1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #define __RMAN_RESOURCE_VISIBLE 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 char *buf; 204 int error; 205 206 buf = NULL; 207 switch (arg2) { 208 case DEVCLASS_SYSCTL_PARENT: 209 value = dc->parent ? dc->parent->name : ""; 210 break; 211 default: 212 return (EINVAL); 213 } 214 error = SYSCTL_OUT(req, value, strlen(value)); 215 if (buf != NULL) 216 free(buf, M_BUS); 217 return (error); 218 } 219 220 static void 221 devclass_sysctl_init(devclass_t dc) 222 { 223 224 if (dc->sysctl_tree != NULL) 225 return; 226 sysctl_ctx_init(&dc->sysctl_ctx); 227 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 228 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 229 CTLFLAG_RD, 0, ""); 230 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 231 OID_AUTO, "%parent", CTLFLAG_RD, 232 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 233 "parent class"); 234 } 235 236 enum { 237 DEVICE_SYSCTL_DESC, 238 DEVICE_SYSCTL_DRIVER, 239 DEVICE_SYSCTL_LOCATION, 240 DEVICE_SYSCTL_PNPINFO, 241 DEVICE_SYSCTL_PARENT, 242 }; 243 244 static int 245 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 246 { 247 device_t dev = (device_t)arg1; 248 const char *value; 249 char *buf; 250 int error; 251 252 buf = NULL; 253 switch (arg2) { 254 case DEVICE_SYSCTL_DESC: 255 value = dev->desc ? dev->desc : ""; 256 break; 257 case DEVICE_SYSCTL_DRIVER: 258 value = dev->driver ? dev->driver->name : ""; 259 break; 260 case DEVICE_SYSCTL_LOCATION: 261 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 262 bus_child_location_str(dev, buf, 1024); 263 break; 264 case DEVICE_SYSCTL_PNPINFO: 265 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 266 bus_child_pnpinfo_str(dev, buf, 1024); 267 break; 268 case DEVICE_SYSCTL_PARENT: 269 value = dev->parent ? dev->parent->nameunit : ""; 270 break; 271 default: 272 return (EINVAL); 273 } 274 error = SYSCTL_OUT(req, value, strlen(value)); 275 if (buf != NULL) 276 free(buf, M_BUS); 277 return (error); 278 } 279 280 static void 281 device_sysctl_init(device_t dev) 282 { 283 devclass_t dc = dev->devclass; 284 285 if (dev->sysctl_tree != NULL) 286 return; 287 devclass_sysctl_init(dc); 288 sysctl_ctx_init(&dev->sysctl_ctx); 289 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 290 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 291 dev->nameunit + strlen(dc->name), 292 CTLFLAG_RD, 0, ""); 293 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 294 OID_AUTO, "%desc", CTLFLAG_RD, 295 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 296 "device description"); 297 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 298 OID_AUTO, "%driver", CTLFLAG_RD, 299 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 300 "device driver name"); 301 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 302 OID_AUTO, "%location", CTLFLAG_RD, 303 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 304 "device location relative to parent"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 308 "device identification"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%parent", CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 312 "parent device"); 313 } 314 315 static void 316 device_sysctl_fini(device_t dev) 317 { 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_ctx_free(&dev->sysctl_ctx); 321 dev->sysctl_tree = NULL; 322 } 323 324 /* 325 * /dev/devctl implementation 326 */ 327 328 /* 329 * This design allows only one reader for /dev/devctl. This is not desirable 330 * in the long run, but will get a lot of hair out of this implementation. 331 * Maybe we should make this device a clonable device. 332 * 333 * Also note: we specifically do not attach a device to the device_t tree 334 * to avoid potential chicken and egg problems. One could argue that all 335 * of this belongs to the root node. One could also further argue that the 336 * sysctl interface that we have not might more properly be an ioctl 337 * interface, but at this stage of the game, I'm not inclined to rock that 338 * boat. 339 * 340 * I'm also not sure that the SIGIO support is done correctly or not, as 341 * I copied it from a driver that had SIGIO support that likely hasn't been 342 * tested since 3.4 or 2.2.8! 343 */ 344 345 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 346 static int devctl_disable = 0; 347 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 348 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 349 sysctl_devctl_disable, "I", "devctl disable"); 350 351 static d_open_t devopen; 352 static d_close_t devclose; 353 static d_read_t devread; 354 static d_ioctl_t devioctl; 355 static d_poll_t devpoll; 356 357 #define CDEV_MAJOR 173 358 static struct cdevsw dev_cdevsw = { 359 .d_version = D_VERSION, 360 .d_flags = D_NEEDGIANT, 361 .d_open = devopen, 362 .d_close = devclose, 363 .d_read = devread, 364 .d_ioctl = devioctl, 365 .d_poll = devpoll, 366 .d_name = "devctl", 367 .d_maj = CDEV_MAJOR, 368 }; 369 370 struct dev_event_info 371 { 372 char *dei_data; 373 TAILQ_ENTRY(dev_event_info) dei_link; 374 }; 375 376 TAILQ_HEAD(devq, dev_event_info); 377 378 static struct dev_softc 379 { 380 int inuse; 381 int nonblock; 382 struct mtx mtx; 383 struct cv cv; 384 struct selinfo sel; 385 struct devq devq; 386 struct proc *async_proc; 387 } devsoftc; 388 389 static struct cdev *devctl_dev; 390 391 static void 392 devinit(void) 393 { 394 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 395 "devctl"); 396 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 397 cv_init(&devsoftc.cv, "dev cv"); 398 TAILQ_INIT(&devsoftc.devq); 399 } 400 401 static int 402 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 403 { 404 if (devsoftc.inuse) 405 return (EBUSY); 406 /* move to init */ 407 devsoftc.inuse = 1; 408 devsoftc.nonblock = 0; 409 devsoftc.async_proc = NULL; 410 return (0); 411 } 412 413 static int 414 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 415 { 416 devsoftc.inuse = 0; 417 mtx_lock(&devsoftc.mtx); 418 cv_broadcast(&devsoftc.cv); 419 mtx_unlock(&devsoftc.mtx); 420 421 return (0); 422 } 423 424 /* 425 * The read channel for this device is used to report changes to 426 * userland in realtime. We are required to free the data as well as 427 * the n1 object because we allocate them separately. Also note that 428 * we return one record at a time. If you try to read this device a 429 * character at a time, you will loose the rest of the data. Listening 430 * programs are expected to cope. 431 */ 432 static int 433 devread(struct cdev *dev, struct uio *uio, int ioflag) 434 { 435 struct dev_event_info *n1; 436 int rv; 437 438 mtx_lock(&devsoftc.mtx); 439 while (TAILQ_EMPTY(&devsoftc.devq)) { 440 if (devsoftc.nonblock) { 441 mtx_unlock(&devsoftc.mtx); 442 return (EAGAIN); 443 } 444 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 445 if (rv) { 446 /* 447 * Need to translate ERESTART to EINTR here? -- jake 448 */ 449 mtx_unlock(&devsoftc.mtx); 450 return (rv); 451 } 452 } 453 n1 = TAILQ_FIRST(&devsoftc.devq); 454 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 455 mtx_unlock(&devsoftc.mtx); 456 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 457 free(n1->dei_data, M_BUS); 458 free(n1, M_BUS); 459 return (rv); 460 } 461 462 static int 463 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 464 { 465 switch (cmd) { 466 467 case FIONBIO: 468 if (*(int*)data) 469 devsoftc.nonblock = 1; 470 else 471 devsoftc.nonblock = 0; 472 return (0); 473 case FIOASYNC: 474 if (*(int*)data) 475 devsoftc.async_proc = td->td_proc; 476 else 477 devsoftc.async_proc = NULL; 478 return (0); 479 480 /* (un)Support for other fcntl() calls. */ 481 case FIOCLEX: 482 case FIONCLEX: 483 case FIONREAD: 484 case FIOSETOWN: 485 case FIOGETOWN: 486 default: 487 break; 488 } 489 return (ENOTTY); 490 } 491 492 static int 493 devpoll(struct cdev *dev, int events, d_thread_t *td) 494 { 495 int revents = 0; 496 497 mtx_lock(&devsoftc.mtx); 498 if (events & (POLLIN | POLLRDNORM)) { 499 if (!TAILQ_EMPTY(&devsoftc.devq)) 500 revents = events & (POLLIN | POLLRDNORM); 501 else 502 selrecord(td, &devsoftc.sel); 503 } 504 mtx_unlock(&devsoftc.mtx); 505 506 return (revents); 507 } 508 509 /** 510 * @brief Queue data to be read from the devctl device 511 * 512 * Generic interface to queue data to the devctl device. It is 513 * assumed that @p data is properly formatted. It is further assumed 514 * that @p data is allocated using the M_BUS malloc type. 515 */ 516 void 517 devctl_queue_data(char *data) 518 { 519 struct dev_event_info *n1 = NULL; 520 struct proc *p; 521 522 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 523 if (n1 == NULL) 524 return; 525 n1->dei_data = data; 526 mtx_lock(&devsoftc.mtx); 527 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 528 cv_broadcast(&devsoftc.cv); 529 mtx_unlock(&devsoftc.mtx); 530 selwakeup(&devsoftc.sel); 531 p = devsoftc.async_proc; 532 if (p != NULL) { 533 PROC_LOCK(p); 534 psignal(p, SIGIO); 535 PROC_UNLOCK(p); 536 } 537 } 538 539 /** 540 * @brief Send a 'notification' to userland, using standard ways 541 */ 542 void 543 devctl_notify(const char *system, const char *subsystem, const char *type, 544 const char *data) 545 { 546 int len = 0; 547 char *msg; 548 549 if (system == NULL) 550 return; /* BOGUS! Must specify system. */ 551 if (subsystem == NULL) 552 return; /* BOGUS! Must specify subsystem. */ 553 if (type == NULL) 554 return; /* BOGUS! Must specify type. */ 555 len += strlen(" system=") + strlen(system); 556 len += strlen(" subsystem=") + strlen(subsystem); 557 len += strlen(" type=") + strlen(type); 558 /* add in the data message plus newline. */ 559 if (data != NULL) 560 len += strlen(data); 561 len += 3; /* '!', '\n', and NUL */ 562 msg = malloc(len, M_BUS, M_NOWAIT); 563 if (msg == NULL) 564 return; /* Drop it on the floor */ 565 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system, 566 subsystem, type, data); 567 devctl_queue_data(msg); 568 } 569 570 /* 571 * Common routine that tries to make sending messages as easy as possible. 572 * We allocate memory for the data, copy strings into that, but do not 573 * free it unless there's an error. The dequeue part of the driver should 574 * free the data. We don't send data when the device is disabled. We do 575 * send data, even when we have no listeners, because we wish to avoid 576 * races relating to startup and restart of listening applications. 577 * 578 * devaddq is designed to string together the type of event, with the 579 * object of that event, plus the plug and play info and location info 580 * for that event. This is likely most useful for devices, but less 581 * useful for other consumers of this interface. Those should use 582 * the devctl_queue_data() interface instead. 583 */ 584 static void 585 devaddq(const char *type, const char *what, device_t dev) 586 { 587 char *data = NULL; 588 char *loc = NULL; 589 char *pnp = NULL; 590 const char *parstr; 591 592 if (devctl_disable) 593 return; 594 data = malloc(1024, M_BUS, M_NOWAIT); 595 if (data == NULL) 596 goto bad; 597 598 /* get the bus specific location of this device */ 599 loc = malloc(1024, M_BUS, M_NOWAIT); 600 if (loc == NULL) 601 goto bad; 602 *loc = '\0'; 603 bus_child_location_str(dev, loc, 1024); 604 605 /* Get the bus specific pnp info of this device */ 606 pnp = malloc(1024, M_BUS, M_NOWAIT); 607 if (pnp == NULL) 608 goto bad; 609 *pnp = '\0'; 610 bus_child_pnpinfo_str(dev, pnp, 1024); 611 612 /* Get the parent of this device, or / if high enough in the tree. */ 613 if (device_get_parent(dev) == NULL) 614 parstr = "."; /* Or '/' ? */ 615 else 616 parstr = device_get_nameunit(device_get_parent(dev)); 617 /* String it all together. */ 618 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 619 parstr); 620 free(loc, M_BUS); 621 free(pnp, M_BUS); 622 devctl_queue_data(data); 623 return; 624 bad: 625 free(pnp, M_BUS); 626 free(loc, M_BUS); 627 free(data, M_BUS); 628 return; 629 } 630 631 /* 632 * A device was added to the tree. We are called just after it successfully 633 * attaches (that is, probe and attach success for this device). No call 634 * is made if a device is merely parented into the tree. See devnomatch 635 * if probe fails. If attach fails, no notification is sent (but maybe 636 * we should have a different message for this). 637 */ 638 static void 639 devadded(device_t dev) 640 { 641 char *pnp = NULL; 642 char *tmp = NULL; 643 644 pnp = malloc(1024, M_BUS, M_NOWAIT); 645 if (pnp == NULL) 646 goto fail; 647 tmp = malloc(1024, M_BUS, M_NOWAIT); 648 if (tmp == NULL) 649 goto fail; 650 *pnp = '\0'; 651 bus_child_pnpinfo_str(dev, pnp, 1024); 652 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 653 devaddq("+", tmp, dev); 654 fail: 655 if (pnp != NULL) 656 free(pnp, M_BUS); 657 if (tmp != NULL) 658 free(tmp, M_BUS); 659 return; 660 } 661 662 /* 663 * A device was removed from the tree. We are called just before this 664 * happens. 665 */ 666 static void 667 devremoved(device_t dev) 668 { 669 char *pnp = NULL; 670 char *tmp = NULL; 671 672 pnp = malloc(1024, M_BUS, M_NOWAIT); 673 if (pnp == NULL) 674 goto fail; 675 tmp = malloc(1024, M_BUS, M_NOWAIT); 676 if (tmp == NULL) 677 goto fail; 678 *pnp = '\0'; 679 bus_child_pnpinfo_str(dev, pnp, 1024); 680 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 681 devaddq("-", tmp, dev); 682 fail: 683 if (pnp != NULL) 684 free(pnp, M_BUS); 685 if (tmp != NULL) 686 free(tmp, M_BUS); 687 return; 688 } 689 690 /* 691 * Called when there's no match for this device. This is only called 692 * the first time that no match happens, so we don't keep getitng this 693 * message. Should that prove to be undesirable, we can change it. 694 * This is called when all drivers that can attach to a given bus 695 * decline to accept this device. Other errrors may not be detected. 696 */ 697 static void 698 devnomatch(device_t dev) 699 { 700 devaddq("?", "", dev); 701 } 702 703 static int 704 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 705 { 706 struct dev_event_info *n1; 707 int dis, error; 708 709 dis = devctl_disable; 710 error = sysctl_handle_int(oidp, &dis, 0, req); 711 if (error || !req->newptr) 712 return (error); 713 mtx_lock(&devsoftc.mtx); 714 devctl_disable = dis; 715 if (dis) { 716 while (!TAILQ_EMPTY(&devsoftc.devq)) { 717 n1 = TAILQ_FIRST(&devsoftc.devq); 718 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 719 free(n1->dei_data, M_BUS); 720 free(n1, M_BUS); 721 } 722 } 723 mtx_unlock(&devsoftc.mtx); 724 return (0); 725 } 726 727 /* End of /dev/devctl code */ 728 729 TAILQ_HEAD(,device) bus_data_devices; 730 static int bus_data_generation = 1; 731 732 kobj_method_t null_methods[] = { 733 { 0, 0 } 734 }; 735 736 DEFINE_CLASS(null, null_methods, 0); 737 738 /* 739 * Devclass implementation 740 */ 741 742 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 743 744 745 /** 746 * @internal 747 * @brief Find or create a device class 748 * 749 * If a device class with the name @p classname exists, return it, 750 * otherwise if @p create is non-zero create and return a new device 751 * class. 752 * 753 * If @p parentname is non-NULL, the parent of the devclass is set to 754 * the devclass of that name. 755 * 756 * @param classname the devclass name to find or create 757 * @param parentname the parent devclass name or @c NULL 758 * @param create non-zero to create a devclass 759 */ 760 static devclass_t 761 devclass_find_internal(const char *classname, const char *parentname, 762 int create) 763 { 764 devclass_t dc; 765 766 PDEBUG(("looking for %s", classname)); 767 if (!classname) 768 return (NULL); 769 770 TAILQ_FOREACH(dc, &devclasses, link) { 771 if (!strcmp(dc->name, classname)) 772 break; 773 } 774 775 if (create && !dc) { 776 PDEBUG(("creating %s", classname)); 777 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 778 M_BUS, M_NOWAIT|M_ZERO); 779 if (!dc) 780 return (NULL); 781 dc->parent = NULL; 782 dc->name = (char*) (dc + 1); 783 strcpy(dc->name, classname); 784 TAILQ_INIT(&dc->drivers); 785 TAILQ_INSERT_TAIL(&devclasses, dc, link); 786 787 bus_data_generation_update(); 788 } 789 if (parentname && dc && !dc->parent) { 790 dc->parent = devclass_find_internal(parentname, 0, FALSE); 791 } 792 793 return (dc); 794 } 795 796 /** 797 * @brief Create a device class 798 * 799 * If a device class with the name @p classname exists, return it, 800 * otherwise create and return a new device class. 801 * 802 * @param classname the devclass name to find or create 803 */ 804 devclass_t 805 devclass_create(const char *classname) 806 { 807 return (devclass_find_internal(classname, 0, TRUE)); 808 } 809 810 /** 811 * @brief Find a device class 812 * 813 * If a device class with the name @p classname exists, return it, 814 * otherwise return @c NULL. 815 * 816 * @param classname the devclass name to find 817 */ 818 devclass_t 819 devclass_find(const char *classname) 820 { 821 return (devclass_find_internal(classname, 0, FALSE)); 822 } 823 824 /** 825 * @brief Add a device driver to a device class 826 * 827 * Add a device driver to a devclass. This is normally called 828 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 829 * all devices in the devclass will be called to allow them to attempt 830 * to re-probe any unmatched children. 831 * 832 * @param dc the devclass to edit 833 * @param driver the driver to register 834 */ 835 int 836 devclass_add_driver(devclass_t dc, driver_t *driver) 837 { 838 driverlink_t dl; 839 int i; 840 841 PDEBUG(("%s", DRIVERNAME(driver))); 842 843 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 844 if (!dl) 845 return (ENOMEM); 846 847 /* 848 * Compile the driver's methods. Also increase the reference count 849 * so that the class doesn't get freed when the last instance 850 * goes. This means we can safely use static methods and avoids a 851 * double-free in devclass_delete_driver. 852 */ 853 kobj_class_compile((kobj_class_t) driver); 854 855 /* 856 * Make sure the devclass which the driver is implementing exists. 857 */ 858 devclass_find_internal(driver->name, 0, TRUE); 859 860 dl->driver = driver; 861 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 862 driver->refs++; 863 864 /* 865 * Call BUS_DRIVER_ADDED for any existing busses in this class. 866 */ 867 for (i = 0; i < dc->maxunit; i++) 868 if (dc->devices[i]) 869 BUS_DRIVER_ADDED(dc->devices[i], driver); 870 871 bus_data_generation_update(); 872 return (0); 873 } 874 875 /** 876 * @brief Delete a device driver from a device class 877 * 878 * Delete a device driver from a devclass. This is normally called 879 * automatically by DRIVER_MODULE(). 880 * 881 * If the driver is currently attached to any devices, 882 * devclass_delete_driver() will first attempt to detach from each 883 * device. If one of the detach calls fails, the driver will not be 884 * deleted. 885 * 886 * @param dc the devclass to edit 887 * @param driver the driver to unregister 888 */ 889 int 890 devclass_delete_driver(devclass_t busclass, driver_t *driver) 891 { 892 devclass_t dc = devclass_find(driver->name); 893 driverlink_t dl; 894 device_t dev; 895 int i; 896 int error; 897 898 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 899 900 if (!dc) 901 return (0); 902 903 /* 904 * Find the link structure in the bus' list of drivers. 905 */ 906 TAILQ_FOREACH(dl, &busclass->drivers, link) { 907 if (dl->driver == driver) 908 break; 909 } 910 911 if (!dl) { 912 PDEBUG(("%s not found in %s list", driver->name, 913 busclass->name)); 914 return (ENOENT); 915 } 916 917 /* 918 * Disassociate from any devices. We iterate through all the 919 * devices in the devclass of the driver and detach any which are 920 * using the driver and which have a parent in the devclass which 921 * we are deleting from. 922 * 923 * Note that since a driver can be in multiple devclasses, we 924 * should not detach devices which are not children of devices in 925 * the affected devclass. 926 */ 927 for (i = 0; i < dc->maxunit; i++) { 928 if (dc->devices[i]) { 929 dev = dc->devices[i]; 930 if (dev->driver == driver && dev->parent && 931 dev->parent->devclass == busclass) { 932 if ((error = device_detach(dev)) != 0) 933 return (error); 934 device_set_driver(dev, NULL); 935 } 936 } 937 } 938 939 TAILQ_REMOVE(&busclass->drivers, dl, link); 940 free(dl, M_BUS); 941 942 driver->refs--; 943 if (driver->refs == 0) 944 kobj_class_free((kobj_class_t) driver); 945 946 bus_data_generation_update(); 947 return (0); 948 } 949 950 /** 951 * @brief Quiesces a set of device drivers from a device class 952 * 953 * Quiesce a device driver from a devclass. This is normally called 954 * automatically by DRIVER_MODULE(). 955 * 956 * If the driver is currently attached to any devices, 957 * devclass_quiesece_driver() will first attempt to quiesce each 958 * device. 959 * 960 * @param dc the devclass to edit 961 * @param driver the driver to unregister 962 */ 963 int 964 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 965 { 966 devclass_t dc = devclass_find(driver->name); 967 driverlink_t dl; 968 device_t dev; 969 int i; 970 int error; 971 972 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 973 974 if (!dc) 975 return (0); 976 977 /* 978 * Find the link structure in the bus' list of drivers. 979 */ 980 TAILQ_FOREACH(dl, &busclass->drivers, link) { 981 if (dl->driver == driver) 982 break; 983 } 984 985 if (!dl) { 986 PDEBUG(("%s not found in %s list", driver->name, 987 busclass->name)); 988 return (ENOENT); 989 } 990 991 /* 992 * Quiesce all devices. We iterate through all the devices in 993 * the devclass of the driver and quiesce any which are using 994 * the driver and which have a parent in the devclass which we 995 * are quiescing. 996 * 997 * Note that since a driver can be in multiple devclasses, we 998 * should not quiesce devices which are not children of 999 * devices in the affected devclass. 1000 */ 1001 for (i = 0; i < dc->maxunit; i++) { 1002 if (dc->devices[i]) { 1003 dev = dc->devices[i]; 1004 if (dev->driver == driver && dev->parent && 1005 dev->parent->devclass == busclass) { 1006 if ((error = device_quiesce(dev)) != 0) 1007 return (error); 1008 } 1009 } 1010 } 1011 1012 return (0); 1013 } 1014 1015 /** 1016 * @internal 1017 */ 1018 static driverlink_t 1019 devclass_find_driver_internal(devclass_t dc, const char *classname) 1020 { 1021 driverlink_t dl; 1022 1023 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1024 1025 TAILQ_FOREACH(dl, &dc->drivers, link) { 1026 if (!strcmp(dl->driver->name, classname)) 1027 return (dl); 1028 } 1029 1030 PDEBUG(("not found")); 1031 return (NULL); 1032 } 1033 1034 /** 1035 * @brief Search a devclass for a driver 1036 * 1037 * This function searches the devclass's list of drivers and returns 1038 * the first driver whose name is @p classname or @c NULL if there is 1039 * no driver of that name. 1040 * 1041 * @param dc the devclass to search 1042 * @param classname the driver name to search for 1043 */ 1044 kobj_class_t 1045 devclass_find_driver(devclass_t dc, const char *classname) 1046 { 1047 driverlink_t dl; 1048 1049 dl = devclass_find_driver_internal(dc, classname); 1050 if (dl) 1051 return (dl->driver); 1052 return (NULL); 1053 } 1054 1055 /** 1056 * @brief Return the name of the devclass 1057 */ 1058 const char * 1059 devclass_get_name(devclass_t dc) 1060 { 1061 return (dc->name); 1062 } 1063 1064 /** 1065 * @brief Find a device given a unit number 1066 * 1067 * @param dc the devclass to search 1068 * @param unit the unit number to search for 1069 * 1070 * @returns the device with the given unit number or @c 1071 * NULL if there is no such device 1072 */ 1073 device_t 1074 devclass_get_device(devclass_t dc, int unit) 1075 { 1076 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1077 return (NULL); 1078 return (dc->devices[unit]); 1079 } 1080 1081 /** 1082 * @brief Find the softc field of a device given a unit number 1083 * 1084 * @param dc the devclass to search 1085 * @param unit the unit number to search for 1086 * 1087 * @returns the softc field of the device with the given 1088 * unit number or @c NULL if there is no such 1089 * device 1090 */ 1091 void * 1092 devclass_get_softc(devclass_t dc, int unit) 1093 { 1094 device_t dev; 1095 1096 dev = devclass_get_device(dc, unit); 1097 if (!dev) 1098 return (NULL); 1099 1100 return (device_get_softc(dev)); 1101 } 1102 1103 /** 1104 * @brief Get a list of devices in the devclass 1105 * 1106 * An array containing a list of all the devices in the given devclass 1107 * is allocated and returned in @p *devlistp. The number of devices 1108 * in the array is returned in @p *devcountp. The caller should free 1109 * the array using @c free(p, M_TEMP). 1110 * 1111 * @param dc the devclass to examine 1112 * @param devlistp points at location for array pointer return 1113 * value 1114 * @param devcountp points at location for array size return value 1115 * 1116 * @retval 0 success 1117 * @retval ENOMEM the array allocation failed 1118 */ 1119 int 1120 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1121 { 1122 int count, i; 1123 device_t *list; 1124 1125 count = devclass_get_count(dc); 1126 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1127 if (!list) 1128 return (ENOMEM); 1129 1130 count = 0; 1131 for (i = 0; i < dc->maxunit; i++) { 1132 if (dc->devices[i]) { 1133 list[count] = dc->devices[i]; 1134 count++; 1135 } 1136 } 1137 1138 *devlistp = list; 1139 *devcountp = count; 1140 1141 return (0); 1142 } 1143 1144 /** 1145 * @brief Get the number of devices in a devclass 1146 * 1147 * @param dc the devclass to examine 1148 */ 1149 int 1150 devclass_get_count(devclass_t dc) 1151 { 1152 int count, i; 1153 1154 count = 0; 1155 for (i = 0; i < dc->maxunit; i++) 1156 if (dc->devices[i]) 1157 count++; 1158 return (count); 1159 } 1160 1161 /** 1162 * @brief Get the maximum unit number used in a devclass 1163 * 1164 * @param dc the devclass to examine 1165 */ 1166 int 1167 devclass_get_maxunit(devclass_t dc) 1168 { 1169 return (dc->maxunit); 1170 } 1171 1172 /** 1173 * @brief Find a free unit number in a devclass 1174 * 1175 * This function searches for the first unused unit number greater 1176 * that or equal to @p unit. 1177 * 1178 * @param dc the devclass to examine 1179 * @param unit the first unit number to check 1180 */ 1181 int 1182 devclass_find_free_unit(devclass_t dc, int unit) 1183 { 1184 if (dc == NULL) 1185 return (unit); 1186 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1187 unit++; 1188 return (unit); 1189 } 1190 1191 /** 1192 * @brief Set the parent of a devclass 1193 * 1194 * The parent class is normally initialised automatically by 1195 * DRIVER_MODULE(). 1196 * 1197 * @param dc the devclass to edit 1198 * @param pdc the new parent devclass 1199 */ 1200 void 1201 devclass_set_parent(devclass_t dc, devclass_t pdc) 1202 { 1203 dc->parent = pdc; 1204 } 1205 1206 /** 1207 * @brief Get the parent of a devclass 1208 * 1209 * @param dc the devclass to examine 1210 */ 1211 devclass_t 1212 devclass_get_parent(devclass_t dc) 1213 { 1214 return (dc->parent); 1215 } 1216 1217 struct sysctl_ctx_list * 1218 devclass_get_sysctl_ctx(devclass_t dc) 1219 { 1220 return (&dc->sysctl_ctx); 1221 } 1222 1223 struct sysctl_oid * 1224 devclass_get_sysctl_tree(devclass_t dc) 1225 { 1226 return (dc->sysctl_tree); 1227 } 1228 1229 /** 1230 * @internal 1231 * @brief Allocate a unit number 1232 * 1233 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1234 * will do). The allocated unit number is returned in @p *unitp. 1235 1236 * @param dc the devclass to allocate from 1237 * @param unitp points at the location for the allocated unit 1238 * number 1239 * 1240 * @retval 0 success 1241 * @retval EEXIST the requested unit number is already allocated 1242 * @retval ENOMEM memory allocation failure 1243 */ 1244 static int 1245 devclass_alloc_unit(devclass_t dc, int *unitp) 1246 { 1247 int unit = *unitp; 1248 1249 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1250 1251 /* If we were given a wired unit number, check for existing device */ 1252 /* XXX imp XXX */ 1253 if (unit != -1) { 1254 if (unit >= 0 && unit < dc->maxunit && 1255 dc->devices[unit] != NULL) { 1256 if (bootverbose) 1257 printf("%s: %s%d already exists; skipping it\n", 1258 dc->name, dc->name, *unitp); 1259 return (EEXIST); 1260 } 1261 } else { 1262 /* Unwired device, find the next available slot for it */ 1263 unit = 0; 1264 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1265 unit++; 1266 } 1267 1268 /* 1269 * We've selected a unit beyond the length of the table, so let's 1270 * extend the table to make room for all units up to and including 1271 * this one. 1272 */ 1273 if (unit >= dc->maxunit) { 1274 device_t *newlist; 1275 int newsize; 1276 1277 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1278 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1279 if (!newlist) 1280 return (ENOMEM); 1281 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1282 bzero(newlist + dc->maxunit, 1283 sizeof(device_t) * (newsize - dc->maxunit)); 1284 if (dc->devices) 1285 free(dc->devices, M_BUS); 1286 dc->devices = newlist; 1287 dc->maxunit = newsize; 1288 } 1289 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1290 1291 *unitp = unit; 1292 return (0); 1293 } 1294 1295 /** 1296 * @internal 1297 * @brief Add a device to a devclass 1298 * 1299 * A unit number is allocated for the device (using the device's 1300 * preferred unit number if any) and the device is registered in the 1301 * devclass. This allows the device to be looked up by its unit 1302 * number, e.g. by decoding a dev_t minor number. 1303 * 1304 * @param dc the devclass to add to 1305 * @param dev the device to add 1306 * 1307 * @retval 0 success 1308 * @retval EEXIST the requested unit number is already allocated 1309 * @retval ENOMEM memory allocation failure 1310 */ 1311 static int 1312 devclass_add_device(devclass_t dc, device_t dev) 1313 { 1314 int buflen, error; 1315 1316 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1317 1318 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1319 if (buflen < 0) 1320 return (ENOMEM); 1321 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1322 if (!dev->nameunit) 1323 return (ENOMEM); 1324 1325 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1326 free(dev->nameunit, M_BUS); 1327 dev->nameunit = NULL; 1328 return (error); 1329 } 1330 dc->devices[dev->unit] = dev; 1331 dev->devclass = dc; 1332 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1333 1334 return (0); 1335 } 1336 1337 /** 1338 * @internal 1339 * @brief Delete a device from a devclass 1340 * 1341 * The device is removed from the devclass's device list and its unit 1342 * number is freed. 1343 1344 * @param dc the devclass to delete from 1345 * @param dev the device to delete 1346 * 1347 * @retval 0 success 1348 */ 1349 static int 1350 devclass_delete_device(devclass_t dc, device_t dev) 1351 { 1352 if (!dc || !dev) 1353 return (0); 1354 1355 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1356 1357 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1358 panic("devclass_delete_device: inconsistent device class"); 1359 dc->devices[dev->unit] = NULL; 1360 if (dev->flags & DF_WILDCARD) 1361 dev->unit = -1; 1362 dev->devclass = NULL; 1363 free(dev->nameunit, M_BUS); 1364 dev->nameunit = NULL; 1365 1366 return (0); 1367 } 1368 1369 /** 1370 * @internal 1371 * @brief Make a new device and add it as a child of @p parent 1372 * 1373 * @param parent the parent of the new device 1374 * @param name the devclass name of the new device or @c NULL 1375 * to leave the devclass unspecified 1376 * @parem unit the unit number of the new device of @c -1 to 1377 * leave the unit number unspecified 1378 * 1379 * @returns the new device 1380 */ 1381 static device_t 1382 make_device(device_t parent, const char *name, int unit) 1383 { 1384 device_t dev; 1385 devclass_t dc; 1386 1387 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1388 1389 if (name) { 1390 dc = devclass_find_internal(name, 0, TRUE); 1391 if (!dc) { 1392 printf("make_device: can't find device class %s\n", 1393 name); 1394 return (NULL); 1395 } 1396 } else { 1397 dc = NULL; 1398 } 1399 1400 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1401 if (!dev) 1402 return (NULL); 1403 1404 dev->parent = parent; 1405 TAILQ_INIT(&dev->children); 1406 kobj_init((kobj_t) dev, &null_class); 1407 dev->driver = NULL; 1408 dev->devclass = NULL; 1409 dev->unit = unit; 1410 dev->nameunit = NULL; 1411 dev->desc = NULL; 1412 dev->busy = 0; 1413 dev->devflags = 0; 1414 dev->flags = DF_ENABLED; 1415 dev->order = 0; 1416 if (unit == -1) 1417 dev->flags |= DF_WILDCARD; 1418 if (name) { 1419 dev->flags |= DF_FIXEDCLASS; 1420 if (devclass_add_device(dc, dev)) { 1421 kobj_delete((kobj_t) dev, M_BUS); 1422 return (NULL); 1423 } 1424 } 1425 dev->ivars = NULL; 1426 dev->softc = NULL; 1427 1428 dev->state = DS_NOTPRESENT; 1429 1430 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1431 bus_data_generation_update(); 1432 1433 return (dev); 1434 } 1435 1436 /** 1437 * @internal 1438 * @brief Print a description of a device. 1439 */ 1440 static int 1441 device_print_child(device_t dev, device_t child) 1442 { 1443 int retval = 0; 1444 1445 if (device_is_alive(child)) 1446 retval += BUS_PRINT_CHILD(dev, child); 1447 else 1448 retval += device_printf(child, " not found\n"); 1449 1450 return (retval); 1451 } 1452 1453 /** 1454 * @brief Create a new device 1455 * 1456 * This creates a new device and adds it as a child of an existing 1457 * parent device. The new device will be added after the last existing 1458 * child with order zero. 1459 * 1460 * @param dev the device which will be the parent of the 1461 * new child device 1462 * @param name devclass name for new device or @c NULL if not 1463 * specified 1464 * @param unit unit number for new device or @c -1 if not 1465 * specified 1466 * 1467 * @returns the new device 1468 */ 1469 device_t 1470 device_add_child(device_t dev, const char *name, int unit) 1471 { 1472 return (device_add_child_ordered(dev, 0, name, unit)); 1473 } 1474 1475 /** 1476 * @brief Create a new device 1477 * 1478 * This creates a new device and adds it as a child of an existing 1479 * parent device. The new device will be added after the last existing 1480 * child with the same order. 1481 * 1482 * @param dev the device which will be the parent of the 1483 * new child device 1484 * @param order a value which is used to partially sort the 1485 * children of @p dev - devices created using 1486 * lower values of @p order appear first in @p 1487 * dev's list of children 1488 * @param name devclass name for new device or @c NULL if not 1489 * specified 1490 * @param unit unit number for new device or @c -1 if not 1491 * specified 1492 * 1493 * @returns the new device 1494 */ 1495 device_t 1496 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1497 { 1498 device_t child; 1499 device_t place; 1500 1501 PDEBUG(("%s at %s with order %d as unit %d", 1502 name, DEVICENAME(dev), order, unit)); 1503 1504 child = make_device(dev, name, unit); 1505 if (child == NULL) 1506 return (child); 1507 child->order = order; 1508 1509 TAILQ_FOREACH(place, &dev->children, link) { 1510 if (place->order > order) 1511 break; 1512 } 1513 1514 if (place) { 1515 /* 1516 * The device 'place' is the first device whose order is 1517 * greater than the new child. 1518 */ 1519 TAILQ_INSERT_BEFORE(place, child, link); 1520 } else { 1521 /* 1522 * The new child's order is greater or equal to the order of 1523 * any existing device. Add the child to the tail of the list. 1524 */ 1525 TAILQ_INSERT_TAIL(&dev->children, child, link); 1526 } 1527 1528 bus_data_generation_update(); 1529 return (child); 1530 } 1531 1532 /** 1533 * @brief Delete a device 1534 * 1535 * This function deletes a device along with all of its children. If 1536 * the device currently has a driver attached to it, the device is 1537 * detached first using device_detach(). 1538 * 1539 * @param dev the parent device 1540 * @param child the device to delete 1541 * 1542 * @retval 0 success 1543 * @retval non-zero a unit error code describing the error 1544 */ 1545 int 1546 device_delete_child(device_t dev, device_t child) 1547 { 1548 int error; 1549 device_t grandchild; 1550 1551 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1552 1553 /* remove children first */ 1554 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1555 error = device_delete_child(child, grandchild); 1556 if (error) 1557 return (error); 1558 } 1559 1560 if ((error = device_detach(child)) != 0) 1561 return (error); 1562 if (child->devclass) 1563 devclass_delete_device(child->devclass, child); 1564 TAILQ_REMOVE(&dev->children, child, link); 1565 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1566 kobj_delete((kobj_t) child, M_BUS); 1567 1568 bus_data_generation_update(); 1569 return (0); 1570 } 1571 1572 /** 1573 * @brief Find a device given a unit number 1574 * 1575 * This is similar to devclass_get_devices() but only searches for 1576 * devices which have @p dev as a parent. 1577 * 1578 * @param dev the parent device to search 1579 * @param unit the unit number to search for 1580 * 1581 * @returns the device with the given unit number or @c 1582 * NULL if there is no such device 1583 */ 1584 device_t 1585 device_find_child(device_t dev, const char *classname, int unit) 1586 { 1587 devclass_t dc; 1588 device_t child; 1589 1590 dc = devclass_find(classname); 1591 if (!dc) 1592 return (NULL); 1593 1594 child = devclass_get_device(dc, unit); 1595 if (child && child->parent == dev) 1596 return (child); 1597 return (NULL); 1598 } 1599 1600 /** 1601 * @internal 1602 */ 1603 static driverlink_t 1604 first_matching_driver(devclass_t dc, device_t dev) 1605 { 1606 if (dev->devclass) 1607 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1608 return (TAILQ_FIRST(&dc->drivers)); 1609 } 1610 1611 /** 1612 * @internal 1613 */ 1614 static driverlink_t 1615 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1616 { 1617 if (dev->devclass) { 1618 driverlink_t dl; 1619 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1620 if (!strcmp(dev->devclass->name, dl->driver->name)) 1621 return (dl); 1622 return (NULL); 1623 } 1624 return (TAILQ_NEXT(last, link)); 1625 } 1626 1627 /** 1628 * @internal 1629 */ 1630 static int 1631 device_probe_child(device_t dev, device_t child) 1632 { 1633 devclass_t dc; 1634 driverlink_t best = 0; 1635 driverlink_t dl; 1636 int result, pri = 0; 1637 int hasclass = (child->devclass != 0); 1638 1639 GIANT_REQUIRED; 1640 1641 dc = dev->devclass; 1642 if (!dc) 1643 panic("device_probe_child: parent device has no devclass"); 1644 1645 /* 1646 * If the state is already probed, then return. However, don't 1647 * return if we can rebid this object. 1648 */ 1649 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1650 return (0); 1651 1652 for (; dc; dc = dc->parent) { 1653 for (dl = first_matching_driver(dc, child); 1654 dl; 1655 dl = next_matching_driver(dc, child, dl)) { 1656 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1657 device_set_driver(child, dl->driver); 1658 if (!hasclass) 1659 device_set_devclass(child, dl->driver->name); 1660 1661 /* Fetch any flags for the device before probing. */ 1662 resource_int_value(dl->driver->name, child->unit, 1663 "flags", &child->devflags); 1664 1665 result = DEVICE_PROBE(child); 1666 1667 /* Reset flags and devclass before the next probe. */ 1668 child->devflags = 0; 1669 if (!hasclass) 1670 device_set_devclass(child, 0); 1671 1672 /* 1673 * If the driver returns SUCCESS, there can be 1674 * no higher match for this device. 1675 */ 1676 if (result == 0) { 1677 best = dl; 1678 pri = 0; 1679 break; 1680 } 1681 1682 /* 1683 * The driver returned an error so it 1684 * certainly doesn't match. 1685 */ 1686 if (result > 0) { 1687 device_set_driver(child, 0); 1688 continue; 1689 } 1690 1691 /* 1692 * A priority lower than SUCCESS, remember the 1693 * best matching driver. Initialise the value 1694 * of pri for the first match. 1695 */ 1696 if (best == 0 || result > pri) { 1697 best = dl; 1698 pri = result; 1699 continue; 1700 } 1701 } 1702 /* 1703 * If we have an unambiguous match in this devclass, 1704 * don't look in the parent. 1705 */ 1706 if (best && pri == 0) 1707 break; 1708 } 1709 1710 /* 1711 * If we found a driver, change state and initialise the devclass. 1712 */ 1713 /* XXX What happens if we rebid and got no best? */ 1714 if (best) { 1715 /* 1716 * If this device was atached, and we were asked to 1717 * rescan, and it is a different driver, then we have 1718 * to detach the old driver and reattach this new one. 1719 * Note, we don't have to check for DF_REBID here 1720 * because if the state is > DS_ALIVE, we know it must 1721 * be. 1722 * 1723 * This assumes that all DF_REBID drivers can have 1724 * their probe routine called at any time and that 1725 * they are idempotent as well as completely benign in 1726 * normal operations. 1727 * 1728 * We also have to make sure that the detach 1729 * succeeded, otherwise we fail the operation (or 1730 * maybe it should just fail silently? I'm torn). 1731 */ 1732 if (child->state > DS_ALIVE && best->driver != child->driver) 1733 if ((result = device_detach(dev)) != 0) 1734 return (result); 1735 1736 /* Set the winning driver, devclass, and flags. */ 1737 if (!child->devclass) 1738 device_set_devclass(child, best->driver->name); 1739 device_set_driver(child, best->driver); 1740 resource_int_value(best->driver->name, child->unit, 1741 "flags", &child->devflags); 1742 1743 if (pri < 0) { 1744 /* 1745 * A bit bogus. Call the probe method again to make 1746 * sure that we have the right description. 1747 */ 1748 DEVICE_PROBE(child); 1749 #if 0 1750 child->flags |= DF_REBID; 1751 #endif 1752 } else 1753 child->flags &= ~DF_REBID; 1754 child->state = DS_ALIVE; 1755 1756 bus_data_generation_update(); 1757 return (0); 1758 } 1759 1760 return (ENXIO); 1761 } 1762 1763 /** 1764 * @brief Return the parent of a device 1765 */ 1766 device_t 1767 device_get_parent(device_t dev) 1768 { 1769 return (dev->parent); 1770 } 1771 1772 /** 1773 * @brief Get a list of children of a device 1774 * 1775 * An array containing a list of all the children of the given device 1776 * is allocated and returned in @p *devlistp. The number of devices 1777 * in the array is returned in @p *devcountp. The caller should free 1778 * the array using @c free(p, M_TEMP). 1779 * 1780 * @param dev the device to examine 1781 * @param devlistp points at location for array pointer return 1782 * value 1783 * @param devcountp points at location for array size return value 1784 * 1785 * @retval 0 success 1786 * @retval ENOMEM the array allocation failed 1787 */ 1788 int 1789 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1790 { 1791 int count; 1792 device_t child; 1793 device_t *list; 1794 1795 count = 0; 1796 TAILQ_FOREACH(child, &dev->children, link) { 1797 count++; 1798 } 1799 1800 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1801 if (!list) 1802 return (ENOMEM); 1803 1804 count = 0; 1805 TAILQ_FOREACH(child, &dev->children, link) { 1806 list[count] = child; 1807 count++; 1808 } 1809 1810 *devlistp = list; 1811 *devcountp = count; 1812 1813 return (0); 1814 } 1815 1816 /** 1817 * @brief Return the current driver for the device or @c NULL if there 1818 * is no driver currently attached 1819 */ 1820 driver_t * 1821 device_get_driver(device_t dev) 1822 { 1823 return (dev->driver); 1824 } 1825 1826 /** 1827 * @brief Return the current devclass for the device or @c NULL if 1828 * there is none. 1829 */ 1830 devclass_t 1831 device_get_devclass(device_t dev) 1832 { 1833 return (dev->devclass); 1834 } 1835 1836 /** 1837 * @brief Return the name of the device's devclass or @c NULL if there 1838 * is none. 1839 */ 1840 const char * 1841 device_get_name(device_t dev) 1842 { 1843 if (dev != NULL && dev->devclass) 1844 return (devclass_get_name(dev->devclass)); 1845 return (NULL); 1846 } 1847 1848 /** 1849 * @brief Return a string containing the device's devclass name 1850 * followed by an ascii representation of the device's unit number 1851 * (e.g. @c "foo2"). 1852 */ 1853 const char * 1854 device_get_nameunit(device_t dev) 1855 { 1856 return (dev->nameunit); 1857 } 1858 1859 /** 1860 * @brief Return the device's unit number. 1861 */ 1862 int 1863 device_get_unit(device_t dev) 1864 { 1865 return (dev->unit); 1866 } 1867 1868 /** 1869 * @brief Return the device's description string 1870 */ 1871 const char * 1872 device_get_desc(device_t dev) 1873 { 1874 return (dev->desc); 1875 } 1876 1877 /** 1878 * @brief Return the device's flags 1879 */ 1880 u_int32_t 1881 device_get_flags(device_t dev) 1882 { 1883 return (dev->devflags); 1884 } 1885 1886 struct sysctl_ctx_list * 1887 device_get_sysctl_ctx(device_t dev) 1888 { 1889 return (&dev->sysctl_ctx); 1890 } 1891 1892 struct sysctl_oid * 1893 device_get_sysctl_tree(device_t dev) 1894 { 1895 return (dev->sysctl_tree); 1896 } 1897 1898 /** 1899 * @brief Print the name of the device followed by a colon and a space 1900 * 1901 * @returns the number of characters printed 1902 */ 1903 int 1904 device_print_prettyname(device_t dev) 1905 { 1906 const char *name = device_get_name(dev); 1907 1908 if (name == 0) 1909 return (printf("unknown: ")); 1910 return (printf("%s%d: ", name, device_get_unit(dev))); 1911 } 1912 1913 /** 1914 * @brief Print the name of the device followed by a colon, a space 1915 * and the result of calling vprintf() with the value of @p fmt and 1916 * the following arguments. 1917 * 1918 * @returns the number of characters printed 1919 */ 1920 int 1921 device_printf(device_t dev, const char * fmt, ...) 1922 { 1923 va_list ap; 1924 int retval; 1925 1926 retval = device_print_prettyname(dev); 1927 va_start(ap, fmt); 1928 retval += vprintf(fmt, ap); 1929 va_end(ap); 1930 return (retval); 1931 } 1932 1933 /** 1934 * @internal 1935 */ 1936 static void 1937 device_set_desc_internal(device_t dev, const char* desc, int copy) 1938 { 1939 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1940 free(dev->desc, M_BUS); 1941 dev->flags &= ~DF_DESCMALLOCED; 1942 dev->desc = NULL; 1943 } 1944 1945 if (copy && desc) { 1946 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 1947 if (dev->desc) { 1948 strcpy(dev->desc, desc); 1949 dev->flags |= DF_DESCMALLOCED; 1950 } 1951 } else { 1952 /* Avoid a -Wcast-qual warning */ 1953 dev->desc = (char *)(uintptr_t) desc; 1954 } 1955 1956 bus_data_generation_update(); 1957 } 1958 1959 /** 1960 * @brief Set the device's description 1961 * 1962 * The value of @c desc should be a string constant that will not 1963 * change (at least until the description is changed in a subsequent 1964 * call to device_set_desc() or device_set_desc_copy()). 1965 */ 1966 void 1967 device_set_desc(device_t dev, const char* desc) 1968 { 1969 device_set_desc_internal(dev, desc, FALSE); 1970 } 1971 1972 /** 1973 * @brief Set the device's description 1974 * 1975 * The string pointed to by @c desc is copied. Use this function if 1976 * the device description is generated, (e.g. with sprintf()). 1977 */ 1978 void 1979 device_set_desc_copy(device_t dev, const char* desc) 1980 { 1981 device_set_desc_internal(dev, desc, TRUE); 1982 } 1983 1984 /** 1985 * @brief Set the device's flags 1986 */ 1987 void 1988 device_set_flags(device_t dev, u_int32_t flags) 1989 { 1990 dev->devflags = flags; 1991 } 1992 1993 /** 1994 * @brief Return the device's softc field 1995 * 1996 * The softc is allocated and zeroed when a driver is attached, based 1997 * on the size field of the driver. 1998 */ 1999 void * 2000 device_get_softc(device_t dev) 2001 { 2002 return (dev->softc); 2003 } 2004 2005 /** 2006 * @brief Set the device's softc field 2007 * 2008 * Most drivers do not need to use this since the softc is allocated 2009 * automatically when the driver is attached. 2010 */ 2011 void 2012 device_set_softc(device_t dev, void *softc) 2013 { 2014 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2015 free(dev->softc, M_BUS_SC); 2016 dev->softc = softc; 2017 if (dev->softc) 2018 dev->flags |= DF_EXTERNALSOFTC; 2019 else 2020 dev->flags &= ~DF_EXTERNALSOFTC; 2021 } 2022 2023 /** 2024 * @brief Get the device's ivars field 2025 * 2026 * The ivars field is used by the parent device to store per-device 2027 * state (e.g. the physical location of the device or a list of 2028 * resources). 2029 */ 2030 void * 2031 device_get_ivars(device_t dev) 2032 { 2033 2034 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2035 return (dev->ivars); 2036 } 2037 2038 /** 2039 * @brief Set the device's ivars field 2040 */ 2041 void 2042 device_set_ivars(device_t dev, void * ivars) 2043 { 2044 2045 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2046 dev->ivars = ivars; 2047 } 2048 2049 /** 2050 * @brief Return the device's state 2051 */ 2052 device_state_t 2053 device_get_state(device_t dev) 2054 { 2055 return (dev->state); 2056 } 2057 2058 /** 2059 * @brief Set the DF_ENABLED flag for the device 2060 */ 2061 void 2062 device_enable(device_t dev) 2063 { 2064 dev->flags |= DF_ENABLED; 2065 } 2066 2067 /** 2068 * @brief Clear the DF_ENABLED flag for the device 2069 */ 2070 void 2071 device_disable(device_t dev) 2072 { 2073 dev->flags &= ~DF_ENABLED; 2074 } 2075 2076 /** 2077 * @brief Increment the busy counter for the device 2078 */ 2079 void 2080 device_busy(device_t dev) 2081 { 2082 if (dev->state < DS_ATTACHED) 2083 panic("device_busy: called for unattached device"); 2084 if (dev->busy == 0 && dev->parent) 2085 device_busy(dev->parent); 2086 dev->busy++; 2087 dev->state = DS_BUSY; 2088 } 2089 2090 /** 2091 * @brief Decrement the busy counter for the device 2092 */ 2093 void 2094 device_unbusy(device_t dev) 2095 { 2096 if (dev->state != DS_BUSY) 2097 panic("device_unbusy: called for non-busy device %s", 2098 device_get_nameunit(dev)); 2099 dev->busy--; 2100 if (dev->busy == 0) { 2101 if (dev->parent) 2102 device_unbusy(dev->parent); 2103 dev->state = DS_ATTACHED; 2104 } 2105 } 2106 2107 /** 2108 * @brief Set the DF_QUIET flag for the device 2109 */ 2110 void 2111 device_quiet(device_t dev) 2112 { 2113 dev->flags |= DF_QUIET; 2114 } 2115 2116 /** 2117 * @brief Clear the DF_QUIET flag for the device 2118 */ 2119 void 2120 device_verbose(device_t dev) 2121 { 2122 dev->flags &= ~DF_QUIET; 2123 } 2124 2125 /** 2126 * @brief Return non-zero if the DF_QUIET flag is set on the device 2127 */ 2128 int 2129 device_is_quiet(device_t dev) 2130 { 2131 return ((dev->flags & DF_QUIET) != 0); 2132 } 2133 2134 /** 2135 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2136 */ 2137 int 2138 device_is_enabled(device_t dev) 2139 { 2140 return ((dev->flags & DF_ENABLED) != 0); 2141 } 2142 2143 /** 2144 * @brief Return non-zero if the device was successfully probed 2145 */ 2146 int 2147 device_is_alive(device_t dev) 2148 { 2149 return (dev->state >= DS_ALIVE); 2150 } 2151 2152 /** 2153 * @brief Return non-zero if the device currently has a driver 2154 * attached to it 2155 */ 2156 int 2157 device_is_attached(device_t dev) 2158 { 2159 return (dev->state >= DS_ATTACHED); 2160 } 2161 2162 /** 2163 * @brief Set the devclass of a device 2164 * @see devclass_add_device(). 2165 */ 2166 int 2167 device_set_devclass(device_t dev, const char *classname) 2168 { 2169 devclass_t dc; 2170 int error; 2171 2172 if (!classname) { 2173 if (dev->devclass) 2174 devclass_delete_device(dev->devclass, dev); 2175 return (0); 2176 } 2177 2178 if (dev->devclass) { 2179 printf("device_set_devclass: device class already set\n"); 2180 return (EINVAL); 2181 } 2182 2183 dc = devclass_find_internal(classname, 0, TRUE); 2184 if (!dc) 2185 return (ENOMEM); 2186 2187 error = devclass_add_device(dc, dev); 2188 2189 bus_data_generation_update(); 2190 return (error); 2191 } 2192 2193 /** 2194 * @brief Set the driver of a device 2195 * 2196 * @retval 0 success 2197 * @retval EBUSY the device already has a driver attached 2198 * @retval ENOMEM a memory allocation failure occurred 2199 */ 2200 int 2201 device_set_driver(device_t dev, driver_t *driver) 2202 { 2203 if (dev->state >= DS_ATTACHED) 2204 return (EBUSY); 2205 2206 if (dev->driver == driver) 2207 return (0); 2208 2209 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2210 free(dev->softc, M_BUS_SC); 2211 dev->softc = NULL; 2212 } 2213 kobj_delete((kobj_t) dev, 0); 2214 dev->driver = driver; 2215 if (driver) { 2216 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2217 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2218 dev->softc = malloc(driver->size, M_BUS_SC, 2219 M_NOWAIT | M_ZERO); 2220 if (!dev->softc) { 2221 kobj_delete((kobj_t) dev, 0); 2222 kobj_init((kobj_t) dev, &null_class); 2223 dev->driver = NULL; 2224 return (ENOMEM); 2225 } 2226 } 2227 } else { 2228 kobj_init((kobj_t) dev, &null_class); 2229 } 2230 2231 bus_data_generation_update(); 2232 return (0); 2233 } 2234 2235 /** 2236 * @brief Probe a device and attach a driver if possible 2237 * 2238 * This function is the core of the device autoconfiguration 2239 * system. Its purpose is to select a suitable driver for a device and 2240 * then call that driver to initialise the hardware appropriately. The 2241 * driver is selected by calling the DEVICE_PROBE() method of a set of 2242 * candidate drivers and then choosing the driver which returned the 2243 * best value. This driver is then attached to the device using 2244 * device_attach(). 2245 * 2246 * The set of suitable drivers is taken from the list of drivers in 2247 * the parent device's devclass. If the device was originally created 2248 * with a specific class name (see device_add_child()), only drivers 2249 * with that name are probed, otherwise all drivers in the devclass 2250 * are probed. If no drivers return successful probe values in the 2251 * parent devclass, the search continues in the parent of that 2252 * devclass (see devclass_get_parent()) if any. 2253 * 2254 * @param dev the device to initialise 2255 * 2256 * @retval 0 success 2257 * @retval ENXIO no driver was found 2258 * @retval ENOMEM memory allocation failure 2259 * @retval non-zero some other unix error code 2260 */ 2261 int 2262 device_probe_and_attach(device_t dev) 2263 { 2264 int error; 2265 2266 GIANT_REQUIRED; 2267 2268 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2269 return (0); 2270 2271 if (!(dev->flags & DF_ENABLED)) { 2272 if (bootverbose && device_get_name(dev) != NULL) { 2273 device_print_prettyname(dev); 2274 printf("not probed (disabled)\n"); 2275 } 2276 return (0); 2277 } 2278 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2279 if (!(dev->flags & DF_DONENOMATCH)) { 2280 BUS_PROBE_NOMATCH(dev->parent, dev); 2281 devnomatch(dev); 2282 dev->flags |= DF_DONENOMATCH; 2283 } 2284 return (error); 2285 } 2286 error = device_attach(dev); 2287 2288 return (error); 2289 } 2290 2291 /** 2292 * @brief Attach a device driver to a device 2293 * 2294 * This function is a wrapper around the DEVICE_ATTACH() driver 2295 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2296 * device's sysctl tree, optionally prints a description of the device 2297 * and queues a notification event for user-based device management 2298 * services. 2299 * 2300 * Normally this function is only called internally from 2301 * device_probe_and_attach(). 2302 * 2303 * @param dev the device to initialise 2304 * 2305 * @retval 0 success 2306 * @retval ENXIO no driver was found 2307 * @retval ENOMEM memory allocation failure 2308 * @retval non-zero some other unix error code 2309 */ 2310 int 2311 device_attach(device_t dev) 2312 { 2313 int error; 2314 2315 device_sysctl_init(dev); 2316 if (!device_is_quiet(dev)) 2317 device_print_child(dev->parent, dev); 2318 if ((error = DEVICE_ATTACH(dev)) != 0) { 2319 printf("device_attach: %s%d attach returned %d\n", 2320 dev->driver->name, dev->unit, error); 2321 /* Unset the class; set in device_probe_child */ 2322 if (dev->devclass == 0) 2323 device_set_devclass(dev, 0); 2324 device_set_driver(dev, NULL); 2325 device_sysctl_fini(dev); 2326 dev->state = DS_NOTPRESENT; 2327 return (error); 2328 } 2329 dev->state = DS_ATTACHED; 2330 devadded(dev); 2331 return (0); 2332 } 2333 2334 /** 2335 * @brief Detach a driver from a device 2336 * 2337 * This function is a wrapper around the DEVICE_DETACH() driver 2338 * method. If the call to DEVICE_DETACH() succeeds, it calls 2339 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2340 * notification event for user-based device management services and 2341 * cleans up the device's sysctl tree. 2342 * 2343 * @param dev the device to un-initialise 2344 * 2345 * @retval 0 success 2346 * @retval ENXIO no driver was found 2347 * @retval ENOMEM memory allocation failure 2348 * @retval non-zero some other unix error code 2349 */ 2350 int 2351 device_detach(device_t dev) 2352 { 2353 int error; 2354 2355 GIANT_REQUIRED; 2356 2357 PDEBUG(("%s", DEVICENAME(dev))); 2358 if (dev->state == DS_BUSY) 2359 return (EBUSY); 2360 if (dev->state != DS_ATTACHED) 2361 return (0); 2362 2363 if ((error = DEVICE_DETACH(dev)) != 0) 2364 return (error); 2365 devremoved(dev); 2366 device_printf(dev, "detached\n"); 2367 if (dev->parent) 2368 BUS_CHILD_DETACHED(dev->parent, dev); 2369 2370 if (!(dev->flags & DF_FIXEDCLASS)) 2371 devclass_delete_device(dev->devclass, dev); 2372 2373 dev->state = DS_NOTPRESENT; 2374 device_set_driver(dev, NULL); 2375 device_set_desc(dev, NULL); 2376 device_sysctl_fini(dev); 2377 2378 return (0); 2379 } 2380 2381 /** 2382 * @brief Tells a driver to quiesce itself. 2383 * 2384 * This function is a wrapper around the DEVICE_QUIESCE() driver 2385 * method. If the call to DEVICE_QUIESCE() succeeds. 2386 * 2387 * @param dev the device to quiesce 2388 * 2389 * @retval 0 success 2390 * @retval ENXIO no driver was found 2391 * @retval ENOMEM memory allocation failure 2392 * @retval non-zero some other unix error code 2393 */ 2394 int 2395 device_quiesce(device_t dev) 2396 { 2397 2398 PDEBUG(("%s", DEVICENAME(dev))); 2399 if (dev->state == DS_BUSY) 2400 return (EBUSY); 2401 if (dev->state != DS_ATTACHED) 2402 return (0); 2403 2404 return (DEVICE_QUIESCE(dev)); 2405 } 2406 2407 /** 2408 * @brief Notify a device of system shutdown 2409 * 2410 * This function calls the DEVICE_SHUTDOWN() driver method if the 2411 * device currently has an attached driver. 2412 * 2413 * @returns the value returned by DEVICE_SHUTDOWN() 2414 */ 2415 int 2416 device_shutdown(device_t dev) 2417 { 2418 if (dev->state < DS_ATTACHED) 2419 return (0); 2420 return (DEVICE_SHUTDOWN(dev)); 2421 } 2422 2423 /** 2424 * @brief Set the unit number of a device 2425 * 2426 * This function can be used to override the unit number used for a 2427 * device (e.g. to wire a device to a pre-configured unit number). 2428 */ 2429 int 2430 device_set_unit(device_t dev, int unit) 2431 { 2432 devclass_t dc; 2433 int err; 2434 2435 dc = device_get_devclass(dev); 2436 if (unit < dc->maxunit && dc->devices[unit]) 2437 return (EBUSY); 2438 err = devclass_delete_device(dc, dev); 2439 if (err) 2440 return (err); 2441 dev->unit = unit; 2442 err = devclass_add_device(dc, dev); 2443 if (err) 2444 return (err); 2445 2446 bus_data_generation_update(); 2447 return (0); 2448 } 2449 2450 /*======================================*/ 2451 /* 2452 * Some useful method implementations to make life easier for bus drivers. 2453 */ 2454 2455 /** 2456 * @brief Initialise a resource list. 2457 * 2458 * @param rl the resource list to initialise 2459 */ 2460 void 2461 resource_list_init(struct resource_list *rl) 2462 { 2463 SLIST_INIT(rl); 2464 } 2465 2466 /** 2467 * @brief Reclaim memory used by a resource list. 2468 * 2469 * This function frees the memory for all resource entries on the list 2470 * (if any). 2471 * 2472 * @param rl the resource list to free 2473 */ 2474 void 2475 resource_list_free(struct resource_list *rl) 2476 { 2477 struct resource_list_entry *rle; 2478 2479 while ((rle = SLIST_FIRST(rl)) != NULL) { 2480 if (rle->res) 2481 panic("resource_list_free: resource entry is busy"); 2482 SLIST_REMOVE_HEAD(rl, link); 2483 free(rle, M_BUS); 2484 } 2485 } 2486 2487 /** 2488 * @brief Add a resource entry. 2489 * 2490 * This function adds a resource entry using the given @p type, @p 2491 * start, @p end and @p count values. A rid value is chosen by 2492 * searching sequentially for the first unused rid starting at zero. 2493 * 2494 * @param rl the resource list to edit 2495 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2496 * @param start the start address of the resource 2497 * @param end the end address of the resource 2498 * @param count XXX end-start+1 2499 */ 2500 int 2501 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2502 u_long end, u_long count) 2503 { 2504 int rid; 2505 2506 rid = 0; 2507 while (resource_list_find(rl, type, rid) != NULL) 2508 rid++; 2509 resource_list_add(rl, type, rid, start, end, count); 2510 return (rid); 2511 } 2512 2513 /** 2514 * @brief Add or modify a resource entry. 2515 * 2516 * If an existing entry exists with the same type and rid, it will be 2517 * modified using the given values of @p start, @p end and @p 2518 * count. If no entry exists, a new one will be created using the 2519 * given values. 2520 * 2521 * @param rl the resource list to edit 2522 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2523 * @param rid the resource identifier 2524 * @param start the start address of the resource 2525 * @param end the end address of the resource 2526 * @param count XXX end-start+1 2527 */ 2528 void 2529 resource_list_add(struct resource_list *rl, int type, int rid, 2530 u_long start, u_long end, u_long count) 2531 { 2532 struct resource_list_entry *rle; 2533 2534 rle = resource_list_find(rl, type, rid); 2535 if (!rle) { 2536 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2537 M_NOWAIT); 2538 if (!rle) 2539 panic("resource_list_add: can't record entry"); 2540 SLIST_INSERT_HEAD(rl, rle, link); 2541 rle->type = type; 2542 rle->rid = rid; 2543 rle->res = NULL; 2544 } 2545 2546 if (rle->res) 2547 panic("resource_list_add: resource entry is busy"); 2548 2549 rle->start = start; 2550 rle->end = end; 2551 rle->count = count; 2552 } 2553 2554 /** 2555 * @brief Find a resource entry by type and rid. 2556 * 2557 * @param rl the resource list to search 2558 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2559 * @param rid the resource identifier 2560 * 2561 * @returns the resource entry pointer or NULL if there is no such 2562 * entry. 2563 */ 2564 struct resource_list_entry * 2565 resource_list_find(struct resource_list *rl, int type, int rid) 2566 { 2567 struct resource_list_entry *rle; 2568 2569 SLIST_FOREACH(rle, rl, link) { 2570 if (rle->type == type && rle->rid == rid) 2571 return (rle); 2572 } 2573 return (NULL); 2574 } 2575 2576 /** 2577 * @brief Delete a resource entry. 2578 * 2579 * @param rl the resource list to edit 2580 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2581 * @param rid the resource identifier 2582 */ 2583 void 2584 resource_list_delete(struct resource_list *rl, int type, int rid) 2585 { 2586 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2587 2588 if (rle) { 2589 if (rle->res != NULL) 2590 panic("resource_list_delete: resource has not been released"); 2591 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2592 free(rle, M_BUS); 2593 } 2594 } 2595 2596 /** 2597 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2598 * 2599 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2600 * and passing the allocation up to the parent of @p bus. This assumes 2601 * that the first entry of @c device_get_ivars(child) is a struct 2602 * resource_list. This also handles 'passthrough' allocations where a 2603 * child is a remote descendant of bus by passing the allocation up to 2604 * the parent of bus. 2605 * 2606 * Typically, a bus driver would store a list of child resources 2607 * somewhere in the child device's ivars (see device_get_ivars()) and 2608 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2609 * then call resource_list_alloc() to perform the allocation. 2610 * 2611 * @param rl the resource list to allocate from 2612 * @param bus the parent device of @p child 2613 * @param child the device which is requesting an allocation 2614 * @param type the type of resource to allocate 2615 * @param rid a pointer to the resource identifier 2616 * @param start hint at the start of the resource range - pass 2617 * @c 0UL for any start address 2618 * @param end hint at the end of the resource range - pass 2619 * @c ~0UL for any end address 2620 * @param count hint at the size of range required - pass @c 1 2621 * for any size 2622 * @param flags any extra flags to control the resource 2623 * allocation - see @c RF_XXX flags in 2624 * <sys/rman.h> for details 2625 * 2626 * @returns the resource which was allocated or @c NULL if no 2627 * resource could be allocated 2628 */ 2629 struct resource * 2630 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2631 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2632 { 2633 struct resource_list_entry *rle = 0; 2634 int passthrough = (device_get_parent(child) != bus); 2635 int isdefault = (start == 0UL && end == ~0UL); 2636 2637 if (passthrough) { 2638 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2639 type, rid, start, end, count, flags)); 2640 } 2641 2642 rle = resource_list_find(rl, type, *rid); 2643 2644 if (!rle) 2645 return (NULL); /* no resource of that type/rid */ 2646 2647 if (rle->res) 2648 panic("resource_list_alloc: resource entry is busy"); 2649 2650 if (isdefault) { 2651 start = rle->start; 2652 count = ulmax(count, rle->count); 2653 end = ulmax(rle->end, start + count - 1); 2654 } 2655 2656 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2657 type, rid, start, end, count, flags); 2658 2659 /* 2660 * Record the new range. 2661 */ 2662 if (rle->res) { 2663 rle->start = rman_get_start(rle->res); 2664 rle->end = rman_get_end(rle->res); 2665 rle->count = count; 2666 } 2667 2668 return (rle->res); 2669 } 2670 2671 /** 2672 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2673 * 2674 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2675 * used with resource_list_alloc(). 2676 * 2677 * @param rl the resource list which was allocated from 2678 * @param bus the parent device of @p child 2679 * @param child the device which is requesting a release 2680 * @param type the type of resource to allocate 2681 * @param rid the resource identifier 2682 * @param res the resource to release 2683 * 2684 * @retval 0 success 2685 * @retval non-zero a standard unix error code indicating what 2686 * error condition prevented the operation 2687 */ 2688 int 2689 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2690 int type, int rid, struct resource *res) 2691 { 2692 struct resource_list_entry *rle = 0; 2693 int passthrough = (device_get_parent(child) != bus); 2694 int error; 2695 2696 if (passthrough) { 2697 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2698 type, rid, res)); 2699 } 2700 2701 rle = resource_list_find(rl, type, rid); 2702 2703 if (!rle) 2704 panic("resource_list_release: can't find resource"); 2705 if (!rle->res) 2706 panic("resource_list_release: resource entry is not busy"); 2707 2708 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2709 type, rid, res); 2710 if (error) 2711 return (error); 2712 2713 rle->res = NULL; 2714 return (0); 2715 } 2716 2717 /** 2718 * @brief Print a description of resources in a resource list 2719 * 2720 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2721 * The name is printed if at least one resource of the given type is available. 2722 * The format is used to print resource start and end. 2723 * 2724 * @param rl the resource list to print 2725 * @param name the name of @p type, e.g. @c "memory" 2726 * @param type type type of resource entry to print 2727 * @param format printf(9) format string to print resource 2728 * start and end values 2729 * 2730 * @returns the number of characters printed 2731 */ 2732 int 2733 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2734 const char *format) 2735 { 2736 struct resource_list_entry *rle; 2737 int printed, retval; 2738 2739 printed = 0; 2740 retval = 0; 2741 /* Yes, this is kinda cheating */ 2742 SLIST_FOREACH(rle, rl, link) { 2743 if (rle->type == type) { 2744 if (printed == 0) 2745 retval += printf(" %s ", name); 2746 else 2747 retval += printf(","); 2748 printed++; 2749 retval += printf(format, rle->start); 2750 if (rle->count > 1) { 2751 retval += printf("-"); 2752 retval += printf(format, rle->start + 2753 rle->count - 1); 2754 } 2755 } 2756 } 2757 return (retval); 2758 } 2759 2760 /** 2761 * @brief Helper function for implementing DEVICE_PROBE() 2762 * 2763 * This function can be used to help implement the DEVICE_PROBE() for 2764 * a bus (i.e. a device which has other devices attached to it). It 2765 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2766 * devclass. 2767 */ 2768 int 2769 bus_generic_probe(device_t dev) 2770 { 2771 devclass_t dc = dev->devclass; 2772 driverlink_t dl; 2773 2774 TAILQ_FOREACH(dl, &dc->drivers, link) { 2775 DEVICE_IDENTIFY(dl->driver, dev); 2776 } 2777 2778 return (0); 2779 } 2780 2781 /** 2782 * @brief Helper function for implementing DEVICE_ATTACH() 2783 * 2784 * This function can be used to help implement the DEVICE_ATTACH() for 2785 * a bus. It calls device_probe_and_attach() for each of the device's 2786 * children. 2787 */ 2788 int 2789 bus_generic_attach(device_t dev) 2790 { 2791 device_t child; 2792 2793 TAILQ_FOREACH(child, &dev->children, link) { 2794 device_probe_and_attach(child); 2795 } 2796 2797 return (0); 2798 } 2799 2800 /** 2801 * @brief Helper function for implementing DEVICE_DETACH() 2802 * 2803 * This function can be used to help implement the DEVICE_DETACH() for 2804 * a bus. It calls device_detach() for each of the device's 2805 * children. 2806 */ 2807 int 2808 bus_generic_detach(device_t dev) 2809 { 2810 device_t child; 2811 int error; 2812 2813 if (dev->state != DS_ATTACHED) 2814 return (EBUSY); 2815 2816 TAILQ_FOREACH(child, &dev->children, link) { 2817 if ((error = device_detach(child)) != 0) 2818 return (error); 2819 } 2820 2821 return (0); 2822 } 2823 2824 /** 2825 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2826 * 2827 * This function can be used to help implement the DEVICE_SHUTDOWN() 2828 * for a bus. It calls device_shutdown() for each of the device's 2829 * children. 2830 */ 2831 int 2832 bus_generic_shutdown(device_t dev) 2833 { 2834 device_t child; 2835 2836 TAILQ_FOREACH(child, &dev->children, link) { 2837 device_shutdown(child); 2838 } 2839 2840 return (0); 2841 } 2842 2843 /** 2844 * @brief Helper function for implementing DEVICE_SUSPEND() 2845 * 2846 * This function can be used to help implement the DEVICE_SUSPEND() 2847 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2848 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2849 * operation is aborted and any devices which were suspended are 2850 * resumed immediately by calling their DEVICE_RESUME() methods. 2851 */ 2852 int 2853 bus_generic_suspend(device_t dev) 2854 { 2855 int error; 2856 device_t child, child2; 2857 2858 TAILQ_FOREACH(child, &dev->children, link) { 2859 error = DEVICE_SUSPEND(child); 2860 if (error) { 2861 for (child2 = TAILQ_FIRST(&dev->children); 2862 child2 && child2 != child; 2863 child2 = TAILQ_NEXT(child2, link)) 2864 DEVICE_RESUME(child2); 2865 return (error); 2866 } 2867 } 2868 return (0); 2869 } 2870 2871 /** 2872 * @brief Helper function for implementing DEVICE_RESUME() 2873 * 2874 * This function can be used to help implement the DEVICE_RESUME() for 2875 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2876 */ 2877 int 2878 bus_generic_resume(device_t dev) 2879 { 2880 device_t child; 2881 2882 TAILQ_FOREACH(child, &dev->children, link) { 2883 DEVICE_RESUME(child); 2884 /* if resume fails, there's nothing we can usefully do... */ 2885 } 2886 return (0); 2887 } 2888 2889 /** 2890 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2891 * 2892 * This function prints the first part of the ascii representation of 2893 * @p child, including its name, unit and description (if any - see 2894 * device_set_desc()). 2895 * 2896 * @returns the number of characters printed 2897 */ 2898 int 2899 bus_print_child_header(device_t dev, device_t child) 2900 { 2901 int retval = 0; 2902 2903 if (device_get_desc(child)) { 2904 retval += device_printf(child, "<%s>", device_get_desc(child)); 2905 } else { 2906 retval += printf("%s", device_get_nameunit(child)); 2907 } 2908 2909 return (retval); 2910 } 2911 2912 /** 2913 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2914 * 2915 * This function prints the last part of the ascii representation of 2916 * @p child, which consists of the string @c " on " followed by the 2917 * name and unit of the @p dev. 2918 * 2919 * @returns the number of characters printed 2920 */ 2921 int 2922 bus_print_child_footer(device_t dev, device_t child) 2923 { 2924 return (printf(" on %s\n", device_get_nameunit(dev))); 2925 } 2926 2927 /** 2928 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2929 * 2930 * This function simply calls bus_print_child_header() followed by 2931 * bus_print_child_footer(). 2932 * 2933 * @returns the number of characters printed 2934 */ 2935 int 2936 bus_generic_print_child(device_t dev, device_t child) 2937 { 2938 int retval = 0; 2939 2940 retval += bus_print_child_header(dev, child); 2941 retval += bus_print_child_footer(dev, child); 2942 2943 return (retval); 2944 } 2945 2946 /** 2947 * @brief Stub function for implementing BUS_READ_IVAR(). 2948 * 2949 * @returns ENOENT 2950 */ 2951 int 2952 bus_generic_read_ivar(device_t dev, device_t child, int index, 2953 uintptr_t * result) 2954 { 2955 return (ENOENT); 2956 } 2957 2958 /** 2959 * @brief Stub function for implementing BUS_WRITE_IVAR(). 2960 * 2961 * @returns ENOENT 2962 */ 2963 int 2964 bus_generic_write_ivar(device_t dev, device_t child, int index, 2965 uintptr_t value) 2966 { 2967 return (ENOENT); 2968 } 2969 2970 /** 2971 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 2972 * 2973 * @returns NULL 2974 */ 2975 struct resource_list * 2976 bus_generic_get_resource_list(device_t dev, device_t child) 2977 { 2978 return (NULL); 2979 } 2980 2981 /** 2982 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 2983 * 2984 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 2985 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 2986 * and then calls device_probe_and_attach() for each unattached child. 2987 */ 2988 void 2989 bus_generic_driver_added(device_t dev, driver_t *driver) 2990 { 2991 device_t child; 2992 2993 DEVICE_IDENTIFY(driver, dev); 2994 TAILQ_FOREACH(child, &dev->children, link) { 2995 if (child->state == DS_NOTPRESENT || 2996 (child->flags & DF_REBID)) 2997 device_probe_and_attach(child); 2998 } 2999 } 3000 3001 /** 3002 * @brief Helper function for implementing BUS_SETUP_INTR(). 3003 * 3004 * This simple implementation of BUS_SETUP_INTR() simply calls the 3005 * BUS_SETUP_INTR() method of the parent of @p dev. 3006 */ 3007 int 3008 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3009 int flags, driver_intr_t *intr, void *arg, void **cookiep) 3010 { 3011 /* Propagate up the bus hierarchy until someone handles it. */ 3012 if (dev->parent) 3013 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3014 intr, arg, cookiep)); 3015 return (EINVAL); 3016 } 3017 3018 /** 3019 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3020 * 3021 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3022 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3023 */ 3024 int 3025 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3026 void *cookie) 3027 { 3028 /* Propagate up the bus hierarchy until someone handles it. */ 3029 if (dev->parent) 3030 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3031 return (EINVAL); 3032 } 3033 3034 /** 3035 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3036 * 3037 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3038 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3039 */ 3040 struct resource * 3041 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3042 u_long start, u_long end, u_long count, u_int flags) 3043 { 3044 /* Propagate up the bus hierarchy until someone handles it. */ 3045 if (dev->parent) 3046 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3047 start, end, count, flags)); 3048 return (NULL); 3049 } 3050 3051 /** 3052 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3053 * 3054 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3055 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3056 */ 3057 int 3058 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3059 struct resource *r) 3060 { 3061 /* Propagate up the bus hierarchy until someone handles it. */ 3062 if (dev->parent) 3063 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3064 r)); 3065 return (EINVAL); 3066 } 3067 3068 /** 3069 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3070 * 3071 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3072 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3073 */ 3074 int 3075 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3076 struct resource *r) 3077 { 3078 /* Propagate up the bus hierarchy until someone handles it. */ 3079 if (dev->parent) 3080 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3081 r)); 3082 return (EINVAL); 3083 } 3084 3085 /** 3086 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3087 * 3088 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3089 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3090 */ 3091 int 3092 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3093 int rid, struct resource *r) 3094 { 3095 /* Propagate up the bus hierarchy until someone handles it. */ 3096 if (dev->parent) 3097 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3098 r)); 3099 return (EINVAL); 3100 } 3101 3102 /** 3103 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3104 * 3105 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3106 * BUS_CONFIG_INTR() method of the parent of @p dev. 3107 */ 3108 int 3109 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3110 enum intr_polarity pol) 3111 { 3112 3113 /* Propagate up the bus hierarchy until someone handles it. */ 3114 if (dev->parent) 3115 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3116 return (EINVAL); 3117 } 3118 3119 /** 3120 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3121 * 3122 * This implementation of BUS_GET_RESOURCE() uses the 3123 * resource_list_find() function to do most of the work. It calls 3124 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3125 * search. 3126 */ 3127 int 3128 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3129 u_long *startp, u_long *countp) 3130 { 3131 struct resource_list * rl = NULL; 3132 struct resource_list_entry * rle = NULL; 3133 3134 rl = BUS_GET_RESOURCE_LIST(dev, child); 3135 if (!rl) 3136 return (EINVAL); 3137 3138 rle = resource_list_find(rl, type, rid); 3139 if (!rle) 3140 return (ENOENT); 3141 3142 if (startp) 3143 *startp = rle->start; 3144 if (countp) 3145 *countp = rle->count; 3146 3147 return (0); 3148 } 3149 3150 /** 3151 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3152 * 3153 * This implementation of BUS_SET_RESOURCE() uses the 3154 * resource_list_add() function to do most of the work. It calls 3155 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3156 * edit. 3157 */ 3158 int 3159 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3160 u_long start, u_long count) 3161 { 3162 struct resource_list * rl = NULL; 3163 3164 rl = BUS_GET_RESOURCE_LIST(dev, child); 3165 if (!rl) 3166 return (EINVAL); 3167 3168 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3169 3170 return (0); 3171 } 3172 3173 /** 3174 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3175 * 3176 * This implementation of BUS_DELETE_RESOURCE() uses the 3177 * resource_list_delete() function to do most of the work. It calls 3178 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3179 * edit. 3180 */ 3181 void 3182 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3183 { 3184 struct resource_list * rl = NULL; 3185 3186 rl = BUS_GET_RESOURCE_LIST(dev, child); 3187 if (!rl) 3188 return; 3189 3190 resource_list_delete(rl, type, rid); 3191 3192 return; 3193 } 3194 3195 /** 3196 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3197 * 3198 * This implementation of BUS_RELEASE_RESOURCE() uses the 3199 * resource_list_release() function to do most of the work. It calls 3200 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3201 */ 3202 int 3203 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3204 int rid, struct resource *r) 3205 { 3206 struct resource_list * rl = NULL; 3207 3208 rl = BUS_GET_RESOURCE_LIST(dev, child); 3209 if (!rl) 3210 return (EINVAL); 3211 3212 return (resource_list_release(rl, dev, child, type, rid, r)); 3213 } 3214 3215 /** 3216 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3217 * 3218 * This implementation of BUS_ALLOC_RESOURCE() uses the 3219 * resource_list_alloc() function to do most of the work. It calls 3220 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3221 */ 3222 struct resource * 3223 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3224 int *rid, u_long start, u_long end, u_long count, u_int flags) 3225 { 3226 struct resource_list * rl = NULL; 3227 3228 rl = BUS_GET_RESOURCE_LIST(dev, child); 3229 if (!rl) 3230 return (NULL); 3231 3232 return (resource_list_alloc(rl, dev, child, type, rid, 3233 start, end, count, flags)); 3234 } 3235 3236 /** 3237 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3238 * 3239 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3240 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3241 */ 3242 int 3243 bus_generic_child_present(device_t dev, device_t child) 3244 { 3245 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3246 } 3247 3248 /* 3249 * Some convenience functions to make it easier for drivers to use the 3250 * resource-management functions. All these really do is hide the 3251 * indirection through the parent's method table, making for slightly 3252 * less-wordy code. In the future, it might make sense for this code 3253 * to maintain some sort of a list of resources allocated by each device. 3254 */ 3255 3256 /** 3257 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3258 * 3259 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3260 * parent of @p dev. 3261 */ 3262 struct resource * 3263 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3264 u_long count, u_int flags) 3265 { 3266 if (dev->parent == 0) 3267 return (0); 3268 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3269 count, flags)); 3270 } 3271 3272 /** 3273 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3274 * 3275 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3276 * parent of @p dev. 3277 */ 3278 int 3279 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3280 { 3281 if (dev->parent == 0) 3282 return (EINVAL); 3283 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3284 } 3285 3286 /** 3287 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3288 * 3289 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3290 * parent of @p dev. 3291 */ 3292 int 3293 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3294 { 3295 if (dev->parent == 0) 3296 return (EINVAL); 3297 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3298 } 3299 3300 /** 3301 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3302 * 3303 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3304 * parent of @p dev. 3305 */ 3306 int 3307 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3308 { 3309 if (dev->parent == 0) 3310 return (EINVAL); 3311 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3312 } 3313 3314 /** 3315 * @brief Wrapper function for BUS_SETUP_INTR(). 3316 * 3317 * This function simply calls the BUS_SETUP_INTR() method of the 3318 * parent of @p dev. 3319 */ 3320 int 3321 bus_setup_intr(device_t dev, struct resource *r, int flags, 3322 driver_intr_t handler, void *arg, void **cookiep) 3323 { 3324 int error; 3325 3326 if (dev->parent != 0) { 3327 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) && 3328 !debug_mpsafenet) 3329 flags &= ~INTR_MPSAFE; 3330 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3331 handler, arg, cookiep); 3332 if (error == 0) { 3333 if (!(flags & (INTR_MPSAFE | INTR_FAST))) 3334 device_printf(dev, "[GIANT-LOCKED]\n"); 3335 if (bootverbose && (flags & INTR_MPSAFE)) 3336 device_printf(dev, "[MPSAFE]\n"); 3337 if (flags & INTR_FAST) 3338 device_printf(dev, "[FAST]\n"); 3339 } 3340 } else 3341 error = EINVAL; 3342 return (error); 3343 } 3344 3345 /** 3346 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3347 * 3348 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3349 * parent of @p dev. 3350 */ 3351 int 3352 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3353 { 3354 if (dev->parent == 0) 3355 return (EINVAL); 3356 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3357 } 3358 3359 /** 3360 * @brief Wrapper function for BUS_SET_RESOURCE(). 3361 * 3362 * This function simply calls the BUS_SET_RESOURCE() method of the 3363 * parent of @p dev. 3364 */ 3365 int 3366 bus_set_resource(device_t dev, int type, int rid, 3367 u_long start, u_long count) 3368 { 3369 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3370 start, count)); 3371 } 3372 3373 /** 3374 * @brief Wrapper function for BUS_GET_RESOURCE(). 3375 * 3376 * This function simply calls the BUS_GET_RESOURCE() method of the 3377 * parent of @p dev. 3378 */ 3379 int 3380 bus_get_resource(device_t dev, int type, int rid, 3381 u_long *startp, u_long *countp) 3382 { 3383 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3384 startp, countp)); 3385 } 3386 3387 /** 3388 * @brief Wrapper function for BUS_GET_RESOURCE(). 3389 * 3390 * This function simply calls the BUS_GET_RESOURCE() method of the 3391 * parent of @p dev and returns the start value. 3392 */ 3393 u_long 3394 bus_get_resource_start(device_t dev, int type, int rid) 3395 { 3396 u_long start, count; 3397 int error; 3398 3399 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3400 &start, &count); 3401 if (error) 3402 return (0); 3403 return (start); 3404 } 3405 3406 /** 3407 * @brief Wrapper function for BUS_GET_RESOURCE(). 3408 * 3409 * This function simply calls the BUS_GET_RESOURCE() method of the 3410 * parent of @p dev and returns the count value. 3411 */ 3412 u_long 3413 bus_get_resource_count(device_t dev, int type, int rid) 3414 { 3415 u_long start, count; 3416 int error; 3417 3418 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3419 &start, &count); 3420 if (error) 3421 return (0); 3422 return (count); 3423 } 3424 3425 /** 3426 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3427 * 3428 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3429 * parent of @p dev. 3430 */ 3431 void 3432 bus_delete_resource(device_t dev, int type, int rid) 3433 { 3434 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3435 } 3436 3437 /** 3438 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3439 * 3440 * This function simply calls the BUS_CHILD_PRESENT() method of the 3441 * parent of @p dev. 3442 */ 3443 int 3444 bus_child_present(device_t child) 3445 { 3446 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3447 } 3448 3449 /** 3450 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3451 * 3452 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3453 * parent of @p dev. 3454 */ 3455 int 3456 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3457 { 3458 device_t parent; 3459 3460 parent = device_get_parent(child); 3461 if (parent == NULL) { 3462 *buf = '\0'; 3463 return (0); 3464 } 3465 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3466 } 3467 3468 /** 3469 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3470 * 3471 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3472 * parent of @p dev. 3473 */ 3474 int 3475 bus_child_location_str(device_t child, char *buf, size_t buflen) 3476 { 3477 device_t parent; 3478 3479 parent = device_get_parent(child); 3480 if (parent == NULL) { 3481 *buf = '\0'; 3482 return (0); 3483 } 3484 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3485 } 3486 3487 static int 3488 root_print_child(device_t dev, device_t child) 3489 { 3490 int retval = 0; 3491 3492 retval += bus_print_child_header(dev, child); 3493 retval += printf("\n"); 3494 3495 return (retval); 3496 } 3497 3498 static int 3499 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3500 void **cookiep) 3501 { 3502 /* 3503 * If an interrupt mapping gets to here something bad has happened. 3504 */ 3505 panic("root_setup_intr"); 3506 } 3507 3508 /* 3509 * If we get here, assume that the device is permanant and really is 3510 * present in the system. Removable bus drivers are expected to intercept 3511 * this call long before it gets here. We return -1 so that drivers that 3512 * really care can check vs -1 or some ERRNO returned higher in the food 3513 * chain. 3514 */ 3515 static int 3516 root_child_present(device_t dev, device_t child) 3517 { 3518 return (-1); 3519 } 3520 3521 static kobj_method_t root_methods[] = { 3522 /* Device interface */ 3523 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3524 KOBJMETHOD(device_suspend, bus_generic_suspend), 3525 KOBJMETHOD(device_resume, bus_generic_resume), 3526 3527 /* Bus interface */ 3528 KOBJMETHOD(bus_print_child, root_print_child), 3529 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3530 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3531 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3532 KOBJMETHOD(bus_child_present, root_child_present), 3533 3534 { 0, 0 } 3535 }; 3536 3537 static driver_t root_driver = { 3538 "root", 3539 root_methods, 3540 1, /* no softc */ 3541 }; 3542 3543 device_t root_bus; 3544 devclass_t root_devclass; 3545 3546 static int 3547 root_bus_module_handler(module_t mod, int what, void* arg) 3548 { 3549 switch (what) { 3550 case MOD_LOAD: 3551 TAILQ_INIT(&bus_data_devices); 3552 kobj_class_compile((kobj_class_t) &root_driver); 3553 root_bus = make_device(NULL, "root", 0); 3554 root_bus->desc = "System root bus"; 3555 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3556 root_bus->driver = &root_driver; 3557 root_bus->state = DS_ATTACHED; 3558 root_devclass = devclass_find_internal("root", 0, FALSE); 3559 devinit(); 3560 return (0); 3561 3562 case MOD_SHUTDOWN: 3563 device_shutdown(root_bus); 3564 return (0); 3565 default: 3566 return (EOPNOTSUPP); 3567 } 3568 3569 return (0); 3570 } 3571 3572 static moduledata_t root_bus_mod = { 3573 "rootbus", 3574 root_bus_module_handler, 3575 0 3576 }; 3577 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3578 3579 /** 3580 * @brief Automatically configure devices 3581 * 3582 * This function begins the autoconfiguration process by calling 3583 * device_probe_and_attach() for each child of the @c root0 device. 3584 */ 3585 void 3586 root_bus_configure(void) 3587 { 3588 device_t dev; 3589 3590 PDEBUG((".")); 3591 3592 TAILQ_FOREACH(dev, &root_bus->children, link) { 3593 device_probe_and_attach(dev); 3594 } 3595 } 3596 3597 /** 3598 * @brief Module handler for registering device drivers 3599 * 3600 * This module handler is used to automatically register device 3601 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3602 * devclass_add_driver() for the driver described by the 3603 * driver_module_data structure pointed to by @p arg 3604 */ 3605 int 3606 driver_module_handler(module_t mod, int what, void *arg) 3607 { 3608 int error; 3609 struct driver_module_data *dmd; 3610 devclass_t bus_devclass; 3611 kobj_class_t driver; 3612 3613 dmd = (struct driver_module_data *)arg; 3614 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE); 3615 error = 0; 3616 3617 switch (what) { 3618 case MOD_LOAD: 3619 if (dmd->dmd_chainevh) 3620 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3621 3622 driver = dmd->dmd_driver; 3623 PDEBUG(("Loading module: driver %s on bus %s", 3624 DRIVERNAME(driver), dmd->dmd_busname)); 3625 error = devclass_add_driver(bus_devclass, driver); 3626 if (error) 3627 break; 3628 3629 /* 3630 * If the driver has any base classes, make the 3631 * devclass inherit from the devclass of the driver's 3632 * first base class. This will allow the system to 3633 * search for drivers in both devclasses for children 3634 * of a device using this driver. 3635 */ 3636 if (driver->baseclasses) { 3637 const char *parentname; 3638 parentname = driver->baseclasses[0]->name; 3639 *dmd->dmd_devclass = 3640 devclass_find_internal(driver->name, 3641 parentname, TRUE); 3642 } else { 3643 *dmd->dmd_devclass = 3644 devclass_find_internal(driver->name, 0, TRUE); 3645 } 3646 break; 3647 3648 case MOD_UNLOAD: 3649 PDEBUG(("Unloading module: driver %s from bus %s", 3650 DRIVERNAME(dmd->dmd_driver), 3651 dmd->dmd_busname)); 3652 error = devclass_delete_driver(bus_devclass, 3653 dmd->dmd_driver); 3654 3655 if (!error && dmd->dmd_chainevh) 3656 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3657 break; 3658 case MOD_QUIESCE: 3659 PDEBUG(("Quiesce module: driver %s from bus %s", 3660 DRIVERNAME(dmd->dmd_driver), 3661 dmd->dmd_busname)); 3662 error = devclass_quiesce_driver(bus_devclass, 3663 dmd->dmd_driver); 3664 3665 if (!error && dmd->dmd_chainevh) 3666 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3667 break; 3668 default: 3669 error = EOPNOTSUPP; 3670 break; 3671 } 3672 3673 return (error); 3674 } 3675 3676 #ifdef BUS_DEBUG 3677 3678 /* the _short versions avoid iteration by not calling anything that prints 3679 * more than oneliners. I love oneliners. 3680 */ 3681 3682 static void 3683 print_device_short(device_t dev, int indent) 3684 { 3685 if (!dev) 3686 return; 3687 3688 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3689 dev->unit, dev->desc, 3690 (dev->parent? "":"no "), 3691 (TAILQ_EMPTY(&dev->children)? "no ":""), 3692 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3693 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3694 (dev->flags&DF_WILDCARD? "wildcard,":""), 3695 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3696 (dev->flags&DF_REBID? "rebiddable,":""), 3697 (dev->ivars? "":"no "), 3698 (dev->softc? "":"no "), 3699 dev->busy)); 3700 } 3701 3702 static void 3703 print_device(device_t dev, int indent) 3704 { 3705 if (!dev) 3706 return; 3707 3708 print_device_short(dev, indent); 3709 3710 indentprintf(("Parent:\n")); 3711 print_device_short(dev->parent, indent+1); 3712 indentprintf(("Driver:\n")); 3713 print_driver_short(dev->driver, indent+1); 3714 indentprintf(("Devclass:\n")); 3715 print_devclass_short(dev->devclass, indent+1); 3716 } 3717 3718 void 3719 print_device_tree_short(device_t dev, int indent) 3720 /* print the device and all its children (indented) */ 3721 { 3722 device_t child; 3723 3724 if (!dev) 3725 return; 3726 3727 print_device_short(dev, indent); 3728 3729 TAILQ_FOREACH(child, &dev->children, link) { 3730 print_device_tree_short(child, indent+1); 3731 } 3732 } 3733 3734 void 3735 print_device_tree(device_t dev, int indent) 3736 /* print the device and all its children (indented) */ 3737 { 3738 device_t child; 3739 3740 if (!dev) 3741 return; 3742 3743 print_device(dev, indent); 3744 3745 TAILQ_FOREACH(child, &dev->children, link) { 3746 print_device_tree(child, indent+1); 3747 } 3748 } 3749 3750 static void 3751 print_driver_short(driver_t *driver, int indent) 3752 { 3753 if (!driver) 3754 return; 3755 3756 indentprintf(("driver %s: softc size = %zd\n", 3757 driver->name, driver->size)); 3758 } 3759 3760 static void 3761 print_driver(driver_t *driver, int indent) 3762 { 3763 if (!driver) 3764 return; 3765 3766 print_driver_short(driver, indent); 3767 } 3768 3769 3770 static void 3771 print_driver_list(driver_list_t drivers, int indent) 3772 { 3773 driverlink_t driver; 3774 3775 TAILQ_FOREACH(driver, &drivers, link) { 3776 print_driver(driver->driver, indent); 3777 } 3778 } 3779 3780 static void 3781 print_devclass_short(devclass_t dc, int indent) 3782 { 3783 if ( !dc ) 3784 return; 3785 3786 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3787 } 3788 3789 static void 3790 print_devclass(devclass_t dc, int indent) 3791 { 3792 int i; 3793 3794 if ( !dc ) 3795 return; 3796 3797 print_devclass_short(dc, indent); 3798 indentprintf(("Drivers:\n")); 3799 print_driver_list(dc->drivers, indent+1); 3800 3801 indentprintf(("Devices:\n")); 3802 for (i = 0; i < dc->maxunit; i++) 3803 if (dc->devices[i]) 3804 print_device(dc->devices[i], indent+1); 3805 } 3806 3807 void 3808 print_devclass_list_short(void) 3809 { 3810 devclass_t dc; 3811 3812 printf("Short listing of devclasses, drivers & devices:\n"); 3813 TAILQ_FOREACH(dc, &devclasses, link) { 3814 print_devclass_short(dc, 0); 3815 } 3816 } 3817 3818 void 3819 print_devclass_list(void) 3820 { 3821 devclass_t dc; 3822 3823 printf("Full listing of devclasses, drivers & devices:\n"); 3824 TAILQ_FOREACH(dc, &devclasses, link) { 3825 print_devclass(dc, 0); 3826 } 3827 } 3828 3829 #endif 3830 3831 /* 3832 * User-space access to the device tree. 3833 * 3834 * We implement a small set of nodes: 3835 * 3836 * hw.bus Single integer read method to obtain the 3837 * current generation count. 3838 * hw.bus.devices Reads the entire device tree in flat space. 3839 * hw.bus.rman Resource manager interface 3840 * 3841 * We might like to add the ability to scan devclasses and/or drivers to 3842 * determine what else is currently loaded/available. 3843 */ 3844 3845 static int 3846 sysctl_bus(SYSCTL_HANDLER_ARGS) 3847 { 3848 struct u_businfo ubus; 3849 3850 ubus.ub_version = BUS_USER_VERSION; 3851 ubus.ub_generation = bus_data_generation; 3852 3853 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3854 } 3855 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3856 "bus-related data"); 3857 3858 static int 3859 sysctl_devices(SYSCTL_HANDLER_ARGS) 3860 { 3861 int *name = (int *)arg1; 3862 u_int namelen = arg2; 3863 int index; 3864 struct device *dev; 3865 struct u_device udev; /* XXX this is a bit big */ 3866 int error; 3867 3868 if (namelen != 2) 3869 return (EINVAL); 3870 3871 if (bus_data_generation_check(name[0])) 3872 return (EINVAL); 3873 3874 index = name[1]; 3875 3876 /* 3877 * Scan the list of devices, looking for the requested index. 3878 */ 3879 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3880 if (index-- == 0) 3881 break; 3882 } 3883 if (dev == NULL) 3884 return (ENOENT); 3885 3886 /* 3887 * Populate the return array. 3888 */ 3889 udev.dv_handle = (uintptr_t)dev; 3890 udev.dv_parent = (uintptr_t)dev->parent; 3891 if (dev->nameunit == NULL) 3892 udev.dv_name[0] = '\0'; 3893 else 3894 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3895 3896 if (dev->desc == NULL) 3897 udev.dv_desc[0] = '\0'; 3898 else 3899 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3900 if (dev->driver == NULL || dev->driver->name == NULL) 3901 udev.dv_drivername[0] = '\0'; 3902 else 3903 strlcpy(udev.dv_drivername, dev->driver->name, 3904 sizeof(udev.dv_drivername)); 3905 udev.dv_pnpinfo[0] = '\0'; 3906 udev.dv_location[0] = '\0'; 3907 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3908 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3909 udev.dv_devflags = dev->devflags; 3910 udev.dv_flags = dev->flags; 3911 udev.dv_state = dev->state; 3912 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3913 return (error); 3914 } 3915 3916 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3917 "system device tree"); 3918 3919 /* 3920 * Sysctl interface for scanning the resource lists. 3921 * 3922 * We take two input parameters; the index into the list of resource 3923 * managers, and the resource offset into the list. 3924 */ 3925 static int 3926 sysctl_rman(SYSCTL_HANDLER_ARGS) 3927 { 3928 int *name = (int *)arg1; 3929 u_int namelen = arg2; 3930 int rman_idx, res_idx; 3931 struct rman *rm; 3932 struct resource *res; 3933 struct u_rman urm; 3934 struct u_resource ures; 3935 int error; 3936 3937 if (namelen != 3) 3938 return (EINVAL); 3939 3940 if (bus_data_generation_check(name[0])) 3941 return (EINVAL); 3942 rman_idx = name[1]; 3943 res_idx = name[2]; 3944 3945 /* 3946 * Find the indexed resource manager 3947 */ 3948 TAILQ_FOREACH(rm, &rman_head, rm_link) { 3949 if (rman_idx-- == 0) 3950 break; 3951 } 3952 if (rm == NULL) 3953 return (ENOENT); 3954 3955 /* 3956 * If the resource index is -1, we want details on the 3957 * resource manager. 3958 */ 3959 if (res_idx == -1) { 3960 urm.rm_handle = (uintptr_t)rm; 3961 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 3962 urm.rm_start = rm->rm_start; 3963 urm.rm_size = rm->rm_end - rm->rm_start + 1; 3964 urm.rm_type = rm->rm_type; 3965 3966 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 3967 return (error); 3968 } 3969 3970 /* 3971 * Find the indexed resource and return it. 3972 */ 3973 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 3974 if (res_idx-- == 0) { 3975 ures.r_handle = (uintptr_t)res; 3976 ures.r_parent = (uintptr_t)res->r_rm; 3977 ures.r_device = (uintptr_t)res->r_dev; 3978 if (res->r_dev != NULL) { 3979 if (device_get_name(res->r_dev) != NULL) { 3980 snprintf(ures.r_devname, RM_TEXTLEN, 3981 "%s%d", 3982 device_get_name(res->r_dev), 3983 device_get_unit(res->r_dev)); 3984 } else { 3985 strlcpy(ures.r_devname, "nomatch", 3986 RM_TEXTLEN); 3987 } 3988 } else { 3989 ures.r_devname[0] = '\0'; 3990 } 3991 ures.r_start = res->r_start; 3992 ures.r_size = res->r_end - res->r_start + 1; 3993 ures.r_flags = res->r_flags; 3994 3995 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 3996 return (error); 3997 } 3998 } 3999 return (ENOENT); 4000 } 4001 4002 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 4003 "kernel resource manager"); 4004 4005 int 4006 bus_data_generation_check(int generation) 4007 { 4008 if (generation != bus_data_generation) 4009 return (1); 4010 4011 /* XXX generate optimised lists here? */ 4012 return (0); 4013 } 4014 4015 void 4016 bus_data_generation_update(void) 4017 { 4018 bus_data_generation++; 4019 } 4020