xref: /freebsd/sys/kern/subr_bus.c (revision a9148abd9da5db2f1c682fb17bed791845fc41c9)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/proc.h>
43 #include <sys/condvar.h>
44 #include <sys/queue.h>
45 #include <machine/bus.h>
46 #include <sys/rman.h>
47 #include <sys/selinfo.h>
48 #include <sys/signalvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/uio.h>
52 #include <sys/bus.h>
53 #include <sys/interrupt.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 };
70 
71 /*
72  * Forward declarations
73  */
74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76 typedef TAILQ_HEAD(device_list, device) device_list_t;
77 
78 struct devclass {
79 	TAILQ_ENTRY(devclass) link;
80 	devclass_t	parent;		/* parent in devclass hierarchy */
81 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82 	char		*name;
83 	device_t	*devices;	/* array of devices indexed by unit */
84 	int		maxunit;	/* size of devices array */
85 
86 	struct sysctl_ctx_list sysctl_ctx;
87 	struct sysctl_oid *sysctl_tree;
88 };
89 
90 /**
91  * @brief Implementation of device.
92  */
93 struct device {
94 	/*
95 	 * A device is a kernel object. The first field must be the
96 	 * current ops table for the object.
97 	 */
98 	KOBJ_FIELDS;
99 
100 	/*
101 	 * Device hierarchy.
102 	 */
103 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105 	device_t	parent;		/**< parent of this device  */
106 	device_list_t	children;	/**< list of child devices */
107 
108 	/*
109 	 * Details of this device.
110 	 */
111 	driver_t	*driver;	/**< current driver */
112 	devclass_t	devclass;	/**< current device class */
113 	int		unit;		/**< current unit number */
114 	char*		nameunit;	/**< name+unit e.g. foodev0 */
115 	char*		desc;		/**< driver specific description */
116 	int		busy;		/**< count of calls to device_busy() */
117 	device_state_t	state;		/**< current device state  */
118 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119 	u_short		flags;		/**< internal device flags  */
120 #define	DF_ENABLED	1		/* device should be probed/attached */
121 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122 #define	DF_WILDCARD	4		/* unit was originally wildcard */
123 #define	DF_DESCMALLOCED	8		/* description was malloced */
124 #define	DF_QUIET	16		/* don't print verbose attach message */
125 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127 #define	DF_REBID	128		/* Can rebid after attach */
128 	u_char	order;			/**< order from device_add_child_ordered() */
129 	u_char	pad;
130 	void	*ivars;			/**< instance variables  */
131 	void	*softc;			/**< current driver's variables  */
132 
133 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135 };
136 
137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139 
140 #ifdef BUS_DEBUG
141 
142 static int bus_debug = 1;
143 TUNABLE_INT("bus.debug", &bus_debug);
144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145     "Debug bus code");
146 
147 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149 #define DRIVERNAME(d)	((d)? d->name : "no driver")
150 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
151 
152 /**
153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154  * prevent syslog from deleting initial spaces
155  */
156 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157 
158 static void print_device_short(device_t dev, int indent);
159 static void print_device(device_t dev, int indent);
160 void print_device_tree_short(device_t dev, int indent);
161 void print_device_tree(device_t dev, int indent);
162 static void print_driver_short(driver_t *driver, int indent);
163 static void print_driver(driver_t *driver, int indent);
164 static void print_driver_list(driver_list_t drivers, int indent);
165 static void print_devclass_short(devclass_t dc, int indent);
166 static void print_devclass(devclass_t dc, int indent);
167 void print_devclass_list_short(void);
168 void print_devclass_list(void);
169 
170 #else
171 /* Make the compiler ignore the function calls */
172 #define PDEBUG(a)			/* nop */
173 #define DEVICENAME(d)			/* nop */
174 #define DRIVERNAME(d)			/* nop */
175 #define DEVCLANAME(d)			/* nop */
176 
177 #define print_device_short(d,i)		/* nop */
178 #define print_device(d,i)		/* nop */
179 #define print_device_tree_short(d,i)	/* nop */
180 #define print_device_tree(d,i)		/* nop */
181 #define print_driver_short(d,i)		/* nop */
182 #define print_driver(d,i)		/* nop */
183 #define print_driver_list(d,i)		/* nop */
184 #define print_devclass_short(d,i)	/* nop */
185 #define print_devclass(d,i)		/* nop */
186 #define print_devclass_list_short()	/* nop */
187 #define print_devclass_list()		/* nop */
188 #endif
189 
190 /*
191  * dev sysctl tree
192  */
193 
194 enum {
195 	DEVCLASS_SYSCTL_PARENT,
196 };
197 
198 static int
199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200 {
201 	devclass_t dc = (devclass_t)arg1;
202 	const char *value;
203 
204 	switch (arg2) {
205 	case DEVCLASS_SYSCTL_PARENT:
206 		value = dc->parent ? dc->parent->name : "";
207 		break;
208 	default:
209 		return (EINVAL);
210 	}
211 	return (SYSCTL_OUT(req, value, strlen(value)));
212 }
213 
214 static void
215 devclass_sysctl_init(devclass_t dc)
216 {
217 
218 	if (dc->sysctl_tree != NULL)
219 		return;
220 	sysctl_ctx_init(&dc->sysctl_ctx);
221 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
222 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
223 	    CTLFLAG_RD, 0, "");
224 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
225 	    OID_AUTO, "%parent", CTLFLAG_RD,
226 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
227 	    "parent class");
228 }
229 
230 enum {
231 	DEVICE_SYSCTL_DESC,
232 	DEVICE_SYSCTL_DRIVER,
233 	DEVICE_SYSCTL_LOCATION,
234 	DEVICE_SYSCTL_PNPINFO,
235 	DEVICE_SYSCTL_PARENT,
236 };
237 
238 static int
239 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
240 {
241 	device_t dev = (device_t)arg1;
242 	const char *value;
243 	char *buf;
244 	int error;
245 
246 	buf = NULL;
247 	switch (arg2) {
248 	case DEVICE_SYSCTL_DESC:
249 		value = dev->desc ? dev->desc : "";
250 		break;
251 	case DEVICE_SYSCTL_DRIVER:
252 		value = dev->driver ? dev->driver->name : "";
253 		break;
254 	case DEVICE_SYSCTL_LOCATION:
255 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
256 		bus_child_location_str(dev, buf, 1024);
257 		break;
258 	case DEVICE_SYSCTL_PNPINFO:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_pnpinfo_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PARENT:
263 		value = dev->parent ? dev->parent->nameunit : "";
264 		break;
265 	default:
266 		return (EINVAL);
267 	}
268 	error = SYSCTL_OUT(req, value, strlen(value));
269 	if (buf != NULL)
270 		free(buf, M_BUS);
271 	return (error);
272 }
273 
274 static void
275 device_sysctl_init(device_t dev)
276 {
277 	devclass_t dc = dev->devclass;
278 
279 	if (dev->sysctl_tree != NULL)
280 		return;
281 	devclass_sysctl_init(dc);
282 	sysctl_ctx_init(&dev->sysctl_ctx);
283 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
284 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
285 	    dev->nameunit + strlen(dc->name),
286 	    CTLFLAG_RD, 0, "");
287 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
288 	    OID_AUTO, "%desc", CTLFLAG_RD,
289 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
290 	    "device description");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%driver", CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
294 	    "device driver name");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%location", CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
298 	    "device location relative to parent");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
302 	    "device identification");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%parent", CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
306 	    "parent device");
307 }
308 
309 static void
310 device_sysctl_update(device_t dev)
311 {
312 	devclass_t dc = dev->devclass;
313 
314 	if (dev->sysctl_tree == NULL)
315 		return;
316 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
317 }
318 
319 static void
320 device_sysctl_fini(device_t dev)
321 {
322 	if (dev->sysctl_tree == NULL)
323 		return;
324 	sysctl_ctx_free(&dev->sysctl_ctx);
325 	dev->sysctl_tree = NULL;
326 }
327 
328 /*
329  * /dev/devctl implementation
330  */
331 
332 /*
333  * This design allows only one reader for /dev/devctl.  This is not desirable
334  * in the long run, but will get a lot of hair out of this implementation.
335  * Maybe we should make this device a clonable device.
336  *
337  * Also note: we specifically do not attach a device to the device_t tree
338  * to avoid potential chicken and egg problems.  One could argue that all
339  * of this belongs to the root node.  One could also further argue that the
340  * sysctl interface that we have not might more properly be an ioctl
341  * interface, but at this stage of the game, I'm not inclined to rock that
342  * boat.
343  *
344  * I'm also not sure that the SIGIO support is done correctly or not, as
345  * I copied it from a driver that had SIGIO support that likely hasn't been
346  * tested since 3.4 or 2.2.8!
347  */
348 
349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
350 static int devctl_disable = 0;
351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
353     sysctl_devctl_disable, "I", "devctl disable");
354 
355 static d_open_t		devopen;
356 static d_close_t	devclose;
357 static d_read_t		devread;
358 static d_ioctl_t	devioctl;
359 static d_poll_t		devpoll;
360 
361 static struct cdevsw dev_cdevsw = {
362 	.d_version =	D_VERSION,
363 	.d_flags =	D_NEEDGIANT,
364 	.d_open =	devopen,
365 	.d_close =	devclose,
366 	.d_read =	devread,
367 	.d_ioctl =	devioctl,
368 	.d_poll =	devpoll,
369 	.d_name =	"devctl",
370 };
371 
372 struct dev_event_info
373 {
374 	char *dei_data;
375 	TAILQ_ENTRY(dev_event_info) dei_link;
376 };
377 
378 TAILQ_HEAD(devq, dev_event_info);
379 
380 static struct dev_softc
381 {
382 	int	inuse;
383 	int	nonblock;
384 	struct mtx mtx;
385 	struct cv cv;
386 	struct selinfo sel;
387 	struct devq devq;
388 	struct proc *async_proc;
389 } devsoftc;
390 
391 static struct cdev *devctl_dev;
392 
393 static void
394 devinit(void)
395 {
396 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
397 	    "devctl");
398 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
399 	cv_init(&devsoftc.cv, "dev cv");
400 	TAILQ_INIT(&devsoftc.devq);
401 }
402 
403 static int
404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
405 {
406 	if (devsoftc.inuse)
407 		return (EBUSY);
408 	/* move to init */
409 	devsoftc.inuse = 1;
410 	devsoftc.nonblock = 0;
411 	devsoftc.async_proc = NULL;
412 	return (0);
413 }
414 
415 static int
416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
417 {
418 	devsoftc.inuse = 0;
419 	mtx_lock(&devsoftc.mtx);
420 	cv_broadcast(&devsoftc.cv);
421 	mtx_unlock(&devsoftc.mtx);
422 
423 	return (0);
424 }
425 
426 /*
427  * The read channel for this device is used to report changes to
428  * userland in realtime.  We are required to free the data as well as
429  * the n1 object because we allocate them separately.  Also note that
430  * we return one record at a time.  If you try to read this device a
431  * character at a time, you will lose the rest of the data.  Listening
432  * programs are expected to cope.
433  */
434 static int
435 devread(struct cdev *dev, struct uio *uio, int ioflag)
436 {
437 	struct dev_event_info *n1;
438 	int rv;
439 
440 	mtx_lock(&devsoftc.mtx);
441 	while (TAILQ_EMPTY(&devsoftc.devq)) {
442 		if (devsoftc.nonblock) {
443 			mtx_unlock(&devsoftc.mtx);
444 			return (EAGAIN);
445 		}
446 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
447 		if (rv) {
448 			/*
449 			 * Need to translate ERESTART to EINTR here? -- jake
450 			 */
451 			mtx_unlock(&devsoftc.mtx);
452 			return (rv);
453 		}
454 	}
455 	n1 = TAILQ_FIRST(&devsoftc.devq);
456 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
457 	mtx_unlock(&devsoftc.mtx);
458 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
459 	free(n1->dei_data, M_BUS);
460 	free(n1, M_BUS);
461 	return (rv);
462 }
463 
464 static	int
465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
466 {
467 	switch (cmd) {
468 
469 	case FIONBIO:
470 		if (*(int*)data)
471 			devsoftc.nonblock = 1;
472 		else
473 			devsoftc.nonblock = 0;
474 		return (0);
475 	case FIOASYNC:
476 		if (*(int*)data)
477 			devsoftc.async_proc = td->td_proc;
478 		else
479 			devsoftc.async_proc = NULL;
480 		return (0);
481 
482 		/* (un)Support for other fcntl() calls. */
483 	case FIOCLEX:
484 	case FIONCLEX:
485 	case FIONREAD:
486 	case FIOSETOWN:
487 	case FIOGETOWN:
488 	default:
489 		break;
490 	}
491 	return (ENOTTY);
492 }
493 
494 static	int
495 devpoll(struct cdev *dev, int events, d_thread_t *td)
496 {
497 	int	revents = 0;
498 
499 	mtx_lock(&devsoftc.mtx);
500 	if (events & (POLLIN | POLLRDNORM)) {
501 		if (!TAILQ_EMPTY(&devsoftc.devq))
502 			revents = events & (POLLIN | POLLRDNORM);
503 		else
504 			selrecord(td, &devsoftc.sel);
505 	}
506 	mtx_unlock(&devsoftc.mtx);
507 
508 	return (revents);
509 }
510 
511 /**
512  * @brief Return whether the userland process is running
513  */
514 boolean_t
515 devctl_process_running(void)
516 {
517 	return (devsoftc.inuse == 1);
518 }
519 
520 /**
521  * @brief Queue data to be read from the devctl device
522  *
523  * Generic interface to queue data to the devctl device.  It is
524  * assumed that @p data is properly formatted.  It is further assumed
525  * that @p data is allocated using the M_BUS malloc type.
526  */
527 void
528 devctl_queue_data(char *data)
529 {
530 	struct dev_event_info *n1 = NULL;
531 	struct proc *p;
532 
533 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
534 	if (n1 == NULL)
535 		return;
536 	n1->dei_data = data;
537 	mtx_lock(&devsoftc.mtx);
538 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
539 	cv_broadcast(&devsoftc.cv);
540 	mtx_unlock(&devsoftc.mtx);
541 	selwakeup(&devsoftc.sel);
542 	p = devsoftc.async_proc;
543 	if (p != NULL) {
544 		PROC_LOCK(p);
545 		psignal(p, SIGIO);
546 		PROC_UNLOCK(p);
547 	}
548 }
549 
550 /**
551  * @brief Send a 'notification' to userland, using standard ways
552  */
553 void
554 devctl_notify(const char *system, const char *subsystem, const char *type,
555     const char *data)
556 {
557 	int len = 0;
558 	char *msg;
559 
560 	if (system == NULL)
561 		return;		/* BOGUS!  Must specify system. */
562 	if (subsystem == NULL)
563 		return;		/* BOGUS!  Must specify subsystem. */
564 	if (type == NULL)
565 		return;		/* BOGUS!  Must specify type. */
566 	len += strlen(" system=") + strlen(system);
567 	len += strlen(" subsystem=") + strlen(subsystem);
568 	len += strlen(" type=") + strlen(type);
569 	/* add in the data message plus newline. */
570 	if (data != NULL)
571 		len += strlen(data);
572 	len += 3;	/* '!', '\n', and NUL */
573 	msg = malloc(len, M_BUS, M_NOWAIT);
574 	if (msg == NULL)
575 		return;		/* Drop it on the floor */
576 	if (data != NULL)
577 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
578 		    system, subsystem, type, data);
579 	else
580 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
581 		    system, subsystem, type);
582 	devctl_queue_data(msg);
583 }
584 
585 /*
586  * Common routine that tries to make sending messages as easy as possible.
587  * We allocate memory for the data, copy strings into that, but do not
588  * free it unless there's an error.  The dequeue part of the driver should
589  * free the data.  We don't send data when the device is disabled.  We do
590  * send data, even when we have no listeners, because we wish to avoid
591  * races relating to startup and restart of listening applications.
592  *
593  * devaddq is designed to string together the type of event, with the
594  * object of that event, plus the plug and play info and location info
595  * for that event.  This is likely most useful for devices, but less
596  * useful for other consumers of this interface.  Those should use
597  * the devctl_queue_data() interface instead.
598  */
599 static void
600 devaddq(const char *type, const char *what, device_t dev)
601 {
602 	char *data = NULL;
603 	char *loc = NULL;
604 	char *pnp = NULL;
605 	const char *parstr;
606 
607 	if (devctl_disable)
608 		return;
609 	data = malloc(1024, M_BUS, M_NOWAIT);
610 	if (data == NULL)
611 		goto bad;
612 
613 	/* get the bus specific location of this device */
614 	loc = malloc(1024, M_BUS, M_NOWAIT);
615 	if (loc == NULL)
616 		goto bad;
617 	*loc = '\0';
618 	bus_child_location_str(dev, loc, 1024);
619 
620 	/* Get the bus specific pnp info of this device */
621 	pnp = malloc(1024, M_BUS, M_NOWAIT);
622 	if (pnp == NULL)
623 		goto bad;
624 	*pnp = '\0';
625 	bus_child_pnpinfo_str(dev, pnp, 1024);
626 
627 	/* Get the parent of this device, or / if high enough in the tree. */
628 	if (device_get_parent(dev) == NULL)
629 		parstr = ".";	/* Or '/' ? */
630 	else
631 		parstr = device_get_nameunit(device_get_parent(dev));
632 	/* String it all together. */
633 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
634 	  parstr);
635 	free(loc, M_BUS);
636 	free(pnp, M_BUS);
637 	devctl_queue_data(data);
638 	return;
639 bad:
640 	free(pnp, M_BUS);
641 	free(loc, M_BUS);
642 	free(data, M_BUS);
643 	return;
644 }
645 
646 /*
647  * A device was added to the tree.  We are called just after it successfully
648  * attaches (that is, probe and attach success for this device).  No call
649  * is made if a device is merely parented into the tree.  See devnomatch
650  * if probe fails.  If attach fails, no notification is sent (but maybe
651  * we should have a different message for this).
652  */
653 static void
654 devadded(device_t dev)
655 {
656 	char *pnp = NULL;
657 	char *tmp = NULL;
658 
659 	pnp = malloc(1024, M_BUS, M_NOWAIT);
660 	if (pnp == NULL)
661 		goto fail;
662 	tmp = malloc(1024, M_BUS, M_NOWAIT);
663 	if (tmp == NULL)
664 		goto fail;
665 	*pnp = '\0';
666 	bus_child_pnpinfo_str(dev, pnp, 1024);
667 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
668 	devaddq("+", tmp, dev);
669 fail:
670 	if (pnp != NULL)
671 		free(pnp, M_BUS);
672 	if (tmp != NULL)
673 		free(tmp, M_BUS);
674 	return;
675 }
676 
677 /*
678  * A device was removed from the tree.  We are called just before this
679  * happens.
680  */
681 static void
682 devremoved(device_t dev)
683 {
684 	char *pnp = NULL;
685 	char *tmp = NULL;
686 
687 	pnp = malloc(1024, M_BUS, M_NOWAIT);
688 	if (pnp == NULL)
689 		goto fail;
690 	tmp = malloc(1024, M_BUS, M_NOWAIT);
691 	if (tmp == NULL)
692 		goto fail;
693 	*pnp = '\0';
694 	bus_child_pnpinfo_str(dev, pnp, 1024);
695 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
696 	devaddq("-", tmp, dev);
697 fail:
698 	if (pnp != NULL)
699 		free(pnp, M_BUS);
700 	if (tmp != NULL)
701 		free(tmp, M_BUS);
702 	return;
703 }
704 
705 /*
706  * Called when there's no match for this device.  This is only called
707  * the first time that no match happens, so we don't keep getitng this
708  * message.  Should that prove to be undesirable, we can change it.
709  * This is called when all drivers that can attach to a given bus
710  * decline to accept this device.  Other errrors may not be detected.
711  */
712 static void
713 devnomatch(device_t dev)
714 {
715 	devaddq("?", "", dev);
716 }
717 
718 static int
719 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
720 {
721 	struct dev_event_info *n1;
722 	int dis, error;
723 
724 	dis = devctl_disable;
725 	error = sysctl_handle_int(oidp, &dis, 0, req);
726 	if (error || !req->newptr)
727 		return (error);
728 	mtx_lock(&devsoftc.mtx);
729 	devctl_disable = dis;
730 	if (dis) {
731 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
732 			n1 = TAILQ_FIRST(&devsoftc.devq);
733 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
734 			free(n1->dei_data, M_BUS);
735 			free(n1, M_BUS);
736 		}
737 	}
738 	mtx_unlock(&devsoftc.mtx);
739 	return (0);
740 }
741 
742 /* End of /dev/devctl code */
743 
744 TAILQ_HEAD(,device)	bus_data_devices;
745 static int bus_data_generation = 1;
746 
747 kobj_method_t null_methods[] = {
748 	{ 0, 0 }
749 };
750 
751 DEFINE_CLASS(null, null_methods, 0);
752 
753 /*
754  * Devclass implementation
755  */
756 
757 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
758 
759 
760 /**
761  * @internal
762  * @brief Find or create a device class
763  *
764  * If a device class with the name @p classname exists, return it,
765  * otherwise if @p create is non-zero create and return a new device
766  * class.
767  *
768  * If @p parentname is non-NULL, the parent of the devclass is set to
769  * the devclass of that name.
770  *
771  * @param classname	the devclass name to find or create
772  * @param parentname	the parent devclass name or @c NULL
773  * @param create	non-zero to create a devclass
774  */
775 static devclass_t
776 devclass_find_internal(const char *classname, const char *parentname,
777 		       int create)
778 {
779 	devclass_t dc;
780 
781 	PDEBUG(("looking for %s", classname));
782 	if (!classname)
783 		return (NULL);
784 
785 	TAILQ_FOREACH(dc, &devclasses, link) {
786 		if (!strcmp(dc->name, classname))
787 			break;
788 	}
789 
790 	if (create && !dc) {
791 		PDEBUG(("creating %s", classname));
792 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
793 		    M_BUS, M_NOWAIT|M_ZERO);
794 		if (!dc)
795 			return (NULL);
796 		dc->parent = NULL;
797 		dc->name = (char*) (dc + 1);
798 		strcpy(dc->name, classname);
799 		TAILQ_INIT(&dc->drivers);
800 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
801 
802 		bus_data_generation_update();
803 	}
804 
805 	/*
806 	 * If a parent class is specified, then set that as our parent so
807 	 * that this devclass will support drivers for the parent class as
808 	 * well.  If the parent class has the same name don't do this though
809 	 * as it creates a cycle that can trigger an infinite loop in
810 	 * device_probe_child() if a device exists for which there is no
811 	 * suitable driver.
812 	 */
813 	if (parentname && dc && !dc->parent &&
814 	    strcmp(classname, parentname) != 0) {
815 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
816 	}
817 
818 	return (dc);
819 }
820 
821 /**
822  * @brief Create a device class
823  *
824  * If a device class with the name @p classname exists, return it,
825  * otherwise create and return a new device class.
826  *
827  * @param classname	the devclass name to find or create
828  */
829 devclass_t
830 devclass_create(const char *classname)
831 {
832 	return (devclass_find_internal(classname, NULL, TRUE));
833 }
834 
835 /**
836  * @brief Find a device class
837  *
838  * If a device class with the name @p classname exists, return it,
839  * otherwise return @c NULL.
840  *
841  * @param classname	the devclass name to find
842  */
843 devclass_t
844 devclass_find(const char *classname)
845 {
846 	return (devclass_find_internal(classname, NULL, FALSE));
847 }
848 
849 /**
850  * @brief Add a device driver to a device class
851  *
852  * Add a device driver to a devclass. This is normally called
853  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
854  * all devices in the devclass will be called to allow them to attempt
855  * to re-probe any unmatched children.
856  *
857  * @param dc		the devclass to edit
858  * @param driver	the driver to register
859  */
860 int
861 devclass_add_driver(devclass_t dc, driver_t *driver)
862 {
863 	driverlink_t dl;
864 	int i;
865 
866 	PDEBUG(("%s", DRIVERNAME(driver)));
867 
868 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
869 	if (!dl)
870 		return (ENOMEM);
871 
872 	/*
873 	 * Compile the driver's methods. Also increase the reference count
874 	 * so that the class doesn't get freed when the last instance
875 	 * goes. This means we can safely use static methods and avoids a
876 	 * double-free in devclass_delete_driver.
877 	 */
878 	kobj_class_compile((kobj_class_t) driver);
879 
880 	/*
881 	 * Make sure the devclass which the driver is implementing exists.
882 	 */
883 	devclass_find_internal(driver->name, NULL, TRUE);
884 
885 	dl->driver = driver;
886 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
887 	driver->refs++;		/* XXX: kobj_mtx */
888 
889 	/*
890 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
891 	 */
892 	for (i = 0; i < dc->maxunit; i++)
893 		if (dc->devices[i])
894 			BUS_DRIVER_ADDED(dc->devices[i], driver);
895 
896 	bus_data_generation_update();
897 	return (0);
898 }
899 
900 /**
901  * @brief Delete a device driver from a device class
902  *
903  * Delete a device driver from a devclass. This is normally called
904  * automatically by DRIVER_MODULE().
905  *
906  * If the driver is currently attached to any devices,
907  * devclass_delete_driver() will first attempt to detach from each
908  * device. If one of the detach calls fails, the driver will not be
909  * deleted.
910  *
911  * @param dc		the devclass to edit
912  * @param driver	the driver to unregister
913  */
914 int
915 devclass_delete_driver(devclass_t busclass, driver_t *driver)
916 {
917 	devclass_t dc = devclass_find(driver->name);
918 	driverlink_t dl;
919 	device_t dev;
920 	int i;
921 	int error;
922 
923 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
924 
925 	if (!dc)
926 		return (0);
927 
928 	/*
929 	 * Find the link structure in the bus' list of drivers.
930 	 */
931 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
932 		if (dl->driver == driver)
933 			break;
934 	}
935 
936 	if (!dl) {
937 		PDEBUG(("%s not found in %s list", driver->name,
938 		    busclass->name));
939 		return (ENOENT);
940 	}
941 
942 	/*
943 	 * Disassociate from any devices.  We iterate through all the
944 	 * devices in the devclass of the driver and detach any which are
945 	 * using the driver and which have a parent in the devclass which
946 	 * we are deleting from.
947 	 *
948 	 * Note that since a driver can be in multiple devclasses, we
949 	 * should not detach devices which are not children of devices in
950 	 * the affected devclass.
951 	 */
952 	for (i = 0; i < dc->maxunit; i++) {
953 		if (dc->devices[i]) {
954 			dev = dc->devices[i];
955 			if (dev->driver == driver && dev->parent &&
956 			    dev->parent->devclass == busclass) {
957 				if ((error = device_detach(dev)) != 0)
958 					return (error);
959 				device_set_driver(dev, NULL);
960 			}
961 		}
962 	}
963 
964 	TAILQ_REMOVE(&busclass->drivers, dl, link);
965 	free(dl, M_BUS);
966 
967 	/* XXX: kobj_mtx */
968 	driver->refs--;
969 	if (driver->refs == 0)
970 		kobj_class_free((kobj_class_t) driver);
971 
972 	bus_data_generation_update();
973 	return (0);
974 }
975 
976 /**
977  * @brief Quiesces a set of device drivers from a device class
978  *
979  * Quiesce a device driver from a devclass. This is normally called
980  * automatically by DRIVER_MODULE().
981  *
982  * If the driver is currently attached to any devices,
983  * devclass_quiesece_driver() will first attempt to quiesce each
984  * device.
985  *
986  * @param dc		the devclass to edit
987  * @param driver	the driver to unregister
988  */
989 int
990 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
991 {
992 	devclass_t dc = devclass_find(driver->name);
993 	driverlink_t dl;
994 	device_t dev;
995 	int i;
996 	int error;
997 
998 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
999 
1000 	if (!dc)
1001 		return (0);
1002 
1003 	/*
1004 	 * Find the link structure in the bus' list of drivers.
1005 	 */
1006 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1007 		if (dl->driver == driver)
1008 			break;
1009 	}
1010 
1011 	if (!dl) {
1012 		PDEBUG(("%s not found in %s list", driver->name,
1013 		    busclass->name));
1014 		return (ENOENT);
1015 	}
1016 
1017 	/*
1018 	 * Quiesce all devices.  We iterate through all the devices in
1019 	 * the devclass of the driver and quiesce any which are using
1020 	 * the driver and which have a parent in the devclass which we
1021 	 * are quiescing.
1022 	 *
1023 	 * Note that since a driver can be in multiple devclasses, we
1024 	 * should not quiesce devices which are not children of
1025 	 * devices in the affected devclass.
1026 	 */
1027 	for (i = 0; i < dc->maxunit; i++) {
1028 		if (dc->devices[i]) {
1029 			dev = dc->devices[i];
1030 			if (dev->driver == driver && dev->parent &&
1031 			    dev->parent->devclass == busclass) {
1032 				if ((error = device_quiesce(dev)) != 0)
1033 					return (error);
1034 			}
1035 		}
1036 	}
1037 
1038 	return (0);
1039 }
1040 
1041 /**
1042  * @internal
1043  */
1044 static driverlink_t
1045 devclass_find_driver_internal(devclass_t dc, const char *classname)
1046 {
1047 	driverlink_t dl;
1048 
1049 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1050 
1051 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1052 		if (!strcmp(dl->driver->name, classname))
1053 			return (dl);
1054 	}
1055 
1056 	PDEBUG(("not found"));
1057 	return (NULL);
1058 }
1059 
1060 /**
1061  * @brief Search a devclass for a driver
1062  *
1063  * This function searches the devclass's list of drivers and returns
1064  * the first driver whose name is @p classname or @c NULL if there is
1065  * no driver of that name.
1066  *
1067  * @param dc		the devclass to search
1068  * @param classname	the driver name to search for
1069  */
1070 kobj_class_t
1071 devclass_find_driver(devclass_t dc, const char *classname)
1072 {
1073 	driverlink_t dl;
1074 
1075 	dl = devclass_find_driver_internal(dc, classname);
1076 	if (dl)
1077 		return (dl->driver);
1078 	return (NULL);
1079 }
1080 
1081 /**
1082  * @brief Return the name of the devclass
1083  */
1084 const char *
1085 devclass_get_name(devclass_t dc)
1086 {
1087 	return (dc->name);
1088 }
1089 
1090 /**
1091  * @brief Find a device given a unit number
1092  *
1093  * @param dc		the devclass to search
1094  * @param unit		the unit number to search for
1095  *
1096  * @returns		the device with the given unit number or @c
1097  *			NULL if there is no such device
1098  */
1099 device_t
1100 devclass_get_device(devclass_t dc, int unit)
1101 {
1102 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1103 		return (NULL);
1104 	return (dc->devices[unit]);
1105 }
1106 
1107 /**
1108  * @brief Find the softc field of a device given a unit number
1109  *
1110  * @param dc		the devclass to search
1111  * @param unit		the unit number to search for
1112  *
1113  * @returns		the softc field of the device with the given
1114  *			unit number or @c NULL if there is no such
1115  *			device
1116  */
1117 void *
1118 devclass_get_softc(devclass_t dc, int unit)
1119 {
1120 	device_t dev;
1121 
1122 	dev = devclass_get_device(dc, unit);
1123 	if (!dev)
1124 		return (NULL);
1125 
1126 	return (device_get_softc(dev));
1127 }
1128 
1129 /**
1130  * @brief Get a list of devices in the devclass
1131  *
1132  * An array containing a list of all the devices in the given devclass
1133  * is allocated and returned in @p *devlistp. The number of devices
1134  * in the array is returned in @p *devcountp. The caller should free
1135  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1136  *
1137  * @param dc		the devclass to examine
1138  * @param devlistp	points at location for array pointer return
1139  *			value
1140  * @param devcountp	points at location for array size return value
1141  *
1142  * @retval 0		success
1143  * @retval ENOMEM	the array allocation failed
1144  */
1145 int
1146 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1147 {
1148 	int count, i;
1149 	device_t *list;
1150 
1151 	count = devclass_get_count(dc);
1152 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1153 	if (!list)
1154 		return (ENOMEM);
1155 
1156 	count = 0;
1157 	for (i = 0; i < dc->maxunit; i++) {
1158 		if (dc->devices[i]) {
1159 			list[count] = dc->devices[i];
1160 			count++;
1161 		}
1162 	}
1163 
1164 	*devlistp = list;
1165 	*devcountp = count;
1166 
1167 	return (0);
1168 }
1169 
1170 /**
1171  * @brief Get a list of drivers in the devclass
1172  *
1173  * An array containing a list of pointers to all the drivers in the
1174  * given devclass is allocated and returned in @p *listp.  The number
1175  * of drivers in the array is returned in @p *countp. The caller should
1176  * free the array using @c free(p, M_TEMP).
1177  *
1178  * @param dc		the devclass to examine
1179  * @param listp		gives location for array pointer return value
1180  * @param countp	gives location for number of array elements
1181  *			return value
1182  *
1183  * @retval 0		success
1184  * @retval ENOMEM	the array allocation failed
1185  */
1186 int
1187 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1188 {
1189 	driverlink_t dl;
1190 	driver_t **list;
1191 	int count;
1192 
1193 	count = 0;
1194 	TAILQ_FOREACH(dl, &dc->drivers, link)
1195 		count++;
1196 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1197 	if (list == NULL)
1198 		return (ENOMEM);
1199 
1200 	count = 0;
1201 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1202 		list[count] = dl->driver;
1203 		count++;
1204 	}
1205 	*listp = list;
1206 	*countp = count;
1207 
1208 	return (0);
1209 }
1210 
1211 /**
1212  * @brief Get the number of devices in a devclass
1213  *
1214  * @param dc		the devclass to examine
1215  */
1216 int
1217 devclass_get_count(devclass_t dc)
1218 {
1219 	int count, i;
1220 
1221 	count = 0;
1222 	for (i = 0; i < dc->maxunit; i++)
1223 		if (dc->devices[i])
1224 			count++;
1225 	return (count);
1226 }
1227 
1228 /**
1229  * @brief Get the maximum unit number used in a devclass
1230  *
1231  * Note that this is one greater than the highest currently-allocated
1232  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1233  * that not even the devclass has been allocated yet.
1234  *
1235  * @param dc		the devclass to examine
1236  */
1237 int
1238 devclass_get_maxunit(devclass_t dc)
1239 {
1240 	if (dc == NULL)
1241 		return (-1);
1242 	return (dc->maxunit);
1243 }
1244 
1245 /**
1246  * @brief Find a free unit number in a devclass
1247  *
1248  * This function searches for the first unused unit number greater
1249  * that or equal to @p unit.
1250  *
1251  * @param dc		the devclass to examine
1252  * @param unit		the first unit number to check
1253  */
1254 int
1255 devclass_find_free_unit(devclass_t dc, int unit)
1256 {
1257 	if (dc == NULL)
1258 		return (unit);
1259 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1260 		unit++;
1261 	return (unit);
1262 }
1263 
1264 /**
1265  * @brief Set the parent of a devclass
1266  *
1267  * The parent class is normally initialised automatically by
1268  * DRIVER_MODULE().
1269  *
1270  * @param dc		the devclass to edit
1271  * @param pdc		the new parent devclass
1272  */
1273 void
1274 devclass_set_parent(devclass_t dc, devclass_t pdc)
1275 {
1276 	dc->parent = pdc;
1277 }
1278 
1279 /**
1280  * @brief Get the parent of a devclass
1281  *
1282  * @param dc		the devclass to examine
1283  */
1284 devclass_t
1285 devclass_get_parent(devclass_t dc)
1286 {
1287 	return (dc->parent);
1288 }
1289 
1290 struct sysctl_ctx_list *
1291 devclass_get_sysctl_ctx(devclass_t dc)
1292 {
1293 	return (&dc->sysctl_ctx);
1294 }
1295 
1296 struct sysctl_oid *
1297 devclass_get_sysctl_tree(devclass_t dc)
1298 {
1299 	return (dc->sysctl_tree);
1300 }
1301 
1302 /**
1303  * @internal
1304  * @brief Allocate a unit number
1305  *
1306  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1307  * will do). The allocated unit number is returned in @p *unitp.
1308 
1309  * @param dc		the devclass to allocate from
1310  * @param unitp		points at the location for the allocated unit
1311  *			number
1312  *
1313  * @retval 0		success
1314  * @retval EEXIST	the requested unit number is already allocated
1315  * @retval ENOMEM	memory allocation failure
1316  */
1317 static int
1318 devclass_alloc_unit(devclass_t dc, int *unitp)
1319 {
1320 	int unit = *unitp;
1321 
1322 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1323 
1324 	/* If we were given a wired unit number, check for existing device */
1325 	/* XXX imp XXX */
1326 	if (unit != -1) {
1327 		if (unit >= 0 && unit < dc->maxunit &&
1328 		    dc->devices[unit] != NULL) {
1329 			if (bootverbose)
1330 				printf("%s: %s%d already exists; skipping it\n",
1331 				    dc->name, dc->name, *unitp);
1332 			return (EEXIST);
1333 		}
1334 	} else {
1335 		/* Unwired device, find the next available slot for it */
1336 		unit = 0;
1337 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1338 			unit++;
1339 	}
1340 
1341 	/*
1342 	 * We've selected a unit beyond the length of the table, so let's
1343 	 * extend the table to make room for all units up to and including
1344 	 * this one.
1345 	 */
1346 	if (unit >= dc->maxunit) {
1347 		device_t *newlist, *oldlist;
1348 		int newsize;
1349 
1350 		oldlist = dc->devices;
1351 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1352 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1353 		if (!newlist)
1354 			return (ENOMEM);
1355 		if (oldlist != NULL)
1356 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1357 		bzero(newlist + dc->maxunit,
1358 		    sizeof(device_t) * (newsize - dc->maxunit));
1359 		dc->devices = newlist;
1360 		dc->maxunit = newsize;
1361 		if (oldlist != NULL)
1362 			free(oldlist, M_BUS);
1363 	}
1364 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1365 
1366 	*unitp = unit;
1367 	return (0);
1368 }
1369 
1370 /**
1371  * @internal
1372  * @brief Add a device to a devclass
1373  *
1374  * A unit number is allocated for the device (using the device's
1375  * preferred unit number if any) and the device is registered in the
1376  * devclass. This allows the device to be looked up by its unit
1377  * number, e.g. by decoding a dev_t minor number.
1378  *
1379  * @param dc		the devclass to add to
1380  * @param dev		the device to add
1381  *
1382  * @retval 0		success
1383  * @retval EEXIST	the requested unit number is already allocated
1384  * @retval ENOMEM	memory allocation failure
1385  */
1386 static int
1387 devclass_add_device(devclass_t dc, device_t dev)
1388 {
1389 	int buflen, error;
1390 
1391 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1392 
1393 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1394 	if (buflen < 0)
1395 		return (ENOMEM);
1396 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1397 	if (!dev->nameunit)
1398 		return (ENOMEM);
1399 
1400 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1401 		free(dev->nameunit, M_BUS);
1402 		dev->nameunit = NULL;
1403 		return (error);
1404 	}
1405 	dc->devices[dev->unit] = dev;
1406 	dev->devclass = dc;
1407 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1408 
1409 	return (0);
1410 }
1411 
1412 /**
1413  * @internal
1414  * @brief Delete a device from a devclass
1415  *
1416  * The device is removed from the devclass's device list and its unit
1417  * number is freed.
1418 
1419  * @param dc		the devclass to delete from
1420  * @param dev		the device to delete
1421  *
1422  * @retval 0		success
1423  */
1424 static int
1425 devclass_delete_device(devclass_t dc, device_t dev)
1426 {
1427 	if (!dc || !dev)
1428 		return (0);
1429 
1430 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1431 
1432 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1433 		panic("devclass_delete_device: inconsistent device class");
1434 	dc->devices[dev->unit] = NULL;
1435 	if (dev->flags & DF_WILDCARD)
1436 		dev->unit = -1;
1437 	dev->devclass = NULL;
1438 	free(dev->nameunit, M_BUS);
1439 	dev->nameunit = NULL;
1440 
1441 	return (0);
1442 }
1443 
1444 /**
1445  * @internal
1446  * @brief Make a new device and add it as a child of @p parent
1447  *
1448  * @param parent	the parent of the new device
1449  * @param name		the devclass name of the new device or @c NULL
1450  *			to leave the devclass unspecified
1451  * @parem unit		the unit number of the new device of @c -1 to
1452  *			leave the unit number unspecified
1453  *
1454  * @returns the new device
1455  */
1456 static device_t
1457 make_device(device_t parent, const char *name, int unit)
1458 {
1459 	device_t dev;
1460 	devclass_t dc;
1461 
1462 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1463 
1464 	if (name) {
1465 		dc = devclass_find_internal(name, NULL, TRUE);
1466 		if (!dc) {
1467 			printf("make_device: can't find device class %s\n",
1468 			    name);
1469 			return (NULL);
1470 		}
1471 	} else {
1472 		dc = NULL;
1473 	}
1474 
1475 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1476 	if (!dev)
1477 		return (NULL);
1478 
1479 	dev->parent = parent;
1480 	TAILQ_INIT(&dev->children);
1481 	kobj_init((kobj_t) dev, &null_class);
1482 	dev->driver = NULL;
1483 	dev->devclass = NULL;
1484 	dev->unit = unit;
1485 	dev->nameunit = NULL;
1486 	dev->desc = NULL;
1487 	dev->busy = 0;
1488 	dev->devflags = 0;
1489 	dev->flags = DF_ENABLED;
1490 	dev->order = 0;
1491 	if (unit == -1)
1492 		dev->flags |= DF_WILDCARD;
1493 	if (name) {
1494 		dev->flags |= DF_FIXEDCLASS;
1495 		if (devclass_add_device(dc, dev)) {
1496 			kobj_delete((kobj_t) dev, M_BUS);
1497 			return (NULL);
1498 		}
1499 	}
1500 	dev->ivars = NULL;
1501 	dev->softc = NULL;
1502 
1503 	dev->state = DS_NOTPRESENT;
1504 
1505 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1506 	bus_data_generation_update();
1507 
1508 	return (dev);
1509 }
1510 
1511 /**
1512  * @internal
1513  * @brief Print a description of a device.
1514  */
1515 static int
1516 device_print_child(device_t dev, device_t child)
1517 {
1518 	int retval = 0;
1519 
1520 	if (device_is_alive(child))
1521 		retval += BUS_PRINT_CHILD(dev, child);
1522 	else
1523 		retval += device_printf(child, " not found\n");
1524 
1525 	return (retval);
1526 }
1527 
1528 /**
1529  * @brief Create a new device
1530  *
1531  * This creates a new device and adds it as a child of an existing
1532  * parent device. The new device will be added after the last existing
1533  * child with order zero.
1534  *
1535  * @param dev		the device which will be the parent of the
1536  *			new child device
1537  * @param name		devclass name for new device or @c NULL if not
1538  *			specified
1539  * @param unit		unit number for new device or @c -1 if not
1540  *			specified
1541  *
1542  * @returns		the new device
1543  */
1544 device_t
1545 device_add_child(device_t dev, const char *name, int unit)
1546 {
1547 	return (device_add_child_ordered(dev, 0, name, unit));
1548 }
1549 
1550 /**
1551  * @brief Create a new device
1552  *
1553  * This creates a new device and adds it as a child of an existing
1554  * parent device. The new device will be added after the last existing
1555  * child with the same order.
1556  *
1557  * @param dev		the device which will be the parent of the
1558  *			new child device
1559  * @param order		a value which is used to partially sort the
1560  *			children of @p dev - devices created using
1561  *			lower values of @p order appear first in @p
1562  *			dev's list of children
1563  * @param name		devclass name for new device or @c NULL if not
1564  *			specified
1565  * @param unit		unit number for new device or @c -1 if not
1566  *			specified
1567  *
1568  * @returns		the new device
1569  */
1570 device_t
1571 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1572 {
1573 	device_t child;
1574 	device_t place;
1575 
1576 	PDEBUG(("%s at %s with order %d as unit %d",
1577 	    name, DEVICENAME(dev), order, unit));
1578 
1579 	child = make_device(dev, name, unit);
1580 	if (child == NULL)
1581 		return (child);
1582 	child->order = order;
1583 
1584 	TAILQ_FOREACH(place, &dev->children, link) {
1585 		if (place->order > order)
1586 			break;
1587 	}
1588 
1589 	if (place) {
1590 		/*
1591 		 * The device 'place' is the first device whose order is
1592 		 * greater than the new child.
1593 		 */
1594 		TAILQ_INSERT_BEFORE(place, child, link);
1595 	} else {
1596 		/*
1597 		 * The new child's order is greater or equal to the order of
1598 		 * any existing device. Add the child to the tail of the list.
1599 		 */
1600 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1601 	}
1602 
1603 	bus_data_generation_update();
1604 	return (child);
1605 }
1606 
1607 /**
1608  * @brief Delete a device
1609  *
1610  * This function deletes a device along with all of its children. If
1611  * the device currently has a driver attached to it, the device is
1612  * detached first using device_detach().
1613  *
1614  * @param dev		the parent device
1615  * @param child		the device to delete
1616  *
1617  * @retval 0		success
1618  * @retval non-zero	a unit error code describing the error
1619  */
1620 int
1621 device_delete_child(device_t dev, device_t child)
1622 {
1623 	int error;
1624 	device_t grandchild;
1625 
1626 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1627 
1628 	/* remove children first */
1629 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1630 		error = device_delete_child(child, grandchild);
1631 		if (error)
1632 			return (error);
1633 	}
1634 
1635 	if ((error = device_detach(child)) != 0)
1636 		return (error);
1637 	if (child->devclass)
1638 		devclass_delete_device(child->devclass, child);
1639 	TAILQ_REMOVE(&dev->children, child, link);
1640 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1641 	kobj_delete((kobj_t) child, M_BUS);
1642 
1643 	bus_data_generation_update();
1644 	return (0);
1645 }
1646 
1647 /**
1648  * @brief Find a device given a unit number
1649  *
1650  * This is similar to devclass_get_devices() but only searches for
1651  * devices which have @p dev as a parent.
1652  *
1653  * @param dev		the parent device to search
1654  * @param unit		the unit number to search for.  If the unit is -1,
1655  *			return the first child of @p dev which has name
1656  *			@p classname (that is, the one with the lowest unit.)
1657  *
1658  * @returns		the device with the given unit number or @c
1659  *			NULL if there is no such device
1660  */
1661 device_t
1662 device_find_child(device_t dev, const char *classname, int unit)
1663 {
1664 	devclass_t dc;
1665 	device_t child;
1666 
1667 	dc = devclass_find(classname);
1668 	if (!dc)
1669 		return (NULL);
1670 
1671 	if (unit != -1) {
1672 		child = devclass_get_device(dc, unit);
1673 		if (child && child->parent == dev)
1674 			return (child);
1675 	} else {
1676 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1677 			child = devclass_get_device(dc, unit);
1678 			if (child && child->parent == dev)
1679 				return (child);
1680 		}
1681 	}
1682 	return (NULL);
1683 }
1684 
1685 /**
1686  * @internal
1687  */
1688 static driverlink_t
1689 first_matching_driver(devclass_t dc, device_t dev)
1690 {
1691 	if (dev->devclass)
1692 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1693 	return (TAILQ_FIRST(&dc->drivers));
1694 }
1695 
1696 /**
1697  * @internal
1698  */
1699 static driverlink_t
1700 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1701 {
1702 	if (dev->devclass) {
1703 		driverlink_t dl;
1704 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1705 			if (!strcmp(dev->devclass->name, dl->driver->name))
1706 				return (dl);
1707 		return (NULL);
1708 	}
1709 	return (TAILQ_NEXT(last, link));
1710 }
1711 
1712 /**
1713  * @internal
1714  */
1715 int
1716 device_probe_child(device_t dev, device_t child)
1717 {
1718 	devclass_t dc;
1719 	driverlink_t best = NULL;
1720 	driverlink_t dl;
1721 	int result, pri = 0;
1722 	int hasclass = (child->devclass != 0);
1723 
1724 	GIANT_REQUIRED;
1725 
1726 	dc = dev->devclass;
1727 	if (!dc)
1728 		panic("device_probe_child: parent device has no devclass");
1729 
1730 	/*
1731 	 * If the state is already probed, then return.  However, don't
1732 	 * return if we can rebid this object.
1733 	 */
1734 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1735 		return (0);
1736 
1737 	for (; dc; dc = dc->parent) {
1738 		for (dl = first_matching_driver(dc, child);
1739 		     dl;
1740 		     dl = next_matching_driver(dc, child, dl)) {
1741 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1742 			device_set_driver(child, dl->driver);
1743 			if (!hasclass)
1744 				device_set_devclass(child, dl->driver->name);
1745 
1746 			/* Fetch any flags for the device before probing. */
1747 			resource_int_value(dl->driver->name, child->unit,
1748 			    "flags", &child->devflags);
1749 
1750 			result = DEVICE_PROBE(child);
1751 
1752 			/* Reset flags and devclass before the next probe. */
1753 			child->devflags = 0;
1754 			if (!hasclass)
1755 				device_set_devclass(child, NULL);
1756 
1757 			/*
1758 			 * If the driver returns SUCCESS, there can be
1759 			 * no higher match for this device.
1760 			 */
1761 			if (result == 0) {
1762 				best = dl;
1763 				pri = 0;
1764 				break;
1765 			}
1766 
1767 			/*
1768 			 * The driver returned an error so it
1769 			 * certainly doesn't match.
1770 			 */
1771 			if (result > 0) {
1772 				device_set_driver(child, NULL);
1773 				continue;
1774 			}
1775 
1776 			/*
1777 			 * A priority lower than SUCCESS, remember the
1778 			 * best matching driver. Initialise the value
1779 			 * of pri for the first match.
1780 			 */
1781 			if (best == NULL || result > pri) {
1782 				/*
1783 				 * Probes that return BUS_PROBE_NOWILDCARD
1784 				 * or lower only match when they are set
1785 				 * in stone by the parent bus.
1786 				 */
1787 				if (result <= BUS_PROBE_NOWILDCARD &&
1788 				    child->flags & DF_WILDCARD)
1789 					continue;
1790 				best = dl;
1791 				pri = result;
1792 				continue;
1793 			}
1794 		}
1795 		/*
1796 		 * If we have an unambiguous match in this devclass,
1797 		 * don't look in the parent.
1798 		 */
1799 		if (best && pri == 0)
1800 			break;
1801 	}
1802 
1803 	/*
1804 	 * If we found a driver, change state and initialise the devclass.
1805 	 */
1806 	/* XXX What happens if we rebid and got no best? */
1807 	if (best) {
1808 		/*
1809 		 * If this device was atached, and we were asked to
1810 		 * rescan, and it is a different driver, then we have
1811 		 * to detach the old driver and reattach this new one.
1812 		 * Note, we don't have to check for DF_REBID here
1813 		 * because if the state is > DS_ALIVE, we know it must
1814 		 * be.
1815 		 *
1816 		 * This assumes that all DF_REBID drivers can have
1817 		 * their probe routine called at any time and that
1818 		 * they are idempotent as well as completely benign in
1819 		 * normal operations.
1820 		 *
1821 		 * We also have to make sure that the detach
1822 		 * succeeded, otherwise we fail the operation (or
1823 		 * maybe it should just fail silently?  I'm torn).
1824 		 */
1825 		if (child->state > DS_ALIVE && best->driver != child->driver)
1826 			if ((result = device_detach(dev)) != 0)
1827 				return (result);
1828 
1829 		/* Set the winning driver, devclass, and flags. */
1830 		if (!child->devclass)
1831 			device_set_devclass(child, best->driver->name);
1832 		device_set_driver(child, best->driver);
1833 		resource_int_value(best->driver->name, child->unit,
1834 		    "flags", &child->devflags);
1835 
1836 		if (pri < 0) {
1837 			/*
1838 			 * A bit bogus. Call the probe method again to make
1839 			 * sure that we have the right description.
1840 			 */
1841 			DEVICE_PROBE(child);
1842 #if 0
1843 			child->flags |= DF_REBID;
1844 #endif
1845 		} else
1846 			child->flags &= ~DF_REBID;
1847 		child->state = DS_ALIVE;
1848 
1849 		bus_data_generation_update();
1850 		return (0);
1851 	}
1852 
1853 	return (ENXIO);
1854 }
1855 
1856 /**
1857  * @brief Return the parent of a device
1858  */
1859 device_t
1860 device_get_parent(device_t dev)
1861 {
1862 	return (dev->parent);
1863 }
1864 
1865 /**
1866  * @brief Get a list of children of a device
1867  *
1868  * An array containing a list of all the children of the given device
1869  * is allocated and returned in @p *devlistp. The number of devices
1870  * in the array is returned in @p *devcountp. The caller should free
1871  * the array using @c free(p, M_TEMP).
1872  *
1873  * @param dev		the device to examine
1874  * @param devlistp	points at location for array pointer return
1875  *			value
1876  * @param devcountp	points at location for array size return value
1877  *
1878  * @retval 0		success
1879  * @retval ENOMEM	the array allocation failed
1880  */
1881 int
1882 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1883 {
1884 	int count;
1885 	device_t child;
1886 	device_t *list;
1887 
1888 	count = 0;
1889 	TAILQ_FOREACH(child, &dev->children, link) {
1890 		count++;
1891 	}
1892 
1893 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1894 	if (!list)
1895 		return (ENOMEM);
1896 
1897 	count = 0;
1898 	TAILQ_FOREACH(child, &dev->children, link) {
1899 		list[count] = child;
1900 		count++;
1901 	}
1902 
1903 	*devlistp = list;
1904 	*devcountp = count;
1905 
1906 	return (0);
1907 }
1908 
1909 /**
1910  * @brief Return the current driver for the device or @c NULL if there
1911  * is no driver currently attached
1912  */
1913 driver_t *
1914 device_get_driver(device_t dev)
1915 {
1916 	return (dev->driver);
1917 }
1918 
1919 /**
1920  * @brief Return the current devclass for the device or @c NULL if
1921  * there is none.
1922  */
1923 devclass_t
1924 device_get_devclass(device_t dev)
1925 {
1926 	return (dev->devclass);
1927 }
1928 
1929 /**
1930  * @brief Return the name of the device's devclass or @c NULL if there
1931  * is none.
1932  */
1933 const char *
1934 device_get_name(device_t dev)
1935 {
1936 	if (dev != NULL && dev->devclass)
1937 		return (devclass_get_name(dev->devclass));
1938 	return (NULL);
1939 }
1940 
1941 /**
1942  * @brief Return a string containing the device's devclass name
1943  * followed by an ascii representation of the device's unit number
1944  * (e.g. @c "foo2").
1945  */
1946 const char *
1947 device_get_nameunit(device_t dev)
1948 {
1949 	return (dev->nameunit);
1950 }
1951 
1952 /**
1953  * @brief Return the device's unit number.
1954  */
1955 int
1956 device_get_unit(device_t dev)
1957 {
1958 	return (dev->unit);
1959 }
1960 
1961 /**
1962  * @brief Return the device's description string
1963  */
1964 const char *
1965 device_get_desc(device_t dev)
1966 {
1967 	return (dev->desc);
1968 }
1969 
1970 /**
1971  * @brief Return the device's flags
1972  */
1973 u_int32_t
1974 device_get_flags(device_t dev)
1975 {
1976 	return (dev->devflags);
1977 }
1978 
1979 struct sysctl_ctx_list *
1980 device_get_sysctl_ctx(device_t dev)
1981 {
1982 	return (&dev->sysctl_ctx);
1983 }
1984 
1985 struct sysctl_oid *
1986 device_get_sysctl_tree(device_t dev)
1987 {
1988 	return (dev->sysctl_tree);
1989 }
1990 
1991 /**
1992  * @brief Print the name of the device followed by a colon and a space
1993  *
1994  * @returns the number of characters printed
1995  */
1996 int
1997 device_print_prettyname(device_t dev)
1998 {
1999 	const char *name = device_get_name(dev);
2000 
2001 	if (name == 0)
2002 		return (printf("unknown: "));
2003 	return (printf("%s%d: ", name, device_get_unit(dev)));
2004 }
2005 
2006 /**
2007  * @brief Print the name of the device followed by a colon, a space
2008  * and the result of calling vprintf() with the value of @p fmt and
2009  * the following arguments.
2010  *
2011  * @returns the number of characters printed
2012  */
2013 int
2014 device_printf(device_t dev, const char * fmt, ...)
2015 {
2016 	va_list ap;
2017 	int retval;
2018 
2019 	retval = device_print_prettyname(dev);
2020 	va_start(ap, fmt);
2021 	retval += vprintf(fmt, ap);
2022 	va_end(ap);
2023 	return (retval);
2024 }
2025 
2026 /**
2027  * @internal
2028  */
2029 static void
2030 device_set_desc_internal(device_t dev, const char* desc, int copy)
2031 {
2032 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2033 		free(dev->desc, M_BUS);
2034 		dev->flags &= ~DF_DESCMALLOCED;
2035 		dev->desc = NULL;
2036 	}
2037 
2038 	if (copy && desc) {
2039 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2040 		if (dev->desc) {
2041 			strcpy(dev->desc, desc);
2042 			dev->flags |= DF_DESCMALLOCED;
2043 		}
2044 	} else {
2045 		/* Avoid a -Wcast-qual warning */
2046 		dev->desc = (char *)(uintptr_t) desc;
2047 	}
2048 
2049 	bus_data_generation_update();
2050 }
2051 
2052 /**
2053  * @brief Set the device's description
2054  *
2055  * The value of @c desc should be a string constant that will not
2056  * change (at least until the description is changed in a subsequent
2057  * call to device_set_desc() or device_set_desc_copy()).
2058  */
2059 void
2060 device_set_desc(device_t dev, const char* desc)
2061 {
2062 	device_set_desc_internal(dev, desc, FALSE);
2063 }
2064 
2065 /**
2066  * @brief Set the device's description
2067  *
2068  * The string pointed to by @c desc is copied. Use this function if
2069  * the device description is generated, (e.g. with sprintf()).
2070  */
2071 void
2072 device_set_desc_copy(device_t dev, const char* desc)
2073 {
2074 	device_set_desc_internal(dev, desc, TRUE);
2075 }
2076 
2077 /**
2078  * @brief Set the device's flags
2079  */
2080 void
2081 device_set_flags(device_t dev, u_int32_t flags)
2082 {
2083 	dev->devflags = flags;
2084 }
2085 
2086 /**
2087  * @brief Return the device's softc field
2088  *
2089  * The softc is allocated and zeroed when a driver is attached, based
2090  * on the size field of the driver.
2091  */
2092 void *
2093 device_get_softc(device_t dev)
2094 {
2095 	return (dev->softc);
2096 }
2097 
2098 /**
2099  * @brief Set the device's softc field
2100  *
2101  * Most drivers do not need to use this since the softc is allocated
2102  * automatically when the driver is attached.
2103  */
2104 void
2105 device_set_softc(device_t dev, void *softc)
2106 {
2107 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2108 		free(dev->softc, M_BUS_SC);
2109 	dev->softc = softc;
2110 	if (dev->softc)
2111 		dev->flags |= DF_EXTERNALSOFTC;
2112 	else
2113 		dev->flags &= ~DF_EXTERNALSOFTC;
2114 }
2115 
2116 /**
2117  * @brief Get the device's ivars field
2118  *
2119  * The ivars field is used by the parent device to store per-device
2120  * state (e.g. the physical location of the device or a list of
2121  * resources).
2122  */
2123 void *
2124 device_get_ivars(device_t dev)
2125 {
2126 
2127 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2128 	return (dev->ivars);
2129 }
2130 
2131 /**
2132  * @brief Set the device's ivars field
2133  */
2134 void
2135 device_set_ivars(device_t dev, void * ivars)
2136 {
2137 
2138 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2139 	dev->ivars = ivars;
2140 }
2141 
2142 /**
2143  * @brief Return the device's state
2144  */
2145 device_state_t
2146 device_get_state(device_t dev)
2147 {
2148 	return (dev->state);
2149 }
2150 
2151 /**
2152  * @brief Set the DF_ENABLED flag for the device
2153  */
2154 void
2155 device_enable(device_t dev)
2156 {
2157 	dev->flags |= DF_ENABLED;
2158 }
2159 
2160 /**
2161  * @brief Clear the DF_ENABLED flag for the device
2162  */
2163 void
2164 device_disable(device_t dev)
2165 {
2166 	dev->flags &= ~DF_ENABLED;
2167 }
2168 
2169 /**
2170  * @brief Increment the busy counter for the device
2171  */
2172 void
2173 device_busy(device_t dev)
2174 {
2175 	if (dev->state < DS_ATTACHED)
2176 		panic("device_busy: called for unattached device");
2177 	if (dev->busy == 0 && dev->parent)
2178 		device_busy(dev->parent);
2179 	dev->busy++;
2180 	dev->state = DS_BUSY;
2181 }
2182 
2183 /**
2184  * @brief Decrement the busy counter for the device
2185  */
2186 void
2187 device_unbusy(device_t dev)
2188 {
2189 	if (dev->state != DS_BUSY)
2190 		panic("device_unbusy: called for non-busy device %s",
2191 		    device_get_nameunit(dev));
2192 	dev->busy--;
2193 	if (dev->busy == 0) {
2194 		if (dev->parent)
2195 			device_unbusy(dev->parent);
2196 		dev->state = DS_ATTACHED;
2197 	}
2198 }
2199 
2200 /**
2201  * @brief Set the DF_QUIET flag for the device
2202  */
2203 void
2204 device_quiet(device_t dev)
2205 {
2206 	dev->flags |= DF_QUIET;
2207 }
2208 
2209 /**
2210  * @brief Clear the DF_QUIET flag for the device
2211  */
2212 void
2213 device_verbose(device_t dev)
2214 {
2215 	dev->flags &= ~DF_QUIET;
2216 }
2217 
2218 /**
2219  * @brief Return non-zero if the DF_QUIET flag is set on the device
2220  */
2221 int
2222 device_is_quiet(device_t dev)
2223 {
2224 	return ((dev->flags & DF_QUIET) != 0);
2225 }
2226 
2227 /**
2228  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2229  */
2230 int
2231 device_is_enabled(device_t dev)
2232 {
2233 	return ((dev->flags & DF_ENABLED) != 0);
2234 }
2235 
2236 /**
2237  * @brief Return non-zero if the device was successfully probed
2238  */
2239 int
2240 device_is_alive(device_t dev)
2241 {
2242 	return (dev->state >= DS_ALIVE);
2243 }
2244 
2245 /**
2246  * @brief Return non-zero if the device currently has a driver
2247  * attached to it
2248  */
2249 int
2250 device_is_attached(device_t dev)
2251 {
2252 	return (dev->state >= DS_ATTACHED);
2253 }
2254 
2255 /**
2256  * @brief Set the devclass of a device
2257  * @see devclass_add_device().
2258  */
2259 int
2260 device_set_devclass(device_t dev, const char *classname)
2261 {
2262 	devclass_t dc;
2263 	int error;
2264 
2265 	if (!classname) {
2266 		if (dev->devclass)
2267 			devclass_delete_device(dev->devclass, dev);
2268 		return (0);
2269 	}
2270 
2271 	if (dev->devclass) {
2272 		printf("device_set_devclass: device class already set\n");
2273 		return (EINVAL);
2274 	}
2275 
2276 	dc = devclass_find_internal(classname, NULL, TRUE);
2277 	if (!dc)
2278 		return (ENOMEM);
2279 
2280 	error = devclass_add_device(dc, dev);
2281 
2282 	bus_data_generation_update();
2283 	return (error);
2284 }
2285 
2286 /**
2287  * @brief Set the driver of a device
2288  *
2289  * @retval 0		success
2290  * @retval EBUSY	the device already has a driver attached
2291  * @retval ENOMEM	a memory allocation failure occurred
2292  */
2293 int
2294 device_set_driver(device_t dev, driver_t *driver)
2295 {
2296 	if (dev->state >= DS_ATTACHED)
2297 		return (EBUSY);
2298 
2299 	if (dev->driver == driver)
2300 		return (0);
2301 
2302 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2303 		free(dev->softc, M_BUS_SC);
2304 		dev->softc = NULL;
2305 	}
2306 	kobj_delete((kobj_t) dev, NULL);
2307 	dev->driver = driver;
2308 	if (driver) {
2309 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2310 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2311 			dev->softc = malloc(driver->size, M_BUS_SC,
2312 			    M_NOWAIT | M_ZERO);
2313 			if (!dev->softc) {
2314 				kobj_delete((kobj_t) dev, NULL);
2315 				kobj_init((kobj_t) dev, &null_class);
2316 				dev->driver = NULL;
2317 				return (ENOMEM);
2318 			}
2319 		}
2320 	} else {
2321 		kobj_init((kobj_t) dev, &null_class);
2322 	}
2323 
2324 	bus_data_generation_update();
2325 	return (0);
2326 }
2327 
2328 /**
2329  * @brief Probe a device, and return this status.
2330  *
2331  * This function is the core of the device autoconfiguration
2332  * system. Its purpose is to select a suitable driver for a device and
2333  * then call that driver to initialise the hardware appropriately. The
2334  * driver is selected by calling the DEVICE_PROBE() method of a set of
2335  * candidate drivers and then choosing the driver which returned the
2336  * best value. This driver is then attached to the device using
2337  * device_attach().
2338  *
2339  * The set of suitable drivers is taken from the list of drivers in
2340  * the parent device's devclass. If the device was originally created
2341  * with a specific class name (see device_add_child()), only drivers
2342  * with that name are probed, otherwise all drivers in the devclass
2343  * are probed. If no drivers return successful probe values in the
2344  * parent devclass, the search continues in the parent of that
2345  * devclass (see devclass_get_parent()) if any.
2346  *
2347  * @param dev		the device to initialise
2348  *
2349  * @retval 0		success
2350  * @retval ENXIO	no driver was found
2351  * @retval ENOMEM	memory allocation failure
2352  * @retval non-zero	some other unix error code
2353  * @retval -1		Device already attached
2354  */
2355 int
2356 device_probe(device_t dev)
2357 {
2358 	int error;
2359 
2360 	GIANT_REQUIRED;
2361 
2362 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2363 		return (-1);
2364 
2365 	if (!(dev->flags & DF_ENABLED)) {
2366 		if (bootverbose && device_get_name(dev) != NULL) {
2367 			device_print_prettyname(dev);
2368 			printf("not probed (disabled)\n");
2369 		}
2370 		return (-1);
2371 	}
2372 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2373 		if (!(dev->flags & DF_DONENOMATCH)) {
2374 			BUS_PROBE_NOMATCH(dev->parent, dev);
2375 			devnomatch(dev);
2376 			dev->flags |= DF_DONENOMATCH;
2377 		}
2378 		return (error);
2379 	}
2380 	return (0);
2381 }
2382 
2383 /**
2384  * @brief Probe a device and attach a driver if possible
2385  *
2386  * calls device_probe() and attaches if that was successful.
2387  */
2388 int
2389 device_probe_and_attach(device_t dev)
2390 {
2391 	int error;
2392 
2393 	GIANT_REQUIRED;
2394 
2395 	error = device_probe(dev);
2396 	if (error == -1)
2397 		return (0);
2398 	else if (error != 0)
2399 		return (error);
2400 	return (device_attach(dev));
2401 }
2402 
2403 /**
2404  * @brief Attach a device driver to a device
2405  *
2406  * This function is a wrapper around the DEVICE_ATTACH() driver
2407  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2408  * device's sysctl tree, optionally prints a description of the device
2409  * and queues a notification event for user-based device management
2410  * services.
2411  *
2412  * Normally this function is only called internally from
2413  * device_probe_and_attach().
2414  *
2415  * @param dev		the device to initialise
2416  *
2417  * @retval 0		success
2418  * @retval ENXIO	no driver was found
2419  * @retval ENOMEM	memory allocation failure
2420  * @retval non-zero	some other unix error code
2421  */
2422 int
2423 device_attach(device_t dev)
2424 {
2425 	int error;
2426 
2427 	device_sysctl_init(dev);
2428 	if (!device_is_quiet(dev))
2429 		device_print_child(dev->parent, dev);
2430 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2431 		printf("device_attach: %s%d attach returned %d\n",
2432 		    dev->driver->name, dev->unit, error);
2433 		/* Unset the class; set in device_probe_child */
2434 		if (dev->devclass == NULL)
2435 			device_set_devclass(dev, NULL);
2436 		device_set_driver(dev, NULL);
2437 		device_sysctl_fini(dev);
2438 		dev->state = DS_NOTPRESENT;
2439 		return (error);
2440 	}
2441 	device_sysctl_update(dev);
2442 	dev->state = DS_ATTACHED;
2443 	devadded(dev);
2444 	return (0);
2445 }
2446 
2447 /**
2448  * @brief Detach a driver from a device
2449  *
2450  * This function is a wrapper around the DEVICE_DETACH() driver
2451  * method. If the call to DEVICE_DETACH() succeeds, it calls
2452  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2453  * notification event for user-based device management services and
2454  * cleans up the device's sysctl tree.
2455  *
2456  * @param dev		the device to un-initialise
2457  *
2458  * @retval 0		success
2459  * @retval ENXIO	no driver was found
2460  * @retval ENOMEM	memory allocation failure
2461  * @retval non-zero	some other unix error code
2462  */
2463 int
2464 device_detach(device_t dev)
2465 {
2466 	int error;
2467 
2468 	GIANT_REQUIRED;
2469 
2470 	PDEBUG(("%s", DEVICENAME(dev)));
2471 	if (dev->state == DS_BUSY)
2472 		return (EBUSY);
2473 	if (dev->state != DS_ATTACHED)
2474 		return (0);
2475 
2476 	if ((error = DEVICE_DETACH(dev)) != 0)
2477 		return (error);
2478 	devremoved(dev);
2479 	device_printf(dev, "detached\n");
2480 	if (dev->parent)
2481 		BUS_CHILD_DETACHED(dev->parent, dev);
2482 
2483 	if (!(dev->flags & DF_FIXEDCLASS))
2484 		devclass_delete_device(dev->devclass, dev);
2485 
2486 	dev->state = DS_NOTPRESENT;
2487 	device_set_driver(dev, NULL);
2488 	device_set_desc(dev, NULL);
2489 	device_sysctl_fini(dev);
2490 
2491 	return (0);
2492 }
2493 
2494 /**
2495  * @brief Tells a driver to quiesce itself.
2496  *
2497  * This function is a wrapper around the DEVICE_QUIESCE() driver
2498  * method. If the call to DEVICE_QUIESCE() succeeds.
2499  *
2500  * @param dev		the device to quiesce
2501  *
2502  * @retval 0		success
2503  * @retval ENXIO	no driver was found
2504  * @retval ENOMEM	memory allocation failure
2505  * @retval non-zero	some other unix error code
2506  */
2507 int
2508 device_quiesce(device_t dev)
2509 {
2510 
2511 	PDEBUG(("%s", DEVICENAME(dev)));
2512 	if (dev->state == DS_BUSY)
2513 		return (EBUSY);
2514 	if (dev->state != DS_ATTACHED)
2515 		return (0);
2516 
2517 	return (DEVICE_QUIESCE(dev));
2518 }
2519 
2520 /**
2521  * @brief Notify a device of system shutdown
2522  *
2523  * This function calls the DEVICE_SHUTDOWN() driver method if the
2524  * device currently has an attached driver.
2525  *
2526  * @returns the value returned by DEVICE_SHUTDOWN()
2527  */
2528 int
2529 device_shutdown(device_t dev)
2530 {
2531 	if (dev->state < DS_ATTACHED)
2532 		return (0);
2533 	return (DEVICE_SHUTDOWN(dev));
2534 }
2535 
2536 /**
2537  * @brief Set the unit number of a device
2538  *
2539  * This function can be used to override the unit number used for a
2540  * device (e.g. to wire a device to a pre-configured unit number).
2541  */
2542 int
2543 device_set_unit(device_t dev, int unit)
2544 {
2545 	devclass_t dc;
2546 	int err;
2547 
2548 	dc = device_get_devclass(dev);
2549 	if (unit < dc->maxunit && dc->devices[unit])
2550 		return (EBUSY);
2551 	err = devclass_delete_device(dc, dev);
2552 	if (err)
2553 		return (err);
2554 	dev->unit = unit;
2555 	err = devclass_add_device(dc, dev);
2556 	if (err)
2557 		return (err);
2558 
2559 	bus_data_generation_update();
2560 	return (0);
2561 }
2562 
2563 /*======================================*/
2564 /*
2565  * Some useful method implementations to make life easier for bus drivers.
2566  */
2567 
2568 /**
2569  * @brief Initialise a resource list.
2570  *
2571  * @param rl		the resource list to initialise
2572  */
2573 void
2574 resource_list_init(struct resource_list *rl)
2575 {
2576 	STAILQ_INIT(rl);
2577 }
2578 
2579 /**
2580  * @brief Reclaim memory used by a resource list.
2581  *
2582  * This function frees the memory for all resource entries on the list
2583  * (if any).
2584  *
2585  * @param rl		the resource list to free
2586  */
2587 void
2588 resource_list_free(struct resource_list *rl)
2589 {
2590 	struct resource_list_entry *rle;
2591 
2592 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2593 		if (rle->res)
2594 			panic("resource_list_free: resource entry is busy");
2595 		STAILQ_REMOVE_HEAD(rl, link);
2596 		free(rle, M_BUS);
2597 	}
2598 }
2599 
2600 /**
2601  * @brief Add a resource entry.
2602  *
2603  * This function adds a resource entry using the given @p type, @p
2604  * start, @p end and @p count values. A rid value is chosen by
2605  * searching sequentially for the first unused rid starting at zero.
2606  *
2607  * @param rl		the resource list to edit
2608  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2609  * @param start		the start address of the resource
2610  * @param end		the end address of the resource
2611  * @param count		XXX end-start+1
2612  */
2613 int
2614 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2615     u_long end, u_long count)
2616 {
2617 	int rid;
2618 
2619 	rid = 0;
2620 	while (resource_list_find(rl, type, rid) != NULL)
2621 		rid++;
2622 	resource_list_add(rl, type, rid, start, end, count);
2623 	return (rid);
2624 }
2625 
2626 /**
2627  * @brief Add or modify a resource entry.
2628  *
2629  * If an existing entry exists with the same type and rid, it will be
2630  * modified using the given values of @p start, @p end and @p
2631  * count. If no entry exists, a new one will be created using the
2632  * given values.  The resource list entry that matches is then returned.
2633  *
2634  * @param rl		the resource list to edit
2635  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2636  * @param rid		the resource identifier
2637  * @param start		the start address of the resource
2638  * @param end		the end address of the resource
2639  * @param count		XXX end-start+1
2640  */
2641 struct resource_list_entry *
2642 resource_list_add(struct resource_list *rl, int type, int rid,
2643     u_long start, u_long end, u_long count)
2644 {
2645 	struct resource_list_entry *rle;
2646 
2647 	rle = resource_list_find(rl, type, rid);
2648 	if (!rle) {
2649 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2650 		    M_NOWAIT);
2651 		if (!rle)
2652 			panic("resource_list_add: can't record entry");
2653 		STAILQ_INSERT_TAIL(rl, rle, link);
2654 		rle->type = type;
2655 		rle->rid = rid;
2656 		rle->res = NULL;
2657 	}
2658 
2659 	if (rle->res)
2660 		panic("resource_list_add: resource entry is busy");
2661 
2662 	rle->start = start;
2663 	rle->end = end;
2664 	rle->count = count;
2665 	return (rle);
2666 }
2667 
2668 /**
2669  * @brief Find a resource entry by type and rid.
2670  *
2671  * @param rl		the resource list to search
2672  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2673  * @param rid		the resource identifier
2674  *
2675  * @returns the resource entry pointer or NULL if there is no such
2676  * entry.
2677  */
2678 struct resource_list_entry *
2679 resource_list_find(struct resource_list *rl, int type, int rid)
2680 {
2681 	struct resource_list_entry *rle;
2682 
2683 	STAILQ_FOREACH(rle, rl, link) {
2684 		if (rle->type == type && rle->rid == rid)
2685 			return (rle);
2686 	}
2687 	return (NULL);
2688 }
2689 
2690 /**
2691  * @brief Delete a resource entry.
2692  *
2693  * @param rl		the resource list to edit
2694  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2695  * @param rid		the resource identifier
2696  */
2697 void
2698 resource_list_delete(struct resource_list *rl, int type, int rid)
2699 {
2700 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2701 
2702 	if (rle) {
2703 		if (rle->res != NULL)
2704 			panic("resource_list_delete: resource has not been released");
2705 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2706 		free(rle, M_BUS);
2707 	}
2708 }
2709 
2710 /**
2711  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2712  *
2713  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2714  * and passing the allocation up to the parent of @p bus. This assumes
2715  * that the first entry of @c device_get_ivars(child) is a struct
2716  * resource_list. This also handles 'passthrough' allocations where a
2717  * child is a remote descendant of bus by passing the allocation up to
2718  * the parent of bus.
2719  *
2720  * Typically, a bus driver would store a list of child resources
2721  * somewhere in the child device's ivars (see device_get_ivars()) and
2722  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2723  * then call resource_list_alloc() to perform the allocation.
2724  *
2725  * @param rl		the resource list to allocate from
2726  * @param bus		the parent device of @p child
2727  * @param child		the device which is requesting an allocation
2728  * @param type		the type of resource to allocate
2729  * @param rid		a pointer to the resource identifier
2730  * @param start		hint at the start of the resource range - pass
2731  *			@c 0UL for any start address
2732  * @param end		hint at the end of the resource range - pass
2733  *			@c ~0UL for any end address
2734  * @param count		hint at the size of range required - pass @c 1
2735  *			for any size
2736  * @param flags		any extra flags to control the resource
2737  *			allocation - see @c RF_XXX flags in
2738  *			<sys/rman.h> for details
2739  *
2740  * @returns		the resource which was allocated or @c NULL if no
2741  *			resource could be allocated
2742  */
2743 struct resource *
2744 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2745     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2746 {
2747 	struct resource_list_entry *rle = NULL;
2748 	int passthrough = (device_get_parent(child) != bus);
2749 	int isdefault = (start == 0UL && end == ~0UL);
2750 
2751 	if (passthrough) {
2752 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2753 		    type, rid, start, end, count, flags));
2754 	}
2755 
2756 	rle = resource_list_find(rl, type, *rid);
2757 
2758 	if (!rle)
2759 		return (NULL);		/* no resource of that type/rid */
2760 
2761 	if (rle->res)
2762 		panic("resource_list_alloc: resource entry is busy");
2763 
2764 	if (isdefault) {
2765 		start = rle->start;
2766 		count = ulmax(count, rle->count);
2767 		end = ulmax(rle->end, start + count - 1);
2768 	}
2769 
2770 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2771 	    type, rid, start, end, count, flags);
2772 
2773 	/*
2774 	 * Record the new range.
2775 	 */
2776 	if (rle->res) {
2777 		rle->start = rman_get_start(rle->res);
2778 		rle->end = rman_get_end(rle->res);
2779 		rle->count = count;
2780 	}
2781 
2782 	return (rle->res);
2783 }
2784 
2785 /**
2786  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2787  *
2788  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2789  * used with resource_list_alloc().
2790  *
2791  * @param rl		the resource list which was allocated from
2792  * @param bus		the parent device of @p child
2793  * @param child		the device which is requesting a release
2794  * @param type		the type of resource to allocate
2795  * @param rid		the resource identifier
2796  * @param res		the resource to release
2797  *
2798  * @retval 0		success
2799  * @retval non-zero	a standard unix error code indicating what
2800  *			error condition prevented the operation
2801  */
2802 int
2803 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2804     int type, int rid, struct resource *res)
2805 {
2806 	struct resource_list_entry *rle = NULL;
2807 	int passthrough = (device_get_parent(child) != bus);
2808 	int error;
2809 
2810 	if (passthrough) {
2811 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2812 		    type, rid, res));
2813 	}
2814 
2815 	rle = resource_list_find(rl, type, rid);
2816 
2817 	if (!rle)
2818 		panic("resource_list_release: can't find resource");
2819 	if (!rle->res)
2820 		panic("resource_list_release: resource entry is not busy");
2821 
2822 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2823 	    type, rid, res);
2824 	if (error)
2825 		return (error);
2826 
2827 	rle->res = NULL;
2828 	return (0);
2829 }
2830 
2831 /**
2832  * @brief Print a description of resources in a resource list
2833  *
2834  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2835  * The name is printed if at least one resource of the given type is available.
2836  * The format is used to print resource start and end.
2837  *
2838  * @param rl		the resource list to print
2839  * @param name		the name of @p type, e.g. @c "memory"
2840  * @param type		type type of resource entry to print
2841  * @param format	printf(9) format string to print resource
2842  *			start and end values
2843  *
2844  * @returns		the number of characters printed
2845  */
2846 int
2847 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2848     const char *format)
2849 {
2850 	struct resource_list_entry *rle;
2851 	int printed, retval;
2852 
2853 	printed = 0;
2854 	retval = 0;
2855 	/* Yes, this is kinda cheating */
2856 	STAILQ_FOREACH(rle, rl, link) {
2857 		if (rle->type == type) {
2858 			if (printed == 0)
2859 				retval += printf(" %s ", name);
2860 			else
2861 				retval += printf(",");
2862 			printed++;
2863 			retval += printf(format, rle->start);
2864 			if (rle->count > 1) {
2865 				retval += printf("-");
2866 				retval += printf(format, rle->start +
2867 						 rle->count - 1);
2868 			}
2869 		}
2870 	}
2871 	return (retval);
2872 }
2873 
2874 /**
2875  * @brief Releases all the resources in a list.
2876  *
2877  * @param rl		The resource list to purge.
2878  *
2879  * @returns		nothing
2880  */
2881 void
2882 resource_list_purge(struct resource_list *rl)
2883 {
2884 	struct resource_list_entry *rle;
2885 
2886 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2887 		if (rle->res)
2888 			bus_release_resource(rman_get_device(rle->res),
2889 			    rle->type, rle->rid, rle->res);
2890 		STAILQ_REMOVE_HEAD(rl, link);
2891 		free(rle, M_BUS);
2892 	}
2893 }
2894 
2895 device_t
2896 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
2897 {
2898 
2899 	return (device_add_child_ordered(dev, order, name, unit));
2900 }
2901 
2902 /**
2903  * @brief Helper function for implementing DEVICE_PROBE()
2904  *
2905  * This function can be used to help implement the DEVICE_PROBE() for
2906  * a bus (i.e. a device which has other devices attached to it). It
2907  * calls the DEVICE_IDENTIFY() method of each driver in the device's
2908  * devclass.
2909  */
2910 int
2911 bus_generic_probe(device_t dev)
2912 {
2913 	devclass_t dc = dev->devclass;
2914 	driverlink_t dl;
2915 
2916 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2917 		DEVICE_IDENTIFY(dl->driver, dev);
2918 	}
2919 
2920 	return (0);
2921 }
2922 
2923 /**
2924  * @brief Helper function for implementing DEVICE_ATTACH()
2925  *
2926  * This function can be used to help implement the DEVICE_ATTACH() for
2927  * a bus. It calls device_probe_and_attach() for each of the device's
2928  * children.
2929  */
2930 int
2931 bus_generic_attach(device_t dev)
2932 {
2933 	device_t child;
2934 
2935 	TAILQ_FOREACH(child, &dev->children, link) {
2936 		device_probe_and_attach(child);
2937 	}
2938 
2939 	return (0);
2940 }
2941 
2942 /**
2943  * @brief Helper function for implementing DEVICE_DETACH()
2944  *
2945  * This function can be used to help implement the DEVICE_DETACH() for
2946  * a bus. It calls device_detach() for each of the device's
2947  * children.
2948  */
2949 int
2950 bus_generic_detach(device_t dev)
2951 {
2952 	device_t child;
2953 	int error;
2954 
2955 	if (dev->state != DS_ATTACHED)
2956 		return (EBUSY);
2957 
2958 	TAILQ_FOREACH(child, &dev->children, link) {
2959 		if ((error = device_detach(child)) != 0)
2960 			return (error);
2961 	}
2962 
2963 	return (0);
2964 }
2965 
2966 /**
2967  * @brief Helper function for implementing DEVICE_SHUTDOWN()
2968  *
2969  * This function can be used to help implement the DEVICE_SHUTDOWN()
2970  * for a bus. It calls device_shutdown() for each of the device's
2971  * children.
2972  */
2973 int
2974 bus_generic_shutdown(device_t dev)
2975 {
2976 	device_t child;
2977 
2978 	TAILQ_FOREACH(child, &dev->children, link) {
2979 		device_shutdown(child);
2980 	}
2981 
2982 	return (0);
2983 }
2984 
2985 /**
2986  * @brief Helper function for implementing DEVICE_SUSPEND()
2987  *
2988  * This function can be used to help implement the DEVICE_SUSPEND()
2989  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2990  * children. If any call to DEVICE_SUSPEND() fails, the suspend
2991  * operation is aborted and any devices which were suspended are
2992  * resumed immediately by calling their DEVICE_RESUME() methods.
2993  */
2994 int
2995 bus_generic_suspend(device_t dev)
2996 {
2997 	int		error;
2998 	device_t	child, child2;
2999 
3000 	TAILQ_FOREACH(child, &dev->children, link) {
3001 		error = DEVICE_SUSPEND(child);
3002 		if (error) {
3003 			for (child2 = TAILQ_FIRST(&dev->children);
3004 			     child2 && child2 != child;
3005 			     child2 = TAILQ_NEXT(child2, link))
3006 				DEVICE_RESUME(child2);
3007 			return (error);
3008 		}
3009 	}
3010 	return (0);
3011 }
3012 
3013 /**
3014  * @brief Helper function for implementing DEVICE_RESUME()
3015  *
3016  * This function can be used to help implement the DEVICE_RESUME() for
3017  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3018  */
3019 int
3020 bus_generic_resume(device_t dev)
3021 {
3022 	device_t	child;
3023 
3024 	TAILQ_FOREACH(child, &dev->children, link) {
3025 		DEVICE_RESUME(child);
3026 		/* if resume fails, there's nothing we can usefully do... */
3027 	}
3028 	return (0);
3029 }
3030 
3031 /**
3032  * @brief Helper function for implementing BUS_PRINT_CHILD().
3033  *
3034  * This function prints the first part of the ascii representation of
3035  * @p child, including its name, unit and description (if any - see
3036  * device_set_desc()).
3037  *
3038  * @returns the number of characters printed
3039  */
3040 int
3041 bus_print_child_header(device_t dev, device_t child)
3042 {
3043 	int	retval = 0;
3044 
3045 	if (device_get_desc(child)) {
3046 		retval += device_printf(child, "<%s>", device_get_desc(child));
3047 	} else {
3048 		retval += printf("%s", device_get_nameunit(child));
3049 	}
3050 
3051 	return (retval);
3052 }
3053 
3054 /**
3055  * @brief Helper function for implementing BUS_PRINT_CHILD().
3056  *
3057  * This function prints the last part of the ascii representation of
3058  * @p child, which consists of the string @c " on " followed by the
3059  * name and unit of the @p dev.
3060  *
3061  * @returns the number of characters printed
3062  */
3063 int
3064 bus_print_child_footer(device_t dev, device_t child)
3065 {
3066 	return (printf(" on %s\n", device_get_nameunit(dev)));
3067 }
3068 
3069 /**
3070  * @brief Helper function for implementing BUS_PRINT_CHILD().
3071  *
3072  * This function simply calls bus_print_child_header() followed by
3073  * bus_print_child_footer().
3074  *
3075  * @returns the number of characters printed
3076  */
3077 int
3078 bus_generic_print_child(device_t dev, device_t child)
3079 {
3080 	int	retval = 0;
3081 
3082 	retval += bus_print_child_header(dev, child);
3083 	retval += bus_print_child_footer(dev, child);
3084 
3085 	return (retval);
3086 }
3087 
3088 /**
3089  * @brief Stub function for implementing BUS_READ_IVAR().
3090  *
3091  * @returns ENOENT
3092  */
3093 int
3094 bus_generic_read_ivar(device_t dev, device_t child, int index,
3095     uintptr_t * result)
3096 {
3097 	return (ENOENT);
3098 }
3099 
3100 /**
3101  * @brief Stub function for implementing BUS_WRITE_IVAR().
3102  *
3103  * @returns ENOENT
3104  */
3105 int
3106 bus_generic_write_ivar(device_t dev, device_t child, int index,
3107     uintptr_t value)
3108 {
3109 	return (ENOENT);
3110 }
3111 
3112 /**
3113  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3114  *
3115  * @returns NULL
3116  */
3117 struct resource_list *
3118 bus_generic_get_resource_list(device_t dev, device_t child)
3119 {
3120 	return (NULL);
3121 }
3122 
3123 /**
3124  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3125  *
3126  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3127  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3128  * and then calls device_probe_and_attach() for each unattached child.
3129  */
3130 void
3131 bus_generic_driver_added(device_t dev, driver_t *driver)
3132 {
3133 	device_t child;
3134 
3135 	DEVICE_IDENTIFY(driver, dev);
3136 	TAILQ_FOREACH(child, &dev->children, link) {
3137 		if (child->state == DS_NOTPRESENT ||
3138 		    (child->flags & DF_REBID))
3139 			device_probe_and_attach(child);
3140 	}
3141 }
3142 
3143 /**
3144  * @brief Helper function for implementing BUS_SETUP_INTR().
3145  *
3146  * This simple implementation of BUS_SETUP_INTR() simply calls the
3147  * BUS_SETUP_INTR() method of the parent of @p dev.
3148  */
3149 int
3150 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3151     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3152     void **cookiep)
3153 {
3154 	/* Propagate up the bus hierarchy until someone handles it. */
3155 	if (dev->parent)
3156 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3157 		    filter, intr, arg, cookiep));
3158 	return (EINVAL);
3159 }
3160 
3161 /**
3162  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3163  *
3164  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3165  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3166  */
3167 int
3168 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3169     void *cookie)
3170 {
3171 	/* Propagate up the bus hierarchy until someone handles it. */
3172 	if (dev->parent)
3173 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3174 	return (EINVAL);
3175 }
3176 
3177 /**
3178  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3179  *
3180  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3181  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3182  */
3183 struct resource *
3184 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3185     u_long start, u_long end, u_long count, u_int flags)
3186 {
3187 	/* Propagate up the bus hierarchy until someone handles it. */
3188 	if (dev->parent)
3189 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3190 		    start, end, count, flags));
3191 	return (NULL);
3192 }
3193 
3194 /**
3195  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3196  *
3197  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3198  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3199  */
3200 int
3201 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3202     struct resource *r)
3203 {
3204 	/* Propagate up the bus hierarchy until someone handles it. */
3205 	if (dev->parent)
3206 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3207 		    r));
3208 	return (EINVAL);
3209 }
3210 
3211 /**
3212  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3213  *
3214  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3215  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3216  */
3217 int
3218 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3219     struct resource *r)
3220 {
3221 	/* Propagate up the bus hierarchy until someone handles it. */
3222 	if (dev->parent)
3223 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3224 		    r));
3225 	return (EINVAL);
3226 }
3227 
3228 /**
3229  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3230  *
3231  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3232  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3233  */
3234 int
3235 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3236     int rid, struct resource *r)
3237 {
3238 	/* Propagate up the bus hierarchy until someone handles it. */
3239 	if (dev->parent)
3240 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3241 		    r));
3242 	return (EINVAL);
3243 }
3244 
3245 /**
3246  * @brief Helper function for implementing BUS_BIND_INTR().
3247  *
3248  * This simple implementation of BUS_BIND_INTR() simply calls the
3249  * BUS_BIND_INTR() method of the parent of @p dev.
3250  */
3251 int
3252 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3253     int cpu)
3254 {
3255 
3256 	/* Propagate up the bus hierarchy until someone handles it. */
3257 	if (dev->parent)
3258 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3259 	return (EINVAL);
3260 }
3261 
3262 /**
3263  * @brief Helper function for implementing BUS_CONFIG_INTR().
3264  *
3265  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3266  * BUS_CONFIG_INTR() method of the parent of @p dev.
3267  */
3268 int
3269 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3270     enum intr_polarity pol)
3271 {
3272 
3273 	/* Propagate up the bus hierarchy until someone handles it. */
3274 	if (dev->parent)
3275 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3276 	return (EINVAL);
3277 }
3278 
3279 /**
3280  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3281  *
3282  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3283  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3284  */
3285 bus_dma_tag_t
3286 bus_generic_get_dma_tag(device_t dev, device_t child)
3287 {
3288 
3289 	/* Propagate up the bus hierarchy until someone handles it. */
3290 	if (dev->parent != NULL)
3291 		return (BUS_GET_DMA_TAG(dev->parent, child));
3292 	return (NULL);
3293 }
3294 
3295 /**
3296  * @brief Helper function for implementing BUS_GET_RESOURCE().
3297  *
3298  * This implementation of BUS_GET_RESOURCE() uses the
3299  * resource_list_find() function to do most of the work. It calls
3300  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3301  * search.
3302  */
3303 int
3304 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3305     u_long *startp, u_long *countp)
3306 {
3307 	struct resource_list *		rl = NULL;
3308 	struct resource_list_entry *	rle = NULL;
3309 
3310 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3311 	if (!rl)
3312 		return (EINVAL);
3313 
3314 	rle = resource_list_find(rl, type, rid);
3315 	if (!rle)
3316 		return (ENOENT);
3317 
3318 	if (startp)
3319 		*startp = rle->start;
3320 	if (countp)
3321 		*countp = rle->count;
3322 
3323 	return (0);
3324 }
3325 
3326 /**
3327  * @brief Helper function for implementing BUS_SET_RESOURCE().
3328  *
3329  * This implementation of BUS_SET_RESOURCE() uses the
3330  * resource_list_add() function to do most of the work. It calls
3331  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3332  * edit.
3333  */
3334 int
3335 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3336     u_long start, u_long count)
3337 {
3338 	struct resource_list *		rl = NULL;
3339 
3340 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3341 	if (!rl)
3342 		return (EINVAL);
3343 
3344 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3345 
3346 	return (0);
3347 }
3348 
3349 /**
3350  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3351  *
3352  * This implementation of BUS_DELETE_RESOURCE() uses the
3353  * resource_list_delete() function to do most of the work. It calls
3354  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3355  * edit.
3356  */
3357 void
3358 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3359 {
3360 	struct resource_list *		rl = NULL;
3361 
3362 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3363 	if (!rl)
3364 		return;
3365 
3366 	resource_list_delete(rl, type, rid);
3367 
3368 	return;
3369 }
3370 
3371 /**
3372  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3373  *
3374  * This implementation of BUS_RELEASE_RESOURCE() uses the
3375  * resource_list_release() function to do most of the work. It calls
3376  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3377  */
3378 int
3379 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3380     int rid, struct resource *r)
3381 {
3382 	struct resource_list *		rl = NULL;
3383 
3384 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3385 	if (!rl)
3386 		return (EINVAL);
3387 
3388 	return (resource_list_release(rl, dev, child, type, rid, r));
3389 }
3390 
3391 /**
3392  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3393  *
3394  * This implementation of BUS_ALLOC_RESOURCE() uses the
3395  * resource_list_alloc() function to do most of the work. It calls
3396  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3397  */
3398 struct resource *
3399 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3400     int *rid, u_long start, u_long end, u_long count, u_int flags)
3401 {
3402 	struct resource_list *		rl = NULL;
3403 
3404 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3405 	if (!rl)
3406 		return (NULL);
3407 
3408 	return (resource_list_alloc(rl, dev, child, type, rid,
3409 	    start, end, count, flags));
3410 }
3411 
3412 /**
3413  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3414  *
3415  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3416  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3417  */
3418 int
3419 bus_generic_child_present(device_t dev, device_t child)
3420 {
3421 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3422 }
3423 
3424 /*
3425  * Some convenience functions to make it easier for drivers to use the
3426  * resource-management functions.  All these really do is hide the
3427  * indirection through the parent's method table, making for slightly
3428  * less-wordy code.  In the future, it might make sense for this code
3429  * to maintain some sort of a list of resources allocated by each device.
3430  */
3431 
3432 int
3433 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3434     struct resource **res)
3435 {
3436 	int i;
3437 
3438 	for (i = 0; rs[i].type != -1; i++)
3439 		res[i] = NULL;
3440 	for (i = 0; rs[i].type != -1; i++) {
3441 		res[i] = bus_alloc_resource_any(dev,
3442 		    rs[i].type, &rs[i].rid, rs[i].flags);
3443 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3444 			bus_release_resources(dev, rs, res);
3445 			return (ENXIO);
3446 		}
3447 	}
3448 	return (0);
3449 }
3450 
3451 void
3452 bus_release_resources(device_t dev, const struct resource_spec *rs,
3453     struct resource **res)
3454 {
3455 	int i;
3456 
3457 	for (i = 0; rs[i].type != -1; i++)
3458 		if (res[i] != NULL) {
3459 			bus_release_resource(
3460 			    dev, rs[i].type, rs[i].rid, res[i]);
3461 			res[i] = NULL;
3462 		}
3463 }
3464 
3465 /**
3466  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3467  *
3468  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3469  * parent of @p dev.
3470  */
3471 struct resource *
3472 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3473     u_long count, u_int flags)
3474 {
3475 	if (dev->parent == NULL)
3476 		return (NULL);
3477 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3478 	    count, flags));
3479 }
3480 
3481 /**
3482  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3483  *
3484  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3485  * parent of @p dev.
3486  */
3487 int
3488 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3489 {
3490 	if (dev->parent == NULL)
3491 		return (EINVAL);
3492 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3493 }
3494 
3495 /**
3496  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3497  *
3498  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3499  * parent of @p dev.
3500  */
3501 int
3502 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3503 {
3504 	if (dev->parent == NULL)
3505 		return (EINVAL);
3506 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3507 }
3508 
3509 /**
3510  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3511  *
3512  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3513  * parent of @p dev.
3514  */
3515 int
3516 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3517 {
3518 	if (dev->parent == NULL)
3519 		return (EINVAL);
3520 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3521 }
3522 
3523 /**
3524  * @brief Wrapper function for BUS_SETUP_INTR().
3525  *
3526  * This function simply calls the BUS_SETUP_INTR() method of the
3527  * parent of @p dev.
3528  */
3529 int
3530 bus_setup_intr(device_t dev, struct resource *r, int flags,
3531     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3532 {
3533 	int error;
3534 
3535 	if (dev->parent == NULL)
3536 		return (EINVAL);
3537 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3538 	    arg, cookiep);
3539 	if (error != 0)
3540 		return (error);
3541 	if (handler != NULL && !(flags & INTR_MPSAFE))
3542 		device_printf(dev, "[GIANT-LOCKED]\n");
3543 	if (bootverbose && (flags & INTR_MPSAFE))
3544 		device_printf(dev, "[MPSAFE]\n");
3545 	if (filter != NULL) {
3546 		if (handler == NULL)
3547 			device_printf(dev, "[FILTER]\n");
3548 		else
3549 			device_printf(dev, "[FILTER+ITHREAD]\n");
3550 	} else
3551 		device_printf(dev, "[ITHREAD]\n");
3552 	return (0);
3553 }
3554 
3555 /**
3556  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3557  *
3558  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3559  * parent of @p dev.
3560  */
3561 int
3562 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3563 {
3564 	if (dev->parent == NULL)
3565 		return (EINVAL);
3566 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3567 }
3568 
3569 /**
3570  * @brief Wrapper function for BUS_BIND_INTR().
3571  *
3572  * This function simply calls the BUS_BIND_INTR() method of the
3573  * parent of @p dev.
3574  */
3575 int
3576 bus_bind_intr(device_t dev, struct resource *r, int cpu)
3577 {
3578 	if (dev->parent == NULL)
3579 		return (EINVAL);
3580 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
3581 }
3582 
3583 /**
3584  * @brief Wrapper function for BUS_SET_RESOURCE().
3585  *
3586  * This function simply calls the BUS_SET_RESOURCE() method of the
3587  * parent of @p dev.
3588  */
3589 int
3590 bus_set_resource(device_t dev, int type, int rid,
3591     u_long start, u_long count)
3592 {
3593 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3594 	    start, count));
3595 }
3596 
3597 /**
3598  * @brief Wrapper function for BUS_GET_RESOURCE().
3599  *
3600  * This function simply calls the BUS_GET_RESOURCE() method of the
3601  * parent of @p dev.
3602  */
3603 int
3604 bus_get_resource(device_t dev, int type, int rid,
3605     u_long *startp, u_long *countp)
3606 {
3607 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3608 	    startp, countp));
3609 }
3610 
3611 /**
3612  * @brief Wrapper function for BUS_GET_RESOURCE().
3613  *
3614  * This function simply calls the BUS_GET_RESOURCE() method of the
3615  * parent of @p dev and returns the start value.
3616  */
3617 u_long
3618 bus_get_resource_start(device_t dev, int type, int rid)
3619 {
3620 	u_long start, count;
3621 	int error;
3622 
3623 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3624 	    &start, &count);
3625 	if (error)
3626 		return (0);
3627 	return (start);
3628 }
3629 
3630 /**
3631  * @brief Wrapper function for BUS_GET_RESOURCE().
3632  *
3633  * This function simply calls the BUS_GET_RESOURCE() method of the
3634  * parent of @p dev and returns the count value.
3635  */
3636 u_long
3637 bus_get_resource_count(device_t dev, int type, int rid)
3638 {
3639 	u_long start, count;
3640 	int error;
3641 
3642 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3643 	    &start, &count);
3644 	if (error)
3645 		return (0);
3646 	return (count);
3647 }
3648 
3649 /**
3650  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3651  *
3652  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3653  * parent of @p dev.
3654  */
3655 void
3656 bus_delete_resource(device_t dev, int type, int rid)
3657 {
3658 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3659 }
3660 
3661 /**
3662  * @brief Wrapper function for BUS_CHILD_PRESENT().
3663  *
3664  * This function simply calls the BUS_CHILD_PRESENT() method of the
3665  * parent of @p dev.
3666  */
3667 int
3668 bus_child_present(device_t child)
3669 {
3670 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3671 }
3672 
3673 /**
3674  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3675  *
3676  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3677  * parent of @p dev.
3678  */
3679 int
3680 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3681 {
3682 	device_t parent;
3683 
3684 	parent = device_get_parent(child);
3685 	if (parent == NULL) {
3686 		*buf = '\0';
3687 		return (0);
3688 	}
3689 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3690 }
3691 
3692 /**
3693  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3694  *
3695  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3696  * parent of @p dev.
3697  */
3698 int
3699 bus_child_location_str(device_t child, char *buf, size_t buflen)
3700 {
3701 	device_t parent;
3702 
3703 	parent = device_get_parent(child);
3704 	if (parent == NULL) {
3705 		*buf = '\0';
3706 		return (0);
3707 	}
3708 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3709 }
3710 
3711 /**
3712  * @brief Wrapper function for BUS_GET_DMA_TAG().
3713  *
3714  * This function simply calls the BUS_GET_DMA_TAG() method of the
3715  * parent of @p dev.
3716  */
3717 bus_dma_tag_t
3718 bus_get_dma_tag(device_t dev)
3719 {
3720 	device_t parent;
3721 
3722 	parent = device_get_parent(dev);
3723 	if (parent == NULL)
3724 		return (NULL);
3725 	return (BUS_GET_DMA_TAG(parent, dev));
3726 }
3727 
3728 /* Resume all devices and then notify userland that we're up again. */
3729 static int
3730 root_resume(device_t dev)
3731 {
3732 	int error;
3733 
3734 	error = bus_generic_resume(dev);
3735 	if (error == 0)
3736 		devctl_notify("kern", "power", "resume", NULL);
3737 	return (error);
3738 }
3739 
3740 static int
3741 root_print_child(device_t dev, device_t child)
3742 {
3743 	int	retval = 0;
3744 
3745 	retval += bus_print_child_header(dev, child);
3746 	retval += printf("\n");
3747 
3748 	return (retval);
3749 }
3750 
3751 static int
3752 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3753     void **cookiep)
3754 {
3755 	/*
3756 	 * If an interrupt mapping gets to here something bad has happened.
3757 	 */
3758 	panic("root_setup_intr");
3759 }
3760 
3761 /*
3762  * If we get here, assume that the device is permanant and really is
3763  * present in the system.  Removable bus drivers are expected to intercept
3764  * this call long before it gets here.  We return -1 so that drivers that
3765  * really care can check vs -1 or some ERRNO returned higher in the food
3766  * chain.
3767  */
3768 static int
3769 root_child_present(device_t dev, device_t child)
3770 {
3771 	return (-1);
3772 }
3773 
3774 static kobj_method_t root_methods[] = {
3775 	/* Device interface */
3776 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3777 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3778 	KOBJMETHOD(device_resume,	root_resume),
3779 
3780 	/* Bus interface */
3781 	KOBJMETHOD(bus_print_child,	root_print_child),
3782 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3783 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3784 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3785 	KOBJMETHOD(bus_child_present,	root_child_present),
3786 
3787 	{ 0, 0 }
3788 };
3789 
3790 static driver_t root_driver = {
3791 	"root",
3792 	root_methods,
3793 	1,			/* no softc */
3794 };
3795 
3796 device_t	root_bus;
3797 devclass_t	root_devclass;
3798 
3799 static int
3800 root_bus_module_handler(module_t mod, int what, void* arg)
3801 {
3802 	switch (what) {
3803 	case MOD_LOAD:
3804 		TAILQ_INIT(&bus_data_devices);
3805 		kobj_class_compile((kobj_class_t) &root_driver);
3806 		root_bus = make_device(NULL, "root", 0);
3807 		root_bus->desc = "System root bus";
3808 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3809 		root_bus->driver = &root_driver;
3810 		root_bus->state = DS_ATTACHED;
3811 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3812 		devinit();
3813 		return (0);
3814 
3815 	case MOD_SHUTDOWN:
3816 		device_shutdown(root_bus);
3817 		return (0);
3818 	default:
3819 		return (EOPNOTSUPP);
3820 	}
3821 
3822 	return (0);
3823 }
3824 
3825 static moduledata_t root_bus_mod = {
3826 	"rootbus",
3827 	root_bus_module_handler,
3828 	0
3829 };
3830 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3831 
3832 /**
3833  * @brief Automatically configure devices
3834  *
3835  * This function begins the autoconfiguration process by calling
3836  * device_probe_and_attach() for each child of the @c root0 device.
3837  */
3838 void
3839 root_bus_configure(void)
3840 {
3841 	device_t dev;
3842 
3843 	PDEBUG(("."));
3844 
3845 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3846 		device_probe_and_attach(dev);
3847 	}
3848 }
3849 
3850 /**
3851  * @brief Module handler for registering device drivers
3852  *
3853  * This module handler is used to automatically register device
3854  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3855  * devclass_add_driver() for the driver described by the
3856  * driver_module_data structure pointed to by @p arg
3857  */
3858 int
3859 driver_module_handler(module_t mod, int what, void *arg)
3860 {
3861 	int error;
3862 	struct driver_module_data *dmd;
3863 	devclass_t bus_devclass;
3864 	kobj_class_t driver;
3865 
3866 	dmd = (struct driver_module_data *)arg;
3867 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3868 	error = 0;
3869 
3870 	switch (what) {
3871 	case MOD_LOAD:
3872 		if (dmd->dmd_chainevh)
3873 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3874 
3875 		driver = dmd->dmd_driver;
3876 		PDEBUG(("Loading module: driver %s on bus %s",
3877 		    DRIVERNAME(driver), dmd->dmd_busname));
3878 		error = devclass_add_driver(bus_devclass, driver);
3879 		if (error)
3880 			break;
3881 
3882 		/*
3883 		 * If the driver has any base classes, make the
3884 		 * devclass inherit from the devclass of the driver's
3885 		 * first base class. This will allow the system to
3886 		 * search for drivers in both devclasses for children
3887 		 * of a device using this driver.
3888 		 */
3889 		if (driver->baseclasses) {
3890 			const char *parentname;
3891 			parentname = driver->baseclasses[0]->name;
3892 			*dmd->dmd_devclass =
3893 				devclass_find_internal(driver->name,
3894 				    parentname, TRUE);
3895 		} else {
3896 			*dmd->dmd_devclass =
3897 				devclass_find_internal(driver->name, NULL, TRUE);
3898 		}
3899 		break;
3900 
3901 	case MOD_UNLOAD:
3902 		PDEBUG(("Unloading module: driver %s from bus %s",
3903 		    DRIVERNAME(dmd->dmd_driver),
3904 		    dmd->dmd_busname));
3905 		error = devclass_delete_driver(bus_devclass,
3906 		    dmd->dmd_driver);
3907 
3908 		if (!error && dmd->dmd_chainevh)
3909 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3910 		break;
3911 	case MOD_QUIESCE:
3912 		PDEBUG(("Quiesce module: driver %s from bus %s",
3913 		    DRIVERNAME(dmd->dmd_driver),
3914 		    dmd->dmd_busname));
3915 		error = devclass_quiesce_driver(bus_devclass,
3916 		    dmd->dmd_driver);
3917 
3918 		if (!error && dmd->dmd_chainevh)
3919 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3920 		break;
3921 	default:
3922 		error = EOPNOTSUPP;
3923 		break;
3924 	}
3925 
3926 	return (error);
3927 }
3928 
3929 /**
3930  * @brief Enumerate all hinted devices for this bus.
3931  *
3932  * Walks through the hints for this bus and calls the bus_hinted_child
3933  * routine for each one it fines.  It searches first for the specific
3934  * bus that's being probed for hinted children (eg isa0), and then for
3935  * generic children (eg isa).
3936  *
3937  * @param	dev	bus device to enumerate
3938  */
3939 void
3940 bus_enumerate_hinted_children(device_t bus)
3941 {
3942 	int i;
3943 	const char *dname, *busname;
3944 	int dunit;
3945 
3946 	/*
3947 	 * enumerate all devices on the specific bus
3948 	 */
3949 	busname = device_get_nameunit(bus);
3950 	i = 0;
3951 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3952 		BUS_HINTED_CHILD(bus, dname, dunit);
3953 
3954 	/*
3955 	 * and all the generic ones.
3956 	 */
3957 	busname = device_get_name(bus);
3958 	i = 0;
3959 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3960 		BUS_HINTED_CHILD(bus, dname, dunit);
3961 }
3962 
3963 #ifdef BUS_DEBUG
3964 
3965 /* the _short versions avoid iteration by not calling anything that prints
3966  * more than oneliners. I love oneliners.
3967  */
3968 
3969 static void
3970 print_device_short(device_t dev, int indent)
3971 {
3972 	if (!dev)
3973 		return;
3974 
3975 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3976 	    dev->unit, dev->desc,
3977 	    (dev->parent? "":"no "),
3978 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3979 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3980 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3981 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3982 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3983 	    (dev->flags&DF_REBID? "rebiddable,":""),
3984 	    (dev->ivars? "":"no "),
3985 	    (dev->softc? "":"no "),
3986 	    dev->busy));
3987 }
3988 
3989 static void
3990 print_device(device_t dev, int indent)
3991 {
3992 	if (!dev)
3993 		return;
3994 
3995 	print_device_short(dev, indent);
3996 
3997 	indentprintf(("Parent:\n"));
3998 	print_device_short(dev->parent, indent+1);
3999 	indentprintf(("Driver:\n"));
4000 	print_driver_short(dev->driver, indent+1);
4001 	indentprintf(("Devclass:\n"));
4002 	print_devclass_short(dev->devclass, indent+1);
4003 }
4004 
4005 void
4006 print_device_tree_short(device_t dev, int indent)
4007 /* print the device and all its children (indented) */
4008 {
4009 	device_t child;
4010 
4011 	if (!dev)
4012 		return;
4013 
4014 	print_device_short(dev, indent);
4015 
4016 	TAILQ_FOREACH(child, &dev->children, link) {
4017 		print_device_tree_short(child, indent+1);
4018 	}
4019 }
4020 
4021 void
4022 print_device_tree(device_t dev, int indent)
4023 /* print the device and all its children (indented) */
4024 {
4025 	device_t child;
4026 
4027 	if (!dev)
4028 		return;
4029 
4030 	print_device(dev, indent);
4031 
4032 	TAILQ_FOREACH(child, &dev->children, link) {
4033 		print_device_tree(child, indent+1);
4034 	}
4035 }
4036 
4037 static void
4038 print_driver_short(driver_t *driver, int indent)
4039 {
4040 	if (!driver)
4041 		return;
4042 
4043 	indentprintf(("driver %s: softc size = %zd\n",
4044 	    driver->name, driver->size));
4045 }
4046 
4047 static void
4048 print_driver(driver_t *driver, int indent)
4049 {
4050 	if (!driver)
4051 		return;
4052 
4053 	print_driver_short(driver, indent);
4054 }
4055 
4056 
4057 static void
4058 print_driver_list(driver_list_t drivers, int indent)
4059 {
4060 	driverlink_t driver;
4061 
4062 	TAILQ_FOREACH(driver, &drivers, link) {
4063 		print_driver(driver->driver, indent);
4064 	}
4065 }
4066 
4067 static void
4068 print_devclass_short(devclass_t dc, int indent)
4069 {
4070 	if ( !dc )
4071 		return;
4072 
4073 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4074 }
4075 
4076 static void
4077 print_devclass(devclass_t dc, int indent)
4078 {
4079 	int i;
4080 
4081 	if ( !dc )
4082 		return;
4083 
4084 	print_devclass_short(dc, indent);
4085 	indentprintf(("Drivers:\n"));
4086 	print_driver_list(dc->drivers, indent+1);
4087 
4088 	indentprintf(("Devices:\n"));
4089 	for (i = 0; i < dc->maxunit; i++)
4090 		if (dc->devices[i])
4091 			print_device(dc->devices[i], indent+1);
4092 }
4093 
4094 void
4095 print_devclass_list_short(void)
4096 {
4097 	devclass_t dc;
4098 
4099 	printf("Short listing of devclasses, drivers & devices:\n");
4100 	TAILQ_FOREACH(dc, &devclasses, link) {
4101 		print_devclass_short(dc, 0);
4102 	}
4103 }
4104 
4105 void
4106 print_devclass_list(void)
4107 {
4108 	devclass_t dc;
4109 
4110 	printf("Full listing of devclasses, drivers & devices:\n");
4111 	TAILQ_FOREACH(dc, &devclasses, link) {
4112 		print_devclass(dc, 0);
4113 	}
4114 }
4115 
4116 #endif
4117 
4118 /*
4119  * User-space access to the device tree.
4120  *
4121  * We implement a small set of nodes:
4122  *
4123  * hw.bus			Single integer read method to obtain the
4124  *				current generation count.
4125  * hw.bus.devices		Reads the entire device tree in flat space.
4126  * hw.bus.rman			Resource manager interface
4127  *
4128  * We might like to add the ability to scan devclasses and/or drivers to
4129  * determine what else is currently loaded/available.
4130  */
4131 
4132 static int
4133 sysctl_bus(SYSCTL_HANDLER_ARGS)
4134 {
4135 	struct u_businfo	ubus;
4136 
4137 	ubus.ub_version = BUS_USER_VERSION;
4138 	ubus.ub_generation = bus_data_generation;
4139 
4140 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4141 }
4142 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4143     "bus-related data");
4144 
4145 static int
4146 sysctl_devices(SYSCTL_HANDLER_ARGS)
4147 {
4148 	int			*name = (int *)arg1;
4149 	u_int			namelen = arg2;
4150 	int			index;
4151 	struct device		*dev;
4152 	struct u_device		udev;	/* XXX this is a bit big */
4153 	int			error;
4154 
4155 	if (namelen != 2)
4156 		return (EINVAL);
4157 
4158 	if (bus_data_generation_check(name[0]))
4159 		return (EINVAL);
4160 
4161 	index = name[1];
4162 
4163 	/*
4164 	 * Scan the list of devices, looking for the requested index.
4165 	 */
4166 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4167 		if (index-- == 0)
4168 			break;
4169 	}
4170 	if (dev == NULL)
4171 		return (ENOENT);
4172 
4173 	/*
4174 	 * Populate the return array.
4175 	 */
4176 	bzero(&udev, sizeof(udev));
4177 	udev.dv_handle = (uintptr_t)dev;
4178 	udev.dv_parent = (uintptr_t)dev->parent;
4179 	if (dev->nameunit != NULL)
4180 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4181 	if (dev->desc != NULL)
4182 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4183 	if (dev->driver != NULL && dev->driver->name != NULL)
4184 		strlcpy(udev.dv_drivername, dev->driver->name,
4185 		    sizeof(udev.dv_drivername));
4186 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4187 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4188 	udev.dv_devflags = dev->devflags;
4189 	udev.dv_flags = dev->flags;
4190 	udev.dv_state = dev->state;
4191 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4192 	return (error);
4193 }
4194 
4195 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4196     "system device tree");
4197 
4198 int
4199 bus_data_generation_check(int generation)
4200 {
4201 	if (generation != bus_data_generation)
4202 		return (1);
4203 
4204 	/* XXX generate optimised lists here? */
4205 	return (0);
4206 }
4207 
4208 void
4209 bus_data_generation_update(void)
4210 {
4211 	bus_data_generation++;
4212 }
4213 
4214 int
4215 bus_free_resource(device_t dev, int type, struct resource *r)
4216 {
4217 	if (r == NULL)
4218 		return (0);
4219 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4220 }
4221