xref: /freebsd/sys/kern/subr_bus.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_short		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	1		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
127 #define	DF_WILDCARD	4		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	8		/* description was malloced */
129 #define	DF_QUIET	16		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
132 #define	DF_REBID	128		/* Can rebid after attach */
133 	u_char	order;			/**< order from device_add_child_ordered() */
134 	u_char	pad;
135 	void	*ivars;			/**< instance variables  */
136 	void	*softc;			/**< current driver's variables  */
137 
138 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
139 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
140 };
141 
142 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
143 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
144 
145 #ifdef BUS_DEBUG
146 
147 static int bus_debug = 1;
148 TUNABLE_INT("bus.debug", &bus_debug);
149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
150     "Debug bus code");
151 
152 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154 #define DRIVERNAME(d)	((d)? d->name : "no driver")
155 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
156 
157 /**
158  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159  * prevent syslog from deleting initial spaces
160  */
161 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162 
163 static void print_device_short(device_t dev, int indent);
164 static void print_device(device_t dev, int indent);
165 void print_device_tree_short(device_t dev, int indent);
166 void print_device_tree(device_t dev, int indent);
167 static void print_driver_short(driver_t *driver, int indent);
168 static void print_driver(driver_t *driver, int indent);
169 static void print_driver_list(driver_list_t drivers, int indent);
170 static void print_devclass_short(devclass_t dc, int indent);
171 static void print_devclass(devclass_t dc, int indent);
172 void print_devclass_list_short(void);
173 void print_devclass_list(void);
174 
175 #else
176 /* Make the compiler ignore the function calls */
177 #define PDEBUG(a)			/* nop */
178 #define DEVICENAME(d)			/* nop */
179 #define DRIVERNAME(d)			/* nop */
180 #define DEVCLANAME(d)			/* nop */
181 
182 #define print_device_short(d,i)		/* nop */
183 #define print_device(d,i)		/* nop */
184 #define print_device_tree_short(d,i)	/* nop */
185 #define print_device_tree(d,i)		/* nop */
186 #define print_driver_short(d,i)		/* nop */
187 #define print_driver(d,i)		/* nop */
188 #define print_driver_list(d,i)		/* nop */
189 #define print_devclass_short(d,i)	/* nop */
190 #define print_devclass(d,i)		/* nop */
191 #define print_devclass_list_short()	/* nop */
192 #define print_devclass_list()		/* nop */
193 #endif
194 
195 /*
196  * dev sysctl tree
197  */
198 
199 enum {
200 	DEVCLASS_SYSCTL_PARENT,
201 };
202 
203 static int
204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205 {
206 	devclass_t dc = (devclass_t)arg1;
207 	const char *value;
208 
209 	switch (arg2) {
210 	case DEVCLASS_SYSCTL_PARENT:
211 		value = dc->parent ? dc->parent->name : "";
212 		break;
213 	default:
214 		return (EINVAL);
215 	}
216 	return (SYSCTL_OUT(req, value, strlen(value)));
217 }
218 
219 static void
220 devclass_sysctl_init(devclass_t dc)
221 {
222 
223 	if (dc->sysctl_tree != NULL)
224 		return;
225 	sysctl_ctx_init(&dc->sysctl_ctx);
226 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228 	    CTLFLAG_RD, NULL, "");
229 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230 	    OID_AUTO, "%parent", CTLFLAG_RD,
231 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232 	    "parent class");
233 }
234 
235 enum {
236 	DEVICE_SYSCTL_DESC,
237 	DEVICE_SYSCTL_DRIVER,
238 	DEVICE_SYSCTL_LOCATION,
239 	DEVICE_SYSCTL_PNPINFO,
240 	DEVICE_SYSCTL_PARENT,
241 };
242 
243 static int
244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245 {
246 	device_t dev = (device_t)arg1;
247 	const char *value;
248 	char *buf;
249 	int error;
250 
251 	buf = NULL;
252 	switch (arg2) {
253 	case DEVICE_SYSCTL_DESC:
254 		value = dev->desc ? dev->desc : "";
255 		break;
256 	case DEVICE_SYSCTL_DRIVER:
257 		value = dev->driver ? dev->driver->name : "";
258 		break;
259 	case DEVICE_SYSCTL_LOCATION:
260 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261 		bus_child_location_str(dev, buf, 1024);
262 		break;
263 	case DEVICE_SYSCTL_PNPINFO:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_pnpinfo_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PARENT:
268 		value = dev->parent ? dev->parent->nameunit : "";
269 		break;
270 	default:
271 		return (EINVAL);
272 	}
273 	error = SYSCTL_OUT(req, value, strlen(value));
274 	if (buf != NULL)
275 		free(buf, M_BUS);
276 	return (error);
277 }
278 
279 static void
280 device_sysctl_init(device_t dev)
281 {
282 	devclass_t dc = dev->devclass;
283 
284 	if (dev->sysctl_tree != NULL)
285 		return;
286 	devclass_sysctl_init(dc);
287 	sysctl_ctx_init(&dev->sysctl_ctx);
288 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290 	    dev->nameunit + strlen(dc->name),
291 	    CTLFLAG_RD, NULL, "");
292 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293 	    OID_AUTO, "%desc", CTLFLAG_RD,
294 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295 	    "device description");
296 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297 	    OID_AUTO, "%driver", CTLFLAG_RD,
298 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299 	    "device driver name");
300 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301 	    OID_AUTO, "%location", CTLFLAG_RD,
302 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303 	    "device location relative to parent");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
306 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307 	    "device identification");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%parent", CTLFLAG_RD,
310 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311 	    "parent device");
312 }
313 
314 static void
315 device_sysctl_update(device_t dev)
316 {
317 	devclass_t dc = dev->devclass;
318 
319 	if (dev->sysctl_tree == NULL)
320 		return;
321 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
322 }
323 
324 static void
325 device_sysctl_fini(device_t dev)
326 {
327 	if (dev->sysctl_tree == NULL)
328 		return;
329 	sysctl_ctx_free(&dev->sysctl_ctx);
330 	dev->sysctl_tree = NULL;
331 }
332 
333 /*
334  * /dev/devctl implementation
335  */
336 
337 /*
338  * This design allows only one reader for /dev/devctl.  This is not desirable
339  * in the long run, but will get a lot of hair out of this implementation.
340  * Maybe we should make this device a clonable device.
341  *
342  * Also note: we specifically do not attach a device to the device_t tree
343  * to avoid potential chicken and egg problems.  One could argue that all
344  * of this belongs to the root node.  One could also further argue that the
345  * sysctl interface that we have not might more properly be an ioctl
346  * interface, but at this stage of the game, I'm not inclined to rock that
347  * boat.
348  *
349  * I'm also not sure that the SIGIO support is done correctly or not, as
350  * I copied it from a driver that had SIGIO support that likely hasn't been
351  * tested since 3.4 or 2.2.8!
352  */
353 
354 /* Deprecated way to adjust queue length */
355 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
356 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
357 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
358     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
359 
360 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
361 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
362 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
363 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
364 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
365     0, sysctl_devctl_queue, "I", "devctl queue length");
366 
367 static d_open_t		devopen;
368 static d_close_t	devclose;
369 static d_read_t		devread;
370 static d_ioctl_t	devioctl;
371 static d_poll_t		devpoll;
372 
373 static struct cdevsw dev_cdevsw = {
374 	.d_version =	D_VERSION,
375 	.d_flags =	D_NEEDGIANT,
376 	.d_open =	devopen,
377 	.d_close =	devclose,
378 	.d_read =	devread,
379 	.d_ioctl =	devioctl,
380 	.d_poll =	devpoll,
381 	.d_name =	"devctl",
382 };
383 
384 struct dev_event_info
385 {
386 	char *dei_data;
387 	TAILQ_ENTRY(dev_event_info) dei_link;
388 };
389 
390 TAILQ_HEAD(devq, dev_event_info);
391 
392 static struct dev_softc
393 {
394 	int	inuse;
395 	int	nonblock;
396 	int	queued;
397 	struct mtx mtx;
398 	struct cv cv;
399 	struct selinfo sel;
400 	struct devq devq;
401 	struct proc *async_proc;
402 } devsoftc;
403 
404 static struct cdev *devctl_dev;
405 
406 static void
407 devinit(void)
408 {
409 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
410 	    "devctl");
411 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
412 	cv_init(&devsoftc.cv, "dev cv");
413 	TAILQ_INIT(&devsoftc.devq);
414 }
415 
416 static int
417 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
418 {
419 	if (devsoftc.inuse)
420 		return (EBUSY);
421 	/* move to init */
422 	devsoftc.inuse = 1;
423 	devsoftc.nonblock = 0;
424 	devsoftc.async_proc = NULL;
425 	return (0);
426 }
427 
428 static int
429 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
430 {
431 	devsoftc.inuse = 0;
432 	mtx_lock(&devsoftc.mtx);
433 	cv_broadcast(&devsoftc.cv);
434 	mtx_unlock(&devsoftc.mtx);
435 	devsoftc.async_proc = NULL;
436 	return (0);
437 }
438 
439 /*
440  * The read channel for this device is used to report changes to
441  * userland in realtime.  We are required to free the data as well as
442  * the n1 object because we allocate them separately.  Also note that
443  * we return one record at a time.  If you try to read this device a
444  * character at a time, you will lose the rest of the data.  Listening
445  * programs are expected to cope.
446  */
447 static int
448 devread(struct cdev *dev, struct uio *uio, int ioflag)
449 {
450 	struct dev_event_info *n1;
451 	int rv;
452 
453 	mtx_lock(&devsoftc.mtx);
454 	while (TAILQ_EMPTY(&devsoftc.devq)) {
455 		if (devsoftc.nonblock) {
456 			mtx_unlock(&devsoftc.mtx);
457 			return (EAGAIN);
458 		}
459 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
460 		if (rv) {
461 			/*
462 			 * Need to translate ERESTART to EINTR here? -- jake
463 			 */
464 			mtx_unlock(&devsoftc.mtx);
465 			return (rv);
466 		}
467 	}
468 	n1 = TAILQ_FIRST(&devsoftc.devq);
469 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
470 	devsoftc.queued--;
471 	mtx_unlock(&devsoftc.mtx);
472 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
473 	free(n1->dei_data, M_BUS);
474 	free(n1, M_BUS);
475 	return (rv);
476 }
477 
478 static	int
479 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
480 {
481 	switch (cmd) {
482 
483 	case FIONBIO:
484 		if (*(int*)data)
485 			devsoftc.nonblock = 1;
486 		else
487 			devsoftc.nonblock = 0;
488 		return (0);
489 	case FIOASYNC:
490 		if (*(int*)data)
491 			devsoftc.async_proc = td->td_proc;
492 		else
493 			devsoftc.async_proc = NULL;
494 		return (0);
495 
496 		/* (un)Support for other fcntl() calls. */
497 	case FIOCLEX:
498 	case FIONCLEX:
499 	case FIONREAD:
500 	case FIOSETOWN:
501 	case FIOGETOWN:
502 	default:
503 		break;
504 	}
505 	return (ENOTTY);
506 }
507 
508 static	int
509 devpoll(struct cdev *dev, int events, struct thread *td)
510 {
511 	int	revents = 0;
512 
513 	mtx_lock(&devsoftc.mtx);
514 	if (events & (POLLIN | POLLRDNORM)) {
515 		if (!TAILQ_EMPTY(&devsoftc.devq))
516 			revents = events & (POLLIN | POLLRDNORM);
517 		else
518 			selrecord(td, &devsoftc.sel);
519 	}
520 	mtx_unlock(&devsoftc.mtx);
521 
522 	return (revents);
523 }
524 
525 /**
526  * @brief Return whether the userland process is running
527  */
528 boolean_t
529 devctl_process_running(void)
530 {
531 	return (devsoftc.inuse == 1);
532 }
533 
534 /**
535  * @brief Queue data to be read from the devctl device
536  *
537  * Generic interface to queue data to the devctl device.  It is
538  * assumed that @p data is properly formatted.  It is further assumed
539  * that @p data is allocated using the M_BUS malloc type.
540  */
541 void
542 devctl_queue_data(char *data)
543 {
544 	struct dev_event_info *n1 = NULL, *n2 = NULL;
545 	struct proc *p;
546 
547 	if (strlen(data) == 0)
548 		goto out;
549 	if (devctl_queue_length == 0)
550 		goto out;
551 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
552 	if (n1 == NULL)
553 		goto out;
554 	n1->dei_data = data;
555 	mtx_lock(&devsoftc.mtx);
556 	if (devctl_queue_length == 0) {
557 		mtx_unlock(&devsoftc.mtx);
558 		free(n1->dei_data, M_BUS);
559 		free(n1, M_BUS);
560 		return;
561 	}
562 	/* Leave at least one spot in the queue... */
563 	while (devsoftc.queued > devctl_queue_length - 1) {
564 		n2 = TAILQ_FIRST(&devsoftc.devq);
565 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
566 		free(n2->dei_data, M_BUS);
567 		free(n2, M_BUS);
568 		devsoftc.queued--;
569 	}
570 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
571 	devsoftc.queued++;
572 	cv_broadcast(&devsoftc.cv);
573 	mtx_unlock(&devsoftc.mtx);
574 	selwakeup(&devsoftc.sel);
575 	p = devsoftc.async_proc;
576 	if (p != NULL) {
577 		PROC_LOCK(p);
578 		psignal(p, SIGIO);
579 		PROC_UNLOCK(p);
580 	}
581 	return;
582 out:
583 	/*
584 	 * We have to free data on all error paths since the caller
585 	 * assumes it will be free'd when this item is dequeued.
586 	 */
587 	free(data, M_BUS);
588 	return;
589 }
590 
591 /**
592  * @brief Send a 'notification' to userland, using standard ways
593  */
594 void
595 devctl_notify(const char *system, const char *subsystem, const char *type,
596     const char *data)
597 {
598 	int len = 0;
599 	char *msg;
600 
601 	if (system == NULL)
602 		return;		/* BOGUS!  Must specify system. */
603 	if (subsystem == NULL)
604 		return;		/* BOGUS!  Must specify subsystem. */
605 	if (type == NULL)
606 		return;		/* BOGUS!  Must specify type. */
607 	len += strlen(" system=") + strlen(system);
608 	len += strlen(" subsystem=") + strlen(subsystem);
609 	len += strlen(" type=") + strlen(type);
610 	/* add in the data message plus newline. */
611 	if (data != NULL)
612 		len += strlen(data);
613 	len += 3;	/* '!', '\n', and NUL */
614 	msg = malloc(len, M_BUS, M_NOWAIT);
615 	if (msg == NULL)
616 		return;		/* Drop it on the floor */
617 	if (data != NULL)
618 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
619 		    system, subsystem, type, data);
620 	else
621 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
622 		    system, subsystem, type);
623 	devctl_queue_data(msg);
624 }
625 
626 /*
627  * Common routine that tries to make sending messages as easy as possible.
628  * We allocate memory for the data, copy strings into that, but do not
629  * free it unless there's an error.  The dequeue part of the driver should
630  * free the data.  We don't send data when the device is disabled.  We do
631  * send data, even when we have no listeners, because we wish to avoid
632  * races relating to startup and restart of listening applications.
633  *
634  * devaddq is designed to string together the type of event, with the
635  * object of that event, plus the plug and play info and location info
636  * for that event.  This is likely most useful for devices, but less
637  * useful for other consumers of this interface.  Those should use
638  * the devctl_queue_data() interface instead.
639  */
640 static void
641 devaddq(const char *type, const char *what, device_t dev)
642 {
643 	char *data = NULL;
644 	char *loc = NULL;
645 	char *pnp = NULL;
646 	const char *parstr;
647 
648 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
649 		return;
650 	data = malloc(1024, M_BUS, M_NOWAIT);
651 	if (data == NULL)
652 		goto bad;
653 
654 	/* get the bus specific location of this device */
655 	loc = malloc(1024, M_BUS, M_NOWAIT);
656 	if (loc == NULL)
657 		goto bad;
658 	*loc = '\0';
659 	bus_child_location_str(dev, loc, 1024);
660 
661 	/* Get the bus specific pnp info of this device */
662 	pnp = malloc(1024, M_BUS, M_NOWAIT);
663 	if (pnp == NULL)
664 		goto bad;
665 	*pnp = '\0';
666 	bus_child_pnpinfo_str(dev, pnp, 1024);
667 
668 	/* Get the parent of this device, or / if high enough in the tree. */
669 	if (device_get_parent(dev) == NULL)
670 		parstr = ".";	/* Or '/' ? */
671 	else
672 		parstr = device_get_nameunit(device_get_parent(dev));
673 	/* String it all together. */
674 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
675 	  parstr);
676 	free(loc, M_BUS);
677 	free(pnp, M_BUS);
678 	devctl_queue_data(data);
679 	return;
680 bad:
681 	free(pnp, M_BUS);
682 	free(loc, M_BUS);
683 	free(data, M_BUS);
684 	return;
685 }
686 
687 /*
688  * A device was added to the tree.  We are called just after it successfully
689  * attaches (that is, probe and attach success for this device).  No call
690  * is made if a device is merely parented into the tree.  See devnomatch
691  * if probe fails.  If attach fails, no notification is sent (but maybe
692  * we should have a different message for this).
693  */
694 static void
695 devadded(device_t dev)
696 {
697 	char *pnp = NULL;
698 	char *tmp = NULL;
699 
700 	pnp = malloc(1024, M_BUS, M_NOWAIT);
701 	if (pnp == NULL)
702 		goto fail;
703 	tmp = malloc(1024, M_BUS, M_NOWAIT);
704 	if (tmp == NULL)
705 		goto fail;
706 	*pnp = '\0';
707 	bus_child_pnpinfo_str(dev, pnp, 1024);
708 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
709 	devaddq("+", tmp, dev);
710 fail:
711 	if (pnp != NULL)
712 		free(pnp, M_BUS);
713 	if (tmp != NULL)
714 		free(tmp, M_BUS);
715 	return;
716 }
717 
718 /*
719  * A device was removed from the tree.  We are called just before this
720  * happens.
721  */
722 static void
723 devremoved(device_t dev)
724 {
725 	char *pnp = NULL;
726 	char *tmp = NULL;
727 
728 	pnp = malloc(1024, M_BUS, M_NOWAIT);
729 	if (pnp == NULL)
730 		goto fail;
731 	tmp = malloc(1024, M_BUS, M_NOWAIT);
732 	if (tmp == NULL)
733 		goto fail;
734 	*pnp = '\0';
735 	bus_child_pnpinfo_str(dev, pnp, 1024);
736 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
737 	devaddq("-", tmp, dev);
738 fail:
739 	if (pnp != NULL)
740 		free(pnp, M_BUS);
741 	if (tmp != NULL)
742 		free(tmp, M_BUS);
743 	return;
744 }
745 
746 /*
747  * Called when there's no match for this device.  This is only called
748  * the first time that no match happens, so we don't keep getting this
749  * message.  Should that prove to be undesirable, we can change it.
750  * This is called when all drivers that can attach to a given bus
751  * decline to accept this device.  Other errors may not be detected.
752  */
753 static void
754 devnomatch(device_t dev)
755 {
756 	devaddq("?", "", dev);
757 }
758 
759 static int
760 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
761 {
762 	struct dev_event_info *n1;
763 	int dis, error;
764 
765 	dis = devctl_queue_length == 0;
766 	error = sysctl_handle_int(oidp, &dis, 0, req);
767 	if (error || !req->newptr)
768 		return (error);
769 	mtx_lock(&devsoftc.mtx);
770 	if (dis) {
771 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
772 			n1 = TAILQ_FIRST(&devsoftc.devq);
773 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
774 			free(n1->dei_data, M_BUS);
775 			free(n1, M_BUS);
776 		}
777 		devsoftc.queued = 0;
778 		devctl_queue_length = 0;
779 	} else {
780 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
781 	}
782 	mtx_unlock(&devsoftc.mtx);
783 	return (0);
784 }
785 
786 static int
787 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
788 {
789 	struct dev_event_info *n1;
790 	int q, error;
791 
792 	q = devctl_queue_length;
793 	error = sysctl_handle_int(oidp, &q, 0, req);
794 	if (error || !req->newptr)
795 		return (error);
796 	if (q < 0)
797 		return (EINVAL);
798 	mtx_lock(&devsoftc.mtx);
799 	devctl_queue_length = q;
800 	while (devsoftc.queued > devctl_queue_length) {
801 		n1 = TAILQ_FIRST(&devsoftc.devq);
802 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
803 		free(n1->dei_data, M_BUS);
804 		free(n1, M_BUS);
805 		devsoftc.queued--;
806 	}
807 	mtx_unlock(&devsoftc.mtx);
808 	return (0);
809 }
810 
811 /* End of /dev/devctl code */
812 
813 static TAILQ_HEAD(,device)	bus_data_devices;
814 static int bus_data_generation = 1;
815 
816 static kobj_method_t null_methods[] = {
817 	KOBJMETHOD_END
818 };
819 
820 DEFINE_CLASS(null, null_methods, 0);
821 
822 /*
823  * Bus pass implementation
824  */
825 
826 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
827 int bus_current_pass = BUS_PASS_ROOT;
828 
829 /**
830  * @internal
831  * @brief Register the pass level of a new driver attachment
832  *
833  * Register a new driver attachment's pass level.  If no driver
834  * attachment with the same pass level has been added, then @p new
835  * will be added to the global passes list.
836  *
837  * @param new		the new driver attachment
838  */
839 static void
840 driver_register_pass(struct driverlink *new)
841 {
842 	struct driverlink *dl;
843 
844 	/* We only consider pass numbers during boot. */
845 	if (bus_current_pass == BUS_PASS_DEFAULT)
846 		return;
847 
848 	/*
849 	 * Walk the passes list.  If we already know about this pass
850 	 * then there is nothing to do.  If we don't, then insert this
851 	 * driver link into the list.
852 	 */
853 	TAILQ_FOREACH(dl, &passes, passlink) {
854 		if (dl->pass < new->pass)
855 			continue;
856 		if (dl->pass == new->pass)
857 			return;
858 		TAILQ_INSERT_BEFORE(dl, new, passlink);
859 		return;
860 	}
861 	TAILQ_INSERT_TAIL(&passes, new, passlink);
862 }
863 
864 /**
865  * @brief Raise the current bus pass
866  *
867  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
868  * method on the root bus to kick off a new device tree scan for each
869  * new pass level that has at least one driver.
870  */
871 void
872 bus_set_pass(int pass)
873 {
874 	struct driverlink *dl;
875 
876 	if (bus_current_pass > pass)
877 		panic("Attempt to lower bus pass level");
878 
879 	TAILQ_FOREACH(dl, &passes, passlink) {
880 		/* Skip pass values below the current pass level. */
881 		if (dl->pass <= bus_current_pass)
882 			continue;
883 
884 		/*
885 		 * Bail once we hit a driver with a pass level that is
886 		 * too high.
887 		 */
888 		if (dl->pass > pass)
889 			break;
890 
891 		/*
892 		 * Raise the pass level to the next level and rescan
893 		 * the tree.
894 		 */
895 		bus_current_pass = dl->pass;
896 		BUS_NEW_PASS(root_bus);
897 	}
898 
899 	/*
900 	 * If there isn't a driver registered for the requested pass,
901 	 * then bus_current_pass might still be less than 'pass'.  Set
902 	 * it to 'pass' in that case.
903 	 */
904 	if (bus_current_pass < pass)
905 		bus_current_pass = pass;
906 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
907 }
908 
909 /*
910  * Devclass implementation
911  */
912 
913 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
914 
915 /**
916  * @internal
917  * @brief Find or create a device class
918  *
919  * If a device class with the name @p classname exists, return it,
920  * otherwise if @p create is non-zero create and return a new device
921  * class.
922  *
923  * If @p parentname is non-NULL, the parent of the devclass is set to
924  * the devclass of that name.
925  *
926  * @param classname	the devclass name to find or create
927  * @param parentname	the parent devclass name or @c NULL
928  * @param create	non-zero to create a devclass
929  */
930 static devclass_t
931 devclass_find_internal(const char *classname, const char *parentname,
932 		       int create)
933 {
934 	devclass_t dc;
935 
936 	PDEBUG(("looking for %s", classname));
937 	if (!classname)
938 		return (NULL);
939 
940 	TAILQ_FOREACH(dc, &devclasses, link) {
941 		if (!strcmp(dc->name, classname))
942 			break;
943 	}
944 
945 	if (create && !dc) {
946 		PDEBUG(("creating %s", classname));
947 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
948 		    M_BUS, M_NOWAIT | M_ZERO);
949 		if (!dc)
950 			return (NULL);
951 		dc->parent = NULL;
952 		dc->name = (char*) (dc + 1);
953 		strcpy(dc->name, classname);
954 		TAILQ_INIT(&dc->drivers);
955 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
956 
957 		bus_data_generation_update();
958 	}
959 
960 	/*
961 	 * If a parent class is specified, then set that as our parent so
962 	 * that this devclass will support drivers for the parent class as
963 	 * well.  If the parent class has the same name don't do this though
964 	 * as it creates a cycle that can trigger an infinite loop in
965 	 * device_probe_child() if a device exists for which there is no
966 	 * suitable driver.
967 	 */
968 	if (parentname && dc && !dc->parent &&
969 	    strcmp(classname, parentname) != 0) {
970 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
971 		dc->parent->flags |= DC_HAS_CHILDREN;
972 	}
973 
974 	return (dc);
975 }
976 
977 /**
978  * @brief Create a device class
979  *
980  * If a device class with the name @p classname exists, return it,
981  * otherwise create and return a new device class.
982  *
983  * @param classname	the devclass name to find or create
984  */
985 devclass_t
986 devclass_create(const char *classname)
987 {
988 	return (devclass_find_internal(classname, NULL, TRUE));
989 }
990 
991 /**
992  * @brief Find a device class
993  *
994  * If a device class with the name @p classname exists, return it,
995  * otherwise return @c NULL.
996  *
997  * @param classname	the devclass name to find
998  */
999 devclass_t
1000 devclass_find(const char *classname)
1001 {
1002 	return (devclass_find_internal(classname, NULL, FALSE));
1003 }
1004 
1005 /**
1006  * @brief Register that a device driver has been added to a devclass
1007  *
1008  * Register that a device driver has been added to a devclass.  This
1009  * is called by devclass_add_driver to accomplish the recursive
1010  * notification of all the children classes of dc, as well as dc.
1011  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1012  * the devclass.  We do a full search here of the devclass list at
1013  * each iteration level to save storing children-lists in the devclass
1014  * structure.  If we ever move beyond a few dozen devices doing this,
1015  * we may need to reevaluate...
1016  *
1017  * @param dc		the devclass to edit
1018  * @param driver	the driver that was just added
1019  */
1020 static void
1021 devclass_driver_added(devclass_t dc, driver_t *driver)
1022 {
1023 	devclass_t parent;
1024 	int i;
1025 
1026 	/*
1027 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1028 	 */
1029 	for (i = 0; i < dc->maxunit; i++)
1030 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1031 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1032 
1033 	/*
1034 	 * Walk through the children classes.  Since we only keep a
1035 	 * single parent pointer around, we walk the entire list of
1036 	 * devclasses looking for children.  We set the
1037 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1038 	 * the parent, so we only walk the list for those devclasses
1039 	 * that have children.
1040 	 */
1041 	if (!(dc->flags & DC_HAS_CHILDREN))
1042 		return;
1043 	parent = dc;
1044 	TAILQ_FOREACH(dc, &devclasses, link) {
1045 		if (dc->parent == parent)
1046 			devclass_driver_added(dc, driver);
1047 	}
1048 }
1049 
1050 /**
1051  * @brief Add a device driver to a device class
1052  *
1053  * Add a device driver to a devclass. This is normally called
1054  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1055  * all devices in the devclass will be called to allow them to attempt
1056  * to re-probe any unmatched children.
1057  *
1058  * @param dc		the devclass to edit
1059  * @param driver	the driver to register
1060  */
1061 static int
1062 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1063 {
1064 	driverlink_t dl;
1065 	const char *parentname;
1066 
1067 	PDEBUG(("%s", DRIVERNAME(driver)));
1068 
1069 	/* Don't allow invalid pass values. */
1070 	if (pass <= BUS_PASS_ROOT)
1071 		return (EINVAL);
1072 
1073 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1074 	if (!dl)
1075 		return (ENOMEM);
1076 
1077 	/*
1078 	 * Compile the driver's methods. Also increase the reference count
1079 	 * so that the class doesn't get freed when the last instance
1080 	 * goes. This means we can safely use static methods and avoids a
1081 	 * double-free in devclass_delete_driver.
1082 	 */
1083 	kobj_class_compile((kobj_class_t) driver);
1084 
1085 	/*
1086 	 * If the driver has any base classes, make the
1087 	 * devclass inherit from the devclass of the driver's
1088 	 * first base class. This will allow the system to
1089 	 * search for drivers in both devclasses for children
1090 	 * of a device using this driver.
1091 	 */
1092 	if (driver->baseclasses)
1093 		parentname = driver->baseclasses[0]->name;
1094 	else
1095 		parentname = NULL;
1096 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1097 
1098 	dl->driver = driver;
1099 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1100 	driver->refs++;		/* XXX: kobj_mtx */
1101 	dl->pass = pass;
1102 	driver_register_pass(dl);
1103 
1104 	devclass_driver_added(dc, driver);
1105 	bus_data_generation_update();
1106 	return (0);
1107 }
1108 
1109 /**
1110  * @brief Delete a device driver from a device class
1111  *
1112  * Delete a device driver from a devclass. This is normally called
1113  * automatically by DRIVER_MODULE().
1114  *
1115  * If the driver is currently attached to any devices,
1116  * devclass_delete_driver() will first attempt to detach from each
1117  * device. If one of the detach calls fails, the driver will not be
1118  * deleted.
1119  *
1120  * @param dc		the devclass to edit
1121  * @param driver	the driver to unregister
1122  */
1123 static int
1124 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1125 {
1126 	devclass_t dc = devclass_find(driver->name);
1127 	driverlink_t dl;
1128 	device_t dev;
1129 	int i;
1130 	int error;
1131 
1132 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1133 
1134 	if (!dc)
1135 		return (0);
1136 
1137 	/*
1138 	 * Find the link structure in the bus' list of drivers.
1139 	 */
1140 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1141 		if (dl->driver == driver)
1142 			break;
1143 	}
1144 
1145 	if (!dl) {
1146 		PDEBUG(("%s not found in %s list", driver->name,
1147 		    busclass->name));
1148 		return (ENOENT);
1149 	}
1150 
1151 	/*
1152 	 * Disassociate from any devices.  We iterate through all the
1153 	 * devices in the devclass of the driver and detach any which are
1154 	 * using the driver and which have a parent in the devclass which
1155 	 * we are deleting from.
1156 	 *
1157 	 * Note that since a driver can be in multiple devclasses, we
1158 	 * should not detach devices which are not children of devices in
1159 	 * the affected devclass.
1160 	 */
1161 	for (i = 0; i < dc->maxunit; i++) {
1162 		if (dc->devices[i]) {
1163 			dev = dc->devices[i];
1164 			if (dev->driver == driver && dev->parent &&
1165 			    dev->parent->devclass == busclass) {
1166 				if ((error = device_detach(dev)) != 0)
1167 					return (error);
1168 				device_set_driver(dev, NULL);
1169 				BUS_PROBE_NOMATCH(dev->parent, dev);
1170 				devnomatch(dev);
1171 				dev->flags |= DF_DONENOMATCH;
1172 			}
1173 		}
1174 	}
1175 
1176 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1177 	free(dl, M_BUS);
1178 
1179 	/* XXX: kobj_mtx */
1180 	driver->refs--;
1181 	if (driver->refs == 0)
1182 		kobj_class_free((kobj_class_t) driver);
1183 
1184 	bus_data_generation_update();
1185 	return (0);
1186 }
1187 
1188 /**
1189  * @brief Quiesces a set of device drivers from a device class
1190  *
1191  * Quiesce a device driver from a devclass. This is normally called
1192  * automatically by DRIVER_MODULE().
1193  *
1194  * If the driver is currently attached to any devices,
1195  * devclass_quiesece_driver() will first attempt to quiesce each
1196  * device.
1197  *
1198  * @param dc		the devclass to edit
1199  * @param driver	the driver to unregister
1200  */
1201 static int
1202 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1203 {
1204 	devclass_t dc = devclass_find(driver->name);
1205 	driverlink_t dl;
1206 	device_t dev;
1207 	int i;
1208 	int error;
1209 
1210 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1211 
1212 	if (!dc)
1213 		return (0);
1214 
1215 	/*
1216 	 * Find the link structure in the bus' list of drivers.
1217 	 */
1218 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1219 		if (dl->driver == driver)
1220 			break;
1221 	}
1222 
1223 	if (!dl) {
1224 		PDEBUG(("%s not found in %s list", driver->name,
1225 		    busclass->name));
1226 		return (ENOENT);
1227 	}
1228 
1229 	/*
1230 	 * Quiesce all devices.  We iterate through all the devices in
1231 	 * the devclass of the driver and quiesce any which are using
1232 	 * the driver and which have a parent in the devclass which we
1233 	 * are quiescing.
1234 	 *
1235 	 * Note that since a driver can be in multiple devclasses, we
1236 	 * should not quiesce devices which are not children of
1237 	 * devices in the affected devclass.
1238 	 */
1239 	for (i = 0; i < dc->maxunit; i++) {
1240 		if (dc->devices[i]) {
1241 			dev = dc->devices[i];
1242 			if (dev->driver == driver && dev->parent &&
1243 			    dev->parent->devclass == busclass) {
1244 				if ((error = device_quiesce(dev)) != 0)
1245 					return (error);
1246 			}
1247 		}
1248 	}
1249 
1250 	return (0);
1251 }
1252 
1253 /**
1254  * @internal
1255  */
1256 static driverlink_t
1257 devclass_find_driver_internal(devclass_t dc, const char *classname)
1258 {
1259 	driverlink_t dl;
1260 
1261 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1262 
1263 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1264 		if (!strcmp(dl->driver->name, classname))
1265 			return (dl);
1266 	}
1267 
1268 	PDEBUG(("not found"));
1269 	return (NULL);
1270 }
1271 
1272 /**
1273  * @brief Return the name of the devclass
1274  */
1275 const char *
1276 devclass_get_name(devclass_t dc)
1277 {
1278 	return (dc->name);
1279 }
1280 
1281 /**
1282  * @brief Find a device given a unit number
1283  *
1284  * @param dc		the devclass to search
1285  * @param unit		the unit number to search for
1286  *
1287  * @returns		the device with the given unit number or @c
1288  *			NULL if there is no such device
1289  */
1290 device_t
1291 devclass_get_device(devclass_t dc, int unit)
1292 {
1293 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1294 		return (NULL);
1295 	return (dc->devices[unit]);
1296 }
1297 
1298 /**
1299  * @brief Find the softc field of a device given a unit number
1300  *
1301  * @param dc		the devclass to search
1302  * @param unit		the unit number to search for
1303  *
1304  * @returns		the softc field of the device with the given
1305  *			unit number or @c NULL if there is no such
1306  *			device
1307  */
1308 void *
1309 devclass_get_softc(devclass_t dc, int unit)
1310 {
1311 	device_t dev;
1312 
1313 	dev = devclass_get_device(dc, unit);
1314 	if (!dev)
1315 		return (NULL);
1316 
1317 	return (device_get_softc(dev));
1318 }
1319 
1320 /**
1321  * @brief Get a list of devices in the devclass
1322  *
1323  * An array containing a list of all the devices in the given devclass
1324  * is allocated and returned in @p *devlistp. The number of devices
1325  * in the array is returned in @p *devcountp. The caller should free
1326  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1327  *
1328  * @param dc		the devclass to examine
1329  * @param devlistp	points at location for array pointer return
1330  *			value
1331  * @param devcountp	points at location for array size return value
1332  *
1333  * @retval 0		success
1334  * @retval ENOMEM	the array allocation failed
1335  */
1336 int
1337 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1338 {
1339 	int count, i;
1340 	device_t *list;
1341 
1342 	count = devclass_get_count(dc);
1343 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1344 	if (!list)
1345 		return (ENOMEM);
1346 
1347 	count = 0;
1348 	for (i = 0; i < dc->maxunit; i++) {
1349 		if (dc->devices[i]) {
1350 			list[count] = dc->devices[i];
1351 			count++;
1352 		}
1353 	}
1354 
1355 	*devlistp = list;
1356 	*devcountp = count;
1357 
1358 	return (0);
1359 }
1360 
1361 /**
1362  * @brief Get a list of drivers in the devclass
1363  *
1364  * An array containing a list of pointers to all the drivers in the
1365  * given devclass is allocated and returned in @p *listp.  The number
1366  * of drivers in the array is returned in @p *countp. The caller should
1367  * free the array using @c free(p, M_TEMP).
1368  *
1369  * @param dc		the devclass to examine
1370  * @param listp		gives location for array pointer return value
1371  * @param countp	gives location for number of array elements
1372  *			return value
1373  *
1374  * @retval 0		success
1375  * @retval ENOMEM	the array allocation failed
1376  */
1377 int
1378 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1379 {
1380 	driverlink_t dl;
1381 	driver_t **list;
1382 	int count;
1383 
1384 	count = 0;
1385 	TAILQ_FOREACH(dl, &dc->drivers, link)
1386 		count++;
1387 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1388 	if (list == NULL)
1389 		return (ENOMEM);
1390 
1391 	count = 0;
1392 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1393 		list[count] = dl->driver;
1394 		count++;
1395 	}
1396 	*listp = list;
1397 	*countp = count;
1398 
1399 	return (0);
1400 }
1401 
1402 /**
1403  * @brief Get the number of devices in a devclass
1404  *
1405  * @param dc		the devclass to examine
1406  */
1407 int
1408 devclass_get_count(devclass_t dc)
1409 {
1410 	int count, i;
1411 
1412 	count = 0;
1413 	for (i = 0; i < dc->maxunit; i++)
1414 		if (dc->devices[i])
1415 			count++;
1416 	return (count);
1417 }
1418 
1419 /**
1420  * @brief Get the maximum unit number used in a devclass
1421  *
1422  * Note that this is one greater than the highest currently-allocated
1423  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1424  * that not even the devclass has been allocated yet.
1425  *
1426  * @param dc		the devclass to examine
1427  */
1428 int
1429 devclass_get_maxunit(devclass_t dc)
1430 {
1431 	if (dc == NULL)
1432 		return (-1);
1433 	return (dc->maxunit);
1434 }
1435 
1436 /**
1437  * @brief Find a free unit number in a devclass
1438  *
1439  * This function searches for the first unused unit number greater
1440  * that or equal to @p unit.
1441  *
1442  * @param dc		the devclass to examine
1443  * @param unit		the first unit number to check
1444  */
1445 int
1446 devclass_find_free_unit(devclass_t dc, int unit)
1447 {
1448 	if (dc == NULL)
1449 		return (unit);
1450 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1451 		unit++;
1452 	return (unit);
1453 }
1454 
1455 /**
1456  * @brief Set the parent of a devclass
1457  *
1458  * The parent class is normally initialised automatically by
1459  * DRIVER_MODULE().
1460  *
1461  * @param dc		the devclass to edit
1462  * @param pdc		the new parent devclass
1463  */
1464 void
1465 devclass_set_parent(devclass_t dc, devclass_t pdc)
1466 {
1467 	dc->parent = pdc;
1468 }
1469 
1470 /**
1471  * @brief Get the parent of a devclass
1472  *
1473  * @param dc		the devclass to examine
1474  */
1475 devclass_t
1476 devclass_get_parent(devclass_t dc)
1477 {
1478 	return (dc->parent);
1479 }
1480 
1481 struct sysctl_ctx_list *
1482 devclass_get_sysctl_ctx(devclass_t dc)
1483 {
1484 	return (&dc->sysctl_ctx);
1485 }
1486 
1487 struct sysctl_oid *
1488 devclass_get_sysctl_tree(devclass_t dc)
1489 {
1490 	return (dc->sysctl_tree);
1491 }
1492 
1493 /**
1494  * @internal
1495  * @brief Allocate a unit number
1496  *
1497  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1498  * will do). The allocated unit number is returned in @p *unitp.
1499 
1500  * @param dc		the devclass to allocate from
1501  * @param unitp		points at the location for the allocated unit
1502  *			number
1503  *
1504  * @retval 0		success
1505  * @retval EEXIST	the requested unit number is already allocated
1506  * @retval ENOMEM	memory allocation failure
1507  */
1508 static int
1509 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1510 {
1511 	const char *s;
1512 	int unit = *unitp;
1513 
1514 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1515 
1516 	/* Ask the parent bus if it wants to wire this device. */
1517 	if (unit == -1)
1518 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1519 		    &unit);
1520 
1521 	/* If we were given a wired unit number, check for existing device */
1522 	/* XXX imp XXX */
1523 	if (unit != -1) {
1524 		if (unit >= 0 && unit < dc->maxunit &&
1525 		    dc->devices[unit] != NULL) {
1526 			if (bootverbose)
1527 				printf("%s: %s%d already exists; skipping it\n",
1528 				    dc->name, dc->name, *unitp);
1529 			return (EEXIST);
1530 		}
1531 	} else {
1532 		/* Unwired device, find the next available slot for it */
1533 		unit = 0;
1534 		for (unit = 0;; unit++) {
1535 			/* If there is an "at" hint for a unit then skip it. */
1536 			if (resource_string_value(dc->name, unit, "at", &s) ==
1537 			    0)
1538 				continue;
1539 
1540 			/* If this device slot is already in use, skip it. */
1541 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1542 				continue;
1543 
1544 			break;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * We've selected a unit beyond the length of the table, so let's
1550 	 * extend the table to make room for all units up to and including
1551 	 * this one.
1552 	 */
1553 	if (unit >= dc->maxunit) {
1554 		device_t *newlist, *oldlist;
1555 		int newsize;
1556 
1557 		oldlist = dc->devices;
1558 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1559 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1560 		if (!newlist)
1561 			return (ENOMEM);
1562 		if (oldlist != NULL)
1563 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1564 		bzero(newlist + dc->maxunit,
1565 		    sizeof(device_t) * (newsize - dc->maxunit));
1566 		dc->devices = newlist;
1567 		dc->maxunit = newsize;
1568 		if (oldlist != NULL)
1569 			free(oldlist, M_BUS);
1570 	}
1571 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1572 
1573 	*unitp = unit;
1574 	return (0);
1575 }
1576 
1577 /**
1578  * @internal
1579  * @brief Add a device to a devclass
1580  *
1581  * A unit number is allocated for the device (using the device's
1582  * preferred unit number if any) and the device is registered in the
1583  * devclass. This allows the device to be looked up by its unit
1584  * number, e.g. by decoding a dev_t minor number.
1585  *
1586  * @param dc		the devclass to add to
1587  * @param dev		the device to add
1588  *
1589  * @retval 0		success
1590  * @retval EEXIST	the requested unit number is already allocated
1591  * @retval ENOMEM	memory allocation failure
1592  */
1593 static int
1594 devclass_add_device(devclass_t dc, device_t dev)
1595 {
1596 	int buflen, error;
1597 
1598 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1599 
1600 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1601 	if (buflen < 0)
1602 		return (ENOMEM);
1603 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1604 	if (!dev->nameunit)
1605 		return (ENOMEM);
1606 
1607 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1608 		free(dev->nameunit, M_BUS);
1609 		dev->nameunit = NULL;
1610 		return (error);
1611 	}
1612 	dc->devices[dev->unit] = dev;
1613 	dev->devclass = dc;
1614 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1615 
1616 	return (0);
1617 }
1618 
1619 /**
1620  * @internal
1621  * @brief Delete a device from a devclass
1622  *
1623  * The device is removed from the devclass's device list and its unit
1624  * number is freed.
1625 
1626  * @param dc		the devclass to delete from
1627  * @param dev		the device to delete
1628  *
1629  * @retval 0		success
1630  */
1631 static int
1632 devclass_delete_device(devclass_t dc, device_t dev)
1633 {
1634 	if (!dc || !dev)
1635 		return (0);
1636 
1637 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1638 
1639 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1640 		panic("devclass_delete_device: inconsistent device class");
1641 	dc->devices[dev->unit] = NULL;
1642 	if (dev->flags & DF_WILDCARD)
1643 		dev->unit = -1;
1644 	dev->devclass = NULL;
1645 	free(dev->nameunit, M_BUS);
1646 	dev->nameunit = NULL;
1647 
1648 	return (0);
1649 }
1650 
1651 /**
1652  * @internal
1653  * @brief Make a new device and add it as a child of @p parent
1654  *
1655  * @param parent	the parent of the new device
1656  * @param name		the devclass name of the new device or @c NULL
1657  *			to leave the devclass unspecified
1658  * @parem unit		the unit number of the new device of @c -1 to
1659  *			leave the unit number unspecified
1660  *
1661  * @returns the new device
1662  */
1663 static device_t
1664 make_device(device_t parent, const char *name, int unit)
1665 {
1666 	device_t dev;
1667 	devclass_t dc;
1668 
1669 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1670 
1671 	if (name) {
1672 		dc = devclass_find_internal(name, NULL, TRUE);
1673 		if (!dc) {
1674 			printf("make_device: can't find device class %s\n",
1675 			    name);
1676 			return (NULL);
1677 		}
1678 	} else {
1679 		dc = NULL;
1680 	}
1681 
1682 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1683 	if (!dev)
1684 		return (NULL);
1685 
1686 	dev->parent = parent;
1687 	TAILQ_INIT(&dev->children);
1688 	kobj_init((kobj_t) dev, &null_class);
1689 	dev->driver = NULL;
1690 	dev->devclass = NULL;
1691 	dev->unit = unit;
1692 	dev->nameunit = NULL;
1693 	dev->desc = NULL;
1694 	dev->busy = 0;
1695 	dev->devflags = 0;
1696 	dev->flags = DF_ENABLED;
1697 	dev->order = 0;
1698 	if (unit == -1)
1699 		dev->flags |= DF_WILDCARD;
1700 	if (name) {
1701 		dev->flags |= DF_FIXEDCLASS;
1702 		if (devclass_add_device(dc, dev)) {
1703 			kobj_delete((kobj_t) dev, M_BUS);
1704 			return (NULL);
1705 		}
1706 	}
1707 	dev->ivars = NULL;
1708 	dev->softc = NULL;
1709 
1710 	dev->state = DS_NOTPRESENT;
1711 
1712 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1713 	bus_data_generation_update();
1714 
1715 	return (dev);
1716 }
1717 
1718 /**
1719  * @internal
1720  * @brief Print a description of a device.
1721  */
1722 static int
1723 device_print_child(device_t dev, device_t child)
1724 {
1725 	int retval = 0;
1726 
1727 	if (device_is_alive(child))
1728 		retval += BUS_PRINT_CHILD(dev, child);
1729 	else
1730 		retval += device_printf(child, " not found\n");
1731 
1732 	return (retval);
1733 }
1734 
1735 /**
1736  * @brief Create a new device
1737  *
1738  * This creates a new device and adds it as a child of an existing
1739  * parent device. The new device will be added after the last existing
1740  * child with order zero.
1741  *
1742  * @param dev		the device which will be the parent of the
1743  *			new child device
1744  * @param name		devclass name for new device or @c NULL if not
1745  *			specified
1746  * @param unit		unit number for new device or @c -1 if not
1747  *			specified
1748  *
1749  * @returns		the new device
1750  */
1751 device_t
1752 device_add_child(device_t dev, const char *name, int unit)
1753 {
1754 	return (device_add_child_ordered(dev, 0, name, unit));
1755 }
1756 
1757 /**
1758  * @brief Create a new device
1759  *
1760  * This creates a new device and adds it as a child of an existing
1761  * parent device. The new device will be added after the last existing
1762  * child with the same order.
1763  *
1764  * @param dev		the device which will be the parent of the
1765  *			new child device
1766  * @param order		a value which is used to partially sort the
1767  *			children of @p dev - devices created using
1768  *			lower values of @p order appear first in @p
1769  *			dev's list of children
1770  * @param name		devclass name for new device or @c NULL if not
1771  *			specified
1772  * @param unit		unit number for new device or @c -1 if not
1773  *			specified
1774  *
1775  * @returns		the new device
1776  */
1777 device_t
1778 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1779 {
1780 	device_t child;
1781 	device_t place;
1782 
1783 	PDEBUG(("%s at %s with order %d as unit %d",
1784 	    name, DEVICENAME(dev), order, unit));
1785 
1786 	child = make_device(dev, name, unit);
1787 	if (child == NULL)
1788 		return (child);
1789 	child->order = order;
1790 
1791 	TAILQ_FOREACH(place, &dev->children, link) {
1792 		if (place->order > order)
1793 			break;
1794 	}
1795 
1796 	if (place) {
1797 		/*
1798 		 * The device 'place' is the first device whose order is
1799 		 * greater than the new child.
1800 		 */
1801 		TAILQ_INSERT_BEFORE(place, child, link);
1802 	} else {
1803 		/*
1804 		 * The new child's order is greater or equal to the order of
1805 		 * any existing device. Add the child to the tail of the list.
1806 		 */
1807 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1808 	}
1809 
1810 	bus_data_generation_update();
1811 	return (child);
1812 }
1813 
1814 /**
1815  * @brief Delete a device
1816  *
1817  * This function deletes a device along with all of its children. If
1818  * the device currently has a driver attached to it, the device is
1819  * detached first using device_detach().
1820  *
1821  * @param dev		the parent device
1822  * @param child		the device to delete
1823  *
1824  * @retval 0		success
1825  * @retval non-zero	a unit error code describing the error
1826  */
1827 int
1828 device_delete_child(device_t dev, device_t child)
1829 {
1830 	int error;
1831 	device_t grandchild;
1832 
1833 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1834 
1835 	/* remove children first */
1836 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1837 		error = device_delete_child(child, grandchild);
1838 		if (error)
1839 			return (error);
1840 	}
1841 
1842 	if ((error = device_detach(child)) != 0)
1843 		return (error);
1844 	if (child->devclass)
1845 		devclass_delete_device(child->devclass, child);
1846 	TAILQ_REMOVE(&dev->children, child, link);
1847 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1848 	kobj_delete((kobj_t) child, M_BUS);
1849 
1850 	bus_data_generation_update();
1851 	return (0);
1852 }
1853 
1854 /**
1855  * @brief Find a device given a unit number
1856  *
1857  * This is similar to devclass_get_devices() but only searches for
1858  * devices which have @p dev as a parent.
1859  *
1860  * @param dev		the parent device to search
1861  * @param unit		the unit number to search for.  If the unit is -1,
1862  *			return the first child of @p dev which has name
1863  *			@p classname (that is, the one with the lowest unit.)
1864  *
1865  * @returns		the device with the given unit number or @c
1866  *			NULL if there is no such device
1867  */
1868 device_t
1869 device_find_child(device_t dev, const char *classname, int unit)
1870 {
1871 	devclass_t dc;
1872 	device_t child;
1873 
1874 	dc = devclass_find(classname);
1875 	if (!dc)
1876 		return (NULL);
1877 
1878 	if (unit != -1) {
1879 		child = devclass_get_device(dc, unit);
1880 		if (child && child->parent == dev)
1881 			return (child);
1882 	} else {
1883 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1884 			child = devclass_get_device(dc, unit);
1885 			if (child && child->parent == dev)
1886 				return (child);
1887 		}
1888 	}
1889 	return (NULL);
1890 }
1891 
1892 /**
1893  * @internal
1894  */
1895 static driverlink_t
1896 first_matching_driver(devclass_t dc, device_t dev)
1897 {
1898 	if (dev->devclass)
1899 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1900 	return (TAILQ_FIRST(&dc->drivers));
1901 }
1902 
1903 /**
1904  * @internal
1905  */
1906 static driverlink_t
1907 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1908 {
1909 	if (dev->devclass) {
1910 		driverlink_t dl;
1911 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1912 			if (!strcmp(dev->devclass->name, dl->driver->name))
1913 				return (dl);
1914 		return (NULL);
1915 	}
1916 	return (TAILQ_NEXT(last, link));
1917 }
1918 
1919 /**
1920  * @internal
1921  */
1922 int
1923 device_probe_child(device_t dev, device_t child)
1924 {
1925 	devclass_t dc;
1926 	driverlink_t best = NULL;
1927 	driverlink_t dl;
1928 	int result, pri = 0;
1929 	int hasclass = (child->devclass != NULL);
1930 
1931 	GIANT_REQUIRED;
1932 
1933 	dc = dev->devclass;
1934 	if (!dc)
1935 		panic("device_probe_child: parent device has no devclass");
1936 
1937 	/*
1938 	 * If the state is already probed, then return.  However, don't
1939 	 * return if we can rebid this object.
1940 	 */
1941 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1942 		return (0);
1943 
1944 	for (; dc; dc = dc->parent) {
1945 		for (dl = first_matching_driver(dc, child);
1946 		     dl;
1947 		     dl = next_matching_driver(dc, child, dl)) {
1948 
1949 			/* If this driver's pass is too high, then ignore it. */
1950 			if (dl->pass > bus_current_pass)
1951 				continue;
1952 
1953 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1954 			device_set_driver(child, dl->driver);
1955 			if (!hasclass) {
1956 				if (device_set_devclass(child, dl->driver->name)) {
1957 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1958 					    (child ? device_get_name(child) :
1959 						"no device"));
1960 					device_set_driver(child, NULL);
1961 					continue;
1962 				}
1963 			}
1964 
1965 			/* Fetch any flags for the device before probing. */
1966 			resource_int_value(dl->driver->name, child->unit,
1967 			    "flags", &child->devflags);
1968 
1969 			result = DEVICE_PROBE(child);
1970 
1971 			/* Reset flags and devclass before the next probe. */
1972 			child->devflags = 0;
1973 			if (!hasclass)
1974 				device_set_devclass(child, NULL);
1975 
1976 			/*
1977 			 * If the driver returns SUCCESS, there can be
1978 			 * no higher match for this device.
1979 			 */
1980 			if (result == 0) {
1981 				best = dl;
1982 				pri = 0;
1983 				break;
1984 			}
1985 
1986 			/*
1987 			 * The driver returned an error so it
1988 			 * certainly doesn't match.
1989 			 */
1990 			if (result > 0) {
1991 				device_set_driver(child, NULL);
1992 				continue;
1993 			}
1994 
1995 			/*
1996 			 * A priority lower than SUCCESS, remember the
1997 			 * best matching driver. Initialise the value
1998 			 * of pri for the first match.
1999 			 */
2000 			if (best == NULL || result > pri) {
2001 				/*
2002 				 * Probes that return BUS_PROBE_NOWILDCARD
2003 				 * or lower only match when they are set
2004 				 * in stone by the parent bus.
2005 				 */
2006 				if (result <= BUS_PROBE_NOWILDCARD &&
2007 				    child->flags & DF_WILDCARD)
2008 					continue;
2009 				best = dl;
2010 				pri = result;
2011 				continue;
2012 			}
2013 		}
2014 		/*
2015 		 * If we have an unambiguous match in this devclass,
2016 		 * don't look in the parent.
2017 		 */
2018 		if (best && pri == 0)
2019 			break;
2020 	}
2021 
2022 	/*
2023 	 * If we found a driver, change state and initialise the devclass.
2024 	 */
2025 	/* XXX What happens if we rebid and got no best? */
2026 	if (best) {
2027 		/*
2028 		 * If this device was atached, and we were asked to
2029 		 * rescan, and it is a different driver, then we have
2030 		 * to detach the old driver and reattach this new one.
2031 		 * Note, we don't have to check for DF_REBID here
2032 		 * because if the state is > DS_ALIVE, we know it must
2033 		 * be.
2034 		 *
2035 		 * This assumes that all DF_REBID drivers can have
2036 		 * their probe routine called at any time and that
2037 		 * they are idempotent as well as completely benign in
2038 		 * normal operations.
2039 		 *
2040 		 * We also have to make sure that the detach
2041 		 * succeeded, otherwise we fail the operation (or
2042 		 * maybe it should just fail silently?  I'm torn).
2043 		 */
2044 		if (child->state > DS_ALIVE && best->driver != child->driver)
2045 			if ((result = device_detach(dev)) != 0)
2046 				return (result);
2047 
2048 		/* Set the winning driver, devclass, and flags. */
2049 		if (!child->devclass) {
2050 			result = device_set_devclass(child, best->driver->name);
2051 			if (result != 0)
2052 				return (result);
2053 		}
2054 		device_set_driver(child, best->driver);
2055 		resource_int_value(best->driver->name, child->unit,
2056 		    "flags", &child->devflags);
2057 
2058 		if (pri < 0) {
2059 			/*
2060 			 * A bit bogus. Call the probe method again to make
2061 			 * sure that we have the right description.
2062 			 */
2063 			DEVICE_PROBE(child);
2064 #if 0
2065 			child->flags |= DF_REBID;
2066 #endif
2067 		} else
2068 			child->flags &= ~DF_REBID;
2069 		child->state = DS_ALIVE;
2070 
2071 		bus_data_generation_update();
2072 		return (0);
2073 	}
2074 
2075 	return (ENXIO);
2076 }
2077 
2078 /**
2079  * @brief Return the parent of a device
2080  */
2081 device_t
2082 device_get_parent(device_t dev)
2083 {
2084 	return (dev->parent);
2085 }
2086 
2087 /**
2088  * @brief Get a list of children of a device
2089  *
2090  * An array containing a list of all the children of the given device
2091  * is allocated and returned in @p *devlistp. The number of devices
2092  * in the array is returned in @p *devcountp. The caller should free
2093  * the array using @c free(p, M_TEMP).
2094  *
2095  * @param dev		the device to examine
2096  * @param devlistp	points at location for array pointer return
2097  *			value
2098  * @param devcountp	points at location for array size return value
2099  *
2100  * @retval 0		success
2101  * @retval ENOMEM	the array allocation failed
2102  */
2103 int
2104 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2105 {
2106 	int count;
2107 	device_t child;
2108 	device_t *list;
2109 
2110 	count = 0;
2111 	TAILQ_FOREACH(child, &dev->children, link) {
2112 		count++;
2113 	}
2114 
2115 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2116 	if (!list)
2117 		return (ENOMEM);
2118 
2119 	count = 0;
2120 	TAILQ_FOREACH(child, &dev->children, link) {
2121 		list[count] = child;
2122 		count++;
2123 	}
2124 
2125 	*devlistp = list;
2126 	*devcountp = count;
2127 
2128 	return (0);
2129 }
2130 
2131 /**
2132  * @brief Return the current driver for the device or @c NULL if there
2133  * is no driver currently attached
2134  */
2135 driver_t *
2136 device_get_driver(device_t dev)
2137 {
2138 	return (dev->driver);
2139 }
2140 
2141 /**
2142  * @brief Return the current devclass for the device or @c NULL if
2143  * there is none.
2144  */
2145 devclass_t
2146 device_get_devclass(device_t dev)
2147 {
2148 	return (dev->devclass);
2149 }
2150 
2151 /**
2152  * @brief Return the name of the device's devclass or @c NULL if there
2153  * is none.
2154  */
2155 const char *
2156 device_get_name(device_t dev)
2157 {
2158 	if (dev != NULL && dev->devclass)
2159 		return (devclass_get_name(dev->devclass));
2160 	return (NULL);
2161 }
2162 
2163 /**
2164  * @brief Return a string containing the device's devclass name
2165  * followed by an ascii representation of the device's unit number
2166  * (e.g. @c "foo2").
2167  */
2168 const char *
2169 device_get_nameunit(device_t dev)
2170 {
2171 	return (dev->nameunit);
2172 }
2173 
2174 /**
2175  * @brief Return the device's unit number.
2176  */
2177 int
2178 device_get_unit(device_t dev)
2179 {
2180 	return (dev->unit);
2181 }
2182 
2183 /**
2184  * @brief Return the device's description string
2185  */
2186 const char *
2187 device_get_desc(device_t dev)
2188 {
2189 	return (dev->desc);
2190 }
2191 
2192 /**
2193  * @brief Return the device's flags
2194  */
2195 u_int32_t
2196 device_get_flags(device_t dev)
2197 {
2198 	return (dev->devflags);
2199 }
2200 
2201 struct sysctl_ctx_list *
2202 device_get_sysctl_ctx(device_t dev)
2203 {
2204 	return (&dev->sysctl_ctx);
2205 }
2206 
2207 struct sysctl_oid *
2208 device_get_sysctl_tree(device_t dev)
2209 {
2210 	return (dev->sysctl_tree);
2211 }
2212 
2213 /**
2214  * @brief Print the name of the device followed by a colon and a space
2215  *
2216  * @returns the number of characters printed
2217  */
2218 int
2219 device_print_prettyname(device_t dev)
2220 {
2221 	const char *name = device_get_name(dev);
2222 
2223 	if (name == NULL)
2224 		return (printf("unknown: "));
2225 	return (printf("%s%d: ", name, device_get_unit(dev)));
2226 }
2227 
2228 /**
2229  * @brief Print the name of the device followed by a colon, a space
2230  * and the result of calling vprintf() with the value of @p fmt and
2231  * the following arguments.
2232  *
2233  * @returns the number of characters printed
2234  */
2235 int
2236 device_printf(device_t dev, const char * fmt, ...)
2237 {
2238 	va_list ap;
2239 	int retval;
2240 
2241 	retval = device_print_prettyname(dev);
2242 	va_start(ap, fmt);
2243 	retval += vprintf(fmt, ap);
2244 	va_end(ap);
2245 	return (retval);
2246 }
2247 
2248 /**
2249  * @internal
2250  */
2251 static void
2252 device_set_desc_internal(device_t dev, const char* desc, int copy)
2253 {
2254 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2255 		free(dev->desc, M_BUS);
2256 		dev->flags &= ~DF_DESCMALLOCED;
2257 		dev->desc = NULL;
2258 	}
2259 
2260 	if (copy && desc) {
2261 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2262 		if (dev->desc) {
2263 			strcpy(dev->desc, desc);
2264 			dev->flags |= DF_DESCMALLOCED;
2265 		}
2266 	} else {
2267 		/* Avoid a -Wcast-qual warning */
2268 		dev->desc = (char *)(uintptr_t) desc;
2269 	}
2270 
2271 	bus_data_generation_update();
2272 }
2273 
2274 /**
2275  * @brief Set the device's description
2276  *
2277  * The value of @c desc should be a string constant that will not
2278  * change (at least until the description is changed in a subsequent
2279  * call to device_set_desc() or device_set_desc_copy()).
2280  */
2281 void
2282 device_set_desc(device_t dev, const char* desc)
2283 {
2284 	device_set_desc_internal(dev, desc, FALSE);
2285 }
2286 
2287 /**
2288  * @brief Set the device's description
2289  *
2290  * The string pointed to by @c desc is copied. Use this function if
2291  * the device description is generated, (e.g. with sprintf()).
2292  */
2293 void
2294 device_set_desc_copy(device_t dev, const char* desc)
2295 {
2296 	device_set_desc_internal(dev, desc, TRUE);
2297 }
2298 
2299 /**
2300  * @brief Set the device's flags
2301  */
2302 void
2303 device_set_flags(device_t dev, u_int32_t flags)
2304 {
2305 	dev->devflags = flags;
2306 }
2307 
2308 /**
2309  * @brief Return the device's softc field
2310  *
2311  * The softc is allocated and zeroed when a driver is attached, based
2312  * on the size field of the driver.
2313  */
2314 void *
2315 device_get_softc(device_t dev)
2316 {
2317 	return (dev->softc);
2318 }
2319 
2320 /**
2321  * @brief Set the device's softc field
2322  *
2323  * Most drivers do not need to use this since the softc is allocated
2324  * automatically when the driver is attached.
2325  */
2326 void
2327 device_set_softc(device_t dev, void *softc)
2328 {
2329 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2330 		free(dev->softc, M_BUS_SC);
2331 	dev->softc = softc;
2332 	if (dev->softc)
2333 		dev->flags |= DF_EXTERNALSOFTC;
2334 	else
2335 		dev->flags &= ~DF_EXTERNALSOFTC;
2336 }
2337 
2338 /**
2339  * @brief Get the device's ivars field
2340  *
2341  * The ivars field is used by the parent device to store per-device
2342  * state (e.g. the physical location of the device or a list of
2343  * resources).
2344  */
2345 void *
2346 device_get_ivars(device_t dev)
2347 {
2348 
2349 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2350 	return (dev->ivars);
2351 }
2352 
2353 /**
2354  * @brief Set the device's ivars field
2355  */
2356 void
2357 device_set_ivars(device_t dev, void * ivars)
2358 {
2359 
2360 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2361 	dev->ivars = ivars;
2362 }
2363 
2364 /**
2365  * @brief Return the device's state
2366  */
2367 device_state_t
2368 device_get_state(device_t dev)
2369 {
2370 	return (dev->state);
2371 }
2372 
2373 /**
2374  * @brief Set the DF_ENABLED flag for the device
2375  */
2376 void
2377 device_enable(device_t dev)
2378 {
2379 	dev->flags |= DF_ENABLED;
2380 }
2381 
2382 /**
2383  * @brief Clear the DF_ENABLED flag for the device
2384  */
2385 void
2386 device_disable(device_t dev)
2387 {
2388 	dev->flags &= ~DF_ENABLED;
2389 }
2390 
2391 /**
2392  * @brief Increment the busy counter for the device
2393  */
2394 void
2395 device_busy(device_t dev)
2396 {
2397 	if (dev->state < DS_ATTACHED)
2398 		panic("device_busy: called for unattached device");
2399 	if (dev->busy == 0 && dev->parent)
2400 		device_busy(dev->parent);
2401 	dev->busy++;
2402 	dev->state = DS_BUSY;
2403 }
2404 
2405 /**
2406  * @brief Decrement the busy counter for the device
2407  */
2408 void
2409 device_unbusy(device_t dev)
2410 {
2411 	if (dev->state != DS_BUSY)
2412 		panic("device_unbusy: called for non-busy device %s",
2413 		    device_get_nameunit(dev));
2414 	dev->busy--;
2415 	if (dev->busy == 0) {
2416 		if (dev->parent)
2417 			device_unbusy(dev->parent);
2418 		dev->state = DS_ATTACHED;
2419 	}
2420 }
2421 
2422 /**
2423  * @brief Set the DF_QUIET flag for the device
2424  */
2425 void
2426 device_quiet(device_t dev)
2427 {
2428 	dev->flags |= DF_QUIET;
2429 }
2430 
2431 /**
2432  * @brief Clear the DF_QUIET flag for the device
2433  */
2434 void
2435 device_verbose(device_t dev)
2436 {
2437 	dev->flags &= ~DF_QUIET;
2438 }
2439 
2440 /**
2441  * @brief Return non-zero if the DF_QUIET flag is set on the device
2442  */
2443 int
2444 device_is_quiet(device_t dev)
2445 {
2446 	return ((dev->flags & DF_QUIET) != 0);
2447 }
2448 
2449 /**
2450  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2451  */
2452 int
2453 device_is_enabled(device_t dev)
2454 {
2455 	return ((dev->flags & DF_ENABLED) != 0);
2456 }
2457 
2458 /**
2459  * @brief Return non-zero if the device was successfully probed
2460  */
2461 int
2462 device_is_alive(device_t dev)
2463 {
2464 	return (dev->state >= DS_ALIVE);
2465 }
2466 
2467 /**
2468  * @brief Return non-zero if the device currently has a driver
2469  * attached to it
2470  */
2471 int
2472 device_is_attached(device_t dev)
2473 {
2474 	return (dev->state >= DS_ATTACHED);
2475 }
2476 
2477 /**
2478  * @brief Set the devclass of a device
2479  * @see devclass_add_device().
2480  */
2481 int
2482 device_set_devclass(device_t dev, const char *classname)
2483 {
2484 	devclass_t dc;
2485 	int error;
2486 
2487 	if (!classname) {
2488 		if (dev->devclass)
2489 			devclass_delete_device(dev->devclass, dev);
2490 		return (0);
2491 	}
2492 
2493 	if (dev->devclass) {
2494 		printf("device_set_devclass: device class already set\n");
2495 		return (EINVAL);
2496 	}
2497 
2498 	dc = devclass_find_internal(classname, NULL, TRUE);
2499 	if (!dc)
2500 		return (ENOMEM);
2501 
2502 	error = devclass_add_device(dc, dev);
2503 
2504 	bus_data_generation_update();
2505 	return (error);
2506 }
2507 
2508 /**
2509  * @brief Set the driver of a device
2510  *
2511  * @retval 0		success
2512  * @retval EBUSY	the device already has a driver attached
2513  * @retval ENOMEM	a memory allocation failure occurred
2514  */
2515 int
2516 device_set_driver(device_t dev, driver_t *driver)
2517 {
2518 	if (dev->state >= DS_ATTACHED)
2519 		return (EBUSY);
2520 
2521 	if (dev->driver == driver)
2522 		return (0);
2523 
2524 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2525 		free(dev->softc, M_BUS_SC);
2526 		dev->softc = NULL;
2527 	}
2528 	kobj_delete((kobj_t) dev, NULL);
2529 	dev->driver = driver;
2530 	if (driver) {
2531 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2532 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2533 			dev->softc = malloc(driver->size, M_BUS_SC,
2534 			    M_NOWAIT | M_ZERO);
2535 			if (!dev->softc) {
2536 				kobj_delete((kobj_t) dev, NULL);
2537 				kobj_init((kobj_t) dev, &null_class);
2538 				dev->driver = NULL;
2539 				return (ENOMEM);
2540 			}
2541 		}
2542 	} else {
2543 		kobj_init((kobj_t) dev, &null_class);
2544 	}
2545 
2546 	bus_data_generation_update();
2547 	return (0);
2548 }
2549 
2550 /**
2551  * @brief Probe a device, and return this status.
2552  *
2553  * This function is the core of the device autoconfiguration
2554  * system. Its purpose is to select a suitable driver for a device and
2555  * then call that driver to initialise the hardware appropriately. The
2556  * driver is selected by calling the DEVICE_PROBE() method of a set of
2557  * candidate drivers and then choosing the driver which returned the
2558  * best value. This driver is then attached to the device using
2559  * device_attach().
2560  *
2561  * The set of suitable drivers is taken from the list of drivers in
2562  * the parent device's devclass. If the device was originally created
2563  * with a specific class name (see device_add_child()), only drivers
2564  * with that name are probed, otherwise all drivers in the devclass
2565  * are probed. If no drivers return successful probe values in the
2566  * parent devclass, the search continues in the parent of that
2567  * devclass (see devclass_get_parent()) if any.
2568  *
2569  * @param dev		the device to initialise
2570  *
2571  * @retval 0		success
2572  * @retval ENXIO	no driver was found
2573  * @retval ENOMEM	memory allocation failure
2574  * @retval non-zero	some other unix error code
2575  * @retval -1		Device already attached
2576  */
2577 int
2578 device_probe(device_t dev)
2579 {
2580 	int error;
2581 
2582 	GIANT_REQUIRED;
2583 
2584 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2585 		return (-1);
2586 
2587 	if (!(dev->flags & DF_ENABLED)) {
2588 		if (bootverbose && device_get_name(dev) != NULL) {
2589 			device_print_prettyname(dev);
2590 			printf("not probed (disabled)\n");
2591 		}
2592 		return (-1);
2593 	}
2594 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2595 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2596 		    !(dev->flags & DF_DONENOMATCH)) {
2597 			BUS_PROBE_NOMATCH(dev->parent, dev);
2598 			devnomatch(dev);
2599 			dev->flags |= DF_DONENOMATCH;
2600 		}
2601 		return (error);
2602 	}
2603 	return (0);
2604 }
2605 
2606 /**
2607  * @brief Probe a device and attach a driver if possible
2608  *
2609  * calls device_probe() and attaches if that was successful.
2610  */
2611 int
2612 device_probe_and_attach(device_t dev)
2613 {
2614 	int error;
2615 
2616 	GIANT_REQUIRED;
2617 
2618 	error = device_probe(dev);
2619 	if (error == -1)
2620 		return (0);
2621 	else if (error != 0)
2622 		return (error);
2623 	return (device_attach(dev));
2624 }
2625 
2626 /**
2627  * @brief Attach a device driver to a device
2628  *
2629  * This function is a wrapper around the DEVICE_ATTACH() driver
2630  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2631  * device's sysctl tree, optionally prints a description of the device
2632  * and queues a notification event for user-based device management
2633  * services.
2634  *
2635  * Normally this function is only called internally from
2636  * device_probe_and_attach().
2637  *
2638  * @param dev		the device to initialise
2639  *
2640  * @retval 0		success
2641  * @retval ENXIO	no driver was found
2642  * @retval ENOMEM	memory allocation failure
2643  * @retval non-zero	some other unix error code
2644  */
2645 int
2646 device_attach(device_t dev)
2647 {
2648 	int error;
2649 
2650 	device_sysctl_init(dev);
2651 	if (!device_is_quiet(dev))
2652 		device_print_child(dev->parent, dev);
2653 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2654 		printf("device_attach: %s%d attach returned %d\n",
2655 		    dev->driver->name, dev->unit, error);
2656 		/* Unset the class; set in device_probe_child */
2657 		if (dev->devclass == NULL)
2658 			device_set_devclass(dev, NULL);
2659 		device_set_driver(dev, NULL);
2660 		device_sysctl_fini(dev);
2661 		dev->state = DS_NOTPRESENT;
2662 		return (error);
2663 	}
2664 	device_sysctl_update(dev);
2665 	dev->state = DS_ATTACHED;
2666 	dev->flags &= ~DF_DONENOMATCH;
2667 	devadded(dev);
2668 	return (0);
2669 }
2670 
2671 /**
2672  * @brief Detach a driver from a device
2673  *
2674  * This function is a wrapper around the DEVICE_DETACH() driver
2675  * method. If the call to DEVICE_DETACH() succeeds, it calls
2676  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2677  * notification event for user-based device management services and
2678  * cleans up the device's sysctl tree.
2679  *
2680  * @param dev		the device to un-initialise
2681  *
2682  * @retval 0		success
2683  * @retval ENXIO	no driver was found
2684  * @retval ENOMEM	memory allocation failure
2685  * @retval non-zero	some other unix error code
2686  */
2687 int
2688 device_detach(device_t dev)
2689 {
2690 	int error;
2691 
2692 	GIANT_REQUIRED;
2693 
2694 	PDEBUG(("%s", DEVICENAME(dev)));
2695 	if (dev->state == DS_BUSY)
2696 		return (EBUSY);
2697 	if (dev->state != DS_ATTACHED)
2698 		return (0);
2699 
2700 	if ((error = DEVICE_DETACH(dev)) != 0)
2701 		return (error);
2702 	devremoved(dev);
2703 	if (!device_is_quiet(dev))
2704 		device_printf(dev, "detached\n");
2705 	if (dev->parent)
2706 		BUS_CHILD_DETACHED(dev->parent, dev);
2707 
2708 	if (!(dev->flags & DF_FIXEDCLASS))
2709 		devclass_delete_device(dev->devclass, dev);
2710 
2711 	dev->state = DS_NOTPRESENT;
2712 	device_set_driver(dev, NULL);
2713 	device_set_desc(dev, NULL);
2714 	device_sysctl_fini(dev);
2715 
2716 	return (0);
2717 }
2718 
2719 /**
2720  * @brief Tells a driver to quiesce itself.
2721  *
2722  * This function is a wrapper around the DEVICE_QUIESCE() driver
2723  * method. If the call to DEVICE_QUIESCE() succeeds.
2724  *
2725  * @param dev		the device to quiesce
2726  *
2727  * @retval 0		success
2728  * @retval ENXIO	no driver was found
2729  * @retval ENOMEM	memory allocation failure
2730  * @retval non-zero	some other unix error code
2731  */
2732 int
2733 device_quiesce(device_t dev)
2734 {
2735 
2736 	PDEBUG(("%s", DEVICENAME(dev)));
2737 	if (dev->state == DS_BUSY)
2738 		return (EBUSY);
2739 	if (dev->state != DS_ATTACHED)
2740 		return (0);
2741 
2742 	return (DEVICE_QUIESCE(dev));
2743 }
2744 
2745 /**
2746  * @brief Notify a device of system shutdown
2747  *
2748  * This function calls the DEVICE_SHUTDOWN() driver method if the
2749  * device currently has an attached driver.
2750  *
2751  * @returns the value returned by DEVICE_SHUTDOWN()
2752  */
2753 int
2754 device_shutdown(device_t dev)
2755 {
2756 	if (dev->state < DS_ATTACHED)
2757 		return (0);
2758 	return (DEVICE_SHUTDOWN(dev));
2759 }
2760 
2761 /**
2762  * @brief Set the unit number of a device
2763  *
2764  * This function can be used to override the unit number used for a
2765  * device (e.g. to wire a device to a pre-configured unit number).
2766  */
2767 int
2768 device_set_unit(device_t dev, int unit)
2769 {
2770 	devclass_t dc;
2771 	int err;
2772 
2773 	dc = device_get_devclass(dev);
2774 	if (unit < dc->maxunit && dc->devices[unit])
2775 		return (EBUSY);
2776 	err = devclass_delete_device(dc, dev);
2777 	if (err)
2778 		return (err);
2779 	dev->unit = unit;
2780 	err = devclass_add_device(dc, dev);
2781 	if (err)
2782 		return (err);
2783 
2784 	bus_data_generation_update();
2785 	return (0);
2786 }
2787 
2788 /*======================================*/
2789 /*
2790  * Some useful method implementations to make life easier for bus drivers.
2791  */
2792 
2793 /**
2794  * @brief Initialise a resource list.
2795  *
2796  * @param rl		the resource list to initialise
2797  */
2798 void
2799 resource_list_init(struct resource_list *rl)
2800 {
2801 	STAILQ_INIT(rl);
2802 }
2803 
2804 /**
2805  * @brief Reclaim memory used by a resource list.
2806  *
2807  * This function frees the memory for all resource entries on the list
2808  * (if any).
2809  *
2810  * @param rl		the resource list to free
2811  */
2812 void
2813 resource_list_free(struct resource_list *rl)
2814 {
2815 	struct resource_list_entry *rle;
2816 
2817 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2818 		if (rle->res)
2819 			panic("resource_list_free: resource entry is busy");
2820 		STAILQ_REMOVE_HEAD(rl, link);
2821 		free(rle, M_BUS);
2822 	}
2823 }
2824 
2825 /**
2826  * @brief Add a resource entry.
2827  *
2828  * This function adds a resource entry using the given @p type, @p
2829  * start, @p end and @p count values. A rid value is chosen by
2830  * searching sequentially for the first unused rid starting at zero.
2831  *
2832  * @param rl		the resource list to edit
2833  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2834  * @param start		the start address of the resource
2835  * @param end		the end address of the resource
2836  * @param count		XXX end-start+1
2837  */
2838 int
2839 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2840     u_long end, u_long count)
2841 {
2842 	int rid;
2843 
2844 	rid = 0;
2845 	while (resource_list_find(rl, type, rid) != NULL)
2846 		rid++;
2847 	resource_list_add(rl, type, rid, start, end, count);
2848 	return (rid);
2849 }
2850 
2851 /**
2852  * @brief Add or modify a resource entry.
2853  *
2854  * If an existing entry exists with the same type and rid, it will be
2855  * modified using the given values of @p start, @p end and @p
2856  * count. If no entry exists, a new one will be created using the
2857  * given values.  The resource list entry that matches is then returned.
2858  *
2859  * @param rl		the resource list to edit
2860  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2861  * @param rid		the resource identifier
2862  * @param start		the start address of the resource
2863  * @param end		the end address of the resource
2864  * @param count		XXX end-start+1
2865  */
2866 struct resource_list_entry *
2867 resource_list_add(struct resource_list *rl, int type, int rid,
2868     u_long start, u_long end, u_long count)
2869 {
2870 	struct resource_list_entry *rle;
2871 
2872 	rle = resource_list_find(rl, type, rid);
2873 	if (!rle) {
2874 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2875 		    M_NOWAIT);
2876 		if (!rle)
2877 			panic("resource_list_add: can't record entry");
2878 		STAILQ_INSERT_TAIL(rl, rle, link);
2879 		rle->type = type;
2880 		rle->rid = rid;
2881 		rle->res = NULL;
2882 		rle->flags = 0;
2883 	}
2884 
2885 	if (rle->res)
2886 		panic("resource_list_add: resource entry is busy");
2887 
2888 	rle->start = start;
2889 	rle->end = end;
2890 	rle->count = count;
2891 	return (rle);
2892 }
2893 
2894 /**
2895  * @brief Determine if a resource entry is busy.
2896  *
2897  * Returns true if a resource entry is busy meaning that it has an
2898  * associated resource that is not an unallocated "reserved" resource.
2899  *
2900  * @param rl		the resource list to search
2901  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2902  * @param rid		the resource identifier
2903  *
2904  * @returns Non-zero if the entry is busy, zero otherwise.
2905  */
2906 int
2907 resource_list_busy(struct resource_list *rl, int type, int rid)
2908 {
2909 	struct resource_list_entry *rle;
2910 
2911 	rle = resource_list_find(rl, type, rid);
2912 	if (rle == NULL || rle->res == NULL)
2913 		return (0);
2914 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2915 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2916 		    ("reserved resource is active"));
2917 		return (0);
2918 	}
2919 	return (1);
2920 }
2921 
2922 /**
2923  * @brief Find a resource entry by type and rid.
2924  *
2925  * @param rl		the resource list to search
2926  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2927  * @param rid		the resource identifier
2928  *
2929  * @returns the resource entry pointer or NULL if there is no such
2930  * entry.
2931  */
2932 struct resource_list_entry *
2933 resource_list_find(struct resource_list *rl, int type, int rid)
2934 {
2935 	struct resource_list_entry *rle;
2936 
2937 	STAILQ_FOREACH(rle, rl, link) {
2938 		if (rle->type == type && rle->rid == rid)
2939 			return (rle);
2940 	}
2941 	return (NULL);
2942 }
2943 
2944 /**
2945  * @brief Delete a resource entry.
2946  *
2947  * @param rl		the resource list to edit
2948  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2949  * @param rid		the resource identifier
2950  */
2951 void
2952 resource_list_delete(struct resource_list *rl, int type, int rid)
2953 {
2954 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2955 
2956 	if (rle) {
2957 		if (rle->res != NULL)
2958 			panic("resource_list_delete: resource has not been released");
2959 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2960 		free(rle, M_BUS);
2961 	}
2962 }
2963 
2964 /**
2965  * @brief Allocate a reserved resource
2966  *
2967  * This can be used by busses to force the allocation of resources
2968  * that are always active in the system even if they are not allocated
2969  * by a driver (e.g. PCI BARs).  This function is usually called when
2970  * adding a new child to the bus.  The resource is allocated from the
2971  * parent bus when it is reserved.  The resource list entry is marked
2972  * with RLE_RESERVED to note that it is a reserved resource.
2973  *
2974  * Subsequent attempts to allocate the resource with
2975  * resource_list_alloc() will succeed the first time and will set
2976  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2977  * resource that has been allocated is released with
2978  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2979  * the actual resource remains allocated.  The resource can be released to
2980  * the parent bus by calling resource_list_unreserve().
2981  *
2982  * @param rl		the resource list to allocate from
2983  * @param bus		the parent device of @p child
2984  * @param child		the device for which the resource is being reserved
2985  * @param type		the type of resource to allocate
2986  * @param rid		a pointer to the resource identifier
2987  * @param start		hint at the start of the resource range - pass
2988  *			@c 0UL for any start address
2989  * @param end		hint at the end of the resource range - pass
2990  *			@c ~0UL for any end address
2991  * @param count		hint at the size of range required - pass @c 1
2992  *			for any size
2993  * @param flags		any extra flags to control the resource
2994  *			allocation - see @c RF_XXX flags in
2995  *			<sys/rman.h> for details
2996  *
2997  * @returns		the resource which was allocated or @c NULL if no
2998  *			resource could be allocated
2999  */
3000 struct resource *
3001 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3002     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3003 {
3004 	struct resource_list_entry *rle = NULL;
3005 	int passthrough = (device_get_parent(child) != bus);
3006 	struct resource *r;
3007 
3008 	if (passthrough)
3009 		panic(
3010     "resource_list_reserve() should only be called for direct children");
3011 	if (flags & RF_ACTIVE)
3012 		panic(
3013     "resource_list_reserve() should only reserve inactive resources");
3014 
3015 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3016 	    flags);
3017 	if (r != NULL) {
3018 		rle = resource_list_find(rl, type, *rid);
3019 		rle->flags |= RLE_RESERVED;
3020 	}
3021 	return (r);
3022 }
3023 
3024 /**
3025  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3026  *
3027  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3028  * and passing the allocation up to the parent of @p bus. This assumes
3029  * that the first entry of @c device_get_ivars(child) is a struct
3030  * resource_list. This also handles 'passthrough' allocations where a
3031  * child is a remote descendant of bus by passing the allocation up to
3032  * the parent of bus.
3033  *
3034  * Typically, a bus driver would store a list of child resources
3035  * somewhere in the child device's ivars (see device_get_ivars()) and
3036  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3037  * then call resource_list_alloc() to perform the allocation.
3038  *
3039  * @param rl		the resource list to allocate from
3040  * @param bus		the parent device of @p child
3041  * @param child		the device which is requesting an allocation
3042  * @param type		the type of resource to allocate
3043  * @param rid		a pointer to the resource identifier
3044  * @param start		hint at the start of the resource range - pass
3045  *			@c 0UL for any start address
3046  * @param end		hint at the end of the resource range - pass
3047  *			@c ~0UL for any end address
3048  * @param count		hint at the size of range required - pass @c 1
3049  *			for any size
3050  * @param flags		any extra flags to control the resource
3051  *			allocation - see @c RF_XXX flags in
3052  *			<sys/rman.h> for details
3053  *
3054  * @returns		the resource which was allocated or @c NULL if no
3055  *			resource could be allocated
3056  */
3057 struct resource *
3058 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3059     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3060 {
3061 	struct resource_list_entry *rle = NULL;
3062 	int passthrough = (device_get_parent(child) != bus);
3063 	int isdefault = (start == 0UL && end == ~0UL);
3064 
3065 	if (passthrough) {
3066 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3067 		    type, rid, start, end, count, flags));
3068 	}
3069 
3070 	rle = resource_list_find(rl, type, *rid);
3071 
3072 	if (!rle)
3073 		return (NULL);		/* no resource of that type/rid */
3074 
3075 	if (rle->res) {
3076 		if (rle->flags & RLE_RESERVED) {
3077 			if (rle->flags & RLE_ALLOCATED)
3078 				return (NULL);
3079 			if ((flags & RF_ACTIVE) &&
3080 			    bus_activate_resource(child, type, *rid,
3081 			    rle->res) != 0)
3082 				return (NULL);
3083 			rle->flags |= RLE_ALLOCATED;
3084 			return (rle->res);
3085 		}
3086 		panic("resource_list_alloc: resource entry is busy");
3087 	}
3088 
3089 	if (isdefault) {
3090 		start = rle->start;
3091 		count = ulmax(count, rle->count);
3092 		end = ulmax(rle->end, start + count - 1);
3093 	}
3094 
3095 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3096 	    type, rid, start, end, count, flags);
3097 
3098 	/*
3099 	 * Record the new range.
3100 	 */
3101 	if (rle->res) {
3102 		rle->start = rman_get_start(rle->res);
3103 		rle->end = rman_get_end(rle->res);
3104 		rle->count = count;
3105 	}
3106 
3107 	return (rle->res);
3108 }
3109 
3110 /**
3111  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3112  *
3113  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3114  * used with resource_list_alloc().
3115  *
3116  * @param rl		the resource list which was allocated from
3117  * @param bus		the parent device of @p child
3118  * @param child		the device which is requesting a release
3119  * @param type		the type of resource to release
3120  * @param rid		the resource identifier
3121  * @param res		the resource to release
3122  *
3123  * @retval 0		success
3124  * @retval non-zero	a standard unix error code indicating what
3125  *			error condition prevented the operation
3126  */
3127 int
3128 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3129     int type, int rid, struct resource *res)
3130 {
3131 	struct resource_list_entry *rle = NULL;
3132 	int passthrough = (device_get_parent(child) != bus);
3133 	int error;
3134 
3135 	if (passthrough) {
3136 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3137 		    type, rid, res));
3138 	}
3139 
3140 	rle = resource_list_find(rl, type, rid);
3141 
3142 	if (!rle)
3143 		panic("resource_list_release: can't find resource");
3144 	if (!rle->res)
3145 		panic("resource_list_release: resource entry is not busy");
3146 	if (rle->flags & RLE_RESERVED) {
3147 		if (rle->flags & RLE_ALLOCATED) {
3148 			if (rman_get_flags(res) & RF_ACTIVE) {
3149 				error = bus_deactivate_resource(child, type,
3150 				    rid, res);
3151 				if (error)
3152 					return (error);
3153 			}
3154 			rle->flags &= ~RLE_ALLOCATED;
3155 			return (0);
3156 		}
3157 		return (EINVAL);
3158 	}
3159 
3160 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3161 	    type, rid, res);
3162 	if (error)
3163 		return (error);
3164 
3165 	rle->res = NULL;
3166 	return (0);
3167 }
3168 
3169 /**
3170  * @brief Fully release a reserved resource
3171  *
3172  * Fully releases a resouce reserved via resource_list_reserve().
3173  *
3174  * @param rl		the resource list which was allocated from
3175  * @param bus		the parent device of @p child
3176  * @param child		the device whose reserved resource is being released
3177  * @param type		the type of resource to release
3178  * @param rid		the resource identifier
3179  * @param res		the resource to release
3180  *
3181  * @retval 0		success
3182  * @retval non-zero	a standard unix error code indicating what
3183  *			error condition prevented the operation
3184  */
3185 int
3186 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3187     int type, int rid)
3188 {
3189 	struct resource_list_entry *rle = NULL;
3190 	int passthrough = (device_get_parent(child) != bus);
3191 
3192 	if (passthrough)
3193 		panic(
3194     "resource_list_unreserve() should only be called for direct children");
3195 
3196 	rle = resource_list_find(rl, type, rid);
3197 
3198 	if (!rle)
3199 		panic("resource_list_unreserve: can't find resource");
3200 	if (!(rle->flags & RLE_RESERVED))
3201 		return (EINVAL);
3202 	if (rle->flags & RLE_ALLOCATED)
3203 		return (EBUSY);
3204 	rle->flags &= ~RLE_RESERVED;
3205 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3206 }
3207 
3208 /**
3209  * @brief Print a description of resources in a resource list
3210  *
3211  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3212  * The name is printed if at least one resource of the given type is available.
3213  * The format is used to print resource start and end.
3214  *
3215  * @param rl		the resource list to print
3216  * @param name		the name of @p type, e.g. @c "memory"
3217  * @param type		type type of resource entry to print
3218  * @param format	printf(9) format string to print resource
3219  *			start and end values
3220  *
3221  * @returns		the number of characters printed
3222  */
3223 int
3224 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3225     const char *format)
3226 {
3227 	struct resource_list_entry *rle;
3228 	int printed, retval;
3229 
3230 	printed = 0;
3231 	retval = 0;
3232 	/* Yes, this is kinda cheating */
3233 	STAILQ_FOREACH(rle, rl, link) {
3234 		if (rle->type == type) {
3235 			if (printed == 0)
3236 				retval += printf(" %s ", name);
3237 			else
3238 				retval += printf(",");
3239 			printed++;
3240 			retval += printf(format, rle->start);
3241 			if (rle->count > 1) {
3242 				retval += printf("-");
3243 				retval += printf(format, rle->start +
3244 						 rle->count - 1);
3245 			}
3246 		}
3247 	}
3248 	return (retval);
3249 }
3250 
3251 /**
3252  * @brief Releases all the resources in a list.
3253  *
3254  * @param rl		The resource list to purge.
3255  *
3256  * @returns		nothing
3257  */
3258 void
3259 resource_list_purge(struct resource_list *rl)
3260 {
3261 	struct resource_list_entry *rle;
3262 
3263 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3264 		if (rle->res)
3265 			bus_release_resource(rman_get_device(rle->res),
3266 			    rle->type, rle->rid, rle->res);
3267 		STAILQ_REMOVE_HEAD(rl, link);
3268 		free(rle, M_BUS);
3269 	}
3270 }
3271 
3272 device_t
3273 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3274 {
3275 
3276 	return (device_add_child_ordered(dev, order, name, unit));
3277 }
3278 
3279 /**
3280  * @brief Helper function for implementing DEVICE_PROBE()
3281  *
3282  * This function can be used to help implement the DEVICE_PROBE() for
3283  * a bus (i.e. a device which has other devices attached to it). It
3284  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3285  * devclass.
3286  */
3287 int
3288 bus_generic_probe(device_t dev)
3289 {
3290 	devclass_t dc = dev->devclass;
3291 	driverlink_t dl;
3292 
3293 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3294 		/*
3295 		 * If this driver's pass is too high, then ignore it.
3296 		 * For most drivers in the default pass, this will
3297 		 * never be true.  For early-pass drivers they will
3298 		 * only call the identify routines of eligible drivers
3299 		 * when this routine is called.  Drivers for later
3300 		 * passes should have their identify routines called
3301 		 * on early-pass busses during BUS_NEW_PASS().
3302 		 */
3303 		if (dl->pass > bus_current_pass)
3304 				continue;
3305 		DEVICE_IDENTIFY(dl->driver, dev);
3306 	}
3307 
3308 	return (0);
3309 }
3310 
3311 /**
3312  * @brief Helper function for implementing DEVICE_ATTACH()
3313  *
3314  * This function can be used to help implement the DEVICE_ATTACH() for
3315  * a bus. It calls device_probe_and_attach() for each of the device's
3316  * children.
3317  */
3318 int
3319 bus_generic_attach(device_t dev)
3320 {
3321 	device_t child;
3322 
3323 	TAILQ_FOREACH(child, &dev->children, link) {
3324 		device_probe_and_attach(child);
3325 	}
3326 
3327 	return (0);
3328 }
3329 
3330 /**
3331  * @brief Helper function for implementing DEVICE_DETACH()
3332  *
3333  * This function can be used to help implement the DEVICE_DETACH() for
3334  * a bus. It calls device_detach() for each of the device's
3335  * children.
3336  */
3337 int
3338 bus_generic_detach(device_t dev)
3339 {
3340 	device_t child;
3341 	int error;
3342 
3343 	if (dev->state != DS_ATTACHED)
3344 		return (EBUSY);
3345 
3346 	TAILQ_FOREACH(child, &dev->children, link) {
3347 		if ((error = device_detach(child)) != 0)
3348 			return (error);
3349 	}
3350 
3351 	return (0);
3352 }
3353 
3354 /**
3355  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3356  *
3357  * This function can be used to help implement the DEVICE_SHUTDOWN()
3358  * for a bus. It calls device_shutdown() for each of the device's
3359  * children.
3360  */
3361 int
3362 bus_generic_shutdown(device_t dev)
3363 {
3364 	device_t child;
3365 
3366 	TAILQ_FOREACH(child, &dev->children, link) {
3367 		device_shutdown(child);
3368 	}
3369 
3370 	return (0);
3371 }
3372 
3373 /**
3374  * @brief Helper function for implementing DEVICE_SUSPEND()
3375  *
3376  * This function can be used to help implement the DEVICE_SUSPEND()
3377  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3378  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3379  * operation is aborted and any devices which were suspended are
3380  * resumed immediately by calling their DEVICE_RESUME() methods.
3381  */
3382 int
3383 bus_generic_suspend(device_t dev)
3384 {
3385 	int		error;
3386 	device_t	child, child2;
3387 
3388 	TAILQ_FOREACH(child, &dev->children, link) {
3389 		error = DEVICE_SUSPEND(child);
3390 		if (error) {
3391 			for (child2 = TAILQ_FIRST(&dev->children);
3392 			     child2 && child2 != child;
3393 			     child2 = TAILQ_NEXT(child2, link))
3394 				DEVICE_RESUME(child2);
3395 			return (error);
3396 		}
3397 	}
3398 	return (0);
3399 }
3400 
3401 /**
3402  * @brief Helper function for implementing DEVICE_RESUME()
3403  *
3404  * This function can be used to help implement the DEVICE_RESUME() for
3405  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3406  */
3407 int
3408 bus_generic_resume(device_t dev)
3409 {
3410 	device_t	child;
3411 
3412 	TAILQ_FOREACH(child, &dev->children, link) {
3413 		DEVICE_RESUME(child);
3414 		/* if resume fails, there's nothing we can usefully do... */
3415 	}
3416 	return (0);
3417 }
3418 
3419 /**
3420  * @brief Helper function for implementing BUS_PRINT_CHILD().
3421  *
3422  * This function prints the first part of the ascii representation of
3423  * @p child, including its name, unit and description (if any - see
3424  * device_set_desc()).
3425  *
3426  * @returns the number of characters printed
3427  */
3428 int
3429 bus_print_child_header(device_t dev, device_t child)
3430 {
3431 	int	retval = 0;
3432 
3433 	if (device_get_desc(child)) {
3434 		retval += device_printf(child, "<%s>", device_get_desc(child));
3435 	} else {
3436 		retval += printf("%s", device_get_nameunit(child));
3437 	}
3438 
3439 	return (retval);
3440 }
3441 
3442 /**
3443  * @brief Helper function for implementing BUS_PRINT_CHILD().
3444  *
3445  * This function prints the last part of the ascii representation of
3446  * @p child, which consists of the string @c " on " followed by the
3447  * name and unit of the @p dev.
3448  *
3449  * @returns the number of characters printed
3450  */
3451 int
3452 bus_print_child_footer(device_t dev, device_t child)
3453 {
3454 	return (printf(" on %s\n", device_get_nameunit(dev)));
3455 }
3456 
3457 /**
3458  * @brief Helper function for implementing BUS_PRINT_CHILD().
3459  *
3460  * This function simply calls bus_print_child_header() followed by
3461  * bus_print_child_footer().
3462  *
3463  * @returns the number of characters printed
3464  */
3465 int
3466 bus_generic_print_child(device_t dev, device_t child)
3467 {
3468 	int	retval = 0;
3469 
3470 	retval += bus_print_child_header(dev, child);
3471 	retval += bus_print_child_footer(dev, child);
3472 
3473 	return (retval);
3474 }
3475 
3476 /**
3477  * @brief Stub function for implementing BUS_READ_IVAR().
3478  *
3479  * @returns ENOENT
3480  */
3481 int
3482 bus_generic_read_ivar(device_t dev, device_t child, int index,
3483     uintptr_t * result)
3484 {
3485 	return (ENOENT);
3486 }
3487 
3488 /**
3489  * @brief Stub function for implementing BUS_WRITE_IVAR().
3490  *
3491  * @returns ENOENT
3492  */
3493 int
3494 bus_generic_write_ivar(device_t dev, device_t child, int index,
3495     uintptr_t value)
3496 {
3497 	return (ENOENT);
3498 }
3499 
3500 /**
3501  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3502  *
3503  * @returns NULL
3504  */
3505 struct resource_list *
3506 bus_generic_get_resource_list(device_t dev, device_t child)
3507 {
3508 	return (NULL);
3509 }
3510 
3511 /**
3512  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3513  *
3514  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3515  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3516  * and then calls device_probe_and_attach() for each unattached child.
3517  */
3518 void
3519 bus_generic_driver_added(device_t dev, driver_t *driver)
3520 {
3521 	device_t child;
3522 
3523 	DEVICE_IDENTIFY(driver, dev);
3524 	TAILQ_FOREACH(child, &dev->children, link) {
3525 		if (child->state == DS_NOTPRESENT ||
3526 		    (child->flags & DF_REBID))
3527 			device_probe_and_attach(child);
3528 	}
3529 }
3530 
3531 /**
3532  * @brief Helper function for implementing BUS_NEW_PASS().
3533  *
3534  * This implementing of BUS_NEW_PASS() first calls the identify
3535  * routines for any drivers that probe at the current pass.  Then it
3536  * walks the list of devices for this bus.  If a device is already
3537  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3538  * device is not already attached, it attempts to attach a driver to
3539  * it.
3540  */
3541 void
3542 bus_generic_new_pass(device_t dev)
3543 {
3544 	driverlink_t dl;
3545 	devclass_t dc;
3546 	device_t child;
3547 
3548 	dc = dev->devclass;
3549 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3550 		if (dl->pass == bus_current_pass)
3551 			DEVICE_IDENTIFY(dl->driver, dev);
3552 	}
3553 	TAILQ_FOREACH(child, &dev->children, link) {
3554 		if (child->state >= DS_ATTACHED)
3555 			BUS_NEW_PASS(child);
3556 		else if (child->state == DS_NOTPRESENT)
3557 			device_probe_and_attach(child);
3558 	}
3559 }
3560 
3561 /**
3562  * @brief Helper function for implementing BUS_SETUP_INTR().
3563  *
3564  * This simple implementation of BUS_SETUP_INTR() simply calls the
3565  * BUS_SETUP_INTR() method of the parent of @p dev.
3566  */
3567 int
3568 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3569     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3570     void **cookiep)
3571 {
3572 	/* Propagate up the bus hierarchy until someone handles it. */
3573 	if (dev->parent)
3574 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3575 		    filter, intr, arg, cookiep));
3576 	return (EINVAL);
3577 }
3578 
3579 /**
3580  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3581  *
3582  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3583  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3584  */
3585 int
3586 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3587     void *cookie)
3588 {
3589 	/* Propagate up the bus hierarchy until someone handles it. */
3590 	if (dev->parent)
3591 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3592 	return (EINVAL);
3593 }
3594 
3595 /**
3596  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3597  *
3598  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3599  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3600  */
3601 struct resource *
3602 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3603     u_long start, u_long end, u_long count, u_int flags)
3604 {
3605 	/* Propagate up the bus hierarchy until someone handles it. */
3606 	if (dev->parent)
3607 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3608 		    start, end, count, flags));
3609 	return (NULL);
3610 }
3611 
3612 /**
3613  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3614  *
3615  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3616  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3617  */
3618 int
3619 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3620     struct resource *r)
3621 {
3622 	/* Propagate up the bus hierarchy until someone handles it. */
3623 	if (dev->parent)
3624 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3625 		    r));
3626 	return (EINVAL);
3627 }
3628 
3629 /**
3630  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3631  *
3632  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3633  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3634  */
3635 int
3636 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3637     struct resource *r)
3638 {
3639 	/* Propagate up the bus hierarchy until someone handles it. */
3640 	if (dev->parent)
3641 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3642 		    r));
3643 	return (EINVAL);
3644 }
3645 
3646 /**
3647  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3648  *
3649  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3650  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3651  */
3652 int
3653 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3654     int rid, struct resource *r)
3655 {
3656 	/* Propagate up the bus hierarchy until someone handles it. */
3657 	if (dev->parent)
3658 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3659 		    r));
3660 	return (EINVAL);
3661 }
3662 
3663 /**
3664  * @brief Helper function for implementing BUS_BIND_INTR().
3665  *
3666  * This simple implementation of BUS_BIND_INTR() simply calls the
3667  * BUS_BIND_INTR() method of the parent of @p dev.
3668  */
3669 int
3670 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3671     int cpu)
3672 {
3673 
3674 	/* Propagate up the bus hierarchy until someone handles it. */
3675 	if (dev->parent)
3676 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3677 	return (EINVAL);
3678 }
3679 
3680 /**
3681  * @brief Helper function for implementing BUS_CONFIG_INTR().
3682  *
3683  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3684  * BUS_CONFIG_INTR() method of the parent of @p dev.
3685  */
3686 int
3687 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3688     enum intr_polarity pol)
3689 {
3690 
3691 	/* Propagate up the bus hierarchy until someone handles it. */
3692 	if (dev->parent)
3693 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3694 	return (EINVAL);
3695 }
3696 
3697 /**
3698  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3699  *
3700  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3701  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3702  */
3703 int
3704 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3705     void *cookie, const char *descr)
3706 {
3707 
3708 	/* Propagate up the bus hierarchy until someone handles it. */
3709 	if (dev->parent)
3710 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3711 		    descr));
3712 	return (EINVAL);
3713 }
3714 
3715 /**
3716  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3717  *
3718  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3719  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3720  */
3721 bus_dma_tag_t
3722 bus_generic_get_dma_tag(device_t dev, device_t child)
3723 {
3724 
3725 	/* Propagate up the bus hierarchy until someone handles it. */
3726 	if (dev->parent != NULL)
3727 		return (BUS_GET_DMA_TAG(dev->parent, child));
3728 	return (NULL);
3729 }
3730 
3731 /**
3732  * @brief Helper function for implementing BUS_GET_RESOURCE().
3733  *
3734  * This implementation of BUS_GET_RESOURCE() uses the
3735  * resource_list_find() function to do most of the work. It calls
3736  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3737  * search.
3738  */
3739 int
3740 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3741     u_long *startp, u_long *countp)
3742 {
3743 	struct resource_list *		rl = NULL;
3744 	struct resource_list_entry *	rle = NULL;
3745 
3746 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3747 	if (!rl)
3748 		return (EINVAL);
3749 
3750 	rle = resource_list_find(rl, type, rid);
3751 	if (!rle)
3752 		return (ENOENT);
3753 
3754 	if (startp)
3755 		*startp = rle->start;
3756 	if (countp)
3757 		*countp = rle->count;
3758 
3759 	return (0);
3760 }
3761 
3762 /**
3763  * @brief Helper function for implementing BUS_SET_RESOURCE().
3764  *
3765  * This implementation of BUS_SET_RESOURCE() uses the
3766  * resource_list_add() function to do most of the work. It calls
3767  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3768  * edit.
3769  */
3770 int
3771 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3772     u_long start, u_long count)
3773 {
3774 	struct resource_list *		rl = NULL;
3775 
3776 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3777 	if (!rl)
3778 		return (EINVAL);
3779 
3780 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3781 
3782 	return (0);
3783 }
3784 
3785 /**
3786  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3787  *
3788  * This implementation of BUS_DELETE_RESOURCE() uses the
3789  * resource_list_delete() function to do most of the work. It calls
3790  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3791  * edit.
3792  */
3793 void
3794 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3795 {
3796 	struct resource_list *		rl = NULL;
3797 
3798 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3799 	if (!rl)
3800 		return;
3801 
3802 	resource_list_delete(rl, type, rid);
3803 
3804 	return;
3805 }
3806 
3807 /**
3808  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3809  *
3810  * This implementation of BUS_RELEASE_RESOURCE() uses the
3811  * resource_list_release() function to do most of the work. It calls
3812  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3813  */
3814 int
3815 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3816     int rid, struct resource *r)
3817 {
3818 	struct resource_list *		rl = NULL;
3819 
3820 	if (device_get_parent(child) != dev)
3821 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3822 		    type, rid, r));
3823 
3824 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3825 	if (!rl)
3826 		return (EINVAL);
3827 
3828 	return (resource_list_release(rl, dev, child, type, rid, r));
3829 }
3830 
3831 /**
3832  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3833  *
3834  * This implementation of BUS_ALLOC_RESOURCE() uses the
3835  * resource_list_alloc() function to do most of the work. It calls
3836  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3837  */
3838 struct resource *
3839 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3840     int *rid, u_long start, u_long end, u_long count, u_int flags)
3841 {
3842 	struct resource_list *		rl = NULL;
3843 
3844 	if (device_get_parent(child) != dev)
3845 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3846 		    type, rid, start, end, count, flags));
3847 
3848 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3849 	if (!rl)
3850 		return (NULL);
3851 
3852 	return (resource_list_alloc(rl, dev, child, type, rid,
3853 	    start, end, count, flags));
3854 }
3855 
3856 /**
3857  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3858  *
3859  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3860  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3861  */
3862 int
3863 bus_generic_child_present(device_t dev, device_t child)
3864 {
3865 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3866 }
3867 
3868 /*
3869  * Some convenience functions to make it easier for drivers to use the
3870  * resource-management functions.  All these really do is hide the
3871  * indirection through the parent's method table, making for slightly
3872  * less-wordy code.  In the future, it might make sense for this code
3873  * to maintain some sort of a list of resources allocated by each device.
3874  */
3875 
3876 int
3877 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3878     struct resource **res)
3879 {
3880 	int i;
3881 
3882 	for (i = 0; rs[i].type != -1; i++)
3883 		res[i] = NULL;
3884 	for (i = 0; rs[i].type != -1; i++) {
3885 		res[i] = bus_alloc_resource_any(dev,
3886 		    rs[i].type, &rs[i].rid, rs[i].flags);
3887 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3888 			bus_release_resources(dev, rs, res);
3889 			return (ENXIO);
3890 		}
3891 	}
3892 	return (0);
3893 }
3894 
3895 void
3896 bus_release_resources(device_t dev, const struct resource_spec *rs,
3897     struct resource **res)
3898 {
3899 	int i;
3900 
3901 	for (i = 0; rs[i].type != -1; i++)
3902 		if (res[i] != NULL) {
3903 			bus_release_resource(
3904 			    dev, rs[i].type, rs[i].rid, res[i]);
3905 			res[i] = NULL;
3906 		}
3907 }
3908 
3909 /**
3910  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3911  *
3912  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3913  * parent of @p dev.
3914  */
3915 struct resource *
3916 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3917     u_long count, u_int flags)
3918 {
3919 	if (dev->parent == NULL)
3920 		return (NULL);
3921 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3922 	    count, flags));
3923 }
3924 
3925 /**
3926  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3927  *
3928  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3929  * parent of @p dev.
3930  */
3931 int
3932 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3933 {
3934 	if (dev->parent == NULL)
3935 		return (EINVAL);
3936 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3937 }
3938 
3939 /**
3940  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3941  *
3942  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3943  * parent of @p dev.
3944  */
3945 int
3946 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3947 {
3948 	if (dev->parent == NULL)
3949 		return (EINVAL);
3950 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3951 }
3952 
3953 /**
3954  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3955  *
3956  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3957  * parent of @p dev.
3958  */
3959 int
3960 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3961 {
3962 	if (dev->parent == NULL)
3963 		return (EINVAL);
3964 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3965 }
3966 
3967 /**
3968  * @brief Wrapper function for BUS_SETUP_INTR().
3969  *
3970  * This function simply calls the BUS_SETUP_INTR() method of the
3971  * parent of @p dev.
3972  */
3973 int
3974 bus_setup_intr(device_t dev, struct resource *r, int flags,
3975     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3976 {
3977 	int error;
3978 
3979 	if (dev->parent == NULL)
3980 		return (EINVAL);
3981 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3982 	    arg, cookiep);
3983 	if (error != 0)
3984 		return (error);
3985 	if (handler != NULL && !(flags & INTR_MPSAFE))
3986 		device_printf(dev, "[GIANT-LOCKED]\n");
3987 	if (bootverbose && (flags & INTR_MPSAFE))
3988 		device_printf(dev, "[MPSAFE]\n");
3989 	if (filter != NULL) {
3990 		if (handler == NULL)
3991 			device_printf(dev, "[FILTER]\n");
3992 		else
3993 			device_printf(dev, "[FILTER+ITHREAD]\n");
3994 	} else
3995 		device_printf(dev, "[ITHREAD]\n");
3996 	return (0);
3997 }
3998 
3999 /**
4000  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4001  *
4002  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4003  * parent of @p dev.
4004  */
4005 int
4006 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4007 {
4008 	if (dev->parent == NULL)
4009 		return (EINVAL);
4010 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4011 }
4012 
4013 /**
4014  * @brief Wrapper function for BUS_BIND_INTR().
4015  *
4016  * This function simply calls the BUS_BIND_INTR() method of the
4017  * parent of @p dev.
4018  */
4019 int
4020 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4021 {
4022 	if (dev->parent == NULL)
4023 		return (EINVAL);
4024 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4025 }
4026 
4027 /**
4028  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4029  *
4030  * This function first formats the requested description into a
4031  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4032  * the parent of @p dev.
4033  */
4034 int
4035 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4036     const char *fmt, ...)
4037 {
4038 	va_list ap;
4039 	char descr[MAXCOMLEN + 1];
4040 
4041 	if (dev->parent == NULL)
4042 		return (EINVAL);
4043 	va_start(ap, fmt);
4044 	vsnprintf(descr, sizeof(descr), fmt, ap);
4045 	va_end(ap);
4046 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4047 }
4048 
4049 /**
4050  * @brief Wrapper function for BUS_SET_RESOURCE().
4051  *
4052  * This function simply calls the BUS_SET_RESOURCE() method of the
4053  * parent of @p dev.
4054  */
4055 int
4056 bus_set_resource(device_t dev, int type, int rid,
4057     u_long start, u_long count)
4058 {
4059 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4060 	    start, count));
4061 }
4062 
4063 /**
4064  * @brief Wrapper function for BUS_GET_RESOURCE().
4065  *
4066  * This function simply calls the BUS_GET_RESOURCE() method of the
4067  * parent of @p dev.
4068  */
4069 int
4070 bus_get_resource(device_t dev, int type, int rid,
4071     u_long *startp, u_long *countp)
4072 {
4073 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4074 	    startp, countp));
4075 }
4076 
4077 /**
4078  * @brief Wrapper function for BUS_GET_RESOURCE().
4079  *
4080  * This function simply calls the BUS_GET_RESOURCE() method of the
4081  * parent of @p dev and returns the start value.
4082  */
4083 u_long
4084 bus_get_resource_start(device_t dev, int type, int rid)
4085 {
4086 	u_long start, count;
4087 	int error;
4088 
4089 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4090 	    &start, &count);
4091 	if (error)
4092 		return (0);
4093 	return (start);
4094 }
4095 
4096 /**
4097  * @brief Wrapper function for BUS_GET_RESOURCE().
4098  *
4099  * This function simply calls the BUS_GET_RESOURCE() method of the
4100  * parent of @p dev and returns the count value.
4101  */
4102 u_long
4103 bus_get_resource_count(device_t dev, int type, int rid)
4104 {
4105 	u_long start, count;
4106 	int error;
4107 
4108 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4109 	    &start, &count);
4110 	if (error)
4111 		return (0);
4112 	return (count);
4113 }
4114 
4115 /**
4116  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4117  *
4118  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4119  * parent of @p dev.
4120  */
4121 void
4122 bus_delete_resource(device_t dev, int type, int rid)
4123 {
4124 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4125 }
4126 
4127 /**
4128  * @brief Wrapper function for BUS_CHILD_PRESENT().
4129  *
4130  * This function simply calls the BUS_CHILD_PRESENT() method of the
4131  * parent of @p dev.
4132  */
4133 int
4134 bus_child_present(device_t child)
4135 {
4136 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4137 }
4138 
4139 /**
4140  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4141  *
4142  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4143  * parent of @p dev.
4144  */
4145 int
4146 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4147 {
4148 	device_t parent;
4149 
4150 	parent = device_get_parent(child);
4151 	if (parent == NULL) {
4152 		*buf = '\0';
4153 		return (0);
4154 	}
4155 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4156 }
4157 
4158 /**
4159  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4160  *
4161  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4162  * parent of @p dev.
4163  */
4164 int
4165 bus_child_location_str(device_t child, char *buf, size_t buflen)
4166 {
4167 	device_t parent;
4168 
4169 	parent = device_get_parent(child);
4170 	if (parent == NULL) {
4171 		*buf = '\0';
4172 		return (0);
4173 	}
4174 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4175 }
4176 
4177 /**
4178  * @brief Wrapper function for BUS_GET_DMA_TAG().
4179  *
4180  * This function simply calls the BUS_GET_DMA_TAG() method of the
4181  * parent of @p dev.
4182  */
4183 bus_dma_tag_t
4184 bus_get_dma_tag(device_t dev)
4185 {
4186 	device_t parent;
4187 
4188 	parent = device_get_parent(dev);
4189 	if (parent == NULL)
4190 		return (NULL);
4191 	return (BUS_GET_DMA_TAG(parent, dev));
4192 }
4193 
4194 /* Resume all devices and then notify userland that we're up again. */
4195 static int
4196 root_resume(device_t dev)
4197 {
4198 	int error;
4199 
4200 	error = bus_generic_resume(dev);
4201 	if (error == 0)
4202 		devctl_notify("kern", "power", "resume", NULL);
4203 	return (error);
4204 }
4205 
4206 static int
4207 root_print_child(device_t dev, device_t child)
4208 {
4209 	int	retval = 0;
4210 
4211 	retval += bus_print_child_header(dev, child);
4212 	retval += printf("\n");
4213 
4214 	return (retval);
4215 }
4216 
4217 static int
4218 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4219     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4220 {
4221 	/*
4222 	 * If an interrupt mapping gets to here something bad has happened.
4223 	 */
4224 	panic("root_setup_intr");
4225 }
4226 
4227 /*
4228  * If we get here, assume that the device is permanant and really is
4229  * present in the system.  Removable bus drivers are expected to intercept
4230  * this call long before it gets here.  We return -1 so that drivers that
4231  * really care can check vs -1 or some ERRNO returned higher in the food
4232  * chain.
4233  */
4234 static int
4235 root_child_present(device_t dev, device_t child)
4236 {
4237 	return (-1);
4238 }
4239 
4240 static kobj_method_t root_methods[] = {
4241 	/* Device interface */
4242 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4243 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4244 	KOBJMETHOD(device_resume,	root_resume),
4245 
4246 	/* Bus interface */
4247 	KOBJMETHOD(bus_print_child,	root_print_child),
4248 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4249 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4250 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4251 	KOBJMETHOD(bus_child_present,	root_child_present),
4252 
4253 	KOBJMETHOD_END
4254 };
4255 
4256 static driver_t root_driver = {
4257 	"root",
4258 	root_methods,
4259 	1,			/* no softc */
4260 };
4261 
4262 device_t	root_bus;
4263 devclass_t	root_devclass;
4264 
4265 static int
4266 root_bus_module_handler(module_t mod, int what, void* arg)
4267 {
4268 	switch (what) {
4269 	case MOD_LOAD:
4270 		TAILQ_INIT(&bus_data_devices);
4271 		kobj_class_compile((kobj_class_t) &root_driver);
4272 		root_bus = make_device(NULL, "root", 0);
4273 		root_bus->desc = "System root bus";
4274 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4275 		root_bus->driver = &root_driver;
4276 		root_bus->state = DS_ATTACHED;
4277 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4278 		devinit();
4279 		return (0);
4280 
4281 	case MOD_SHUTDOWN:
4282 		device_shutdown(root_bus);
4283 		return (0);
4284 	default:
4285 		return (EOPNOTSUPP);
4286 	}
4287 
4288 	return (0);
4289 }
4290 
4291 static moduledata_t root_bus_mod = {
4292 	"rootbus",
4293 	root_bus_module_handler,
4294 	NULL
4295 };
4296 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4297 
4298 /**
4299  * @brief Automatically configure devices
4300  *
4301  * This function begins the autoconfiguration process by calling
4302  * device_probe_and_attach() for each child of the @c root0 device.
4303  */
4304 void
4305 root_bus_configure(void)
4306 {
4307 
4308 	PDEBUG(("."));
4309 
4310 	/* Eventually this will be split up, but this is sufficient for now. */
4311 	bus_set_pass(BUS_PASS_DEFAULT);
4312 }
4313 
4314 /**
4315  * @brief Module handler for registering device drivers
4316  *
4317  * This module handler is used to automatically register device
4318  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4319  * devclass_add_driver() for the driver described by the
4320  * driver_module_data structure pointed to by @p arg
4321  */
4322 int
4323 driver_module_handler(module_t mod, int what, void *arg)
4324 {
4325 	struct driver_module_data *dmd;
4326 	devclass_t bus_devclass;
4327 	kobj_class_t driver;
4328 	int error, pass;
4329 
4330 	dmd = (struct driver_module_data *)arg;
4331 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4332 	error = 0;
4333 
4334 	switch (what) {
4335 	case MOD_LOAD:
4336 		if (dmd->dmd_chainevh)
4337 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4338 
4339 		pass = dmd->dmd_pass;
4340 		driver = dmd->dmd_driver;
4341 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4342 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4343 		error = devclass_add_driver(bus_devclass, driver, pass,
4344 		    dmd->dmd_devclass);
4345 		break;
4346 
4347 	case MOD_UNLOAD:
4348 		PDEBUG(("Unloading module: driver %s from bus %s",
4349 		    DRIVERNAME(dmd->dmd_driver),
4350 		    dmd->dmd_busname));
4351 		error = devclass_delete_driver(bus_devclass,
4352 		    dmd->dmd_driver);
4353 
4354 		if (!error && dmd->dmd_chainevh)
4355 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4356 		break;
4357 	case MOD_QUIESCE:
4358 		PDEBUG(("Quiesce module: driver %s from bus %s",
4359 		    DRIVERNAME(dmd->dmd_driver),
4360 		    dmd->dmd_busname));
4361 		error = devclass_quiesce_driver(bus_devclass,
4362 		    dmd->dmd_driver);
4363 
4364 		if (!error && dmd->dmd_chainevh)
4365 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4366 		break;
4367 	default:
4368 		error = EOPNOTSUPP;
4369 		break;
4370 	}
4371 
4372 	return (error);
4373 }
4374 
4375 /**
4376  * @brief Enumerate all hinted devices for this bus.
4377  *
4378  * Walks through the hints for this bus and calls the bus_hinted_child
4379  * routine for each one it fines.  It searches first for the specific
4380  * bus that's being probed for hinted children (eg isa0), and then for
4381  * generic children (eg isa).
4382  *
4383  * @param	dev	bus device to enumerate
4384  */
4385 void
4386 bus_enumerate_hinted_children(device_t bus)
4387 {
4388 	int i;
4389 	const char *dname, *busname;
4390 	int dunit;
4391 
4392 	/*
4393 	 * enumerate all devices on the specific bus
4394 	 */
4395 	busname = device_get_nameunit(bus);
4396 	i = 0;
4397 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4398 		BUS_HINTED_CHILD(bus, dname, dunit);
4399 
4400 	/*
4401 	 * and all the generic ones.
4402 	 */
4403 	busname = device_get_name(bus);
4404 	i = 0;
4405 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4406 		BUS_HINTED_CHILD(bus, dname, dunit);
4407 }
4408 
4409 #ifdef BUS_DEBUG
4410 
4411 /* the _short versions avoid iteration by not calling anything that prints
4412  * more than oneliners. I love oneliners.
4413  */
4414 
4415 static void
4416 print_device_short(device_t dev, int indent)
4417 {
4418 	if (!dev)
4419 		return;
4420 
4421 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4422 	    dev->unit, dev->desc,
4423 	    (dev->parent? "":"no "),
4424 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4425 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4426 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4427 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4428 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4429 	    (dev->flags&DF_REBID? "rebiddable,":""),
4430 	    (dev->ivars? "":"no "),
4431 	    (dev->softc? "":"no "),
4432 	    dev->busy));
4433 }
4434 
4435 static void
4436 print_device(device_t dev, int indent)
4437 {
4438 	if (!dev)
4439 		return;
4440 
4441 	print_device_short(dev, indent);
4442 
4443 	indentprintf(("Parent:\n"));
4444 	print_device_short(dev->parent, indent+1);
4445 	indentprintf(("Driver:\n"));
4446 	print_driver_short(dev->driver, indent+1);
4447 	indentprintf(("Devclass:\n"));
4448 	print_devclass_short(dev->devclass, indent+1);
4449 }
4450 
4451 void
4452 print_device_tree_short(device_t dev, int indent)
4453 /* print the device and all its children (indented) */
4454 {
4455 	device_t child;
4456 
4457 	if (!dev)
4458 		return;
4459 
4460 	print_device_short(dev, indent);
4461 
4462 	TAILQ_FOREACH(child, &dev->children, link) {
4463 		print_device_tree_short(child, indent+1);
4464 	}
4465 }
4466 
4467 void
4468 print_device_tree(device_t dev, int indent)
4469 /* print the device and all its children (indented) */
4470 {
4471 	device_t child;
4472 
4473 	if (!dev)
4474 		return;
4475 
4476 	print_device(dev, indent);
4477 
4478 	TAILQ_FOREACH(child, &dev->children, link) {
4479 		print_device_tree(child, indent+1);
4480 	}
4481 }
4482 
4483 static void
4484 print_driver_short(driver_t *driver, int indent)
4485 {
4486 	if (!driver)
4487 		return;
4488 
4489 	indentprintf(("driver %s: softc size = %zd\n",
4490 	    driver->name, driver->size));
4491 }
4492 
4493 static void
4494 print_driver(driver_t *driver, int indent)
4495 {
4496 	if (!driver)
4497 		return;
4498 
4499 	print_driver_short(driver, indent);
4500 }
4501 
4502 
4503 static void
4504 print_driver_list(driver_list_t drivers, int indent)
4505 {
4506 	driverlink_t driver;
4507 
4508 	TAILQ_FOREACH(driver, &drivers, link) {
4509 		print_driver(driver->driver, indent);
4510 	}
4511 }
4512 
4513 static void
4514 print_devclass_short(devclass_t dc, int indent)
4515 {
4516 	if ( !dc )
4517 		return;
4518 
4519 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4520 }
4521 
4522 static void
4523 print_devclass(devclass_t dc, int indent)
4524 {
4525 	int i;
4526 
4527 	if ( !dc )
4528 		return;
4529 
4530 	print_devclass_short(dc, indent);
4531 	indentprintf(("Drivers:\n"));
4532 	print_driver_list(dc->drivers, indent+1);
4533 
4534 	indentprintf(("Devices:\n"));
4535 	for (i = 0; i < dc->maxunit; i++)
4536 		if (dc->devices[i])
4537 			print_device(dc->devices[i], indent+1);
4538 }
4539 
4540 void
4541 print_devclass_list_short(void)
4542 {
4543 	devclass_t dc;
4544 
4545 	printf("Short listing of devclasses, drivers & devices:\n");
4546 	TAILQ_FOREACH(dc, &devclasses, link) {
4547 		print_devclass_short(dc, 0);
4548 	}
4549 }
4550 
4551 void
4552 print_devclass_list(void)
4553 {
4554 	devclass_t dc;
4555 
4556 	printf("Full listing of devclasses, drivers & devices:\n");
4557 	TAILQ_FOREACH(dc, &devclasses, link) {
4558 		print_devclass(dc, 0);
4559 	}
4560 }
4561 
4562 #endif
4563 
4564 /*
4565  * User-space access to the device tree.
4566  *
4567  * We implement a small set of nodes:
4568  *
4569  * hw.bus			Single integer read method to obtain the
4570  *				current generation count.
4571  * hw.bus.devices		Reads the entire device tree in flat space.
4572  * hw.bus.rman			Resource manager interface
4573  *
4574  * We might like to add the ability to scan devclasses and/or drivers to
4575  * determine what else is currently loaded/available.
4576  */
4577 
4578 static int
4579 sysctl_bus(SYSCTL_HANDLER_ARGS)
4580 {
4581 	struct u_businfo	ubus;
4582 
4583 	ubus.ub_version = BUS_USER_VERSION;
4584 	ubus.ub_generation = bus_data_generation;
4585 
4586 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4587 }
4588 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4589     "bus-related data");
4590 
4591 static int
4592 sysctl_devices(SYSCTL_HANDLER_ARGS)
4593 {
4594 	int			*name = (int *)arg1;
4595 	u_int			namelen = arg2;
4596 	int			index;
4597 	struct device		*dev;
4598 	struct u_device		udev;	/* XXX this is a bit big */
4599 	int			error;
4600 
4601 	if (namelen != 2)
4602 		return (EINVAL);
4603 
4604 	if (bus_data_generation_check(name[0]))
4605 		return (EINVAL);
4606 
4607 	index = name[1];
4608 
4609 	/*
4610 	 * Scan the list of devices, looking for the requested index.
4611 	 */
4612 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4613 		if (index-- == 0)
4614 			break;
4615 	}
4616 	if (dev == NULL)
4617 		return (ENOENT);
4618 
4619 	/*
4620 	 * Populate the return array.
4621 	 */
4622 	bzero(&udev, sizeof(udev));
4623 	udev.dv_handle = (uintptr_t)dev;
4624 	udev.dv_parent = (uintptr_t)dev->parent;
4625 	if (dev->nameunit != NULL)
4626 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4627 	if (dev->desc != NULL)
4628 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4629 	if (dev->driver != NULL && dev->driver->name != NULL)
4630 		strlcpy(udev.dv_drivername, dev->driver->name,
4631 		    sizeof(udev.dv_drivername));
4632 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4633 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4634 	udev.dv_devflags = dev->devflags;
4635 	udev.dv_flags = dev->flags;
4636 	udev.dv_state = dev->state;
4637 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4638 	return (error);
4639 }
4640 
4641 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4642     "system device tree");
4643 
4644 int
4645 bus_data_generation_check(int generation)
4646 {
4647 	if (generation != bus_data_generation)
4648 		return (1);
4649 
4650 	/* XXX generate optimised lists here? */
4651 	return (0);
4652 }
4653 
4654 void
4655 bus_data_generation_update(void)
4656 {
4657 	bus_data_generation++;
4658 }
4659 
4660 int
4661 bus_free_resource(device_t dev, int type, struct resource *r)
4662 {
4663 	if (r == NULL)
4664 		return (0);
4665 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4666 }
4667