rid, rle->res); 3364 STAILQ_REMOVE_HEAD(rl, link); 3365 free(rle, M_BUS); 3366 } 3367 } 3368 3369 device_t 3370 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3371 { 3372 3373 return (device_add_child_ordered(dev, order, name, unit)); 3374 } 3375 3376 /** 3377 * @brief Helper function for implementing DEVICE_PROBE() 3378 * 3379 * This function can be used to help implement the DEVICE_PROBE() for 3380 * a bus (i.e. a device which has other devices attached to it). It 3381 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3382 * devclass. 3383 */ 3384 int 3385 bus_generic_probe(device_t dev) 3386 { 3387 devclass_t dc = dev->devclass; 3388 driverlink_t dl; 3389 3390 TAILQ_FOREACH(dl, &dc->drivers, link) { 3391 /* 3392 * If this driver's pass is too high, then ignore it. 3393 * For most drivers in the default pass, this will 3394 * never be true. For early-pass drivers they will 3395 * only call the identify routines of eligible drivers 3396 * when this routine is called. Drivers for later 3397 * passes should have their identify routines called 3398 * on early-pass busses during BUS_NEW_PASS(). 3399 */ 3400 if (dl->pass > bus_current_pass) 3401 continue; 3402 DEVICE_IDENTIFY(dl->driver, dev); 3403 } 3404 3405 return (0); 3406 } 3407 3408 /** 3409 * @brief Helper function for implementing DEVICE_ATTACH() 3410 * 3411 * This function can be used to help implement the DEVICE_ATTACH() for 3412 * a bus. It calls device_probe_and_attach() for each of the device's 3413 * children. 3414 */ 3415 int 3416 bus_generic_attach(device_t dev) 3417 { 3418 device_t child; 3419 3420 TAILQ_FOREACH(child, &dev->children, link) { 3421 device_probe_and_attach(child); 3422 } 3423 3424 return (0); 3425 } 3426 3427 /** 3428 * @brief Helper function for implementing DEVICE_DETACH() 3429 * 3430 * This function can be used to help implement the DEVICE_DETACH() for 3431 * a bus. It calls device_detach() for each of the device's 3432 * children. 3433 */ 3434 int 3435 bus_generic_detach(device_t dev) 3436 { 3437 device_t child; 3438 int error; 3439 3440 if (dev->state != DS_ATTACHED) 3441 return (EBUSY); 3442 3443 TAILQ_FOREACH(child, &dev->children, link) { 3444 if ((error = device_detach(child)) != 0) 3445 return (error); 3446 } 3447 3448 return (0); 3449 } 3450 3451 /** 3452 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3453 * 3454 * This function can be used to help implement the DEVICE_SHUTDOWN() 3455 * for a bus. It calls device_shutdown() for each of the device's 3456 * children. 3457 */ 3458 int 3459 bus_generic_shutdown(device_t dev) 3460 { 3461 device_t child; 3462 3463 TAILQ_FOREACH(child, &dev->children, link) { 3464 device_shutdown(child); 3465 } 3466 3467 return (0); 3468 } 3469 3470 /** 3471 * @brief Helper function for implementing DEVICE_SUSPEND() 3472 * 3473 * This function can be used to help implement the DEVICE_SUSPEND() 3474 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3475 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3476 * operation is aborted and any devices which were suspended are 3477 * resumed immediately by calling their DEVICE_RESUME() methods. 3478 */ 3479 int 3480 bus_generic_suspend(device_t dev) 3481 { 3482 int error; 3483 device_t child, child2; 3484 3485 TAILQ_FOREACH(child, &dev->children, link) { 3486 error = DEVICE_SUSPEND(child); 3487 if (error) { 3488 for (child2 = TAILQ_FIRST(&dev->children); 3489 child2 && child2 != child; 3490 child2 = TAILQ_NEXT(child2, link)) 3491 DEVICE_RESUME(child2); 3492 return (error); 3493 } 3494 } 3495 return (0); 3496 } 3497 3498 /** 3499 * @brief Helper function for implementing DEVICE_RESUME() 3500 * 3501 * This function can be used to help implement the DEVICE_RESUME() for 3502 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3503 */ 3504 int 3505 bus_generic_resume(device_t dev) 3506 { 3507 device_t child; 3508 3509 TAILQ_FOREACH(child, &dev->children, link) { 3510 DEVICE_RESUME(child); 3511 /* if resume fails, there's nothing we can usefully do... */ 3512 } 3513 return (0); 3514 } 3515 3516 /** 3517 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3518 * 3519 * This function prints the first part of the ascii representation of 3520 * @p child, including its name, unit and description (if any - see 3521 * device_set_desc()). 3522 * 3523 * @returns the number of characters printed 3524 */ 3525 int 3526 bus_print_child_header(device_t dev, device_t child) 3527 { 3528 int retval = 0; 3529 3530 if (device_get_desc(child)) { 3531 retval += device_printf(child, "<%s>", device_get_desc(child)); 3532 } else { 3533 retval += printf("%s", device_get_nameunit(child)); 3534 } 3535 3536 return (retval); 3537 } 3538 3539 /** 3540 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3541 * 3542 * This function prints the last part of the ascii representation of 3543 * @p child, which consists of the string @c " on " followed by the 3544 * name and unit of the @p dev. 3545 * 3546 * @returns the number of characters printed 3547 */ 3548 int 3549 bus_print_child_footer(device_t dev, device_t child) 3550 { 3551 return (printf(" on %s\n", device_get_nameunit(dev))); 3552 } 3553 3554 /** 3555 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3556 * 3557 * This function simply calls bus_print_child_header() followed by 3558 * bus_print_child_footer(). 3559 * 3560 * @returns the number of characters printed 3561 */ 3562 int 3563 bus_generic_print_child(device_t dev, device_t child) 3564 { 3565 int retval = 0; 3566 3567 retval += bus_print_child_header(dev, child); 3568 retval += bus_print_child_footer(dev, child); 3569 3570 return (retval); 3571 } 3572 3573 /** 3574 * @brief Stub function for implementing BUS_READ_IVAR(). 3575 * 3576 * @returns ENOENT 3577 */ 3578 int 3579 bus_generic_read_ivar(device_t dev, device_t child, int index, 3580 uintptr_t * result) 3581 { 3582 return (ENOENT); 3583 } 3584 3585 /** 3586 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3587 * 3588 * @returns ENOENT 3589 */ 3590 int 3591 bus_generic_write_ivar(device_t dev, device_t child, int index, 3592 uintptr_t value) 3593 { 3594 return (ENOENT); 3595 } 3596 3597 /** 3598 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3599 * 3600 * @returns NULL 3601 */ 3602 struct resource_list * 3603 bus_generic_get_resource_list(device_t dev, device_t child) 3604 { 3605 return (NULL); 3606 } 3607 3608 /** 3609 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3610 * 3611 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3612 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3613 * and then calls device_probe_and_attach() for each unattached child. 3614 */ 3615 void 3616 bus_generic_driver_added(device_t dev, driver_t *driver) 3617 { 3618 device_t child; 3619 3620 DEVICE_IDENTIFY(driver, dev); 3621 TAILQ_FOREACH(child, &dev->children, link) { 3622 if (child->state == DS_NOTPRESENT || 3623 (child->flags & DF_REBID)) 3624 device_probe_and_attach(child); 3625 } 3626 } 3627 3628 /** 3629 * @brief Helper function for implementing BUS_NEW_PASS(). 3630 * 3631 * This implementing of BUS_NEW_PASS() first calls the identify 3632 * routines for any drivers that probe at the current pass. Then it 3633 * walks the list of devices for this bus. If a device is already 3634 * attached, then it calls BUS_NEW_PASS() on that device. If the 3635 * device is not already attached, it attempts to attach a driver to 3636 * it. 3637 */ 3638 void 3639 bus_generic_new_pass(device_t dev) 3640 { 3641 driverlink_t dl; 3642 devclass_t dc; 3643 device_t child; 3644 3645 dc = dev->devclass; 3646 TAILQ_FOREACH(dl, &dc->drivers, link) { 3647 if (dl->pass == bus_current_pass) 3648 DEVICE_IDENTIFY(dl->driver, dev); 3649 } 3650 TAILQ_FOREACH(child, &dev->children, link) { 3651 if (child->state >= DS_ATTACHED) 3652 BUS_NEW_PASS(child); 3653 else if (child->state == DS_NOTPRESENT) 3654 device_probe_and_attach(child); 3655 } 3656 } 3657 3658 /** 3659 * @brief Helper function for implementing BUS_SETUP_INTR(). 3660 * 3661 * This simple implementation of BUS_SETUP_INTR() simply calls the 3662 * BUS_SETUP_INTR() method of the parent of @p dev. 3663 */ 3664 int 3665 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3666 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3667 void **cookiep) 3668 { 3669 /* Propagate up the bus hierarchy until someone handles it. */ 3670 if (dev->parent) 3671 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3672 filter, intr, arg, cookiep)); 3673 return (EINVAL); 3674 } 3675 3676 /** 3677 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3678 * 3679 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3680 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3681 */ 3682 int 3683 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3684 void *cookie) 3685 { 3686 /* Propagate up the bus hierarchy until someone handles it. */ 3687 if (dev->parent) 3688 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3689 return (EINVAL); 3690 } 3691 3692 /** 3693 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3694 * 3695 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3696 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3697 */ 3698 int 3699 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3700 struct resource *r, u_long start, u_long end) 3701 { 3702 /* Propagate up the bus hierarchy until someone handles it. */ 3703 if (dev->parent) 3704 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3705 end)); 3706 return (EINVAL); 3707 } 3708 3709 /** 3710 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3711 * 3712 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3713 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3714 */ 3715 struct resource * 3716 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3717 u_long start, u_long end, u_long count, u_int flags) 3718 { 3719 /* Propagate up the bus hierarchy until someone handles it. */ 3720 if (dev->parent) 3721 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3722 start, end, count, flags)); 3723 return (NULL); 3724 } 3725 3726 /** 3727 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3728 * 3729 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3730 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3731 */ 3732 int 3733 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3734 struct resource *r) 3735 { 3736 /* Propagate up the bus hierarchy until someone handles it. */ 3737 if (dev->parent) 3738 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3739 r)); 3740 return (EINVAL); 3741 } 3742 3743 /** 3744 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3745 * 3746 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3747 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3748 */ 3749 int 3750 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3751 struct resource *r) 3752 { 3753 /* Propagate up the bus hierarchy until someone handles it. */ 3754 if (dev->parent) 3755 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3756 r)); 3757 return (EINVAL); 3758 } 3759 3760 /** 3761 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3762 * 3763 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3764 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3765 */ 3766 int 3767 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3768 int rid, struct resource *r) 3769 { 3770 /* Propagate up the bus hierarchy until someone handles it. */ 3771 if (dev->parent) 3772 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3773 r)); 3774 return (EINVAL); 3775 } 3776 3777 /** 3778 * @brief Helper function for implementing BUS_BIND_INTR(). 3779 * 3780 * This simple implementation of BUS_BIND_INTR() simply calls the 3781 * BUS_BIND_INTR() method of the parent of @p dev. 3782 */ 3783 int 3784 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3785 int cpu) 3786 { 3787 3788 /* Propagate up the bus hierarchy until someone handles it. */ 3789 if (dev->parent) 3790 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3791 return (EINVAL); 3792 } 3793 3794 /** 3795 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3796 * 3797 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3798 * BUS_CONFIG_INTR() method of the parent of @p dev. 3799 */ 3800 int 3801 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3802 enum intr_polarity pol) 3803 { 3804 3805 /* Propagate up the bus hierarchy until someone handles it. */ 3806 if (dev->parent) 3807 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3808 return (EINVAL); 3809 } 3810 3811 /** 3812 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3813 * 3814 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3815 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3816 */ 3817 int 3818 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3819 void *cookie, const char *descr) 3820 { 3821 3822 /* Propagate up the bus hierarchy until someone handles it. */ 3823 if (dev->parent) 3824 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3825 descr)); 3826 return (EINVAL); 3827 } 3828 3829 /** 3830 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3831 * 3832 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3833 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3834 */ 3835 bus_dma_tag_t 3836 bus_generic_get_dma_tag(device_t dev, device_t child) 3837 { 3838 3839 /* Propagate up the bus hierarchy until someone handles it. */ 3840 if (dev->parent != NULL) 3841 return (BUS_GET_DMA_TAG(dev->parent, child)); 3842 return (NULL); 3843 } 3844 3845 /** 3846 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3847 * 3848 * This implementation of BUS_GET_RESOURCE() uses the 3849 * resource_list_find() function to do most of the work. It calls 3850 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3851 * search. 3852 */ 3853 int 3854 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3855 u_long *startp, u_long *countp) 3856 { 3857 struct resource_list * rl = NULL; 3858 struct resource_list_entry * rle = NULL; 3859 3860 rl = BUS_GET_RESOURCE_LIST(dev, child); 3861 if (!rl) 3862 return (EINVAL); 3863 3864 rle = resource_list_find(rl, type, rid); 3865 if (!rle) 3866 return (ENOENT); 3867 3868 if (startp) 3869 *startp = rle->start; 3870 if (countp) 3871 *countp = rle->count; 3872 3873 return (0); 3874 } 3875 3876 /** 3877 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3878 * 3879 * This implementation of BUS_SET_RESOURCE() uses the 3880 * resource_list_add() function to do most of the work. It calls 3881 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3882 * edit. 3883 */ 3884 int 3885 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3886 u_long start, u_long count) 3887 { 3888 struct resource_list * rl = NULL; 3889 3890 rl = BUS_GET_RESOURCE_LIST(dev, child); 3891 if (!rl) 3892 return (EINVAL); 3893 3894 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3895 3896 return (0); 3897 } 3898 3899 /** 3900 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3901 * 3902 * This implementation of BUS_DELETE_RESOURCE() uses the 3903 * resource_list_delete() function to do most of the work. It calls 3904 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3905 * edit. 3906 */ 3907 void 3908 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3909 { 3910 struct resource_list * rl = NULL; 3911 3912 rl = BUS_GET_RESOURCE_LIST(dev, child); 3913 if (!rl) 3914 return; 3915 3916 resource_list_delete(rl, type, rid); 3917 3918 return; 3919 } 3920 3921 /** 3922 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3923 * 3924 * This implementation of BUS_RELEASE_RESOURCE() uses the 3925 * resource_list_release() function to do most of the work. It calls 3926 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3927 */ 3928 int 3929 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3930 int rid, struct resource *r) 3931 { 3932 struct resource_list * rl = NULL; 3933 3934 if (device_get_parent(child) != dev) 3935 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3936 type, rid, r)); 3937 3938 rl = BUS_GET_RESOURCE_LIST(dev, child); 3939 if (!rl) 3940 return (EINVAL); 3941 3942 return (resource_list_release(rl, dev, child, type, rid, r)); 3943 } 3944 3945 /** 3946 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3947 * 3948 * This implementation of BUS_ALLOC_RESOURCE() uses the 3949 * resource_list_alloc() function to do most of the work. It calls 3950 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3951 */ 3952 struct resource * 3953 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3954 int *rid, u_long start, u_long end, u_long count, u_int flags) 3955 { 3956 struct resource_list * rl = NULL; 3957 3958 if (device_get_parent(child) != dev) 3959 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 3960 type, rid, start, end, count, flags)); 3961 3962 rl = BUS_GET_RESOURCE_LIST(dev, child); 3963 if (!rl) 3964 return (NULL); 3965 3966 return (resource_list_alloc(rl, dev, child, type, rid, 3967 start, end, count, flags)); 3968 } 3969 3970 /** 3971 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3972 * 3973 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3974 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3975 */ 3976 int 3977 bus_generic_child_present(device_t dev, device_t child) 3978 { 3979 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3980 } 3981 3982 /* 3983 * Some convenience functions to make it easier for drivers to use the 3984 * resource-management functions. All these really do is hide the 3985 * indirection through the parent's method table, making for slightly 3986 * less-wordy code. In the future, it might make sense for this code 3987 * to maintain some sort of a list of resources allocated by each device. 3988 */ 3989 3990 int 3991 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3992 struct resource **res) 3993 { 3994 int i; 3995 3996 for (i = 0; rs[i].type != -1; i++) 3997 res[i] = NULL; 3998 for (i = 0; rs[i].type != -1; i++) { 3999 res[i] = bus_alloc_resource_any(dev, 4000 rs[i].type, &rs[i].rid, rs[i].flags); 4001 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4002 bus_release_resources(dev, rs, res); 4003 return (ENXIO); 4004 } 4005 } 4006 return (0); 4007 } 4008 4009 void 4010 bus_release_resources(device_t dev, const struct resource_spec *rs, 4011 struct resource **res) 4012 { 4013 int i; 4014 4015 for (i = 0; rs[i].type != -1; i++) 4016 if (res[i] != NULL) { 4017 bus_release_resource( 4018 dev, rs[i].type, rs[i].rid, res[i]); 4019 res[i] = NULL; 4020 } 4021 } 4022 4023 /** 4024 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4025 * 4026 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4027 * parent of @p dev. 4028 */ 4029 struct resource * 4030 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4031 u_long count, u_int flags) 4032 { 4033 if (dev->parent == NULL) 4034 return (NULL); 4035 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4036 count, flags)); 4037 } 4038 4039 /** 4040 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4041 * 4042 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4043 * parent of @p dev. 4044 */ 4045 int 4046 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4047 u_long end) 4048 { 4049 if (dev->parent == NULL) 4050 return (EINVAL); 4051 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4052 } 4053 4054 /** 4055 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4056 * 4057 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4058 * parent of @p dev. 4059 */ 4060 int 4061 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4062 { 4063 if (dev->parent == NULL) 4064 return (EINVAL); 4065 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4066 } 4067 4068 /** 4069 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4070 * 4071 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4072 * parent of @p dev. 4073 */ 4074 int 4075 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4076 { 4077 if (dev->parent == NULL) 4078 return (EINVAL); 4079 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4080 } 4081 4082 /** 4083 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4084 * 4085 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4086 * parent of @p dev. 4087 */ 4088 int 4089 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4090 { 4091 if (dev->parent == NULL) 4092 return (EINVAL); 4093 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4094 } 4095 4096 /** 4097 * @brief Wrapper function for BUS_SETUP_INTR(). 4098 * 4099 * This function simply calls the BUS_SETUP_INTR() method of the 4100 * parent of @p dev. 4101 */ 4102 int 4103 bus_setup_intr(device_t dev, struct resource *r, int flags, 4104 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4105 { 4106 int error; 4107 4108 if (dev->parent == NULL) 4109 return (EINVAL); 4110 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4111 arg, cookiep); 4112 if (error != 0) 4113 return (error); 4114 if (handler != NULL && !(flags & INTR_MPSAFE)) 4115 device_printf(dev, "[GIANT-LOCKED]\n"); 4116 return (0); 4117 } 4118 4119 /** 4120 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4121 * 4122 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4123 * parent of @p dev. 4124 */ 4125 int 4126 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4127 { 4128 if (dev->parent == NULL) 4129 return (EINVAL); 4130 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4131 } 4132 4133 /** 4134 * @brief Wrapper function for BUS_BIND_INTR(). 4135 * 4136 * This function simply calls the BUS_BIND_INTR() method of the 4137 * parent of @p dev. 4138 */ 4139 int 4140 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4141 { 4142 if (dev->parent == NULL) 4143 return (EINVAL); 4144 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4145 } 4146 4147 /** 4148 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4149 * 4150 * This function first formats the requested description into a 4151 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4152 * the parent of @p dev. 4153 */ 4154 int 4155 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4156 const char *fmt, ...) 4157 { 4158 va_list ap; 4159 char descr[MAXCOMLEN + 1]; 4160 4161 if (dev->parent == NULL) 4162 return (EINVAL); 4163 va_start(ap, fmt); 4164 vsnprintf(descr, sizeof(descr), fmt, ap); 4165 va_end(ap); 4166 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4167 } 4168 4169 /** 4170 * @brief Wrapper function for BUS_SET_RESOURCE(). 4171 * 4172 * This function simply calls the BUS_SET_RESOURCE() method of the 4173 * parent of @p dev. 4174 */ 4175 int 4176 bus_set_resource(device_t dev, int type, int rid, 4177 u_long start, u_long count) 4178 { 4179 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4180 start, count)); 4181 } 4182 4183 /** 4184 * @brief Wrapper function for BUS_GET_RESOURCE(). 4185 * 4186 * This function simply calls the BUS_GET_RESOURCE() method of the 4187 * parent of @p dev. 4188 */ 4189 int 4190 bus_get_resource(device_t dev, int type, int rid, 4191 u_long *startp, u_long *countp) 4192 { 4193 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4194 startp, countp)); 4195 } 4196 4197 /** 4198 * @brief Wrapper function for BUS_GET_RESOURCE(). 4199 * 4200 * This function simply calls the BUS_GET_RESOURCE() method of the 4201 * parent of @p dev and returns the start value. 4202 */ 4203 u_long 4204 bus_get_resource_start(device_t dev, int type, int rid) 4205 { 4206 u_long start, count; 4207 int error; 4208 4209 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4210 &start, &count); 4211 if (error) 4212 return (0); 4213 return (start); 4214 } 4215 4216 /** 4217 * @brief Wrapper function for BUS_GET_RESOURCE(). 4218 * 4219 * This function simply calls the BUS_GET_RESOURCE() method of the 4220 * parent of @p dev and returns the count value. 4221 */ 4222 u_long 4223 bus_get_resource_count(device_t dev, int type, int rid) 4224 { 4225 u_long start, count; 4226 int error; 4227 4228 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4229 &start, &count); 4230 if (error) 4231 return (0); 4232 return (count); 4233 } 4234 4235 /** 4236 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4237 * 4238 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4239 * parent of @p dev. 4240 */ 4241 void 4242 bus_delete_resource(device_t dev, int type, int rid) 4243 { 4244 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4245 } 4246 4247 /** 4248 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4249 * 4250 * This function simply calls the BUS_CHILD_PRESENT() method of the 4251 * parent of @p dev. 4252 */ 4253 int 4254 bus_child_present(device_t child) 4255 { 4256 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4257 } 4258 4259 /** 4260 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4261 * 4262 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4263 * parent of @p dev. 4264 */ 4265 int 4266 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4267 { 4268 device_t parent; 4269 4270 parent = device_get_parent(child); 4271 if (parent == NULL) { 4272 *buf = '\0'; 4273 return (0); 4274 } 4275 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4276 } 4277 4278 /** 4279 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4280 * 4281 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4282 * parent of @p dev. 4283 */ 4284 int 4285 bus_child_location_str(device_t child, char *buf, size_t buflen) 4286 { 4287 device_t parent; 4288 4289 parent = device_get_parent(child); 4290 if (parent == NULL) { 4291 *buf = '\0'; 4292 return (0); 4293 } 4294 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4295 } 4296 4297 /** 4298 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4299 * 4300 * This function simply calls the BUS_GET_DMA_TAG() method of the 4301 * parent of @p dev. 4302 */ 4303 bus_dma_tag_t 4304 bus_get_dma_tag(device_t dev) 4305 { 4306 device_t parent; 4307 4308 parent = device_get_parent(dev); 4309 if (parent == NULL) 4310 return (NULL); 4311 return (BUS_GET_DMA_TAG(parent, dev)); 4312 } 4313 4314 /* Resume all devices and then notify userland that we're up again. */ 4315 static int 4316 root_resume(device_t dev) 4317 { 4318 int error; 4319 4320 error = bus_generic_resume(dev); 4321 if (error == 0) 4322 devctl_notify("kern", "power", "resume", NULL); 4323 return (error); 4324 } 4325 4326 static int 4327 root_print_child(device_t dev, device_t child) 4328 { 4329 int retval = 0; 4330 4331 retval += bus_print_child_header(dev, child); 4332 retval += printf("\n"); 4333 4334 return (retval); 4335 } 4336 4337 static int 4338 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4339 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4340 { 4341 /* 4342 * If an interrupt mapping gets to here something bad has happened. 4343 */ 4344 panic("root_setup_intr"); 4345 } 4346 4347 /* 4348 * If we get here, assume that the device is permanant and really is 4349 * present in the system. Removable bus drivers are expected to intercept 4350 * this call long before it gets here. We return -1 so that drivers that 4351 * really care can check vs -1 or some ERRNO returned higher in the food 4352 * chain. 4353 */ 4354 static int 4355 root_child_present(device_t dev, device_t child) 4356 { 4357 return (-1); 4358 } 4359 4360 static kobj_method_t root_methods[] = { 4361 /* Device interface */ 4362 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4363 KOBJMETHOD(device_suspend, bus_generic_suspend), 4364 KOBJMETHOD(device_resume, root_resume), 4365 4366 /* Bus interface */ 4367 KOBJMETHOD(bus_print_child, root_print_child), 4368 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4369 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4370 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4371 KOBJMETHOD(bus_child_present, root_child_present), 4372 4373 KOBJMETHOD_END 4374 }; 4375 4376 static driver_t root_driver = { 4377 "root", 4378 root_methods, 4379 1, /* no softc */ 4380 }; 4381 4382 device_t root_bus; 4383 devclass_t root_devclass; 4384 4385 static int 4386 root_bus_module_handler(module_t mod, int what, void* arg) 4387 { 4388 switch (what) { 4389 case MOD_LOAD: 4390 TAILQ_INIT(&bus_data_devices); 4391 kobj_class_compile((kobj_class_t) &root_driver); 4392 root_bus = make_device(NULL, "root", 0); 4393 root_bus->desc = "System root bus"; 4394 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4395 root_bus->driver = &root_driver; 4396 root_bus->state = DS_ATTACHED; 4397 root_devclass = devclass_find_internal("root", NULL, FALSE); 4398 devinit(); 4399 return (0); 4400 4401 case MOD_SHUTDOWN: 4402 device_shutdown(root_bus); 4403 return (0); 4404 default: 4405 return (EOPNOTSUPP); 4406 } 4407 4408 return (0); 4409 } 4410 4411 static moduledata_t root_bus_mod = { 4412 "rootbus", 4413 root_bus_module_handler, 4414 NULL 4415 }; 4416 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4417 4418 /** 4419 * @brief Automatically configure devices 4420 * 4421 * This function begins the autoconfiguration process by calling 4422 * device_probe_and_attach() for each child of the @c root0 device. 4423 */ 4424 void 4425 root_bus_configure(void) 4426 { 4427 4428 PDEBUG((".")); 4429 4430 /* Eventually this will be split up, but this is sufficient for now. */ 4431 bus_set_pass(BUS_PASS_DEFAULT); 4432 } 4433 4434 /** 4435 * @brief Module handler for registering device drivers 4436 * 4437 * This module handler is used to automatically register device 4438 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4439 * devclass_add_driver() for the driver described by the 4440 * driver_module_data structure pointed to by @p arg 4441 */ 4442 int 4443 driver_module_handler(module_t mod, int what, void *arg) 4444 { 4445 struct driver_module_data *dmd; 4446 devclass_t bus_devclass; 4447 kobj_class_t driver; 4448 int error, pass; 4449 4450 dmd = (struct driver_module_data *)arg; 4451 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4452 error = 0; 4453 4454 switch (what) { 4455 case MOD_LOAD: 4456 if (dmd->dmd_chainevh) 4457 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4458 4459 pass = dmd->dmd_pass; 4460 driver = dmd->dmd_driver; 4461 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4462 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4463 error = devclass_add_driver(bus_devclass, driver, pass, 4464 dmd->dmd_devclass); 4465 break; 4466 4467 case MOD_UNLOAD: 4468 PDEBUG(("Unloading module: driver %s from bus %s", 4469 DRIVERNAME(dmd->dmd_driver), 4470 dmd->dmd_busname)); 4471 error = devclass_delete_driver(bus_devclass, 4472 dmd->dmd_driver); 4473 4474 if (!error && dmd->dmd_chainevh) 4475 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4476 break; 4477 case MOD_QUIESCE: 4478 PDEBUG(("Quiesce module: driver %s from bus %s", 4479 DRIVERNAME(dmd->dmd_driver), 4480 dmd->dmd_busname)); 4481 error = devclass_quiesce_driver(bus_devclass, 4482 dmd->dmd_driver); 4483 4484 if (!error && dmd->dmd_chainevh) 4485 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4486 break; 4487 default: 4488 error = EOPNOTSUPP; 4489 break; 4490 } 4491 4492 return (error); 4493 } 4494 4495 /** 4496 * @brief Enumerate all hinted devices for this bus. 4497 * 4498 * Walks through the hints for this bus and calls the bus_hinted_child 4499 * routine for each one it fines. It searches first for the specific 4500 * bus that's being probed for hinted children (eg isa0), and then for 4501 * generic children (eg isa). 4502 * 4503 * @param dev bus device to enumerate 4504 */ 4505 void 4506 bus_enumerate_hinted_children(device_t bus) 4507 { 4508 int i; 4509 const char *dname, *busname; 4510 int dunit; 4511 4512 /* 4513 * enumerate all devices on the specific bus 4514 */ 4515 busname = device_get_nameunit(bus); 4516 i = 0; 4517 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4518 BUS_HINTED_CHILD(bus, dname, dunit); 4519 4520 /* 4521 * and all the generic ones. 4522 */ 4523 busname = device_get_name(bus); 4524 i = 0; 4525 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4526 BUS_HINTED_CHILD(bus, dname, dunit); 4527 } 4528 4529 #ifdef BUS_DEBUG 4530 4531 /* the _short versions avoid iteration by not calling anything that prints 4532 * more than oneliners. I love oneliners. 4533 */ 4534 4535 static void 4536 print_device_short(device_t dev, int indent) 4537 { 4538 if (!dev) 4539 return; 4540 4541 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4542 dev->unit, dev->desc, 4543 (dev->parent? "":"no "), 4544 (TAILQ_EMPTY(&dev->children)? "no ":""), 4545 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4546 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4547 (dev->flags&DF_WILDCARD? "wildcard,":""), 4548 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4549 (dev->flags&DF_REBID? "rebiddable,":""), 4550 (dev->ivars? "":"no "), 4551 (dev->softc? "":"no "), 4552 dev->busy)); 4553 } 4554 4555 static void 4556 print_device(device_t dev, int indent) 4557 { 4558 if (!dev) 4559 return; 4560 4561 print_device_short(dev, indent); 4562 4563 indentprintf(("Parent:\n")); 4564 print_device_short(dev->parent, indent+1); 4565 indentprintf(("Driver:\n")); 4566 print_driver_short(dev->driver, indent+1); 4567 indentprintf(("Devclass:\n")); 4568 print_devclass_short(dev->devclass, indent+1); 4569 } 4570 4571 void 4572 print_device_tree_short(device_t dev, int indent) 4573 /* print the device and all its children (indented) */ 4574 { 4575 device_t child; 4576 4577 if (!dev) 4578 return; 4579 4580 print_device_short(dev, indent); 4581 4582 TAILQ_FOREACH(child, &dev->children, link) { 4583 print_device_tree_short(child, indent+1); 4584 } 4585 } 4586 4587 void 4588 print_device_tree(device_t dev, int indent) 4589 /* print the device and all its children (indented) */ 4590 { 4591 device_t child; 4592 4593 if (!dev) 4594 return; 4595 4596 print_device(dev, indent); 4597 4598 TAILQ_FOREACH(child, &dev->children, link) { 4599 print_device_tree(child, indent+1); 4600 } 4601 } 4602 4603 static void 4604 print_driver_short(driver_t *driver, int indent) 4605 { 4606 if (!driver) 4607 return; 4608 4609 indentprintf(("driver %s: softc size = %zd\n", 4610 driver->name, driver->size)); 4611 } 4612 4613 static void 4614 print_driver(driver_t *driver, int indent) 4615 { 4616 if (!driver) 4617 return; 4618 4619 print_driver_short(driver, indent); 4620 } 4621 4622 static void 4623 print_driver_list(driver_list_t drivers, int indent) 4624 { 4625 driverlink_t driver; 4626 4627 TAILQ_FOREACH(driver, &drivers, link) { 4628 print_driver(driver->driver, indent); 4629 } 4630 } 4631 4632 static void 4633 print_devclass_short(devclass_t dc, int indent) 4634 { 4635 if ( !dc ) 4636 return; 4637 4638 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4639 } 4640 4641 static void 4642 print_devclass(devclass_t dc, int indent) 4643 { 4644 int i; 4645 4646 if ( !dc ) 4647 return; 4648 4649 print_devclass_short(dc, indent); 4650 indentprintf(("Drivers:\n")); 4651 print_driver_list(dc->drivers, indent+1); 4652 4653 indentprintf(("Devices:\n")); 4654 for (i = 0; i < dc->maxunit; i++) 4655 if (dc->devices[i]) 4656 print_device(dc->devices[i], indent+1); 4657 } 4658 4659 void 4660 print_devclass_list_short(void) 4661 { 4662 devclass_t dc; 4663 4664 printf("Short listing of devclasses, drivers & devices:\n"); 4665 TAILQ_FOREACH(dc, &devclasses, link) { 4666 print_devclass_short(dc, 0); 4667 } 4668 } 4669 4670 void 4671 print_devclass_list(void) 4672 { 4673 devclass_t dc; 4674 4675 printf("Full listing of devclasses, drivers & devices:\n"); 4676 TAILQ_FOREACH(dc, &devclasses, link) { 4677 print_devclass(dc, 0); 4678 } 4679 } 4680 4681 #endif 4682 4683 /* 4684 * User-space access to the device tree. 4685 * 4686 * We implement a small set of nodes: 4687 * 4688 * hw.bus Single integer read method to obtain the 4689 * current generation count. 4690 * hw.bus.devices Reads the entire device tree in flat space. 4691 * hw.bus.rman Resource manager interface 4692 * 4693 * We might like to add the ability to scan devclasses and/or drivers to 4694 * determine what else is currently loaded/available. 4695 */ 4696 4697 static int 4698 sysctl_bus(SYSCTL_HANDLER_ARGS) 4699 { 4700 struct u_businfo ubus; 4701 4702 ubus.ub_version = BUS_USER_VERSION; 4703 ubus.ub_generation = bus_data_generation; 4704 4705 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4706 } 4707 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4708 "bus-related data"); 4709 4710 static int 4711 sysctl_devices(SYSCTL_HANDLER_ARGS) 4712 { 4713 int *name = (int *)arg1; 4714 u_int namelen = arg2; 4715 int index; 4716 struct device *dev; 4717 struct u_device udev; /* XXX this is a bit big */ 4718 int error; 4719 4720 if (namelen != 2) 4721 return (EINVAL); 4722 4723 if (bus_data_generation_check(name[0])) 4724 return (EINVAL); 4725 4726 index = name[1]; 4727 4728 /* 4729 * Scan the list of devices, looking for the requested index. 4730 */ 4731 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4732 if (index-- == 0) 4733 break; 4734 } 4735 if (dev == NULL) 4736 return (ENOENT); 4737 4738 /* 4739 * Populate the return array. 4740 */ 4741 bzero(&udev, sizeof(udev)); 4742 udev.dv_handle = (uintptr_t)dev; 4743 udev.dv_parent = (uintptr_t)dev->parent; 4744 if (dev->nameunit != NULL) 4745 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4746 if (dev->desc != NULL) 4747 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4748 if (dev->driver != NULL && dev->driver->name != NULL) 4749 strlcpy(udev.dv_drivername, dev->driver->name, 4750 sizeof(udev.dv_drivername)); 4751 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4752 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4753 udev.dv_devflags = dev->devflags; 4754 udev.dv_flags = dev->flags; 4755 udev.dv_state = dev->state; 4756 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4757 return (error); 4758 } 4759 4760 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4761 "system device tree"); 4762 4763 int 4764 bus_data_generation_check(int generation) 4765 { 4766 if (generation != bus_data_generation) 4767 return (1); 4768 4769 /* XXX generate optimised lists here? */ 4770 return (0); 4771 } 4772 4773 void 4774 bus_data_generation_update(void) 4775 { 4776 bus_data_generation++; 4777 } 4778 4779 int 4780 bus_free_resource(device_t dev, int type, struct resource *r) 4781 { 4782 if (r == NULL) 4783 return (0); 4784 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4785 } 4786