1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 #include <sys/interrupt.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 204 switch (arg2) { 205 case DEVCLASS_SYSCTL_PARENT: 206 value = dc->parent ? dc->parent->name : ""; 207 break; 208 default: 209 return (EINVAL); 210 } 211 return (SYSCTL_OUT(req, value, strlen(value))); 212 } 213 214 static void 215 devclass_sysctl_init(devclass_t dc) 216 { 217 218 if (dc->sysctl_tree != NULL) 219 return; 220 sysctl_ctx_init(&dc->sysctl_ctx); 221 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 222 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 223 CTLFLAG_RD, 0, ""); 224 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 225 OID_AUTO, "%parent", CTLFLAG_RD, 226 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 227 "parent class"); 228 } 229 230 enum { 231 DEVICE_SYSCTL_DESC, 232 DEVICE_SYSCTL_DRIVER, 233 DEVICE_SYSCTL_LOCATION, 234 DEVICE_SYSCTL_PNPINFO, 235 DEVICE_SYSCTL_PARENT, 236 }; 237 238 static int 239 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 240 { 241 device_t dev = (device_t)arg1; 242 const char *value; 243 char *buf; 244 int error; 245 246 buf = NULL; 247 switch (arg2) { 248 case DEVICE_SYSCTL_DESC: 249 value = dev->desc ? dev->desc : ""; 250 break; 251 case DEVICE_SYSCTL_DRIVER: 252 value = dev->driver ? dev->driver->name : ""; 253 break; 254 case DEVICE_SYSCTL_LOCATION: 255 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 256 bus_child_location_str(dev, buf, 1024); 257 break; 258 case DEVICE_SYSCTL_PNPINFO: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_pnpinfo_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PARENT: 263 value = dev->parent ? dev->parent->nameunit : ""; 264 break; 265 default: 266 return (EINVAL); 267 } 268 error = SYSCTL_OUT(req, value, strlen(value)); 269 if (buf != NULL) 270 free(buf, M_BUS); 271 return (error); 272 } 273 274 static void 275 device_sysctl_init(device_t dev) 276 { 277 devclass_t dc = dev->devclass; 278 279 if (dev->sysctl_tree != NULL) 280 return; 281 devclass_sysctl_init(dc); 282 sysctl_ctx_init(&dev->sysctl_ctx); 283 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 284 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 285 dev->nameunit + strlen(dc->name), 286 CTLFLAG_RD, 0, ""); 287 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 288 OID_AUTO, "%desc", CTLFLAG_RD, 289 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 290 "device description"); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%driver", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 294 "device driver name"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%location", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 298 "device location relative to parent"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 302 "device identification"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%parent", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 306 "parent device"); 307 } 308 309 static void 310 device_sysctl_update(device_t dev) 311 { 312 devclass_t dc = dev->devclass; 313 314 if (dev->sysctl_tree == NULL) 315 return; 316 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 317 } 318 319 static void 320 device_sysctl_fini(device_t dev) 321 { 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_ctx_free(&dev->sysctl_ctx); 325 dev->sysctl_tree = NULL; 326 } 327 328 /* 329 * /dev/devctl implementation 330 */ 331 332 /* 333 * This design allows only one reader for /dev/devctl. This is not desirable 334 * in the long run, but will get a lot of hair out of this implementation. 335 * Maybe we should make this device a clonable device. 336 * 337 * Also note: we specifically do not attach a device to the device_t tree 338 * to avoid potential chicken and egg problems. One could argue that all 339 * of this belongs to the root node. One could also further argue that the 340 * sysctl interface that we have not might more properly be an ioctl 341 * interface, but at this stage of the game, I'm not inclined to rock that 342 * boat. 343 * 344 * I'm also not sure that the SIGIO support is done correctly or not, as 345 * I copied it from a driver that had SIGIO support that likely hasn't been 346 * tested since 3.4 or 2.2.8! 347 */ 348 349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 350 static int devctl_disable = 0; 351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 353 sysctl_devctl_disable, "I", "devctl disable"); 354 355 static d_open_t devopen; 356 static d_close_t devclose; 357 static d_read_t devread; 358 static d_ioctl_t devioctl; 359 static d_poll_t devpoll; 360 361 static struct cdevsw dev_cdevsw = { 362 .d_version = D_VERSION, 363 .d_flags = D_NEEDGIANT, 364 .d_open = devopen, 365 .d_close = devclose, 366 .d_read = devread, 367 .d_ioctl = devioctl, 368 .d_poll = devpoll, 369 .d_name = "devctl", 370 }; 371 372 struct dev_event_info 373 { 374 char *dei_data; 375 TAILQ_ENTRY(dev_event_info) dei_link; 376 }; 377 378 TAILQ_HEAD(devq, dev_event_info); 379 380 static struct dev_softc 381 { 382 int inuse; 383 int nonblock; 384 struct mtx mtx; 385 struct cv cv; 386 struct selinfo sel; 387 struct devq devq; 388 struct proc *async_proc; 389 } devsoftc; 390 391 static struct cdev *devctl_dev; 392 393 static void 394 devinit(void) 395 { 396 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 397 "devctl"); 398 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 399 cv_init(&devsoftc.cv, "dev cv"); 400 TAILQ_INIT(&devsoftc.devq); 401 } 402 403 static int 404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 405 { 406 if (devsoftc.inuse) 407 return (EBUSY); 408 /* move to init */ 409 devsoftc.inuse = 1; 410 devsoftc.nonblock = 0; 411 devsoftc.async_proc = NULL; 412 return (0); 413 } 414 415 static int 416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 417 { 418 devsoftc.inuse = 0; 419 mtx_lock(&devsoftc.mtx); 420 cv_broadcast(&devsoftc.cv); 421 mtx_unlock(&devsoftc.mtx); 422 423 return (0); 424 } 425 426 /* 427 * The read channel for this device is used to report changes to 428 * userland in realtime. We are required to free the data as well as 429 * the n1 object because we allocate them separately. Also note that 430 * we return one record at a time. If you try to read this device a 431 * character at a time, you will lose the rest of the data. Listening 432 * programs are expected to cope. 433 */ 434 static int 435 devread(struct cdev *dev, struct uio *uio, int ioflag) 436 { 437 struct dev_event_info *n1; 438 int rv; 439 440 mtx_lock(&devsoftc.mtx); 441 while (TAILQ_EMPTY(&devsoftc.devq)) { 442 if (devsoftc.nonblock) { 443 mtx_unlock(&devsoftc.mtx); 444 return (EAGAIN); 445 } 446 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 447 if (rv) { 448 /* 449 * Need to translate ERESTART to EINTR here? -- jake 450 */ 451 mtx_unlock(&devsoftc.mtx); 452 return (rv); 453 } 454 } 455 n1 = TAILQ_FIRST(&devsoftc.devq); 456 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 457 mtx_unlock(&devsoftc.mtx); 458 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 459 free(n1->dei_data, M_BUS); 460 free(n1, M_BUS); 461 return (rv); 462 } 463 464 static int 465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 466 { 467 switch (cmd) { 468 469 case FIONBIO: 470 if (*(int*)data) 471 devsoftc.nonblock = 1; 472 else 473 devsoftc.nonblock = 0; 474 return (0); 475 case FIOASYNC: 476 if (*(int*)data) 477 devsoftc.async_proc = td->td_proc; 478 else 479 devsoftc.async_proc = NULL; 480 return (0); 481 482 /* (un)Support for other fcntl() calls. */ 483 case FIOCLEX: 484 case FIONCLEX: 485 case FIONREAD: 486 case FIOSETOWN: 487 case FIOGETOWN: 488 default: 489 break; 490 } 491 return (ENOTTY); 492 } 493 494 static int 495 devpoll(struct cdev *dev, int events, d_thread_t *td) 496 { 497 int revents = 0; 498 499 mtx_lock(&devsoftc.mtx); 500 if (events & (POLLIN | POLLRDNORM)) { 501 if (!TAILQ_EMPTY(&devsoftc.devq)) 502 revents = events & (POLLIN | POLLRDNORM); 503 else 504 selrecord(td, &devsoftc.sel); 505 } 506 mtx_unlock(&devsoftc.mtx); 507 508 return (revents); 509 } 510 511 /** 512 * @brief Return whether the userland process is running 513 */ 514 boolean_t 515 devctl_process_running(void) 516 { 517 return (devsoftc.inuse == 1); 518 } 519 520 /** 521 * @brief Queue data to be read from the devctl device 522 * 523 * Generic interface to queue data to the devctl device. It is 524 * assumed that @p data is properly formatted. It is further assumed 525 * that @p data is allocated using the M_BUS malloc type. 526 */ 527 void 528 devctl_queue_data(char *data) 529 { 530 struct dev_event_info *n1 = NULL; 531 struct proc *p; 532 533 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 534 if (n1 == NULL) 535 return; 536 n1->dei_data = data; 537 mtx_lock(&devsoftc.mtx); 538 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 539 cv_broadcast(&devsoftc.cv); 540 mtx_unlock(&devsoftc.mtx); 541 selwakeup(&devsoftc.sel); 542 p = devsoftc.async_proc; 543 if (p != NULL) { 544 PROC_LOCK(p); 545 psignal(p, SIGIO); 546 PROC_UNLOCK(p); 547 } 548 } 549 550 /** 551 * @brief Send a 'notification' to userland, using standard ways 552 */ 553 void 554 devctl_notify(const char *system, const char *subsystem, const char *type, 555 const char *data) 556 { 557 int len = 0; 558 char *msg; 559 560 if (system == NULL) 561 return; /* BOGUS! Must specify system. */ 562 if (subsystem == NULL) 563 return; /* BOGUS! Must specify subsystem. */ 564 if (type == NULL) 565 return; /* BOGUS! Must specify type. */ 566 len += strlen(" system=") + strlen(system); 567 len += strlen(" subsystem=") + strlen(subsystem); 568 len += strlen(" type=") + strlen(type); 569 /* add in the data message plus newline. */ 570 if (data != NULL) 571 len += strlen(data); 572 len += 3; /* '!', '\n', and NUL */ 573 msg = malloc(len, M_BUS, M_NOWAIT); 574 if (msg == NULL) 575 return; /* Drop it on the floor */ 576 if (data != NULL) 577 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 578 system, subsystem, type, data); 579 else 580 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 581 system, subsystem, type); 582 devctl_queue_data(msg); 583 } 584 585 /* 586 * Common routine that tries to make sending messages as easy as possible. 587 * We allocate memory for the data, copy strings into that, but do not 588 * free it unless there's an error. The dequeue part of the driver should 589 * free the data. We don't send data when the device is disabled. We do 590 * send data, even when we have no listeners, because we wish to avoid 591 * races relating to startup and restart of listening applications. 592 * 593 * devaddq is designed to string together the type of event, with the 594 * object of that event, plus the plug and play info and location info 595 * for that event. This is likely most useful for devices, but less 596 * useful for other consumers of this interface. Those should use 597 * the devctl_queue_data() interface instead. 598 */ 599 static void 600 devaddq(const char *type, const char *what, device_t dev) 601 { 602 char *data = NULL; 603 char *loc = NULL; 604 char *pnp = NULL; 605 const char *parstr; 606 607 if (devctl_disable) 608 return; 609 data = malloc(1024, M_BUS, M_NOWAIT); 610 if (data == NULL) 611 goto bad; 612 613 /* get the bus specific location of this device */ 614 loc = malloc(1024, M_BUS, M_NOWAIT); 615 if (loc == NULL) 616 goto bad; 617 *loc = '\0'; 618 bus_child_location_str(dev, loc, 1024); 619 620 /* Get the bus specific pnp info of this device */ 621 pnp = malloc(1024, M_BUS, M_NOWAIT); 622 if (pnp == NULL) 623 goto bad; 624 *pnp = '\0'; 625 bus_child_pnpinfo_str(dev, pnp, 1024); 626 627 /* Get the parent of this device, or / if high enough in the tree. */ 628 if (device_get_parent(dev) == NULL) 629 parstr = "."; /* Or '/' ? */ 630 else 631 parstr = device_get_nameunit(device_get_parent(dev)); 632 /* String it all together. */ 633 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 634 parstr); 635 free(loc, M_BUS); 636 free(pnp, M_BUS); 637 devctl_queue_data(data); 638 return; 639 bad: 640 free(pnp, M_BUS); 641 free(loc, M_BUS); 642 free(data, M_BUS); 643 return; 644 } 645 646 /* 647 * A device was added to the tree. We are called just after it successfully 648 * attaches (that is, probe and attach success for this device). No call 649 * is made if a device is merely parented into the tree. See devnomatch 650 * if probe fails. If attach fails, no notification is sent (but maybe 651 * we should have a different message for this). 652 */ 653 static void 654 devadded(device_t dev) 655 { 656 char *pnp = NULL; 657 char *tmp = NULL; 658 659 pnp = malloc(1024, M_BUS, M_NOWAIT); 660 if (pnp == NULL) 661 goto fail; 662 tmp = malloc(1024, M_BUS, M_NOWAIT); 663 if (tmp == NULL) 664 goto fail; 665 *pnp = '\0'; 666 bus_child_pnpinfo_str(dev, pnp, 1024); 667 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 668 devaddq("+", tmp, dev); 669 fail: 670 if (pnp != NULL) 671 free(pnp, M_BUS); 672 if (tmp != NULL) 673 free(tmp, M_BUS); 674 return; 675 } 676 677 /* 678 * A device was removed from the tree. We are called just before this 679 * happens. 680 */ 681 static void 682 devremoved(device_t dev) 683 { 684 char *pnp = NULL; 685 char *tmp = NULL; 686 687 pnp = malloc(1024, M_BUS, M_NOWAIT); 688 if (pnp == NULL) 689 goto fail; 690 tmp = malloc(1024, M_BUS, M_NOWAIT); 691 if (tmp == NULL) 692 goto fail; 693 *pnp = '\0'; 694 bus_child_pnpinfo_str(dev, pnp, 1024); 695 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 696 devaddq("-", tmp, dev); 697 fail: 698 if (pnp != NULL) 699 free(pnp, M_BUS); 700 if (tmp != NULL) 701 free(tmp, M_BUS); 702 return; 703 } 704 705 /* 706 * Called when there's no match for this device. This is only called 707 * the first time that no match happens, so we don't keep getitng this 708 * message. Should that prove to be undesirable, we can change it. 709 * This is called when all drivers that can attach to a given bus 710 * decline to accept this device. Other errrors may not be detected. 711 */ 712 static void 713 devnomatch(device_t dev) 714 { 715 devaddq("?", "", dev); 716 } 717 718 static int 719 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 720 { 721 struct dev_event_info *n1; 722 int dis, error; 723 724 dis = devctl_disable; 725 error = sysctl_handle_int(oidp, &dis, 0, req); 726 if (error || !req->newptr) 727 return (error); 728 mtx_lock(&devsoftc.mtx); 729 devctl_disable = dis; 730 if (dis) { 731 while (!TAILQ_EMPTY(&devsoftc.devq)) { 732 n1 = TAILQ_FIRST(&devsoftc.devq); 733 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 734 free(n1->dei_data, M_BUS); 735 free(n1, M_BUS); 736 } 737 } 738 mtx_unlock(&devsoftc.mtx); 739 return (0); 740 } 741 742 /* End of /dev/devctl code */ 743 744 TAILQ_HEAD(,device) bus_data_devices; 745 static int bus_data_generation = 1; 746 747 kobj_method_t null_methods[] = { 748 { 0, 0 } 749 }; 750 751 DEFINE_CLASS(null, null_methods, 0); 752 753 /* 754 * Devclass implementation 755 */ 756 757 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 758 759 760 /** 761 * @internal 762 * @brief Find or create a device class 763 * 764 * If a device class with the name @p classname exists, return it, 765 * otherwise if @p create is non-zero create and return a new device 766 * class. 767 * 768 * If @p parentname is non-NULL, the parent of the devclass is set to 769 * the devclass of that name. 770 * 771 * @param classname the devclass name to find or create 772 * @param parentname the parent devclass name or @c NULL 773 * @param create non-zero to create a devclass 774 */ 775 static devclass_t 776 devclass_find_internal(const char *classname, const char *parentname, 777 int create) 778 { 779 devclass_t dc; 780 781 PDEBUG(("looking for %s", classname)); 782 if (!classname) 783 return (NULL); 784 785 TAILQ_FOREACH(dc, &devclasses, link) { 786 if (!strcmp(dc->name, classname)) 787 break; 788 } 789 790 if (create && !dc) { 791 PDEBUG(("creating %s", classname)); 792 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 793 M_BUS, M_NOWAIT|M_ZERO); 794 if (!dc) 795 return (NULL); 796 dc->parent = NULL; 797 dc->name = (char*) (dc + 1); 798 strcpy(dc->name, classname); 799 TAILQ_INIT(&dc->drivers); 800 TAILQ_INSERT_TAIL(&devclasses, dc, link); 801 802 bus_data_generation_update(); 803 } 804 805 /* 806 * If a parent class is specified, then set that as our parent so 807 * that this devclass will support drivers for the parent class as 808 * well. If the parent class has the same name don't do this though 809 * as it creates a cycle that can trigger an infinite loop in 810 * device_probe_child() if a device exists for which there is no 811 * suitable driver. 812 */ 813 if (parentname && dc && !dc->parent && 814 strcmp(classname, parentname) != 0) { 815 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 816 } 817 818 return (dc); 819 } 820 821 /** 822 * @brief Create a device class 823 * 824 * If a device class with the name @p classname exists, return it, 825 * otherwise create and return a new device class. 826 * 827 * @param classname the devclass name to find or create 828 */ 829 devclass_t 830 devclass_create(const char *classname) 831 { 832 return (devclass_find_internal(classname, NULL, TRUE)); 833 } 834 835 /** 836 * @brief Find a device class 837 * 838 * If a device class with the name @p classname exists, return it, 839 * otherwise return @c NULL. 840 * 841 * @param classname the devclass name to find 842 */ 843 devclass_t 844 devclass_find(const char *classname) 845 { 846 return (devclass_find_internal(classname, NULL, FALSE)); 847 } 848 849 /** 850 * @brief Add a device driver to a device class 851 * 852 * Add a device driver to a devclass. This is normally called 853 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 854 * all devices in the devclass will be called to allow them to attempt 855 * to re-probe any unmatched children. 856 * 857 * @param dc the devclass to edit 858 * @param driver the driver to register 859 */ 860 int 861 devclass_add_driver(devclass_t dc, driver_t *driver) 862 { 863 driverlink_t dl; 864 int i; 865 866 PDEBUG(("%s", DRIVERNAME(driver))); 867 868 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 869 if (!dl) 870 return (ENOMEM); 871 872 /* 873 * Compile the driver's methods. Also increase the reference count 874 * so that the class doesn't get freed when the last instance 875 * goes. This means we can safely use static methods and avoids a 876 * double-free in devclass_delete_driver. 877 */ 878 kobj_class_compile((kobj_class_t) driver); 879 880 /* 881 * Make sure the devclass which the driver is implementing exists. 882 */ 883 devclass_find_internal(driver->name, NULL, TRUE); 884 885 dl->driver = driver; 886 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 887 driver->refs++; /* XXX: kobj_mtx */ 888 889 /* 890 * Call BUS_DRIVER_ADDED for any existing busses in this class. 891 */ 892 for (i = 0; i < dc->maxunit; i++) 893 if (dc->devices[i]) 894 BUS_DRIVER_ADDED(dc->devices[i], driver); 895 896 bus_data_generation_update(); 897 return (0); 898 } 899 900 /** 901 * @brief Delete a device driver from a device class 902 * 903 * Delete a device driver from a devclass. This is normally called 904 * automatically by DRIVER_MODULE(). 905 * 906 * If the driver is currently attached to any devices, 907 * devclass_delete_driver() will first attempt to detach from each 908 * device. If one of the detach calls fails, the driver will not be 909 * deleted. 910 * 911 * @param dc the devclass to edit 912 * @param driver the driver to unregister 913 */ 914 int 915 devclass_delete_driver(devclass_t busclass, driver_t *driver) 916 { 917 devclass_t dc = devclass_find(driver->name); 918 driverlink_t dl; 919 device_t dev; 920 int i; 921 int error; 922 923 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 924 925 if (!dc) 926 return (0); 927 928 /* 929 * Find the link structure in the bus' list of drivers. 930 */ 931 TAILQ_FOREACH(dl, &busclass->drivers, link) { 932 if (dl->driver == driver) 933 break; 934 } 935 936 if (!dl) { 937 PDEBUG(("%s not found in %s list", driver->name, 938 busclass->name)); 939 return (ENOENT); 940 } 941 942 /* 943 * Disassociate from any devices. We iterate through all the 944 * devices in the devclass of the driver and detach any which are 945 * using the driver and which have a parent in the devclass which 946 * we are deleting from. 947 * 948 * Note that since a driver can be in multiple devclasses, we 949 * should not detach devices which are not children of devices in 950 * the affected devclass. 951 */ 952 for (i = 0; i < dc->maxunit; i++) { 953 if (dc->devices[i]) { 954 dev = dc->devices[i]; 955 if (dev->driver == driver && dev->parent && 956 dev->parent->devclass == busclass) { 957 if ((error = device_detach(dev)) != 0) 958 return (error); 959 device_set_driver(dev, NULL); 960 } 961 } 962 } 963 964 TAILQ_REMOVE(&busclass->drivers, dl, link); 965 free(dl, M_BUS); 966 967 /* XXX: kobj_mtx */ 968 driver->refs--; 969 if (driver->refs == 0) 970 kobj_class_free((kobj_class_t) driver); 971 972 bus_data_generation_update(); 973 return (0); 974 } 975 976 /** 977 * @brief Quiesces a set of device drivers from a device class 978 * 979 * Quiesce a device driver from a devclass. This is normally called 980 * automatically by DRIVER_MODULE(). 981 * 982 * If the driver is currently attached to any devices, 983 * devclass_quiesece_driver() will first attempt to quiesce each 984 * device. 985 * 986 * @param dc the devclass to edit 987 * @param driver the driver to unregister 988 */ 989 int 990 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 991 { 992 devclass_t dc = devclass_find(driver->name); 993 driverlink_t dl; 994 device_t dev; 995 int i; 996 int error; 997 998 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 999 1000 if (!dc) 1001 return (0); 1002 1003 /* 1004 * Find the link structure in the bus' list of drivers. 1005 */ 1006 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1007 if (dl->driver == driver) 1008 break; 1009 } 1010 1011 if (!dl) { 1012 PDEBUG(("%s not found in %s list", driver->name, 1013 busclass->name)); 1014 return (ENOENT); 1015 } 1016 1017 /* 1018 * Quiesce all devices. We iterate through all the devices in 1019 * the devclass of the driver and quiesce any which are using 1020 * the driver and which have a parent in the devclass which we 1021 * are quiescing. 1022 * 1023 * Note that since a driver can be in multiple devclasses, we 1024 * should not quiesce devices which are not children of 1025 * devices in the affected devclass. 1026 */ 1027 for (i = 0; i < dc->maxunit; i++) { 1028 if (dc->devices[i]) { 1029 dev = dc->devices[i]; 1030 if (dev->driver == driver && dev->parent && 1031 dev->parent->devclass == busclass) { 1032 if ((error = device_quiesce(dev)) != 0) 1033 return (error); 1034 } 1035 } 1036 } 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @internal 1043 */ 1044 static driverlink_t 1045 devclass_find_driver_internal(devclass_t dc, const char *classname) 1046 { 1047 driverlink_t dl; 1048 1049 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1050 1051 TAILQ_FOREACH(dl, &dc->drivers, link) { 1052 if (!strcmp(dl->driver->name, classname)) 1053 return (dl); 1054 } 1055 1056 PDEBUG(("not found")); 1057 return (NULL); 1058 } 1059 1060 /** 1061 * @brief Search a devclass for a driver 1062 * 1063 * This function searches the devclass's list of drivers and returns 1064 * the first driver whose name is @p classname or @c NULL if there is 1065 * no driver of that name. 1066 * 1067 * @param dc the devclass to search 1068 * @param classname the driver name to search for 1069 */ 1070 kobj_class_t 1071 devclass_find_driver(devclass_t dc, const char *classname) 1072 { 1073 driverlink_t dl; 1074 1075 dl = devclass_find_driver_internal(dc, classname); 1076 if (dl) 1077 return (dl->driver); 1078 return (NULL); 1079 } 1080 1081 /** 1082 * @brief Return the name of the devclass 1083 */ 1084 const char * 1085 devclass_get_name(devclass_t dc) 1086 { 1087 return (dc->name); 1088 } 1089 1090 /** 1091 * @brief Find a device given a unit number 1092 * 1093 * @param dc the devclass to search 1094 * @param unit the unit number to search for 1095 * 1096 * @returns the device with the given unit number or @c 1097 * NULL if there is no such device 1098 */ 1099 device_t 1100 devclass_get_device(devclass_t dc, int unit) 1101 { 1102 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1103 return (NULL); 1104 return (dc->devices[unit]); 1105 } 1106 1107 /** 1108 * @brief Find the softc field of a device given a unit number 1109 * 1110 * @param dc the devclass to search 1111 * @param unit the unit number to search for 1112 * 1113 * @returns the softc field of the device with the given 1114 * unit number or @c NULL if there is no such 1115 * device 1116 */ 1117 void * 1118 devclass_get_softc(devclass_t dc, int unit) 1119 { 1120 device_t dev; 1121 1122 dev = devclass_get_device(dc, unit); 1123 if (!dev) 1124 return (NULL); 1125 1126 return (device_get_softc(dev)); 1127 } 1128 1129 /** 1130 * @brief Get a list of devices in the devclass 1131 * 1132 * An array containing a list of all the devices in the given devclass 1133 * is allocated and returned in @p *devlistp. The number of devices 1134 * in the array is returned in @p *devcountp. The caller should free 1135 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1136 * 1137 * @param dc the devclass to examine 1138 * @param devlistp points at location for array pointer return 1139 * value 1140 * @param devcountp points at location for array size return value 1141 * 1142 * @retval 0 success 1143 * @retval ENOMEM the array allocation failed 1144 */ 1145 int 1146 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1147 { 1148 int count, i; 1149 device_t *list; 1150 1151 count = devclass_get_count(dc); 1152 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1153 if (!list) 1154 return (ENOMEM); 1155 1156 count = 0; 1157 for (i = 0; i < dc->maxunit; i++) { 1158 if (dc->devices[i]) { 1159 list[count] = dc->devices[i]; 1160 count++; 1161 } 1162 } 1163 1164 *devlistp = list; 1165 *devcountp = count; 1166 1167 return (0); 1168 } 1169 1170 /** 1171 * @brief Get a list of drivers in the devclass 1172 * 1173 * An array containing a list of pointers to all the drivers in the 1174 * given devclass is allocated and returned in @p *listp. The number 1175 * of drivers in the array is returned in @p *countp. The caller should 1176 * free the array using @c free(p, M_TEMP). 1177 * 1178 * @param dc the devclass to examine 1179 * @param listp gives location for array pointer return value 1180 * @param countp gives location for number of array elements 1181 * return value 1182 * 1183 * @retval 0 success 1184 * @retval ENOMEM the array allocation failed 1185 */ 1186 int 1187 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1188 { 1189 driverlink_t dl; 1190 driver_t **list; 1191 int count; 1192 1193 count = 0; 1194 TAILQ_FOREACH(dl, &dc->drivers, link) 1195 count++; 1196 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1197 if (list == NULL) 1198 return (ENOMEM); 1199 1200 count = 0; 1201 TAILQ_FOREACH(dl, &dc->drivers, link) { 1202 list[count] = dl->driver; 1203 count++; 1204 } 1205 *listp = list; 1206 *countp = count; 1207 1208 return (0); 1209 } 1210 1211 /** 1212 * @brief Get the number of devices in a devclass 1213 * 1214 * @param dc the devclass to examine 1215 */ 1216 int 1217 devclass_get_count(devclass_t dc) 1218 { 1219 int count, i; 1220 1221 count = 0; 1222 for (i = 0; i < dc->maxunit; i++) 1223 if (dc->devices[i]) 1224 count++; 1225 return (count); 1226 } 1227 1228 /** 1229 * @brief Get the maximum unit number used in a devclass 1230 * 1231 * Note that this is one greater than the highest currently-allocated 1232 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1233 * that not even the devclass has been allocated yet. 1234 * 1235 * @param dc the devclass to examine 1236 */ 1237 int 1238 devclass_get_maxunit(devclass_t dc) 1239 { 1240 if (dc == NULL) 1241 return (-1); 1242 return (dc->maxunit); 1243 } 1244 1245 /** 1246 * @brief Find a free unit number in a devclass 1247 * 1248 * This function searches for the first unused unit number greater 1249 * that or equal to @p unit. 1250 * 1251 * @param dc the devclass to examine 1252 * @param unit the first unit number to check 1253 */ 1254 int 1255 devclass_find_free_unit(devclass_t dc, int unit) 1256 { 1257 if (dc == NULL) 1258 return (unit); 1259 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1260 unit++; 1261 return (unit); 1262 } 1263 1264 /** 1265 * @brief Set the parent of a devclass 1266 * 1267 * The parent class is normally initialised automatically by 1268 * DRIVER_MODULE(). 1269 * 1270 * @param dc the devclass to edit 1271 * @param pdc the new parent devclass 1272 */ 1273 void 1274 devclass_set_parent(devclass_t dc, devclass_t pdc) 1275 { 1276 dc->parent = pdc; 1277 } 1278 1279 /** 1280 * @brief Get the parent of a devclass 1281 * 1282 * @param dc the devclass to examine 1283 */ 1284 devclass_t 1285 devclass_get_parent(devclass_t dc) 1286 { 1287 return (dc->parent); 1288 } 1289 1290 struct sysctl_ctx_list * 1291 devclass_get_sysctl_ctx(devclass_t dc) 1292 { 1293 return (&dc->sysctl_ctx); 1294 } 1295 1296 struct sysctl_oid * 1297 devclass_get_sysctl_tree(devclass_t dc) 1298 { 1299 return (dc->sysctl_tree); 1300 } 1301 1302 /** 1303 * @internal 1304 * @brief Allocate a unit number 1305 * 1306 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1307 * will do). The allocated unit number is returned in @p *unitp. 1308 1309 * @param dc the devclass to allocate from 1310 * @param unitp points at the location for the allocated unit 1311 * number 1312 * 1313 * @retval 0 success 1314 * @retval EEXIST the requested unit number is already allocated 1315 * @retval ENOMEM memory allocation failure 1316 */ 1317 static int 1318 devclass_alloc_unit(devclass_t dc, int *unitp) 1319 { 1320 int unit = *unitp; 1321 1322 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1323 1324 /* If we were given a wired unit number, check for existing device */ 1325 /* XXX imp XXX */ 1326 if (unit != -1) { 1327 if (unit >= 0 && unit < dc->maxunit && 1328 dc->devices[unit] != NULL) { 1329 if (bootverbose) 1330 printf("%s: %s%d already exists; skipping it\n", 1331 dc->name, dc->name, *unitp); 1332 return (EEXIST); 1333 } 1334 } else { 1335 /* Unwired device, find the next available slot for it */ 1336 unit = 0; 1337 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1338 unit++; 1339 } 1340 1341 /* 1342 * We've selected a unit beyond the length of the table, so let's 1343 * extend the table to make room for all units up to and including 1344 * this one. 1345 */ 1346 if (unit >= dc->maxunit) { 1347 device_t *newlist, *oldlist; 1348 int newsize; 1349 1350 oldlist = dc->devices; 1351 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1352 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1353 if (!newlist) 1354 return (ENOMEM); 1355 if (oldlist != NULL) 1356 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1357 bzero(newlist + dc->maxunit, 1358 sizeof(device_t) * (newsize - dc->maxunit)); 1359 dc->devices = newlist; 1360 dc->maxunit = newsize; 1361 if (oldlist != NULL) 1362 free(oldlist, M_BUS); 1363 } 1364 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1365 1366 *unitp = unit; 1367 return (0); 1368 } 1369 1370 /** 1371 * @internal 1372 * @brief Add a device to a devclass 1373 * 1374 * A unit number is allocated for the device (using the device's 1375 * preferred unit number if any) and the device is registered in the 1376 * devclass. This allows the device to be looked up by its unit 1377 * number, e.g. by decoding a dev_t minor number. 1378 * 1379 * @param dc the devclass to add to 1380 * @param dev the device to add 1381 * 1382 * @retval 0 success 1383 * @retval EEXIST the requested unit number is already allocated 1384 * @retval ENOMEM memory allocation failure 1385 */ 1386 static int 1387 devclass_add_device(devclass_t dc, device_t dev) 1388 { 1389 int buflen, error; 1390 1391 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1392 1393 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1394 if (buflen < 0) 1395 return (ENOMEM); 1396 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1397 if (!dev->nameunit) 1398 return (ENOMEM); 1399 1400 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1401 free(dev->nameunit, M_BUS); 1402 dev->nameunit = NULL; 1403 return (error); 1404 } 1405 dc->devices[dev->unit] = dev; 1406 dev->devclass = dc; 1407 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1408 1409 return (0); 1410 } 1411 1412 /** 1413 * @internal 1414 * @brief Delete a device from a devclass 1415 * 1416 * The device is removed from the devclass's device list and its unit 1417 * number is freed. 1418 1419 * @param dc the devclass to delete from 1420 * @param dev the device to delete 1421 * 1422 * @retval 0 success 1423 */ 1424 static int 1425 devclass_delete_device(devclass_t dc, device_t dev) 1426 { 1427 if (!dc || !dev) 1428 return (0); 1429 1430 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1431 1432 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1433 panic("devclass_delete_device: inconsistent device class"); 1434 dc->devices[dev->unit] = NULL; 1435 if (dev->flags & DF_WILDCARD) 1436 dev->unit = -1; 1437 dev->devclass = NULL; 1438 free(dev->nameunit, M_BUS); 1439 dev->nameunit = NULL; 1440 1441 return (0); 1442 } 1443 1444 /** 1445 * @internal 1446 * @brief Make a new device and add it as a child of @p parent 1447 * 1448 * @param parent the parent of the new device 1449 * @param name the devclass name of the new device or @c NULL 1450 * to leave the devclass unspecified 1451 * @parem unit the unit number of the new device of @c -1 to 1452 * leave the unit number unspecified 1453 * 1454 * @returns the new device 1455 */ 1456 static device_t 1457 make_device(device_t parent, const char *name, int unit) 1458 { 1459 device_t dev; 1460 devclass_t dc; 1461 1462 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1463 1464 if (name) { 1465 dc = devclass_find_internal(name, NULL, TRUE); 1466 if (!dc) { 1467 printf("make_device: can't find device class %s\n", 1468 name); 1469 return (NULL); 1470 } 1471 } else { 1472 dc = NULL; 1473 } 1474 1475 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1476 if (!dev) 1477 return (NULL); 1478 1479 dev->parent = parent; 1480 TAILQ_INIT(&dev->children); 1481 kobj_init((kobj_t) dev, &null_class); 1482 dev->driver = NULL; 1483 dev->devclass = NULL; 1484 dev->unit = unit; 1485 dev->nameunit = NULL; 1486 dev->desc = NULL; 1487 dev->busy = 0; 1488 dev->devflags = 0; 1489 dev->flags = DF_ENABLED; 1490 dev->order = 0; 1491 if (unit == -1) 1492 dev->flags |= DF_WILDCARD; 1493 if (name) { 1494 dev->flags |= DF_FIXEDCLASS; 1495 if (devclass_add_device(dc, dev)) { 1496 kobj_delete((kobj_t) dev, M_BUS); 1497 return (NULL); 1498 } 1499 } 1500 dev->ivars = NULL; 1501 dev->softc = NULL; 1502 1503 dev->state = DS_NOTPRESENT; 1504 1505 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1506 bus_data_generation_update(); 1507 1508 return (dev); 1509 } 1510 1511 /** 1512 * @internal 1513 * @brief Print a description of a device. 1514 */ 1515 static int 1516 device_print_child(device_t dev, device_t child) 1517 { 1518 int retval = 0; 1519 1520 if (device_is_alive(child)) 1521 retval += BUS_PRINT_CHILD(dev, child); 1522 else 1523 retval += device_printf(child, " not found\n"); 1524 1525 return (retval); 1526 } 1527 1528 /** 1529 * @brief Create a new device 1530 * 1531 * This creates a new device and adds it as a child of an existing 1532 * parent device. The new device will be added after the last existing 1533 * child with order zero. 1534 * 1535 * @param dev the device which will be the parent of the 1536 * new child device 1537 * @param name devclass name for new device or @c NULL if not 1538 * specified 1539 * @param unit unit number for new device or @c -1 if not 1540 * specified 1541 * 1542 * @returns the new device 1543 */ 1544 device_t 1545 device_add_child(device_t dev, const char *name, int unit) 1546 { 1547 return (device_add_child_ordered(dev, 0, name, unit)); 1548 } 1549 1550 /** 1551 * @brief Create a new device 1552 * 1553 * This creates a new device and adds it as a child of an existing 1554 * parent device. The new device will be added after the last existing 1555 * child with the same order. 1556 * 1557 * @param dev the device which will be the parent of the 1558 * new child device 1559 * @param order a value which is used to partially sort the 1560 * children of @p dev - devices created using 1561 * lower values of @p order appear first in @p 1562 * dev's list of children 1563 * @param name devclass name for new device or @c NULL if not 1564 * specified 1565 * @param unit unit number for new device or @c -1 if not 1566 * specified 1567 * 1568 * @returns the new device 1569 */ 1570 device_t 1571 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1572 { 1573 device_t child; 1574 device_t place; 1575 1576 PDEBUG(("%s at %s with order %d as unit %d", 1577 name, DEVICENAME(dev), order, unit)); 1578 1579 child = make_device(dev, name, unit); 1580 if (child == NULL) 1581 return (child); 1582 child->order = order; 1583 1584 TAILQ_FOREACH(place, &dev->children, link) { 1585 if (place->order > order) 1586 break; 1587 } 1588 1589 if (place) { 1590 /* 1591 * The device 'place' is the first device whose order is 1592 * greater than the new child. 1593 */ 1594 TAILQ_INSERT_BEFORE(place, child, link); 1595 } else { 1596 /* 1597 * The new child's order is greater or equal to the order of 1598 * any existing device. Add the child to the tail of the list. 1599 */ 1600 TAILQ_INSERT_TAIL(&dev->children, child, link); 1601 } 1602 1603 bus_data_generation_update(); 1604 return (child); 1605 } 1606 1607 /** 1608 * @brief Delete a device 1609 * 1610 * This function deletes a device along with all of its children. If 1611 * the device currently has a driver attached to it, the device is 1612 * detached first using device_detach(). 1613 * 1614 * @param dev the parent device 1615 * @param child the device to delete 1616 * 1617 * @retval 0 success 1618 * @retval non-zero a unit error code describing the error 1619 */ 1620 int 1621 device_delete_child(device_t dev, device_t child) 1622 { 1623 int error; 1624 device_t grandchild; 1625 1626 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1627 1628 /* remove children first */ 1629 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1630 error = device_delete_child(child, grandchild); 1631 if (error) 1632 return (error); 1633 } 1634 1635 if ((error = device_detach(child)) != 0) 1636 return (error); 1637 if (child->devclass) 1638 devclass_delete_device(child->devclass, child); 1639 TAILQ_REMOVE(&dev->children, child, link); 1640 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1641 kobj_delete((kobj_t) child, M_BUS); 1642 1643 bus_data_generation_update(); 1644 return (0); 1645 } 1646 1647 /** 1648 * @brief Find a device given a unit number 1649 * 1650 * This is similar to devclass_get_devices() but only searches for 1651 * devices which have @p dev as a parent. 1652 * 1653 * @param dev the parent device to search 1654 * @param unit the unit number to search for. If the unit is -1, 1655 * return the first child of @p dev which has name 1656 * @p classname (that is, the one with the lowest unit.) 1657 * 1658 * @returns the device with the given unit number or @c 1659 * NULL if there is no such device 1660 */ 1661 device_t 1662 device_find_child(device_t dev, const char *classname, int unit) 1663 { 1664 devclass_t dc; 1665 device_t child; 1666 1667 dc = devclass_find(classname); 1668 if (!dc) 1669 return (NULL); 1670 1671 if (unit != -1) { 1672 child = devclass_get_device(dc, unit); 1673 if (child && child->parent == dev) 1674 return (child); 1675 } else { 1676 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1677 child = devclass_get_device(dc, unit); 1678 if (child && child->parent == dev) 1679 return (child); 1680 } 1681 } 1682 return (NULL); 1683 } 1684 1685 /** 1686 * @internal 1687 */ 1688 static driverlink_t 1689 first_matching_driver(devclass_t dc, device_t dev) 1690 { 1691 if (dev->devclass) 1692 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1693 return (TAILQ_FIRST(&dc->drivers)); 1694 } 1695 1696 /** 1697 * @internal 1698 */ 1699 static driverlink_t 1700 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1701 { 1702 if (dev->devclass) { 1703 driverlink_t dl; 1704 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1705 if (!strcmp(dev->devclass->name, dl->driver->name)) 1706 return (dl); 1707 return (NULL); 1708 } 1709 return (TAILQ_NEXT(last, link)); 1710 } 1711 1712 /** 1713 * @internal 1714 */ 1715 int 1716 device_probe_child(device_t dev, device_t child) 1717 { 1718 devclass_t dc; 1719 driverlink_t best = NULL; 1720 driverlink_t dl; 1721 int result, pri = 0; 1722 int hasclass = (child->devclass != 0); 1723 1724 GIANT_REQUIRED; 1725 1726 dc = dev->devclass; 1727 if (!dc) 1728 panic("device_probe_child: parent device has no devclass"); 1729 1730 /* 1731 * If the state is already probed, then return. However, don't 1732 * return if we can rebid this object. 1733 */ 1734 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1735 return (0); 1736 1737 for (; dc; dc = dc->parent) { 1738 for (dl = first_matching_driver(dc, child); 1739 dl; 1740 dl = next_matching_driver(dc, child, dl)) { 1741 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1742 device_set_driver(child, dl->driver); 1743 if (!hasclass) 1744 device_set_devclass(child, dl->driver->name); 1745 1746 /* Fetch any flags for the device before probing. */ 1747 resource_int_value(dl->driver->name, child->unit, 1748 "flags", &child->devflags); 1749 1750 result = DEVICE_PROBE(child); 1751 1752 /* Reset flags and devclass before the next probe. */ 1753 child->devflags = 0; 1754 if (!hasclass) 1755 device_set_devclass(child, NULL); 1756 1757 /* 1758 * If the driver returns SUCCESS, there can be 1759 * no higher match for this device. 1760 */ 1761 if (result == 0) { 1762 best = dl; 1763 pri = 0; 1764 break; 1765 } 1766 1767 /* 1768 * The driver returned an error so it 1769 * certainly doesn't match. 1770 */ 1771 if (result > 0) { 1772 device_set_driver(child, NULL); 1773 continue; 1774 } 1775 1776 /* 1777 * A priority lower than SUCCESS, remember the 1778 * best matching driver. Initialise the value 1779 * of pri for the first match. 1780 */ 1781 if (best == NULL || result > pri) { 1782 /* 1783 * Probes that return BUS_PROBE_NOWILDCARD 1784 * or lower only match when they are set 1785 * in stone by the parent bus. 1786 */ 1787 if (result <= BUS_PROBE_NOWILDCARD && 1788 child->flags & DF_WILDCARD) 1789 continue; 1790 best = dl; 1791 pri = result; 1792 continue; 1793 } 1794 } 1795 /* 1796 * If we have an unambiguous match in this devclass, 1797 * don't look in the parent. 1798 */ 1799 if (best && pri == 0) 1800 break; 1801 } 1802 1803 /* 1804 * If we found a driver, change state and initialise the devclass. 1805 */ 1806 /* XXX What happens if we rebid and got no best? */ 1807 if (best) { 1808 /* 1809 * If this device was atached, and we were asked to 1810 * rescan, and it is a different driver, then we have 1811 * to detach the old driver and reattach this new one. 1812 * Note, we don't have to check for DF_REBID here 1813 * because if the state is > DS_ALIVE, we know it must 1814 * be. 1815 * 1816 * This assumes that all DF_REBID drivers can have 1817 * their probe routine called at any time and that 1818 * they are idempotent as well as completely benign in 1819 * normal operations. 1820 * 1821 * We also have to make sure that the detach 1822 * succeeded, otherwise we fail the operation (or 1823 * maybe it should just fail silently? I'm torn). 1824 */ 1825 if (child->state > DS_ALIVE && best->driver != child->driver) 1826 if ((result = device_detach(dev)) != 0) 1827 return (result); 1828 1829 /* Set the winning driver, devclass, and flags. */ 1830 if (!child->devclass) 1831 device_set_devclass(child, best->driver->name); 1832 device_set_driver(child, best->driver); 1833 resource_int_value(best->driver->name, child->unit, 1834 "flags", &child->devflags); 1835 1836 if (pri < 0) { 1837 /* 1838 * A bit bogus. Call the probe method again to make 1839 * sure that we have the right description. 1840 */ 1841 DEVICE_PROBE(child); 1842 #if 0 1843 child->flags |= DF_REBID; 1844 #endif 1845 } else 1846 child->flags &= ~DF_REBID; 1847 child->state = DS_ALIVE; 1848 1849 bus_data_generation_update(); 1850 return (0); 1851 } 1852 1853 return (ENXIO); 1854 } 1855 1856 /** 1857 * @brief Return the parent of a device 1858 */ 1859 device_t 1860 device_get_parent(device_t dev) 1861 { 1862 return (dev->parent); 1863 } 1864 1865 /** 1866 * @brief Get a list of children of a device 1867 * 1868 * An array containing a list of all the children of the given device 1869 * is allocated and returned in @p *devlistp. The number of devices 1870 * in the array is returned in @p *devcountp. The caller should free 1871 * the array using @c free(p, M_TEMP). 1872 * 1873 * @param dev the device to examine 1874 * @param devlistp points at location for array pointer return 1875 * value 1876 * @param devcountp points at location for array size return value 1877 * 1878 * @retval 0 success 1879 * @retval ENOMEM the array allocation failed 1880 */ 1881 int 1882 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1883 { 1884 int count; 1885 device_t child; 1886 device_t *list; 1887 1888 count = 0; 1889 TAILQ_FOREACH(child, &dev->children, link) { 1890 count++; 1891 } 1892 1893 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1894 if (!list) 1895 return (ENOMEM); 1896 1897 count = 0; 1898 TAILQ_FOREACH(child, &dev->children, link) { 1899 list[count] = child; 1900 count++; 1901 } 1902 1903 *devlistp = list; 1904 *devcountp = count; 1905 1906 return (0); 1907 } 1908 1909 /** 1910 * @brief Return the current driver for the device or @c NULL if there 1911 * is no driver currently attached 1912 */ 1913 driver_t * 1914 device_get_driver(device_t dev) 1915 { 1916 return (dev->driver); 1917 } 1918 1919 /** 1920 * @brief Return the current devclass for the device or @c NULL if 1921 * there is none. 1922 */ 1923 devclass_t 1924 device_get_devclass(device_t dev) 1925 { 1926 return (dev->devclass); 1927 } 1928 1929 /** 1930 * @brief Return the name of the device's devclass or @c NULL if there 1931 * is none. 1932 */ 1933 const char * 1934 device_get_name(device_t dev) 1935 { 1936 if (dev != NULL && dev->devclass) 1937 return (devclass_get_name(dev->devclass)); 1938 return (NULL); 1939 } 1940 1941 /** 1942 * @brief Return a string containing the device's devclass name 1943 * followed by an ascii representation of the device's unit number 1944 * (e.g. @c "foo2"). 1945 */ 1946 const char * 1947 device_get_nameunit(device_t dev) 1948 { 1949 return (dev->nameunit); 1950 } 1951 1952 /** 1953 * @brief Return the device's unit number. 1954 */ 1955 int 1956 device_get_unit(device_t dev) 1957 { 1958 return (dev->unit); 1959 } 1960 1961 /** 1962 * @brief Return the device's description string 1963 */ 1964 const char * 1965 device_get_desc(device_t dev) 1966 { 1967 return (dev->desc); 1968 } 1969 1970 /** 1971 * @brief Return the device's flags 1972 */ 1973 u_int32_t 1974 device_get_flags(device_t dev) 1975 { 1976 return (dev->devflags); 1977 } 1978 1979 struct sysctl_ctx_list * 1980 device_get_sysctl_ctx(device_t dev) 1981 { 1982 return (&dev->sysctl_ctx); 1983 } 1984 1985 struct sysctl_oid * 1986 device_get_sysctl_tree(device_t dev) 1987 { 1988 return (dev->sysctl_tree); 1989 } 1990 1991 /** 1992 * @brief Print the name of the device followed by a colon and a space 1993 * 1994 * @returns the number of characters printed 1995 */ 1996 int 1997 device_print_prettyname(device_t dev) 1998 { 1999 const char *name = device_get_name(dev); 2000 2001 if (name == 0) 2002 return (printf("unknown: ")); 2003 return (printf("%s%d: ", name, device_get_unit(dev))); 2004 } 2005 2006 /** 2007 * @brief Print the name of the device followed by a colon, a space 2008 * and the result of calling vprintf() with the value of @p fmt and 2009 * the following arguments. 2010 * 2011 * @returns the number of characters printed 2012 */ 2013 int 2014 device_printf(device_t dev, const char * fmt, ...) 2015 { 2016 va_list ap; 2017 int retval; 2018 2019 retval = device_print_prettyname(dev); 2020 va_start(ap, fmt); 2021 retval += vprintf(fmt, ap); 2022 va_end(ap); 2023 return (retval); 2024 } 2025 2026 /** 2027 * @internal 2028 */ 2029 static void 2030 device_set_desc_internal(device_t dev, const char* desc, int copy) 2031 { 2032 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2033 free(dev->desc, M_BUS); 2034 dev->flags &= ~DF_DESCMALLOCED; 2035 dev->desc = NULL; 2036 } 2037 2038 if (copy && desc) { 2039 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2040 if (dev->desc) { 2041 strcpy(dev->desc, desc); 2042 dev->flags |= DF_DESCMALLOCED; 2043 } 2044 } else { 2045 /* Avoid a -Wcast-qual warning */ 2046 dev->desc = (char *)(uintptr_t) desc; 2047 } 2048 2049 bus_data_generation_update(); 2050 } 2051 2052 /** 2053 * @brief Set the device's description 2054 * 2055 * The value of @c desc should be a string constant that will not 2056 * change (at least until the description is changed in a subsequent 2057 * call to device_set_desc() or device_set_desc_copy()). 2058 */ 2059 void 2060 device_set_desc(device_t dev, const char* desc) 2061 { 2062 device_set_desc_internal(dev, desc, FALSE); 2063 } 2064 2065 /** 2066 * @brief Set the device's description 2067 * 2068 * The string pointed to by @c desc is copied. Use this function if 2069 * the device description is generated, (e.g. with sprintf()). 2070 */ 2071 void 2072 device_set_desc_copy(device_t dev, const char* desc) 2073 { 2074 device_set_desc_internal(dev, desc, TRUE); 2075 } 2076 2077 /** 2078 * @brief Set the device's flags 2079 */ 2080 void 2081 device_set_flags(device_t dev, u_int32_t flags) 2082 { 2083 dev->devflags = flags; 2084 } 2085 2086 /** 2087 * @brief Return the device's softc field 2088 * 2089 * The softc is allocated and zeroed when a driver is attached, based 2090 * on the size field of the driver. 2091 */ 2092 void * 2093 device_get_softc(device_t dev) 2094 { 2095 return (dev->softc); 2096 } 2097 2098 /** 2099 * @brief Set the device's softc field 2100 * 2101 * Most drivers do not need to use this since the softc is allocated 2102 * automatically when the driver is attached. 2103 */ 2104 void 2105 device_set_softc(device_t dev, void *softc) 2106 { 2107 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2108 free(dev->softc, M_BUS_SC); 2109 dev->softc = softc; 2110 if (dev->softc) 2111 dev->flags |= DF_EXTERNALSOFTC; 2112 else 2113 dev->flags &= ~DF_EXTERNALSOFTC; 2114 } 2115 2116 /** 2117 * @brief Get the device's ivars field 2118 * 2119 * The ivars field is used by the parent device to store per-device 2120 * state (e.g. the physical location of the device or a list of 2121 * resources). 2122 */ 2123 void * 2124 device_get_ivars(device_t dev) 2125 { 2126 2127 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2128 return (dev->ivars); 2129 } 2130 2131 /** 2132 * @brief Set the device's ivars field 2133 */ 2134 void 2135 device_set_ivars(device_t dev, void * ivars) 2136 { 2137 2138 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2139 dev->ivars = ivars; 2140 } 2141 2142 /** 2143 * @brief Return the device's state 2144 */ 2145 device_state_t 2146 device_get_state(device_t dev) 2147 { 2148 return (dev->state); 2149 } 2150 2151 /** 2152 * @brief Set the DF_ENABLED flag for the device 2153 */ 2154 void 2155 device_enable(device_t dev) 2156 { 2157 dev->flags |= DF_ENABLED; 2158 } 2159 2160 /** 2161 * @brief Clear the DF_ENABLED flag for the device 2162 */ 2163 void 2164 device_disable(device_t dev) 2165 { 2166 dev->flags &= ~DF_ENABLED; 2167 } 2168 2169 /** 2170 * @brief Increment the busy counter for the device 2171 */ 2172 void 2173 device_busy(device_t dev) 2174 { 2175 if (dev->state < DS_ATTACHED) 2176 panic("device_busy: called for unattached device"); 2177 if (dev->busy == 0 && dev->parent) 2178 device_busy(dev->parent); 2179 dev->busy++; 2180 dev->state = DS_BUSY; 2181 } 2182 2183 /** 2184 * @brief Decrement the busy counter for the device 2185 */ 2186 void 2187 device_unbusy(device_t dev) 2188 { 2189 if (dev->state != DS_BUSY) 2190 panic("device_unbusy: called for non-busy device %s", 2191 device_get_nameunit(dev)); 2192 dev->busy--; 2193 if (dev->busy == 0) { 2194 if (dev->parent) 2195 device_unbusy(dev->parent); 2196 dev->state = DS_ATTACHED; 2197 } 2198 } 2199 2200 /** 2201 * @brief Set the DF_QUIET flag for the device 2202 */ 2203 void 2204 device_quiet(device_t dev) 2205 { 2206 dev->flags |= DF_QUIET; 2207 } 2208 2209 /** 2210 * @brief Clear the DF_QUIET flag for the device 2211 */ 2212 void 2213 device_verbose(device_t dev) 2214 { 2215 dev->flags &= ~DF_QUIET; 2216 } 2217 2218 /** 2219 * @brief Return non-zero if the DF_QUIET flag is set on the device 2220 */ 2221 int 2222 device_is_quiet(device_t dev) 2223 { 2224 return ((dev->flags & DF_QUIET) != 0); 2225 } 2226 2227 /** 2228 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2229 */ 2230 int 2231 device_is_enabled(device_t dev) 2232 { 2233 return ((dev->flags & DF_ENABLED) != 0); 2234 } 2235 2236 /** 2237 * @brief Return non-zero if the device was successfully probed 2238 */ 2239 int 2240 device_is_alive(device_t dev) 2241 { 2242 return (dev->state >= DS_ALIVE); 2243 } 2244 2245 /** 2246 * @brief Return non-zero if the device currently has a driver 2247 * attached to it 2248 */ 2249 int 2250 device_is_attached(device_t dev) 2251 { 2252 return (dev->state >= DS_ATTACHED); 2253 } 2254 2255 /** 2256 * @brief Set the devclass of a device 2257 * @see devclass_add_device(). 2258 */ 2259 int 2260 device_set_devclass(device_t dev, const char *classname) 2261 { 2262 devclass_t dc; 2263 int error; 2264 2265 if (!classname) { 2266 if (dev->devclass) 2267 devclass_delete_device(dev->devclass, dev); 2268 return (0); 2269 } 2270 2271 if (dev->devclass) { 2272 printf("device_set_devclass: device class already set\n"); 2273 return (EINVAL); 2274 } 2275 2276 dc = devclass_find_internal(classname, NULL, TRUE); 2277 if (!dc) 2278 return (ENOMEM); 2279 2280 error = devclass_add_device(dc, dev); 2281 2282 bus_data_generation_update(); 2283 return (error); 2284 } 2285 2286 /** 2287 * @brief Set the driver of a device 2288 * 2289 * @retval 0 success 2290 * @retval EBUSY the device already has a driver attached 2291 * @retval ENOMEM a memory allocation failure occurred 2292 */ 2293 int 2294 device_set_driver(device_t dev, driver_t *driver) 2295 { 2296 if (dev->state >= DS_ATTACHED) 2297 return (EBUSY); 2298 2299 if (dev->driver == driver) 2300 return (0); 2301 2302 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2303 free(dev->softc, M_BUS_SC); 2304 dev->softc = NULL; 2305 } 2306 kobj_delete((kobj_t) dev, NULL); 2307 dev->driver = driver; 2308 if (driver) { 2309 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2310 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2311 dev->softc = malloc(driver->size, M_BUS_SC, 2312 M_NOWAIT | M_ZERO); 2313 if (!dev->softc) { 2314 kobj_delete((kobj_t) dev, NULL); 2315 kobj_init((kobj_t) dev, &null_class); 2316 dev->driver = NULL; 2317 return (ENOMEM); 2318 } 2319 } 2320 } else { 2321 kobj_init((kobj_t) dev, &null_class); 2322 } 2323 2324 bus_data_generation_update(); 2325 return (0); 2326 } 2327 2328 /** 2329 * @brief Probe a device, and return this status. 2330 * 2331 * This function is the core of the device autoconfiguration 2332 * system. Its purpose is to select a suitable driver for a device and 2333 * then call that driver to initialise the hardware appropriately. The 2334 * driver is selected by calling the DEVICE_PROBE() method of a set of 2335 * candidate drivers and then choosing the driver which returned the 2336 * best value. This driver is then attached to the device using 2337 * device_attach(). 2338 * 2339 * The set of suitable drivers is taken from the list of drivers in 2340 * the parent device's devclass. If the device was originally created 2341 * with a specific class name (see device_add_child()), only drivers 2342 * with that name are probed, otherwise all drivers in the devclass 2343 * are probed. If no drivers return successful probe values in the 2344 * parent devclass, the search continues in the parent of that 2345 * devclass (see devclass_get_parent()) if any. 2346 * 2347 * @param dev the device to initialise 2348 * 2349 * @retval 0 success 2350 * @retval ENXIO no driver was found 2351 * @retval ENOMEM memory allocation failure 2352 * @retval non-zero some other unix error code 2353 * @retval -1 Device already attached 2354 */ 2355 int 2356 device_probe(device_t dev) 2357 { 2358 int error; 2359 2360 GIANT_REQUIRED; 2361 2362 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2363 return (-1); 2364 2365 if (!(dev->flags & DF_ENABLED)) { 2366 if (bootverbose && device_get_name(dev) != NULL) { 2367 device_print_prettyname(dev); 2368 printf("not probed (disabled)\n"); 2369 } 2370 return (-1); 2371 } 2372 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2373 if (!(dev->flags & DF_DONENOMATCH)) { 2374 BUS_PROBE_NOMATCH(dev->parent, dev); 2375 devnomatch(dev); 2376 dev->flags |= DF_DONENOMATCH; 2377 } 2378 return (error); 2379 } 2380 return (0); 2381 } 2382 2383 /** 2384 * @brief Probe a device and attach a driver if possible 2385 * 2386 * calls device_probe() and attaches if that was successful. 2387 */ 2388 int 2389 device_probe_and_attach(device_t dev) 2390 { 2391 int error; 2392 2393 GIANT_REQUIRED; 2394 2395 error = device_probe(dev); 2396 if (error == -1) 2397 return (0); 2398 else if (error != 0) 2399 return (error); 2400 return (device_attach(dev)); 2401 } 2402 2403 /** 2404 * @brief Attach a device driver to a device 2405 * 2406 * This function is a wrapper around the DEVICE_ATTACH() driver 2407 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2408 * device's sysctl tree, optionally prints a description of the device 2409 * and queues a notification event for user-based device management 2410 * services. 2411 * 2412 * Normally this function is only called internally from 2413 * device_probe_and_attach(). 2414 * 2415 * @param dev the device to initialise 2416 * 2417 * @retval 0 success 2418 * @retval ENXIO no driver was found 2419 * @retval ENOMEM memory allocation failure 2420 * @retval non-zero some other unix error code 2421 */ 2422 int 2423 device_attach(device_t dev) 2424 { 2425 int error; 2426 2427 device_sysctl_init(dev); 2428 if (!device_is_quiet(dev)) 2429 device_print_child(dev->parent, dev); 2430 if ((error = DEVICE_ATTACH(dev)) != 0) { 2431 printf("device_attach: %s%d attach returned %d\n", 2432 dev->driver->name, dev->unit, error); 2433 /* Unset the class; set in device_probe_child */ 2434 if (dev->devclass == NULL) 2435 device_set_devclass(dev, NULL); 2436 device_set_driver(dev, NULL); 2437 device_sysctl_fini(dev); 2438 dev->state = DS_NOTPRESENT; 2439 return (error); 2440 } 2441 device_sysctl_update(dev); 2442 dev->state = DS_ATTACHED; 2443 devadded(dev); 2444 return (0); 2445 } 2446 2447 /** 2448 * @brief Detach a driver from a device 2449 * 2450 * This function is a wrapper around the DEVICE_DETACH() driver 2451 * method. If the call to DEVICE_DETACH() succeeds, it calls 2452 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2453 * notification event for user-based device management services and 2454 * cleans up the device's sysctl tree. 2455 * 2456 * @param dev the device to un-initialise 2457 * 2458 * @retval 0 success 2459 * @retval ENXIO no driver was found 2460 * @retval ENOMEM memory allocation failure 2461 * @retval non-zero some other unix error code 2462 */ 2463 int 2464 device_detach(device_t dev) 2465 { 2466 int error; 2467 2468 GIANT_REQUIRED; 2469 2470 PDEBUG(("%s", DEVICENAME(dev))); 2471 if (dev->state == DS_BUSY) 2472 return (EBUSY); 2473 if (dev->state != DS_ATTACHED) 2474 return (0); 2475 2476 if ((error = DEVICE_DETACH(dev)) != 0) 2477 return (error); 2478 devremoved(dev); 2479 device_printf(dev, "detached\n"); 2480 if (dev->parent) 2481 BUS_CHILD_DETACHED(dev->parent, dev); 2482 2483 if (!(dev->flags & DF_FIXEDCLASS)) 2484 devclass_delete_device(dev->devclass, dev); 2485 2486 dev->state = DS_NOTPRESENT; 2487 device_set_driver(dev, NULL); 2488 device_set_desc(dev, NULL); 2489 device_sysctl_fini(dev); 2490 2491 return (0); 2492 } 2493 2494 /** 2495 * @brief Tells a driver to quiesce itself. 2496 * 2497 * This function is a wrapper around the DEVICE_QUIESCE() driver 2498 * method. If the call to DEVICE_QUIESCE() succeeds. 2499 * 2500 * @param dev the device to quiesce 2501 * 2502 * @retval 0 success 2503 * @retval ENXIO no driver was found 2504 * @retval ENOMEM memory allocation failure 2505 * @retval non-zero some other unix error code 2506 */ 2507 int 2508 device_quiesce(device_t dev) 2509 { 2510 2511 PDEBUG(("%s", DEVICENAME(dev))); 2512 if (dev->state == DS_BUSY) 2513 return (EBUSY); 2514 if (dev->state != DS_ATTACHED) 2515 return (0); 2516 2517 return (DEVICE_QUIESCE(dev)); 2518 } 2519 2520 /** 2521 * @brief Notify a device of system shutdown 2522 * 2523 * This function calls the DEVICE_SHUTDOWN() driver method if the 2524 * device currently has an attached driver. 2525 * 2526 * @returns the value returned by DEVICE_SHUTDOWN() 2527 */ 2528 int 2529 device_shutdown(device_t dev) 2530 { 2531 if (dev->state < DS_ATTACHED) 2532 return (0); 2533 return (DEVICE_SHUTDOWN(dev)); 2534 } 2535 2536 /** 2537 * @brief Set the unit number of a device 2538 * 2539 * This function can be used to override the unit number used for a 2540 * device (e.g. to wire a device to a pre-configured unit number). 2541 */ 2542 int 2543 device_set_unit(device_t dev, int unit) 2544 { 2545 devclass_t dc; 2546 int err; 2547 2548 dc = device_get_devclass(dev); 2549 if (unit < dc->maxunit && dc->devices[unit]) 2550 return (EBUSY); 2551 err = devclass_delete_device(dc, dev); 2552 if (err) 2553 return (err); 2554 dev->unit = unit; 2555 err = devclass_add_device(dc, dev); 2556 if (err) 2557 return (err); 2558 2559 bus_data_generation_update(); 2560 return (0); 2561 } 2562 2563 /*======================================*/ 2564 /* 2565 * Some useful method implementations to make life easier for bus drivers. 2566 */ 2567 2568 /** 2569 * @brief Initialise a resource list. 2570 * 2571 * @param rl the resource list to initialise 2572 */ 2573 void 2574 resource_list_init(struct resource_list *rl) 2575 { 2576 STAILQ_INIT(rl); 2577 } 2578 2579 /** 2580 * @brief Reclaim memory used by a resource list. 2581 * 2582 * This function frees the memory for all resource entries on the list 2583 * (if any). 2584 * 2585 * @param rl the resource list to free 2586 */ 2587 void 2588 resource_list_free(struct resource_list *rl) 2589 { 2590 struct resource_list_entry *rle; 2591 2592 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2593 if (rle->res) 2594 panic("resource_list_free: resource entry is busy"); 2595 STAILQ_REMOVE_HEAD(rl, link); 2596 free(rle, M_BUS); 2597 } 2598 } 2599 2600 /** 2601 * @brief Add a resource entry. 2602 * 2603 * This function adds a resource entry using the given @p type, @p 2604 * start, @p end and @p count values. A rid value is chosen by 2605 * searching sequentially for the first unused rid starting at zero. 2606 * 2607 * @param rl the resource list to edit 2608 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2609 * @param start the start address of the resource 2610 * @param end the end address of the resource 2611 * @param count XXX end-start+1 2612 */ 2613 int 2614 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2615 u_long end, u_long count) 2616 { 2617 int rid; 2618 2619 rid = 0; 2620 while (resource_list_find(rl, type, rid) != NULL) 2621 rid++; 2622 resource_list_add(rl, type, rid, start, end, count); 2623 return (rid); 2624 } 2625 2626 /** 2627 * @brief Add or modify a resource entry. 2628 * 2629 * If an existing entry exists with the same type and rid, it will be 2630 * modified using the given values of @p start, @p end and @p 2631 * count. If no entry exists, a new one will be created using the 2632 * given values. The resource list entry that matches is then returned. 2633 * 2634 * @param rl the resource list to edit 2635 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2636 * @param rid the resource identifier 2637 * @param start the start address of the resource 2638 * @param end the end address of the resource 2639 * @param count XXX end-start+1 2640 */ 2641 struct resource_list_entry * 2642 resource_list_add(struct resource_list *rl, int type, int rid, 2643 u_long start, u_long end, u_long count) 2644 { 2645 struct resource_list_entry *rle; 2646 2647 rle = resource_list_find(rl, type, rid); 2648 if (!rle) { 2649 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2650 M_NOWAIT); 2651 if (!rle) 2652 panic("resource_list_add: can't record entry"); 2653 STAILQ_INSERT_TAIL(rl, rle, link); 2654 rle->type = type; 2655 rle->rid = rid; 2656 rle->res = NULL; 2657 } 2658 2659 if (rle->res) 2660 panic("resource_list_add: resource entry is busy"); 2661 2662 rle->start = start; 2663 rle->end = end; 2664 rle->count = count; 2665 return (rle); 2666 } 2667 2668 /** 2669 * @brief Find a resource entry by type and rid. 2670 * 2671 * @param rl the resource list to search 2672 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2673 * @param rid the resource identifier 2674 * 2675 * @returns the resource entry pointer or NULL if there is no such 2676 * entry. 2677 */ 2678 struct resource_list_entry * 2679 resource_list_find(struct resource_list *rl, int type, int rid) 2680 { 2681 struct resource_list_entry *rle; 2682 2683 STAILQ_FOREACH(rle, rl, link) { 2684 if (rle->type == type && rle->rid == rid) 2685 return (rle); 2686 } 2687 return (NULL); 2688 } 2689 2690 /** 2691 * @brief Delete a resource entry. 2692 * 2693 * @param rl the resource list to edit 2694 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2695 * @param rid the resource identifier 2696 */ 2697 void 2698 resource_list_delete(struct resource_list *rl, int type, int rid) 2699 { 2700 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2701 2702 if (rle) { 2703 if (rle->res != NULL) 2704 panic("resource_list_delete: resource has not been released"); 2705 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2706 free(rle, M_BUS); 2707 } 2708 } 2709 2710 /** 2711 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2712 * 2713 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2714 * and passing the allocation up to the parent of @p bus. This assumes 2715 * that the first entry of @c device_get_ivars(child) is a struct 2716 * resource_list. This also handles 'passthrough' allocations where a 2717 * child is a remote descendant of bus by passing the allocation up to 2718 * the parent of bus. 2719 * 2720 * Typically, a bus driver would store a list of child resources 2721 * somewhere in the child device's ivars (see device_get_ivars()) and 2722 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2723 * then call resource_list_alloc() to perform the allocation. 2724 * 2725 * @param rl the resource list to allocate from 2726 * @param bus the parent device of @p child 2727 * @param child the device which is requesting an allocation 2728 * @param type the type of resource to allocate 2729 * @param rid a pointer to the resource identifier 2730 * @param start hint at the start of the resource range - pass 2731 * @c 0UL for any start address 2732 * @param end hint at the end of the resource range - pass 2733 * @c ~0UL for any end address 2734 * @param count hint at the size of range required - pass @c 1 2735 * for any size 2736 * @param flags any extra flags to control the resource 2737 * allocation - see @c RF_XXX flags in 2738 * <sys/rman.h> for details 2739 * 2740 * @returns the resource which was allocated or @c NULL if no 2741 * resource could be allocated 2742 */ 2743 struct resource * 2744 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2745 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2746 { 2747 struct resource_list_entry *rle = NULL; 2748 int passthrough = (device_get_parent(child) != bus); 2749 int isdefault = (start == 0UL && end == ~0UL); 2750 2751 if (passthrough) { 2752 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2753 type, rid, start, end, count, flags)); 2754 } 2755 2756 rle = resource_list_find(rl, type, *rid); 2757 2758 if (!rle) 2759 return (NULL); /* no resource of that type/rid */ 2760 2761 if (rle->res) 2762 panic("resource_list_alloc: resource entry is busy"); 2763 2764 if (isdefault) { 2765 start = rle->start; 2766 count = ulmax(count, rle->count); 2767 end = ulmax(rle->end, start + count - 1); 2768 } 2769 2770 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2771 type, rid, start, end, count, flags); 2772 2773 /* 2774 * Record the new range. 2775 */ 2776 if (rle->res) { 2777 rle->start = rman_get_start(rle->res); 2778 rle->end = rman_get_end(rle->res); 2779 rle->count = count; 2780 } 2781 2782 return (rle->res); 2783 } 2784 2785 /** 2786 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2787 * 2788 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2789 * used with resource_list_alloc(). 2790 * 2791 * @param rl the resource list which was allocated from 2792 * @param bus the parent device of @p child 2793 * @param child the device which is requesting a release 2794 * @param type the type of resource to allocate 2795 * @param rid the resource identifier 2796 * @param res the resource to release 2797 * 2798 * @retval 0 success 2799 * @retval non-zero a standard unix error code indicating what 2800 * error condition prevented the operation 2801 */ 2802 int 2803 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2804 int type, int rid, struct resource *res) 2805 { 2806 struct resource_list_entry *rle = NULL; 2807 int passthrough = (device_get_parent(child) != bus); 2808 int error; 2809 2810 if (passthrough) { 2811 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2812 type, rid, res)); 2813 } 2814 2815 rle = resource_list_find(rl, type, rid); 2816 2817 if (!rle) 2818 panic("resource_list_release: can't find resource"); 2819 if (!rle->res) 2820 panic("resource_list_release: resource entry is not busy"); 2821 2822 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2823 type, rid, res); 2824 if (error) 2825 return (error); 2826 2827 rle->res = NULL; 2828 return (0); 2829 } 2830 2831 /** 2832 * @brief Print a description of resources in a resource list 2833 * 2834 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2835 * The name is printed if at least one resource of the given type is available. 2836 * The format is used to print resource start and end. 2837 * 2838 * @param rl the resource list to print 2839 * @param name the name of @p type, e.g. @c "memory" 2840 * @param type type type of resource entry to print 2841 * @param format printf(9) format string to print resource 2842 * start and end values 2843 * 2844 * @returns the number of characters printed 2845 */ 2846 int 2847 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2848 const char *format) 2849 { 2850 struct resource_list_entry *rle; 2851 int printed, retval; 2852 2853 printed = 0; 2854 retval = 0; 2855 /* Yes, this is kinda cheating */ 2856 STAILQ_FOREACH(rle, rl, link) { 2857 if (rle->type == type) { 2858 if (printed == 0) 2859 retval += printf(" %s ", name); 2860 else 2861 retval += printf(","); 2862 printed++; 2863 retval += printf(format, rle->start); 2864 if (rle->count > 1) { 2865 retval += printf("-"); 2866 retval += printf(format, rle->start + 2867 rle->count - 1); 2868 } 2869 } 2870 } 2871 return (retval); 2872 } 2873 2874 /** 2875 * @brief Releases all the resources in a list. 2876 * 2877 * @param rl The resource list to purge. 2878 * 2879 * @returns nothing 2880 */ 2881 void 2882 resource_list_purge(struct resource_list *rl) 2883 { 2884 struct resource_list_entry *rle; 2885 2886 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2887 if (rle->res) 2888 bus_release_resource(rman_get_device(rle->res), 2889 rle->type, rle->rid, rle->res); 2890 STAILQ_REMOVE_HEAD(rl, link); 2891 free(rle, M_BUS); 2892 } 2893 } 2894 2895 device_t 2896 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 2897 { 2898 2899 return (device_add_child_ordered(dev, order, name, unit)); 2900 } 2901 2902 /** 2903 * @brief Helper function for implementing DEVICE_PROBE() 2904 * 2905 * This function can be used to help implement the DEVICE_PROBE() for 2906 * a bus (i.e. a device which has other devices attached to it). It 2907 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2908 * devclass. 2909 */ 2910 int 2911 bus_generic_probe(device_t dev) 2912 { 2913 devclass_t dc = dev->devclass; 2914 driverlink_t dl; 2915 2916 TAILQ_FOREACH(dl, &dc->drivers, link) { 2917 DEVICE_IDENTIFY(dl->driver, dev); 2918 } 2919 2920 return (0); 2921 } 2922 2923 /** 2924 * @brief Helper function for implementing DEVICE_ATTACH() 2925 * 2926 * This function can be used to help implement the DEVICE_ATTACH() for 2927 * a bus. It calls device_probe_and_attach() for each of the device's 2928 * children. 2929 */ 2930 int 2931 bus_generic_attach(device_t dev) 2932 { 2933 device_t child; 2934 2935 TAILQ_FOREACH(child, &dev->children, link) { 2936 device_probe_and_attach(child); 2937 } 2938 2939 return (0); 2940 } 2941 2942 /** 2943 * @brief Helper function for implementing DEVICE_DETACH() 2944 * 2945 * This function can be used to help implement the DEVICE_DETACH() for 2946 * a bus. It calls device_detach() for each of the device's 2947 * children. 2948 */ 2949 int 2950 bus_generic_detach(device_t dev) 2951 { 2952 device_t child; 2953 int error; 2954 2955 if (dev->state != DS_ATTACHED) 2956 return (EBUSY); 2957 2958 TAILQ_FOREACH(child, &dev->children, link) { 2959 if ((error = device_detach(child)) != 0) 2960 return (error); 2961 } 2962 2963 return (0); 2964 } 2965 2966 /** 2967 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2968 * 2969 * This function can be used to help implement the DEVICE_SHUTDOWN() 2970 * for a bus. It calls device_shutdown() for each of the device's 2971 * children. 2972 */ 2973 int 2974 bus_generic_shutdown(device_t dev) 2975 { 2976 device_t child; 2977 2978 TAILQ_FOREACH(child, &dev->children, link) { 2979 device_shutdown(child); 2980 } 2981 2982 return (0); 2983 } 2984 2985 /** 2986 * @brief Helper function for implementing DEVICE_SUSPEND() 2987 * 2988 * This function can be used to help implement the DEVICE_SUSPEND() 2989 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2990 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2991 * operation is aborted and any devices which were suspended are 2992 * resumed immediately by calling their DEVICE_RESUME() methods. 2993 */ 2994 int 2995 bus_generic_suspend(device_t dev) 2996 { 2997 int error; 2998 device_t child, child2; 2999 3000 TAILQ_FOREACH(child, &dev->children, link) { 3001 error = DEVICE_SUSPEND(child); 3002 if (error) { 3003 for (child2 = TAILQ_FIRST(&dev->children); 3004 child2 && child2 != child; 3005 child2 = TAILQ_NEXT(child2, link)) 3006 DEVICE_RESUME(child2); 3007 return (error); 3008 } 3009 } 3010 return (0); 3011 } 3012 3013 /** 3014 * @brief Helper function for implementing DEVICE_RESUME() 3015 * 3016 * This function can be used to help implement the DEVICE_RESUME() for 3017 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3018 */ 3019 int 3020 bus_generic_resume(device_t dev) 3021 { 3022 device_t child; 3023 3024 TAILQ_FOREACH(child, &dev->children, link) { 3025 DEVICE_RESUME(child); 3026 /* if resume fails, there's nothing we can usefully do... */ 3027 } 3028 return (0); 3029 } 3030 3031 /** 3032 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3033 * 3034 * This function prints the first part of the ascii representation of 3035 * @p child, including its name, unit and description (if any - see 3036 * device_set_desc()). 3037 * 3038 * @returns the number of characters printed 3039 */ 3040 int 3041 bus_print_child_header(device_t dev, device_t child) 3042 { 3043 int retval = 0; 3044 3045 if (device_get_desc(child)) { 3046 retval += device_printf(child, "<%s>", device_get_desc(child)); 3047 } else { 3048 retval += printf("%s", device_get_nameunit(child)); 3049 } 3050 3051 return (retval); 3052 } 3053 3054 /** 3055 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3056 * 3057 * This function prints the last part of the ascii representation of 3058 * @p child, which consists of the string @c " on " followed by the 3059 * name and unit of the @p dev. 3060 * 3061 * @returns the number of characters printed 3062 */ 3063 int 3064 bus_print_child_footer(device_t dev, device_t child) 3065 { 3066 return (printf(" on %s\n", device_get_nameunit(dev))); 3067 } 3068 3069 /** 3070 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3071 * 3072 * This function simply calls bus_print_child_header() followed by 3073 * bus_print_child_footer(). 3074 * 3075 * @returns the number of characters printed 3076 */ 3077 int 3078 bus_generic_print_child(device_t dev, device_t child) 3079 { 3080 int retval = 0; 3081 3082 retval += bus_print_child_header(dev, child); 3083 retval += bus_print_child_footer(dev, child); 3084 3085 return (retval); 3086 } 3087 3088 /** 3089 * @brief Stub function for implementing BUS_READ_IVAR(). 3090 * 3091 * @returns ENOENT 3092 */ 3093 int 3094 bus_generic_read_ivar(device_t dev, device_t child, int index, 3095 uintptr_t * result) 3096 { 3097 return (ENOENT); 3098 } 3099 3100 /** 3101 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3102 * 3103 * @returns ENOENT 3104 */ 3105 int 3106 bus_generic_write_ivar(device_t dev, device_t child, int index, 3107 uintptr_t value) 3108 { 3109 return (ENOENT); 3110 } 3111 3112 /** 3113 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3114 * 3115 * @returns NULL 3116 */ 3117 struct resource_list * 3118 bus_generic_get_resource_list(device_t dev, device_t child) 3119 { 3120 return (NULL); 3121 } 3122 3123 /** 3124 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3125 * 3126 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3127 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3128 * and then calls device_probe_and_attach() for each unattached child. 3129 */ 3130 void 3131 bus_generic_driver_added(device_t dev, driver_t *driver) 3132 { 3133 device_t child; 3134 3135 DEVICE_IDENTIFY(driver, dev); 3136 TAILQ_FOREACH(child, &dev->children, link) { 3137 if (child->state == DS_NOTPRESENT || 3138 (child->flags & DF_REBID)) 3139 device_probe_and_attach(child); 3140 } 3141 } 3142 3143 /** 3144 * @brief Helper function for implementing BUS_SETUP_INTR(). 3145 * 3146 * This simple implementation of BUS_SETUP_INTR() simply calls the 3147 * BUS_SETUP_INTR() method of the parent of @p dev. 3148 */ 3149 int 3150 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3151 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3152 void **cookiep) 3153 { 3154 /* Propagate up the bus hierarchy until someone handles it. */ 3155 if (dev->parent) 3156 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3157 filter, intr, arg, cookiep)); 3158 return (EINVAL); 3159 } 3160 3161 /** 3162 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3163 * 3164 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3165 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3166 */ 3167 int 3168 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3169 void *cookie) 3170 { 3171 /* Propagate up the bus hierarchy until someone handles it. */ 3172 if (dev->parent) 3173 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3174 return (EINVAL); 3175 } 3176 3177 /** 3178 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3179 * 3180 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3181 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3182 */ 3183 struct resource * 3184 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3185 u_long start, u_long end, u_long count, u_int flags) 3186 { 3187 /* Propagate up the bus hierarchy until someone handles it. */ 3188 if (dev->parent) 3189 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3190 start, end, count, flags)); 3191 return (NULL); 3192 } 3193 3194 /** 3195 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3196 * 3197 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3198 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3199 */ 3200 int 3201 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3202 struct resource *r) 3203 { 3204 /* Propagate up the bus hierarchy until someone handles it. */ 3205 if (dev->parent) 3206 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3207 r)); 3208 return (EINVAL); 3209 } 3210 3211 /** 3212 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3213 * 3214 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3215 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3216 */ 3217 int 3218 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3219 struct resource *r) 3220 { 3221 /* Propagate up the bus hierarchy until someone handles it. */ 3222 if (dev->parent) 3223 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3224 r)); 3225 return (EINVAL); 3226 } 3227 3228 /** 3229 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3230 * 3231 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3232 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3233 */ 3234 int 3235 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3236 int rid, struct resource *r) 3237 { 3238 /* Propagate up the bus hierarchy until someone handles it. */ 3239 if (dev->parent) 3240 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3241 r)); 3242 return (EINVAL); 3243 } 3244 3245 /** 3246 * @brief Helper function for implementing BUS_BIND_INTR(). 3247 * 3248 * This simple implementation of BUS_BIND_INTR() simply calls the 3249 * BUS_BIND_INTR() method of the parent of @p dev. 3250 */ 3251 int 3252 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3253 int cpu) 3254 { 3255 3256 /* Propagate up the bus hierarchy until someone handles it. */ 3257 if (dev->parent) 3258 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3259 return (EINVAL); 3260 } 3261 3262 /** 3263 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3264 * 3265 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3266 * BUS_CONFIG_INTR() method of the parent of @p dev. 3267 */ 3268 int 3269 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3270 enum intr_polarity pol) 3271 { 3272 3273 /* Propagate up the bus hierarchy until someone handles it. */ 3274 if (dev->parent) 3275 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3276 return (EINVAL); 3277 } 3278 3279 /** 3280 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3281 * 3282 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3283 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3284 */ 3285 bus_dma_tag_t 3286 bus_generic_get_dma_tag(device_t dev, device_t child) 3287 { 3288 3289 /* Propagate up the bus hierarchy until someone handles it. */ 3290 if (dev->parent != NULL) 3291 return (BUS_GET_DMA_TAG(dev->parent, child)); 3292 return (NULL); 3293 } 3294 3295 /** 3296 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3297 * 3298 * This implementation of BUS_GET_RESOURCE() uses the 3299 * resource_list_find() function to do most of the work. It calls 3300 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3301 * search. 3302 */ 3303 int 3304 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3305 u_long *startp, u_long *countp) 3306 { 3307 struct resource_list * rl = NULL; 3308 struct resource_list_entry * rle = NULL; 3309 3310 rl = BUS_GET_RESOURCE_LIST(dev, child); 3311 if (!rl) 3312 return (EINVAL); 3313 3314 rle = resource_list_find(rl, type, rid); 3315 if (!rle) 3316 return (ENOENT); 3317 3318 if (startp) 3319 *startp = rle->start; 3320 if (countp) 3321 *countp = rle->count; 3322 3323 return (0); 3324 } 3325 3326 /** 3327 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3328 * 3329 * This implementation of BUS_SET_RESOURCE() uses the 3330 * resource_list_add() function to do most of the work. It calls 3331 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3332 * edit. 3333 */ 3334 int 3335 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3336 u_long start, u_long count) 3337 { 3338 struct resource_list * rl = NULL; 3339 3340 rl = BUS_GET_RESOURCE_LIST(dev, child); 3341 if (!rl) 3342 return (EINVAL); 3343 3344 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3345 3346 return (0); 3347 } 3348 3349 /** 3350 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3351 * 3352 * This implementation of BUS_DELETE_RESOURCE() uses the 3353 * resource_list_delete() function to do most of the work. It calls 3354 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3355 * edit. 3356 */ 3357 void 3358 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3359 { 3360 struct resource_list * rl = NULL; 3361 3362 rl = BUS_GET_RESOURCE_LIST(dev, child); 3363 if (!rl) 3364 return; 3365 3366 resource_list_delete(rl, type, rid); 3367 3368 return; 3369 } 3370 3371 /** 3372 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3373 * 3374 * This implementation of BUS_RELEASE_RESOURCE() uses the 3375 * resource_list_release() function to do most of the work. It calls 3376 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3377 */ 3378 int 3379 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3380 int rid, struct resource *r) 3381 { 3382 struct resource_list * rl = NULL; 3383 3384 rl = BUS_GET_RESOURCE_LIST(dev, child); 3385 if (!rl) 3386 return (EINVAL); 3387 3388 return (resource_list_release(rl, dev, child, type, rid, r)); 3389 } 3390 3391 /** 3392 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3393 * 3394 * This implementation of BUS_ALLOC_RESOURCE() uses the 3395 * resource_list_alloc() function to do most of the work. It calls 3396 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3397 */ 3398 struct resource * 3399 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3400 int *rid, u_long start, u_long end, u_long count, u_int flags) 3401 { 3402 struct resource_list * rl = NULL; 3403 3404 rl = BUS_GET_RESOURCE_LIST(dev, child); 3405 if (!rl) 3406 return (NULL); 3407 3408 return (resource_list_alloc(rl, dev, child, type, rid, 3409 start, end, count, flags)); 3410 } 3411 3412 /** 3413 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3414 * 3415 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3416 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3417 */ 3418 int 3419 bus_generic_child_present(device_t dev, device_t child) 3420 { 3421 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3422 } 3423 3424 /* 3425 * Some convenience functions to make it easier for drivers to use the 3426 * resource-management functions. All these really do is hide the 3427 * indirection through the parent's method table, making for slightly 3428 * less-wordy code. In the future, it might make sense for this code 3429 * to maintain some sort of a list of resources allocated by each device. 3430 */ 3431 3432 int 3433 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3434 struct resource **res) 3435 { 3436 int i; 3437 3438 for (i = 0; rs[i].type != -1; i++) 3439 res[i] = NULL; 3440 for (i = 0; rs[i].type != -1; i++) { 3441 res[i] = bus_alloc_resource_any(dev, 3442 rs[i].type, &rs[i].rid, rs[i].flags); 3443 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3444 bus_release_resources(dev, rs, res); 3445 return (ENXIO); 3446 } 3447 } 3448 return (0); 3449 } 3450 3451 void 3452 bus_release_resources(device_t dev, const struct resource_spec *rs, 3453 struct resource **res) 3454 { 3455 int i; 3456 3457 for (i = 0; rs[i].type != -1; i++) 3458 if (res[i] != NULL) { 3459 bus_release_resource( 3460 dev, rs[i].type, rs[i].rid, res[i]); 3461 res[i] = NULL; 3462 } 3463 } 3464 3465 /** 3466 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3467 * 3468 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3469 * parent of @p dev. 3470 */ 3471 struct resource * 3472 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3473 u_long count, u_int flags) 3474 { 3475 if (dev->parent == NULL) 3476 return (NULL); 3477 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3478 count, flags)); 3479 } 3480 3481 /** 3482 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3483 * 3484 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3485 * parent of @p dev. 3486 */ 3487 int 3488 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3489 { 3490 if (dev->parent == NULL) 3491 return (EINVAL); 3492 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3493 } 3494 3495 /** 3496 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3497 * 3498 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3499 * parent of @p dev. 3500 */ 3501 int 3502 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3503 { 3504 if (dev->parent == NULL) 3505 return (EINVAL); 3506 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3507 } 3508 3509 /** 3510 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3511 * 3512 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3513 * parent of @p dev. 3514 */ 3515 int 3516 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3517 { 3518 if (dev->parent == NULL) 3519 return (EINVAL); 3520 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3521 } 3522 3523 /** 3524 * @brief Wrapper function for BUS_SETUP_INTR(). 3525 * 3526 * This function simply calls the BUS_SETUP_INTR() method of the 3527 * parent of @p dev. 3528 */ 3529 int 3530 bus_setup_intr(device_t dev, struct resource *r, int flags, 3531 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3532 { 3533 int error; 3534 3535 if (dev->parent == NULL) 3536 return (EINVAL); 3537 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3538 arg, cookiep); 3539 if (error != 0) 3540 return (error); 3541 if (handler != NULL && !(flags & INTR_MPSAFE)) 3542 device_printf(dev, "[GIANT-LOCKED]\n"); 3543 if (bootverbose && (flags & INTR_MPSAFE)) 3544 device_printf(dev, "[MPSAFE]\n"); 3545 if (filter != NULL) { 3546 if (handler == NULL) 3547 device_printf(dev, "[FILTER]\n"); 3548 else 3549 device_printf(dev, "[FILTER+ITHREAD]\n"); 3550 } else 3551 device_printf(dev, "[ITHREAD]\n"); 3552 return (0); 3553 } 3554 3555 /** 3556 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3557 * 3558 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3559 * parent of @p dev. 3560 */ 3561 int 3562 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3563 { 3564 if (dev->parent == NULL) 3565 return (EINVAL); 3566 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3567 } 3568 3569 /** 3570 * @brief Wrapper function for BUS_BIND_INTR(). 3571 * 3572 * This function simply calls the BUS_BIND_INTR() method of the 3573 * parent of @p dev. 3574 */ 3575 int 3576 bus_bind_intr(device_t dev, struct resource *r, int cpu) 3577 { 3578 if (dev->parent == NULL) 3579 return (EINVAL); 3580 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 3581 } 3582 3583 /** 3584 * @brief Wrapper function for BUS_SET_RESOURCE(). 3585 * 3586 * This function simply calls the BUS_SET_RESOURCE() method of the 3587 * parent of @p dev. 3588 */ 3589 int 3590 bus_set_resource(device_t dev, int type, int rid, 3591 u_long start, u_long count) 3592 { 3593 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3594 start, count)); 3595 } 3596 3597 /** 3598 * @brief Wrapper function for BUS_GET_RESOURCE(). 3599 * 3600 * This function simply calls the BUS_GET_RESOURCE() method of the 3601 * parent of @p dev. 3602 */ 3603 int 3604 bus_get_resource(device_t dev, int type, int rid, 3605 u_long *startp, u_long *countp) 3606 { 3607 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3608 startp, countp)); 3609 } 3610 3611 /** 3612 * @brief Wrapper function for BUS_GET_RESOURCE(). 3613 * 3614 * This function simply calls the BUS_GET_RESOURCE() method of the 3615 * parent of @p dev and returns the start value. 3616 */ 3617 u_long 3618 bus_get_resource_start(device_t dev, int type, int rid) 3619 { 3620 u_long start, count; 3621 int error; 3622 3623 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3624 &start, &count); 3625 if (error) 3626 return (0); 3627 return (start); 3628 } 3629 3630 /** 3631 * @brief Wrapper function for BUS_GET_RESOURCE(). 3632 * 3633 * This function simply calls the BUS_GET_RESOURCE() method of the 3634 * parent of @p dev and returns the count value. 3635 */ 3636 u_long 3637 bus_get_resource_count(device_t dev, int type, int rid) 3638 { 3639 u_long start, count; 3640 int error; 3641 3642 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3643 &start, &count); 3644 if (error) 3645 return (0); 3646 return (count); 3647 } 3648 3649 /** 3650 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3651 * 3652 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3653 * parent of @p dev. 3654 */ 3655 void 3656 bus_delete_resource(device_t dev, int type, int rid) 3657 { 3658 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3659 } 3660 3661 /** 3662 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3663 * 3664 * This function simply calls the BUS_CHILD_PRESENT() method of the 3665 * parent of @p dev. 3666 */ 3667 int 3668 bus_child_present(device_t child) 3669 { 3670 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3671 } 3672 3673 /** 3674 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3675 * 3676 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3677 * parent of @p dev. 3678 */ 3679 int 3680 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3681 { 3682 device_t parent; 3683 3684 parent = device_get_parent(child); 3685 if (parent == NULL) { 3686 *buf = '\0'; 3687 return (0); 3688 } 3689 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3690 } 3691 3692 /** 3693 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3694 * 3695 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3696 * parent of @p dev. 3697 */ 3698 int 3699 bus_child_location_str(device_t child, char *buf, size_t buflen) 3700 { 3701 device_t parent; 3702 3703 parent = device_get_parent(child); 3704 if (parent == NULL) { 3705 *buf = '\0'; 3706 return (0); 3707 } 3708 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3709 } 3710 3711 /** 3712 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3713 * 3714 * This function simply calls the BUS_GET_DMA_TAG() method of the 3715 * parent of @p dev. 3716 */ 3717 bus_dma_tag_t 3718 bus_get_dma_tag(device_t dev) 3719 { 3720 device_t parent; 3721 3722 parent = device_get_parent(dev); 3723 if (parent == NULL) 3724 return (NULL); 3725 return (BUS_GET_DMA_TAG(parent, dev)); 3726 } 3727 3728 /* Resume all devices and then notify userland that we're up again. */ 3729 static int 3730 root_resume(device_t dev) 3731 { 3732 int error; 3733 3734 error = bus_generic_resume(dev); 3735 if (error == 0) 3736 devctl_notify("kern", "power", "resume", NULL); 3737 return (error); 3738 } 3739 3740 static int 3741 root_print_child(device_t dev, device_t child) 3742 { 3743 int retval = 0; 3744 3745 retval += bus_print_child_header(dev, child); 3746 retval += printf("\n"); 3747 3748 return (retval); 3749 } 3750 3751 static int 3752 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3753 void **cookiep) 3754 { 3755 /* 3756 * If an interrupt mapping gets to here something bad has happened. 3757 */ 3758 panic("root_setup_intr"); 3759 } 3760 3761 /* 3762 * If we get here, assume that the device is permanant and really is 3763 * present in the system. Removable bus drivers are expected to intercept 3764 * this call long before it gets here. We return -1 so that drivers that 3765 * really care can check vs -1 or some ERRNO returned higher in the food 3766 * chain. 3767 */ 3768 static int 3769 root_child_present(device_t dev, device_t child) 3770 { 3771 return (-1); 3772 } 3773 3774 static kobj_method_t root_methods[] = { 3775 /* Device interface */ 3776 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3777 KOBJMETHOD(device_suspend, bus_generic_suspend), 3778 KOBJMETHOD(device_resume, root_resume), 3779 3780 /* Bus interface */ 3781 KOBJMETHOD(bus_print_child, root_print_child), 3782 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3783 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3784 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3785 KOBJMETHOD(bus_child_present, root_child_present), 3786 3787 { 0, 0 } 3788 }; 3789 3790 static driver_t root_driver = { 3791 "root", 3792 root_methods, 3793 1, /* no softc */ 3794 }; 3795 3796 device_t root_bus; 3797 devclass_t root_devclass; 3798 3799 static int 3800 root_bus_module_handler(module_t mod, int what, void* arg) 3801 { 3802 switch (what) { 3803 case MOD_LOAD: 3804 TAILQ_INIT(&bus_data_devices); 3805 kobj_class_compile((kobj_class_t) &root_driver); 3806 root_bus = make_device(NULL, "root", 0); 3807 root_bus->desc = "System root bus"; 3808 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3809 root_bus->driver = &root_driver; 3810 root_bus->state = DS_ATTACHED; 3811 root_devclass = devclass_find_internal("root", NULL, FALSE); 3812 devinit(); 3813 return (0); 3814 3815 case MOD_SHUTDOWN: 3816 device_shutdown(root_bus); 3817 return (0); 3818 default: 3819 return (EOPNOTSUPP); 3820 } 3821 3822 return (0); 3823 } 3824 3825 static moduledata_t root_bus_mod = { 3826 "rootbus", 3827 root_bus_module_handler, 3828 0 3829 }; 3830 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3831 3832 /** 3833 * @brief Automatically configure devices 3834 * 3835 * This function begins the autoconfiguration process by calling 3836 * device_probe_and_attach() for each child of the @c root0 device. 3837 */ 3838 void 3839 root_bus_configure(void) 3840 { 3841 device_t dev; 3842 3843 PDEBUG((".")); 3844 3845 TAILQ_FOREACH(dev, &root_bus->children, link) { 3846 device_probe_and_attach(dev); 3847 } 3848 } 3849 3850 /** 3851 * @brief Module handler for registering device drivers 3852 * 3853 * This module handler is used to automatically register device 3854 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3855 * devclass_add_driver() for the driver described by the 3856 * driver_module_data structure pointed to by @p arg 3857 */ 3858 int 3859 driver_module_handler(module_t mod, int what, void *arg) 3860 { 3861 int error; 3862 struct driver_module_data *dmd; 3863 devclass_t bus_devclass; 3864 kobj_class_t driver; 3865 3866 dmd = (struct driver_module_data *)arg; 3867 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3868 error = 0; 3869 3870 switch (what) { 3871 case MOD_LOAD: 3872 if (dmd->dmd_chainevh) 3873 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3874 3875 driver = dmd->dmd_driver; 3876 PDEBUG(("Loading module: driver %s on bus %s", 3877 DRIVERNAME(driver), dmd->dmd_busname)); 3878 error = devclass_add_driver(bus_devclass, driver); 3879 if (error) 3880 break; 3881 3882 /* 3883 * If the driver has any base classes, make the 3884 * devclass inherit from the devclass of the driver's 3885 * first base class. This will allow the system to 3886 * search for drivers in both devclasses for children 3887 * of a device using this driver. 3888 */ 3889 if (driver->baseclasses) { 3890 const char *parentname; 3891 parentname = driver->baseclasses[0]->name; 3892 *dmd->dmd_devclass = 3893 devclass_find_internal(driver->name, 3894 parentname, TRUE); 3895 } else { 3896 *dmd->dmd_devclass = 3897 devclass_find_internal(driver->name, NULL, TRUE); 3898 } 3899 break; 3900 3901 case MOD_UNLOAD: 3902 PDEBUG(("Unloading module: driver %s from bus %s", 3903 DRIVERNAME(dmd->dmd_driver), 3904 dmd->dmd_busname)); 3905 error = devclass_delete_driver(bus_devclass, 3906 dmd->dmd_driver); 3907 3908 if (!error && dmd->dmd_chainevh) 3909 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3910 break; 3911 case MOD_QUIESCE: 3912 PDEBUG(("Quiesce module: driver %s from bus %s", 3913 DRIVERNAME(dmd->dmd_driver), 3914 dmd->dmd_busname)); 3915 error = devclass_quiesce_driver(bus_devclass, 3916 dmd->dmd_driver); 3917 3918 if (!error && dmd->dmd_chainevh) 3919 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3920 break; 3921 default: 3922 error = EOPNOTSUPP; 3923 break; 3924 } 3925 3926 return (error); 3927 } 3928 3929 /** 3930 * @brief Enumerate all hinted devices for this bus. 3931 * 3932 * Walks through the hints for this bus and calls the bus_hinted_child 3933 * routine for each one it fines. It searches first for the specific 3934 * bus that's being probed for hinted children (eg isa0), and then for 3935 * generic children (eg isa). 3936 * 3937 * @param dev bus device to enumerate 3938 */ 3939 void 3940 bus_enumerate_hinted_children(device_t bus) 3941 { 3942 int i; 3943 const char *dname, *busname; 3944 int dunit; 3945 3946 /* 3947 * enumerate all devices on the specific bus 3948 */ 3949 busname = device_get_nameunit(bus); 3950 i = 0; 3951 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3952 BUS_HINTED_CHILD(bus, dname, dunit); 3953 3954 /* 3955 * and all the generic ones. 3956 */ 3957 busname = device_get_name(bus); 3958 i = 0; 3959 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3960 BUS_HINTED_CHILD(bus, dname, dunit); 3961 } 3962 3963 #ifdef BUS_DEBUG 3964 3965 /* the _short versions avoid iteration by not calling anything that prints 3966 * more than oneliners. I love oneliners. 3967 */ 3968 3969 static void 3970 print_device_short(device_t dev, int indent) 3971 { 3972 if (!dev) 3973 return; 3974 3975 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3976 dev->unit, dev->desc, 3977 (dev->parent? "":"no "), 3978 (TAILQ_EMPTY(&dev->children)? "no ":""), 3979 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3980 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3981 (dev->flags&DF_WILDCARD? "wildcard,":""), 3982 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3983 (dev->flags&DF_REBID? "rebiddable,":""), 3984 (dev->ivars? "":"no "), 3985 (dev->softc? "":"no "), 3986 dev->busy)); 3987 } 3988 3989 static void 3990 print_device(device_t dev, int indent) 3991 { 3992 if (!dev) 3993 return; 3994 3995 print_device_short(dev, indent); 3996 3997 indentprintf(("Parent:\n")); 3998 print_device_short(dev->parent, indent+1); 3999 indentprintf(("Driver:\n")); 4000 print_driver_short(dev->driver, indent+1); 4001 indentprintf(("Devclass:\n")); 4002 print_devclass_short(dev->devclass, indent+1); 4003 } 4004 4005 void 4006 print_device_tree_short(device_t dev, int indent) 4007 /* print the device and all its children (indented) */ 4008 { 4009 device_t child; 4010 4011 if (!dev) 4012 return; 4013 4014 print_device_short(dev, indent); 4015 4016 TAILQ_FOREACH(child, &dev->children, link) { 4017 print_device_tree_short(child, indent+1); 4018 } 4019 } 4020 4021 void 4022 print_device_tree(device_t dev, int indent) 4023 /* print the device and all its children (indented) */ 4024 { 4025 device_t child; 4026 4027 if (!dev) 4028 return; 4029 4030 print_device(dev, indent); 4031 4032 TAILQ_FOREACH(child, &dev->children, link) { 4033 print_device_tree(child, indent+1); 4034 } 4035 } 4036 4037 static void 4038 print_driver_short(driver_t *driver, int indent) 4039 { 4040 if (!driver) 4041 return; 4042 4043 indentprintf(("driver %s: softc size = %zd\n", 4044 driver->name, driver->size)); 4045 } 4046 4047 static void 4048 print_driver(driver_t *driver, int indent) 4049 { 4050 if (!driver) 4051 return; 4052 4053 print_driver_short(driver, indent); 4054 } 4055 4056 4057 static void 4058 print_driver_list(driver_list_t drivers, int indent) 4059 { 4060 driverlink_t driver; 4061 4062 TAILQ_FOREACH(driver, &drivers, link) { 4063 print_driver(driver->driver, indent); 4064 } 4065 } 4066 4067 static void 4068 print_devclass_short(devclass_t dc, int indent) 4069 { 4070 if ( !dc ) 4071 return; 4072 4073 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4074 } 4075 4076 static void 4077 print_devclass(devclass_t dc, int indent) 4078 { 4079 int i; 4080 4081 if ( !dc ) 4082 return; 4083 4084 print_devclass_short(dc, indent); 4085 indentprintf(("Drivers:\n")); 4086 print_driver_list(dc->drivers, indent+1); 4087 4088 indentprintf(("Devices:\n")); 4089 for (i = 0; i < dc->maxunit; i++) 4090 if (dc->devices[i]) 4091 print_device(dc->devices[i], indent+1); 4092 } 4093 4094 void 4095 print_devclass_list_short(void) 4096 { 4097 devclass_t dc; 4098 4099 printf("Short listing of devclasses, drivers & devices:\n"); 4100 TAILQ_FOREACH(dc, &devclasses, link) { 4101 print_devclass_short(dc, 0); 4102 } 4103 } 4104 4105 void 4106 print_devclass_list(void) 4107 { 4108 devclass_t dc; 4109 4110 printf("Full listing of devclasses, drivers & devices:\n"); 4111 TAILQ_FOREACH(dc, &devclasses, link) { 4112 print_devclass(dc, 0); 4113 } 4114 } 4115 4116 #endif 4117 4118 /* 4119 * User-space access to the device tree. 4120 * 4121 * We implement a small set of nodes: 4122 * 4123 * hw.bus Single integer read method to obtain the 4124 * current generation count. 4125 * hw.bus.devices Reads the entire device tree in flat space. 4126 * hw.bus.rman Resource manager interface 4127 * 4128 * We might like to add the ability to scan devclasses and/or drivers to 4129 * determine what else is currently loaded/available. 4130 */ 4131 4132 static int 4133 sysctl_bus(SYSCTL_HANDLER_ARGS) 4134 { 4135 struct u_businfo ubus; 4136 4137 ubus.ub_version = BUS_USER_VERSION; 4138 ubus.ub_generation = bus_data_generation; 4139 4140 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4141 } 4142 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4143 "bus-related data"); 4144 4145 static int 4146 sysctl_devices(SYSCTL_HANDLER_ARGS) 4147 { 4148 int *name = (int *)arg1; 4149 u_int namelen = arg2; 4150 int index; 4151 struct device *dev; 4152 struct u_device udev; /* XXX this is a bit big */ 4153 int error; 4154 4155 if (namelen != 2) 4156 return (EINVAL); 4157 4158 if (bus_data_generation_check(name[0])) 4159 return (EINVAL); 4160 4161 index = name[1]; 4162 4163 /* 4164 * Scan the list of devices, looking for the requested index. 4165 */ 4166 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4167 if (index-- == 0) 4168 break; 4169 } 4170 if (dev == NULL) 4171 return (ENOENT); 4172 4173 /* 4174 * Populate the return array. 4175 */ 4176 bzero(&udev, sizeof(udev)); 4177 udev.dv_handle = (uintptr_t)dev; 4178 udev.dv_parent = (uintptr_t)dev->parent; 4179 if (dev->nameunit != NULL) 4180 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4181 if (dev->desc != NULL) 4182 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4183 if (dev->driver != NULL && dev->driver->name != NULL) 4184 strlcpy(udev.dv_drivername, dev->driver->name, 4185 sizeof(udev.dv_drivername)); 4186 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4187 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4188 udev.dv_devflags = dev->devflags; 4189 udev.dv_flags = dev->flags; 4190 udev.dv_state = dev->state; 4191 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4192 return (error); 4193 } 4194 4195 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4196 "system device tree"); 4197 4198 int 4199 bus_data_generation_check(int generation) 4200 { 4201 if (generation != bus_data_generation) 4202 return (1); 4203 4204 /* XXX generate optimised lists here? */ 4205 return (0); 4206 } 4207 4208 void 4209 bus_data_generation_update(void) 4210 { 4211 bus_data_generation++; 4212 } 4213 4214 int 4215 bus_free_resource(device_t dev, int type, struct resource *r) 4216 { 4217 if (r == NULL) 4218 return (0); 4219 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4220 } 4221