xref: /freebsd/sys/kern/subr_bus.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_short		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	1		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
127 #define	DF_WILDCARD	4		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	8		/* description was malloced */
129 #define	DF_QUIET	16		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
132 #define	DF_REBID	128		/* Can rebid after attach */
133 	u_char	order;			/**< order from device_add_child_ordered() */
134 	u_char	pad;
135 	void	*ivars;			/**< instance variables  */
136 	void	*softc;			/**< current driver's variables  */
137 
138 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
139 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
140 };
141 
142 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
143 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
144 
145 #ifdef BUS_DEBUG
146 
147 static int bus_debug = 1;
148 TUNABLE_INT("bus.debug", &bus_debug);
149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
150     "Debug bus code");
151 
152 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154 #define DRIVERNAME(d)	((d)? d->name : "no driver")
155 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
156 
157 /**
158  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159  * prevent syslog from deleting initial spaces
160  */
161 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162 
163 static void print_device_short(device_t dev, int indent);
164 static void print_device(device_t dev, int indent);
165 void print_device_tree_short(device_t dev, int indent);
166 void print_device_tree(device_t dev, int indent);
167 static void print_driver_short(driver_t *driver, int indent);
168 static void print_driver(driver_t *driver, int indent);
169 static void print_driver_list(driver_list_t drivers, int indent);
170 static void print_devclass_short(devclass_t dc, int indent);
171 static void print_devclass(devclass_t dc, int indent);
172 void print_devclass_list_short(void);
173 void print_devclass_list(void);
174 
175 #else
176 /* Make the compiler ignore the function calls */
177 #define PDEBUG(a)			/* nop */
178 #define DEVICENAME(d)			/* nop */
179 #define DRIVERNAME(d)			/* nop */
180 #define DEVCLANAME(d)			/* nop */
181 
182 #define print_device_short(d,i)		/* nop */
183 #define print_device(d,i)		/* nop */
184 #define print_device_tree_short(d,i)	/* nop */
185 #define print_device_tree(d,i)		/* nop */
186 #define print_driver_short(d,i)		/* nop */
187 #define print_driver(d,i)		/* nop */
188 #define print_driver_list(d,i)		/* nop */
189 #define print_devclass_short(d,i)	/* nop */
190 #define print_devclass(d,i)		/* nop */
191 #define print_devclass_list_short()	/* nop */
192 #define print_devclass_list()		/* nop */
193 #endif
194 
195 /*
196  * dev sysctl tree
197  */
198 
199 enum {
200 	DEVCLASS_SYSCTL_PARENT,
201 };
202 
203 static int
204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205 {
206 	devclass_t dc = (devclass_t)arg1;
207 	const char *value;
208 
209 	switch (arg2) {
210 	case DEVCLASS_SYSCTL_PARENT:
211 		value = dc->parent ? dc->parent->name : "";
212 		break;
213 	default:
214 		return (EINVAL);
215 	}
216 	return (SYSCTL_OUT(req, value, strlen(value)));
217 }
218 
219 static void
220 devclass_sysctl_init(devclass_t dc)
221 {
222 
223 	if (dc->sysctl_tree != NULL)
224 		return;
225 	sysctl_ctx_init(&dc->sysctl_ctx);
226 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228 	    CTLFLAG_RD, NULL, "");
229 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230 	    OID_AUTO, "%parent", CTLFLAG_RD,
231 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232 	    "parent class");
233 }
234 
235 enum {
236 	DEVICE_SYSCTL_DESC,
237 	DEVICE_SYSCTL_DRIVER,
238 	DEVICE_SYSCTL_LOCATION,
239 	DEVICE_SYSCTL_PNPINFO,
240 	DEVICE_SYSCTL_PARENT,
241 };
242 
243 static int
244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245 {
246 	device_t dev = (device_t)arg1;
247 	const char *value;
248 	char *buf;
249 	int error;
250 
251 	buf = NULL;
252 	switch (arg2) {
253 	case DEVICE_SYSCTL_DESC:
254 		value = dev->desc ? dev->desc : "";
255 		break;
256 	case DEVICE_SYSCTL_DRIVER:
257 		value = dev->driver ? dev->driver->name : "";
258 		break;
259 	case DEVICE_SYSCTL_LOCATION:
260 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261 		bus_child_location_str(dev, buf, 1024);
262 		break;
263 	case DEVICE_SYSCTL_PNPINFO:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_pnpinfo_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PARENT:
268 		value = dev->parent ? dev->parent->nameunit : "";
269 		break;
270 	default:
271 		return (EINVAL);
272 	}
273 	error = SYSCTL_OUT(req, value, strlen(value));
274 	if (buf != NULL)
275 		free(buf, M_BUS);
276 	return (error);
277 }
278 
279 static void
280 device_sysctl_init(device_t dev)
281 {
282 	devclass_t dc = dev->devclass;
283 
284 	if (dev->sysctl_tree != NULL)
285 		return;
286 	devclass_sysctl_init(dc);
287 	sysctl_ctx_init(&dev->sysctl_ctx);
288 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290 	    dev->nameunit + strlen(dc->name),
291 	    CTLFLAG_RD, NULL, "");
292 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293 	    OID_AUTO, "%desc", CTLFLAG_RD,
294 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295 	    "device description");
296 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297 	    OID_AUTO, "%driver", CTLFLAG_RD,
298 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299 	    "device driver name");
300 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301 	    OID_AUTO, "%location", CTLFLAG_RD,
302 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303 	    "device location relative to parent");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
306 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307 	    "device identification");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%parent", CTLFLAG_RD,
310 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311 	    "parent device");
312 }
313 
314 static void
315 device_sysctl_update(device_t dev)
316 {
317 	devclass_t dc = dev->devclass;
318 
319 	if (dev->sysctl_tree == NULL)
320 		return;
321 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
322 }
323 
324 static void
325 device_sysctl_fini(device_t dev)
326 {
327 	if (dev->sysctl_tree == NULL)
328 		return;
329 	sysctl_ctx_free(&dev->sysctl_ctx);
330 	dev->sysctl_tree = NULL;
331 }
332 
333 /*
334  * /dev/devctl implementation
335  */
336 
337 /*
338  * This design allows only one reader for /dev/devctl.  This is not desirable
339  * in the long run, but will get a lot of hair out of this implementation.
340  * Maybe we should make this device a clonable device.
341  *
342  * Also note: we specifically do not attach a device to the device_t tree
343  * to avoid potential chicken and egg problems.  One could argue that all
344  * of this belongs to the root node.  One could also further argue that the
345  * sysctl interface that we have not might more properly be an ioctl
346  * interface, but at this stage of the game, I'm not inclined to rock that
347  * boat.
348  *
349  * I'm also not sure that the SIGIO support is done correctly or not, as
350  * I copied it from a driver that had SIGIO support that likely hasn't been
351  * tested since 3.4 or 2.2.8!
352  */
353 
354 /* Deprecated way to adjust queue length */
355 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
356 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
357 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
358     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
359 
360 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
361 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
362 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
363 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
364 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
365     0, sysctl_devctl_queue, "I", "devctl queue length");
366 
367 static d_open_t		devopen;
368 static d_close_t	devclose;
369 static d_read_t		devread;
370 static d_ioctl_t	devioctl;
371 static d_poll_t		devpoll;
372 
373 static struct cdevsw dev_cdevsw = {
374 	.d_version =	D_VERSION,
375 	.d_flags =	D_NEEDGIANT,
376 	.d_open =	devopen,
377 	.d_close =	devclose,
378 	.d_read =	devread,
379 	.d_ioctl =	devioctl,
380 	.d_poll =	devpoll,
381 	.d_name =	"devctl",
382 };
383 
384 struct dev_event_info
385 {
386 	char *dei_data;
387 	TAILQ_ENTRY(dev_event_info) dei_link;
388 };
389 
390 TAILQ_HEAD(devq, dev_event_info);
391 
392 static struct dev_softc
393 {
394 	int	inuse;
395 	int	nonblock;
396 	int	queued;
397 	struct mtx mtx;
398 	struct cv cv;
399 	struct selinfo sel;
400 	struct devq devq;
401 	struct proc *async_proc;
402 } devsoftc;
403 
404 static struct cdev *devctl_dev;
405 
406 static void
407 devinit(void)
408 {
409 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
410 	    "devctl");
411 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
412 	cv_init(&devsoftc.cv, "dev cv");
413 	TAILQ_INIT(&devsoftc.devq);
414 }
415 
416 static int
417 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
418 {
419 	if (devsoftc.inuse)
420 		return (EBUSY);
421 	/* move to init */
422 	devsoftc.inuse = 1;
423 	devsoftc.nonblock = 0;
424 	devsoftc.async_proc = NULL;
425 	return (0);
426 }
427 
428 static int
429 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
430 {
431 	devsoftc.inuse = 0;
432 	mtx_lock(&devsoftc.mtx);
433 	cv_broadcast(&devsoftc.cv);
434 	mtx_unlock(&devsoftc.mtx);
435 	devsoftc.async_proc = NULL;
436 	return (0);
437 }
438 
439 /*
440  * The read channel for this device is used to report changes to
441  * userland in realtime.  We are required to free the data as well as
442  * the n1 object because we allocate them separately.  Also note that
443  * we return one record at a time.  If you try to read this device a
444  * character at a time, you will lose the rest of the data.  Listening
445  * programs are expected to cope.
446  */
447 static int
448 devread(struct cdev *dev, struct uio *uio, int ioflag)
449 {
450 	struct dev_event_info *n1;
451 	int rv;
452 
453 	mtx_lock(&devsoftc.mtx);
454 	while (TAILQ_EMPTY(&devsoftc.devq)) {
455 		if (devsoftc.nonblock) {
456 			mtx_unlock(&devsoftc.mtx);
457 			return (EAGAIN);
458 		}
459 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
460 		if (rv) {
461 			/*
462 			 * Need to translate ERESTART to EINTR here? -- jake
463 			 */
464 			mtx_unlock(&devsoftc.mtx);
465 			return (rv);
466 		}
467 	}
468 	n1 = TAILQ_FIRST(&devsoftc.devq);
469 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
470 	devsoftc.queued--;
471 	mtx_unlock(&devsoftc.mtx);
472 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
473 	free(n1->dei_data, M_BUS);
474 	free(n1, M_BUS);
475 	return (rv);
476 }
477 
478 static	int
479 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
480 {
481 	switch (cmd) {
482 
483 	case FIONBIO:
484 		if (*(int*)data)
485 			devsoftc.nonblock = 1;
486 		else
487 			devsoftc.nonblock = 0;
488 		return (0);
489 	case FIOASYNC:
490 		if (*(int*)data)
491 			devsoftc.async_proc = td->td_proc;
492 		else
493 			devsoftc.async_proc = NULL;
494 		return (0);
495 
496 		/* (un)Support for other fcntl() calls. */
497 	case FIOCLEX:
498 	case FIONCLEX:
499 	case FIONREAD:
500 	case FIOSETOWN:
501 	case FIOGETOWN:
502 	default:
503 		break;
504 	}
505 	return (ENOTTY);
506 }
507 
508 static	int
509 devpoll(struct cdev *dev, int events, struct thread *td)
510 {
511 	int	revents = 0;
512 
513 	mtx_lock(&devsoftc.mtx);
514 	if (events & (POLLIN | POLLRDNORM)) {
515 		if (!TAILQ_EMPTY(&devsoftc.devq))
516 			revents = events & (POLLIN | POLLRDNORM);
517 		else
518 			selrecord(td, &devsoftc.sel);
519 	}
520 	mtx_unlock(&devsoftc.mtx);
521 
522 	return (revents);
523 }
524 
525 /**
526  * @brief Return whether the userland process is running
527  */
528 boolean_t
529 devctl_process_running(void)
530 {
531 	return (devsoftc.inuse == 1);
532 }
533 
534 /**
535  * @brief Queue data to be read from the devctl device
536  *
537  * Generic interface to queue data to the devctl device.  It is
538  * assumed that @p data is properly formatted.  It is further assumed
539  * that @p data is allocated using the M_BUS malloc type.
540  */
541 void
542 devctl_queue_data_f(char *data, int flags)
543 {
544 	struct dev_event_info *n1 = NULL, *n2 = NULL;
545 	struct proc *p;
546 
547 	if (strlen(data) == 0)
548 		goto out;
549 	if (devctl_queue_length == 0)
550 		goto out;
551 	n1 = malloc(sizeof(*n1), M_BUS, flags);
552 	if (n1 == NULL)
553 		goto out;
554 	n1->dei_data = data;
555 	mtx_lock(&devsoftc.mtx);
556 	if (devctl_queue_length == 0) {
557 		mtx_unlock(&devsoftc.mtx);
558 		free(n1->dei_data, M_BUS);
559 		free(n1, M_BUS);
560 		return;
561 	}
562 	/* Leave at least one spot in the queue... */
563 	while (devsoftc.queued > devctl_queue_length - 1) {
564 		n2 = TAILQ_FIRST(&devsoftc.devq);
565 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
566 		free(n2->dei_data, M_BUS);
567 		free(n2, M_BUS);
568 		devsoftc.queued--;
569 	}
570 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
571 	devsoftc.queued++;
572 	cv_broadcast(&devsoftc.cv);
573 	mtx_unlock(&devsoftc.mtx);
574 	selwakeup(&devsoftc.sel);
575 	p = devsoftc.async_proc;
576 	if (p != NULL) {
577 		PROC_LOCK(p);
578 		psignal(p, SIGIO);
579 		PROC_UNLOCK(p);
580 	}
581 	return;
582 out:
583 	/*
584 	 * We have to free data on all error paths since the caller
585 	 * assumes it will be free'd when this item is dequeued.
586 	 */
587 	free(data, M_BUS);
588 	return;
589 }
590 
591 void
592 devctl_queue_data(char *data)
593 {
594 
595 	devctl_queue_data_f(data, M_NOWAIT);
596 }
597 
598 /**
599  * @brief Send a 'notification' to userland, using standard ways
600  */
601 void
602 devctl_notify_f(const char *system, const char *subsystem, const char *type,
603     const char *data, int flags)
604 {
605 	int len = 0;
606 	char *msg;
607 
608 	if (system == NULL)
609 		return;		/* BOGUS!  Must specify system. */
610 	if (subsystem == NULL)
611 		return;		/* BOGUS!  Must specify subsystem. */
612 	if (type == NULL)
613 		return;		/* BOGUS!  Must specify type. */
614 	len += strlen(" system=") + strlen(system);
615 	len += strlen(" subsystem=") + strlen(subsystem);
616 	len += strlen(" type=") + strlen(type);
617 	/* add in the data message plus newline. */
618 	if (data != NULL)
619 		len += strlen(data);
620 	len += 3;	/* '!', '\n', and NUL */
621 	msg = malloc(len, M_BUS, flags);
622 	if (msg == NULL)
623 		return;		/* Drop it on the floor */
624 	if (data != NULL)
625 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
626 		    system, subsystem, type, data);
627 	else
628 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
629 		    system, subsystem, type);
630 	devctl_queue_data_f(msg, flags);
631 }
632 
633 void
634 devctl_notify(const char *system, const char *subsystem, const char *type,
635     const char *data)
636 {
637 
638 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
639 }
640 
641 /*
642  * Common routine that tries to make sending messages as easy as possible.
643  * We allocate memory for the data, copy strings into that, but do not
644  * free it unless there's an error.  The dequeue part of the driver should
645  * free the data.  We don't send data when the device is disabled.  We do
646  * send data, even when we have no listeners, because we wish to avoid
647  * races relating to startup and restart of listening applications.
648  *
649  * devaddq is designed to string together the type of event, with the
650  * object of that event, plus the plug and play info and location info
651  * for that event.  This is likely most useful for devices, but less
652  * useful for other consumers of this interface.  Those should use
653  * the devctl_queue_data() interface instead.
654  */
655 static void
656 devaddq(const char *type, const char *what, device_t dev)
657 {
658 	char *data = NULL;
659 	char *loc = NULL;
660 	char *pnp = NULL;
661 	const char *parstr;
662 
663 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
664 		return;
665 	data = malloc(1024, M_BUS, M_NOWAIT);
666 	if (data == NULL)
667 		goto bad;
668 
669 	/* get the bus specific location of this device */
670 	loc = malloc(1024, M_BUS, M_NOWAIT);
671 	if (loc == NULL)
672 		goto bad;
673 	*loc = '\0';
674 	bus_child_location_str(dev, loc, 1024);
675 
676 	/* Get the bus specific pnp info of this device */
677 	pnp = malloc(1024, M_BUS, M_NOWAIT);
678 	if (pnp == NULL)
679 		goto bad;
680 	*pnp = '\0';
681 	bus_child_pnpinfo_str(dev, pnp, 1024);
682 
683 	/* Get the parent of this device, or / if high enough in the tree. */
684 	if (device_get_parent(dev) == NULL)
685 		parstr = ".";	/* Or '/' ? */
686 	else
687 		parstr = device_get_nameunit(device_get_parent(dev));
688 	/* String it all together. */
689 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
690 	  parstr);
691 	free(loc, M_BUS);
692 	free(pnp, M_BUS);
693 	devctl_queue_data(data);
694 	return;
695 bad:
696 	free(pnp, M_BUS);
697 	free(loc, M_BUS);
698 	free(data, M_BUS);
699 	return;
700 }
701 
702 /*
703  * A device was added to the tree.  We are called just after it successfully
704  * attaches (that is, probe and attach success for this device).  No call
705  * is made if a device is merely parented into the tree.  See devnomatch
706  * if probe fails.  If attach fails, no notification is sent (but maybe
707  * we should have a different message for this).
708  */
709 static void
710 devadded(device_t dev)
711 {
712 	char *pnp = NULL;
713 	char *tmp = NULL;
714 
715 	pnp = malloc(1024, M_BUS, M_NOWAIT);
716 	if (pnp == NULL)
717 		goto fail;
718 	tmp = malloc(1024, M_BUS, M_NOWAIT);
719 	if (tmp == NULL)
720 		goto fail;
721 	*pnp = '\0';
722 	bus_child_pnpinfo_str(dev, pnp, 1024);
723 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
724 	devaddq("+", tmp, dev);
725 fail:
726 	if (pnp != NULL)
727 		free(pnp, M_BUS);
728 	if (tmp != NULL)
729 		free(tmp, M_BUS);
730 	return;
731 }
732 
733 /*
734  * A device was removed from the tree.  We are called just before this
735  * happens.
736  */
737 static void
738 devremoved(device_t dev)
739 {
740 	char *pnp = NULL;
741 	char *tmp = NULL;
742 
743 	pnp = malloc(1024, M_BUS, M_NOWAIT);
744 	if (pnp == NULL)
745 		goto fail;
746 	tmp = malloc(1024, M_BUS, M_NOWAIT);
747 	if (tmp == NULL)
748 		goto fail;
749 	*pnp = '\0';
750 	bus_child_pnpinfo_str(dev, pnp, 1024);
751 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
752 	devaddq("-", tmp, dev);
753 fail:
754 	if (pnp != NULL)
755 		free(pnp, M_BUS);
756 	if (tmp != NULL)
757 		free(tmp, M_BUS);
758 	return;
759 }
760 
761 /*
762  * Called when there's no match for this device.  This is only called
763  * the first time that no match happens, so we don't keep getting this
764  * message.  Should that prove to be undesirable, we can change it.
765  * This is called when all drivers that can attach to a given bus
766  * decline to accept this device.  Other errors may not be detected.
767  */
768 static void
769 devnomatch(device_t dev)
770 {
771 	devaddq("?", "", dev);
772 }
773 
774 static int
775 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
776 {
777 	struct dev_event_info *n1;
778 	int dis, error;
779 
780 	dis = devctl_queue_length == 0;
781 	error = sysctl_handle_int(oidp, &dis, 0, req);
782 	if (error || !req->newptr)
783 		return (error);
784 	mtx_lock(&devsoftc.mtx);
785 	if (dis) {
786 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
787 			n1 = TAILQ_FIRST(&devsoftc.devq);
788 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
789 			free(n1->dei_data, M_BUS);
790 			free(n1, M_BUS);
791 		}
792 		devsoftc.queued = 0;
793 		devctl_queue_length = 0;
794 	} else {
795 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
796 	}
797 	mtx_unlock(&devsoftc.mtx);
798 	return (0);
799 }
800 
801 static int
802 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
803 {
804 	struct dev_event_info *n1;
805 	int q, error;
806 
807 	q = devctl_queue_length;
808 	error = sysctl_handle_int(oidp, &q, 0, req);
809 	if (error || !req->newptr)
810 		return (error);
811 	if (q < 0)
812 		return (EINVAL);
813 	mtx_lock(&devsoftc.mtx);
814 	devctl_queue_length = q;
815 	while (devsoftc.queued > devctl_queue_length) {
816 		n1 = TAILQ_FIRST(&devsoftc.devq);
817 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
818 		free(n1->dei_data, M_BUS);
819 		free(n1, M_BUS);
820 		devsoftc.queued--;
821 	}
822 	mtx_unlock(&devsoftc.mtx);
823 	return (0);
824 }
825 
826 /* End of /dev/devctl code */
827 
828 static TAILQ_HEAD(,device)	bus_data_devices;
829 static int bus_data_generation = 1;
830 
831 static kobj_method_t null_methods[] = {
832 	KOBJMETHOD_END
833 };
834 
835 DEFINE_CLASS(null, null_methods, 0);
836 
837 /*
838  * Bus pass implementation
839  */
840 
841 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
842 int bus_current_pass = BUS_PASS_ROOT;
843 
844 /**
845  * @internal
846  * @brief Register the pass level of a new driver attachment
847  *
848  * Register a new driver attachment's pass level.  If no driver
849  * attachment with the same pass level has been added, then @p new
850  * will be added to the global passes list.
851  *
852  * @param new		the new driver attachment
853  */
854 static void
855 driver_register_pass(struct driverlink *new)
856 {
857 	struct driverlink *dl;
858 
859 	/* We only consider pass numbers during boot. */
860 	if (bus_current_pass == BUS_PASS_DEFAULT)
861 		return;
862 
863 	/*
864 	 * Walk the passes list.  If we already know about this pass
865 	 * then there is nothing to do.  If we don't, then insert this
866 	 * driver link into the list.
867 	 */
868 	TAILQ_FOREACH(dl, &passes, passlink) {
869 		if (dl->pass < new->pass)
870 			continue;
871 		if (dl->pass == new->pass)
872 			return;
873 		TAILQ_INSERT_BEFORE(dl, new, passlink);
874 		return;
875 	}
876 	TAILQ_INSERT_TAIL(&passes, new, passlink);
877 }
878 
879 /**
880  * @brief Raise the current bus pass
881  *
882  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
883  * method on the root bus to kick off a new device tree scan for each
884  * new pass level that has at least one driver.
885  */
886 void
887 bus_set_pass(int pass)
888 {
889 	struct driverlink *dl;
890 
891 	if (bus_current_pass > pass)
892 		panic("Attempt to lower bus pass level");
893 
894 	TAILQ_FOREACH(dl, &passes, passlink) {
895 		/* Skip pass values below the current pass level. */
896 		if (dl->pass <= bus_current_pass)
897 			continue;
898 
899 		/*
900 		 * Bail once we hit a driver with a pass level that is
901 		 * too high.
902 		 */
903 		if (dl->pass > pass)
904 			break;
905 
906 		/*
907 		 * Raise the pass level to the next level and rescan
908 		 * the tree.
909 		 */
910 		bus_current_pass = dl->pass;
911 		BUS_NEW_PASS(root_bus);
912 	}
913 
914 	/*
915 	 * If there isn't a driver registered for the requested pass,
916 	 * then bus_current_pass might still be less than 'pass'.  Set
917 	 * it to 'pass' in that case.
918 	 */
919 	if (bus_current_pass < pass)
920 		bus_current_pass = pass;
921 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
922 }
923 
924 /*
925  * Devclass implementation
926  */
927 
928 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
929 
930 /**
931  * @internal
932  * @brief Find or create a device class
933  *
934  * If a device class with the name @p classname exists, return it,
935  * otherwise if @p create is non-zero create and return a new device
936  * class.
937  *
938  * If @p parentname is non-NULL, the parent of the devclass is set to
939  * the devclass of that name.
940  *
941  * @param classname	the devclass name to find or create
942  * @param parentname	the parent devclass name or @c NULL
943  * @param create	non-zero to create a devclass
944  */
945 static devclass_t
946 devclass_find_internal(const char *classname, const char *parentname,
947 		       int create)
948 {
949 	devclass_t dc;
950 
951 	PDEBUG(("looking for %s", classname));
952 	if (!classname)
953 		return (NULL);
954 
955 	TAILQ_FOREACH(dc, &devclasses, link) {
956 		if (!strcmp(dc->name, classname))
957 			break;
958 	}
959 
960 	if (create && !dc) {
961 		PDEBUG(("creating %s", classname));
962 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
963 		    M_BUS, M_NOWAIT | M_ZERO);
964 		if (!dc)
965 			return (NULL);
966 		dc->parent = NULL;
967 		dc->name = (char*) (dc + 1);
968 		strcpy(dc->name, classname);
969 		TAILQ_INIT(&dc->drivers);
970 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
971 
972 		bus_data_generation_update();
973 	}
974 
975 	/*
976 	 * If a parent class is specified, then set that as our parent so
977 	 * that this devclass will support drivers for the parent class as
978 	 * well.  If the parent class has the same name don't do this though
979 	 * as it creates a cycle that can trigger an infinite loop in
980 	 * device_probe_child() if a device exists for which there is no
981 	 * suitable driver.
982 	 */
983 	if (parentname && dc && !dc->parent &&
984 	    strcmp(classname, parentname) != 0) {
985 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
986 		dc->parent->flags |= DC_HAS_CHILDREN;
987 	}
988 
989 	return (dc);
990 }
991 
992 /**
993  * @brief Create a device class
994  *
995  * If a device class with the name @p classname exists, return it,
996  * otherwise create and return a new device class.
997  *
998  * @param classname	the devclass name to find or create
999  */
1000 devclass_t
1001 devclass_create(const char *classname)
1002 {
1003 	return (devclass_find_internal(classname, NULL, TRUE));
1004 }
1005 
1006 /**
1007  * @brief Find a device class
1008  *
1009  * If a device class with the name @p classname exists, return it,
1010  * otherwise return @c NULL.
1011  *
1012  * @param classname	the devclass name to find
1013  */
1014 devclass_t
1015 devclass_find(const char *classname)
1016 {
1017 	return (devclass_find_internal(classname, NULL, FALSE));
1018 }
1019 
1020 /**
1021  * @brief Register that a device driver has been added to a devclass
1022  *
1023  * Register that a device driver has been added to a devclass.  This
1024  * is called by devclass_add_driver to accomplish the recursive
1025  * notification of all the children classes of dc, as well as dc.
1026  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1027  * the devclass.  We do a full search here of the devclass list at
1028  * each iteration level to save storing children-lists in the devclass
1029  * structure.  If we ever move beyond a few dozen devices doing this,
1030  * we may need to reevaluate...
1031  *
1032  * @param dc		the devclass to edit
1033  * @param driver	the driver that was just added
1034  */
1035 static void
1036 devclass_driver_added(devclass_t dc, driver_t *driver)
1037 {
1038 	devclass_t parent;
1039 	int i;
1040 
1041 	/*
1042 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1043 	 */
1044 	for (i = 0; i < dc->maxunit; i++)
1045 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1046 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1047 
1048 	/*
1049 	 * Walk through the children classes.  Since we only keep a
1050 	 * single parent pointer around, we walk the entire list of
1051 	 * devclasses looking for children.  We set the
1052 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1053 	 * the parent, so we only walk the list for those devclasses
1054 	 * that have children.
1055 	 */
1056 	if (!(dc->flags & DC_HAS_CHILDREN))
1057 		return;
1058 	parent = dc;
1059 	TAILQ_FOREACH(dc, &devclasses, link) {
1060 		if (dc->parent == parent)
1061 			devclass_driver_added(dc, driver);
1062 	}
1063 }
1064 
1065 /**
1066  * @brief Add a device driver to a device class
1067  *
1068  * Add a device driver to a devclass. This is normally called
1069  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1070  * all devices in the devclass will be called to allow them to attempt
1071  * to re-probe any unmatched children.
1072  *
1073  * @param dc		the devclass to edit
1074  * @param driver	the driver to register
1075  */
1076 static int
1077 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1078 {
1079 	driverlink_t dl;
1080 	const char *parentname;
1081 
1082 	PDEBUG(("%s", DRIVERNAME(driver)));
1083 
1084 	/* Don't allow invalid pass values. */
1085 	if (pass <= BUS_PASS_ROOT)
1086 		return (EINVAL);
1087 
1088 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1089 	if (!dl)
1090 		return (ENOMEM);
1091 
1092 	/*
1093 	 * Compile the driver's methods. Also increase the reference count
1094 	 * so that the class doesn't get freed when the last instance
1095 	 * goes. This means we can safely use static methods and avoids a
1096 	 * double-free in devclass_delete_driver.
1097 	 */
1098 	kobj_class_compile((kobj_class_t) driver);
1099 
1100 	/*
1101 	 * If the driver has any base classes, make the
1102 	 * devclass inherit from the devclass of the driver's
1103 	 * first base class. This will allow the system to
1104 	 * search for drivers in both devclasses for children
1105 	 * of a device using this driver.
1106 	 */
1107 	if (driver->baseclasses)
1108 		parentname = driver->baseclasses[0]->name;
1109 	else
1110 		parentname = NULL;
1111 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1112 
1113 	dl->driver = driver;
1114 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1115 	driver->refs++;		/* XXX: kobj_mtx */
1116 	dl->pass = pass;
1117 	driver_register_pass(dl);
1118 
1119 	devclass_driver_added(dc, driver);
1120 	bus_data_generation_update();
1121 	return (0);
1122 }
1123 
1124 /**
1125  * @brief Delete a device driver from a device class
1126  *
1127  * Delete a device driver from a devclass. This is normally called
1128  * automatically by DRIVER_MODULE().
1129  *
1130  * If the driver is currently attached to any devices,
1131  * devclass_delete_driver() will first attempt to detach from each
1132  * device. If one of the detach calls fails, the driver will not be
1133  * deleted.
1134  *
1135  * @param dc		the devclass to edit
1136  * @param driver	the driver to unregister
1137  */
1138 static int
1139 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1140 {
1141 	devclass_t dc = devclass_find(driver->name);
1142 	driverlink_t dl;
1143 	device_t dev;
1144 	int i;
1145 	int error;
1146 
1147 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1148 
1149 	if (!dc)
1150 		return (0);
1151 
1152 	/*
1153 	 * Find the link structure in the bus' list of drivers.
1154 	 */
1155 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1156 		if (dl->driver == driver)
1157 			break;
1158 	}
1159 
1160 	if (!dl) {
1161 		PDEBUG(("%s not found in %s list", driver->name,
1162 		    busclass->name));
1163 		return (ENOENT);
1164 	}
1165 
1166 	/*
1167 	 * Disassociate from any devices.  We iterate through all the
1168 	 * devices in the devclass of the driver and detach any which are
1169 	 * using the driver and which have a parent in the devclass which
1170 	 * we are deleting from.
1171 	 *
1172 	 * Note that since a driver can be in multiple devclasses, we
1173 	 * should not detach devices which are not children of devices in
1174 	 * the affected devclass.
1175 	 */
1176 	for (i = 0; i < dc->maxunit; i++) {
1177 		if (dc->devices[i]) {
1178 			dev = dc->devices[i];
1179 			if (dev->driver == driver && dev->parent &&
1180 			    dev->parent->devclass == busclass) {
1181 				if ((error = device_detach(dev)) != 0)
1182 					return (error);
1183 				device_set_driver(dev, NULL);
1184 				BUS_PROBE_NOMATCH(dev->parent, dev);
1185 				devnomatch(dev);
1186 				dev->flags |= DF_DONENOMATCH;
1187 			}
1188 		}
1189 	}
1190 
1191 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1192 	free(dl, M_BUS);
1193 
1194 	/* XXX: kobj_mtx */
1195 	driver->refs--;
1196 	if (driver->refs == 0)
1197 		kobj_class_free((kobj_class_t) driver);
1198 
1199 	bus_data_generation_update();
1200 	return (0);
1201 }
1202 
1203 /**
1204  * @brief Quiesces a set of device drivers from a device class
1205  *
1206  * Quiesce a device driver from a devclass. This is normally called
1207  * automatically by DRIVER_MODULE().
1208  *
1209  * If the driver is currently attached to any devices,
1210  * devclass_quiesece_driver() will first attempt to quiesce each
1211  * device.
1212  *
1213  * @param dc		the devclass to edit
1214  * @param driver	the driver to unregister
1215  */
1216 static int
1217 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1218 {
1219 	devclass_t dc = devclass_find(driver->name);
1220 	driverlink_t dl;
1221 	device_t dev;
1222 	int i;
1223 	int error;
1224 
1225 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1226 
1227 	if (!dc)
1228 		return (0);
1229 
1230 	/*
1231 	 * Find the link structure in the bus' list of drivers.
1232 	 */
1233 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1234 		if (dl->driver == driver)
1235 			break;
1236 	}
1237 
1238 	if (!dl) {
1239 		PDEBUG(("%s not found in %s list", driver->name,
1240 		    busclass->name));
1241 		return (ENOENT);
1242 	}
1243 
1244 	/*
1245 	 * Quiesce all devices.  We iterate through all the devices in
1246 	 * the devclass of the driver and quiesce any which are using
1247 	 * the driver and which have a parent in the devclass which we
1248 	 * are quiescing.
1249 	 *
1250 	 * Note that since a driver can be in multiple devclasses, we
1251 	 * should not quiesce devices which are not children of
1252 	 * devices in the affected devclass.
1253 	 */
1254 	for (i = 0; i < dc->maxunit; i++) {
1255 		if (dc->devices[i]) {
1256 			dev = dc->devices[i];
1257 			if (dev->driver == driver && dev->parent &&
1258 			    dev->parent->devclass == busclass) {
1259 				if ((error = device_quiesce(dev)) != 0)
1260 					return (error);
1261 			}
1262 		}
1263 	}
1264 
1265 	return (0);
1266 }
1267 
1268 /**
1269  * @internal
1270  */
1271 static driverlink_t
1272 devclass_find_driver_internal(devclass_t dc, const char *classname)
1273 {
1274 	driverlink_t dl;
1275 
1276 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1277 
1278 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1279 		if (!strcmp(dl->driver->name, classname))
1280 			return (dl);
1281 	}
1282 
1283 	PDEBUG(("not found"));
1284 	return (NULL);
1285 }
1286 
1287 /**
1288  * @brief Return the name of the devclass
1289  */
1290 const char *
1291 devclass_get_name(devclass_t dc)
1292 {
1293 	return (dc->name);
1294 }
1295 
1296 /**
1297  * @brief Find a device given a unit number
1298  *
1299  * @param dc		the devclass to search
1300  * @param unit		the unit number to search for
1301  *
1302  * @returns		the device with the given unit number or @c
1303  *			NULL if there is no such device
1304  */
1305 device_t
1306 devclass_get_device(devclass_t dc, int unit)
1307 {
1308 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1309 		return (NULL);
1310 	return (dc->devices[unit]);
1311 }
1312 
1313 /**
1314  * @brief Find the softc field of a device given a unit number
1315  *
1316  * @param dc		the devclass to search
1317  * @param unit		the unit number to search for
1318  *
1319  * @returns		the softc field of the device with the given
1320  *			unit number or @c NULL if there is no such
1321  *			device
1322  */
1323 void *
1324 devclass_get_softc(devclass_t dc, int unit)
1325 {
1326 	device_t dev;
1327 
1328 	dev = devclass_get_device(dc, unit);
1329 	if (!dev)
1330 		return (NULL);
1331 
1332 	return (device_get_softc(dev));
1333 }
1334 
1335 /**
1336  * @brief Get a list of devices in the devclass
1337  *
1338  * An array containing a list of all the devices in the given devclass
1339  * is allocated and returned in @p *devlistp. The number of devices
1340  * in the array is returned in @p *devcountp. The caller should free
1341  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1342  *
1343  * @param dc		the devclass to examine
1344  * @param devlistp	points at location for array pointer return
1345  *			value
1346  * @param devcountp	points at location for array size return value
1347  *
1348  * @retval 0		success
1349  * @retval ENOMEM	the array allocation failed
1350  */
1351 int
1352 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1353 {
1354 	int count, i;
1355 	device_t *list;
1356 
1357 	count = devclass_get_count(dc);
1358 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1359 	if (!list)
1360 		return (ENOMEM);
1361 
1362 	count = 0;
1363 	for (i = 0; i < dc->maxunit; i++) {
1364 		if (dc->devices[i]) {
1365 			list[count] = dc->devices[i];
1366 			count++;
1367 		}
1368 	}
1369 
1370 	*devlistp = list;
1371 	*devcountp = count;
1372 
1373 	return (0);
1374 }
1375 
1376 /**
1377  * @brief Get a list of drivers in the devclass
1378  *
1379  * An array containing a list of pointers to all the drivers in the
1380  * given devclass is allocated and returned in @p *listp.  The number
1381  * of drivers in the array is returned in @p *countp. The caller should
1382  * free the array using @c free(p, M_TEMP).
1383  *
1384  * @param dc		the devclass to examine
1385  * @param listp		gives location for array pointer return value
1386  * @param countp	gives location for number of array elements
1387  *			return value
1388  *
1389  * @retval 0		success
1390  * @retval ENOMEM	the array allocation failed
1391  */
1392 int
1393 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1394 {
1395 	driverlink_t dl;
1396 	driver_t **list;
1397 	int count;
1398 
1399 	count = 0;
1400 	TAILQ_FOREACH(dl, &dc->drivers, link)
1401 		count++;
1402 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1403 	if (list == NULL)
1404 		return (ENOMEM);
1405 
1406 	count = 0;
1407 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1408 		list[count] = dl->driver;
1409 		count++;
1410 	}
1411 	*listp = list;
1412 	*countp = count;
1413 
1414 	return (0);
1415 }
1416 
1417 /**
1418  * @brief Get the number of devices in a devclass
1419  *
1420  * @param dc		the devclass to examine
1421  */
1422 int
1423 devclass_get_count(devclass_t dc)
1424 {
1425 	int count, i;
1426 
1427 	count = 0;
1428 	for (i = 0; i < dc->maxunit; i++)
1429 		if (dc->devices[i])
1430 			count++;
1431 	return (count);
1432 }
1433 
1434 /**
1435  * @brief Get the maximum unit number used in a devclass
1436  *
1437  * Note that this is one greater than the highest currently-allocated
1438  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1439  * that not even the devclass has been allocated yet.
1440  *
1441  * @param dc		the devclass to examine
1442  */
1443 int
1444 devclass_get_maxunit(devclass_t dc)
1445 {
1446 	if (dc == NULL)
1447 		return (-1);
1448 	return (dc->maxunit);
1449 }
1450 
1451 /**
1452  * @brief Find a free unit number in a devclass
1453  *
1454  * This function searches for the first unused unit number greater
1455  * that or equal to @p unit.
1456  *
1457  * @param dc		the devclass to examine
1458  * @param unit		the first unit number to check
1459  */
1460 int
1461 devclass_find_free_unit(devclass_t dc, int unit)
1462 {
1463 	if (dc == NULL)
1464 		return (unit);
1465 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1466 		unit++;
1467 	return (unit);
1468 }
1469 
1470 /**
1471  * @brief Set the parent of a devclass
1472  *
1473  * The parent class is normally initialised automatically by
1474  * DRIVER_MODULE().
1475  *
1476  * @param dc		the devclass to edit
1477  * @param pdc		the new parent devclass
1478  */
1479 void
1480 devclass_set_parent(devclass_t dc, devclass_t pdc)
1481 {
1482 	dc->parent = pdc;
1483 }
1484 
1485 /**
1486  * @brief Get the parent of a devclass
1487  *
1488  * @param dc		the devclass to examine
1489  */
1490 devclass_t
1491 devclass_get_parent(devclass_t dc)
1492 {
1493 	return (dc->parent);
1494 }
1495 
1496 struct sysctl_ctx_list *
1497 devclass_get_sysctl_ctx(devclass_t dc)
1498 {
1499 	return (&dc->sysctl_ctx);
1500 }
1501 
1502 struct sysctl_oid *
1503 devclass_get_sysctl_tree(devclass_t dc)
1504 {
1505 	return (dc->sysctl_tree);
1506 }
1507 
1508 /**
1509  * @internal
1510  * @brief Allocate a unit number
1511  *
1512  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1513  * will do). The allocated unit number is returned in @p *unitp.
1514 
1515  * @param dc		the devclass to allocate from
1516  * @param unitp		points at the location for the allocated unit
1517  *			number
1518  *
1519  * @retval 0		success
1520  * @retval EEXIST	the requested unit number is already allocated
1521  * @retval ENOMEM	memory allocation failure
1522  */
1523 static int
1524 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1525 {
1526 	const char *s;
1527 	int unit = *unitp;
1528 
1529 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1530 
1531 	/* Ask the parent bus if it wants to wire this device. */
1532 	if (unit == -1)
1533 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1534 		    &unit);
1535 
1536 	/* If we were given a wired unit number, check for existing device */
1537 	/* XXX imp XXX */
1538 	if (unit != -1) {
1539 		if (unit >= 0 && unit < dc->maxunit &&
1540 		    dc->devices[unit] != NULL) {
1541 			if (bootverbose)
1542 				printf("%s: %s%d already exists; skipping it\n",
1543 				    dc->name, dc->name, *unitp);
1544 			return (EEXIST);
1545 		}
1546 	} else {
1547 		/* Unwired device, find the next available slot for it */
1548 		unit = 0;
1549 		for (unit = 0;; unit++) {
1550 			/* If there is an "at" hint for a unit then skip it. */
1551 			if (resource_string_value(dc->name, unit, "at", &s) ==
1552 			    0)
1553 				continue;
1554 
1555 			/* If this device slot is already in use, skip it. */
1556 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1557 				continue;
1558 
1559 			break;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * We've selected a unit beyond the length of the table, so let's
1565 	 * extend the table to make room for all units up to and including
1566 	 * this one.
1567 	 */
1568 	if (unit >= dc->maxunit) {
1569 		device_t *newlist, *oldlist;
1570 		int newsize;
1571 
1572 		oldlist = dc->devices;
1573 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1574 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1575 		if (!newlist)
1576 			return (ENOMEM);
1577 		if (oldlist != NULL)
1578 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1579 		bzero(newlist + dc->maxunit,
1580 		    sizeof(device_t) * (newsize - dc->maxunit));
1581 		dc->devices = newlist;
1582 		dc->maxunit = newsize;
1583 		if (oldlist != NULL)
1584 			free(oldlist, M_BUS);
1585 	}
1586 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1587 
1588 	*unitp = unit;
1589 	return (0);
1590 }
1591 
1592 /**
1593  * @internal
1594  * @brief Add a device to a devclass
1595  *
1596  * A unit number is allocated for the device (using the device's
1597  * preferred unit number if any) and the device is registered in the
1598  * devclass. This allows the device to be looked up by its unit
1599  * number, e.g. by decoding a dev_t minor number.
1600  *
1601  * @param dc		the devclass to add to
1602  * @param dev		the device to add
1603  *
1604  * @retval 0		success
1605  * @retval EEXIST	the requested unit number is already allocated
1606  * @retval ENOMEM	memory allocation failure
1607  */
1608 static int
1609 devclass_add_device(devclass_t dc, device_t dev)
1610 {
1611 	int buflen, error;
1612 
1613 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1614 
1615 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1616 	if (buflen < 0)
1617 		return (ENOMEM);
1618 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1619 	if (!dev->nameunit)
1620 		return (ENOMEM);
1621 
1622 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1623 		free(dev->nameunit, M_BUS);
1624 		dev->nameunit = NULL;
1625 		return (error);
1626 	}
1627 	dc->devices[dev->unit] = dev;
1628 	dev->devclass = dc;
1629 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1630 
1631 	return (0);
1632 }
1633 
1634 /**
1635  * @internal
1636  * @brief Delete a device from a devclass
1637  *
1638  * The device is removed from the devclass's device list and its unit
1639  * number is freed.
1640 
1641  * @param dc		the devclass to delete from
1642  * @param dev		the device to delete
1643  *
1644  * @retval 0		success
1645  */
1646 static int
1647 devclass_delete_device(devclass_t dc, device_t dev)
1648 {
1649 	if (!dc || !dev)
1650 		return (0);
1651 
1652 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1653 
1654 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1655 		panic("devclass_delete_device: inconsistent device class");
1656 	dc->devices[dev->unit] = NULL;
1657 	if (dev->flags & DF_WILDCARD)
1658 		dev->unit = -1;
1659 	dev->devclass = NULL;
1660 	free(dev->nameunit, M_BUS);
1661 	dev->nameunit = NULL;
1662 
1663 	return (0);
1664 }
1665 
1666 /**
1667  * @internal
1668  * @brief Make a new device and add it as a child of @p parent
1669  *
1670  * @param parent	the parent of the new device
1671  * @param name		the devclass name of the new device or @c NULL
1672  *			to leave the devclass unspecified
1673  * @parem unit		the unit number of the new device of @c -1 to
1674  *			leave the unit number unspecified
1675  *
1676  * @returns the new device
1677  */
1678 static device_t
1679 make_device(device_t parent, const char *name, int unit)
1680 {
1681 	device_t dev;
1682 	devclass_t dc;
1683 
1684 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1685 
1686 	if (name) {
1687 		dc = devclass_find_internal(name, NULL, TRUE);
1688 		if (!dc) {
1689 			printf("make_device: can't find device class %s\n",
1690 			    name);
1691 			return (NULL);
1692 		}
1693 	} else {
1694 		dc = NULL;
1695 	}
1696 
1697 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1698 	if (!dev)
1699 		return (NULL);
1700 
1701 	dev->parent = parent;
1702 	TAILQ_INIT(&dev->children);
1703 	kobj_init((kobj_t) dev, &null_class);
1704 	dev->driver = NULL;
1705 	dev->devclass = NULL;
1706 	dev->unit = unit;
1707 	dev->nameunit = NULL;
1708 	dev->desc = NULL;
1709 	dev->busy = 0;
1710 	dev->devflags = 0;
1711 	dev->flags = DF_ENABLED;
1712 	dev->order = 0;
1713 	if (unit == -1)
1714 		dev->flags |= DF_WILDCARD;
1715 	if (name) {
1716 		dev->flags |= DF_FIXEDCLASS;
1717 		if (devclass_add_device(dc, dev)) {
1718 			kobj_delete((kobj_t) dev, M_BUS);
1719 			return (NULL);
1720 		}
1721 	}
1722 	dev->ivars = NULL;
1723 	dev->softc = NULL;
1724 
1725 	dev->state = DS_NOTPRESENT;
1726 
1727 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1728 	bus_data_generation_update();
1729 
1730 	return (dev);
1731 }
1732 
1733 /**
1734  * @internal
1735  * @brief Print a description of a device.
1736  */
1737 static int
1738 device_print_child(device_t dev, device_t child)
1739 {
1740 	int retval = 0;
1741 
1742 	if (device_is_alive(child))
1743 		retval += BUS_PRINT_CHILD(dev, child);
1744 	else
1745 		retval += device_printf(child, " not found\n");
1746 
1747 	return (retval);
1748 }
1749 
1750 /**
1751  * @brief Create a new device
1752  *
1753  * This creates a new device and adds it as a child of an existing
1754  * parent device. The new device will be added after the last existing
1755  * child with order zero.
1756  *
1757  * @param dev		the device which will be the parent of the
1758  *			new child device
1759  * @param name		devclass name for new device or @c NULL if not
1760  *			specified
1761  * @param unit		unit number for new device or @c -1 if not
1762  *			specified
1763  *
1764  * @returns		the new device
1765  */
1766 device_t
1767 device_add_child(device_t dev, const char *name, int unit)
1768 {
1769 	return (device_add_child_ordered(dev, 0, name, unit));
1770 }
1771 
1772 /**
1773  * @brief Create a new device
1774  *
1775  * This creates a new device and adds it as a child of an existing
1776  * parent device. The new device will be added after the last existing
1777  * child with the same order.
1778  *
1779  * @param dev		the device which will be the parent of the
1780  *			new child device
1781  * @param order		a value which is used to partially sort the
1782  *			children of @p dev - devices created using
1783  *			lower values of @p order appear first in @p
1784  *			dev's list of children
1785  * @param name		devclass name for new device or @c NULL if not
1786  *			specified
1787  * @param unit		unit number for new device or @c -1 if not
1788  *			specified
1789  *
1790  * @returns		the new device
1791  */
1792 device_t
1793 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1794 {
1795 	device_t child;
1796 	device_t place;
1797 
1798 	PDEBUG(("%s at %s with order %d as unit %d",
1799 	    name, DEVICENAME(dev), order, unit));
1800 
1801 	child = make_device(dev, name, unit);
1802 	if (child == NULL)
1803 		return (child);
1804 	child->order = order;
1805 
1806 	TAILQ_FOREACH(place, &dev->children, link) {
1807 		if (place->order > order)
1808 			break;
1809 	}
1810 
1811 	if (place) {
1812 		/*
1813 		 * The device 'place' is the first device whose order is
1814 		 * greater than the new child.
1815 		 */
1816 		TAILQ_INSERT_BEFORE(place, child, link);
1817 	} else {
1818 		/*
1819 		 * The new child's order is greater or equal to the order of
1820 		 * any existing device. Add the child to the tail of the list.
1821 		 */
1822 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1823 	}
1824 
1825 	bus_data_generation_update();
1826 	return (child);
1827 }
1828 
1829 /**
1830  * @brief Delete a device
1831  *
1832  * This function deletes a device along with all of its children. If
1833  * the device currently has a driver attached to it, the device is
1834  * detached first using device_detach().
1835  *
1836  * @param dev		the parent device
1837  * @param child		the device to delete
1838  *
1839  * @retval 0		success
1840  * @retval non-zero	a unit error code describing the error
1841  */
1842 int
1843 device_delete_child(device_t dev, device_t child)
1844 {
1845 	int error;
1846 	device_t grandchild;
1847 
1848 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1849 
1850 	/* remove children first */
1851 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1852 		error = device_delete_child(child, grandchild);
1853 		if (error)
1854 			return (error);
1855 	}
1856 
1857 	if ((error = device_detach(child)) != 0)
1858 		return (error);
1859 	if (child->devclass)
1860 		devclass_delete_device(child->devclass, child);
1861 	TAILQ_REMOVE(&dev->children, child, link);
1862 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1863 	kobj_delete((kobj_t) child, M_BUS);
1864 
1865 	bus_data_generation_update();
1866 	return (0);
1867 }
1868 
1869 /**
1870  * @brief Find a device given a unit number
1871  *
1872  * This is similar to devclass_get_devices() but only searches for
1873  * devices which have @p dev as a parent.
1874  *
1875  * @param dev		the parent device to search
1876  * @param unit		the unit number to search for.  If the unit is -1,
1877  *			return the first child of @p dev which has name
1878  *			@p classname (that is, the one with the lowest unit.)
1879  *
1880  * @returns		the device with the given unit number or @c
1881  *			NULL if there is no such device
1882  */
1883 device_t
1884 device_find_child(device_t dev, const char *classname, int unit)
1885 {
1886 	devclass_t dc;
1887 	device_t child;
1888 
1889 	dc = devclass_find(classname);
1890 	if (!dc)
1891 		return (NULL);
1892 
1893 	if (unit != -1) {
1894 		child = devclass_get_device(dc, unit);
1895 		if (child && child->parent == dev)
1896 			return (child);
1897 	} else {
1898 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1899 			child = devclass_get_device(dc, unit);
1900 			if (child && child->parent == dev)
1901 				return (child);
1902 		}
1903 	}
1904 	return (NULL);
1905 }
1906 
1907 /**
1908  * @internal
1909  */
1910 static driverlink_t
1911 first_matching_driver(devclass_t dc, device_t dev)
1912 {
1913 	if (dev->devclass)
1914 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1915 	return (TAILQ_FIRST(&dc->drivers));
1916 }
1917 
1918 /**
1919  * @internal
1920  */
1921 static driverlink_t
1922 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1923 {
1924 	if (dev->devclass) {
1925 		driverlink_t dl;
1926 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1927 			if (!strcmp(dev->devclass->name, dl->driver->name))
1928 				return (dl);
1929 		return (NULL);
1930 	}
1931 	return (TAILQ_NEXT(last, link));
1932 }
1933 
1934 /**
1935  * @internal
1936  */
1937 int
1938 device_probe_child(device_t dev, device_t child)
1939 {
1940 	devclass_t dc;
1941 	driverlink_t best = NULL;
1942 	driverlink_t dl;
1943 	int result, pri = 0;
1944 	int hasclass = (child->devclass != NULL);
1945 
1946 	GIANT_REQUIRED;
1947 
1948 	dc = dev->devclass;
1949 	if (!dc)
1950 		panic("device_probe_child: parent device has no devclass");
1951 
1952 	/*
1953 	 * If the state is already probed, then return.  However, don't
1954 	 * return if we can rebid this object.
1955 	 */
1956 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1957 		return (0);
1958 
1959 	for (; dc; dc = dc->parent) {
1960 		for (dl = first_matching_driver(dc, child);
1961 		     dl;
1962 		     dl = next_matching_driver(dc, child, dl)) {
1963 
1964 			/* If this driver's pass is too high, then ignore it. */
1965 			if (dl->pass > bus_current_pass)
1966 				continue;
1967 
1968 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1969 			device_set_driver(child, dl->driver);
1970 			if (!hasclass) {
1971 				if (device_set_devclass(child, dl->driver->name)) {
1972 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1973 					    (child ? device_get_name(child) :
1974 						"no device"));
1975 					device_set_driver(child, NULL);
1976 					continue;
1977 				}
1978 			}
1979 
1980 			/* Fetch any flags for the device before probing. */
1981 			resource_int_value(dl->driver->name, child->unit,
1982 			    "flags", &child->devflags);
1983 
1984 			result = DEVICE_PROBE(child);
1985 
1986 			/* Reset flags and devclass before the next probe. */
1987 			child->devflags = 0;
1988 			if (!hasclass)
1989 				device_set_devclass(child, NULL);
1990 
1991 			/*
1992 			 * If the driver returns SUCCESS, there can be
1993 			 * no higher match for this device.
1994 			 */
1995 			if (result == 0) {
1996 				best = dl;
1997 				pri = 0;
1998 				break;
1999 			}
2000 
2001 			/*
2002 			 * The driver returned an error so it
2003 			 * certainly doesn't match.
2004 			 */
2005 			if (result > 0) {
2006 				device_set_driver(child, NULL);
2007 				continue;
2008 			}
2009 
2010 			/*
2011 			 * A priority lower than SUCCESS, remember the
2012 			 * best matching driver. Initialise the value
2013 			 * of pri for the first match.
2014 			 */
2015 			if (best == NULL || result > pri) {
2016 				/*
2017 				 * Probes that return BUS_PROBE_NOWILDCARD
2018 				 * or lower only match when they are set
2019 				 * in stone by the parent bus.
2020 				 */
2021 				if (result <= BUS_PROBE_NOWILDCARD &&
2022 				    child->flags & DF_WILDCARD)
2023 					continue;
2024 				best = dl;
2025 				pri = result;
2026 				continue;
2027 			}
2028 		}
2029 		/*
2030 		 * If we have an unambiguous match in this devclass,
2031 		 * don't look in the parent.
2032 		 */
2033 		if (best && pri == 0)
2034 			break;
2035 	}
2036 
2037 	/*
2038 	 * If we found a driver, change state and initialise the devclass.
2039 	 */
2040 	/* XXX What happens if we rebid and got no best? */
2041 	if (best) {
2042 		/*
2043 		 * If this device was atached, and we were asked to
2044 		 * rescan, and it is a different driver, then we have
2045 		 * to detach the old driver and reattach this new one.
2046 		 * Note, we don't have to check for DF_REBID here
2047 		 * because if the state is > DS_ALIVE, we know it must
2048 		 * be.
2049 		 *
2050 		 * This assumes that all DF_REBID drivers can have
2051 		 * their probe routine called at any time and that
2052 		 * they are idempotent as well as completely benign in
2053 		 * normal operations.
2054 		 *
2055 		 * We also have to make sure that the detach
2056 		 * succeeded, otherwise we fail the operation (or
2057 		 * maybe it should just fail silently?  I'm torn).
2058 		 */
2059 		if (child->state > DS_ALIVE && best->driver != child->driver)
2060 			if ((result = device_detach(dev)) != 0)
2061 				return (result);
2062 
2063 		/* Set the winning driver, devclass, and flags. */
2064 		if (!child->devclass) {
2065 			result = device_set_devclass(child, best->driver->name);
2066 			if (result != 0)
2067 				return (result);
2068 		}
2069 		device_set_driver(child, best->driver);
2070 		resource_int_value(best->driver->name, child->unit,
2071 		    "flags", &child->devflags);
2072 
2073 		if (pri < 0) {
2074 			/*
2075 			 * A bit bogus. Call the probe method again to make
2076 			 * sure that we have the right description.
2077 			 */
2078 			DEVICE_PROBE(child);
2079 #if 0
2080 			child->flags |= DF_REBID;
2081 #endif
2082 		} else
2083 			child->flags &= ~DF_REBID;
2084 		child->state = DS_ALIVE;
2085 
2086 		bus_data_generation_update();
2087 		return (0);
2088 	}
2089 
2090 	return (ENXIO);
2091 }
2092 
2093 /**
2094  * @brief Return the parent of a device
2095  */
2096 device_t
2097 device_get_parent(device_t dev)
2098 {
2099 	return (dev->parent);
2100 }
2101 
2102 /**
2103  * @brief Get a list of children of a device
2104  *
2105  * An array containing a list of all the children of the given device
2106  * is allocated and returned in @p *devlistp. The number of devices
2107  * in the array is returned in @p *devcountp. The caller should free
2108  * the array using @c free(p, M_TEMP).
2109  *
2110  * @param dev		the device to examine
2111  * @param devlistp	points at location for array pointer return
2112  *			value
2113  * @param devcountp	points at location for array size return value
2114  *
2115  * @retval 0		success
2116  * @retval ENOMEM	the array allocation failed
2117  */
2118 int
2119 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2120 {
2121 	int count;
2122 	device_t child;
2123 	device_t *list;
2124 
2125 	count = 0;
2126 	TAILQ_FOREACH(child, &dev->children, link) {
2127 		count++;
2128 	}
2129 
2130 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2131 	if (!list)
2132 		return (ENOMEM);
2133 
2134 	count = 0;
2135 	TAILQ_FOREACH(child, &dev->children, link) {
2136 		list[count] = child;
2137 		count++;
2138 	}
2139 
2140 	*devlistp = list;
2141 	*devcountp = count;
2142 
2143 	return (0);
2144 }
2145 
2146 /**
2147  * @brief Return the current driver for the device or @c NULL if there
2148  * is no driver currently attached
2149  */
2150 driver_t *
2151 device_get_driver(device_t dev)
2152 {
2153 	return (dev->driver);
2154 }
2155 
2156 /**
2157  * @brief Return the current devclass for the device or @c NULL if
2158  * there is none.
2159  */
2160 devclass_t
2161 device_get_devclass(device_t dev)
2162 {
2163 	return (dev->devclass);
2164 }
2165 
2166 /**
2167  * @brief Return the name of the device's devclass or @c NULL if there
2168  * is none.
2169  */
2170 const char *
2171 device_get_name(device_t dev)
2172 {
2173 	if (dev != NULL && dev->devclass)
2174 		return (devclass_get_name(dev->devclass));
2175 	return (NULL);
2176 }
2177 
2178 /**
2179  * @brief Return a string containing the device's devclass name
2180  * followed by an ascii representation of the device's unit number
2181  * (e.g. @c "foo2").
2182  */
2183 const char *
2184 device_get_nameunit(device_t dev)
2185 {
2186 	return (dev->nameunit);
2187 }
2188 
2189 /**
2190  * @brief Return the device's unit number.
2191  */
2192 int
2193 device_get_unit(device_t dev)
2194 {
2195 	return (dev->unit);
2196 }
2197 
2198 /**
2199  * @brief Return the device's description string
2200  */
2201 const char *
2202 device_get_desc(device_t dev)
2203 {
2204 	return (dev->desc);
2205 }
2206 
2207 /**
2208  * @brief Return the device's flags
2209  */
2210 uint32_t
2211 device_get_flags(device_t dev)
2212 {
2213 	return (dev->devflags);
2214 }
2215 
2216 struct sysctl_ctx_list *
2217 device_get_sysctl_ctx(device_t dev)
2218 {
2219 	return (&dev->sysctl_ctx);
2220 }
2221 
2222 struct sysctl_oid *
2223 device_get_sysctl_tree(device_t dev)
2224 {
2225 	return (dev->sysctl_tree);
2226 }
2227 
2228 /**
2229  * @brief Print the name of the device followed by a colon and a space
2230  *
2231  * @returns the number of characters printed
2232  */
2233 int
2234 device_print_prettyname(device_t dev)
2235 {
2236 	const char *name = device_get_name(dev);
2237 
2238 	if (name == NULL)
2239 		return (printf("unknown: "));
2240 	return (printf("%s%d: ", name, device_get_unit(dev)));
2241 }
2242 
2243 /**
2244  * @brief Print the name of the device followed by a colon, a space
2245  * and the result of calling vprintf() with the value of @p fmt and
2246  * the following arguments.
2247  *
2248  * @returns the number of characters printed
2249  */
2250 int
2251 device_printf(device_t dev, const char * fmt, ...)
2252 {
2253 	va_list ap;
2254 	int retval;
2255 
2256 	retval = device_print_prettyname(dev);
2257 	va_start(ap, fmt);
2258 	retval += vprintf(fmt, ap);
2259 	va_end(ap);
2260 	return (retval);
2261 }
2262 
2263 /**
2264  * @internal
2265  */
2266 static void
2267 device_set_desc_internal(device_t dev, const char* desc, int copy)
2268 {
2269 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2270 		free(dev->desc, M_BUS);
2271 		dev->flags &= ~DF_DESCMALLOCED;
2272 		dev->desc = NULL;
2273 	}
2274 
2275 	if (copy && desc) {
2276 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2277 		if (dev->desc) {
2278 			strcpy(dev->desc, desc);
2279 			dev->flags |= DF_DESCMALLOCED;
2280 		}
2281 	} else {
2282 		/* Avoid a -Wcast-qual warning */
2283 		dev->desc = (char *)(uintptr_t) desc;
2284 	}
2285 
2286 	bus_data_generation_update();
2287 }
2288 
2289 /**
2290  * @brief Set the device's description
2291  *
2292  * The value of @c desc should be a string constant that will not
2293  * change (at least until the description is changed in a subsequent
2294  * call to device_set_desc() or device_set_desc_copy()).
2295  */
2296 void
2297 device_set_desc(device_t dev, const char* desc)
2298 {
2299 	device_set_desc_internal(dev, desc, FALSE);
2300 }
2301 
2302 /**
2303  * @brief Set the device's description
2304  *
2305  * The string pointed to by @c desc is copied. Use this function if
2306  * the device description is generated, (e.g. with sprintf()).
2307  */
2308 void
2309 device_set_desc_copy(device_t dev, const char* desc)
2310 {
2311 	device_set_desc_internal(dev, desc, TRUE);
2312 }
2313 
2314 /**
2315  * @brief Set the device's flags
2316  */
2317 void
2318 device_set_flags(device_t dev, uint32_t flags)
2319 {
2320 	dev->devflags = flags;
2321 }
2322 
2323 /**
2324  * @brief Return the device's softc field
2325  *
2326  * The softc is allocated and zeroed when a driver is attached, based
2327  * on the size field of the driver.
2328  */
2329 void *
2330 device_get_softc(device_t dev)
2331 {
2332 	return (dev->softc);
2333 }
2334 
2335 /**
2336  * @brief Set the device's softc field
2337  *
2338  * Most drivers do not need to use this since the softc is allocated
2339  * automatically when the driver is attached.
2340  */
2341 void
2342 device_set_softc(device_t dev, void *softc)
2343 {
2344 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2345 		free(dev->softc, M_BUS_SC);
2346 	dev->softc = softc;
2347 	if (dev->softc)
2348 		dev->flags |= DF_EXTERNALSOFTC;
2349 	else
2350 		dev->flags &= ~DF_EXTERNALSOFTC;
2351 }
2352 
2353 /**
2354  * @brief Get the device's ivars field
2355  *
2356  * The ivars field is used by the parent device to store per-device
2357  * state (e.g. the physical location of the device or a list of
2358  * resources).
2359  */
2360 void *
2361 device_get_ivars(device_t dev)
2362 {
2363 
2364 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2365 	return (dev->ivars);
2366 }
2367 
2368 /**
2369  * @brief Set the device's ivars field
2370  */
2371 void
2372 device_set_ivars(device_t dev, void * ivars)
2373 {
2374 
2375 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2376 	dev->ivars = ivars;
2377 }
2378 
2379 /**
2380  * @brief Return the device's state
2381  */
2382 device_state_t
2383 device_get_state(device_t dev)
2384 {
2385 	return (dev->state);
2386 }
2387 
2388 /**
2389  * @brief Set the DF_ENABLED flag for the device
2390  */
2391 void
2392 device_enable(device_t dev)
2393 {
2394 	dev->flags |= DF_ENABLED;
2395 }
2396 
2397 /**
2398  * @brief Clear the DF_ENABLED flag for the device
2399  */
2400 void
2401 device_disable(device_t dev)
2402 {
2403 	dev->flags &= ~DF_ENABLED;
2404 }
2405 
2406 /**
2407  * @brief Increment the busy counter for the device
2408  */
2409 void
2410 device_busy(device_t dev)
2411 {
2412 	if (dev->state < DS_ATTACHED)
2413 		panic("device_busy: called for unattached device");
2414 	if (dev->busy == 0 && dev->parent)
2415 		device_busy(dev->parent);
2416 	dev->busy++;
2417 	dev->state = DS_BUSY;
2418 }
2419 
2420 /**
2421  * @brief Decrement the busy counter for the device
2422  */
2423 void
2424 device_unbusy(device_t dev)
2425 {
2426 	if (dev->state != DS_BUSY)
2427 		panic("device_unbusy: called for non-busy device %s",
2428 		    device_get_nameunit(dev));
2429 	dev->busy--;
2430 	if (dev->busy == 0) {
2431 		if (dev->parent)
2432 			device_unbusy(dev->parent);
2433 		dev->state = DS_ATTACHED;
2434 	}
2435 }
2436 
2437 /**
2438  * @brief Set the DF_QUIET flag for the device
2439  */
2440 void
2441 device_quiet(device_t dev)
2442 {
2443 	dev->flags |= DF_QUIET;
2444 }
2445 
2446 /**
2447  * @brief Clear the DF_QUIET flag for the device
2448  */
2449 void
2450 device_verbose(device_t dev)
2451 {
2452 	dev->flags &= ~DF_QUIET;
2453 }
2454 
2455 /**
2456  * @brief Return non-zero if the DF_QUIET flag is set on the device
2457  */
2458 int
2459 device_is_quiet(device_t dev)
2460 {
2461 	return ((dev->flags & DF_QUIET) != 0);
2462 }
2463 
2464 /**
2465  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2466  */
2467 int
2468 device_is_enabled(device_t dev)
2469 {
2470 	return ((dev->flags & DF_ENABLED) != 0);
2471 }
2472 
2473 /**
2474  * @brief Return non-zero if the device was successfully probed
2475  */
2476 int
2477 device_is_alive(device_t dev)
2478 {
2479 	return (dev->state >= DS_ALIVE);
2480 }
2481 
2482 /**
2483  * @brief Return non-zero if the device currently has a driver
2484  * attached to it
2485  */
2486 int
2487 device_is_attached(device_t dev)
2488 {
2489 	return (dev->state >= DS_ATTACHED);
2490 }
2491 
2492 /**
2493  * @brief Set the devclass of a device
2494  * @see devclass_add_device().
2495  */
2496 int
2497 device_set_devclass(device_t dev, const char *classname)
2498 {
2499 	devclass_t dc;
2500 	int error;
2501 
2502 	if (!classname) {
2503 		if (dev->devclass)
2504 			devclass_delete_device(dev->devclass, dev);
2505 		return (0);
2506 	}
2507 
2508 	if (dev->devclass) {
2509 		printf("device_set_devclass: device class already set\n");
2510 		return (EINVAL);
2511 	}
2512 
2513 	dc = devclass_find_internal(classname, NULL, TRUE);
2514 	if (!dc)
2515 		return (ENOMEM);
2516 
2517 	error = devclass_add_device(dc, dev);
2518 
2519 	bus_data_generation_update();
2520 	return (error);
2521 }
2522 
2523 /**
2524  * @brief Set the driver of a device
2525  *
2526  * @retval 0		success
2527  * @retval EBUSY	the device already has a driver attached
2528  * @retval ENOMEM	a memory allocation failure occurred
2529  */
2530 int
2531 device_set_driver(device_t dev, driver_t *driver)
2532 {
2533 	if (dev->state >= DS_ATTACHED)
2534 		return (EBUSY);
2535 
2536 	if (dev->driver == driver)
2537 		return (0);
2538 
2539 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2540 		free(dev->softc, M_BUS_SC);
2541 		dev->softc = NULL;
2542 	}
2543 	kobj_delete((kobj_t) dev, NULL);
2544 	dev->driver = driver;
2545 	if (driver) {
2546 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2547 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2548 			dev->softc = malloc(driver->size, M_BUS_SC,
2549 			    M_NOWAIT | M_ZERO);
2550 			if (!dev->softc) {
2551 				kobj_delete((kobj_t) dev, NULL);
2552 				kobj_init((kobj_t) dev, &null_class);
2553 				dev->driver = NULL;
2554 				return (ENOMEM);
2555 			}
2556 		}
2557 	} else {
2558 		kobj_init((kobj_t) dev, &null_class);
2559 	}
2560 
2561 	bus_data_generation_update();
2562 	return (0);
2563 }
2564 
2565 /**
2566  * @brief Probe a device, and return this status.
2567  *
2568  * This function is the core of the device autoconfiguration
2569  * system. Its purpose is to select a suitable driver for a device and
2570  * then call that driver to initialise the hardware appropriately. The
2571  * driver is selected by calling the DEVICE_PROBE() method of a set of
2572  * candidate drivers and then choosing the driver which returned the
2573  * best value. This driver is then attached to the device using
2574  * device_attach().
2575  *
2576  * The set of suitable drivers is taken from the list of drivers in
2577  * the parent device's devclass. If the device was originally created
2578  * with a specific class name (see device_add_child()), only drivers
2579  * with that name are probed, otherwise all drivers in the devclass
2580  * are probed. If no drivers return successful probe values in the
2581  * parent devclass, the search continues in the parent of that
2582  * devclass (see devclass_get_parent()) if any.
2583  *
2584  * @param dev		the device to initialise
2585  *
2586  * @retval 0		success
2587  * @retval ENXIO	no driver was found
2588  * @retval ENOMEM	memory allocation failure
2589  * @retval non-zero	some other unix error code
2590  * @retval -1		Device already attached
2591  */
2592 int
2593 device_probe(device_t dev)
2594 {
2595 	int error;
2596 
2597 	GIANT_REQUIRED;
2598 
2599 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2600 		return (-1);
2601 
2602 	if (!(dev->flags & DF_ENABLED)) {
2603 		if (bootverbose && device_get_name(dev) != NULL) {
2604 			device_print_prettyname(dev);
2605 			printf("not probed (disabled)\n");
2606 		}
2607 		return (-1);
2608 	}
2609 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2610 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2611 		    !(dev->flags & DF_DONENOMATCH)) {
2612 			BUS_PROBE_NOMATCH(dev->parent, dev);
2613 			devnomatch(dev);
2614 			dev->flags |= DF_DONENOMATCH;
2615 		}
2616 		return (error);
2617 	}
2618 	return (0);
2619 }
2620 
2621 /**
2622  * @brief Probe a device and attach a driver if possible
2623  *
2624  * calls device_probe() and attaches if that was successful.
2625  */
2626 int
2627 device_probe_and_attach(device_t dev)
2628 {
2629 	int error;
2630 
2631 	GIANT_REQUIRED;
2632 
2633 	error = device_probe(dev);
2634 	if (error == -1)
2635 		return (0);
2636 	else if (error != 0)
2637 		return (error);
2638 	return (device_attach(dev));
2639 }
2640 
2641 /**
2642  * @brief Attach a device driver to a device
2643  *
2644  * This function is a wrapper around the DEVICE_ATTACH() driver
2645  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2646  * device's sysctl tree, optionally prints a description of the device
2647  * and queues a notification event for user-based device management
2648  * services.
2649  *
2650  * Normally this function is only called internally from
2651  * device_probe_and_attach().
2652  *
2653  * @param dev		the device to initialise
2654  *
2655  * @retval 0		success
2656  * @retval ENXIO	no driver was found
2657  * @retval ENOMEM	memory allocation failure
2658  * @retval non-zero	some other unix error code
2659  */
2660 int
2661 device_attach(device_t dev)
2662 {
2663 	int error;
2664 
2665 	device_sysctl_init(dev);
2666 	if (!device_is_quiet(dev))
2667 		device_print_child(dev->parent, dev);
2668 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2669 		printf("device_attach: %s%d attach returned %d\n",
2670 		    dev->driver->name, dev->unit, error);
2671 		/* Unset the class; set in device_probe_child */
2672 		if (dev->devclass == NULL)
2673 			device_set_devclass(dev, NULL);
2674 		device_set_driver(dev, NULL);
2675 		device_sysctl_fini(dev);
2676 		dev->state = DS_NOTPRESENT;
2677 		return (error);
2678 	}
2679 	device_sysctl_update(dev);
2680 	dev->state = DS_ATTACHED;
2681 	dev->flags &= ~DF_DONENOMATCH;
2682 	devadded(dev);
2683 	return (0);
2684 }
2685 
2686 /**
2687  * @brief Detach a driver from a device
2688  *
2689  * This function is a wrapper around the DEVICE_DETACH() driver
2690  * method. If the call to DEVICE_DETACH() succeeds, it calls
2691  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2692  * notification event for user-based device management services and
2693  * cleans up the device's sysctl tree.
2694  *
2695  * @param dev		the device to un-initialise
2696  *
2697  * @retval 0		success
2698  * @retval ENXIO	no driver was found
2699  * @retval ENOMEM	memory allocation failure
2700  * @retval non-zero	some other unix error code
2701  */
2702 int
2703 device_detach(device_t dev)
2704 {
2705 	int error;
2706 
2707 	GIANT_REQUIRED;
2708 
2709 	PDEBUG(("%s", DEVICENAME(dev)));
2710 	if (dev->state == DS_BUSY)
2711 		return (EBUSY);
2712 	if (dev->state != DS_ATTACHED)
2713 		return (0);
2714 
2715 	if ((error = DEVICE_DETACH(dev)) != 0)
2716 		return (error);
2717 	devremoved(dev);
2718 	if (!device_is_quiet(dev))
2719 		device_printf(dev, "detached\n");
2720 	if (dev->parent)
2721 		BUS_CHILD_DETACHED(dev->parent, dev);
2722 
2723 	if (!(dev->flags & DF_FIXEDCLASS))
2724 		devclass_delete_device(dev->devclass, dev);
2725 
2726 	dev->state = DS_NOTPRESENT;
2727 	device_set_driver(dev, NULL);
2728 	device_set_desc(dev, NULL);
2729 	device_sysctl_fini(dev);
2730 
2731 	return (0);
2732 }
2733 
2734 /**
2735  * @brief Tells a driver to quiesce itself.
2736  *
2737  * This function is a wrapper around the DEVICE_QUIESCE() driver
2738  * method. If the call to DEVICE_QUIESCE() succeeds.
2739  *
2740  * @param dev		the device to quiesce
2741  *
2742  * @retval 0		success
2743  * @retval ENXIO	no driver was found
2744  * @retval ENOMEM	memory allocation failure
2745  * @retval non-zero	some other unix error code
2746  */
2747 int
2748 device_quiesce(device_t dev)
2749 {
2750 
2751 	PDEBUG(("%s", DEVICENAME(dev)));
2752 	if (dev->state == DS_BUSY)
2753 		return (EBUSY);
2754 	if (dev->state != DS_ATTACHED)
2755 		return (0);
2756 
2757 	return (DEVICE_QUIESCE(dev));
2758 }
2759 
2760 /**
2761  * @brief Notify a device of system shutdown
2762  *
2763  * This function calls the DEVICE_SHUTDOWN() driver method if the
2764  * device currently has an attached driver.
2765  *
2766  * @returns the value returned by DEVICE_SHUTDOWN()
2767  */
2768 int
2769 device_shutdown(device_t dev)
2770 {
2771 	if (dev->state < DS_ATTACHED)
2772 		return (0);
2773 	return (DEVICE_SHUTDOWN(dev));
2774 }
2775 
2776 /**
2777  * @brief Set the unit number of a device
2778  *
2779  * This function can be used to override the unit number used for a
2780  * device (e.g. to wire a device to a pre-configured unit number).
2781  */
2782 int
2783 device_set_unit(device_t dev, int unit)
2784 {
2785 	devclass_t dc;
2786 	int err;
2787 
2788 	dc = device_get_devclass(dev);
2789 	if (unit < dc->maxunit && dc->devices[unit])
2790 		return (EBUSY);
2791 	err = devclass_delete_device(dc, dev);
2792 	if (err)
2793 		return (err);
2794 	dev->unit = unit;
2795 	err = devclass_add_device(dc, dev);
2796 	if (err)
2797 		return (err);
2798 
2799 	bus_data_generation_update();
2800 	return (0);
2801 }
2802 
2803 /*======================================*/
2804 /*
2805  * Some useful method implementations to make life easier for bus drivers.
2806  */
2807 
2808 /**
2809  * @brief Initialise a resource list.
2810  *
2811  * @param rl		the resource list to initialise
2812  */
2813 void
2814 resource_list_init(struct resource_list *rl)
2815 {
2816 	STAILQ_INIT(rl);
2817 }
2818 
2819 /**
2820  * @brief Reclaim memory used by a resource list.
2821  *
2822  * This function frees the memory for all resource entries on the list
2823  * (if any).
2824  *
2825  * @param rl		the resource list to free
2826  */
2827 void
2828 resource_list_free(struct resource_list *rl)
2829 {
2830 	struct resource_list_entry *rle;
2831 
2832 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2833 		if (rle->res)
2834 			panic("resource_list_free: resource entry is busy");
2835 		STAILQ_REMOVE_HEAD(rl, link);
2836 		free(rle, M_BUS);
2837 	}
2838 }
2839 
2840 /**
2841  * @brief Add a resource entry.
2842  *
2843  * This function adds a resource entry using the given @p type, @p
2844  * start, @p end and @p count values. A rid value is chosen by
2845  * searching sequentially for the first unused rid starting at zero.
2846  *
2847  * @param rl		the resource list to edit
2848  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2849  * @param start		the start address of the resource
2850  * @param end		the end address of the resource
2851  * @param count		XXX end-start+1
2852  */
2853 int
2854 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2855     u_long end, u_long count)
2856 {
2857 	int rid;
2858 
2859 	rid = 0;
2860 	while (resource_list_find(rl, type, rid) != NULL)
2861 		rid++;
2862 	resource_list_add(rl, type, rid, start, end, count);
2863 	return (rid);
2864 }
2865 
2866 /**
2867  * @brief Add or modify a resource entry.
2868  *
2869  * If an existing entry exists with the same type and rid, it will be
2870  * modified using the given values of @p start, @p end and @p
2871  * count. If no entry exists, a new one will be created using the
2872  * given values.  The resource list entry that matches is then returned.
2873  *
2874  * @param rl		the resource list to edit
2875  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2876  * @param rid		the resource identifier
2877  * @param start		the start address of the resource
2878  * @param end		the end address of the resource
2879  * @param count		XXX end-start+1
2880  */
2881 struct resource_list_entry *
2882 resource_list_add(struct resource_list *rl, int type, int rid,
2883     u_long start, u_long end, u_long count)
2884 {
2885 	struct resource_list_entry *rle;
2886 
2887 	rle = resource_list_find(rl, type, rid);
2888 	if (!rle) {
2889 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2890 		    M_NOWAIT);
2891 		if (!rle)
2892 			panic("resource_list_add: can't record entry");
2893 		STAILQ_INSERT_TAIL(rl, rle, link);
2894 		rle->type = type;
2895 		rle->rid = rid;
2896 		rle->res = NULL;
2897 		rle->flags = 0;
2898 	}
2899 
2900 	if (rle->res)
2901 		panic("resource_list_add: resource entry is busy");
2902 
2903 	rle->start = start;
2904 	rle->end = end;
2905 	rle->count = count;
2906 	return (rle);
2907 }
2908 
2909 /**
2910  * @brief Determine if a resource entry is busy.
2911  *
2912  * Returns true if a resource entry is busy meaning that it has an
2913  * associated resource that is not an unallocated "reserved" resource.
2914  *
2915  * @param rl		the resource list to search
2916  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2917  * @param rid		the resource identifier
2918  *
2919  * @returns Non-zero if the entry is busy, zero otherwise.
2920  */
2921 int
2922 resource_list_busy(struct resource_list *rl, int type, int rid)
2923 {
2924 	struct resource_list_entry *rle;
2925 
2926 	rle = resource_list_find(rl, type, rid);
2927 	if (rle == NULL || rle->res == NULL)
2928 		return (0);
2929 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2930 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2931 		    ("reserved resource is active"));
2932 		return (0);
2933 	}
2934 	return (1);
2935 }
2936 
2937 /**
2938  * @brief Find a resource entry by type and rid.
2939  *
2940  * @param rl		the resource list to search
2941  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2942  * @param rid		the resource identifier
2943  *
2944  * @returns the resource entry pointer or NULL if there is no such
2945  * entry.
2946  */
2947 struct resource_list_entry *
2948 resource_list_find(struct resource_list *rl, int type, int rid)
2949 {
2950 	struct resource_list_entry *rle;
2951 
2952 	STAILQ_FOREACH(rle, rl, link) {
2953 		if (rle->type == type && rle->rid == rid)
2954 			return (rle);
2955 	}
2956 	return (NULL);
2957 }
2958 
2959 /**
2960  * @brief Delete a resource entry.
2961  *
2962  * @param rl		the resource list to edit
2963  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2964  * @param rid		the resource identifier
2965  */
2966 void
2967 resource_list_delete(struct resource_list *rl, int type, int rid)
2968 {
2969 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2970 
2971 	if (rle) {
2972 		if (rle->res != NULL)
2973 			panic("resource_list_delete: resource has not been released");
2974 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2975 		free(rle, M_BUS);
2976 	}
2977 }
2978 
2979 /**
2980  * @brief Allocate a reserved resource
2981  *
2982  * This can be used by busses to force the allocation of resources
2983  * that are always active in the system even if they are not allocated
2984  * by a driver (e.g. PCI BARs).  This function is usually called when
2985  * adding a new child to the bus.  The resource is allocated from the
2986  * parent bus when it is reserved.  The resource list entry is marked
2987  * with RLE_RESERVED to note that it is a reserved resource.
2988  *
2989  * Subsequent attempts to allocate the resource with
2990  * resource_list_alloc() will succeed the first time and will set
2991  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2992  * resource that has been allocated is released with
2993  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2994  * the actual resource remains allocated.  The resource can be released to
2995  * the parent bus by calling resource_list_unreserve().
2996  *
2997  * @param rl		the resource list to allocate from
2998  * @param bus		the parent device of @p child
2999  * @param child		the device for which the resource is being reserved
3000  * @param type		the type of resource to allocate
3001  * @param rid		a pointer to the resource identifier
3002  * @param start		hint at the start of the resource range - pass
3003  *			@c 0UL for any start address
3004  * @param end		hint at the end of the resource range - pass
3005  *			@c ~0UL for any end address
3006  * @param count		hint at the size of range required - pass @c 1
3007  *			for any size
3008  * @param flags		any extra flags to control the resource
3009  *			allocation - see @c RF_XXX flags in
3010  *			<sys/rman.h> for details
3011  *
3012  * @returns		the resource which was allocated or @c NULL if no
3013  *			resource could be allocated
3014  */
3015 struct resource *
3016 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3017     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3018 {
3019 	struct resource_list_entry *rle = NULL;
3020 	int passthrough = (device_get_parent(child) != bus);
3021 	struct resource *r;
3022 
3023 	if (passthrough)
3024 		panic(
3025     "resource_list_reserve() should only be called for direct children");
3026 	if (flags & RF_ACTIVE)
3027 		panic(
3028     "resource_list_reserve() should only reserve inactive resources");
3029 
3030 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3031 	    flags);
3032 	if (r != NULL) {
3033 		rle = resource_list_find(rl, type, *rid);
3034 		rle->flags |= RLE_RESERVED;
3035 	}
3036 	return (r);
3037 }
3038 
3039 /**
3040  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3041  *
3042  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3043  * and passing the allocation up to the parent of @p bus. This assumes
3044  * that the first entry of @c device_get_ivars(child) is a struct
3045  * resource_list. This also handles 'passthrough' allocations where a
3046  * child is a remote descendant of bus by passing the allocation up to
3047  * the parent of bus.
3048  *
3049  * Typically, a bus driver would store a list of child resources
3050  * somewhere in the child device's ivars (see device_get_ivars()) and
3051  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3052  * then call resource_list_alloc() to perform the allocation.
3053  *
3054  * @param rl		the resource list to allocate from
3055  * @param bus		the parent device of @p child
3056  * @param child		the device which is requesting an allocation
3057  * @param type		the type of resource to allocate
3058  * @param rid		a pointer to the resource identifier
3059  * @param start		hint at the start of the resource range - pass
3060  *			@c 0UL for any start address
3061  * @param end		hint at the end of the resource range - pass
3062  *			@c ~0UL for any end address
3063  * @param count		hint at the size of range required - pass @c 1
3064  *			for any size
3065  * @param flags		any extra flags to control the resource
3066  *			allocation - see @c RF_XXX flags in
3067  *			<sys/rman.h> for details
3068  *
3069  * @returns		the resource which was allocated or @c NULL if no
3070  *			resource could be allocated
3071  */
3072 struct resource *
3073 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3074     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3075 {
3076 	struct resource_list_entry *rle = NULL;
3077 	int passthrough = (device_get_parent(child) != bus);
3078 	int isdefault = (start == 0UL && end == ~0UL);
3079 
3080 	if (passthrough) {
3081 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3082 		    type, rid, start, end, count, flags));
3083 	}
3084 
3085 	rle = resource_list_find(rl, type, *rid);
3086 
3087 	if (!rle)
3088 		return (NULL);		/* no resource of that type/rid */
3089 
3090 	if (rle->res) {
3091 		if (rle->flags & RLE_RESERVED) {
3092 			if (rle->flags & RLE_ALLOCATED)
3093 				return (NULL);
3094 			if ((flags & RF_ACTIVE) &&
3095 			    bus_activate_resource(child, type, *rid,
3096 			    rle->res) != 0)
3097 				return (NULL);
3098 			rle->flags |= RLE_ALLOCATED;
3099 			return (rle->res);
3100 		}
3101 		panic("resource_list_alloc: resource entry is busy");
3102 	}
3103 
3104 	if (isdefault) {
3105 		start = rle->start;
3106 		count = ulmax(count, rle->count);
3107 		end = ulmax(rle->end, start + count - 1);
3108 	}
3109 
3110 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3111 	    type, rid, start, end, count, flags);
3112 
3113 	/*
3114 	 * Record the new range.
3115 	 */
3116 	if (rle->res) {
3117 		rle->start = rman_get_start(rle->res);
3118 		rle->end = rman_get_end(rle->res);
3119 		rle->count = count;
3120 	}
3121 
3122 	return (rle->res);
3123 }
3124 
3125 /**
3126  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3127  *
3128  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3129  * used with resource_list_alloc().
3130  *
3131  * @param rl		the resource list which was allocated from
3132  * @param bus		the parent device of @p child
3133  * @param child		the device which is requesting a release
3134  * @param type		the type of resource to release
3135  * @param rid		the resource identifier
3136  * @param res		the resource to release
3137  *
3138  * @retval 0		success
3139  * @retval non-zero	a standard unix error code indicating what
3140  *			error condition prevented the operation
3141  */
3142 int
3143 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3144     int type, int rid, struct resource *res)
3145 {
3146 	struct resource_list_entry *rle = NULL;
3147 	int passthrough = (device_get_parent(child) != bus);
3148 	int error;
3149 
3150 	if (passthrough) {
3151 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3152 		    type, rid, res));
3153 	}
3154 
3155 	rle = resource_list_find(rl, type, rid);
3156 
3157 	if (!rle)
3158 		panic("resource_list_release: can't find resource");
3159 	if (!rle->res)
3160 		panic("resource_list_release: resource entry is not busy");
3161 	if (rle->flags & RLE_RESERVED) {
3162 		if (rle->flags & RLE_ALLOCATED) {
3163 			if (rman_get_flags(res) & RF_ACTIVE) {
3164 				error = bus_deactivate_resource(child, type,
3165 				    rid, res);
3166 				if (error)
3167 					return (error);
3168 			}
3169 			rle->flags &= ~RLE_ALLOCATED;
3170 			return (0);
3171 		}
3172 		return (EINVAL);
3173 	}
3174 
3175 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3176 	    type, rid, res);
3177 	if (error)
3178 		return (error);
3179 
3180 	rle->res = NULL;
3181 	return (0);
3182 }
3183 
3184 /**
3185  * @brief Fully release a reserved resource
3186  *
3187  * Fully releases a resouce reserved via resource_list_reserve().
3188  *
3189  * @param rl		the resource list which was allocated from
3190  * @param bus		the parent device of @p child
3191  * @param child		the device whose reserved resource is being released
3192  * @param type		the type of resource to release
3193  * @param rid		the resource identifier
3194  * @param res		the resource to release
3195  *
3196  * @retval 0		success
3197  * @retval non-zero	a standard unix error code indicating what
3198  *			error condition prevented the operation
3199  */
3200 int
3201 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3202     int type, int rid)
3203 {
3204 	struct resource_list_entry *rle = NULL;
3205 	int passthrough = (device_get_parent(child) != bus);
3206 
3207 	if (passthrough)
3208 		panic(
3209     "resource_list_unreserve() should only be called for direct children");
3210 
3211 	rle = resource_list_find(rl, type, rid);
3212 
3213 	if (!rle)
3214 		panic("resource_list_unreserve: can't find resource");
3215 	if (!(rle->flags & RLE_RESERVED))
3216 		return (EINVAL);
3217 	if (rle->flags & RLE_ALLOCATED)
3218 		return (EBUSY);
3219 	rle->flags &= ~RLE_RESERVED;
3220 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3221 }
3222 
3223 /**
3224  * @brief Print a description of resources in a resource list
3225  *
3226  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3227  * The name is printed if at least one resource of the given type is available.
3228  * The format is used to print resource start and end.
3229  *
3230  * @param rl		the resource list to print
3231  * @param name		the name of @p type, e.g. @c "memory"
3232  * @param type		type type of resource entry to print
3233  * @param format	printf(9) format string to print resource
3234  *			start and end values
3235  *
3236  * @returns		the number of characters printed
3237  */
3238 int
3239 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3240     const char *format)
3241 {
3242 	struct resource_list_entry *rle;
3243 	int printed, retval;
3244 
3245 	printed = 0;
3246 	retval = 0;
3247 	/* Yes, this is kinda cheating */
3248 	STAILQ_FOREACH(rle, rl, link) {
3249 		if (rle->type == type) {
3250 			if (printed == 0)
3251 				retval += printf(" %s ", name);
3252 			else
3253 				retval += printf(",");
3254 			printed++;
3255 			retval += printf(format, rle->start);
3256 			if (rle->count > 1) {
3257 				retval += printf("-");
3258 				retval += printf(format, rle->start +
3259 						 rle->count - 1);
3260 			}
3261 		}
3262 	}
3263 	return (retval);
3264 }
3265 
3266 /**
3267  * @brief Releases all the resources in a list.
3268  *
3269  * @param rl		The resource list to purge.
3270  *
3271  * @returns		nothing
3272  */
3273 void
3274 resource_list_purge(struct resource_list *rl)
3275 {
3276 	struct resource_list_entry *rle;
3277 
3278 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3279 		if (rle->res)
3280 			bus_release_resource(rman_get_device(rle->res),
3281 			    rle->type, rle->rid, rle->res);
3282 		STAILQ_REMOVE_HEAD(rl, link);
3283 		free(rle, M_BUS);
3284 	}
3285 }
3286 
3287 device_t
3288 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3289 {
3290 
3291 	return (device_add_child_ordered(dev, order, name, unit));
3292 }
3293 
3294 /**
3295  * @brief Helper function for implementing DEVICE_PROBE()
3296  *
3297  * This function can be used to help implement the DEVICE_PROBE() for
3298  * a bus (i.e. a device which has other devices attached to it). It
3299  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3300  * devclass.
3301  */
3302 int
3303 bus_generic_probe(device_t dev)
3304 {
3305 	devclass_t dc = dev->devclass;
3306 	driverlink_t dl;
3307 
3308 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3309 		/*
3310 		 * If this driver's pass is too high, then ignore it.
3311 		 * For most drivers in the default pass, this will
3312 		 * never be true.  For early-pass drivers they will
3313 		 * only call the identify routines of eligible drivers
3314 		 * when this routine is called.  Drivers for later
3315 		 * passes should have their identify routines called
3316 		 * on early-pass busses during BUS_NEW_PASS().
3317 		 */
3318 		if (dl->pass > bus_current_pass)
3319 			continue;
3320 		DEVICE_IDENTIFY(dl->driver, dev);
3321 	}
3322 
3323 	return (0);
3324 }
3325 
3326 /**
3327  * @brief Helper function for implementing DEVICE_ATTACH()
3328  *
3329  * This function can be used to help implement the DEVICE_ATTACH() for
3330  * a bus. It calls device_probe_and_attach() for each of the device's
3331  * children.
3332  */
3333 int
3334 bus_generic_attach(device_t dev)
3335 {
3336 	device_t child;
3337 
3338 	TAILQ_FOREACH(child, &dev->children, link) {
3339 		device_probe_and_attach(child);
3340 	}
3341 
3342 	return (0);
3343 }
3344 
3345 /**
3346  * @brief Helper function for implementing DEVICE_DETACH()
3347  *
3348  * This function can be used to help implement the DEVICE_DETACH() for
3349  * a bus. It calls device_detach() for each of the device's
3350  * children.
3351  */
3352 int
3353 bus_generic_detach(device_t dev)
3354 {
3355 	device_t child;
3356 	int error;
3357 
3358 	if (dev->state != DS_ATTACHED)
3359 		return (EBUSY);
3360 
3361 	TAILQ_FOREACH(child, &dev->children, link) {
3362 		if ((error = device_detach(child)) != 0)
3363 			return (error);
3364 	}
3365 
3366 	return (0);
3367 }
3368 
3369 /**
3370  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3371  *
3372  * This function can be used to help implement the DEVICE_SHUTDOWN()
3373  * for a bus. It calls device_shutdown() for each of the device's
3374  * children.
3375  */
3376 int
3377 bus_generic_shutdown(device_t dev)
3378 {
3379 	device_t child;
3380 
3381 	TAILQ_FOREACH(child, &dev->children, link) {
3382 		device_shutdown(child);
3383 	}
3384 
3385 	return (0);
3386 }
3387 
3388 /**
3389  * @brief Helper function for implementing DEVICE_SUSPEND()
3390  *
3391  * This function can be used to help implement the DEVICE_SUSPEND()
3392  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3393  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3394  * operation is aborted and any devices which were suspended are
3395  * resumed immediately by calling their DEVICE_RESUME() methods.
3396  */
3397 int
3398 bus_generic_suspend(device_t dev)
3399 {
3400 	int		error;
3401 	device_t	child, child2;
3402 
3403 	TAILQ_FOREACH(child, &dev->children, link) {
3404 		error = DEVICE_SUSPEND(child);
3405 		if (error) {
3406 			for (child2 = TAILQ_FIRST(&dev->children);
3407 			     child2 && child2 != child;
3408 			     child2 = TAILQ_NEXT(child2, link))
3409 				DEVICE_RESUME(child2);
3410 			return (error);
3411 		}
3412 	}
3413 	return (0);
3414 }
3415 
3416 /**
3417  * @brief Helper function for implementing DEVICE_RESUME()
3418  *
3419  * This function can be used to help implement the DEVICE_RESUME() for
3420  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3421  */
3422 int
3423 bus_generic_resume(device_t dev)
3424 {
3425 	device_t	child;
3426 
3427 	TAILQ_FOREACH(child, &dev->children, link) {
3428 		DEVICE_RESUME(child);
3429 		/* if resume fails, there's nothing we can usefully do... */
3430 	}
3431 	return (0);
3432 }
3433 
3434 /**
3435  * @brief Helper function for implementing BUS_PRINT_CHILD().
3436  *
3437  * This function prints the first part of the ascii representation of
3438  * @p child, including its name, unit and description (if any - see
3439  * device_set_desc()).
3440  *
3441  * @returns the number of characters printed
3442  */
3443 int
3444 bus_print_child_header(device_t dev, device_t child)
3445 {
3446 	int	retval = 0;
3447 
3448 	if (device_get_desc(child)) {
3449 		retval += device_printf(child, "<%s>", device_get_desc(child));
3450 	} else {
3451 		retval += printf("%s", device_get_nameunit(child));
3452 	}
3453 
3454 	return (retval);
3455 }
3456 
3457 /**
3458  * @brief Helper function for implementing BUS_PRINT_CHILD().
3459  *
3460  * This function prints the last part of the ascii representation of
3461  * @p child, which consists of the string @c " on " followed by the
3462  * name and unit of the @p dev.
3463  *
3464  * @returns the number of characters printed
3465  */
3466 int
3467 bus_print_child_footer(device_t dev, device_t child)
3468 {
3469 	return (printf(" on %s\n", device_get_nameunit(dev)));
3470 }
3471 
3472 /**
3473  * @brief Helper function for implementing BUS_PRINT_CHILD().
3474  *
3475  * This function simply calls bus_print_child_header() followed by
3476  * bus_print_child_footer().
3477  *
3478  * @returns the number of characters printed
3479  */
3480 int
3481 bus_generic_print_child(device_t dev, device_t child)
3482 {
3483 	int	retval = 0;
3484 
3485 	retval += bus_print_child_header(dev, child);
3486 	retval += bus_print_child_footer(dev, child);
3487 
3488 	return (retval);
3489 }
3490 
3491 /**
3492  * @brief Stub function for implementing BUS_READ_IVAR().
3493  *
3494  * @returns ENOENT
3495  */
3496 int
3497 bus_generic_read_ivar(device_t dev, device_t child, int index,
3498     uintptr_t * result)
3499 {
3500 	return (ENOENT);
3501 }
3502 
3503 /**
3504  * @brief Stub function for implementing BUS_WRITE_IVAR().
3505  *
3506  * @returns ENOENT
3507  */
3508 int
3509 bus_generic_write_ivar(device_t dev, device_t child, int index,
3510     uintptr_t value)
3511 {
3512 	return (ENOENT);
3513 }
3514 
3515 /**
3516  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3517  *
3518  * @returns NULL
3519  */
3520 struct resource_list *
3521 bus_generic_get_resource_list(device_t dev, device_t child)
3522 {
3523 	return (NULL);
3524 }
3525 
3526 /**
3527  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3528  *
3529  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3530  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3531  * and then calls device_probe_and_attach() for each unattached child.
3532  */
3533 void
3534 bus_generic_driver_added(device_t dev, driver_t *driver)
3535 {
3536 	device_t child;
3537 
3538 	DEVICE_IDENTIFY(driver, dev);
3539 	TAILQ_FOREACH(child, &dev->children, link) {
3540 		if (child->state == DS_NOTPRESENT ||
3541 		    (child->flags & DF_REBID))
3542 			device_probe_and_attach(child);
3543 	}
3544 }
3545 
3546 /**
3547  * @brief Helper function for implementing BUS_NEW_PASS().
3548  *
3549  * This implementing of BUS_NEW_PASS() first calls the identify
3550  * routines for any drivers that probe at the current pass.  Then it
3551  * walks the list of devices for this bus.  If a device is already
3552  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3553  * device is not already attached, it attempts to attach a driver to
3554  * it.
3555  */
3556 void
3557 bus_generic_new_pass(device_t dev)
3558 {
3559 	driverlink_t dl;
3560 	devclass_t dc;
3561 	device_t child;
3562 
3563 	dc = dev->devclass;
3564 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3565 		if (dl->pass == bus_current_pass)
3566 			DEVICE_IDENTIFY(dl->driver, dev);
3567 	}
3568 	TAILQ_FOREACH(child, &dev->children, link) {
3569 		if (child->state >= DS_ATTACHED)
3570 			BUS_NEW_PASS(child);
3571 		else if (child->state == DS_NOTPRESENT)
3572 			device_probe_and_attach(child);
3573 	}
3574 }
3575 
3576 /**
3577  * @brief Helper function for implementing BUS_SETUP_INTR().
3578  *
3579  * This simple implementation of BUS_SETUP_INTR() simply calls the
3580  * BUS_SETUP_INTR() method of the parent of @p dev.
3581  */
3582 int
3583 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3584     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3585     void **cookiep)
3586 {
3587 	/* Propagate up the bus hierarchy until someone handles it. */
3588 	if (dev->parent)
3589 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3590 		    filter, intr, arg, cookiep));
3591 	return (EINVAL);
3592 }
3593 
3594 /**
3595  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3596  *
3597  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3598  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3599  */
3600 int
3601 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3602     void *cookie)
3603 {
3604 	/* Propagate up the bus hierarchy until someone handles it. */
3605 	if (dev->parent)
3606 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3607 	return (EINVAL);
3608 }
3609 
3610 /**
3611  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3612  *
3613  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3614  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3615  */
3616 struct resource *
3617 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3618     u_long start, u_long end, u_long count, u_int flags)
3619 {
3620 	/* Propagate up the bus hierarchy until someone handles it. */
3621 	if (dev->parent)
3622 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3623 		    start, end, count, flags));
3624 	return (NULL);
3625 }
3626 
3627 /**
3628  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3629  *
3630  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3631  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3632  */
3633 int
3634 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3635     struct resource *r)
3636 {
3637 	/* Propagate up the bus hierarchy until someone handles it. */
3638 	if (dev->parent)
3639 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3640 		    r));
3641 	return (EINVAL);
3642 }
3643 
3644 /**
3645  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3646  *
3647  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3648  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3649  */
3650 int
3651 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3652     struct resource *r)
3653 {
3654 	/* Propagate up the bus hierarchy until someone handles it. */
3655 	if (dev->parent)
3656 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3657 		    r));
3658 	return (EINVAL);
3659 }
3660 
3661 /**
3662  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3663  *
3664  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3665  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3666  */
3667 int
3668 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3669     int rid, struct resource *r)
3670 {
3671 	/* Propagate up the bus hierarchy until someone handles it. */
3672 	if (dev->parent)
3673 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3674 		    r));
3675 	return (EINVAL);
3676 }
3677 
3678 /**
3679  * @brief Helper function for implementing BUS_BIND_INTR().
3680  *
3681  * This simple implementation of BUS_BIND_INTR() simply calls the
3682  * BUS_BIND_INTR() method of the parent of @p dev.
3683  */
3684 int
3685 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3686     int cpu)
3687 {
3688 
3689 	/* Propagate up the bus hierarchy until someone handles it. */
3690 	if (dev->parent)
3691 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3692 	return (EINVAL);
3693 }
3694 
3695 /**
3696  * @brief Helper function for implementing BUS_CONFIG_INTR().
3697  *
3698  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3699  * BUS_CONFIG_INTR() method of the parent of @p dev.
3700  */
3701 int
3702 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3703     enum intr_polarity pol)
3704 {
3705 
3706 	/* Propagate up the bus hierarchy until someone handles it. */
3707 	if (dev->parent)
3708 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3709 	return (EINVAL);
3710 }
3711 
3712 /**
3713  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3714  *
3715  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3716  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3717  */
3718 int
3719 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3720     void *cookie, const char *descr)
3721 {
3722 
3723 	/* Propagate up the bus hierarchy until someone handles it. */
3724 	if (dev->parent)
3725 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3726 		    descr));
3727 	return (EINVAL);
3728 }
3729 
3730 /**
3731  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3732  *
3733  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3734  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3735  */
3736 bus_dma_tag_t
3737 bus_generic_get_dma_tag(device_t dev, device_t child)
3738 {
3739 
3740 	/* Propagate up the bus hierarchy until someone handles it. */
3741 	if (dev->parent != NULL)
3742 		return (BUS_GET_DMA_TAG(dev->parent, child));
3743 	return (NULL);
3744 }
3745 
3746 /**
3747  * @brief Helper function for implementing BUS_GET_RESOURCE().
3748  *
3749  * This implementation of BUS_GET_RESOURCE() uses the
3750  * resource_list_find() function to do most of the work. It calls
3751  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3752  * search.
3753  */
3754 int
3755 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3756     u_long *startp, u_long *countp)
3757 {
3758 	struct resource_list *		rl = NULL;
3759 	struct resource_list_entry *	rle = NULL;
3760 
3761 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3762 	if (!rl)
3763 		return (EINVAL);
3764 
3765 	rle = resource_list_find(rl, type, rid);
3766 	if (!rle)
3767 		return (ENOENT);
3768 
3769 	if (startp)
3770 		*startp = rle->start;
3771 	if (countp)
3772 		*countp = rle->count;
3773 
3774 	return (0);
3775 }
3776 
3777 /**
3778  * @brief Helper function for implementing BUS_SET_RESOURCE().
3779  *
3780  * This implementation of BUS_SET_RESOURCE() uses the
3781  * resource_list_add() function to do most of the work. It calls
3782  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3783  * edit.
3784  */
3785 int
3786 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3787     u_long start, u_long count)
3788 {
3789 	struct resource_list *		rl = NULL;
3790 
3791 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3792 	if (!rl)
3793 		return (EINVAL);
3794 
3795 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3796 
3797 	return (0);
3798 }
3799 
3800 /**
3801  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3802  *
3803  * This implementation of BUS_DELETE_RESOURCE() uses the
3804  * resource_list_delete() function to do most of the work. It calls
3805  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3806  * edit.
3807  */
3808 void
3809 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3810 {
3811 	struct resource_list *		rl = NULL;
3812 
3813 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3814 	if (!rl)
3815 		return;
3816 
3817 	resource_list_delete(rl, type, rid);
3818 
3819 	return;
3820 }
3821 
3822 /**
3823  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3824  *
3825  * This implementation of BUS_RELEASE_RESOURCE() uses the
3826  * resource_list_release() function to do most of the work. It calls
3827  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3828  */
3829 int
3830 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3831     int rid, struct resource *r)
3832 {
3833 	struct resource_list *		rl = NULL;
3834 
3835 	if (device_get_parent(child) != dev)
3836 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3837 		    type, rid, r));
3838 
3839 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3840 	if (!rl)
3841 		return (EINVAL);
3842 
3843 	return (resource_list_release(rl, dev, child, type, rid, r));
3844 }
3845 
3846 /**
3847  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3848  *
3849  * This implementation of BUS_ALLOC_RESOURCE() uses the
3850  * resource_list_alloc() function to do most of the work. It calls
3851  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3852  */
3853 struct resource *
3854 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3855     int *rid, u_long start, u_long end, u_long count, u_int flags)
3856 {
3857 	struct resource_list *		rl = NULL;
3858 
3859 	if (device_get_parent(child) != dev)
3860 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3861 		    type, rid, start, end, count, flags));
3862 
3863 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3864 	if (!rl)
3865 		return (NULL);
3866 
3867 	return (resource_list_alloc(rl, dev, child, type, rid,
3868 	    start, end, count, flags));
3869 }
3870 
3871 /**
3872  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3873  *
3874  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3875  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3876  */
3877 int
3878 bus_generic_child_present(device_t dev, device_t child)
3879 {
3880 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3881 }
3882 
3883 /*
3884  * Some convenience functions to make it easier for drivers to use the
3885  * resource-management functions.  All these really do is hide the
3886  * indirection through the parent's method table, making for slightly
3887  * less-wordy code.  In the future, it might make sense for this code
3888  * to maintain some sort of a list of resources allocated by each device.
3889  */
3890 
3891 int
3892 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3893     struct resource **res)
3894 {
3895 	int i;
3896 
3897 	for (i = 0; rs[i].type != -1; i++)
3898 		res[i] = NULL;
3899 	for (i = 0; rs[i].type != -1; i++) {
3900 		res[i] = bus_alloc_resource_any(dev,
3901 		    rs[i].type, &rs[i].rid, rs[i].flags);
3902 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3903 			bus_release_resources(dev, rs, res);
3904 			return (ENXIO);
3905 		}
3906 	}
3907 	return (0);
3908 }
3909 
3910 void
3911 bus_release_resources(device_t dev, const struct resource_spec *rs,
3912     struct resource **res)
3913 {
3914 	int i;
3915 
3916 	for (i = 0; rs[i].type != -1; i++)
3917 		if (res[i] != NULL) {
3918 			bus_release_resource(
3919 			    dev, rs[i].type, rs[i].rid, res[i]);
3920 			res[i] = NULL;
3921 		}
3922 }
3923 
3924 /**
3925  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3926  *
3927  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3928  * parent of @p dev.
3929  */
3930 struct resource *
3931 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3932     u_long count, u_int flags)
3933 {
3934 	if (dev->parent == NULL)
3935 		return (NULL);
3936 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3937 	    count, flags));
3938 }
3939 
3940 /**
3941  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3942  *
3943  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3944  * parent of @p dev.
3945  */
3946 int
3947 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3948 {
3949 	if (dev->parent == NULL)
3950 		return (EINVAL);
3951 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3952 }
3953 
3954 /**
3955  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3956  *
3957  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3958  * parent of @p dev.
3959  */
3960 int
3961 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3962 {
3963 	if (dev->parent == NULL)
3964 		return (EINVAL);
3965 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3966 }
3967 
3968 /**
3969  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3970  *
3971  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3972  * parent of @p dev.
3973  */
3974 int
3975 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3976 {
3977 	if (dev->parent == NULL)
3978 		return (EINVAL);
3979 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3980 }
3981 
3982 /**
3983  * @brief Wrapper function for BUS_SETUP_INTR().
3984  *
3985  * This function simply calls the BUS_SETUP_INTR() method of the
3986  * parent of @p dev.
3987  */
3988 int
3989 bus_setup_intr(device_t dev, struct resource *r, int flags,
3990     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3991 {
3992 	int error;
3993 
3994 	if (dev->parent == NULL)
3995 		return (EINVAL);
3996 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3997 	    arg, cookiep);
3998 	if (error != 0)
3999 		return (error);
4000 	if (handler != NULL && !(flags & INTR_MPSAFE))
4001 		device_printf(dev, "[GIANT-LOCKED]\n");
4002 	if (bootverbose && (flags & INTR_MPSAFE))
4003 		device_printf(dev, "[MPSAFE]\n");
4004 	if (filter != NULL) {
4005 		if (handler == NULL)
4006 			device_printf(dev, "[FILTER]\n");
4007 		else
4008 			device_printf(dev, "[FILTER+ITHREAD]\n");
4009 	} else
4010 		device_printf(dev, "[ITHREAD]\n");
4011 	return (0);
4012 }
4013 
4014 /**
4015  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4016  *
4017  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4018  * parent of @p dev.
4019  */
4020 int
4021 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4022 {
4023 	if (dev->parent == NULL)
4024 		return (EINVAL);
4025 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4026 }
4027 
4028 /**
4029  * @brief Wrapper function for BUS_BIND_INTR().
4030  *
4031  * This function simply calls the BUS_BIND_INTR() method of the
4032  * parent of @p dev.
4033  */
4034 int
4035 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4036 {
4037 	if (dev->parent == NULL)
4038 		return (EINVAL);
4039 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4040 }
4041 
4042 /**
4043  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4044  *
4045  * This function first formats the requested description into a
4046  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4047  * the parent of @p dev.
4048  */
4049 int
4050 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4051     const char *fmt, ...)
4052 {
4053 	va_list ap;
4054 	char descr[MAXCOMLEN + 1];
4055 
4056 	if (dev->parent == NULL)
4057 		return (EINVAL);
4058 	va_start(ap, fmt);
4059 	vsnprintf(descr, sizeof(descr), fmt, ap);
4060 	va_end(ap);
4061 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4062 }
4063 
4064 /**
4065  * @brief Wrapper function for BUS_SET_RESOURCE().
4066  *
4067  * This function simply calls the BUS_SET_RESOURCE() method of the
4068  * parent of @p dev.
4069  */
4070 int
4071 bus_set_resource(device_t dev, int type, int rid,
4072     u_long start, u_long count)
4073 {
4074 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4075 	    start, count));
4076 }
4077 
4078 /**
4079  * @brief Wrapper function for BUS_GET_RESOURCE().
4080  *
4081  * This function simply calls the BUS_GET_RESOURCE() method of the
4082  * parent of @p dev.
4083  */
4084 int
4085 bus_get_resource(device_t dev, int type, int rid,
4086     u_long *startp, u_long *countp)
4087 {
4088 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4089 	    startp, countp));
4090 }
4091 
4092 /**
4093  * @brief Wrapper function for BUS_GET_RESOURCE().
4094  *
4095  * This function simply calls the BUS_GET_RESOURCE() method of the
4096  * parent of @p dev and returns the start value.
4097  */
4098 u_long
4099 bus_get_resource_start(device_t dev, int type, int rid)
4100 {
4101 	u_long start, count;
4102 	int error;
4103 
4104 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4105 	    &start, &count);
4106 	if (error)
4107 		return (0);
4108 	return (start);
4109 }
4110 
4111 /**
4112  * @brief Wrapper function for BUS_GET_RESOURCE().
4113  *
4114  * This function simply calls the BUS_GET_RESOURCE() method of the
4115  * parent of @p dev and returns the count value.
4116  */
4117 u_long
4118 bus_get_resource_count(device_t dev, int type, int rid)
4119 {
4120 	u_long start, count;
4121 	int error;
4122 
4123 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4124 	    &start, &count);
4125 	if (error)
4126 		return (0);
4127 	return (count);
4128 }
4129 
4130 /**
4131  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4132  *
4133  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4134  * parent of @p dev.
4135  */
4136 void
4137 bus_delete_resource(device_t dev, int type, int rid)
4138 {
4139 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4140 }
4141 
4142 /**
4143  * @brief Wrapper function for BUS_CHILD_PRESENT().
4144  *
4145  * This function simply calls the BUS_CHILD_PRESENT() method of the
4146  * parent of @p dev.
4147  */
4148 int
4149 bus_child_present(device_t child)
4150 {
4151 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4152 }
4153 
4154 /**
4155  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4156  *
4157  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4158  * parent of @p dev.
4159  */
4160 int
4161 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4162 {
4163 	device_t parent;
4164 
4165 	parent = device_get_parent(child);
4166 	if (parent == NULL) {
4167 		*buf = '\0';
4168 		return (0);
4169 	}
4170 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4171 }
4172 
4173 /**
4174  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4175  *
4176  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4177  * parent of @p dev.
4178  */
4179 int
4180 bus_child_location_str(device_t child, char *buf, size_t buflen)
4181 {
4182 	device_t parent;
4183 
4184 	parent = device_get_parent(child);
4185 	if (parent == NULL) {
4186 		*buf = '\0';
4187 		return (0);
4188 	}
4189 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4190 }
4191 
4192 /**
4193  * @brief Wrapper function for BUS_GET_DMA_TAG().
4194  *
4195  * This function simply calls the BUS_GET_DMA_TAG() method of the
4196  * parent of @p dev.
4197  */
4198 bus_dma_tag_t
4199 bus_get_dma_tag(device_t dev)
4200 {
4201 	device_t parent;
4202 
4203 	parent = device_get_parent(dev);
4204 	if (parent == NULL)
4205 		return (NULL);
4206 	return (BUS_GET_DMA_TAG(parent, dev));
4207 }
4208 
4209 /* Resume all devices and then notify userland that we're up again. */
4210 static int
4211 root_resume(device_t dev)
4212 {
4213 	int error;
4214 
4215 	error = bus_generic_resume(dev);
4216 	if (error == 0)
4217 		devctl_notify("kern", "power", "resume", NULL);
4218 	return (error);
4219 }
4220 
4221 static int
4222 root_print_child(device_t dev, device_t child)
4223 {
4224 	int	retval = 0;
4225 
4226 	retval += bus_print_child_header(dev, child);
4227 	retval += printf("\n");
4228 
4229 	return (retval);
4230 }
4231 
4232 static int
4233 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4234     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4235 {
4236 	/*
4237 	 * If an interrupt mapping gets to here something bad has happened.
4238 	 */
4239 	panic("root_setup_intr");
4240 }
4241 
4242 /*
4243  * If we get here, assume that the device is permanant and really is
4244  * present in the system.  Removable bus drivers are expected to intercept
4245  * this call long before it gets here.  We return -1 so that drivers that
4246  * really care can check vs -1 or some ERRNO returned higher in the food
4247  * chain.
4248  */
4249 static int
4250 root_child_present(device_t dev, device_t child)
4251 {
4252 	return (-1);
4253 }
4254 
4255 static kobj_method_t root_methods[] = {
4256 	/* Device interface */
4257 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4258 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4259 	KOBJMETHOD(device_resume,	root_resume),
4260 
4261 	/* Bus interface */
4262 	KOBJMETHOD(bus_print_child,	root_print_child),
4263 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4264 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4265 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4266 	KOBJMETHOD(bus_child_present,	root_child_present),
4267 
4268 	KOBJMETHOD_END
4269 };
4270 
4271 static driver_t root_driver = {
4272 	"root",
4273 	root_methods,
4274 	1,			/* no softc */
4275 };
4276 
4277 device_t	root_bus;
4278 devclass_t	root_devclass;
4279 
4280 static int
4281 root_bus_module_handler(module_t mod, int what, void* arg)
4282 {
4283 	switch (what) {
4284 	case MOD_LOAD:
4285 		TAILQ_INIT(&bus_data_devices);
4286 		kobj_class_compile((kobj_class_t) &root_driver);
4287 		root_bus = make_device(NULL, "root", 0);
4288 		root_bus->desc = "System root bus";
4289 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4290 		root_bus->driver = &root_driver;
4291 		root_bus->state = DS_ATTACHED;
4292 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4293 		devinit();
4294 		return (0);
4295 
4296 	case MOD_SHUTDOWN:
4297 		device_shutdown(root_bus);
4298 		return (0);
4299 	default:
4300 		return (EOPNOTSUPP);
4301 	}
4302 
4303 	return (0);
4304 }
4305 
4306 static moduledata_t root_bus_mod = {
4307 	"rootbus",
4308 	root_bus_module_handler,
4309 	NULL
4310 };
4311 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4312 
4313 /**
4314  * @brief Automatically configure devices
4315  *
4316  * This function begins the autoconfiguration process by calling
4317  * device_probe_and_attach() for each child of the @c root0 device.
4318  */
4319 void
4320 root_bus_configure(void)
4321 {
4322 
4323 	PDEBUG(("."));
4324 
4325 	/* Eventually this will be split up, but this is sufficient for now. */
4326 	bus_set_pass(BUS_PASS_DEFAULT);
4327 }
4328 
4329 /**
4330  * @brief Module handler for registering device drivers
4331  *
4332  * This module handler is used to automatically register device
4333  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4334  * devclass_add_driver() for the driver described by the
4335  * driver_module_data structure pointed to by @p arg
4336  */
4337 int
4338 driver_module_handler(module_t mod, int what, void *arg)
4339 {
4340 	struct driver_module_data *dmd;
4341 	devclass_t bus_devclass;
4342 	kobj_class_t driver;
4343 	int error, pass;
4344 
4345 	dmd = (struct driver_module_data *)arg;
4346 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4347 	error = 0;
4348 
4349 	switch (what) {
4350 	case MOD_LOAD:
4351 		if (dmd->dmd_chainevh)
4352 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4353 
4354 		pass = dmd->dmd_pass;
4355 		driver = dmd->dmd_driver;
4356 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4357 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4358 		error = devclass_add_driver(bus_devclass, driver, pass,
4359 		    dmd->dmd_devclass);
4360 		break;
4361 
4362 	case MOD_UNLOAD:
4363 		PDEBUG(("Unloading module: driver %s from bus %s",
4364 		    DRIVERNAME(dmd->dmd_driver),
4365 		    dmd->dmd_busname));
4366 		error = devclass_delete_driver(bus_devclass,
4367 		    dmd->dmd_driver);
4368 
4369 		if (!error && dmd->dmd_chainevh)
4370 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4371 		break;
4372 	case MOD_QUIESCE:
4373 		PDEBUG(("Quiesce module: driver %s from bus %s",
4374 		    DRIVERNAME(dmd->dmd_driver),
4375 		    dmd->dmd_busname));
4376 		error = devclass_quiesce_driver(bus_devclass,
4377 		    dmd->dmd_driver);
4378 
4379 		if (!error && dmd->dmd_chainevh)
4380 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4381 		break;
4382 	default:
4383 		error = EOPNOTSUPP;
4384 		break;
4385 	}
4386 
4387 	return (error);
4388 }
4389 
4390 /**
4391  * @brief Enumerate all hinted devices for this bus.
4392  *
4393  * Walks through the hints for this bus and calls the bus_hinted_child
4394  * routine for each one it fines.  It searches first for the specific
4395  * bus that's being probed for hinted children (eg isa0), and then for
4396  * generic children (eg isa).
4397  *
4398  * @param	dev	bus device to enumerate
4399  */
4400 void
4401 bus_enumerate_hinted_children(device_t bus)
4402 {
4403 	int i;
4404 	const char *dname, *busname;
4405 	int dunit;
4406 
4407 	/*
4408 	 * enumerate all devices on the specific bus
4409 	 */
4410 	busname = device_get_nameunit(bus);
4411 	i = 0;
4412 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4413 		BUS_HINTED_CHILD(bus, dname, dunit);
4414 
4415 	/*
4416 	 * and all the generic ones.
4417 	 */
4418 	busname = device_get_name(bus);
4419 	i = 0;
4420 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4421 		BUS_HINTED_CHILD(bus, dname, dunit);
4422 }
4423 
4424 #ifdef BUS_DEBUG
4425 
4426 /* the _short versions avoid iteration by not calling anything that prints
4427  * more than oneliners. I love oneliners.
4428  */
4429 
4430 static void
4431 print_device_short(device_t dev, int indent)
4432 {
4433 	if (!dev)
4434 		return;
4435 
4436 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4437 	    dev->unit, dev->desc,
4438 	    (dev->parent? "":"no "),
4439 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4440 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4441 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4442 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4443 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4444 	    (dev->flags&DF_REBID? "rebiddable,":""),
4445 	    (dev->ivars? "":"no "),
4446 	    (dev->softc? "":"no "),
4447 	    dev->busy));
4448 }
4449 
4450 static void
4451 print_device(device_t dev, int indent)
4452 {
4453 	if (!dev)
4454 		return;
4455 
4456 	print_device_short(dev, indent);
4457 
4458 	indentprintf(("Parent:\n"));
4459 	print_device_short(dev->parent, indent+1);
4460 	indentprintf(("Driver:\n"));
4461 	print_driver_short(dev->driver, indent+1);
4462 	indentprintf(("Devclass:\n"));
4463 	print_devclass_short(dev->devclass, indent+1);
4464 }
4465 
4466 void
4467 print_device_tree_short(device_t dev, int indent)
4468 /* print the device and all its children (indented) */
4469 {
4470 	device_t child;
4471 
4472 	if (!dev)
4473 		return;
4474 
4475 	print_device_short(dev, indent);
4476 
4477 	TAILQ_FOREACH(child, &dev->children, link) {
4478 		print_device_tree_short(child, indent+1);
4479 	}
4480 }
4481 
4482 void
4483 print_device_tree(device_t dev, int indent)
4484 /* print the device and all its children (indented) */
4485 {
4486 	device_t child;
4487 
4488 	if (!dev)
4489 		return;
4490 
4491 	print_device(dev, indent);
4492 
4493 	TAILQ_FOREACH(child, &dev->children, link) {
4494 		print_device_tree(child, indent+1);
4495 	}
4496 }
4497 
4498 static void
4499 print_driver_short(driver_t *driver, int indent)
4500 {
4501 	if (!driver)
4502 		return;
4503 
4504 	indentprintf(("driver %s: softc size = %zd\n",
4505 	    driver->name, driver->size));
4506 }
4507 
4508 static void
4509 print_driver(driver_t *driver, int indent)
4510 {
4511 	if (!driver)
4512 		return;
4513 
4514 	print_driver_short(driver, indent);
4515 }
4516 
4517 
4518 static void
4519 print_driver_list(driver_list_t drivers, int indent)
4520 {
4521 	driverlink_t driver;
4522 
4523 	TAILQ_FOREACH(driver, &drivers, link) {
4524 		print_driver(driver->driver, indent);
4525 	}
4526 }
4527 
4528 static void
4529 print_devclass_short(devclass_t dc, int indent)
4530 {
4531 	if ( !dc )
4532 		return;
4533 
4534 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4535 }
4536 
4537 static void
4538 print_devclass(devclass_t dc, int indent)
4539 {
4540 	int i;
4541 
4542 	if ( !dc )
4543 		return;
4544 
4545 	print_devclass_short(dc, indent);
4546 	indentprintf(("Drivers:\n"));
4547 	print_driver_list(dc->drivers, indent+1);
4548 
4549 	indentprintf(("Devices:\n"));
4550 	for (i = 0; i < dc->maxunit; i++)
4551 		if (dc->devices[i])
4552 			print_device(dc->devices[i], indent+1);
4553 }
4554 
4555 void
4556 print_devclass_list_short(void)
4557 {
4558 	devclass_t dc;
4559 
4560 	printf("Short listing of devclasses, drivers & devices:\n");
4561 	TAILQ_FOREACH(dc, &devclasses, link) {
4562 		print_devclass_short(dc, 0);
4563 	}
4564 }
4565 
4566 void
4567 print_devclass_list(void)
4568 {
4569 	devclass_t dc;
4570 
4571 	printf("Full listing of devclasses, drivers & devices:\n");
4572 	TAILQ_FOREACH(dc, &devclasses, link) {
4573 		print_devclass(dc, 0);
4574 	}
4575 }
4576 
4577 #endif
4578 
4579 /*
4580  * User-space access to the device tree.
4581  *
4582  * We implement a small set of nodes:
4583  *
4584  * hw.bus			Single integer read method to obtain the
4585  *				current generation count.
4586  * hw.bus.devices		Reads the entire device tree in flat space.
4587  * hw.bus.rman			Resource manager interface
4588  *
4589  * We might like to add the ability to scan devclasses and/or drivers to
4590  * determine what else is currently loaded/available.
4591  */
4592 
4593 static int
4594 sysctl_bus(SYSCTL_HANDLER_ARGS)
4595 {
4596 	struct u_businfo	ubus;
4597 
4598 	ubus.ub_version = BUS_USER_VERSION;
4599 	ubus.ub_generation = bus_data_generation;
4600 
4601 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4602 }
4603 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4604     "bus-related data");
4605 
4606 static int
4607 sysctl_devices(SYSCTL_HANDLER_ARGS)
4608 {
4609 	int			*name = (int *)arg1;
4610 	u_int			namelen = arg2;
4611 	int			index;
4612 	struct device		*dev;
4613 	struct u_device		udev;	/* XXX this is a bit big */
4614 	int			error;
4615 
4616 	if (namelen != 2)
4617 		return (EINVAL);
4618 
4619 	if (bus_data_generation_check(name[0]))
4620 		return (EINVAL);
4621 
4622 	index = name[1];
4623 
4624 	/*
4625 	 * Scan the list of devices, looking for the requested index.
4626 	 */
4627 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4628 		if (index-- == 0)
4629 			break;
4630 	}
4631 	if (dev == NULL)
4632 		return (ENOENT);
4633 
4634 	/*
4635 	 * Populate the return array.
4636 	 */
4637 	bzero(&udev, sizeof(udev));
4638 	udev.dv_handle = (uintptr_t)dev;
4639 	udev.dv_parent = (uintptr_t)dev->parent;
4640 	if (dev->nameunit != NULL)
4641 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4642 	if (dev->desc != NULL)
4643 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4644 	if (dev->driver != NULL && dev->driver->name != NULL)
4645 		strlcpy(udev.dv_drivername, dev->driver->name,
4646 		    sizeof(udev.dv_drivername));
4647 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4648 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4649 	udev.dv_devflags = dev->devflags;
4650 	udev.dv_flags = dev->flags;
4651 	udev.dv_state = dev->state;
4652 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4653 	return (error);
4654 }
4655 
4656 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4657     "system device tree");
4658 
4659 int
4660 bus_data_generation_check(int generation)
4661 {
4662 	if (generation != bus_data_generation)
4663 		return (1);
4664 
4665 	/* XXX generate optimised lists here? */
4666 	return (0);
4667 }
4668 
4669 void
4670 bus_data_generation_update(void)
4671 {
4672 	bus_data_generation++;
4673 }
4674 
4675 int
4676 bus_free_resource(device_t dev, int type, struct resource *r)
4677 {
4678 	if (r == NULL)
4679 		return (0);
4680 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4681 }
4682