xref: /freebsd/sys/kern/subr_bus.c (revision b7c60aadbbd5c846a250c05791fe7406d6d78bf4)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		kern_psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	devaddq("+", device_get_nameunit(dev), dev);
712 }
713 
714 /*
715  * A device was removed from the tree.  We are called just before this
716  * happens.
717  */
718 static void
719 devremoved(device_t dev)
720 {
721 	devaddq("-", device_get_nameunit(dev), dev);
722 }
723 
724 /*
725  * Called when there's no match for this device.  This is only called
726  * the first time that no match happens, so we don't keep getting this
727  * message.  Should that prove to be undesirable, we can change it.
728  * This is called when all drivers that can attach to a given bus
729  * decline to accept this device.  Other errors may not be detected.
730  */
731 static void
732 devnomatch(device_t dev)
733 {
734 	devaddq("?", "", dev);
735 }
736 
737 static int
738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739 {
740 	struct dev_event_info *n1;
741 	int dis, error;
742 
743 	dis = devctl_queue_length == 0;
744 	error = sysctl_handle_int(oidp, &dis, 0, req);
745 	if (error || !req->newptr)
746 		return (error);
747 	mtx_lock(&devsoftc.mtx);
748 	if (dis) {
749 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750 			n1 = TAILQ_FIRST(&devsoftc.devq);
751 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752 			free(n1->dei_data, M_BUS);
753 			free(n1, M_BUS);
754 		}
755 		devsoftc.queued = 0;
756 		devctl_queue_length = 0;
757 	} else {
758 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759 	}
760 	mtx_unlock(&devsoftc.mtx);
761 	return (0);
762 }
763 
764 static int
765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766 {
767 	struct dev_event_info *n1;
768 	int q, error;
769 
770 	q = devctl_queue_length;
771 	error = sysctl_handle_int(oidp, &q, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 	if (q < 0)
775 		return (EINVAL);
776 	mtx_lock(&devsoftc.mtx);
777 	devctl_queue_length = q;
778 	while (devsoftc.queued > devctl_queue_length) {
779 		n1 = TAILQ_FIRST(&devsoftc.devq);
780 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781 		free(n1->dei_data, M_BUS);
782 		free(n1, M_BUS);
783 		devsoftc.queued--;
784 	}
785 	mtx_unlock(&devsoftc.mtx);
786 	return (0);
787 }
788 
789 /* End of /dev/devctl code */
790 
791 static TAILQ_HEAD(,device)	bus_data_devices;
792 static int bus_data_generation = 1;
793 
794 static kobj_method_t null_methods[] = {
795 	KOBJMETHOD_END
796 };
797 
798 DEFINE_CLASS(null, null_methods, 0);
799 
800 /*
801  * Bus pass implementation
802  */
803 
804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805 int bus_current_pass = BUS_PASS_ROOT;
806 
807 /**
808  * @internal
809  * @brief Register the pass level of a new driver attachment
810  *
811  * Register a new driver attachment's pass level.  If no driver
812  * attachment with the same pass level has been added, then @p new
813  * will be added to the global passes list.
814  *
815  * @param new		the new driver attachment
816  */
817 static void
818 driver_register_pass(struct driverlink *new)
819 {
820 	struct driverlink *dl;
821 
822 	/* We only consider pass numbers during boot. */
823 	if (bus_current_pass == BUS_PASS_DEFAULT)
824 		return;
825 
826 	/*
827 	 * Walk the passes list.  If we already know about this pass
828 	 * then there is nothing to do.  If we don't, then insert this
829 	 * driver link into the list.
830 	 */
831 	TAILQ_FOREACH(dl, &passes, passlink) {
832 		if (dl->pass < new->pass)
833 			continue;
834 		if (dl->pass == new->pass)
835 			return;
836 		TAILQ_INSERT_BEFORE(dl, new, passlink);
837 		return;
838 	}
839 	TAILQ_INSERT_TAIL(&passes, new, passlink);
840 }
841 
842 /**
843  * @brief Raise the current bus pass
844  *
845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846  * method on the root bus to kick off a new device tree scan for each
847  * new pass level that has at least one driver.
848  */
849 void
850 bus_set_pass(int pass)
851 {
852 	struct driverlink *dl;
853 
854 	if (bus_current_pass > pass)
855 		panic("Attempt to lower bus pass level");
856 
857 	TAILQ_FOREACH(dl, &passes, passlink) {
858 		/* Skip pass values below the current pass level. */
859 		if (dl->pass <= bus_current_pass)
860 			continue;
861 
862 		/*
863 		 * Bail once we hit a driver with a pass level that is
864 		 * too high.
865 		 */
866 		if (dl->pass > pass)
867 			break;
868 
869 		/*
870 		 * Raise the pass level to the next level and rescan
871 		 * the tree.
872 		 */
873 		bus_current_pass = dl->pass;
874 		BUS_NEW_PASS(root_bus);
875 	}
876 
877 	/*
878 	 * If there isn't a driver registered for the requested pass,
879 	 * then bus_current_pass might still be less than 'pass'.  Set
880 	 * it to 'pass' in that case.
881 	 */
882 	if (bus_current_pass < pass)
883 		bus_current_pass = pass;
884 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885 }
886 
887 /*
888  * Devclass implementation
889  */
890 
891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892 
893 /**
894  * @internal
895  * @brief Find or create a device class
896  *
897  * If a device class with the name @p classname exists, return it,
898  * otherwise if @p create is non-zero create and return a new device
899  * class.
900  *
901  * If @p parentname is non-NULL, the parent of the devclass is set to
902  * the devclass of that name.
903  *
904  * @param classname	the devclass name to find or create
905  * @param parentname	the parent devclass name or @c NULL
906  * @param create	non-zero to create a devclass
907  */
908 static devclass_t
909 devclass_find_internal(const char *classname, const char *parentname,
910 		       int create)
911 {
912 	devclass_t dc;
913 
914 	PDEBUG(("looking for %s", classname));
915 	if (!classname)
916 		return (NULL);
917 
918 	TAILQ_FOREACH(dc, &devclasses, link) {
919 		if (!strcmp(dc->name, classname))
920 			break;
921 	}
922 
923 	if (create && !dc) {
924 		PDEBUG(("creating %s", classname));
925 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926 		    M_BUS, M_NOWAIT | M_ZERO);
927 		if (!dc)
928 			return (NULL);
929 		dc->parent = NULL;
930 		dc->name = (char*) (dc + 1);
931 		strcpy(dc->name, classname);
932 		TAILQ_INIT(&dc->drivers);
933 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934 
935 		bus_data_generation_update();
936 	}
937 
938 	/*
939 	 * If a parent class is specified, then set that as our parent so
940 	 * that this devclass will support drivers for the parent class as
941 	 * well.  If the parent class has the same name don't do this though
942 	 * as it creates a cycle that can trigger an infinite loop in
943 	 * device_probe_child() if a device exists for which there is no
944 	 * suitable driver.
945 	 */
946 	if (parentname && dc && !dc->parent &&
947 	    strcmp(classname, parentname) != 0) {
948 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949 		dc->parent->flags |= DC_HAS_CHILDREN;
950 	}
951 
952 	return (dc);
953 }
954 
955 /**
956  * @brief Create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise create and return a new device class.
960  *
961  * @param classname	the devclass name to find or create
962  */
963 devclass_t
964 devclass_create(const char *classname)
965 {
966 	return (devclass_find_internal(classname, NULL, TRUE));
967 }
968 
969 /**
970  * @brief Find a device class
971  *
972  * If a device class with the name @p classname exists, return it,
973  * otherwise return @c NULL.
974  *
975  * @param classname	the devclass name to find
976  */
977 devclass_t
978 devclass_find(const char *classname)
979 {
980 	return (devclass_find_internal(classname, NULL, FALSE));
981 }
982 
983 /**
984  * @brief Register that a device driver has been added to a devclass
985  *
986  * Register that a device driver has been added to a devclass.  This
987  * is called by devclass_add_driver to accomplish the recursive
988  * notification of all the children classes of dc, as well as dc.
989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990  * the devclass.
991  *
992  * We do a full search here of the devclass list at each iteration
993  * level to save storing children-lists in the devclass structure.  If
994  * we ever move beyond a few dozen devices doing this, we may need to
995  * reevaluate...
996  *
997  * @param dc		the devclass to edit
998  * @param driver	the driver that was just added
999  */
1000 static void
1001 devclass_driver_added(devclass_t dc, driver_t *driver)
1002 {
1003 	devclass_t parent;
1004 	int i;
1005 
1006 	/*
1007 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008 	 */
1009 	for (i = 0; i < dc->maxunit; i++)
1010 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012 
1013 	/*
1014 	 * Walk through the children classes.  Since we only keep a
1015 	 * single parent pointer around, we walk the entire list of
1016 	 * devclasses looking for children.  We set the
1017 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018 	 * the parent, so we only walk the list for those devclasses
1019 	 * that have children.
1020 	 */
1021 	if (!(dc->flags & DC_HAS_CHILDREN))
1022 		return;
1023 	parent = dc;
1024 	TAILQ_FOREACH(dc, &devclasses, link) {
1025 		if (dc->parent == parent)
1026 			devclass_driver_added(dc, driver);
1027 	}
1028 }
1029 
1030 /**
1031  * @brief Add a device driver to a device class
1032  *
1033  * Add a device driver to a devclass. This is normally called
1034  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035  * all devices in the devclass will be called to allow them to attempt
1036  * to re-probe any unmatched children.
1037  *
1038  * @param dc		the devclass to edit
1039  * @param driver	the driver to register
1040  */
1041 int
1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043 {
1044 	driverlink_t dl;
1045 	const char *parentname;
1046 
1047 	PDEBUG(("%s", DRIVERNAME(driver)));
1048 
1049 	/* Don't allow invalid pass values. */
1050 	if (pass <= BUS_PASS_ROOT)
1051 		return (EINVAL);
1052 
1053 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054 	if (!dl)
1055 		return (ENOMEM);
1056 
1057 	/*
1058 	 * Compile the driver's methods. Also increase the reference count
1059 	 * so that the class doesn't get freed when the last instance
1060 	 * goes. This means we can safely use static methods and avoids a
1061 	 * double-free in devclass_delete_driver.
1062 	 */
1063 	kobj_class_compile((kobj_class_t) driver);
1064 
1065 	/*
1066 	 * If the driver has any base classes, make the
1067 	 * devclass inherit from the devclass of the driver's
1068 	 * first base class. This will allow the system to
1069 	 * search for drivers in both devclasses for children
1070 	 * of a device using this driver.
1071 	 */
1072 	if (driver->baseclasses)
1073 		parentname = driver->baseclasses[0]->name;
1074 	else
1075 		parentname = NULL;
1076 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077 
1078 	dl->driver = driver;
1079 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080 	driver->refs++;		/* XXX: kobj_mtx */
1081 	dl->pass = pass;
1082 	driver_register_pass(dl);
1083 
1084 	devclass_driver_added(dc, driver);
1085 	bus_data_generation_update();
1086 	return (0);
1087 }
1088 
1089 /**
1090  * @brief Register that a device driver has been deleted from a devclass
1091  *
1092  * Register that a device driver has been removed from a devclass.
1093  * This is called by devclass_delete_driver to accomplish the
1094  * recursive notification of all the children classes of busclass, as
1095  * well as busclass.  Each layer will attempt to detach the driver
1096  * from any devices that are children of the bus's devclass.  The function
1097  * will return an error if a device fails to detach.
1098  *
1099  * We do a full search here of the devclass list at each iteration
1100  * level to save storing children-lists in the devclass structure.  If
1101  * we ever move beyond a few dozen devices doing this, we may need to
1102  * reevaluate...
1103  *
1104  * @param busclass	the devclass of the parent bus
1105  * @param dc		the devclass of the driver being deleted
1106  * @param driver	the driver being deleted
1107  */
1108 static int
1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110 {
1111 	devclass_t parent;
1112 	device_t dev;
1113 	int error, i;
1114 
1115 	/*
1116 	 * Disassociate from any devices.  We iterate through all the
1117 	 * devices in the devclass of the driver and detach any which are
1118 	 * using the driver and which have a parent in the devclass which
1119 	 * we are deleting from.
1120 	 *
1121 	 * Note that since a driver can be in multiple devclasses, we
1122 	 * should not detach devices which are not children of devices in
1123 	 * the affected devclass.
1124 	 */
1125 	for (i = 0; i < dc->maxunit; i++) {
1126 		if (dc->devices[i]) {
1127 			dev = dc->devices[i];
1128 			if (dev->driver == driver && dev->parent &&
1129 			    dev->parent->devclass == busclass) {
1130 				if ((error = device_detach(dev)) != 0)
1131 					return (error);
1132 				(void)device_set_driver(dev, NULL);
1133 				BUS_PROBE_NOMATCH(dev->parent, dev);
1134 				devnomatch(dev);
1135 				dev->flags |= DF_DONENOMATCH;
1136 			}
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Walk through the children classes.  Since we only keep a
1142 	 * single parent pointer around, we walk the entire list of
1143 	 * devclasses looking for children.  We set the
1144 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1145 	 * the parent, so we only walk the list for those devclasses
1146 	 * that have children.
1147 	 */
1148 	if (!(busclass->flags & DC_HAS_CHILDREN))
1149 		return (0);
1150 	parent = busclass;
1151 	TAILQ_FOREACH(busclass, &devclasses, link) {
1152 		if (busclass->parent == parent) {
1153 			error = devclass_driver_deleted(busclass, dc, driver);
1154 			if (error)
1155 				return (error);
1156 		}
1157 	}
1158 	return (0);
1159 }
1160 
1161 /**
1162  * @brief Delete a device driver from a device class
1163  *
1164  * Delete a device driver from a devclass. This is normally called
1165  * automatically by DRIVER_MODULE().
1166  *
1167  * If the driver is currently attached to any devices,
1168  * devclass_delete_driver() will first attempt to detach from each
1169  * device. If one of the detach calls fails, the driver will not be
1170  * deleted.
1171  *
1172  * @param dc		the devclass to edit
1173  * @param driver	the driver to unregister
1174  */
1175 int
1176 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1177 {
1178 	devclass_t dc = devclass_find(driver->name);
1179 	driverlink_t dl;
1180 	int error;
1181 
1182 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1183 
1184 	if (!dc)
1185 		return (0);
1186 
1187 	/*
1188 	 * Find the link structure in the bus' list of drivers.
1189 	 */
1190 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1191 		if (dl->driver == driver)
1192 			break;
1193 	}
1194 
1195 	if (!dl) {
1196 		PDEBUG(("%s not found in %s list", driver->name,
1197 		    busclass->name));
1198 		return (ENOENT);
1199 	}
1200 
1201 	error = devclass_driver_deleted(busclass, dc, driver);
1202 	if (error != 0)
1203 		return (error);
1204 
1205 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1206 	free(dl, M_BUS);
1207 
1208 	/* XXX: kobj_mtx */
1209 	driver->refs--;
1210 	if (driver->refs == 0)
1211 		kobj_class_free((kobj_class_t) driver);
1212 
1213 	bus_data_generation_update();
1214 	return (0);
1215 }
1216 
1217 /**
1218  * @brief Quiesces a set of device drivers from a device class
1219  *
1220  * Quiesce a device driver from a devclass. This is normally called
1221  * automatically by DRIVER_MODULE().
1222  *
1223  * If the driver is currently attached to any devices,
1224  * devclass_quiesece_driver() will first attempt to quiesce each
1225  * device.
1226  *
1227  * @param dc		the devclass to edit
1228  * @param driver	the driver to unregister
1229  */
1230 static int
1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1232 {
1233 	devclass_t dc = devclass_find(driver->name);
1234 	driverlink_t dl;
1235 	device_t dev;
1236 	int i;
1237 	int error;
1238 
1239 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1240 
1241 	if (!dc)
1242 		return (0);
1243 
1244 	/*
1245 	 * Find the link structure in the bus' list of drivers.
1246 	 */
1247 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1248 		if (dl->driver == driver)
1249 			break;
1250 	}
1251 
1252 	if (!dl) {
1253 		PDEBUG(("%s not found in %s list", driver->name,
1254 		    busclass->name));
1255 		return (ENOENT);
1256 	}
1257 
1258 	/*
1259 	 * Quiesce all devices.  We iterate through all the devices in
1260 	 * the devclass of the driver and quiesce any which are using
1261 	 * the driver and which have a parent in the devclass which we
1262 	 * are quiescing.
1263 	 *
1264 	 * Note that since a driver can be in multiple devclasses, we
1265 	 * should not quiesce devices which are not children of
1266 	 * devices in the affected devclass.
1267 	 */
1268 	for (i = 0; i < dc->maxunit; i++) {
1269 		if (dc->devices[i]) {
1270 			dev = dc->devices[i];
1271 			if (dev->driver == driver && dev->parent &&
1272 			    dev->parent->devclass == busclass) {
1273 				if ((error = device_quiesce(dev)) != 0)
1274 					return (error);
1275 			}
1276 		}
1277 	}
1278 
1279 	return (0);
1280 }
1281 
1282 /**
1283  * @internal
1284  */
1285 static driverlink_t
1286 devclass_find_driver_internal(devclass_t dc, const char *classname)
1287 {
1288 	driverlink_t dl;
1289 
1290 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1291 
1292 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1293 		if (!strcmp(dl->driver->name, classname))
1294 			return (dl);
1295 	}
1296 
1297 	PDEBUG(("not found"));
1298 	return (NULL);
1299 }
1300 
1301 /**
1302  * @brief Return the name of the devclass
1303  */
1304 const char *
1305 devclass_get_name(devclass_t dc)
1306 {
1307 	return (dc->name);
1308 }
1309 
1310 /**
1311  * @brief Find a device given a unit number
1312  *
1313  * @param dc		the devclass to search
1314  * @param unit		the unit number to search for
1315  *
1316  * @returns		the device with the given unit number or @c
1317  *			NULL if there is no such device
1318  */
1319 device_t
1320 devclass_get_device(devclass_t dc, int unit)
1321 {
1322 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1323 		return (NULL);
1324 	return (dc->devices[unit]);
1325 }
1326 
1327 /**
1328  * @brief Find the softc field of a device given a unit number
1329  *
1330  * @param dc		the devclass to search
1331  * @param unit		the unit number to search for
1332  *
1333  * @returns		the softc field of the device with the given
1334  *			unit number or @c NULL if there is no such
1335  *			device
1336  */
1337 void *
1338 devclass_get_softc(devclass_t dc, int unit)
1339 {
1340 	device_t dev;
1341 
1342 	dev = devclass_get_device(dc, unit);
1343 	if (!dev)
1344 		return (NULL);
1345 
1346 	return (device_get_softc(dev));
1347 }
1348 
1349 /**
1350  * @brief Get a list of devices in the devclass
1351  *
1352  * An array containing a list of all the devices in the given devclass
1353  * is allocated and returned in @p *devlistp. The number of devices
1354  * in the array is returned in @p *devcountp. The caller should free
1355  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1356  *
1357  * @param dc		the devclass to examine
1358  * @param devlistp	points at location for array pointer return
1359  *			value
1360  * @param devcountp	points at location for array size return value
1361  *
1362  * @retval 0		success
1363  * @retval ENOMEM	the array allocation failed
1364  */
1365 int
1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1367 {
1368 	int count, i;
1369 	device_t *list;
1370 
1371 	count = devclass_get_count(dc);
1372 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1373 	if (!list)
1374 		return (ENOMEM);
1375 
1376 	count = 0;
1377 	for (i = 0; i < dc->maxunit; i++) {
1378 		if (dc->devices[i]) {
1379 			list[count] = dc->devices[i];
1380 			count++;
1381 		}
1382 	}
1383 
1384 	*devlistp = list;
1385 	*devcountp = count;
1386 
1387 	return (0);
1388 }
1389 
1390 /**
1391  * @brief Get a list of drivers in the devclass
1392  *
1393  * An array containing a list of pointers to all the drivers in the
1394  * given devclass is allocated and returned in @p *listp.  The number
1395  * of drivers in the array is returned in @p *countp. The caller should
1396  * free the array using @c free(p, M_TEMP).
1397  *
1398  * @param dc		the devclass to examine
1399  * @param listp		gives location for array pointer return value
1400  * @param countp	gives location for number of array elements
1401  *			return value
1402  *
1403  * @retval 0		success
1404  * @retval ENOMEM	the array allocation failed
1405  */
1406 int
1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1408 {
1409 	driverlink_t dl;
1410 	driver_t **list;
1411 	int count;
1412 
1413 	count = 0;
1414 	TAILQ_FOREACH(dl, &dc->drivers, link)
1415 		count++;
1416 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1417 	if (list == NULL)
1418 		return (ENOMEM);
1419 
1420 	count = 0;
1421 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1422 		list[count] = dl->driver;
1423 		count++;
1424 	}
1425 	*listp = list;
1426 	*countp = count;
1427 
1428 	return (0);
1429 }
1430 
1431 /**
1432  * @brief Get the number of devices in a devclass
1433  *
1434  * @param dc		the devclass to examine
1435  */
1436 int
1437 devclass_get_count(devclass_t dc)
1438 {
1439 	int count, i;
1440 
1441 	count = 0;
1442 	for (i = 0; i < dc->maxunit; i++)
1443 		if (dc->devices[i])
1444 			count++;
1445 	return (count);
1446 }
1447 
1448 /**
1449  * @brief Get the maximum unit number used in a devclass
1450  *
1451  * Note that this is one greater than the highest currently-allocated
1452  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1453  * that not even the devclass has been allocated yet.
1454  *
1455  * @param dc		the devclass to examine
1456  */
1457 int
1458 devclass_get_maxunit(devclass_t dc)
1459 {
1460 	if (dc == NULL)
1461 		return (-1);
1462 	return (dc->maxunit);
1463 }
1464 
1465 /**
1466  * @brief Find a free unit number in a devclass
1467  *
1468  * This function searches for the first unused unit number greater
1469  * that or equal to @p unit.
1470  *
1471  * @param dc		the devclass to examine
1472  * @param unit		the first unit number to check
1473  */
1474 int
1475 devclass_find_free_unit(devclass_t dc, int unit)
1476 {
1477 	if (dc == NULL)
1478 		return (unit);
1479 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1480 		unit++;
1481 	return (unit);
1482 }
1483 
1484 /**
1485  * @brief Set the parent of a devclass
1486  *
1487  * The parent class is normally initialised automatically by
1488  * DRIVER_MODULE().
1489  *
1490  * @param dc		the devclass to edit
1491  * @param pdc		the new parent devclass
1492  */
1493 void
1494 devclass_set_parent(devclass_t dc, devclass_t pdc)
1495 {
1496 	dc->parent = pdc;
1497 }
1498 
1499 /**
1500  * @brief Get the parent of a devclass
1501  *
1502  * @param dc		the devclass to examine
1503  */
1504 devclass_t
1505 devclass_get_parent(devclass_t dc)
1506 {
1507 	return (dc->parent);
1508 }
1509 
1510 struct sysctl_ctx_list *
1511 devclass_get_sysctl_ctx(devclass_t dc)
1512 {
1513 	return (&dc->sysctl_ctx);
1514 }
1515 
1516 struct sysctl_oid *
1517 devclass_get_sysctl_tree(devclass_t dc)
1518 {
1519 	return (dc->sysctl_tree);
1520 }
1521 
1522 /**
1523  * @internal
1524  * @brief Allocate a unit number
1525  *
1526  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1527  * will do). The allocated unit number is returned in @p *unitp.
1528 
1529  * @param dc		the devclass to allocate from
1530  * @param unitp		points at the location for the allocated unit
1531  *			number
1532  *
1533  * @retval 0		success
1534  * @retval EEXIST	the requested unit number is already allocated
1535  * @retval ENOMEM	memory allocation failure
1536  */
1537 static int
1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1539 {
1540 	const char *s;
1541 	int unit = *unitp;
1542 
1543 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1544 
1545 	/* Ask the parent bus if it wants to wire this device. */
1546 	if (unit == -1)
1547 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1548 		    &unit);
1549 
1550 	/* If we were given a wired unit number, check for existing device */
1551 	/* XXX imp XXX */
1552 	if (unit != -1) {
1553 		if (unit >= 0 && unit < dc->maxunit &&
1554 		    dc->devices[unit] != NULL) {
1555 			if (bootverbose)
1556 				printf("%s: %s%d already exists; skipping it\n",
1557 				    dc->name, dc->name, *unitp);
1558 			return (EEXIST);
1559 		}
1560 	} else {
1561 		/* Unwired device, find the next available slot for it */
1562 		unit = 0;
1563 		for (unit = 0;; unit++) {
1564 			/* If there is an "at" hint for a unit then skip it. */
1565 			if (resource_string_value(dc->name, unit, "at", &s) ==
1566 			    0)
1567 				continue;
1568 
1569 			/* If this device slot is already in use, skip it. */
1570 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1571 				continue;
1572 
1573 			break;
1574 		}
1575 	}
1576 
1577 	/*
1578 	 * We've selected a unit beyond the length of the table, so let's
1579 	 * extend the table to make room for all units up to and including
1580 	 * this one.
1581 	 */
1582 	if (unit >= dc->maxunit) {
1583 		device_t *newlist, *oldlist;
1584 		int newsize;
1585 
1586 		oldlist = dc->devices;
1587 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1588 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1589 		if (!newlist)
1590 			return (ENOMEM);
1591 		if (oldlist != NULL)
1592 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1593 		bzero(newlist + dc->maxunit,
1594 		    sizeof(device_t) * (newsize - dc->maxunit));
1595 		dc->devices = newlist;
1596 		dc->maxunit = newsize;
1597 		if (oldlist != NULL)
1598 			free(oldlist, M_BUS);
1599 	}
1600 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1601 
1602 	*unitp = unit;
1603 	return (0);
1604 }
1605 
1606 /**
1607  * @internal
1608  * @brief Add a device to a devclass
1609  *
1610  * A unit number is allocated for the device (using the device's
1611  * preferred unit number if any) and the device is registered in the
1612  * devclass. This allows the device to be looked up by its unit
1613  * number, e.g. by decoding a dev_t minor number.
1614  *
1615  * @param dc		the devclass to add to
1616  * @param dev		the device to add
1617  *
1618  * @retval 0		success
1619  * @retval EEXIST	the requested unit number is already allocated
1620  * @retval ENOMEM	memory allocation failure
1621  */
1622 static int
1623 devclass_add_device(devclass_t dc, device_t dev)
1624 {
1625 	int buflen, error;
1626 
1627 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1628 
1629 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1630 	if (buflen < 0)
1631 		return (ENOMEM);
1632 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1633 	if (!dev->nameunit)
1634 		return (ENOMEM);
1635 
1636 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1637 		free(dev->nameunit, M_BUS);
1638 		dev->nameunit = NULL;
1639 		return (error);
1640 	}
1641 	dc->devices[dev->unit] = dev;
1642 	dev->devclass = dc;
1643 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1644 
1645 	return (0);
1646 }
1647 
1648 /**
1649  * @internal
1650  * @brief Delete a device from a devclass
1651  *
1652  * The device is removed from the devclass's device list and its unit
1653  * number is freed.
1654 
1655  * @param dc		the devclass to delete from
1656  * @param dev		the device to delete
1657  *
1658  * @retval 0		success
1659  */
1660 static int
1661 devclass_delete_device(devclass_t dc, device_t dev)
1662 {
1663 	if (!dc || !dev)
1664 		return (0);
1665 
1666 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1667 
1668 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1669 		panic("devclass_delete_device: inconsistent device class");
1670 	dc->devices[dev->unit] = NULL;
1671 	if (dev->flags & DF_WILDCARD)
1672 		dev->unit = -1;
1673 	dev->devclass = NULL;
1674 	free(dev->nameunit, M_BUS);
1675 	dev->nameunit = NULL;
1676 
1677 	return (0);
1678 }
1679 
1680 /**
1681  * @internal
1682  * @brief Make a new device and add it as a child of @p parent
1683  *
1684  * @param parent	the parent of the new device
1685  * @param name		the devclass name of the new device or @c NULL
1686  *			to leave the devclass unspecified
1687  * @parem unit		the unit number of the new device of @c -1 to
1688  *			leave the unit number unspecified
1689  *
1690  * @returns the new device
1691  */
1692 static device_t
1693 make_device(device_t parent, const char *name, int unit)
1694 {
1695 	device_t dev;
1696 	devclass_t dc;
1697 
1698 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1699 
1700 	if (name) {
1701 		dc = devclass_find_internal(name, NULL, TRUE);
1702 		if (!dc) {
1703 			printf("make_device: can't find device class %s\n",
1704 			    name);
1705 			return (NULL);
1706 		}
1707 	} else {
1708 		dc = NULL;
1709 	}
1710 
1711 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1712 	if (!dev)
1713 		return (NULL);
1714 
1715 	dev->parent = parent;
1716 	TAILQ_INIT(&dev->children);
1717 	kobj_init((kobj_t) dev, &null_class);
1718 	dev->driver = NULL;
1719 	dev->devclass = NULL;
1720 	dev->unit = unit;
1721 	dev->nameunit = NULL;
1722 	dev->desc = NULL;
1723 	dev->busy = 0;
1724 	dev->devflags = 0;
1725 	dev->flags = DF_ENABLED;
1726 	dev->order = 0;
1727 	if (unit == -1)
1728 		dev->flags |= DF_WILDCARD;
1729 	if (name) {
1730 		dev->flags |= DF_FIXEDCLASS;
1731 		if (devclass_add_device(dc, dev)) {
1732 			kobj_delete((kobj_t) dev, M_BUS);
1733 			return (NULL);
1734 		}
1735 	}
1736 	dev->ivars = NULL;
1737 	dev->softc = NULL;
1738 
1739 	dev->state = DS_NOTPRESENT;
1740 
1741 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1742 	bus_data_generation_update();
1743 
1744 	return (dev);
1745 }
1746 
1747 /**
1748  * @internal
1749  * @brief Print a description of a device.
1750  */
1751 static int
1752 device_print_child(device_t dev, device_t child)
1753 {
1754 	int retval = 0;
1755 
1756 	if (device_is_alive(child))
1757 		retval += BUS_PRINT_CHILD(dev, child);
1758 	else
1759 		retval += device_printf(child, " not found\n");
1760 
1761 	return (retval);
1762 }
1763 
1764 /**
1765  * @brief Create a new device
1766  *
1767  * This creates a new device and adds it as a child of an existing
1768  * parent device. The new device will be added after the last existing
1769  * child with order zero.
1770  *
1771  * @param dev		the device which will be the parent of the
1772  *			new child device
1773  * @param name		devclass name for new device or @c NULL if not
1774  *			specified
1775  * @param unit		unit number for new device or @c -1 if not
1776  *			specified
1777  *
1778  * @returns		the new device
1779  */
1780 device_t
1781 device_add_child(device_t dev, const char *name, int unit)
1782 {
1783 	return (device_add_child_ordered(dev, 0, name, unit));
1784 }
1785 
1786 /**
1787  * @brief Create a new device
1788  *
1789  * This creates a new device and adds it as a child of an existing
1790  * parent device. The new device will be added after the last existing
1791  * child with the same order.
1792  *
1793  * @param dev		the device which will be the parent of the
1794  *			new child device
1795  * @param order		a value which is used to partially sort the
1796  *			children of @p dev - devices created using
1797  *			lower values of @p order appear first in @p
1798  *			dev's list of children
1799  * @param name		devclass name for new device or @c NULL if not
1800  *			specified
1801  * @param unit		unit number for new device or @c -1 if not
1802  *			specified
1803  *
1804  * @returns		the new device
1805  */
1806 device_t
1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1808 {
1809 	device_t child;
1810 	device_t place;
1811 
1812 	PDEBUG(("%s at %s with order %u as unit %d",
1813 	    name, DEVICENAME(dev), order, unit));
1814 
1815 	child = make_device(dev, name, unit);
1816 	if (child == NULL)
1817 		return (child);
1818 	child->order = order;
1819 
1820 	TAILQ_FOREACH(place, &dev->children, link) {
1821 		if (place->order > order)
1822 			break;
1823 	}
1824 
1825 	if (place) {
1826 		/*
1827 		 * The device 'place' is the first device whose order is
1828 		 * greater than the new child.
1829 		 */
1830 		TAILQ_INSERT_BEFORE(place, child, link);
1831 	} else {
1832 		/*
1833 		 * The new child's order is greater or equal to the order of
1834 		 * any existing device. Add the child to the tail of the list.
1835 		 */
1836 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1837 	}
1838 
1839 	bus_data_generation_update();
1840 	return (child);
1841 }
1842 
1843 /**
1844  * @brief Delete a device
1845  *
1846  * This function deletes a device along with all of its children. If
1847  * the device currently has a driver attached to it, the device is
1848  * detached first using device_detach().
1849  *
1850  * @param dev		the parent device
1851  * @param child		the device to delete
1852  *
1853  * @retval 0		success
1854  * @retval non-zero	a unit error code describing the error
1855  */
1856 int
1857 device_delete_child(device_t dev, device_t child)
1858 {
1859 	int error;
1860 	device_t grandchild;
1861 
1862 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1863 
1864 	/* remove children first */
1865 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1866 		error = device_delete_child(child, grandchild);
1867 		if (error)
1868 			return (error);
1869 	}
1870 
1871 	if ((error = device_detach(child)) != 0)
1872 		return (error);
1873 	if (child->devclass)
1874 		devclass_delete_device(child->devclass, child);
1875 	TAILQ_REMOVE(&dev->children, child, link);
1876 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1877 	kobj_delete((kobj_t) child, M_BUS);
1878 
1879 	bus_data_generation_update();
1880 	return (0);
1881 }
1882 
1883 /**
1884  * @brief Delete all children devices of the given device, if any.
1885  *
1886  * This function deletes all children devices of the given device, if
1887  * any, using the device_delete_child() function for each device it
1888  * finds. If a child device cannot be deleted, this function will
1889  * return an error code.
1890  *
1891  * @param dev		the parent device
1892  *
1893  * @retval 0		success
1894  * @retval non-zero	a device would not detach
1895  */
1896 int
1897 device_delete_children(device_t dev)
1898 {
1899 	device_t child;
1900 	int error;
1901 
1902 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1903 
1904 	error = 0;
1905 
1906 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1907 		error = device_delete_child(dev, child);
1908 		if (error) {
1909 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1910 			break;
1911 		}
1912 	}
1913 	return (error);
1914 }
1915 
1916 /**
1917  * @brief Find a device given a unit number
1918  *
1919  * This is similar to devclass_get_devices() but only searches for
1920  * devices which have @p dev as a parent.
1921  *
1922  * @param dev		the parent device to search
1923  * @param unit		the unit number to search for.  If the unit is -1,
1924  *			return the first child of @p dev which has name
1925  *			@p classname (that is, the one with the lowest unit.)
1926  *
1927  * @returns		the device with the given unit number or @c
1928  *			NULL if there is no such device
1929  */
1930 device_t
1931 device_find_child(device_t dev, const char *classname, int unit)
1932 {
1933 	devclass_t dc;
1934 	device_t child;
1935 
1936 	dc = devclass_find(classname);
1937 	if (!dc)
1938 		return (NULL);
1939 
1940 	if (unit != -1) {
1941 		child = devclass_get_device(dc, unit);
1942 		if (child && child->parent == dev)
1943 			return (child);
1944 	} else {
1945 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1946 			child = devclass_get_device(dc, unit);
1947 			if (child && child->parent == dev)
1948 				return (child);
1949 		}
1950 	}
1951 	return (NULL);
1952 }
1953 
1954 /**
1955  * @internal
1956  */
1957 static driverlink_t
1958 first_matching_driver(devclass_t dc, device_t dev)
1959 {
1960 	if (dev->devclass)
1961 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1962 	return (TAILQ_FIRST(&dc->drivers));
1963 }
1964 
1965 /**
1966  * @internal
1967  */
1968 static driverlink_t
1969 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1970 {
1971 	if (dev->devclass) {
1972 		driverlink_t dl;
1973 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1974 			if (!strcmp(dev->devclass->name, dl->driver->name))
1975 				return (dl);
1976 		return (NULL);
1977 	}
1978 	return (TAILQ_NEXT(last, link));
1979 }
1980 
1981 /**
1982  * @internal
1983  */
1984 int
1985 device_probe_child(device_t dev, device_t child)
1986 {
1987 	devclass_t dc;
1988 	driverlink_t best = NULL;
1989 	driverlink_t dl;
1990 	int result, pri = 0;
1991 	int hasclass = (child->devclass != NULL);
1992 
1993 	GIANT_REQUIRED;
1994 
1995 	dc = dev->devclass;
1996 	if (!dc)
1997 		panic("device_probe_child: parent device has no devclass");
1998 
1999 	/*
2000 	 * If the state is already probed, then return.  However, don't
2001 	 * return if we can rebid this object.
2002 	 */
2003 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2004 		return (0);
2005 
2006 	for (; dc; dc = dc->parent) {
2007 		for (dl = first_matching_driver(dc, child);
2008 		     dl;
2009 		     dl = next_matching_driver(dc, child, dl)) {
2010 			/* If this driver's pass is too high, then ignore it. */
2011 			if (dl->pass > bus_current_pass)
2012 				continue;
2013 
2014 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2015 			result = device_set_driver(child, dl->driver);
2016 			if (result == ENOMEM)
2017 				return (result);
2018 			else if (result != 0)
2019 				continue;
2020 			if (!hasclass) {
2021 				if (device_set_devclass(child,
2022 				    dl->driver->name) != 0) {
2023 					char const * devname =
2024 					    device_get_name(child);
2025 					if (devname == NULL)
2026 						devname = "(unknown)";
2027 					printf("driver bug: Unable to set "
2028 					    "devclass (class: %s "
2029 					    "devname: %s)\n",
2030 					    dl->driver->name,
2031 					    devname);
2032 					(void)device_set_driver(child, NULL);
2033 					continue;
2034 				}
2035 			}
2036 
2037 			/* Fetch any flags for the device before probing. */
2038 			resource_int_value(dl->driver->name, child->unit,
2039 			    "flags", &child->devflags);
2040 
2041 			result = DEVICE_PROBE(child);
2042 
2043 			/* Reset flags and devclass before the next probe. */
2044 			child->devflags = 0;
2045 			if (!hasclass)
2046 				(void)device_set_devclass(child, NULL);
2047 
2048 			/*
2049 			 * If the driver returns SUCCESS, there can be
2050 			 * no higher match for this device.
2051 			 */
2052 			if (result == 0) {
2053 				best = dl;
2054 				pri = 0;
2055 				break;
2056 			}
2057 
2058 			/*
2059 			 * The driver returned an error so it
2060 			 * certainly doesn't match.
2061 			 */
2062 			if (result > 0) {
2063 				(void)device_set_driver(child, NULL);
2064 				continue;
2065 			}
2066 
2067 			/*
2068 			 * A priority lower than SUCCESS, remember the
2069 			 * best matching driver. Initialise the value
2070 			 * of pri for the first match.
2071 			 */
2072 			if (best == NULL || result > pri) {
2073 				/*
2074 				 * Probes that return BUS_PROBE_NOWILDCARD
2075 				 * or lower only match when they are set
2076 				 * in stone by the parent bus.
2077 				 */
2078 				if (result <= BUS_PROBE_NOWILDCARD &&
2079 				    child->flags & DF_WILDCARD)
2080 					continue;
2081 				best = dl;
2082 				pri = result;
2083 				continue;
2084 			}
2085 		}
2086 		/*
2087 		 * If we have an unambiguous match in this devclass,
2088 		 * don't look in the parent.
2089 		 */
2090 		if (best && pri == 0)
2091 			break;
2092 	}
2093 
2094 	/*
2095 	 * If we found a driver, change state and initialise the devclass.
2096 	 */
2097 	/* XXX What happens if we rebid and got no best? */
2098 	if (best) {
2099 		/*
2100 		 * If this device was atached, and we were asked to
2101 		 * rescan, and it is a different driver, then we have
2102 		 * to detach the old driver and reattach this new one.
2103 		 * Note, we don't have to check for DF_REBID here
2104 		 * because if the state is > DS_ALIVE, we know it must
2105 		 * be.
2106 		 *
2107 		 * This assumes that all DF_REBID drivers can have
2108 		 * their probe routine called at any time and that
2109 		 * they are idempotent as well as completely benign in
2110 		 * normal operations.
2111 		 *
2112 		 * We also have to make sure that the detach
2113 		 * succeeded, otherwise we fail the operation (or
2114 		 * maybe it should just fail silently?  I'm torn).
2115 		 */
2116 		if (child->state > DS_ALIVE && best->driver != child->driver)
2117 			if ((result = device_detach(dev)) != 0)
2118 				return (result);
2119 
2120 		/* Set the winning driver, devclass, and flags. */
2121 		if (!child->devclass) {
2122 			result = device_set_devclass(child, best->driver->name);
2123 			if (result != 0)
2124 				return (result);
2125 		}
2126 		result = device_set_driver(child, best->driver);
2127 		if (result != 0)
2128 			return (result);
2129 		resource_int_value(best->driver->name, child->unit,
2130 		    "flags", &child->devflags);
2131 
2132 		if (pri < 0) {
2133 			/*
2134 			 * A bit bogus. Call the probe method again to make
2135 			 * sure that we have the right description.
2136 			 */
2137 			DEVICE_PROBE(child);
2138 #if 0
2139 			child->flags |= DF_REBID;
2140 #endif
2141 		} else
2142 			child->flags &= ~DF_REBID;
2143 		child->state = DS_ALIVE;
2144 
2145 		bus_data_generation_update();
2146 		return (0);
2147 	}
2148 
2149 	return (ENXIO);
2150 }
2151 
2152 /**
2153  * @brief Return the parent of a device
2154  */
2155 device_t
2156 device_get_parent(device_t dev)
2157 {
2158 	return (dev->parent);
2159 }
2160 
2161 /**
2162  * @brief Get a list of children of a device
2163  *
2164  * An array containing a list of all the children of the given device
2165  * is allocated and returned in @p *devlistp. The number of devices
2166  * in the array is returned in @p *devcountp. The caller should free
2167  * the array using @c free(p, M_TEMP).
2168  *
2169  * @param dev		the device to examine
2170  * @param devlistp	points at location for array pointer return
2171  *			value
2172  * @param devcountp	points at location for array size return value
2173  *
2174  * @retval 0		success
2175  * @retval ENOMEM	the array allocation failed
2176  */
2177 int
2178 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2179 {
2180 	int count;
2181 	device_t child;
2182 	device_t *list;
2183 
2184 	count = 0;
2185 	TAILQ_FOREACH(child, &dev->children, link) {
2186 		count++;
2187 	}
2188 	if (count == 0) {
2189 		*devlistp = NULL;
2190 		*devcountp = 0;
2191 		return (0);
2192 	}
2193 
2194 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2195 	if (!list)
2196 		return (ENOMEM);
2197 
2198 	count = 0;
2199 	TAILQ_FOREACH(child, &dev->children, link) {
2200 		list[count] = child;
2201 		count++;
2202 	}
2203 
2204 	*devlistp = list;
2205 	*devcountp = count;
2206 
2207 	return (0);
2208 }
2209 
2210 /**
2211  * @brief Return the current driver for the device or @c NULL if there
2212  * is no driver currently attached
2213  */
2214 driver_t *
2215 device_get_driver(device_t dev)
2216 {
2217 	return (dev->driver);
2218 }
2219 
2220 /**
2221  * @brief Return the current devclass for the device or @c NULL if
2222  * there is none.
2223  */
2224 devclass_t
2225 device_get_devclass(device_t dev)
2226 {
2227 	return (dev->devclass);
2228 }
2229 
2230 /**
2231  * @brief Return the name of the device's devclass or @c NULL if there
2232  * is none.
2233  */
2234 const char *
2235 device_get_name(device_t dev)
2236 {
2237 	if (dev != NULL && dev->devclass)
2238 		return (devclass_get_name(dev->devclass));
2239 	return (NULL);
2240 }
2241 
2242 /**
2243  * @brief Return a string containing the device's devclass name
2244  * followed by an ascii representation of the device's unit number
2245  * (e.g. @c "foo2").
2246  */
2247 const char *
2248 device_get_nameunit(device_t dev)
2249 {
2250 	return (dev->nameunit);
2251 }
2252 
2253 /**
2254  * @brief Return the device's unit number.
2255  */
2256 int
2257 device_get_unit(device_t dev)
2258 {
2259 	return (dev->unit);
2260 }
2261 
2262 /**
2263  * @brief Return the device's description string
2264  */
2265 const char *
2266 device_get_desc(device_t dev)
2267 {
2268 	return (dev->desc);
2269 }
2270 
2271 /**
2272  * @brief Return the device's flags
2273  */
2274 uint32_t
2275 device_get_flags(device_t dev)
2276 {
2277 	return (dev->devflags);
2278 }
2279 
2280 struct sysctl_ctx_list *
2281 device_get_sysctl_ctx(device_t dev)
2282 {
2283 	return (&dev->sysctl_ctx);
2284 }
2285 
2286 struct sysctl_oid *
2287 device_get_sysctl_tree(device_t dev)
2288 {
2289 	return (dev->sysctl_tree);
2290 }
2291 
2292 /**
2293  * @brief Print the name of the device followed by a colon and a space
2294  *
2295  * @returns the number of characters printed
2296  */
2297 int
2298 device_print_prettyname(device_t dev)
2299 {
2300 	const char *name = device_get_name(dev);
2301 
2302 	if (name == NULL)
2303 		return (printf("unknown: "));
2304 	return (printf("%s%d: ", name, device_get_unit(dev)));
2305 }
2306 
2307 /**
2308  * @brief Print the name of the device followed by a colon, a space
2309  * and the result of calling vprintf() with the value of @p fmt and
2310  * the following arguments.
2311  *
2312  * @returns the number of characters printed
2313  */
2314 int
2315 device_printf(device_t dev, const char * fmt, ...)
2316 {
2317 	va_list ap;
2318 	int retval;
2319 
2320 	retval = device_print_prettyname(dev);
2321 	va_start(ap, fmt);
2322 	retval += vprintf(fmt, ap);
2323 	va_end(ap);
2324 	return (retval);
2325 }
2326 
2327 /**
2328  * @internal
2329  */
2330 static void
2331 device_set_desc_internal(device_t dev, const char* desc, int copy)
2332 {
2333 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2334 		free(dev->desc, M_BUS);
2335 		dev->flags &= ~DF_DESCMALLOCED;
2336 		dev->desc = NULL;
2337 	}
2338 
2339 	if (copy && desc) {
2340 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2341 		if (dev->desc) {
2342 			strcpy(dev->desc, desc);
2343 			dev->flags |= DF_DESCMALLOCED;
2344 		}
2345 	} else {
2346 		/* Avoid a -Wcast-qual warning */
2347 		dev->desc = (char *)(uintptr_t) desc;
2348 	}
2349 
2350 	bus_data_generation_update();
2351 }
2352 
2353 /**
2354  * @brief Set the device's description
2355  *
2356  * The value of @c desc should be a string constant that will not
2357  * change (at least until the description is changed in a subsequent
2358  * call to device_set_desc() or device_set_desc_copy()).
2359  */
2360 void
2361 device_set_desc(device_t dev, const char* desc)
2362 {
2363 	device_set_desc_internal(dev, desc, FALSE);
2364 }
2365 
2366 /**
2367  * @brief Set the device's description
2368  *
2369  * The string pointed to by @c desc is copied. Use this function if
2370  * the device description is generated, (e.g. with sprintf()).
2371  */
2372 void
2373 device_set_desc_copy(device_t dev, const char* desc)
2374 {
2375 	device_set_desc_internal(dev, desc, TRUE);
2376 }
2377 
2378 /**
2379  * @brief Set the device's flags
2380  */
2381 void
2382 device_set_flags(device_t dev, uint32_t flags)
2383 {
2384 	dev->devflags = flags;
2385 }
2386 
2387 /**
2388  * @brief Return the device's softc field
2389  *
2390  * The softc is allocated and zeroed when a driver is attached, based
2391  * on the size field of the driver.
2392  */
2393 void *
2394 device_get_softc(device_t dev)
2395 {
2396 	return (dev->softc);
2397 }
2398 
2399 /**
2400  * @brief Set the device's softc field
2401  *
2402  * Most drivers do not need to use this since the softc is allocated
2403  * automatically when the driver is attached.
2404  */
2405 void
2406 device_set_softc(device_t dev, void *softc)
2407 {
2408 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2409 		free(dev->softc, M_BUS_SC);
2410 	dev->softc = softc;
2411 	if (dev->softc)
2412 		dev->flags |= DF_EXTERNALSOFTC;
2413 	else
2414 		dev->flags &= ~DF_EXTERNALSOFTC;
2415 }
2416 
2417 /**
2418  * @brief Get the device's ivars field
2419  *
2420  * The ivars field is used by the parent device to store per-device
2421  * state (e.g. the physical location of the device or a list of
2422  * resources).
2423  */
2424 void *
2425 device_get_ivars(device_t dev)
2426 {
2427 
2428 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2429 	return (dev->ivars);
2430 }
2431 
2432 /**
2433  * @brief Set the device's ivars field
2434  */
2435 void
2436 device_set_ivars(device_t dev, void * ivars)
2437 {
2438 
2439 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2440 	dev->ivars = ivars;
2441 }
2442 
2443 /**
2444  * @brief Return the device's state
2445  */
2446 device_state_t
2447 device_get_state(device_t dev)
2448 {
2449 	return (dev->state);
2450 }
2451 
2452 /**
2453  * @brief Set the DF_ENABLED flag for the device
2454  */
2455 void
2456 device_enable(device_t dev)
2457 {
2458 	dev->flags |= DF_ENABLED;
2459 }
2460 
2461 /**
2462  * @brief Clear the DF_ENABLED flag for the device
2463  */
2464 void
2465 device_disable(device_t dev)
2466 {
2467 	dev->flags &= ~DF_ENABLED;
2468 }
2469 
2470 /**
2471  * @brief Increment the busy counter for the device
2472  */
2473 void
2474 device_busy(device_t dev)
2475 {
2476 	if (dev->state < DS_ATTACHED)
2477 		panic("device_busy: called for unattached device");
2478 	if (dev->busy == 0 && dev->parent)
2479 		device_busy(dev->parent);
2480 	dev->busy++;
2481 	dev->state = DS_BUSY;
2482 }
2483 
2484 /**
2485  * @brief Decrement the busy counter for the device
2486  */
2487 void
2488 device_unbusy(device_t dev)
2489 {
2490 	if (dev->state != DS_BUSY)
2491 		panic("device_unbusy: called for non-busy device %s",
2492 		    device_get_nameunit(dev));
2493 	dev->busy--;
2494 	if (dev->busy == 0) {
2495 		if (dev->parent)
2496 			device_unbusy(dev->parent);
2497 		dev->state = DS_ATTACHED;
2498 	}
2499 }
2500 
2501 /**
2502  * @brief Set the DF_QUIET flag for the device
2503  */
2504 void
2505 device_quiet(device_t dev)
2506 {
2507 	dev->flags |= DF_QUIET;
2508 }
2509 
2510 /**
2511  * @brief Clear the DF_QUIET flag for the device
2512  */
2513 void
2514 device_verbose(device_t dev)
2515 {
2516 	dev->flags &= ~DF_QUIET;
2517 }
2518 
2519 /**
2520  * @brief Return non-zero if the DF_QUIET flag is set on the device
2521  */
2522 int
2523 device_is_quiet(device_t dev)
2524 {
2525 	return ((dev->flags & DF_QUIET) != 0);
2526 }
2527 
2528 /**
2529  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2530  */
2531 int
2532 device_is_enabled(device_t dev)
2533 {
2534 	return ((dev->flags & DF_ENABLED) != 0);
2535 }
2536 
2537 /**
2538  * @brief Return non-zero if the device was successfully probed
2539  */
2540 int
2541 device_is_alive(device_t dev)
2542 {
2543 	return (dev->state >= DS_ALIVE);
2544 }
2545 
2546 /**
2547  * @brief Return non-zero if the device currently has a driver
2548  * attached to it
2549  */
2550 int
2551 device_is_attached(device_t dev)
2552 {
2553 	return (dev->state >= DS_ATTACHED);
2554 }
2555 
2556 /**
2557  * @brief Set the devclass of a device
2558  * @see devclass_add_device().
2559  */
2560 int
2561 device_set_devclass(device_t dev, const char *classname)
2562 {
2563 	devclass_t dc;
2564 	int error;
2565 
2566 	if (!classname) {
2567 		if (dev->devclass)
2568 			devclass_delete_device(dev->devclass, dev);
2569 		return (0);
2570 	}
2571 
2572 	if (dev->devclass) {
2573 		printf("device_set_devclass: device class already set\n");
2574 		return (EINVAL);
2575 	}
2576 
2577 	dc = devclass_find_internal(classname, NULL, TRUE);
2578 	if (!dc)
2579 		return (ENOMEM);
2580 
2581 	error = devclass_add_device(dc, dev);
2582 
2583 	bus_data_generation_update();
2584 	return (error);
2585 }
2586 
2587 /**
2588  * @brief Set the driver of a device
2589  *
2590  * @retval 0		success
2591  * @retval EBUSY	the device already has a driver attached
2592  * @retval ENOMEM	a memory allocation failure occurred
2593  */
2594 int
2595 device_set_driver(device_t dev, driver_t *driver)
2596 {
2597 	if (dev->state >= DS_ATTACHED)
2598 		return (EBUSY);
2599 
2600 	if (dev->driver == driver)
2601 		return (0);
2602 
2603 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2604 		free(dev->softc, M_BUS_SC);
2605 		dev->softc = NULL;
2606 	}
2607 	kobj_delete((kobj_t) dev, NULL);
2608 	dev->driver = driver;
2609 	if (driver) {
2610 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2611 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2612 			dev->softc = malloc(driver->size, M_BUS_SC,
2613 			    M_NOWAIT | M_ZERO);
2614 			if (!dev->softc) {
2615 				kobj_delete((kobj_t) dev, NULL);
2616 				kobj_init((kobj_t) dev, &null_class);
2617 				dev->driver = NULL;
2618 				return (ENOMEM);
2619 			}
2620 		}
2621 	} else {
2622 		kobj_init((kobj_t) dev, &null_class);
2623 	}
2624 
2625 	bus_data_generation_update();
2626 	return (0);
2627 }
2628 
2629 /**
2630  * @brief Probe a device, and return this status.
2631  *
2632  * This function is the core of the device autoconfiguration
2633  * system. Its purpose is to select a suitable driver for a device and
2634  * then call that driver to initialise the hardware appropriately. The
2635  * driver is selected by calling the DEVICE_PROBE() method of a set of
2636  * candidate drivers and then choosing the driver which returned the
2637  * best value. This driver is then attached to the device using
2638  * device_attach().
2639  *
2640  * The set of suitable drivers is taken from the list of drivers in
2641  * the parent device's devclass. If the device was originally created
2642  * with a specific class name (see device_add_child()), only drivers
2643  * with that name are probed, otherwise all drivers in the devclass
2644  * are probed. If no drivers return successful probe values in the
2645  * parent devclass, the search continues in the parent of that
2646  * devclass (see devclass_get_parent()) if any.
2647  *
2648  * @param dev		the device to initialise
2649  *
2650  * @retval 0		success
2651  * @retval ENXIO	no driver was found
2652  * @retval ENOMEM	memory allocation failure
2653  * @retval non-zero	some other unix error code
2654  * @retval -1		Device already attached
2655  */
2656 int
2657 device_probe(device_t dev)
2658 {
2659 	int error;
2660 
2661 	GIANT_REQUIRED;
2662 
2663 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2664 		return (-1);
2665 
2666 	if (!(dev->flags & DF_ENABLED)) {
2667 		if (bootverbose && device_get_name(dev) != NULL) {
2668 			device_print_prettyname(dev);
2669 			printf("not probed (disabled)\n");
2670 		}
2671 		return (-1);
2672 	}
2673 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2674 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2675 		    !(dev->flags & DF_DONENOMATCH)) {
2676 			BUS_PROBE_NOMATCH(dev->parent, dev);
2677 			devnomatch(dev);
2678 			dev->flags |= DF_DONENOMATCH;
2679 		}
2680 		return (error);
2681 	}
2682 	return (0);
2683 }
2684 
2685 /**
2686  * @brief Probe a device and attach a driver if possible
2687  *
2688  * calls device_probe() and attaches if that was successful.
2689  */
2690 int
2691 device_probe_and_attach(device_t dev)
2692 {
2693 	int error;
2694 
2695 	GIANT_REQUIRED;
2696 
2697 	error = device_probe(dev);
2698 	if (error == -1)
2699 		return (0);
2700 	else if (error != 0)
2701 		return (error);
2702 	return (device_attach(dev));
2703 }
2704 
2705 /**
2706  * @brief Attach a device driver to a device
2707  *
2708  * This function is a wrapper around the DEVICE_ATTACH() driver
2709  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2710  * device's sysctl tree, optionally prints a description of the device
2711  * and queues a notification event for user-based device management
2712  * services.
2713  *
2714  * Normally this function is only called internally from
2715  * device_probe_and_attach().
2716  *
2717  * @param dev		the device to initialise
2718  *
2719  * @retval 0		success
2720  * @retval ENXIO	no driver was found
2721  * @retval ENOMEM	memory allocation failure
2722  * @retval non-zero	some other unix error code
2723  */
2724 int
2725 device_attach(device_t dev)
2726 {
2727 	int error;
2728 
2729 	device_sysctl_init(dev);
2730 	if (!device_is_quiet(dev))
2731 		device_print_child(dev->parent, dev);
2732 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2733 		printf("device_attach: %s%d attach returned %d\n",
2734 		    dev->driver->name, dev->unit, error);
2735 		/* Unset the class; set in device_probe_child */
2736 		if (dev->devclass == NULL)
2737 			(void)device_set_devclass(dev, NULL);
2738 		(void)device_set_driver(dev, NULL);
2739 		device_sysctl_fini(dev);
2740 		dev->state = DS_NOTPRESENT;
2741 		return (error);
2742 	}
2743 	device_sysctl_update(dev);
2744 	dev->state = DS_ATTACHED;
2745 	dev->flags &= ~DF_DONENOMATCH;
2746 	devadded(dev);
2747 	return (0);
2748 }
2749 
2750 /**
2751  * @brief Detach a driver from a device
2752  *
2753  * This function is a wrapper around the DEVICE_DETACH() driver
2754  * method. If the call to DEVICE_DETACH() succeeds, it calls
2755  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2756  * notification event for user-based device management services and
2757  * cleans up the device's sysctl tree.
2758  *
2759  * @param dev		the device to un-initialise
2760  *
2761  * @retval 0		success
2762  * @retval ENXIO	no driver was found
2763  * @retval ENOMEM	memory allocation failure
2764  * @retval non-zero	some other unix error code
2765  */
2766 int
2767 device_detach(device_t dev)
2768 {
2769 	int error;
2770 
2771 	GIANT_REQUIRED;
2772 
2773 	PDEBUG(("%s", DEVICENAME(dev)));
2774 	if (dev->state == DS_BUSY)
2775 		return (EBUSY);
2776 	if (dev->state != DS_ATTACHED)
2777 		return (0);
2778 
2779 	if ((error = DEVICE_DETACH(dev)) != 0)
2780 		return (error);
2781 	devremoved(dev);
2782 	if (!device_is_quiet(dev))
2783 		device_printf(dev, "detached\n");
2784 	if (dev->parent)
2785 		BUS_CHILD_DETACHED(dev->parent, dev);
2786 
2787 	if (!(dev->flags & DF_FIXEDCLASS))
2788 		devclass_delete_device(dev->devclass, dev);
2789 
2790 	dev->state = DS_NOTPRESENT;
2791 	(void)device_set_driver(dev, NULL);
2792 	device_set_desc(dev, NULL);
2793 	device_sysctl_fini(dev);
2794 
2795 	return (0);
2796 }
2797 
2798 /**
2799  * @brief Tells a driver to quiesce itself.
2800  *
2801  * This function is a wrapper around the DEVICE_QUIESCE() driver
2802  * method. If the call to DEVICE_QUIESCE() succeeds.
2803  *
2804  * @param dev		the device to quiesce
2805  *
2806  * @retval 0		success
2807  * @retval ENXIO	no driver was found
2808  * @retval ENOMEM	memory allocation failure
2809  * @retval non-zero	some other unix error code
2810  */
2811 int
2812 device_quiesce(device_t dev)
2813 {
2814 
2815 	PDEBUG(("%s", DEVICENAME(dev)));
2816 	if (dev->state == DS_BUSY)
2817 		return (EBUSY);
2818 	if (dev->state != DS_ATTACHED)
2819 		return (0);
2820 
2821 	return (DEVICE_QUIESCE(dev));
2822 }
2823 
2824 /**
2825  * @brief Notify a device of system shutdown
2826  *
2827  * This function calls the DEVICE_SHUTDOWN() driver method if the
2828  * device currently has an attached driver.
2829  *
2830  * @returns the value returned by DEVICE_SHUTDOWN()
2831  */
2832 int
2833 device_shutdown(device_t dev)
2834 {
2835 	if (dev->state < DS_ATTACHED)
2836 		return (0);
2837 	return (DEVICE_SHUTDOWN(dev));
2838 }
2839 
2840 /**
2841  * @brief Set the unit number of a device
2842  *
2843  * This function can be used to override the unit number used for a
2844  * device (e.g. to wire a device to a pre-configured unit number).
2845  */
2846 int
2847 device_set_unit(device_t dev, int unit)
2848 {
2849 	devclass_t dc;
2850 	int err;
2851 
2852 	dc = device_get_devclass(dev);
2853 	if (unit < dc->maxunit && dc->devices[unit])
2854 		return (EBUSY);
2855 	err = devclass_delete_device(dc, dev);
2856 	if (err)
2857 		return (err);
2858 	dev->unit = unit;
2859 	err = devclass_add_device(dc, dev);
2860 	if (err)
2861 		return (err);
2862 
2863 	bus_data_generation_update();
2864 	return (0);
2865 }
2866 
2867 /*======================================*/
2868 /*
2869  * Some useful method implementations to make life easier for bus drivers.
2870  */
2871 
2872 /**
2873  * @brief Initialise a resource list.
2874  *
2875  * @param rl		the resource list to initialise
2876  */
2877 void
2878 resource_list_init(struct resource_list *rl)
2879 {
2880 	STAILQ_INIT(rl);
2881 }
2882 
2883 /**
2884  * @brief Reclaim memory used by a resource list.
2885  *
2886  * This function frees the memory for all resource entries on the list
2887  * (if any).
2888  *
2889  * @param rl		the resource list to free
2890  */
2891 void
2892 resource_list_free(struct resource_list *rl)
2893 {
2894 	struct resource_list_entry *rle;
2895 
2896 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2897 		if (rle->res)
2898 			panic("resource_list_free: resource entry is busy");
2899 		STAILQ_REMOVE_HEAD(rl, link);
2900 		free(rle, M_BUS);
2901 	}
2902 }
2903 
2904 /**
2905  * @brief Add a resource entry.
2906  *
2907  * This function adds a resource entry using the given @p type, @p
2908  * start, @p end and @p count values. A rid value is chosen by
2909  * searching sequentially for the first unused rid starting at zero.
2910  *
2911  * @param rl		the resource list to edit
2912  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2913  * @param start		the start address of the resource
2914  * @param end		the end address of the resource
2915  * @param count		XXX end-start+1
2916  */
2917 int
2918 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2919     u_long end, u_long count)
2920 {
2921 	int rid;
2922 
2923 	rid = 0;
2924 	while (resource_list_find(rl, type, rid) != NULL)
2925 		rid++;
2926 	resource_list_add(rl, type, rid, start, end, count);
2927 	return (rid);
2928 }
2929 
2930 /**
2931  * @brief Add or modify a resource entry.
2932  *
2933  * If an existing entry exists with the same type and rid, it will be
2934  * modified using the given values of @p start, @p end and @p
2935  * count. If no entry exists, a new one will be created using the
2936  * given values.  The resource list entry that matches is then returned.
2937  *
2938  * @param rl		the resource list to edit
2939  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2940  * @param rid		the resource identifier
2941  * @param start		the start address of the resource
2942  * @param end		the end address of the resource
2943  * @param count		XXX end-start+1
2944  */
2945 struct resource_list_entry *
2946 resource_list_add(struct resource_list *rl, int type, int rid,
2947     u_long start, u_long end, u_long count)
2948 {
2949 	struct resource_list_entry *rle;
2950 
2951 	rle = resource_list_find(rl, type, rid);
2952 	if (!rle) {
2953 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2954 		    M_NOWAIT);
2955 		if (!rle)
2956 			panic("resource_list_add: can't record entry");
2957 		STAILQ_INSERT_TAIL(rl, rle, link);
2958 		rle->type = type;
2959 		rle->rid = rid;
2960 		rle->res = NULL;
2961 		rle->flags = 0;
2962 	}
2963 
2964 	if (rle->res)
2965 		panic("resource_list_add: resource entry is busy");
2966 
2967 	rle->start = start;
2968 	rle->end = end;
2969 	rle->count = count;
2970 	return (rle);
2971 }
2972 
2973 /**
2974  * @brief Determine if a resource entry is busy.
2975  *
2976  * Returns true if a resource entry is busy meaning that it has an
2977  * associated resource that is not an unallocated "reserved" resource.
2978  *
2979  * @param rl		the resource list to search
2980  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2981  * @param rid		the resource identifier
2982  *
2983  * @returns Non-zero if the entry is busy, zero otherwise.
2984  */
2985 int
2986 resource_list_busy(struct resource_list *rl, int type, int rid)
2987 {
2988 	struct resource_list_entry *rle;
2989 
2990 	rle = resource_list_find(rl, type, rid);
2991 	if (rle == NULL || rle->res == NULL)
2992 		return (0);
2993 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2994 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2995 		    ("reserved resource is active"));
2996 		return (0);
2997 	}
2998 	return (1);
2999 }
3000 
3001 /**
3002  * @brief Determine if a resource entry is reserved.
3003  *
3004  * Returns true if a resource entry is reserved meaning that it has an
3005  * associated "reserved" resource.  The resource can either be
3006  * allocated or unallocated.
3007  *
3008  * @param rl		the resource list to search
3009  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3010  * @param rid		the resource identifier
3011  *
3012  * @returns Non-zero if the entry is reserved, zero otherwise.
3013  */
3014 int
3015 resource_list_reserved(struct resource_list *rl, int type, int rid)
3016 {
3017 	struct resource_list_entry *rle;
3018 
3019 	rle = resource_list_find(rl, type, rid);
3020 	if (rle != NULL && rle->flags & RLE_RESERVED)
3021 		return (1);
3022 	return (0);
3023 }
3024 
3025 /**
3026  * @brief Find a resource entry by type and rid.
3027  *
3028  * @param rl		the resource list to search
3029  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3030  * @param rid		the resource identifier
3031  *
3032  * @returns the resource entry pointer or NULL if there is no such
3033  * entry.
3034  */
3035 struct resource_list_entry *
3036 resource_list_find(struct resource_list *rl, int type, int rid)
3037 {
3038 	struct resource_list_entry *rle;
3039 
3040 	STAILQ_FOREACH(rle, rl, link) {
3041 		if (rle->type == type && rle->rid == rid)
3042 			return (rle);
3043 	}
3044 	return (NULL);
3045 }
3046 
3047 /**
3048  * @brief Delete a resource entry.
3049  *
3050  * @param rl		the resource list to edit
3051  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3052  * @param rid		the resource identifier
3053  */
3054 void
3055 resource_list_delete(struct resource_list *rl, int type, int rid)
3056 {
3057 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3058 
3059 	if (rle) {
3060 		if (rle->res != NULL)
3061 			panic("resource_list_delete: resource has not been released");
3062 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3063 		free(rle, M_BUS);
3064 	}
3065 }
3066 
3067 /**
3068  * @brief Allocate a reserved resource
3069  *
3070  * This can be used by busses to force the allocation of resources
3071  * that are always active in the system even if they are not allocated
3072  * by a driver (e.g. PCI BARs).  This function is usually called when
3073  * adding a new child to the bus.  The resource is allocated from the
3074  * parent bus when it is reserved.  The resource list entry is marked
3075  * with RLE_RESERVED to note that it is a reserved resource.
3076  *
3077  * Subsequent attempts to allocate the resource with
3078  * resource_list_alloc() will succeed the first time and will set
3079  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3080  * resource that has been allocated is released with
3081  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3082  * the actual resource remains allocated.  The resource can be released to
3083  * the parent bus by calling resource_list_unreserve().
3084  *
3085  * @param rl		the resource list to allocate from
3086  * @param bus		the parent device of @p child
3087  * @param child		the device for which the resource is being reserved
3088  * @param type		the type of resource to allocate
3089  * @param rid		a pointer to the resource identifier
3090  * @param start		hint at the start of the resource range - pass
3091  *			@c 0UL for any start address
3092  * @param end		hint at the end of the resource range - pass
3093  *			@c ~0UL for any end address
3094  * @param count		hint at the size of range required - pass @c 1
3095  *			for any size
3096  * @param flags		any extra flags to control the resource
3097  *			allocation - see @c RF_XXX flags in
3098  *			<sys/rman.h> for details
3099  *
3100  * @returns		the resource which was allocated or @c NULL if no
3101  *			resource could be allocated
3102  */
3103 struct resource *
3104 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3105     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3106 {
3107 	struct resource_list_entry *rle = NULL;
3108 	int passthrough = (device_get_parent(child) != bus);
3109 	struct resource *r;
3110 
3111 	if (passthrough)
3112 		panic(
3113     "resource_list_reserve() should only be called for direct children");
3114 	if (flags & RF_ACTIVE)
3115 		panic(
3116     "resource_list_reserve() should only reserve inactive resources");
3117 
3118 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3119 	    flags);
3120 	if (r != NULL) {
3121 		rle = resource_list_find(rl, type, *rid);
3122 		rle->flags |= RLE_RESERVED;
3123 	}
3124 	return (r);
3125 }
3126 
3127 /**
3128  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3129  *
3130  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3131  * and passing the allocation up to the parent of @p bus. This assumes
3132  * that the first entry of @c device_get_ivars(child) is a struct
3133  * resource_list. This also handles 'passthrough' allocations where a
3134  * child is a remote descendant of bus by passing the allocation up to
3135  * the parent of bus.
3136  *
3137  * Typically, a bus driver would store a list of child resources
3138  * somewhere in the child device's ivars (see device_get_ivars()) and
3139  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3140  * then call resource_list_alloc() to perform the allocation.
3141  *
3142  * @param rl		the resource list to allocate from
3143  * @param bus		the parent device of @p child
3144  * @param child		the device which is requesting an allocation
3145  * @param type		the type of resource to allocate
3146  * @param rid		a pointer to the resource identifier
3147  * @param start		hint at the start of the resource range - pass
3148  *			@c 0UL for any start address
3149  * @param end		hint at the end of the resource range - pass
3150  *			@c ~0UL for any end address
3151  * @param count		hint at the size of range required - pass @c 1
3152  *			for any size
3153  * @param flags		any extra flags to control the resource
3154  *			allocation - see @c RF_XXX flags in
3155  *			<sys/rman.h> for details
3156  *
3157  * @returns		the resource which was allocated or @c NULL if no
3158  *			resource could be allocated
3159  */
3160 struct resource *
3161 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3162     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3163 {
3164 	struct resource_list_entry *rle = NULL;
3165 	int passthrough = (device_get_parent(child) != bus);
3166 	int isdefault = (start == 0UL && end == ~0UL);
3167 
3168 	if (passthrough) {
3169 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3170 		    type, rid, start, end, count, flags));
3171 	}
3172 
3173 	rle = resource_list_find(rl, type, *rid);
3174 
3175 	if (!rle)
3176 		return (NULL);		/* no resource of that type/rid */
3177 
3178 	if (rle->res) {
3179 		if (rle->flags & RLE_RESERVED) {
3180 			if (rle->flags & RLE_ALLOCATED)
3181 				return (NULL);
3182 			if ((flags & RF_ACTIVE) &&
3183 			    bus_activate_resource(child, type, *rid,
3184 			    rle->res) != 0)
3185 				return (NULL);
3186 			rle->flags |= RLE_ALLOCATED;
3187 			return (rle->res);
3188 		}
3189 		panic("resource_list_alloc: resource entry is busy");
3190 	}
3191 
3192 	if (isdefault) {
3193 		start = rle->start;
3194 		count = ulmax(count, rle->count);
3195 		end = ulmax(rle->end, start + count - 1);
3196 	}
3197 
3198 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3199 	    type, rid, start, end, count, flags);
3200 
3201 	/*
3202 	 * Record the new range.
3203 	 */
3204 	if (rle->res) {
3205 		rle->start = rman_get_start(rle->res);
3206 		rle->end = rman_get_end(rle->res);
3207 		rle->count = count;
3208 	}
3209 
3210 	return (rle->res);
3211 }
3212 
3213 /**
3214  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3215  *
3216  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3217  * used with resource_list_alloc().
3218  *
3219  * @param rl		the resource list which was allocated from
3220  * @param bus		the parent device of @p child
3221  * @param child		the device which is requesting a release
3222  * @param type		the type of resource to release
3223  * @param rid		the resource identifier
3224  * @param res		the resource to release
3225  *
3226  * @retval 0		success
3227  * @retval non-zero	a standard unix error code indicating what
3228  *			error condition prevented the operation
3229  */
3230 int
3231 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3232     int type, int rid, struct resource *res)
3233 {
3234 	struct resource_list_entry *rle = NULL;
3235 	int passthrough = (device_get_parent(child) != bus);
3236 	int error;
3237 
3238 	if (passthrough) {
3239 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3240 		    type, rid, res));
3241 	}
3242 
3243 	rle = resource_list_find(rl, type, rid);
3244 
3245 	if (!rle)
3246 		panic("resource_list_release: can't find resource");
3247 	if (!rle->res)
3248 		panic("resource_list_release: resource entry is not busy");
3249 	if (rle->flags & RLE_RESERVED) {
3250 		if (rle->flags & RLE_ALLOCATED) {
3251 			if (rman_get_flags(res) & RF_ACTIVE) {
3252 				error = bus_deactivate_resource(child, type,
3253 				    rid, res);
3254 				if (error)
3255 					return (error);
3256 			}
3257 			rle->flags &= ~RLE_ALLOCATED;
3258 			return (0);
3259 		}
3260 		return (EINVAL);
3261 	}
3262 
3263 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3264 	    type, rid, res);
3265 	if (error)
3266 		return (error);
3267 
3268 	rle->res = NULL;
3269 	return (0);
3270 }
3271 
3272 /**
3273  * @brief Fully release a reserved resource
3274  *
3275  * Fully releases a resouce reserved via resource_list_reserve().
3276  *
3277  * @param rl		the resource list which was allocated from
3278  * @param bus		the parent device of @p child
3279  * @param child		the device whose reserved resource is being released
3280  * @param type		the type of resource to release
3281  * @param rid		the resource identifier
3282  * @param res		the resource to release
3283  *
3284  * @retval 0		success
3285  * @retval non-zero	a standard unix error code indicating what
3286  *			error condition prevented the operation
3287  */
3288 int
3289 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3290     int type, int rid)
3291 {
3292 	struct resource_list_entry *rle = NULL;
3293 	int passthrough = (device_get_parent(child) != bus);
3294 
3295 	if (passthrough)
3296 		panic(
3297     "resource_list_unreserve() should only be called for direct children");
3298 
3299 	rle = resource_list_find(rl, type, rid);
3300 
3301 	if (!rle)
3302 		panic("resource_list_unreserve: can't find resource");
3303 	if (!(rle->flags & RLE_RESERVED))
3304 		return (EINVAL);
3305 	if (rle->flags & RLE_ALLOCATED)
3306 		return (EBUSY);
3307 	rle->flags &= ~RLE_RESERVED;
3308 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3309 }
3310 
3311 /**
3312  * @brief Print a description of resources in a resource list
3313  *
3314  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3315  * The name is printed if at least one resource of the given type is available.
3316  * The format is used to print resource start and end.
3317  *
3318  * @param rl		the resource list to print
3319  * @param name		the name of @p type, e.g. @c "memory"
3320  * @param type		type type of resource entry to print
3321  * @param format	printf(9) format string to print resource
3322  *			start and end values
3323  *
3324  * @returns		the number of characters printed
3325  */
3326 int
3327 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3328     const char *format)
3329 {
3330 	struct resource_list_entry *rle;
3331 	int printed, retval;
3332 
3333 	printed = 0;
3334 	retval = 0;
3335 	/* Yes, this is kinda cheating */
3336 	STAILQ_FOREACH(rle, rl, link) {
3337 		if (rle->type == type) {
3338 			if (printed == 0)
3339 				retval += printf(" %s ", name);
3340 			else
3341 				retval += printf(",");
3342 			printed++;
3343 			retval += printf(format, rle->start);
3344 			if (rle->count > 1) {
3345 				retval += printf("-");
3346 				retval += printf(format, rle->start +
3347 						 rle->count - 1);
3348 			}
3349 		}
3350 	}
3351 	return (retval);
3352 }
3353 
3354 /**
3355  * @brief Releases all the resources in a list.
3356  *
3357  * @param rl		The resource list to purge.
3358  *
3359  * @returns		nothing
3360  */
3361 void
3362 resource_list_purge(struct resource_list *rl)
3363 {
3364 	struct resource_list_entry *rle;
3365 
3366 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3367 		if (rle->res)
3368 			bus_release_resource(rman_get_device(rle->res),
3369 			    rle->type, rle->rid, rle->res);
3370 		STAILQ_REMOVE_HEAD(rl, link);
3371 		free(rle, M_BUS);
3372 	}
3373 }
3374 
3375 device_t
3376 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3377 {
3378 
3379 	return (device_add_child_ordered(dev, order, name, unit));
3380 }
3381 
3382 /**
3383  * @brief Helper function for implementing DEVICE_PROBE()
3384  *
3385  * This function can be used to help implement the DEVICE_PROBE() for
3386  * a bus (i.e. a device which has other devices attached to it). It
3387  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3388  * devclass.
3389  */
3390 int
3391 bus_generic_probe(device_t dev)
3392 {
3393 	devclass_t dc = dev->devclass;
3394 	driverlink_t dl;
3395 
3396 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3397 		/*
3398 		 * If this driver's pass is too high, then ignore it.
3399 		 * For most drivers in the default pass, this will
3400 		 * never be true.  For early-pass drivers they will
3401 		 * only call the identify routines of eligible drivers
3402 		 * when this routine is called.  Drivers for later
3403 		 * passes should have their identify routines called
3404 		 * on early-pass busses during BUS_NEW_PASS().
3405 		 */
3406 		if (dl->pass > bus_current_pass)
3407 			continue;
3408 		DEVICE_IDENTIFY(dl->driver, dev);
3409 	}
3410 
3411 	return (0);
3412 }
3413 
3414 /**
3415  * @brief Helper function for implementing DEVICE_ATTACH()
3416  *
3417  * This function can be used to help implement the DEVICE_ATTACH() for
3418  * a bus. It calls device_probe_and_attach() for each of the device's
3419  * children.
3420  */
3421 int
3422 bus_generic_attach(device_t dev)
3423 {
3424 	device_t child;
3425 
3426 	TAILQ_FOREACH(child, &dev->children, link) {
3427 		device_probe_and_attach(child);
3428 	}
3429 
3430 	return (0);
3431 }
3432 
3433 /**
3434  * @brief Helper function for implementing DEVICE_DETACH()
3435  *
3436  * This function can be used to help implement the DEVICE_DETACH() for
3437  * a bus. It calls device_detach() for each of the device's
3438  * children.
3439  */
3440 int
3441 bus_generic_detach(device_t dev)
3442 {
3443 	device_t child;
3444 	int error;
3445 
3446 	if (dev->state != DS_ATTACHED)
3447 		return (EBUSY);
3448 
3449 	TAILQ_FOREACH(child, &dev->children, link) {
3450 		if ((error = device_detach(child)) != 0)
3451 			return (error);
3452 	}
3453 
3454 	return (0);
3455 }
3456 
3457 /**
3458  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3459  *
3460  * This function can be used to help implement the DEVICE_SHUTDOWN()
3461  * for a bus. It calls device_shutdown() for each of the device's
3462  * children.
3463  */
3464 int
3465 bus_generic_shutdown(device_t dev)
3466 {
3467 	device_t child;
3468 
3469 	TAILQ_FOREACH(child, &dev->children, link) {
3470 		device_shutdown(child);
3471 	}
3472 
3473 	return (0);
3474 }
3475 
3476 /**
3477  * @brief Helper function for implementing DEVICE_SUSPEND()
3478  *
3479  * This function can be used to help implement the DEVICE_SUSPEND()
3480  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3481  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3482  * operation is aborted and any devices which were suspended are
3483  * resumed immediately by calling their DEVICE_RESUME() methods.
3484  */
3485 int
3486 bus_generic_suspend(device_t dev)
3487 {
3488 	int		error;
3489 	device_t	child, child2;
3490 
3491 	TAILQ_FOREACH(child, &dev->children, link) {
3492 		error = DEVICE_SUSPEND(child);
3493 		if (error) {
3494 			for (child2 = TAILQ_FIRST(&dev->children);
3495 			     child2 && child2 != child;
3496 			     child2 = TAILQ_NEXT(child2, link))
3497 				DEVICE_RESUME(child2);
3498 			return (error);
3499 		}
3500 	}
3501 	return (0);
3502 }
3503 
3504 /**
3505  * @brief Helper function for implementing DEVICE_RESUME()
3506  *
3507  * This function can be used to help implement the DEVICE_RESUME() for
3508  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3509  */
3510 int
3511 bus_generic_resume(device_t dev)
3512 {
3513 	device_t	child;
3514 
3515 	TAILQ_FOREACH(child, &dev->children, link) {
3516 		DEVICE_RESUME(child);
3517 		/* if resume fails, there's nothing we can usefully do... */
3518 	}
3519 	return (0);
3520 }
3521 
3522 /**
3523  * @brief Helper function for implementing BUS_PRINT_CHILD().
3524  *
3525  * This function prints the first part of the ascii representation of
3526  * @p child, including its name, unit and description (if any - see
3527  * device_set_desc()).
3528  *
3529  * @returns the number of characters printed
3530  */
3531 int
3532 bus_print_child_header(device_t dev, device_t child)
3533 {
3534 	int	retval = 0;
3535 
3536 	if (device_get_desc(child)) {
3537 		retval += device_printf(child, "<%s>", device_get_desc(child));
3538 	} else {
3539 		retval += printf("%s", device_get_nameunit(child));
3540 	}
3541 
3542 	return (retval);
3543 }
3544 
3545 /**
3546  * @brief Helper function for implementing BUS_PRINT_CHILD().
3547  *
3548  * This function prints the last part of the ascii representation of
3549  * @p child, which consists of the string @c " on " followed by the
3550  * name and unit of the @p dev.
3551  *
3552  * @returns the number of characters printed
3553  */
3554 int
3555 bus_print_child_footer(device_t dev, device_t child)
3556 {
3557 	return (printf(" on %s\n", device_get_nameunit(dev)));
3558 }
3559 
3560 /**
3561  * @brief Helper function for implementing BUS_PRINT_CHILD().
3562  *
3563  * This function simply calls bus_print_child_header() followed by
3564  * bus_print_child_footer().
3565  *
3566  * @returns the number of characters printed
3567  */
3568 int
3569 bus_generic_print_child(device_t dev, device_t child)
3570 {
3571 	int	retval = 0;
3572 
3573 	retval += bus_print_child_header(dev, child);
3574 	retval += bus_print_child_footer(dev, child);
3575 
3576 	return (retval);
3577 }
3578 
3579 /**
3580  * @brief Stub function for implementing BUS_READ_IVAR().
3581  *
3582  * @returns ENOENT
3583  */
3584 int
3585 bus_generic_read_ivar(device_t dev, device_t child, int index,
3586     uintptr_t * result)
3587 {
3588 	return (ENOENT);
3589 }
3590 
3591 /**
3592  * @brief Stub function for implementing BUS_WRITE_IVAR().
3593  *
3594  * @returns ENOENT
3595  */
3596 int
3597 bus_generic_write_ivar(device_t dev, device_t child, int index,
3598     uintptr_t value)
3599 {
3600 	return (ENOENT);
3601 }
3602 
3603 /**
3604  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3605  *
3606  * @returns NULL
3607  */
3608 struct resource_list *
3609 bus_generic_get_resource_list(device_t dev, device_t child)
3610 {
3611 	return (NULL);
3612 }
3613 
3614 /**
3615  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3616  *
3617  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3618  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3619  * and then calls device_probe_and_attach() for each unattached child.
3620  */
3621 void
3622 bus_generic_driver_added(device_t dev, driver_t *driver)
3623 {
3624 	device_t child;
3625 
3626 	DEVICE_IDENTIFY(driver, dev);
3627 	TAILQ_FOREACH(child, &dev->children, link) {
3628 		if (child->state == DS_NOTPRESENT ||
3629 		    (child->flags & DF_REBID))
3630 			device_probe_and_attach(child);
3631 	}
3632 }
3633 
3634 /**
3635  * @brief Helper function for implementing BUS_NEW_PASS().
3636  *
3637  * This implementing of BUS_NEW_PASS() first calls the identify
3638  * routines for any drivers that probe at the current pass.  Then it
3639  * walks the list of devices for this bus.  If a device is already
3640  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3641  * device is not already attached, it attempts to attach a driver to
3642  * it.
3643  */
3644 void
3645 bus_generic_new_pass(device_t dev)
3646 {
3647 	driverlink_t dl;
3648 	devclass_t dc;
3649 	device_t child;
3650 
3651 	dc = dev->devclass;
3652 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3653 		if (dl->pass == bus_current_pass)
3654 			DEVICE_IDENTIFY(dl->driver, dev);
3655 	}
3656 	TAILQ_FOREACH(child, &dev->children, link) {
3657 		if (child->state >= DS_ATTACHED)
3658 			BUS_NEW_PASS(child);
3659 		else if (child->state == DS_NOTPRESENT)
3660 			device_probe_and_attach(child);
3661 	}
3662 }
3663 
3664 /**
3665  * @brief Helper function for implementing BUS_SETUP_INTR().
3666  *
3667  * This simple implementation of BUS_SETUP_INTR() simply calls the
3668  * BUS_SETUP_INTR() method of the parent of @p dev.
3669  */
3670 int
3671 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3672     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3673     void **cookiep)
3674 {
3675 	/* Propagate up the bus hierarchy until someone handles it. */
3676 	if (dev->parent)
3677 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3678 		    filter, intr, arg, cookiep));
3679 	return (EINVAL);
3680 }
3681 
3682 /**
3683  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3684  *
3685  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3686  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3687  */
3688 int
3689 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3690     void *cookie)
3691 {
3692 	/* Propagate up the bus hierarchy until someone handles it. */
3693 	if (dev->parent)
3694 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3695 	return (EINVAL);
3696 }
3697 
3698 /**
3699  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3700  *
3701  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3702  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3703  */
3704 int
3705 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3706     struct resource *r, u_long start, u_long end)
3707 {
3708 	/* Propagate up the bus hierarchy until someone handles it. */
3709 	if (dev->parent)
3710 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3711 		    end));
3712 	return (EINVAL);
3713 }
3714 
3715 /**
3716  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3717  *
3718  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3719  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3720  */
3721 struct resource *
3722 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3723     u_long start, u_long end, u_long count, u_int flags)
3724 {
3725 	/* Propagate up the bus hierarchy until someone handles it. */
3726 	if (dev->parent)
3727 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3728 		    start, end, count, flags));
3729 	return (NULL);
3730 }
3731 
3732 /**
3733  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3734  *
3735  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3736  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3737  */
3738 int
3739 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3740     struct resource *r)
3741 {
3742 	/* Propagate up the bus hierarchy until someone handles it. */
3743 	if (dev->parent)
3744 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3745 		    r));
3746 	return (EINVAL);
3747 }
3748 
3749 /**
3750  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3751  *
3752  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3753  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3754  */
3755 int
3756 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3757     struct resource *r)
3758 {
3759 	/* Propagate up the bus hierarchy until someone handles it. */
3760 	if (dev->parent)
3761 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3762 		    r));
3763 	return (EINVAL);
3764 }
3765 
3766 /**
3767  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3768  *
3769  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3770  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3771  */
3772 int
3773 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3774     int rid, struct resource *r)
3775 {
3776 	/* Propagate up the bus hierarchy until someone handles it. */
3777 	if (dev->parent)
3778 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3779 		    r));
3780 	return (EINVAL);
3781 }
3782 
3783 /**
3784  * @brief Helper function for implementing BUS_BIND_INTR().
3785  *
3786  * This simple implementation of BUS_BIND_INTR() simply calls the
3787  * BUS_BIND_INTR() method of the parent of @p dev.
3788  */
3789 int
3790 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3791     int cpu)
3792 {
3793 
3794 	/* Propagate up the bus hierarchy until someone handles it. */
3795 	if (dev->parent)
3796 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3797 	return (EINVAL);
3798 }
3799 
3800 /**
3801  * @brief Helper function for implementing BUS_CONFIG_INTR().
3802  *
3803  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3804  * BUS_CONFIG_INTR() method of the parent of @p dev.
3805  */
3806 int
3807 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3808     enum intr_polarity pol)
3809 {
3810 
3811 	/* Propagate up the bus hierarchy until someone handles it. */
3812 	if (dev->parent)
3813 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3814 	return (EINVAL);
3815 }
3816 
3817 /**
3818  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3819  *
3820  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3821  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3822  */
3823 int
3824 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3825     void *cookie, const char *descr)
3826 {
3827 
3828 	/* Propagate up the bus hierarchy until someone handles it. */
3829 	if (dev->parent)
3830 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3831 		    descr));
3832 	return (EINVAL);
3833 }
3834 
3835 /**
3836  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3837  *
3838  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3839  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3840  */
3841 bus_dma_tag_t
3842 bus_generic_get_dma_tag(device_t dev, device_t child)
3843 {
3844 
3845 	/* Propagate up the bus hierarchy until someone handles it. */
3846 	if (dev->parent != NULL)
3847 		return (BUS_GET_DMA_TAG(dev->parent, child));
3848 	return (NULL);
3849 }
3850 
3851 /**
3852  * @brief Helper function for implementing BUS_GET_RESOURCE().
3853  *
3854  * This implementation of BUS_GET_RESOURCE() uses the
3855  * resource_list_find() function to do most of the work. It calls
3856  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3857  * search.
3858  */
3859 int
3860 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3861     u_long *startp, u_long *countp)
3862 {
3863 	struct resource_list *		rl = NULL;
3864 	struct resource_list_entry *	rle = NULL;
3865 
3866 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3867 	if (!rl)
3868 		return (EINVAL);
3869 
3870 	rle = resource_list_find(rl, type, rid);
3871 	if (!rle)
3872 		return (ENOENT);
3873 
3874 	if (startp)
3875 		*startp = rle->start;
3876 	if (countp)
3877 		*countp = rle->count;
3878 
3879 	return (0);
3880 }
3881 
3882 /**
3883  * @brief Helper function for implementing BUS_SET_RESOURCE().
3884  *
3885  * This implementation of BUS_SET_RESOURCE() uses the
3886  * resource_list_add() function to do most of the work. It calls
3887  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3888  * edit.
3889  */
3890 int
3891 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3892     u_long start, u_long count)
3893 {
3894 	struct resource_list *		rl = NULL;
3895 
3896 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3897 	if (!rl)
3898 		return (EINVAL);
3899 
3900 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3901 
3902 	return (0);
3903 }
3904 
3905 /**
3906  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3907  *
3908  * This implementation of BUS_DELETE_RESOURCE() uses the
3909  * resource_list_delete() function to do most of the work. It calls
3910  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3911  * edit.
3912  */
3913 void
3914 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3915 {
3916 	struct resource_list *		rl = NULL;
3917 
3918 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3919 	if (!rl)
3920 		return;
3921 
3922 	resource_list_delete(rl, type, rid);
3923 
3924 	return;
3925 }
3926 
3927 /**
3928  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3929  *
3930  * This implementation of BUS_RELEASE_RESOURCE() uses the
3931  * resource_list_release() function to do most of the work. It calls
3932  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3933  */
3934 int
3935 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3936     int rid, struct resource *r)
3937 {
3938 	struct resource_list *		rl = NULL;
3939 
3940 	if (device_get_parent(child) != dev)
3941 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3942 		    type, rid, r));
3943 
3944 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3945 	if (!rl)
3946 		return (EINVAL);
3947 
3948 	return (resource_list_release(rl, dev, child, type, rid, r));
3949 }
3950 
3951 /**
3952  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3953  *
3954  * This implementation of BUS_ALLOC_RESOURCE() uses the
3955  * resource_list_alloc() function to do most of the work. It calls
3956  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3957  */
3958 struct resource *
3959 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3960     int *rid, u_long start, u_long end, u_long count, u_int flags)
3961 {
3962 	struct resource_list *		rl = NULL;
3963 
3964 	if (device_get_parent(child) != dev)
3965 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3966 		    type, rid, start, end, count, flags));
3967 
3968 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3969 	if (!rl)
3970 		return (NULL);
3971 
3972 	return (resource_list_alloc(rl, dev, child, type, rid,
3973 	    start, end, count, flags));
3974 }
3975 
3976 /**
3977  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3978  *
3979  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3980  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3981  */
3982 int
3983 bus_generic_child_present(device_t dev, device_t child)
3984 {
3985 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3986 }
3987 
3988 /*
3989  * Some convenience functions to make it easier for drivers to use the
3990  * resource-management functions.  All these really do is hide the
3991  * indirection through the parent's method table, making for slightly
3992  * less-wordy code.  In the future, it might make sense for this code
3993  * to maintain some sort of a list of resources allocated by each device.
3994  */
3995 
3996 int
3997 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3998     struct resource **res)
3999 {
4000 	int i;
4001 
4002 	for (i = 0; rs[i].type != -1; i++)
4003 		res[i] = NULL;
4004 	for (i = 0; rs[i].type != -1; i++) {
4005 		res[i] = bus_alloc_resource_any(dev,
4006 		    rs[i].type, &rs[i].rid, rs[i].flags);
4007 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4008 			bus_release_resources(dev, rs, res);
4009 			return (ENXIO);
4010 		}
4011 	}
4012 	return (0);
4013 }
4014 
4015 void
4016 bus_release_resources(device_t dev, const struct resource_spec *rs,
4017     struct resource **res)
4018 {
4019 	int i;
4020 
4021 	for (i = 0; rs[i].type != -1; i++)
4022 		if (res[i] != NULL) {
4023 			bus_release_resource(
4024 			    dev, rs[i].type, rs[i].rid, res[i]);
4025 			res[i] = NULL;
4026 		}
4027 }
4028 
4029 /**
4030  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4031  *
4032  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4033  * parent of @p dev.
4034  */
4035 struct resource *
4036 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4037     u_long count, u_int flags)
4038 {
4039 	if (dev->parent == NULL)
4040 		return (NULL);
4041 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4042 	    count, flags));
4043 }
4044 
4045 /**
4046  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4047  *
4048  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4049  * parent of @p dev.
4050  */
4051 int
4052 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4053     u_long end)
4054 {
4055 	if (dev->parent == NULL)
4056 		return (EINVAL);
4057 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4058 }
4059 
4060 /**
4061  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4062  *
4063  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4064  * parent of @p dev.
4065  */
4066 int
4067 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4068 {
4069 	if (dev->parent == NULL)
4070 		return (EINVAL);
4071 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4072 }
4073 
4074 /**
4075  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4076  *
4077  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4078  * parent of @p dev.
4079  */
4080 int
4081 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4082 {
4083 	if (dev->parent == NULL)
4084 		return (EINVAL);
4085 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4086 }
4087 
4088 /**
4089  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4090  *
4091  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4092  * parent of @p dev.
4093  */
4094 int
4095 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4096 {
4097 	if (dev->parent == NULL)
4098 		return (EINVAL);
4099 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4100 }
4101 
4102 /**
4103  * @brief Wrapper function for BUS_SETUP_INTR().
4104  *
4105  * This function simply calls the BUS_SETUP_INTR() method of the
4106  * parent of @p dev.
4107  */
4108 int
4109 bus_setup_intr(device_t dev, struct resource *r, int flags,
4110     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4111 {
4112 	int error;
4113 
4114 	if (dev->parent == NULL)
4115 		return (EINVAL);
4116 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4117 	    arg, cookiep);
4118 	if (error != 0)
4119 		return (error);
4120 	if (handler != NULL && !(flags & INTR_MPSAFE))
4121 		device_printf(dev, "[GIANT-LOCKED]\n");
4122 	return (0);
4123 }
4124 
4125 /**
4126  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4127  *
4128  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4129  * parent of @p dev.
4130  */
4131 int
4132 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4133 {
4134 	if (dev->parent == NULL)
4135 		return (EINVAL);
4136 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4137 }
4138 
4139 /**
4140  * @brief Wrapper function for BUS_BIND_INTR().
4141  *
4142  * This function simply calls the BUS_BIND_INTR() method of the
4143  * parent of @p dev.
4144  */
4145 int
4146 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4147 {
4148 	if (dev->parent == NULL)
4149 		return (EINVAL);
4150 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4151 }
4152 
4153 /**
4154  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4155  *
4156  * This function first formats the requested description into a
4157  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4158  * the parent of @p dev.
4159  */
4160 int
4161 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4162     const char *fmt, ...)
4163 {
4164 	va_list ap;
4165 	char descr[MAXCOMLEN + 1];
4166 
4167 	if (dev->parent == NULL)
4168 		return (EINVAL);
4169 	va_start(ap, fmt);
4170 	vsnprintf(descr, sizeof(descr), fmt, ap);
4171 	va_end(ap);
4172 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4173 }
4174 
4175 /**
4176  * @brief Wrapper function for BUS_SET_RESOURCE().
4177  *
4178  * This function simply calls the BUS_SET_RESOURCE() method of the
4179  * parent of @p dev.
4180  */
4181 int
4182 bus_set_resource(device_t dev, int type, int rid,
4183     u_long start, u_long count)
4184 {
4185 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4186 	    start, count));
4187 }
4188 
4189 /**
4190  * @brief Wrapper function for BUS_GET_RESOURCE().
4191  *
4192  * This function simply calls the BUS_GET_RESOURCE() method of the
4193  * parent of @p dev.
4194  */
4195 int
4196 bus_get_resource(device_t dev, int type, int rid,
4197     u_long *startp, u_long *countp)
4198 {
4199 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4200 	    startp, countp));
4201 }
4202 
4203 /**
4204  * @brief Wrapper function for BUS_GET_RESOURCE().
4205  *
4206  * This function simply calls the BUS_GET_RESOURCE() method of the
4207  * parent of @p dev and returns the start value.
4208  */
4209 u_long
4210 bus_get_resource_start(device_t dev, int type, int rid)
4211 {
4212 	u_long start, count;
4213 	int error;
4214 
4215 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4216 	    &start, &count);
4217 	if (error)
4218 		return (0);
4219 	return (start);
4220 }
4221 
4222 /**
4223  * @brief Wrapper function for BUS_GET_RESOURCE().
4224  *
4225  * This function simply calls the BUS_GET_RESOURCE() method of the
4226  * parent of @p dev and returns the count value.
4227  */
4228 u_long
4229 bus_get_resource_count(device_t dev, int type, int rid)
4230 {
4231 	u_long start, count;
4232 	int error;
4233 
4234 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4235 	    &start, &count);
4236 	if (error)
4237 		return (0);
4238 	return (count);
4239 }
4240 
4241 /**
4242  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4243  *
4244  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4245  * parent of @p dev.
4246  */
4247 void
4248 bus_delete_resource(device_t dev, int type, int rid)
4249 {
4250 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4251 }
4252 
4253 /**
4254  * @brief Wrapper function for BUS_CHILD_PRESENT().
4255  *
4256  * This function simply calls the BUS_CHILD_PRESENT() method of the
4257  * parent of @p dev.
4258  */
4259 int
4260 bus_child_present(device_t child)
4261 {
4262 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4263 }
4264 
4265 /**
4266  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4267  *
4268  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4269  * parent of @p dev.
4270  */
4271 int
4272 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4273 {
4274 	device_t parent;
4275 
4276 	parent = device_get_parent(child);
4277 	if (parent == NULL) {
4278 		*buf = '\0';
4279 		return (0);
4280 	}
4281 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4282 }
4283 
4284 /**
4285  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4286  *
4287  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4288  * parent of @p dev.
4289  */
4290 int
4291 bus_child_location_str(device_t child, char *buf, size_t buflen)
4292 {
4293 	device_t parent;
4294 
4295 	parent = device_get_parent(child);
4296 	if (parent == NULL) {
4297 		*buf = '\0';
4298 		return (0);
4299 	}
4300 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4301 }
4302 
4303 /**
4304  * @brief Wrapper function for BUS_GET_DMA_TAG().
4305  *
4306  * This function simply calls the BUS_GET_DMA_TAG() method of the
4307  * parent of @p dev.
4308  */
4309 bus_dma_tag_t
4310 bus_get_dma_tag(device_t dev)
4311 {
4312 	device_t parent;
4313 
4314 	parent = device_get_parent(dev);
4315 	if (parent == NULL)
4316 		return (NULL);
4317 	return (BUS_GET_DMA_TAG(parent, dev));
4318 }
4319 
4320 /* Resume all devices and then notify userland that we're up again. */
4321 static int
4322 root_resume(device_t dev)
4323 {
4324 	int error;
4325 
4326 	error = bus_generic_resume(dev);
4327 	if (error == 0)
4328 		devctl_notify("kern", "power", "resume", NULL);
4329 	return (error);
4330 }
4331 
4332 static int
4333 root_print_child(device_t dev, device_t child)
4334 {
4335 	int	retval = 0;
4336 
4337 	retval += bus_print_child_header(dev, child);
4338 	retval += printf("\n");
4339 
4340 	return (retval);
4341 }
4342 
4343 static int
4344 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4345     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4346 {
4347 	/*
4348 	 * If an interrupt mapping gets to here something bad has happened.
4349 	 */
4350 	panic("root_setup_intr");
4351 }
4352 
4353 /*
4354  * If we get here, assume that the device is permanant and really is
4355  * present in the system.  Removable bus drivers are expected to intercept
4356  * this call long before it gets here.  We return -1 so that drivers that
4357  * really care can check vs -1 or some ERRNO returned higher in the food
4358  * chain.
4359  */
4360 static int
4361 root_child_present(device_t dev, device_t child)
4362 {
4363 	return (-1);
4364 }
4365 
4366 static kobj_method_t root_methods[] = {
4367 	/* Device interface */
4368 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4369 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4370 	KOBJMETHOD(device_resume,	root_resume),
4371 
4372 	/* Bus interface */
4373 	KOBJMETHOD(bus_print_child,	root_print_child),
4374 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4375 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4376 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4377 	KOBJMETHOD(bus_child_present,	root_child_present),
4378 
4379 	KOBJMETHOD_END
4380 };
4381 
4382 static driver_t root_driver = {
4383 	"root",
4384 	root_methods,
4385 	1,			/* no softc */
4386 };
4387 
4388 device_t	root_bus;
4389 devclass_t	root_devclass;
4390 
4391 static int
4392 root_bus_module_handler(module_t mod, int what, void* arg)
4393 {
4394 	switch (what) {
4395 	case MOD_LOAD:
4396 		TAILQ_INIT(&bus_data_devices);
4397 		kobj_class_compile((kobj_class_t) &root_driver);
4398 		root_bus = make_device(NULL, "root", 0);
4399 		root_bus->desc = "System root bus";
4400 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4401 		root_bus->driver = &root_driver;
4402 		root_bus->state = DS_ATTACHED;
4403 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4404 		devinit();
4405 		return (0);
4406 
4407 	case MOD_SHUTDOWN:
4408 		device_shutdown(root_bus);
4409 		return (0);
4410 	default:
4411 		return (EOPNOTSUPP);
4412 	}
4413 
4414 	return (0);
4415 }
4416 
4417 static moduledata_t root_bus_mod = {
4418 	"rootbus",
4419 	root_bus_module_handler,
4420 	NULL
4421 };
4422 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4423 
4424 /**
4425  * @brief Automatically configure devices
4426  *
4427  * This function begins the autoconfiguration process by calling
4428  * device_probe_and_attach() for each child of the @c root0 device.
4429  */
4430 void
4431 root_bus_configure(void)
4432 {
4433 
4434 	PDEBUG(("."));
4435 
4436 	/* Eventually this will be split up, but this is sufficient for now. */
4437 	bus_set_pass(BUS_PASS_DEFAULT);
4438 }
4439 
4440 /**
4441  * @brief Module handler for registering device drivers
4442  *
4443  * This module handler is used to automatically register device
4444  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4445  * devclass_add_driver() for the driver described by the
4446  * driver_module_data structure pointed to by @p arg
4447  */
4448 int
4449 driver_module_handler(module_t mod, int what, void *arg)
4450 {
4451 	struct driver_module_data *dmd;
4452 	devclass_t bus_devclass;
4453 	kobj_class_t driver;
4454 	int error, pass;
4455 
4456 	dmd = (struct driver_module_data *)arg;
4457 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4458 	error = 0;
4459 
4460 	switch (what) {
4461 	case MOD_LOAD:
4462 		if (dmd->dmd_chainevh)
4463 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4464 
4465 		pass = dmd->dmd_pass;
4466 		driver = dmd->dmd_driver;
4467 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4468 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4469 		error = devclass_add_driver(bus_devclass, driver, pass,
4470 		    dmd->dmd_devclass);
4471 		break;
4472 
4473 	case MOD_UNLOAD:
4474 		PDEBUG(("Unloading module: driver %s from bus %s",
4475 		    DRIVERNAME(dmd->dmd_driver),
4476 		    dmd->dmd_busname));
4477 		error = devclass_delete_driver(bus_devclass,
4478 		    dmd->dmd_driver);
4479 
4480 		if (!error && dmd->dmd_chainevh)
4481 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4482 		break;
4483 	case MOD_QUIESCE:
4484 		PDEBUG(("Quiesce module: driver %s from bus %s",
4485 		    DRIVERNAME(dmd->dmd_driver),
4486 		    dmd->dmd_busname));
4487 		error = devclass_quiesce_driver(bus_devclass,
4488 		    dmd->dmd_driver);
4489 
4490 		if (!error && dmd->dmd_chainevh)
4491 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4492 		break;
4493 	default:
4494 		error = EOPNOTSUPP;
4495 		break;
4496 	}
4497 
4498 	return (error);
4499 }
4500 
4501 /**
4502  * @brief Enumerate all hinted devices for this bus.
4503  *
4504  * Walks through the hints for this bus and calls the bus_hinted_child
4505  * routine for each one it fines.  It searches first for the specific
4506  * bus that's being probed for hinted children (eg isa0), and then for
4507  * generic children (eg isa).
4508  *
4509  * @param	dev	bus device to enumerate
4510  */
4511 void
4512 bus_enumerate_hinted_children(device_t bus)
4513 {
4514 	int i;
4515 	const char *dname, *busname;
4516 	int dunit;
4517 
4518 	/*
4519 	 * enumerate all devices on the specific bus
4520 	 */
4521 	busname = device_get_nameunit(bus);
4522 	i = 0;
4523 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4524 		BUS_HINTED_CHILD(bus, dname, dunit);
4525 
4526 	/*
4527 	 * and all the generic ones.
4528 	 */
4529 	busname = device_get_name(bus);
4530 	i = 0;
4531 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4532 		BUS_HINTED_CHILD(bus, dname, dunit);
4533 }
4534 
4535 #ifdef BUS_DEBUG
4536 
4537 /* the _short versions avoid iteration by not calling anything that prints
4538  * more than oneliners. I love oneliners.
4539  */
4540 
4541 static void
4542 print_device_short(device_t dev, int indent)
4543 {
4544 	if (!dev)
4545 		return;
4546 
4547 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4548 	    dev->unit, dev->desc,
4549 	    (dev->parent? "":"no "),
4550 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4551 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4552 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4553 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4554 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4555 	    (dev->flags&DF_REBID? "rebiddable,":""),
4556 	    (dev->ivars? "":"no "),
4557 	    (dev->softc? "":"no "),
4558 	    dev->busy));
4559 }
4560 
4561 static void
4562 print_device(device_t dev, int indent)
4563 {
4564 	if (!dev)
4565 		return;
4566 
4567 	print_device_short(dev, indent);
4568 
4569 	indentprintf(("Parent:\n"));
4570 	print_device_short(dev->parent, indent+1);
4571 	indentprintf(("Driver:\n"));
4572 	print_driver_short(dev->driver, indent+1);
4573 	indentprintf(("Devclass:\n"));
4574 	print_devclass_short(dev->devclass, indent+1);
4575 }
4576 
4577 void
4578 print_device_tree_short(device_t dev, int indent)
4579 /* print the device and all its children (indented) */
4580 {
4581 	device_t child;
4582 
4583 	if (!dev)
4584 		return;
4585 
4586 	print_device_short(dev, indent);
4587 
4588 	TAILQ_FOREACH(child, &dev->children, link) {
4589 		print_device_tree_short(child, indent+1);
4590 	}
4591 }
4592 
4593 void
4594 print_device_tree(device_t dev, int indent)
4595 /* print the device and all its children (indented) */
4596 {
4597 	device_t child;
4598 
4599 	if (!dev)
4600 		return;
4601 
4602 	print_device(dev, indent);
4603 
4604 	TAILQ_FOREACH(child, &dev->children, link) {
4605 		print_device_tree(child, indent+1);
4606 	}
4607 }
4608 
4609 static void
4610 print_driver_short(driver_t *driver, int indent)
4611 {
4612 	if (!driver)
4613 		return;
4614 
4615 	indentprintf(("driver %s: softc size = %zd\n",
4616 	    driver->name, driver->size));
4617 }
4618 
4619 static void
4620 print_driver(driver_t *driver, int indent)
4621 {
4622 	if (!driver)
4623 		return;
4624 
4625 	print_driver_short(driver, indent);
4626 }
4627 
4628 static void
4629 print_driver_list(driver_list_t drivers, int indent)
4630 {
4631 	driverlink_t driver;
4632 
4633 	TAILQ_FOREACH(driver, &drivers, link) {
4634 		print_driver(driver->driver, indent);
4635 	}
4636 }
4637 
4638 static void
4639 print_devclass_short(devclass_t dc, int indent)
4640 {
4641 	if ( !dc )
4642 		return;
4643 
4644 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4645 }
4646 
4647 static void
4648 print_devclass(devclass_t dc, int indent)
4649 {
4650 	int i;
4651 
4652 	if ( !dc )
4653 		return;
4654 
4655 	print_devclass_short(dc, indent);
4656 	indentprintf(("Drivers:\n"));
4657 	print_driver_list(dc->drivers, indent+1);
4658 
4659 	indentprintf(("Devices:\n"));
4660 	for (i = 0; i < dc->maxunit; i++)
4661 		if (dc->devices[i])
4662 			print_device(dc->devices[i], indent+1);
4663 }
4664 
4665 void
4666 print_devclass_list_short(void)
4667 {
4668 	devclass_t dc;
4669 
4670 	printf("Short listing of devclasses, drivers & devices:\n");
4671 	TAILQ_FOREACH(dc, &devclasses, link) {
4672 		print_devclass_short(dc, 0);
4673 	}
4674 }
4675 
4676 void
4677 print_devclass_list(void)
4678 {
4679 	devclass_t dc;
4680 
4681 	printf("Full listing of devclasses, drivers & devices:\n");
4682 	TAILQ_FOREACH(dc, &devclasses, link) {
4683 		print_devclass(dc, 0);
4684 	}
4685 }
4686 
4687 #endif
4688 
4689 /*
4690  * User-space access to the device tree.
4691  *
4692  * We implement a small set of nodes:
4693  *
4694  * hw.bus			Single integer read method to obtain the
4695  *				current generation count.
4696  * hw.bus.devices		Reads the entire device tree in flat space.
4697  * hw.bus.rman			Resource manager interface
4698  *
4699  * We might like to add the ability to scan devclasses and/or drivers to
4700  * determine what else is currently loaded/available.
4701  */
4702 
4703 static int
4704 sysctl_bus(SYSCTL_HANDLER_ARGS)
4705 {
4706 	struct u_businfo	ubus;
4707 
4708 	ubus.ub_version = BUS_USER_VERSION;
4709 	ubus.ub_generation = bus_data_generation;
4710 
4711 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4712 }
4713 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4714     "bus-related data");
4715 
4716 static int
4717 sysctl_devices(SYSCTL_HANDLER_ARGS)
4718 {
4719 	int			*name = (int *)arg1;
4720 	u_int			namelen = arg2;
4721 	int			index;
4722 	struct device		*dev;
4723 	struct u_device		udev;	/* XXX this is a bit big */
4724 	int			error;
4725 
4726 	if (namelen != 2)
4727 		return (EINVAL);
4728 
4729 	if (bus_data_generation_check(name[0]))
4730 		return (EINVAL);
4731 
4732 	index = name[1];
4733 
4734 	/*
4735 	 * Scan the list of devices, looking for the requested index.
4736 	 */
4737 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4738 		if (index-- == 0)
4739 			break;
4740 	}
4741 	if (dev == NULL)
4742 		return (ENOENT);
4743 
4744 	/*
4745 	 * Populate the return array.
4746 	 */
4747 	bzero(&udev, sizeof(udev));
4748 	udev.dv_handle = (uintptr_t)dev;
4749 	udev.dv_parent = (uintptr_t)dev->parent;
4750 	if (dev->nameunit != NULL)
4751 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4752 	if (dev->desc != NULL)
4753 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4754 	if (dev->driver != NULL && dev->driver->name != NULL)
4755 		strlcpy(udev.dv_drivername, dev->driver->name,
4756 		    sizeof(udev.dv_drivername));
4757 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4758 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4759 	udev.dv_devflags = dev->devflags;
4760 	udev.dv_flags = dev->flags;
4761 	udev.dv_state = dev->state;
4762 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4763 	return (error);
4764 }
4765 
4766 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4767     "system device tree");
4768 
4769 int
4770 bus_data_generation_check(int generation)
4771 {
4772 	if (generation != bus_data_generation)
4773 		return (1);
4774 
4775 	/* XXX generate optimised lists here? */
4776 	return (0);
4777 }
4778 
4779 void
4780 bus_data_generation_update(void)
4781 {
4782 	bus_data_generation++;
4783 }
4784 
4785 int
4786 bus_free_resource(device_t dev, int type, struct resource *r)
4787 {
4788 	if (r == NULL)
4789 		return (0);
4790 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4791 }
4792