1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 54 #include <machine/stdarg.h> 55 56 #include <vm/uma.h> 57 58 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 59 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 60 61 /* 62 * Used to attach drivers to devclasses. 63 */ 64 typedef struct driverlink *driverlink_t; 65 struct driverlink { 66 kobj_class_t driver; 67 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 68 }; 69 70 /* 71 * Forward declarations 72 */ 73 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 74 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 75 typedef TAILQ_HEAD(device_list, device) device_list_t; 76 77 struct devclass { 78 TAILQ_ENTRY(devclass) link; 79 devclass_t parent; /* parent in devclass hierarchy */ 80 driver_list_t drivers; /* bus devclasses store drivers for bus */ 81 char *name; 82 device_t *devices; /* array of devices indexed by unit */ 83 int maxunit; /* size of devices array */ 84 85 struct sysctl_ctx_list sysctl_ctx; 86 struct sysctl_oid *sysctl_tree; 87 }; 88 89 /** 90 * @brief Implementation of device. 91 */ 92 struct device { 93 /* 94 * A device is a kernel object. The first field must be the 95 * current ops table for the object. 96 */ 97 KOBJ_FIELDS; 98 99 /* 100 * Device hierarchy. 101 */ 102 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 103 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 104 device_t parent; /**< parent of this device */ 105 device_list_t children; /**< list of child devices */ 106 107 /* 108 * Details of this device. 109 */ 110 driver_t *driver; /**< current driver */ 111 devclass_t devclass; /**< current device class */ 112 int unit; /**< current unit number */ 113 char* nameunit; /**< name+unit e.g. foodev0 */ 114 char* desc; /**< driver specific description */ 115 int busy; /**< count of calls to device_busy() */ 116 device_state_t state; /**< current device state */ 117 u_int32_t devflags; /**< api level flags for device_get_flags() */ 118 u_short flags; /**< internal device flags */ 119 #define DF_ENABLED 1 /* device should be probed/attached */ 120 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 121 #define DF_WILDCARD 4 /* unit was originally wildcard */ 122 #define DF_DESCMALLOCED 8 /* description was malloced */ 123 #define DF_QUIET 16 /* don't print verbose attach message */ 124 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 125 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 126 #define DF_REBID 128 /* Can rebid after attach */ 127 u_char order; /**< order from device_add_child_ordered() */ 128 u_char pad; 129 void *ivars; /**< instance variables */ 130 void *softc; /**< current driver's variables */ 131 132 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 133 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 134 }; 135 136 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 137 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 138 139 #ifdef BUS_DEBUG 140 141 static int bus_debug = 1; 142 TUNABLE_INT("bus.debug", &bus_debug); 143 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 144 "Debug bus code"); 145 146 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 147 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 148 #define DRIVERNAME(d) ((d)? d->name : "no driver") 149 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 150 151 /** 152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 153 * prevent syslog from deleting initial spaces 154 */ 155 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 156 157 static void print_device_short(device_t dev, int indent); 158 static void print_device(device_t dev, int indent); 159 void print_device_tree_short(device_t dev, int indent); 160 void print_device_tree(device_t dev, int indent); 161 static void print_driver_short(driver_t *driver, int indent); 162 static void print_driver(driver_t *driver, int indent); 163 static void print_driver_list(driver_list_t drivers, int indent); 164 static void print_devclass_short(devclass_t dc, int indent); 165 static void print_devclass(devclass_t dc, int indent); 166 void print_devclass_list_short(void); 167 void print_devclass_list(void); 168 169 #else 170 /* Make the compiler ignore the function calls */ 171 #define PDEBUG(a) /* nop */ 172 #define DEVICENAME(d) /* nop */ 173 #define DRIVERNAME(d) /* nop */ 174 #define DEVCLANAME(d) /* nop */ 175 176 #define print_device_short(d,i) /* nop */ 177 #define print_device(d,i) /* nop */ 178 #define print_device_tree_short(d,i) /* nop */ 179 #define print_device_tree(d,i) /* nop */ 180 #define print_driver_short(d,i) /* nop */ 181 #define print_driver(d,i) /* nop */ 182 #define print_driver_list(d,i) /* nop */ 183 #define print_devclass_short(d,i) /* nop */ 184 #define print_devclass(d,i) /* nop */ 185 #define print_devclass_list_short() /* nop */ 186 #define print_devclass_list() /* nop */ 187 #endif 188 189 /* 190 * dev sysctl tree 191 */ 192 193 enum { 194 DEVCLASS_SYSCTL_PARENT, 195 }; 196 197 static int 198 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 199 { 200 devclass_t dc = (devclass_t)arg1; 201 const char *value; 202 203 switch (arg2) { 204 case DEVCLASS_SYSCTL_PARENT: 205 value = dc->parent ? dc->parent->name : ""; 206 break; 207 default: 208 return (EINVAL); 209 } 210 return (SYSCTL_OUT(req, value, strlen(value))); 211 } 212 213 static void 214 devclass_sysctl_init(devclass_t dc) 215 { 216 217 if (dc->sysctl_tree != NULL) 218 return; 219 sysctl_ctx_init(&dc->sysctl_ctx); 220 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 221 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 222 CTLFLAG_RD, 0, ""); 223 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 224 OID_AUTO, "%parent", CTLFLAG_RD, 225 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 226 "parent class"); 227 } 228 229 enum { 230 DEVICE_SYSCTL_DESC, 231 DEVICE_SYSCTL_DRIVER, 232 DEVICE_SYSCTL_LOCATION, 233 DEVICE_SYSCTL_PNPINFO, 234 DEVICE_SYSCTL_PARENT, 235 }; 236 237 static int 238 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 239 { 240 device_t dev = (device_t)arg1; 241 const char *value; 242 char *buf; 243 int error; 244 245 buf = NULL; 246 switch (arg2) { 247 case DEVICE_SYSCTL_DESC: 248 value = dev->desc ? dev->desc : ""; 249 break; 250 case DEVICE_SYSCTL_DRIVER: 251 value = dev->driver ? dev->driver->name : ""; 252 break; 253 case DEVICE_SYSCTL_LOCATION: 254 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 255 bus_child_location_str(dev, buf, 1024); 256 break; 257 case DEVICE_SYSCTL_PNPINFO: 258 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 259 bus_child_pnpinfo_str(dev, buf, 1024); 260 break; 261 case DEVICE_SYSCTL_PARENT: 262 value = dev->parent ? dev->parent->nameunit : ""; 263 break; 264 default: 265 return (EINVAL); 266 } 267 error = SYSCTL_OUT(req, value, strlen(value)); 268 if (buf != NULL) 269 free(buf, M_BUS); 270 return (error); 271 } 272 273 static void 274 device_sysctl_init(device_t dev) 275 { 276 devclass_t dc = dev->devclass; 277 278 if (dev->sysctl_tree != NULL) 279 return; 280 devclass_sysctl_init(dc); 281 sysctl_ctx_init(&dev->sysctl_ctx); 282 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 283 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 284 dev->nameunit + strlen(dc->name), 285 CTLFLAG_RD, 0, ""); 286 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 287 OID_AUTO, "%desc", CTLFLAG_RD, 288 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 289 "device description"); 290 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 291 OID_AUTO, "%driver", CTLFLAG_RD, 292 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 293 "device driver name"); 294 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 295 OID_AUTO, "%location", CTLFLAG_RD, 296 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 297 "device location relative to parent"); 298 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 299 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 300 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 301 "device identification"); 302 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 303 OID_AUTO, "%parent", CTLFLAG_RD, 304 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 305 "parent device"); 306 } 307 308 static void 309 device_sysctl_fini(device_t dev) 310 { 311 if (dev->sysctl_tree == NULL) 312 return; 313 sysctl_ctx_free(&dev->sysctl_ctx); 314 dev->sysctl_tree = NULL; 315 } 316 317 /* 318 * /dev/devctl implementation 319 */ 320 321 /* 322 * This design allows only one reader for /dev/devctl. This is not desirable 323 * in the long run, but will get a lot of hair out of this implementation. 324 * Maybe we should make this device a clonable device. 325 * 326 * Also note: we specifically do not attach a device to the device_t tree 327 * to avoid potential chicken and egg problems. One could argue that all 328 * of this belongs to the root node. One could also further argue that the 329 * sysctl interface that we have not might more properly be an ioctl 330 * interface, but at this stage of the game, I'm not inclined to rock that 331 * boat. 332 * 333 * I'm also not sure that the SIGIO support is done correctly or not, as 334 * I copied it from a driver that had SIGIO support that likely hasn't been 335 * tested since 3.4 or 2.2.8! 336 */ 337 338 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 339 static int devctl_disable = 0; 340 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 341 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 342 sysctl_devctl_disable, "I", "devctl disable"); 343 344 static d_open_t devopen; 345 static d_close_t devclose; 346 static d_read_t devread; 347 static d_ioctl_t devioctl; 348 static d_poll_t devpoll; 349 350 static struct cdevsw dev_cdevsw = { 351 .d_version = D_VERSION, 352 .d_flags = D_NEEDGIANT, 353 .d_open = devopen, 354 .d_close = devclose, 355 .d_read = devread, 356 .d_ioctl = devioctl, 357 .d_poll = devpoll, 358 .d_name = "devctl", 359 }; 360 361 struct dev_event_info 362 { 363 char *dei_data; 364 TAILQ_ENTRY(dev_event_info) dei_link; 365 }; 366 367 TAILQ_HEAD(devq, dev_event_info); 368 369 static struct dev_softc 370 { 371 int inuse; 372 int nonblock; 373 struct mtx mtx; 374 struct cv cv; 375 struct selinfo sel; 376 struct devq devq; 377 struct proc *async_proc; 378 } devsoftc; 379 380 static struct cdev *devctl_dev; 381 382 static void 383 devinit(void) 384 { 385 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 386 "devctl"); 387 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 388 cv_init(&devsoftc.cv, "dev cv"); 389 TAILQ_INIT(&devsoftc.devq); 390 } 391 392 static int 393 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 394 { 395 if (devsoftc.inuse) 396 return (EBUSY); 397 /* move to init */ 398 devsoftc.inuse = 1; 399 devsoftc.nonblock = 0; 400 devsoftc.async_proc = NULL; 401 return (0); 402 } 403 404 static int 405 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 406 { 407 devsoftc.inuse = 0; 408 mtx_lock(&devsoftc.mtx); 409 cv_broadcast(&devsoftc.cv); 410 mtx_unlock(&devsoftc.mtx); 411 412 return (0); 413 } 414 415 /* 416 * The read channel for this device is used to report changes to 417 * userland in realtime. We are required to free the data as well as 418 * the n1 object because we allocate them separately. Also note that 419 * we return one record at a time. If you try to read this device a 420 * character at a time, you will lose the rest of the data. Listening 421 * programs are expected to cope. 422 */ 423 static int 424 devread(struct cdev *dev, struct uio *uio, int ioflag) 425 { 426 struct dev_event_info *n1; 427 int rv; 428 429 mtx_lock(&devsoftc.mtx); 430 while (TAILQ_EMPTY(&devsoftc.devq)) { 431 if (devsoftc.nonblock) { 432 mtx_unlock(&devsoftc.mtx); 433 return (EAGAIN); 434 } 435 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 436 if (rv) { 437 /* 438 * Need to translate ERESTART to EINTR here? -- jake 439 */ 440 mtx_unlock(&devsoftc.mtx); 441 return (rv); 442 } 443 } 444 n1 = TAILQ_FIRST(&devsoftc.devq); 445 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 446 mtx_unlock(&devsoftc.mtx); 447 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 448 free(n1->dei_data, M_BUS); 449 free(n1, M_BUS); 450 return (rv); 451 } 452 453 static int 454 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 455 { 456 switch (cmd) { 457 458 case FIONBIO: 459 if (*(int*)data) 460 devsoftc.nonblock = 1; 461 else 462 devsoftc.nonblock = 0; 463 return (0); 464 case FIOASYNC: 465 if (*(int*)data) 466 devsoftc.async_proc = td->td_proc; 467 else 468 devsoftc.async_proc = NULL; 469 return (0); 470 471 /* (un)Support for other fcntl() calls. */ 472 case FIOCLEX: 473 case FIONCLEX: 474 case FIONREAD: 475 case FIOSETOWN: 476 case FIOGETOWN: 477 default: 478 break; 479 } 480 return (ENOTTY); 481 } 482 483 static int 484 devpoll(struct cdev *dev, int events, d_thread_t *td) 485 { 486 int revents = 0; 487 488 mtx_lock(&devsoftc.mtx); 489 if (events & (POLLIN | POLLRDNORM)) { 490 if (!TAILQ_EMPTY(&devsoftc.devq)) 491 revents = events & (POLLIN | POLLRDNORM); 492 else 493 selrecord(td, &devsoftc.sel); 494 } 495 mtx_unlock(&devsoftc.mtx); 496 497 return (revents); 498 } 499 500 /** 501 * @brief Queue data to be read from the devctl device 502 * 503 * Generic interface to queue data to the devctl device. It is 504 * assumed that @p data is properly formatted. It is further assumed 505 * that @p data is allocated using the M_BUS malloc type. 506 */ 507 void 508 devctl_queue_data(char *data) 509 { 510 struct dev_event_info *n1 = NULL; 511 struct proc *p; 512 513 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 514 if (n1 == NULL) 515 return; 516 n1->dei_data = data; 517 mtx_lock(&devsoftc.mtx); 518 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 519 cv_broadcast(&devsoftc.cv); 520 mtx_unlock(&devsoftc.mtx); 521 selwakeup(&devsoftc.sel); 522 p = devsoftc.async_proc; 523 if (p != NULL) { 524 PROC_LOCK(p); 525 psignal(p, SIGIO); 526 PROC_UNLOCK(p); 527 } 528 } 529 530 /** 531 * @brief Send a 'notification' to userland, using standard ways 532 */ 533 void 534 devctl_notify(const char *system, const char *subsystem, const char *type, 535 const char *data) 536 { 537 int len = 0; 538 char *msg; 539 540 if (system == NULL) 541 return; /* BOGUS! Must specify system. */ 542 if (subsystem == NULL) 543 return; /* BOGUS! Must specify subsystem. */ 544 if (type == NULL) 545 return; /* BOGUS! Must specify type. */ 546 len += strlen(" system=") + strlen(system); 547 len += strlen(" subsystem=") + strlen(subsystem); 548 len += strlen(" type=") + strlen(type); 549 /* add in the data message plus newline. */ 550 if (data != NULL) 551 len += strlen(data); 552 len += 3; /* '!', '\n', and NUL */ 553 msg = malloc(len, M_BUS, M_NOWAIT); 554 if (msg == NULL) 555 return; /* Drop it on the floor */ 556 if (data != NULL) 557 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 558 system, subsystem, type, data); 559 else 560 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 561 system, subsystem, type); 562 devctl_queue_data(msg); 563 } 564 565 /* 566 * Common routine that tries to make sending messages as easy as possible. 567 * We allocate memory for the data, copy strings into that, but do not 568 * free it unless there's an error. The dequeue part of the driver should 569 * free the data. We don't send data when the device is disabled. We do 570 * send data, even when we have no listeners, because we wish to avoid 571 * races relating to startup and restart of listening applications. 572 * 573 * devaddq is designed to string together the type of event, with the 574 * object of that event, plus the plug and play info and location info 575 * for that event. This is likely most useful for devices, but less 576 * useful for other consumers of this interface. Those should use 577 * the devctl_queue_data() interface instead. 578 */ 579 static void 580 devaddq(const char *type, const char *what, device_t dev) 581 { 582 char *data = NULL; 583 char *loc = NULL; 584 char *pnp = NULL; 585 const char *parstr; 586 587 if (devctl_disable) 588 return; 589 data = malloc(1024, M_BUS, M_NOWAIT); 590 if (data == NULL) 591 goto bad; 592 593 /* get the bus specific location of this device */ 594 loc = malloc(1024, M_BUS, M_NOWAIT); 595 if (loc == NULL) 596 goto bad; 597 *loc = '\0'; 598 bus_child_location_str(dev, loc, 1024); 599 600 /* Get the bus specific pnp info of this device */ 601 pnp = malloc(1024, M_BUS, M_NOWAIT); 602 if (pnp == NULL) 603 goto bad; 604 *pnp = '\0'; 605 bus_child_pnpinfo_str(dev, pnp, 1024); 606 607 /* Get the parent of this device, or / if high enough in the tree. */ 608 if (device_get_parent(dev) == NULL) 609 parstr = "."; /* Or '/' ? */ 610 else 611 parstr = device_get_nameunit(device_get_parent(dev)); 612 /* String it all together. */ 613 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 614 parstr); 615 free(loc, M_BUS); 616 free(pnp, M_BUS); 617 devctl_queue_data(data); 618 return; 619 bad: 620 free(pnp, M_BUS); 621 free(loc, M_BUS); 622 free(data, M_BUS); 623 return; 624 } 625 626 /* 627 * A device was added to the tree. We are called just after it successfully 628 * attaches (that is, probe and attach success for this device). No call 629 * is made if a device is merely parented into the tree. See devnomatch 630 * if probe fails. If attach fails, no notification is sent (but maybe 631 * we should have a different message for this). 632 */ 633 static void 634 devadded(device_t dev) 635 { 636 char *pnp = NULL; 637 char *tmp = NULL; 638 639 pnp = malloc(1024, M_BUS, M_NOWAIT); 640 if (pnp == NULL) 641 goto fail; 642 tmp = malloc(1024, M_BUS, M_NOWAIT); 643 if (tmp == NULL) 644 goto fail; 645 *pnp = '\0'; 646 bus_child_pnpinfo_str(dev, pnp, 1024); 647 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 648 devaddq("+", tmp, dev); 649 fail: 650 if (pnp != NULL) 651 free(pnp, M_BUS); 652 if (tmp != NULL) 653 free(tmp, M_BUS); 654 return; 655 } 656 657 /* 658 * A device was removed from the tree. We are called just before this 659 * happens. 660 */ 661 static void 662 devremoved(device_t dev) 663 { 664 char *pnp = NULL; 665 char *tmp = NULL; 666 667 pnp = malloc(1024, M_BUS, M_NOWAIT); 668 if (pnp == NULL) 669 goto fail; 670 tmp = malloc(1024, M_BUS, M_NOWAIT); 671 if (tmp == NULL) 672 goto fail; 673 *pnp = '\0'; 674 bus_child_pnpinfo_str(dev, pnp, 1024); 675 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 676 devaddq("-", tmp, dev); 677 fail: 678 if (pnp != NULL) 679 free(pnp, M_BUS); 680 if (tmp != NULL) 681 free(tmp, M_BUS); 682 return; 683 } 684 685 /* 686 * Called when there's no match for this device. This is only called 687 * the first time that no match happens, so we don't keep getitng this 688 * message. Should that prove to be undesirable, we can change it. 689 * This is called when all drivers that can attach to a given bus 690 * decline to accept this device. Other errrors may not be detected. 691 */ 692 static void 693 devnomatch(device_t dev) 694 { 695 devaddq("?", "", dev); 696 } 697 698 static int 699 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 700 { 701 struct dev_event_info *n1; 702 int dis, error; 703 704 dis = devctl_disable; 705 error = sysctl_handle_int(oidp, &dis, 0, req); 706 if (error || !req->newptr) 707 return (error); 708 mtx_lock(&devsoftc.mtx); 709 devctl_disable = dis; 710 if (dis) { 711 while (!TAILQ_EMPTY(&devsoftc.devq)) { 712 n1 = TAILQ_FIRST(&devsoftc.devq); 713 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 714 free(n1->dei_data, M_BUS); 715 free(n1, M_BUS); 716 } 717 } 718 mtx_unlock(&devsoftc.mtx); 719 return (0); 720 } 721 722 /* End of /dev/devctl code */ 723 724 TAILQ_HEAD(,device) bus_data_devices; 725 static int bus_data_generation = 1; 726 727 kobj_method_t null_methods[] = { 728 { 0, 0 } 729 }; 730 731 DEFINE_CLASS(null, null_methods, 0); 732 733 /* 734 * Devclass implementation 735 */ 736 737 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 738 739 740 /** 741 * @internal 742 * @brief Find or create a device class 743 * 744 * If a device class with the name @p classname exists, return it, 745 * otherwise if @p create is non-zero create and return a new device 746 * class. 747 * 748 * If @p parentname is non-NULL, the parent of the devclass is set to 749 * the devclass of that name. 750 * 751 * @param classname the devclass name to find or create 752 * @param parentname the parent devclass name or @c NULL 753 * @param create non-zero to create a devclass 754 */ 755 static devclass_t 756 devclass_find_internal(const char *classname, const char *parentname, 757 int create) 758 { 759 devclass_t dc; 760 761 PDEBUG(("looking for %s", classname)); 762 if (!classname) 763 return (NULL); 764 765 TAILQ_FOREACH(dc, &devclasses, link) { 766 if (!strcmp(dc->name, classname)) 767 break; 768 } 769 770 if (create && !dc) { 771 PDEBUG(("creating %s", classname)); 772 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 773 M_BUS, M_NOWAIT|M_ZERO); 774 if (!dc) 775 return (NULL); 776 dc->parent = NULL; 777 dc->name = (char*) (dc + 1); 778 strcpy(dc->name, classname); 779 TAILQ_INIT(&dc->drivers); 780 TAILQ_INSERT_TAIL(&devclasses, dc, link); 781 782 bus_data_generation_update(); 783 } 784 785 /* 786 * If a parent class is specified, then set that as our parent so 787 * that this devclass will support drivers for the parent class as 788 * well. If the parent class has the same name don't do this though 789 * as it creates a cycle that can trigger an infinite loop in 790 * device_probe_child() if a device exists for which there is no 791 * suitable driver. 792 */ 793 if (parentname && dc && !dc->parent && 794 strcmp(classname, parentname) != 0) { 795 dc->parent = devclass_find_internal(parentname, 0, FALSE); 796 } 797 798 return (dc); 799 } 800 801 /** 802 * @brief Create a device class 803 * 804 * If a device class with the name @p classname exists, return it, 805 * otherwise create and return a new device class. 806 * 807 * @param classname the devclass name to find or create 808 */ 809 devclass_t 810 devclass_create(const char *classname) 811 { 812 return (devclass_find_internal(classname, 0, TRUE)); 813 } 814 815 /** 816 * @brief Find a device class 817 * 818 * If a device class with the name @p classname exists, return it, 819 * otherwise return @c NULL. 820 * 821 * @param classname the devclass name to find 822 */ 823 devclass_t 824 devclass_find(const char *classname) 825 { 826 return (devclass_find_internal(classname, 0, FALSE)); 827 } 828 829 /** 830 * @brief Add a device driver to a device class 831 * 832 * Add a device driver to a devclass. This is normally called 833 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 834 * all devices in the devclass will be called to allow them to attempt 835 * to re-probe any unmatched children. 836 * 837 * @param dc the devclass to edit 838 * @param driver the driver to register 839 */ 840 int 841 devclass_add_driver(devclass_t dc, driver_t *driver) 842 { 843 driverlink_t dl; 844 int i; 845 846 PDEBUG(("%s", DRIVERNAME(driver))); 847 848 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 849 if (!dl) 850 return (ENOMEM); 851 852 /* 853 * Compile the driver's methods. Also increase the reference count 854 * so that the class doesn't get freed when the last instance 855 * goes. This means we can safely use static methods and avoids a 856 * double-free in devclass_delete_driver. 857 */ 858 kobj_class_compile((kobj_class_t) driver); 859 860 /* 861 * Make sure the devclass which the driver is implementing exists. 862 */ 863 devclass_find_internal(driver->name, 0, TRUE); 864 865 dl->driver = driver; 866 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 867 driver->refs++; /* XXX: kobj_mtx */ 868 869 /* 870 * Call BUS_DRIVER_ADDED for any existing busses in this class. 871 */ 872 for (i = 0; i < dc->maxunit; i++) 873 if (dc->devices[i]) 874 BUS_DRIVER_ADDED(dc->devices[i], driver); 875 876 bus_data_generation_update(); 877 return (0); 878 } 879 880 /** 881 * @brief Delete a device driver from a device class 882 * 883 * Delete a device driver from a devclass. This is normally called 884 * automatically by DRIVER_MODULE(). 885 * 886 * If the driver is currently attached to any devices, 887 * devclass_delete_driver() will first attempt to detach from each 888 * device. If one of the detach calls fails, the driver will not be 889 * deleted. 890 * 891 * @param dc the devclass to edit 892 * @param driver the driver to unregister 893 */ 894 int 895 devclass_delete_driver(devclass_t busclass, driver_t *driver) 896 { 897 devclass_t dc = devclass_find(driver->name); 898 driverlink_t dl; 899 device_t dev; 900 int i; 901 int error; 902 903 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 904 905 if (!dc) 906 return (0); 907 908 /* 909 * Find the link structure in the bus' list of drivers. 910 */ 911 TAILQ_FOREACH(dl, &busclass->drivers, link) { 912 if (dl->driver == driver) 913 break; 914 } 915 916 if (!dl) { 917 PDEBUG(("%s not found in %s list", driver->name, 918 busclass->name)); 919 return (ENOENT); 920 } 921 922 /* 923 * Disassociate from any devices. We iterate through all the 924 * devices in the devclass of the driver and detach any which are 925 * using the driver and which have a parent in the devclass which 926 * we are deleting from. 927 * 928 * Note that since a driver can be in multiple devclasses, we 929 * should not detach devices which are not children of devices in 930 * the affected devclass. 931 */ 932 for (i = 0; i < dc->maxunit; i++) { 933 if (dc->devices[i]) { 934 dev = dc->devices[i]; 935 if (dev->driver == driver && dev->parent && 936 dev->parent->devclass == busclass) { 937 if ((error = device_detach(dev)) != 0) 938 return (error); 939 device_set_driver(dev, NULL); 940 } 941 } 942 } 943 944 TAILQ_REMOVE(&busclass->drivers, dl, link); 945 free(dl, M_BUS); 946 947 /* XXX: kobj_mtx */ 948 driver->refs--; 949 if (driver->refs == 0) 950 kobj_class_free((kobj_class_t) driver); 951 952 bus_data_generation_update(); 953 return (0); 954 } 955 956 /** 957 * @brief Quiesces a set of device drivers from a device class 958 * 959 * Quiesce a device driver from a devclass. This is normally called 960 * automatically by DRIVER_MODULE(). 961 * 962 * If the driver is currently attached to any devices, 963 * devclass_quiesece_driver() will first attempt to quiesce each 964 * device. 965 * 966 * @param dc the devclass to edit 967 * @param driver the driver to unregister 968 */ 969 int 970 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 971 { 972 devclass_t dc = devclass_find(driver->name); 973 driverlink_t dl; 974 device_t dev; 975 int i; 976 int error; 977 978 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 979 980 if (!dc) 981 return (0); 982 983 /* 984 * Find the link structure in the bus' list of drivers. 985 */ 986 TAILQ_FOREACH(dl, &busclass->drivers, link) { 987 if (dl->driver == driver) 988 break; 989 } 990 991 if (!dl) { 992 PDEBUG(("%s not found in %s list", driver->name, 993 busclass->name)); 994 return (ENOENT); 995 } 996 997 /* 998 * Quiesce all devices. We iterate through all the devices in 999 * the devclass of the driver and quiesce any which are using 1000 * the driver and which have a parent in the devclass which we 1001 * are quiescing. 1002 * 1003 * Note that since a driver can be in multiple devclasses, we 1004 * should not quiesce devices which are not children of 1005 * devices in the affected devclass. 1006 */ 1007 for (i = 0; i < dc->maxunit; i++) { 1008 if (dc->devices[i]) { 1009 dev = dc->devices[i]; 1010 if (dev->driver == driver && dev->parent && 1011 dev->parent->devclass == busclass) { 1012 if ((error = device_quiesce(dev)) != 0) 1013 return (error); 1014 } 1015 } 1016 } 1017 1018 return (0); 1019 } 1020 1021 /** 1022 * @internal 1023 */ 1024 static driverlink_t 1025 devclass_find_driver_internal(devclass_t dc, const char *classname) 1026 { 1027 driverlink_t dl; 1028 1029 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1030 1031 TAILQ_FOREACH(dl, &dc->drivers, link) { 1032 if (!strcmp(dl->driver->name, classname)) 1033 return (dl); 1034 } 1035 1036 PDEBUG(("not found")); 1037 return (NULL); 1038 } 1039 1040 /** 1041 * @brief Search a devclass for a driver 1042 * 1043 * This function searches the devclass's list of drivers and returns 1044 * the first driver whose name is @p classname or @c NULL if there is 1045 * no driver of that name. 1046 * 1047 * @param dc the devclass to search 1048 * @param classname the driver name to search for 1049 */ 1050 kobj_class_t 1051 devclass_find_driver(devclass_t dc, const char *classname) 1052 { 1053 driverlink_t dl; 1054 1055 dl = devclass_find_driver_internal(dc, classname); 1056 if (dl) 1057 return (dl->driver); 1058 return (NULL); 1059 } 1060 1061 /** 1062 * @brief Return the name of the devclass 1063 */ 1064 const char * 1065 devclass_get_name(devclass_t dc) 1066 { 1067 return (dc->name); 1068 } 1069 1070 /** 1071 * @brief Find a device given a unit number 1072 * 1073 * @param dc the devclass to search 1074 * @param unit the unit number to search for 1075 * 1076 * @returns the device with the given unit number or @c 1077 * NULL if there is no such device 1078 */ 1079 device_t 1080 devclass_get_device(devclass_t dc, int unit) 1081 { 1082 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1083 return (NULL); 1084 return (dc->devices[unit]); 1085 } 1086 1087 /** 1088 * @brief Find the softc field of a device given a unit number 1089 * 1090 * @param dc the devclass to search 1091 * @param unit the unit number to search for 1092 * 1093 * @returns the softc field of the device with the given 1094 * unit number or @c NULL if there is no such 1095 * device 1096 */ 1097 void * 1098 devclass_get_softc(devclass_t dc, int unit) 1099 { 1100 device_t dev; 1101 1102 dev = devclass_get_device(dc, unit); 1103 if (!dev) 1104 return (NULL); 1105 1106 return (device_get_softc(dev)); 1107 } 1108 1109 /** 1110 * @brief Get a list of devices in the devclass 1111 * 1112 * An array containing a list of all the devices in the given devclass 1113 * is allocated and returned in @p *devlistp. The number of devices 1114 * in the array is returned in @p *devcountp. The caller should free 1115 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1116 * 1117 * @param dc the devclass to examine 1118 * @param devlistp points at location for array pointer return 1119 * value 1120 * @param devcountp points at location for array size return value 1121 * 1122 * @retval 0 success 1123 * @retval ENOMEM the array allocation failed 1124 */ 1125 int 1126 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1127 { 1128 int count, i; 1129 device_t *list; 1130 1131 count = devclass_get_count(dc); 1132 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1133 if (!list) 1134 return (ENOMEM); 1135 1136 count = 0; 1137 for (i = 0; i < dc->maxunit; i++) { 1138 if (dc->devices[i]) { 1139 list[count] = dc->devices[i]; 1140 count++; 1141 } 1142 } 1143 1144 *devlistp = list; 1145 *devcountp = count; 1146 1147 return (0); 1148 } 1149 1150 /** 1151 * @brief Get a list of drivers in the devclass 1152 * 1153 * An array containing a list of pointers to all the drivers in the 1154 * given devclass is allocated and returned in @p *listp. The number 1155 * of drivers in the array is returned in @p *countp. The caller should 1156 * free the array using @c free(p, M_TEMP). 1157 * 1158 * @param dc the devclass to examine 1159 * @param listp gives location for array pointer return value 1160 * @param countp gives location for number of array elements 1161 * return value 1162 * 1163 * @retval 0 success 1164 * @retval ENOMEM the array allocation failed 1165 */ 1166 int 1167 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1168 { 1169 driverlink_t dl; 1170 driver_t **list; 1171 int count; 1172 1173 count = 0; 1174 TAILQ_FOREACH(dl, &dc->drivers, link) 1175 count++; 1176 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1177 if (list == NULL) 1178 return (ENOMEM); 1179 1180 count = 0; 1181 TAILQ_FOREACH(dl, &dc->drivers, link) { 1182 list[count] = dl->driver; 1183 count++; 1184 } 1185 *listp = list; 1186 *countp = count; 1187 1188 return (0); 1189 } 1190 1191 /** 1192 * @brief Get the number of devices in a devclass 1193 * 1194 * @param dc the devclass to examine 1195 */ 1196 int 1197 devclass_get_count(devclass_t dc) 1198 { 1199 int count, i; 1200 1201 count = 0; 1202 for (i = 0; i < dc->maxunit; i++) 1203 if (dc->devices[i]) 1204 count++; 1205 return (count); 1206 } 1207 1208 /** 1209 * @brief Get the maximum unit number used in a devclass 1210 * 1211 * Note that this is one greater than the highest currently-allocated 1212 * unit. 1213 * 1214 * @param dc the devclass to examine 1215 */ 1216 int 1217 devclass_get_maxunit(devclass_t dc) 1218 { 1219 return (dc->maxunit); 1220 } 1221 1222 /** 1223 * @brief Find a free unit number in a devclass 1224 * 1225 * This function searches for the first unused unit number greater 1226 * that or equal to @p unit. 1227 * 1228 * @param dc the devclass to examine 1229 * @param unit the first unit number to check 1230 */ 1231 int 1232 devclass_find_free_unit(devclass_t dc, int unit) 1233 { 1234 if (dc == NULL) 1235 return (unit); 1236 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1237 unit++; 1238 return (unit); 1239 } 1240 1241 /** 1242 * @brief Set the parent of a devclass 1243 * 1244 * The parent class is normally initialised automatically by 1245 * DRIVER_MODULE(). 1246 * 1247 * @param dc the devclass to edit 1248 * @param pdc the new parent devclass 1249 */ 1250 void 1251 devclass_set_parent(devclass_t dc, devclass_t pdc) 1252 { 1253 dc->parent = pdc; 1254 } 1255 1256 /** 1257 * @brief Get the parent of a devclass 1258 * 1259 * @param dc the devclass to examine 1260 */ 1261 devclass_t 1262 devclass_get_parent(devclass_t dc) 1263 { 1264 return (dc->parent); 1265 } 1266 1267 struct sysctl_ctx_list * 1268 devclass_get_sysctl_ctx(devclass_t dc) 1269 { 1270 return (&dc->sysctl_ctx); 1271 } 1272 1273 struct sysctl_oid * 1274 devclass_get_sysctl_tree(devclass_t dc) 1275 { 1276 return (dc->sysctl_tree); 1277 } 1278 1279 /** 1280 * @internal 1281 * @brief Allocate a unit number 1282 * 1283 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1284 * will do). The allocated unit number is returned in @p *unitp. 1285 1286 * @param dc the devclass to allocate from 1287 * @param unitp points at the location for the allocated unit 1288 * number 1289 * 1290 * @retval 0 success 1291 * @retval EEXIST the requested unit number is already allocated 1292 * @retval ENOMEM memory allocation failure 1293 */ 1294 static int 1295 devclass_alloc_unit(devclass_t dc, int *unitp) 1296 { 1297 int unit = *unitp; 1298 1299 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1300 1301 /* If we were given a wired unit number, check for existing device */ 1302 /* XXX imp XXX */ 1303 if (unit != -1) { 1304 if (unit >= 0 && unit < dc->maxunit && 1305 dc->devices[unit] != NULL) { 1306 if (bootverbose) 1307 printf("%s: %s%d already exists; skipping it\n", 1308 dc->name, dc->name, *unitp); 1309 return (EEXIST); 1310 } 1311 } else { 1312 /* Unwired device, find the next available slot for it */ 1313 unit = 0; 1314 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1315 unit++; 1316 } 1317 1318 /* 1319 * We've selected a unit beyond the length of the table, so let's 1320 * extend the table to make room for all units up to and including 1321 * this one. 1322 */ 1323 if (unit >= dc->maxunit) { 1324 device_t *newlist; 1325 int newsize; 1326 1327 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1328 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1329 if (!newlist) 1330 return (ENOMEM); 1331 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1332 bzero(newlist + dc->maxunit, 1333 sizeof(device_t) * (newsize - dc->maxunit)); 1334 if (dc->devices) 1335 free(dc->devices, M_BUS); 1336 dc->devices = newlist; 1337 dc->maxunit = newsize; 1338 } 1339 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1340 1341 *unitp = unit; 1342 return (0); 1343 } 1344 1345 /** 1346 * @internal 1347 * @brief Add a device to a devclass 1348 * 1349 * A unit number is allocated for the device (using the device's 1350 * preferred unit number if any) and the device is registered in the 1351 * devclass. This allows the device to be looked up by its unit 1352 * number, e.g. by decoding a dev_t minor number. 1353 * 1354 * @param dc the devclass to add to 1355 * @param dev the device to add 1356 * 1357 * @retval 0 success 1358 * @retval EEXIST the requested unit number is already allocated 1359 * @retval ENOMEM memory allocation failure 1360 */ 1361 static int 1362 devclass_add_device(devclass_t dc, device_t dev) 1363 { 1364 int buflen, error; 1365 1366 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1367 1368 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1369 if (buflen < 0) 1370 return (ENOMEM); 1371 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1372 if (!dev->nameunit) 1373 return (ENOMEM); 1374 1375 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1376 free(dev->nameunit, M_BUS); 1377 dev->nameunit = NULL; 1378 return (error); 1379 } 1380 dc->devices[dev->unit] = dev; 1381 dev->devclass = dc; 1382 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1383 1384 return (0); 1385 } 1386 1387 /** 1388 * @internal 1389 * @brief Delete a device from a devclass 1390 * 1391 * The device is removed from the devclass's device list and its unit 1392 * number is freed. 1393 1394 * @param dc the devclass to delete from 1395 * @param dev the device to delete 1396 * 1397 * @retval 0 success 1398 */ 1399 static int 1400 devclass_delete_device(devclass_t dc, device_t dev) 1401 { 1402 if (!dc || !dev) 1403 return (0); 1404 1405 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1406 1407 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1408 panic("devclass_delete_device: inconsistent device class"); 1409 dc->devices[dev->unit] = NULL; 1410 if (dev->flags & DF_WILDCARD) 1411 dev->unit = -1; 1412 dev->devclass = NULL; 1413 free(dev->nameunit, M_BUS); 1414 dev->nameunit = NULL; 1415 1416 return (0); 1417 } 1418 1419 /** 1420 * @internal 1421 * @brief Make a new device and add it as a child of @p parent 1422 * 1423 * @param parent the parent of the new device 1424 * @param name the devclass name of the new device or @c NULL 1425 * to leave the devclass unspecified 1426 * @parem unit the unit number of the new device of @c -1 to 1427 * leave the unit number unspecified 1428 * 1429 * @returns the new device 1430 */ 1431 static device_t 1432 make_device(device_t parent, const char *name, int unit) 1433 { 1434 device_t dev; 1435 devclass_t dc; 1436 1437 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1438 1439 if (name) { 1440 dc = devclass_find_internal(name, 0, TRUE); 1441 if (!dc) { 1442 printf("make_device: can't find device class %s\n", 1443 name); 1444 return (NULL); 1445 } 1446 } else { 1447 dc = NULL; 1448 } 1449 1450 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1451 if (!dev) 1452 return (NULL); 1453 1454 dev->parent = parent; 1455 TAILQ_INIT(&dev->children); 1456 kobj_init((kobj_t) dev, &null_class); 1457 dev->driver = NULL; 1458 dev->devclass = NULL; 1459 dev->unit = unit; 1460 dev->nameunit = NULL; 1461 dev->desc = NULL; 1462 dev->busy = 0; 1463 dev->devflags = 0; 1464 dev->flags = DF_ENABLED; 1465 dev->order = 0; 1466 if (unit == -1) 1467 dev->flags |= DF_WILDCARD; 1468 if (name) { 1469 dev->flags |= DF_FIXEDCLASS; 1470 if (devclass_add_device(dc, dev)) { 1471 kobj_delete((kobj_t) dev, M_BUS); 1472 return (NULL); 1473 } 1474 } 1475 dev->ivars = NULL; 1476 dev->softc = NULL; 1477 1478 dev->state = DS_NOTPRESENT; 1479 1480 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1481 bus_data_generation_update(); 1482 1483 return (dev); 1484 } 1485 1486 /** 1487 * @internal 1488 * @brief Print a description of a device. 1489 */ 1490 static int 1491 device_print_child(device_t dev, device_t child) 1492 { 1493 int retval = 0; 1494 1495 if (device_is_alive(child)) 1496 retval += BUS_PRINT_CHILD(dev, child); 1497 else 1498 retval += device_printf(child, " not found\n"); 1499 1500 return (retval); 1501 } 1502 1503 /** 1504 * @brief Create a new device 1505 * 1506 * This creates a new device and adds it as a child of an existing 1507 * parent device. The new device will be added after the last existing 1508 * child with order zero. 1509 * 1510 * @param dev the device which will be the parent of the 1511 * new child device 1512 * @param name devclass name for new device or @c NULL if not 1513 * specified 1514 * @param unit unit number for new device or @c -1 if not 1515 * specified 1516 * 1517 * @returns the new device 1518 */ 1519 device_t 1520 device_add_child(device_t dev, const char *name, int unit) 1521 { 1522 return (device_add_child_ordered(dev, 0, name, unit)); 1523 } 1524 1525 /** 1526 * @brief Create a new device 1527 * 1528 * This creates a new device and adds it as a child of an existing 1529 * parent device. The new device will be added after the last existing 1530 * child with the same order. 1531 * 1532 * @param dev the device which will be the parent of the 1533 * new child device 1534 * @param order a value which is used to partially sort the 1535 * children of @p dev - devices created using 1536 * lower values of @p order appear first in @p 1537 * dev's list of children 1538 * @param name devclass name for new device or @c NULL if not 1539 * specified 1540 * @param unit unit number for new device or @c -1 if not 1541 * specified 1542 * 1543 * @returns the new device 1544 */ 1545 device_t 1546 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1547 { 1548 device_t child; 1549 device_t place; 1550 1551 PDEBUG(("%s at %s with order %d as unit %d", 1552 name, DEVICENAME(dev), order, unit)); 1553 1554 child = make_device(dev, name, unit); 1555 if (child == NULL) 1556 return (child); 1557 child->order = order; 1558 1559 TAILQ_FOREACH(place, &dev->children, link) { 1560 if (place->order > order) 1561 break; 1562 } 1563 1564 if (place) { 1565 /* 1566 * The device 'place' is the first device whose order is 1567 * greater than the new child. 1568 */ 1569 TAILQ_INSERT_BEFORE(place, child, link); 1570 } else { 1571 /* 1572 * The new child's order is greater or equal to the order of 1573 * any existing device. Add the child to the tail of the list. 1574 */ 1575 TAILQ_INSERT_TAIL(&dev->children, child, link); 1576 } 1577 1578 bus_data_generation_update(); 1579 return (child); 1580 } 1581 1582 /** 1583 * @brief Delete a device 1584 * 1585 * This function deletes a device along with all of its children. If 1586 * the device currently has a driver attached to it, the device is 1587 * detached first using device_detach(). 1588 * 1589 * @param dev the parent device 1590 * @param child the device to delete 1591 * 1592 * @retval 0 success 1593 * @retval non-zero a unit error code describing the error 1594 */ 1595 int 1596 device_delete_child(device_t dev, device_t child) 1597 { 1598 int error; 1599 device_t grandchild; 1600 1601 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1602 1603 /* remove children first */ 1604 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1605 error = device_delete_child(child, grandchild); 1606 if (error) 1607 return (error); 1608 } 1609 1610 if ((error = device_detach(child)) != 0) 1611 return (error); 1612 if (child->devclass) 1613 devclass_delete_device(child->devclass, child); 1614 TAILQ_REMOVE(&dev->children, child, link); 1615 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1616 kobj_delete((kobj_t) child, M_BUS); 1617 1618 bus_data_generation_update(); 1619 return (0); 1620 } 1621 1622 /** 1623 * @brief Find a device given a unit number 1624 * 1625 * This is similar to devclass_get_devices() but only searches for 1626 * devices which have @p dev as a parent. 1627 * 1628 * @param dev the parent device to search 1629 * @param unit the unit number to search for. If the unit is -1, 1630 * return the first child of @p dev which has name 1631 * @p classname (that is, the one with the lowest unit.) 1632 * 1633 * @returns the device with the given unit number or @c 1634 * NULL if there is no such device 1635 */ 1636 device_t 1637 device_find_child(device_t dev, const char *classname, int unit) 1638 { 1639 devclass_t dc; 1640 device_t child; 1641 1642 dc = devclass_find(classname); 1643 if (!dc) 1644 return (NULL); 1645 1646 if (unit != -1) { 1647 child = devclass_get_device(dc, unit); 1648 if (child && child->parent == dev) 1649 return (child); 1650 } else { 1651 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1652 child = devclass_get_device(dc, unit); 1653 if (child && child->parent == dev) 1654 return (child); 1655 } 1656 } 1657 return (NULL); 1658 } 1659 1660 /** 1661 * @internal 1662 */ 1663 static driverlink_t 1664 first_matching_driver(devclass_t dc, device_t dev) 1665 { 1666 if (dev->devclass) 1667 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1668 return (TAILQ_FIRST(&dc->drivers)); 1669 } 1670 1671 /** 1672 * @internal 1673 */ 1674 static driverlink_t 1675 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1676 { 1677 if (dev->devclass) { 1678 driverlink_t dl; 1679 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1680 if (!strcmp(dev->devclass->name, dl->driver->name)) 1681 return (dl); 1682 return (NULL); 1683 } 1684 return (TAILQ_NEXT(last, link)); 1685 } 1686 1687 /** 1688 * @internal 1689 */ 1690 int 1691 device_probe_child(device_t dev, device_t child) 1692 { 1693 devclass_t dc; 1694 driverlink_t best = 0; 1695 driverlink_t dl; 1696 int result, pri = 0; 1697 int hasclass = (child->devclass != 0); 1698 1699 GIANT_REQUIRED; 1700 1701 dc = dev->devclass; 1702 if (!dc) 1703 panic("device_probe_child: parent device has no devclass"); 1704 1705 /* 1706 * If the state is already probed, then return. However, don't 1707 * return if we can rebid this object. 1708 */ 1709 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1710 return (0); 1711 1712 for (; dc; dc = dc->parent) { 1713 for (dl = first_matching_driver(dc, child); 1714 dl; 1715 dl = next_matching_driver(dc, child, dl)) { 1716 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1717 device_set_driver(child, dl->driver); 1718 if (!hasclass) 1719 device_set_devclass(child, dl->driver->name); 1720 1721 /* Fetch any flags for the device before probing. */ 1722 resource_int_value(dl->driver->name, child->unit, 1723 "flags", &child->devflags); 1724 1725 result = DEVICE_PROBE(child); 1726 1727 /* Reset flags and devclass before the next probe. */ 1728 child->devflags = 0; 1729 if (!hasclass) 1730 device_set_devclass(child, 0); 1731 1732 /* 1733 * If the driver returns SUCCESS, there can be 1734 * no higher match for this device. 1735 */ 1736 if (result == 0) { 1737 best = dl; 1738 pri = 0; 1739 break; 1740 } 1741 1742 /* 1743 * The driver returned an error so it 1744 * certainly doesn't match. 1745 */ 1746 if (result > 0) { 1747 device_set_driver(child, 0); 1748 continue; 1749 } 1750 1751 /* 1752 * A priority lower than SUCCESS, remember the 1753 * best matching driver. Initialise the value 1754 * of pri for the first match. 1755 */ 1756 if (best == 0 || result > pri) { 1757 best = dl; 1758 pri = result; 1759 continue; 1760 } 1761 } 1762 /* 1763 * If we have an unambiguous match in this devclass, 1764 * don't look in the parent. 1765 */ 1766 if (best && pri == 0) 1767 break; 1768 } 1769 1770 /* 1771 * If we found a driver, change state and initialise the devclass. 1772 */ 1773 /* XXX What happens if we rebid and got no best? */ 1774 if (best) { 1775 /* 1776 * If this device was atached, and we were asked to 1777 * rescan, and it is a different driver, then we have 1778 * to detach the old driver and reattach this new one. 1779 * Note, we don't have to check for DF_REBID here 1780 * because if the state is > DS_ALIVE, we know it must 1781 * be. 1782 * 1783 * This assumes that all DF_REBID drivers can have 1784 * their probe routine called at any time and that 1785 * they are idempotent as well as completely benign in 1786 * normal operations. 1787 * 1788 * We also have to make sure that the detach 1789 * succeeded, otherwise we fail the operation (or 1790 * maybe it should just fail silently? I'm torn). 1791 */ 1792 if (child->state > DS_ALIVE && best->driver != child->driver) 1793 if ((result = device_detach(dev)) != 0) 1794 return (result); 1795 1796 /* Set the winning driver, devclass, and flags. */ 1797 if (!child->devclass) 1798 device_set_devclass(child, best->driver->name); 1799 device_set_driver(child, best->driver); 1800 resource_int_value(best->driver->name, child->unit, 1801 "flags", &child->devflags); 1802 1803 if (pri < 0) { 1804 /* 1805 * A bit bogus. Call the probe method again to make 1806 * sure that we have the right description. 1807 */ 1808 DEVICE_PROBE(child); 1809 #if 0 1810 child->flags |= DF_REBID; 1811 #endif 1812 } else 1813 child->flags &= ~DF_REBID; 1814 child->state = DS_ALIVE; 1815 1816 bus_data_generation_update(); 1817 return (0); 1818 } 1819 1820 return (ENXIO); 1821 } 1822 1823 /** 1824 * @brief Return the parent of a device 1825 */ 1826 device_t 1827 device_get_parent(device_t dev) 1828 { 1829 return (dev->parent); 1830 } 1831 1832 /** 1833 * @brief Get a list of children of a device 1834 * 1835 * An array containing a list of all the children of the given device 1836 * is allocated and returned in @p *devlistp. The number of devices 1837 * in the array is returned in @p *devcountp. The caller should free 1838 * the array using @c free(p, M_TEMP). 1839 * 1840 * @param dev the device to examine 1841 * @param devlistp points at location for array pointer return 1842 * value 1843 * @param devcountp points at location for array size return value 1844 * 1845 * @retval 0 success 1846 * @retval ENOMEM the array allocation failed 1847 */ 1848 int 1849 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1850 { 1851 int count; 1852 device_t child; 1853 device_t *list; 1854 1855 count = 0; 1856 TAILQ_FOREACH(child, &dev->children, link) { 1857 count++; 1858 } 1859 1860 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1861 if (!list) 1862 return (ENOMEM); 1863 1864 count = 0; 1865 TAILQ_FOREACH(child, &dev->children, link) { 1866 list[count] = child; 1867 count++; 1868 } 1869 1870 *devlistp = list; 1871 *devcountp = count; 1872 1873 return (0); 1874 } 1875 1876 /** 1877 * @brief Return the current driver for the device or @c NULL if there 1878 * is no driver currently attached 1879 */ 1880 driver_t * 1881 device_get_driver(device_t dev) 1882 { 1883 return (dev->driver); 1884 } 1885 1886 /** 1887 * @brief Return the current devclass for the device or @c NULL if 1888 * there is none. 1889 */ 1890 devclass_t 1891 device_get_devclass(device_t dev) 1892 { 1893 return (dev->devclass); 1894 } 1895 1896 /** 1897 * @brief Return the name of the device's devclass or @c NULL if there 1898 * is none. 1899 */ 1900 const char * 1901 device_get_name(device_t dev) 1902 { 1903 if (dev != NULL && dev->devclass) 1904 return (devclass_get_name(dev->devclass)); 1905 return (NULL); 1906 } 1907 1908 /** 1909 * @brief Return a string containing the device's devclass name 1910 * followed by an ascii representation of the device's unit number 1911 * (e.g. @c "foo2"). 1912 */ 1913 const char * 1914 device_get_nameunit(device_t dev) 1915 { 1916 return (dev->nameunit); 1917 } 1918 1919 /** 1920 * @brief Return the device's unit number. 1921 */ 1922 int 1923 device_get_unit(device_t dev) 1924 { 1925 return (dev->unit); 1926 } 1927 1928 /** 1929 * @brief Return the device's description string 1930 */ 1931 const char * 1932 device_get_desc(device_t dev) 1933 { 1934 return (dev->desc); 1935 } 1936 1937 /** 1938 * @brief Return the device's flags 1939 */ 1940 u_int32_t 1941 device_get_flags(device_t dev) 1942 { 1943 return (dev->devflags); 1944 } 1945 1946 struct sysctl_ctx_list * 1947 device_get_sysctl_ctx(device_t dev) 1948 { 1949 return (&dev->sysctl_ctx); 1950 } 1951 1952 struct sysctl_oid * 1953 device_get_sysctl_tree(device_t dev) 1954 { 1955 return (dev->sysctl_tree); 1956 } 1957 1958 /** 1959 * @brief Print the name of the device followed by a colon and a space 1960 * 1961 * @returns the number of characters printed 1962 */ 1963 int 1964 device_print_prettyname(device_t dev) 1965 { 1966 const char *name = device_get_name(dev); 1967 1968 if (name == 0) 1969 return (printf("unknown: ")); 1970 return (printf("%s%d: ", name, device_get_unit(dev))); 1971 } 1972 1973 /** 1974 * @brief Print the name of the device followed by a colon, a space 1975 * and the result of calling vprintf() with the value of @p fmt and 1976 * the following arguments. 1977 * 1978 * @returns the number of characters printed 1979 */ 1980 int 1981 device_printf(device_t dev, const char * fmt, ...) 1982 { 1983 va_list ap; 1984 int retval; 1985 1986 retval = device_print_prettyname(dev); 1987 va_start(ap, fmt); 1988 retval += vprintf(fmt, ap); 1989 va_end(ap); 1990 return (retval); 1991 } 1992 1993 /** 1994 * @internal 1995 */ 1996 static void 1997 device_set_desc_internal(device_t dev, const char* desc, int copy) 1998 { 1999 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2000 free(dev->desc, M_BUS); 2001 dev->flags &= ~DF_DESCMALLOCED; 2002 dev->desc = NULL; 2003 } 2004 2005 if (copy && desc) { 2006 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2007 if (dev->desc) { 2008 strcpy(dev->desc, desc); 2009 dev->flags |= DF_DESCMALLOCED; 2010 } 2011 } else { 2012 /* Avoid a -Wcast-qual warning */ 2013 dev->desc = (char *)(uintptr_t) desc; 2014 } 2015 2016 bus_data_generation_update(); 2017 } 2018 2019 /** 2020 * @brief Set the device's description 2021 * 2022 * The value of @c desc should be a string constant that will not 2023 * change (at least until the description is changed in a subsequent 2024 * call to device_set_desc() or device_set_desc_copy()). 2025 */ 2026 void 2027 device_set_desc(device_t dev, const char* desc) 2028 { 2029 device_set_desc_internal(dev, desc, FALSE); 2030 } 2031 2032 /** 2033 * @brief Set the device's description 2034 * 2035 * The string pointed to by @c desc is copied. Use this function if 2036 * the device description is generated, (e.g. with sprintf()). 2037 */ 2038 void 2039 device_set_desc_copy(device_t dev, const char* desc) 2040 { 2041 device_set_desc_internal(dev, desc, TRUE); 2042 } 2043 2044 /** 2045 * @brief Set the device's flags 2046 */ 2047 void 2048 device_set_flags(device_t dev, u_int32_t flags) 2049 { 2050 dev->devflags = flags; 2051 } 2052 2053 /** 2054 * @brief Return the device's softc field 2055 * 2056 * The softc is allocated and zeroed when a driver is attached, based 2057 * on the size field of the driver. 2058 */ 2059 void * 2060 device_get_softc(device_t dev) 2061 { 2062 return (dev->softc); 2063 } 2064 2065 /** 2066 * @brief Set the device's softc field 2067 * 2068 * Most drivers do not need to use this since the softc is allocated 2069 * automatically when the driver is attached. 2070 */ 2071 void 2072 device_set_softc(device_t dev, void *softc) 2073 { 2074 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2075 free(dev->softc, M_BUS_SC); 2076 dev->softc = softc; 2077 if (dev->softc) 2078 dev->flags |= DF_EXTERNALSOFTC; 2079 else 2080 dev->flags &= ~DF_EXTERNALSOFTC; 2081 } 2082 2083 /** 2084 * @brief Get the device's ivars field 2085 * 2086 * The ivars field is used by the parent device to store per-device 2087 * state (e.g. the physical location of the device or a list of 2088 * resources). 2089 */ 2090 void * 2091 device_get_ivars(device_t dev) 2092 { 2093 2094 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2095 return (dev->ivars); 2096 } 2097 2098 /** 2099 * @brief Set the device's ivars field 2100 */ 2101 void 2102 device_set_ivars(device_t dev, void * ivars) 2103 { 2104 2105 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2106 dev->ivars = ivars; 2107 } 2108 2109 /** 2110 * @brief Return the device's state 2111 */ 2112 device_state_t 2113 device_get_state(device_t dev) 2114 { 2115 return (dev->state); 2116 } 2117 2118 /** 2119 * @brief Set the DF_ENABLED flag for the device 2120 */ 2121 void 2122 device_enable(device_t dev) 2123 { 2124 dev->flags |= DF_ENABLED; 2125 } 2126 2127 /** 2128 * @brief Clear the DF_ENABLED flag for the device 2129 */ 2130 void 2131 device_disable(device_t dev) 2132 { 2133 dev->flags &= ~DF_ENABLED; 2134 } 2135 2136 /** 2137 * @brief Increment the busy counter for the device 2138 */ 2139 void 2140 device_busy(device_t dev) 2141 { 2142 if (dev->state < DS_ATTACHED) 2143 panic("device_busy: called for unattached device"); 2144 if (dev->busy == 0 && dev->parent) 2145 device_busy(dev->parent); 2146 dev->busy++; 2147 dev->state = DS_BUSY; 2148 } 2149 2150 /** 2151 * @brief Decrement the busy counter for the device 2152 */ 2153 void 2154 device_unbusy(device_t dev) 2155 { 2156 if (dev->state != DS_BUSY) 2157 panic("device_unbusy: called for non-busy device %s", 2158 device_get_nameunit(dev)); 2159 dev->busy--; 2160 if (dev->busy == 0) { 2161 if (dev->parent) 2162 device_unbusy(dev->parent); 2163 dev->state = DS_ATTACHED; 2164 } 2165 } 2166 2167 /** 2168 * @brief Set the DF_QUIET flag for the device 2169 */ 2170 void 2171 device_quiet(device_t dev) 2172 { 2173 dev->flags |= DF_QUIET; 2174 } 2175 2176 /** 2177 * @brief Clear the DF_QUIET flag for the device 2178 */ 2179 void 2180 device_verbose(device_t dev) 2181 { 2182 dev->flags &= ~DF_QUIET; 2183 } 2184 2185 /** 2186 * @brief Return non-zero if the DF_QUIET flag is set on the device 2187 */ 2188 int 2189 device_is_quiet(device_t dev) 2190 { 2191 return ((dev->flags & DF_QUIET) != 0); 2192 } 2193 2194 /** 2195 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2196 */ 2197 int 2198 device_is_enabled(device_t dev) 2199 { 2200 return ((dev->flags & DF_ENABLED) != 0); 2201 } 2202 2203 /** 2204 * @brief Return non-zero if the device was successfully probed 2205 */ 2206 int 2207 device_is_alive(device_t dev) 2208 { 2209 return (dev->state >= DS_ALIVE); 2210 } 2211 2212 /** 2213 * @brief Return non-zero if the device currently has a driver 2214 * attached to it 2215 */ 2216 int 2217 device_is_attached(device_t dev) 2218 { 2219 return (dev->state >= DS_ATTACHED); 2220 } 2221 2222 /** 2223 * @brief Set the devclass of a device 2224 * @see devclass_add_device(). 2225 */ 2226 int 2227 device_set_devclass(device_t dev, const char *classname) 2228 { 2229 devclass_t dc; 2230 int error; 2231 2232 if (!classname) { 2233 if (dev->devclass) 2234 devclass_delete_device(dev->devclass, dev); 2235 return (0); 2236 } 2237 2238 if (dev->devclass) { 2239 printf("device_set_devclass: device class already set\n"); 2240 return (EINVAL); 2241 } 2242 2243 dc = devclass_find_internal(classname, 0, TRUE); 2244 if (!dc) 2245 return (ENOMEM); 2246 2247 error = devclass_add_device(dc, dev); 2248 2249 bus_data_generation_update(); 2250 return (error); 2251 } 2252 2253 /** 2254 * @brief Set the driver of a device 2255 * 2256 * @retval 0 success 2257 * @retval EBUSY the device already has a driver attached 2258 * @retval ENOMEM a memory allocation failure occurred 2259 */ 2260 int 2261 device_set_driver(device_t dev, driver_t *driver) 2262 { 2263 if (dev->state >= DS_ATTACHED) 2264 return (EBUSY); 2265 2266 if (dev->driver == driver) 2267 return (0); 2268 2269 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2270 free(dev->softc, M_BUS_SC); 2271 dev->softc = NULL; 2272 } 2273 kobj_delete((kobj_t) dev, 0); 2274 dev->driver = driver; 2275 if (driver) { 2276 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2277 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2278 dev->softc = malloc(driver->size, M_BUS_SC, 2279 M_NOWAIT | M_ZERO); 2280 if (!dev->softc) { 2281 kobj_delete((kobj_t) dev, 0); 2282 kobj_init((kobj_t) dev, &null_class); 2283 dev->driver = NULL; 2284 return (ENOMEM); 2285 } 2286 } 2287 } else { 2288 kobj_init((kobj_t) dev, &null_class); 2289 } 2290 2291 bus_data_generation_update(); 2292 return (0); 2293 } 2294 2295 /** 2296 * @brief Probe a device and attach a driver if possible 2297 * 2298 * This function is the core of the device autoconfiguration 2299 * system. Its purpose is to select a suitable driver for a device and 2300 * then call that driver to initialise the hardware appropriately. The 2301 * driver is selected by calling the DEVICE_PROBE() method of a set of 2302 * candidate drivers and then choosing the driver which returned the 2303 * best value. This driver is then attached to the device using 2304 * device_attach(). 2305 * 2306 * The set of suitable drivers is taken from the list of drivers in 2307 * the parent device's devclass. If the device was originally created 2308 * with a specific class name (see device_add_child()), only drivers 2309 * with that name are probed, otherwise all drivers in the devclass 2310 * are probed. If no drivers return successful probe values in the 2311 * parent devclass, the search continues in the parent of that 2312 * devclass (see devclass_get_parent()) if any. 2313 * 2314 * @param dev the device to initialise 2315 * 2316 * @retval 0 success 2317 * @retval ENXIO no driver was found 2318 * @retval ENOMEM memory allocation failure 2319 * @retval non-zero some other unix error code 2320 */ 2321 int 2322 device_probe_and_attach(device_t dev) 2323 { 2324 int error; 2325 2326 GIANT_REQUIRED; 2327 2328 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2329 return (0); 2330 2331 if (!(dev->flags & DF_ENABLED)) { 2332 if (bootverbose && device_get_name(dev) != NULL) { 2333 device_print_prettyname(dev); 2334 printf("not probed (disabled)\n"); 2335 } 2336 return (0); 2337 } 2338 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2339 if (!(dev->flags & DF_DONENOMATCH)) { 2340 BUS_PROBE_NOMATCH(dev->parent, dev); 2341 devnomatch(dev); 2342 dev->flags |= DF_DONENOMATCH; 2343 } 2344 return (error); 2345 } 2346 error = device_attach(dev); 2347 2348 return (error); 2349 } 2350 2351 /** 2352 * @brief Attach a device driver to a device 2353 * 2354 * This function is a wrapper around the DEVICE_ATTACH() driver 2355 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2356 * device's sysctl tree, optionally prints a description of the device 2357 * and queues a notification event for user-based device management 2358 * services. 2359 * 2360 * Normally this function is only called internally from 2361 * device_probe_and_attach(). 2362 * 2363 * @param dev the device to initialise 2364 * 2365 * @retval 0 success 2366 * @retval ENXIO no driver was found 2367 * @retval ENOMEM memory allocation failure 2368 * @retval non-zero some other unix error code 2369 */ 2370 int 2371 device_attach(device_t dev) 2372 { 2373 int error; 2374 2375 device_sysctl_init(dev); 2376 if (!device_is_quiet(dev)) 2377 device_print_child(dev->parent, dev); 2378 if ((error = DEVICE_ATTACH(dev)) != 0) { 2379 printf("device_attach: %s%d attach returned %d\n", 2380 dev->driver->name, dev->unit, error); 2381 /* Unset the class; set in device_probe_child */ 2382 if (dev->devclass == 0) 2383 device_set_devclass(dev, 0); 2384 device_set_driver(dev, NULL); 2385 device_sysctl_fini(dev); 2386 dev->state = DS_NOTPRESENT; 2387 return (error); 2388 } 2389 dev->state = DS_ATTACHED; 2390 devadded(dev); 2391 return (0); 2392 } 2393 2394 /** 2395 * @brief Detach a driver from a device 2396 * 2397 * This function is a wrapper around the DEVICE_DETACH() driver 2398 * method. If the call to DEVICE_DETACH() succeeds, it calls 2399 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2400 * notification event for user-based device management services and 2401 * cleans up the device's sysctl tree. 2402 * 2403 * @param dev the device to un-initialise 2404 * 2405 * @retval 0 success 2406 * @retval ENXIO no driver was found 2407 * @retval ENOMEM memory allocation failure 2408 * @retval non-zero some other unix error code 2409 */ 2410 int 2411 device_detach(device_t dev) 2412 { 2413 int error; 2414 2415 GIANT_REQUIRED; 2416 2417 PDEBUG(("%s", DEVICENAME(dev))); 2418 if (dev->state == DS_BUSY) 2419 return (EBUSY); 2420 if (dev->state != DS_ATTACHED) 2421 return (0); 2422 2423 if ((error = DEVICE_DETACH(dev)) != 0) 2424 return (error); 2425 devremoved(dev); 2426 device_printf(dev, "detached\n"); 2427 if (dev->parent) 2428 BUS_CHILD_DETACHED(dev->parent, dev); 2429 2430 if (!(dev->flags & DF_FIXEDCLASS)) 2431 devclass_delete_device(dev->devclass, dev); 2432 2433 dev->state = DS_NOTPRESENT; 2434 device_set_driver(dev, NULL); 2435 device_set_desc(dev, NULL); 2436 device_sysctl_fini(dev); 2437 2438 return (0); 2439 } 2440 2441 /** 2442 * @brief Tells a driver to quiesce itself. 2443 * 2444 * This function is a wrapper around the DEVICE_QUIESCE() driver 2445 * method. If the call to DEVICE_QUIESCE() succeeds. 2446 * 2447 * @param dev the device to quiesce 2448 * 2449 * @retval 0 success 2450 * @retval ENXIO no driver was found 2451 * @retval ENOMEM memory allocation failure 2452 * @retval non-zero some other unix error code 2453 */ 2454 int 2455 device_quiesce(device_t dev) 2456 { 2457 2458 PDEBUG(("%s", DEVICENAME(dev))); 2459 if (dev->state == DS_BUSY) 2460 return (EBUSY); 2461 if (dev->state != DS_ATTACHED) 2462 return (0); 2463 2464 return (DEVICE_QUIESCE(dev)); 2465 } 2466 2467 /** 2468 * @brief Notify a device of system shutdown 2469 * 2470 * This function calls the DEVICE_SHUTDOWN() driver method if the 2471 * device currently has an attached driver. 2472 * 2473 * @returns the value returned by DEVICE_SHUTDOWN() 2474 */ 2475 int 2476 device_shutdown(device_t dev) 2477 { 2478 if (dev->state < DS_ATTACHED) 2479 return (0); 2480 return (DEVICE_SHUTDOWN(dev)); 2481 } 2482 2483 /** 2484 * @brief Set the unit number of a device 2485 * 2486 * This function can be used to override the unit number used for a 2487 * device (e.g. to wire a device to a pre-configured unit number). 2488 */ 2489 int 2490 device_set_unit(device_t dev, int unit) 2491 { 2492 devclass_t dc; 2493 int err; 2494 2495 dc = device_get_devclass(dev); 2496 if (unit < dc->maxunit && dc->devices[unit]) 2497 return (EBUSY); 2498 err = devclass_delete_device(dc, dev); 2499 if (err) 2500 return (err); 2501 dev->unit = unit; 2502 err = devclass_add_device(dc, dev); 2503 if (err) 2504 return (err); 2505 2506 bus_data_generation_update(); 2507 return (0); 2508 } 2509 2510 /*======================================*/ 2511 /* 2512 * Some useful method implementations to make life easier for bus drivers. 2513 */ 2514 2515 /** 2516 * @brief Initialise a resource list. 2517 * 2518 * @param rl the resource list to initialise 2519 */ 2520 void 2521 resource_list_init(struct resource_list *rl) 2522 { 2523 STAILQ_INIT(rl); 2524 } 2525 2526 /** 2527 * @brief Reclaim memory used by a resource list. 2528 * 2529 * This function frees the memory for all resource entries on the list 2530 * (if any). 2531 * 2532 * @param rl the resource list to free 2533 */ 2534 void 2535 resource_list_free(struct resource_list *rl) 2536 { 2537 struct resource_list_entry *rle; 2538 2539 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2540 if (rle->res) 2541 panic("resource_list_free: resource entry is busy"); 2542 STAILQ_REMOVE_HEAD(rl, link); 2543 free(rle, M_BUS); 2544 } 2545 } 2546 2547 /** 2548 * @brief Add a resource entry. 2549 * 2550 * This function adds a resource entry using the given @p type, @p 2551 * start, @p end and @p count values. A rid value is chosen by 2552 * searching sequentially for the first unused rid starting at zero. 2553 * 2554 * @param rl the resource list to edit 2555 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2556 * @param start the start address of the resource 2557 * @param end the end address of the resource 2558 * @param count XXX end-start+1 2559 */ 2560 int 2561 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2562 u_long end, u_long count) 2563 { 2564 int rid; 2565 2566 rid = 0; 2567 while (resource_list_find(rl, type, rid) != NULL) 2568 rid++; 2569 resource_list_add(rl, type, rid, start, end, count); 2570 return (rid); 2571 } 2572 2573 /** 2574 * @brief Add or modify a resource entry. 2575 * 2576 * If an existing entry exists with the same type and rid, it will be 2577 * modified using the given values of @p start, @p end and @p 2578 * count. If no entry exists, a new one will be created using the 2579 * given values. The resource list entry that matches is then returned. 2580 * 2581 * @param rl the resource list to edit 2582 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2583 * @param rid the resource identifier 2584 * @param start the start address of the resource 2585 * @param end the end address of the resource 2586 * @param count XXX end-start+1 2587 */ 2588 struct resource_list_entry * 2589 resource_list_add(struct resource_list *rl, int type, int rid, 2590 u_long start, u_long end, u_long count) 2591 { 2592 struct resource_list_entry *rle; 2593 2594 rle = resource_list_find(rl, type, rid); 2595 if (!rle) { 2596 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2597 M_NOWAIT); 2598 if (!rle) 2599 panic("resource_list_add: can't record entry"); 2600 STAILQ_INSERT_TAIL(rl, rle, link); 2601 rle->type = type; 2602 rle->rid = rid; 2603 rle->res = NULL; 2604 } 2605 2606 if (rle->res) 2607 panic("resource_list_add: resource entry is busy"); 2608 2609 rle->start = start; 2610 rle->end = end; 2611 rle->count = count; 2612 return (rle); 2613 } 2614 2615 /** 2616 * @brief Find a resource entry by type and rid. 2617 * 2618 * @param rl the resource list to search 2619 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2620 * @param rid the resource identifier 2621 * 2622 * @returns the resource entry pointer or NULL if there is no such 2623 * entry. 2624 */ 2625 struct resource_list_entry * 2626 resource_list_find(struct resource_list *rl, int type, int rid) 2627 { 2628 struct resource_list_entry *rle; 2629 2630 STAILQ_FOREACH(rle, rl, link) { 2631 if (rle->type == type && rle->rid == rid) 2632 return (rle); 2633 } 2634 return (NULL); 2635 } 2636 2637 /** 2638 * @brief Delete a resource entry. 2639 * 2640 * @param rl the resource list to edit 2641 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2642 * @param rid the resource identifier 2643 */ 2644 void 2645 resource_list_delete(struct resource_list *rl, int type, int rid) 2646 { 2647 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2648 2649 if (rle) { 2650 if (rle->res != NULL) 2651 panic("resource_list_delete: resource has not been released"); 2652 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2653 free(rle, M_BUS); 2654 } 2655 } 2656 2657 /** 2658 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2659 * 2660 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2661 * and passing the allocation up to the parent of @p bus. This assumes 2662 * that the first entry of @c device_get_ivars(child) is a struct 2663 * resource_list. This also handles 'passthrough' allocations where a 2664 * child is a remote descendant of bus by passing the allocation up to 2665 * the parent of bus. 2666 * 2667 * Typically, a bus driver would store a list of child resources 2668 * somewhere in the child device's ivars (see device_get_ivars()) and 2669 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2670 * then call resource_list_alloc() to perform the allocation. 2671 * 2672 * @param rl the resource list to allocate from 2673 * @param bus the parent device of @p child 2674 * @param child the device which is requesting an allocation 2675 * @param type the type of resource to allocate 2676 * @param rid a pointer to the resource identifier 2677 * @param start hint at the start of the resource range - pass 2678 * @c 0UL for any start address 2679 * @param end hint at the end of the resource range - pass 2680 * @c ~0UL for any end address 2681 * @param count hint at the size of range required - pass @c 1 2682 * for any size 2683 * @param flags any extra flags to control the resource 2684 * allocation - see @c RF_XXX flags in 2685 * <sys/rman.h> for details 2686 * 2687 * @returns the resource which was allocated or @c NULL if no 2688 * resource could be allocated 2689 */ 2690 struct resource * 2691 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2692 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2693 { 2694 struct resource_list_entry *rle = 0; 2695 int passthrough = (device_get_parent(child) != bus); 2696 int isdefault = (start == 0UL && end == ~0UL); 2697 2698 if (passthrough) { 2699 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2700 type, rid, start, end, count, flags)); 2701 } 2702 2703 rle = resource_list_find(rl, type, *rid); 2704 2705 if (!rle) 2706 return (NULL); /* no resource of that type/rid */ 2707 2708 if (rle->res) 2709 panic("resource_list_alloc: resource entry is busy"); 2710 2711 if (isdefault) { 2712 start = rle->start; 2713 count = ulmax(count, rle->count); 2714 end = ulmax(rle->end, start + count - 1); 2715 } 2716 2717 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2718 type, rid, start, end, count, flags); 2719 2720 /* 2721 * Record the new range. 2722 */ 2723 if (rle->res) { 2724 rle->start = rman_get_start(rle->res); 2725 rle->end = rman_get_end(rle->res); 2726 rle->count = count; 2727 } 2728 2729 return (rle->res); 2730 } 2731 2732 /** 2733 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2734 * 2735 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2736 * used with resource_list_alloc(). 2737 * 2738 * @param rl the resource list which was allocated from 2739 * @param bus the parent device of @p child 2740 * @param child the device which is requesting a release 2741 * @param type the type of resource to allocate 2742 * @param rid the resource identifier 2743 * @param res the resource to release 2744 * 2745 * @retval 0 success 2746 * @retval non-zero a standard unix error code indicating what 2747 * error condition prevented the operation 2748 */ 2749 int 2750 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2751 int type, int rid, struct resource *res) 2752 { 2753 struct resource_list_entry *rle = 0; 2754 int passthrough = (device_get_parent(child) != bus); 2755 int error; 2756 2757 if (passthrough) { 2758 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2759 type, rid, res)); 2760 } 2761 2762 rle = resource_list_find(rl, type, rid); 2763 2764 if (!rle) 2765 panic("resource_list_release: can't find resource"); 2766 if (!rle->res) 2767 panic("resource_list_release: resource entry is not busy"); 2768 2769 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2770 type, rid, res); 2771 if (error) 2772 return (error); 2773 2774 rle->res = NULL; 2775 return (0); 2776 } 2777 2778 /** 2779 * @brief Print a description of resources in a resource list 2780 * 2781 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2782 * The name is printed if at least one resource of the given type is available. 2783 * The format is used to print resource start and end. 2784 * 2785 * @param rl the resource list to print 2786 * @param name the name of @p type, e.g. @c "memory" 2787 * @param type type type of resource entry to print 2788 * @param format printf(9) format string to print resource 2789 * start and end values 2790 * 2791 * @returns the number of characters printed 2792 */ 2793 int 2794 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2795 const char *format) 2796 { 2797 struct resource_list_entry *rle; 2798 int printed, retval; 2799 2800 printed = 0; 2801 retval = 0; 2802 /* Yes, this is kinda cheating */ 2803 STAILQ_FOREACH(rle, rl, link) { 2804 if (rle->type == type) { 2805 if (printed == 0) 2806 retval += printf(" %s ", name); 2807 else 2808 retval += printf(","); 2809 printed++; 2810 retval += printf(format, rle->start); 2811 if (rle->count > 1) { 2812 retval += printf("-"); 2813 retval += printf(format, rle->start + 2814 rle->count - 1); 2815 } 2816 } 2817 } 2818 return (retval); 2819 } 2820 2821 /** 2822 * @brief Releases all the resources in a list. 2823 * 2824 * @param rl The resource list to purge. 2825 * 2826 * @returns nothing 2827 */ 2828 void 2829 resource_list_purge(struct resource_list *rl) 2830 { 2831 struct resource_list_entry *rle; 2832 2833 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2834 if (rle->res) 2835 bus_release_resource(rman_get_device(rle->res), 2836 rle->type, rle->rid, rle->res); 2837 STAILQ_REMOVE_HEAD(rl, link); 2838 free(rle, M_BUS); 2839 } 2840 } 2841 2842 device_t 2843 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 2844 { 2845 2846 return (device_add_child_ordered(dev, order, name, unit)); 2847 } 2848 2849 /** 2850 * @brief Helper function for implementing DEVICE_PROBE() 2851 * 2852 * This function can be used to help implement the DEVICE_PROBE() for 2853 * a bus (i.e. a device which has other devices attached to it). It 2854 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2855 * devclass. 2856 */ 2857 int 2858 bus_generic_probe(device_t dev) 2859 { 2860 devclass_t dc = dev->devclass; 2861 driverlink_t dl; 2862 2863 TAILQ_FOREACH(dl, &dc->drivers, link) { 2864 DEVICE_IDENTIFY(dl->driver, dev); 2865 } 2866 2867 return (0); 2868 } 2869 2870 /** 2871 * @brief Helper function for implementing DEVICE_ATTACH() 2872 * 2873 * This function can be used to help implement the DEVICE_ATTACH() for 2874 * a bus. It calls device_probe_and_attach() for each of the device's 2875 * children. 2876 */ 2877 int 2878 bus_generic_attach(device_t dev) 2879 { 2880 device_t child; 2881 2882 TAILQ_FOREACH(child, &dev->children, link) { 2883 device_probe_and_attach(child); 2884 } 2885 2886 return (0); 2887 } 2888 2889 /** 2890 * @brief Helper function for implementing DEVICE_DETACH() 2891 * 2892 * This function can be used to help implement the DEVICE_DETACH() for 2893 * a bus. It calls device_detach() for each of the device's 2894 * children. 2895 */ 2896 int 2897 bus_generic_detach(device_t dev) 2898 { 2899 device_t child; 2900 int error; 2901 2902 if (dev->state != DS_ATTACHED) 2903 return (EBUSY); 2904 2905 TAILQ_FOREACH(child, &dev->children, link) { 2906 if ((error = device_detach(child)) != 0) 2907 return (error); 2908 } 2909 2910 return (0); 2911 } 2912 2913 /** 2914 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2915 * 2916 * This function can be used to help implement the DEVICE_SHUTDOWN() 2917 * for a bus. It calls device_shutdown() for each of the device's 2918 * children. 2919 */ 2920 int 2921 bus_generic_shutdown(device_t dev) 2922 { 2923 device_t child; 2924 2925 TAILQ_FOREACH(child, &dev->children, link) { 2926 device_shutdown(child); 2927 } 2928 2929 return (0); 2930 } 2931 2932 /** 2933 * @brief Helper function for implementing DEVICE_SUSPEND() 2934 * 2935 * This function can be used to help implement the DEVICE_SUSPEND() 2936 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2937 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2938 * operation is aborted and any devices which were suspended are 2939 * resumed immediately by calling their DEVICE_RESUME() methods. 2940 */ 2941 int 2942 bus_generic_suspend(device_t dev) 2943 { 2944 int error; 2945 device_t child, child2; 2946 2947 TAILQ_FOREACH(child, &dev->children, link) { 2948 error = DEVICE_SUSPEND(child); 2949 if (error) { 2950 for (child2 = TAILQ_FIRST(&dev->children); 2951 child2 && child2 != child; 2952 child2 = TAILQ_NEXT(child2, link)) 2953 DEVICE_RESUME(child2); 2954 return (error); 2955 } 2956 } 2957 return (0); 2958 } 2959 2960 /** 2961 * @brief Helper function for implementing DEVICE_RESUME() 2962 * 2963 * This function can be used to help implement the DEVICE_RESUME() for 2964 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2965 */ 2966 int 2967 bus_generic_resume(device_t dev) 2968 { 2969 device_t child; 2970 2971 TAILQ_FOREACH(child, &dev->children, link) { 2972 DEVICE_RESUME(child); 2973 /* if resume fails, there's nothing we can usefully do... */ 2974 } 2975 return (0); 2976 } 2977 2978 /** 2979 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2980 * 2981 * This function prints the first part of the ascii representation of 2982 * @p child, including its name, unit and description (if any - see 2983 * device_set_desc()). 2984 * 2985 * @returns the number of characters printed 2986 */ 2987 int 2988 bus_print_child_header(device_t dev, device_t child) 2989 { 2990 int retval = 0; 2991 2992 if (device_get_desc(child)) { 2993 retval += device_printf(child, "<%s>", device_get_desc(child)); 2994 } else { 2995 retval += printf("%s", device_get_nameunit(child)); 2996 } 2997 2998 return (retval); 2999 } 3000 3001 /** 3002 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3003 * 3004 * This function prints the last part of the ascii representation of 3005 * @p child, which consists of the string @c " on " followed by the 3006 * name and unit of the @p dev. 3007 * 3008 * @returns the number of characters printed 3009 */ 3010 int 3011 bus_print_child_footer(device_t dev, device_t child) 3012 { 3013 return (printf(" on %s\n", device_get_nameunit(dev))); 3014 } 3015 3016 /** 3017 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3018 * 3019 * This function simply calls bus_print_child_header() followed by 3020 * bus_print_child_footer(). 3021 * 3022 * @returns the number of characters printed 3023 */ 3024 int 3025 bus_generic_print_child(device_t dev, device_t child) 3026 { 3027 int retval = 0; 3028 3029 retval += bus_print_child_header(dev, child); 3030 retval += bus_print_child_footer(dev, child); 3031 3032 return (retval); 3033 } 3034 3035 /** 3036 * @brief Stub function for implementing BUS_READ_IVAR(). 3037 * 3038 * @returns ENOENT 3039 */ 3040 int 3041 bus_generic_read_ivar(device_t dev, device_t child, int index, 3042 uintptr_t * result) 3043 { 3044 return (ENOENT); 3045 } 3046 3047 /** 3048 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3049 * 3050 * @returns ENOENT 3051 */ 3052 int 3053 bus_generic_write_ivar(device_t dev, device_t child, int index, 3054 uintptr_t value) 3055 { 3056 return (ENOENT); 3057 } 3058 3059 /** 3060 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3061 * 3062 * @returns NULL 3063 */ 3064 struct resource_list * 3065 bus_generic_get_resource_list(device_t dev, device_t child) 3066 { 3067 return (NULL); 3068 } 3069 3070 /** 3071 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3072 * 3073 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3074 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3075 * and then calls device_probe_and_attach() for each unattached child. 3076 */ 3077 void 3078 bus_generic_driver_added(device_t dev, driver_t *driver) 3079 { 3080 device_t child; 3081 3082 DEVICE_IDENTIFY(driver, dev); 3083 TAILQ_FOREACH(child, &dev->children, link) { 3084 if (child->state == DS_NOTPRESENT || 3085 (child->flags & DF_REBID)) 3086 device_probe_and_attach(child); 3087 } 3088 } 3089 3090 /** 3091 * @brief Helper function for implementing BUS_SETUP_INTR(). 3092 * 3093 * This simple implementation of BUS_SETUP_INTR() simply calls the 3094 * BUS_SETUP_INTR() method of the parent of @p dev. 3095 */ 3096 int 3097 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3098 int flags, driver_intr_t *intr, void *arg, void **cookiep) 3099 { 3100 /* Propagate up the bus hierarchy until someone handles it. */ 3101 if (dev->parent) 3102 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3103 intr, arg, cookiep)); 3104 return (EINVAL); 3105 } 3106 3107 /** 3108 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3109 * 3110 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3111 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3112 */ 3113 int 3114 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3115 void *cookie) 3116 { 3117 /* Propagate up the bus hierarchy until someone handles it. */ 3118 if (dev->parent) 3119 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3120 return (EINVAL); 3121 } 3122 3123 /** 3124 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3125 * 3126 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3127 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3128 */ 3129 struct resource * 3130 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3131 u_long start, u_long end, u_long count, u_int flags) 3132 { 3133 /* Propagate up the bus hierarchy until someone handles it. */ 3134 if (dev->parent) 3135 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3136 start, end, count, flags)); 3137 return (NULL); 3138 } 3139 3140 /** 3141 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3142 * 3143 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3144 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3145 */ 3146 int 3147 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3148 struct resource *r) 3149 { 3150 /* Propagate up the bus hierarchy until someone handles it. */ 3151 if (dev->parent) 3152 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3153 r)); 3154 return (EINVAL); 3155 } 3156 3157 /** 3158 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3159 * 3160 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3161 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3162 */ 3163 int 3164 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3165 struct resource *r) 3166 { 3167 /* Propagate up the bus hierarchy until someone handles it. */ 3168 if (dev->parent) 3169 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3170 r)); 3171 return (EINVAL); 3172 } 3173 3174 /** 3175 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3176 * 3177 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3178 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3179 */ 3180 int 3181 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3182 int rid, struct resource *r) 3183 { 3184 /* Propagate up the bus hierarchy until someone handles it. */ 3185 if (dev->parent) 3186 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3187 r)); 3188 return (EINVAL); 3189 } 3190 3191 /** 3192 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3193 * 3194 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3195 * BUS_CONFIG_INTR() method of the parent of @p dev. 3196 */ 3197 int 3198 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3199 enum intr_polarity pol) 3200 { 3201 3202 /* Propagate up the bus hierarchy until someone handles it. */ 3203 if (dev->parent) 3204 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3205 return (EINVAL); 3206 } 3207 3208 /** 3209 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3210 * 3211 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3212 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3213 */ 3214 bus_dma_tag_t 3215 bus_generic_get_dma_tag(device_t dev, device_t child) 3216 { 3217 3218 /* Propagate up the bus hierarchy until someone handles it. */ 3219 if (dev->parent != NULL) 3220 return (BUS_GET_DMA_TAG(dev->parent, child)); 3221 return (NULL); 3222 } 3223 3224 /** 3225 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3226 * 3227 * This implementation of BUS_GET_RESOURCE() uses the 3228 * resource_list_find() function to do most of the work. It calls 3229 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3230 * search. 3231 */ 3232 int 3233 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3234 u_long *startp, u_long *countp) 3235 { 3236 struct resource_list * rl = NULL; 3237 struct resource_list_entry * rle = NULL; 3238 3239 rl = BUS_GET_RESOURCE_LIST(dev, child); 3240 if (!rl) 3241 return (EINVAL); 3242 3243 rle = resource_list_find(rl, type, rid); 3244 if (!rle) 3245 return (ENOENT); 3246 3247 if (startp) 3248 *startp = rle->start; 3249 if (countp) 3250 *countp = rle->count; 3251 3252 return (0); 3253 } 3254 3255 /** 3256 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3257 * 3258 * This implementation of BUS_SET_RESOURCE() uses the 3259 * resource_list_add() function to do most of the work. It calls 3260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3261 * edit. 3262 */ 3263 int 3264 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3265 u_long start, u_long count) 3266 { 3267 struct resource_list * rl = NULL; 3268 3269 rl = BUS_GET_RESOURCE_LIST(dev, child); 3270 if (!rl) 3271 return (EINVAL); 3272 3273 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3274 3275 return (0); 3276 } 3277 3278 /** 3279 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3280 * 3281 * This implementation of BUS_DELETE_RESOURCE() uses the 3282 * resource_list_delete() function to do most of the work. It calls 3283 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3284 * edit. 3285 */ 3286 void 3287 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3288 { 3289 struct resource_list * rl = NULL; 3290 3291 rl = BUS_GET_RESOURCE_LIST(dev, child); 3292 if (!rl) 3293 return; 3294 3295 resource_list_delete(rl, type, rid); 3296 3297 return; 3298 } 3299 3300 /** 3301 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3302 * 3303 * This implementation of BUS_RELEASE_RESOURCE() uses the 3304 * resource_list_release() function to do most of the work. It calls 3305 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3306 */ 3307 int 3308 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3309 int rid, struct resource *r) 3310 { 3311 struct resource_list * rl = NULL; 3312 3313 rl = BUS_GET_RESOURCE_LIST(dev, child); 3314 if (!rl) 3315 return (EINVAL); 3316 3317 return (resource_list_release(rl, dev, child, type, rid, r)); 3318 } 3319 3320 /** 3321 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3322 * 3323 * This implementation of BUS_ALLOC_RESOURCE() uses the 3324 * resource_list_alloc() function to do most of the work. It calls 3325 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3326 */ 3327 struct resource * 3328 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3329 int *rid, u_long start, u_long end, u_long count, u_int flags) 3330 { 3331 struct resource_list * rl = NULL; 3332 3333 rl = BUS_GET_RESOURCE_LIST(dev, child); 3334 if (!rl) 3335 return (NULL); 3336 3337 return (resource_list_alloc(rl, dev, child, type, rid, 3338 start, end, count, flags)); 3339 } 3340 3341 /** 3342 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3343 * 3344 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3345 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3346 */ 3347 int 3348 bus_generic_child_present(device_t dev, device_t child) 3349 { 3350 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3351 } 3352 3353 /* 3354 * Some convenience functions to make it easier for drivers to use the 3355 * resource-management functions. All these really do is hide the 3356 * indirection through the parent's method table, making for slightly 3357 * less-wordy code. In the future, it might make sense for this code 3358 * to maintain some sort of a list of resources allocated by each device. 3359 */ 3360 3361 int 3362 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3363 struct resource **res) 3364 { 3365 int i; 3366 3367 for (i = 0; rs[i].type != -1; i++) 3368 res[i] = NULL; 3369 for (i = 0; rs[i].type != -1; i++) { 3370 res[i] = bus_alloc_resource_any(dev, 3371 rs[i].type, &rs[i].rid, rs[i].flags); 3372 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3373 bus_release_resources(dev, rs, res); 3374 return (ENXIO); 3375 } 3376 } 3377 return (0); 3378 } 3379 3380 void 3381 bus_release_resources(device_t dev, const struct resource_spec *rs, 3382 struct resource **res) 3383 { 3384 int i; 3385 3386 for (i = 0; rs[i].type != -1; i++) 3387 if (res[i] != NULL) { 3388 bus_release_resource( 3389 dev, rs[i].type, rs[i].rid, res[i]); 3390 res[i] = NULL; 3391 } 3392 } 3393 3394 /** 3395 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3396 * 3397 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3398 * parent of @p dev. 3399 */ 3400 struct resource * 3401 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3402 u_long count, u_int flags) 3403 { 3404 if (dev->parent == 0) 3405 return (0); 3406 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3407 count, flags)); 3408 } 3409 3410 /** 3411 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3412 * 3413 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3414 * parent of @p dev. 3415 */ 3416 int 3417 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3418 { 3419 if (dev->parent == 0) 3420 return (EINVAL); 3421 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3422 } 3423 3424 /** 3425 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3426 * 3427 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3428 * parent of @p dev. 3429 */ 3430 int 3431 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3432 { 3433 if (dev->parent == 0) 3434 return (EINVAL); 3435 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3436 } 3437 3438 /** 3439 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3440 * 3441 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3442 * parent of @p dev. 3443 */ 3444 int 3445 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3446 { 3447 if (dev->parent == 0) 3448 return (EINVAL); 3449 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3450 } 3451 3452 /** 3453 * @brief Wrapper function for BUS_SETUP_INTR(). 3454 * 3455 * This function simply calls the BUS_SETUP_INTR() method of the 3456 * parent of @p dev. 3457 */ 3458 int 3459 bus_setup_intr(device_t dev, struct resource *r, int flags, 3460 driver_intr_t handler, void *arg, void **cookiep) 3461 { 3462 int error; 3463 3464 if (dev->parent != 0) { 3465 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) && 3466 !debug_mpsafenet) 3467 flags &= ~INTR_MPSAFE; 3468 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3469 handler, arg, cookiep); 3470 if (error == 0) { 3471 if (!(flags & (INTR_MPSAFE | INTR_FAST))) 3472 device_printf(dev, "[GIANT-LOCKED]\n"); 3473 if (bootverbose && (flags & INTR_MPSAFE)) 3474 device_printf(dev, "[MPSAFE]\n"); 3475 if (flags & INTR_FAST) 3476 device_printf(dev, "[FAST]\n"); 3477 } 3478 } else 3479 error = EINVAL; 3480 return (error); 3481 } 3482 3483 /** 3484 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3485 * 3486 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3487 * parent of @p dev. 3488 */ 3489 int 3490 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3491 { 3492 if (dev->parent == 0) 3493 return (EINVAL); 3494 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3495 } 3496 3497 /** 3498 * @brief Wrapper function for BUS_SET_RESOURCE(). 3499 * 3500 * This function simply calls the BUS_SET_RESOURCE() method of the 3501 * parent of @p dev. 3502 */ 3503 int 3504 bus_set_resource(device_t dev, int type, int rid, 3505 u_long start, u_long count) 3506 { 3507 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3508 start, count)); 3509 } 3510 3511 /** 3512 * @brief Wrapper function for BUS_GET_RESOURCE(). 3513 * 3514 * This function simply calls the BUS_GET_RESOURCE() method of the 3515 * parent of @p dev. 3516 */ 3517 int 3518 bus_get_resource(device_t dev, int type, int rid, 3519 u_long *startp, u_long *countp) 3520 { 3521 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3522 startp, countp)); 3523 } 3524 3525 /** 3526 * @brief Wrapper function for BUS_GET_RESOURCE(). 3527 * 3528 * This function simply calls the BUS_GET_RESOURCE() method of the 3529 * parent of @p dev and returns the start value. 3530 */ 3531 u_long 3532 bus_get_resource_start(device_t dev, int type, int rid) 3533 { 3534 u_long start, count; 3535 int error; 3536 3537 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3538 &start, &count); 3539 if (error) 3540 return (0); 3541 return (start); 3542 } 3543 3544 /** 3545 * @brief Wrapper function for BUS_GET_RESOURCE(). 3546 * 3547 * This function simply calls the BUS_GET_RESOURCE() method of the 3548 * parent of @p dev and returns the count value. 3549 */ 3550 u_long 3551 bus_get_resource_count(device_t dev, int type, int rid) 3552 { 3553 u_long start, count; 3554 int error; 3555 3556 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3557 &start, &count); 3558 if (error) 3559 return (0); 3560 return (count); 3561 } 3562 3563 /** 3564 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3565 * 3566 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3567 * parent of @p dev. 3568 */ 3569 void 3570 bus_delete_resource(device_t dev, int type, int rid) 3571 { 3572 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3573 } 3574 3575 /** 3576 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3577 * 3578 * This function simply calls the BUS_CHILD_PRESENT() method of the 3579 * parent of @p dev. 3580 */ 3581 int 3582 bus_child_present(device_t child) 3583 { 3584 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3585 } 3586 3587 /** 3588 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3589 * 3590 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3591 * parent of @p dev. 3592 */ 3593 int 3594 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3595 { 3596 device_t parent; 3597 3598 parent = device_get_parent(child); 3599 if (parent == NULL) { 3600 *buf = '\0'; 3601 return (0); 3602 } 3603 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3604 } 3605 3606 /** 3607 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3608 * 3609 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3610 * parent of @p dev. 3611 */ 3612 int 3613 bus_child_location_str(device_t child, char *buf, size_t buflen) 3614 { 3615 device_t parent; 3616 3617 parent = device_get_parent(child); 3618 if (parent == NULL) { 3619 *buf = '\0'; 3620 return (0); 3621 } 3622 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3623 } 3624 3625 /** 3626 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3627 * 3628 * This function simply calls the BUS_GET_DMA_TAG() method of the 3629 * parent of @p dev. 3630 */ 3631 bus_dma_tag_t 3632 bus_get_dma_tag(device_t dev) 3633 { 3634 device_t parent; 3635 3636 parent = device_get_parent(dev); 3637 if (parent == NULL) 3638 return (NULL); 3639 return (BUS_GET_DMA_TAG(parent, dev)); 3640 } 3641 3642 /* Resume all devices and then notify userland that we're up again. */ 3643 static int 3644 root_resume(device_t dev) 3645 { 3646 int error; 3647 3648 error = bus_generic_resume(dev); 3649 if (error == 0) 3650 devctl_notify("kern", "power", "resume", NULL); 3651 return (error); 3652 } 3653 3654 static int 3655 root_print_child(device_t dev, device_t child) 3656 { 3657 int retval = 0; 3658 3659 retval += bus_print_child_header(dev, child); 3660 retval += printf("\n"); 3661 3662 return (retval); 3663 } 3664 3665 static int 3666 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3667 void **cookiep) 3668 { 3669 /* 3670 * If an interrupt mapping gets to here something bad has happened. 3671 */ 3672 panic("root_setup_intr"); 3673 } 3674 3675 /* 3676 * If we get here, assume that the device is permanant and really is 3677 * present in the system. Removable bus drivers are expected to intercept 3678 * this call long before it gets here. We return -1 so that drivers that 3679 * really care can check vs -1 or some ERRNO returned higher in the food 3680 * chain. 3681 */ 3682 static int 3683 root_child_present(device_t dev, device_t child) 3684 { 3685 return (-1); 3686 } 3687 3688 static kobj_method_t root_methods[] = { 3689 /* Device interface */ 3690 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3691 KOBJMETHOD(device_suspend, bus_generic_suspend), 3692 KOBJMETHOD(device_resume, root_resume), 3693 3694 /* Bus interface */ 3695 KOBJMETHOD(bus_print_child, root_print_child), 3696 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3697 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3698 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3699 KOBJMETHOD(bus_child_present, root_child_present), 3700 3701 { 0, 0 } 3702 }; 3703 3704 static driver_t root_driver = { 3705 "root", 3706 root_methods, 3707 1, /* no softc */ 3708 }; 3709 3710 device_t root_bus; 3711 devclass_t root_devclass; 3712 3713 static int 3714 root_bus_module_handler(module_t mod, int what, void* arg) 3715 { 3716 switch (what) { 3717 case MOD_LOAD: 3718 TAILQ_INIT(&bus_data_devices); 3719 kobj_class_compile((kobj_class_t) &root_driver); 3720 root_bus = make_device(NULL, "root", 0); 3721 root_bus->desc = "System root bus"; 3722 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3723 root_bus->driver = &root_driver; 3724 root_bus->state = DS_ATTACHED; 3725 root_devclass = devclass_find_internal("root", 0, FALSE); 3726 devinit(); 3727 return (0); 3728 3729 case MOD_SHUTDOWN: 3730 device_shutdown(root_bus); 3731 return (0); 3732 default: 3733 return (EOPNOTSUPP); 3734 } 3735 3736 return (0); 3737 } 3738 3739 static moduledata_t root_bus_mod = { 3740 "rootbus", 3741 root_bus_module_handler, 3742 0 3743 }; 3744 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3745 3746 /** 3747 * @brief Automatically configure devices 3748 * 3749 * This function begins the autoconfiguration process by calling 3750 * device_probe_and_attach() for each child of the @c root0 device. 3751 */ 3752 void 3753 root_bus_configure(void) 3754 { 3755 device_t dev; 3756 3757 PDEBUG((".")); 3758 3759 TAILQ_FOREACH(dev, &root_bus->children, link) { 3760 device_probe_and_attach(dev); 3761 } 3762 } 3763 3764 /** 3765 * @brief Module handler for registering device drivers 3766 * 3767 * This module handler is used to automatically register device 3768 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3769 * devclass_add_driver() for the driver described by the 3770 * driver_module_data structure pointed to by @p arg 3771 */ 3772 int 3773 driver_module_handler(module_t mod, int what, void *arg) 3774 { 3775 int error; 3776 struct driver_module_data *dmd; 3777 devclass_t bus_devclass; 3778 kobj_class_t driver; 3779 3780 dmd = (struct driver_module_data *)arg; 3781 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE); 3782 error = 0; 3783 3784 switch (what) { 3785 case MOD_LOAD: 3786 if (dmd->dmd_chainevh) 3787 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3788 3789 driver = dmd->dmd_driver; 3790 PDEBUG(("Loading module: driver %s on bus %s", 3791 DRIVERNAME(driver), dmd->dmd_busname)); 3792 error = devclass_add_driver(bus_devclass, driver); 3793 if (error) 3794 break; 3795 3796 /* 3797 * If the driver has any base classes, make the 3798 * devclass inherit from the devclass of the driver's 3799 * first base class. This will allow the system to 3800 * search for drivers in both devclasses for children 3801 * of a device using this driver. 3802 */ 3803 if (driver->baseclasses) { 3804 const char *parentname; 3805 parentname = driver->baseclasses[0]->name; 3806 *dmd->dmd_devclass = 3807 devclass_find_internal(driver->name, 3808 parentname, TRUE); 3809 } else { 3810 *dmd->dmd_devclass = 3811 devclass_find_internal(driver->name, 0, TRUE); 3812 } 3813 break; 3814 3815 case MOD_UNLOAD: 3816 PDEBUG(("Unloading module: driver %s from bus %s", 3817 DRIVERNAME(dmd->dmd_driver), 3818 dmd->dmd_busname)); 3819 error = devclass_delete_driver(bus_devclass, 3820 dmd->dmd_driver); 3821 3822 if (!error && dmd->dmd_chainevh) 3823 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3824 break; 3825 case MOD_QUIESCE: 3826 PDEBUG(("Quiesce module: driver %s from bus %s", 3827 DRIVERNAME(dmd->dmd_driver), 3828 dmd->dmd_busname)); 3829 error = devclass_quiesce_driver(bus_devclass, 3830 dmd->dmd_driver); 3831 3832 if (!error && dmd->dmd_chainevh) 3833 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3834 break; 3835 default: 3836 error = EOPNOTSUPP; 3837 break; 3838 } 3839 3840 return (error); 3841 } 3842 3843 /** 3844 * @brief Enumerate all hinted devices for this bus. 3845 * 3846 * Walks throught he hints for this bus and calls the bus_hinted_child 3847 * routine for each one it fines. It searches first for the specific 3848 * bus that's being probed for hinted children (eg isa0), and then for 3849 * generic children (eg isa). 3850 * 3851 * @param dev bus device to enumerate 3852 */ 3853 void 3854 bus_enumerate_hinted_children(device_t bus) 3855 { 3856 int i; 3857 const char *dname, *busname; 3858 int dunit; 3859 3860 /* 3861 * enumerate all devices on the specific bus 3862 */ 3863 busname = device_get_nameunit(bus); 3864 i = 0; 3865 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3866 BUS_HINTED_CHILD(bus, dname, dunit); 3867 3868 /* 3869 * and all the generic ones. 3870 */ 3871 busname = device_get_name(bus); 3872 i = 0; 3873 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3874 BUS_HINTED_CHILD(bus, dname, dunit); 3875 } 3876 3877 #ifdef BUS_DEBUG 3878 3879 /* the _short versions avoid iteration by not calling anything that prints 3880 * more than oneliners. I love oneliners. 3881 */ 3882 3883 static void 3884 print_device_short(device_t dev, int indent) 3885 { 3886 if (!dev) 3887 return; 3888 3889 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3890 dev->unit, dev->desc, 3891 (dev->parent? "":"no "), 3892 (TAILQ_EMPTY(&dev->children)? "no ":""), 3893 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3894 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3895 (dev->flags&DF_WILDCARD? "wildcard,":""), 3896 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3897 (dev->flags&DF_REBID? "rebiddable,":""), 3898 (dev->ivars? "":"no "), 3899 (dev->softc? "":"no "), 3900 dev->busy)); 3901 } 3902 3903 static void 3904 print_device(device_t dev, int indent) 3905 { 3906 if (!dev) 3907 return; 3908 3909 print_device_short(dev, indent); 3910 3911 indentprintf(("Parent:\n")); 3912 print_device_short(dev->parent, indent+1); 3913 indentprintf(("Driver:\n")); 3914 print_driver_short(dev->driver, indent+1); 3915 indentprintf(("Devclass:\n")); 3916 print_devclass_short(dev->devclass, indent+1); 3917 } 3918 3919 void 3920 print_device_tree_short(device_t dev, int indent) 3921 /* print the device and all its children (indented) */ 3922 { 3923 device_t child; 3924 3925 if (!dev) 3926 return; 3927 3928 print_device_short(dev, indent); 3929 3930 TAILQ_FOREACH(child, &dev->children, link) { 3931 print_device_tree_short(child, indent+1); 3932 } 3933 } 3934 3935 void 3936 print_device_tree(device_t dev, int indent) 3937 /* print the device and all its children (indented) */ 3938 { 3939 device_t child; 3940 3941 if (!dev) 3942 return; 3943 3944 print_device(dev, indent); 3945 3946 TAILQ_FOREACH(child, &dev->children, link) { 3947 print_device_tree(child, indent+1); 3948 } 3949 } 3950 3951 static void 3952 print_driver_short(driver_t *driver, int indent) 3953 { 3954 if (!driver) 3955 return; 3956 3957 indentprintf(("driver %s: softc size = %zd\n", 3958 driver->name, driver->size)); 3959 } 3960 3961 static void 3962 print_driver(driver_t *driver, int indent) 3963 { 3964 if (!driver) 3965 return; 3966 3967 print_driver_short(driver, indent); 3968 } 3969 3970 3971 static void 3972 print_driver_list(driver_list_t drivers, int indent) 3973 { 3974 driverlink_t driver; 3975 3976 TAILQ_FOREACH(driver, &drivers, link) { 3977 print_driver(driver->driver, indent); 3978 } 3979 } 3980 3981 static void 3982 print_devclass_short(devclass_t dc, int indent) 3983 { 3984 if ( !dc ) 3985 return; 3986 3987 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3988 } 3989 3990 static void 3991 print_devclass(devclass_t dc, int indent) 3992 { 3993 int i; 3994 3995 if ( !dc ) 3996 return; 3997 3998 print_devclass_short(dc, indent); 3999 indentprintf(("Drivers:\n")); 4000 print_driver_list(dc->drivers, indent+1); 4001 4002 indentprintf(("Devices:\n")); 4003 for (i = 0; i < dc->maxunit; i++) 4004 if (dc->devices[i]) 4005 print_device(dc->devices[i], indent+1); 4006 } 4007 4008 void 4009 print_devclass_list_short(void) 4010 { 4011 devclass_t dc; 4012 4013 printf("Short listing of devclasses, drivers & devices:\n"); 4014 TAILQ_FOREACH(dc, &devclasses, link) { 4015 print_devclass_short(dc, 0); 4016 } 4017 } 4018 4019 void 4020 print_devclass_list(void) 4021 { 4022 devclass_t dc; 4023 4024 printf("Full listing of devclasses, drivers & devices:\n"); 4025 TAILQ_FOREACH(dc, &devclasses, link) { 4026 print_devclass(dc, 0); 4027 } 4028 } 4029 4030 #endif 4031 4032 /* 4033 * User-space access to the device tree. 4034 * 4035 * We implement a small set of nodes: 4036 * 4037 * hw.bus Single integer read method to obtain the 4038 * current generation count. 4039 * hw.bus.devices Reads the entire device tree in flat space. 4040 * hw.bus.rman Resource manager interface 4041 * 4042 * We might like to add the ability to scan devclasses and/or drivers to 4043 * determine what else is currently loaded/available. 4044 */ 4045 4046 static int 4047 sysctl_bus(SYSCTL_HANDLER_ARGS) 4048 { 4049 struct u_businfo ubus; 4050 4051 ubus.ub_version = BUS_USER_VERSION; 4052 ubus.ub_generation = bus_data_generation; 4053 4054 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4055 } 4056 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4057 "bus-related data"); 4058 4059 static int 4060 sysctl_devices(SYSCTL_HANDLER_ARGS) 4061 { 4062 int *name = (int *)arg1; 4063 u_int namelen = arg2; 4064 int index; 4065 struct device *dev; 4066 struct u_device udev; /* XXX this is a bit big */ 4067 int error; 4068 4069 if (namelen != 2) 4070 return (EINVAL); 4071 4072 if (bus_data_generation_check(name[0])) 4073 return (EINVAL); 4074 4075 index = name[1]; 4076 4077 /* 4078 * Scan the list of devices, looking for the requested index. 4079 */ 4080 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4081 if (index-- == 0) 4082 break; 4083 } 4084 if (dev == NULL) 4085 return (ENOENT); 4086 4087 /* 4088 * Populate the return array. 4089 */ 4090 bzero(&udev, sizeof(udev)); 4091 udev.dv_handle = (uintptr_t)dev; 4092 udev.dv_parent = (uintptr_t)dev->parent; 4093 if (dev->nameunit != NULL) 4094 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4095 if (dev->desc != NULL) 4096 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4097 if (dev->driver != NULL && dev->driver->name != NULL) 4098 strlcpy(udev.dv_drivername, dev->driver->name, 4099 sizeof(udev.dv_drivername)); 4100 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4101 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4102 udev.dv_devflags = dev->devflags; 4103 udev.dv_flags = dev->flags; 4104 udev.dv_state = dev->state; 4105 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4106 return (error); 4107 } 4108 4109 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4110 "system device tree"); 4111 4112 int 4113 bus_data_generation_check(int generation) 4114 { 4115 if (generation != bus_data_generation) 4116 return (1); 4117 4118 /* XXX generate optimised lists here? */ 4119 return (0); 4120 } 4121 4122 void 4123 bus_data_generation_update(void) 4124 { 4125 bus_data_generation++; 4126 } 4127 4128 int 4129 bus_free_resource(device_t dev, int type, struct resource *r) 4130 { 4131 if (r == NULL) 4132 return (0); 4133 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4134 } 4135