1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_random.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/uio.h> 55 #include <sys/bus.h> 56 #include <sys/interrupt.h> 57 #include <sys/cpuset.h> 58 59 #include <net/vnet.h> 60 61 #include <machine/cpu.h> 62 #include <machine/stdarg.h> 63 64 #include <vm/uma.h> 65 66 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 68 69 /* 70 * Used to attach drivers to devclasses. 71 */ 72 typedef struct driverlink *driverlink_t; 73 struct driverlink { 74 kobj_class_t driver; 75 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 76 int pass; 77 TAILQ_ENTRY(driverlink) passlink; 78 }; 79 80 /* 81 * Forward declarations 82 */ 83 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 84 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 85 typedef TAILQ_HEAD(device_list, device) device_list_t; 86 87 struct devclass { 88 TAILQ_ENTRY(devclass) link; 89 devclass_t parent; /* parent in devclass hierarchy */ 90 driver_list_t drivers; /* bus devclasses store drivers for bus */ 91 char *name; 92 device_t *devices; /* array of devices indexed by unit */ 93 int maxunit; /* size of devices array */ 94 int flags; 95 #define DC_HAS_CHILDREN 1 96 97 struct sysctl_ctx_list sysctl_ctx; 98 struct sysctl_oid *sysctl_tree; 99 }; 100 101 /** 102 * @brief Implementation of device. 103 */ 104 struct device { 105 /* 106 * A device is a kernel object. The first field must be the 107 * current ops table for the object. 108 */ 109 KOBJ_FIELDS; 110 111 /* 112 * Device hierarchy. 113 */ 114 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 115 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 116 device_t parent; /**< parent of this device */ 117 device_list_t children; /**< list of child devices */ 118 119 /* 120 * Details of this device. 121 */ 122 driver_t *driver; /**< current driver */ 123 devclass_t devclass; /**< current device class */ 124 int unit; /**< current unit number */ 125 char* nameunit; /**< name+unit e.g. foodev0 */ 126 char* desc; /**< driver specific description */ 127 int busy; /**< count of calls to device_busy() */ 128 device_state_t state; /**< current device state */ 129 uint32_t devflags; /**< api level flags for device_get_flags() */ 130 u_int flags; /**< internal device flags */ 131 #define DF_ENABLED 0x01 /* device should be probed/attached */ 132 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 133 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 134 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 135 #define DF_QUIET 0x10 /* don't print verbose attach message */ 136 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 137 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 138 #define DF_REBID 0x80 /* Can rebid after attach */ 139 #define DF_SUSPENDED 0x100 /* Device is suspended. */ 140 u_int order; /**< order from device_add_child_ordered() */ 141 void *ivars; /**< instance variables */ 142 void *softc; /**< current driver's variables */ 143 144 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 145 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 146 }; 147 148 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 149 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 150 151 #ifdef BUS_DEBUG 152 153 static int bus_debug = 1; 154 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 155 "Bus debug level"); 156 157 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 158 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 159 #define DRIVERNAME(d) ((d)? d->name : "no driver") 160 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 161 162 /** 163 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 164 * prevent syslog from deleting initial spaces 165 */ 166 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 167 168 static void print_device_short(device_t dev, int indent); 169 static void print_device(device_t dev, int indent); 170 void print_device_tree_short(device_t dev, int indent); 171 void print_device_tree(device_t dev, int indent); 172 static void print_driver_short(driver_t *driver, int indent); 173 static void print_driver(driver_t *driver, int indent); 174 static void print_driver_list(driver_list_t drivers, int indent); 175 static void print_devclass_short(devclass_t dc, int indent); 176 static void print_devclass(devclass_t dc, int indent); 177 void print_devclass_list_short(void); 178 void print_devclass_list(void); 179 180 #else 181 /* Make the compiler ignore the function calls */ 182 #define PDEBUG(a) /* nop */ 183 #define DEVICENAME(d) /* nop */ 184 #define DRIVERNAME(d) /* nop */ 185 #define DEVCLANAME(d) /* nop */ 186 187 #define print_device_short(d,i) /* nop */ 188 #define print_device(d,i) /* nop */ 189 #define print_device_tree_short(d,i) /* nop */ 190 #define print_device_tree(d,i) /* nop */ 191 #define print_driver_short(d,i) /* nop */ 192 #define print_driver(d,i) /* nop */ 193 #define print_driver_list(d,i) /* nop */ 194 #define print_devclass_short(d,i) /* nop */ 195 #define print_devclass(d,i) /* nop */ 196 #define print_devclass_list_short() /* nop */ 197 #define print_devclass_list() /* nop */ 198 #endif 199 200 /* 201 * dev sysctl tree 202 */ 203 204 enum { 205 DEVCLASS_SYSCTL_PARENT, 206 }; 207 208 static int 209 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 210 { 211 devclass_t dc = (devclass_t)arg1; 212 const char *value; 213 214 switch (arg2) { 215 case DEVCLASS_SYSCTL_PARENT: 216 value = dc->parent ? dc->parent->name : ""; 217 break; 218 default: 219 return (EINVAL); 220 } 221 return (SYSCTL_OUT(req, value, strlen(value))); 222 } 223 224 static void 225 devclass_sysctl_init(devclass_t dc) 226 { 227 228 if (dc->sysctl_tree != NULL) 229 return; 230 sysctl_ctx_init(&dc->sysctl_ctx); 231 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 232 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 233 CTLFLAG_RD, NULL, ""); 234 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 235 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 236 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 237 "parent class"); 238 } 239 240 enum { 241 DEVICE_SYSCTL_DESC, 242 DEVICE_SYSCTL_DRIVER, 243 DEVICE_SYSCTL_LOCATION, 244 DEVICE_SYSCTL_PNPINFO, 245 DEVICE_SYSCTL_PARENT, 246 }; 247 248 static int 249 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 250 { 251 device_t dev = (device_t)arg1; 252 const char *value; 253 char *buf; 254 int error; 255 256 buf = NULL; 257 switch (arg2) { 258 case DEVICE_SYSCTL_DESC: 259 value = dev->desc ? dev->desc : ""; 260 break; 261 case DEVICE_SYSCTL_DRIVER: 262 value = dev->driver ? dev->driver->name : ""; 263 break; 264 case DEVICE_SYSCTL_LOCATION: 265 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 266 bus_child_location_str(dev, buf, 1024); 267 break; 268 case DEVICE_SYSCTL_PNPINFO: 269 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 270 bus_child_pnpinfo_str(dev, buf, 1024); 271 break; 272 case DEVICE_SYSCTL_PARENT: 273 value = dev->parent ? dev->parent->nameunit : ""; 274 break; 275 default: 276 return (EINVAL); 277 } 278 error = SYSCTL_OUT(req, value, strlen(value)); 279 if (buf != NULL) 280 free(buf, M_BUS); 281 return (error); 282 } 283 284 static void 285 device_sysctl_init(device_t dev) 286 { 287 devclass_t dc = dev->devclass; 288 int domain; 289 290 if (dev->sysctl_tree != NULL) 291 return; 292 devclass_sysctl_init(dc); 293 sysctl_ctx_init(&dev->sysctl_ctx); 294 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 295 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 296 dev->nameunit + strlen(dc->name), 297 CTLFLAG_RD, NULL, ""); 298 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 299 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 300 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 301 "device description"); 302 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 303 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 304 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 305 "device driver name"); 306 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 307 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 308 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 309 "device location relative to parent"); 310 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 311 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 312 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 313 "device identification"); 314 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 315 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 316 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 317 "parent device"); 318 if (bus_get_domain(dev, &domain) == 0) 319 SYSCTL_ADD_INT(&dev->sysctl_ctx, 320 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 321 CTLFLAG_RD, NULL, domain, "NUMA domain"); 322 } 323 324 static void 325 device_sysctl_update(device_t dev) 326 { 327 devclass_t dc = dev->devclass; 328 329 if (dev->sysctl_tree == NULL) 330 return; 331 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 332 } 333 334 static void 335 device_sysctl_fini(device_t dev) 336 { 337 if (dev->sysctl_tree == NULL) 338 return; 339 sysctl_ctx_free(&dev->sysctl_ctx); 340 dev->sysctl_tree = NULL; 341 } 342 343 /* 344 * /dev/devctl implementation 345 */ 346 347 /* 348 * This design allows only one reader for /dev/devctl. This is not desirable 349 * in the long run, but will get a lot of hair out of this implementation. 350 * Maybe we should make this device a clonable device. 351 * 352 * Also note: we specifically do not attach a device to the device_t tree 353 * to avoid potential chicken and egg problems. One could argue that all 354 * of this belongs to the root node. One could also further argue that the 355 * sysctl interface that we have not might more properly be an ioctl 356 * interface, but at this stage of the game, I'm not inclined to rock that 357 * boat. 358 * 359 * I'm also not sure that the SIGIO support is done correctly or not, as 360 * I copied it from a driver that had SIGIO support that likely hasn't been 361 * tested since 3.4 or 2.2.8! 362 */ 363 364 /* Deprecated way to adjust queue length */ 365 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 366 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 367 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 368 "devctl disable -- deprecated"); 369 370 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 371 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 372 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 374 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 375 376 static d_open_t devopen; 377 static d_close_t devclose; 378 static d_read_t devread; 379 static d_ioctl_t devioctl; 380 static d_poll_t devpoll; 381 static d_kqfilter_t devkqfilter; 382 383 static struct cdevsw dev_cdevsw = { 384 .d_version = D_VERSION, 385 .d_open = devopen, 386 .d_close = devclose, 387 .d_read = devread, 388 .d_ioctl = devioctl, 389 .d_poll = devpoll, 390 .d_kqfilter = devkqfilter, 391 .d_name = "devctl", 392 }; 393 394 struct dev_event_info 395 { 396 char *dei_data; 397 TAILQ_ENTRY(dev_event_info) dei_link; 398 }; 399 400 TAILQ_HEAD(devq, dev_event_info); 401 402 static struct dev_softc 403 { 404 int inuse; 405 int nonblock; 406 int queued; 407 int async; 408 struct mtx mtx; 409 struct cv cv; 410 struct selinfo sel; 411 struct devq devq; 412 struct sigio *sigio; 413 } devsoftc; 414 415 static void filt_devctl_detach(struct knote *kn); 416 static int filt_devctl_read(struct knote *kn, long hint); 417 418 struct filterops devctl_rfiltops = { 419 .f_isfd = 1, 420 .f_detach = filt_devctl_detach, 421 .f_event = filt_devctl_read, 422 }; 423 424 static struct cdev *devctl_dev; 425 426 static void 427 devinit(void) 428 { 429 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 430 UID_ROOT, GID_WHEEL, 0600, "devctl"); 431 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 432 cv_init(&devsoftc.cv, "dev cv"); 433 TAILQ_INIT(&devsoftc.devq); 434 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 435 } 436 437 static int 438 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 439 { 440 441 mtx_lock(&devsoftc.mtx); 442 if (devsoftc.inuse) { 443 mtx_unlock(&devsoftc.mtx); 444 return (EBUSY); 445 } 446 /* move to init */ 447 devsoftc.inuse = 1; 448 mtx_unlock(&devsoftc.mtx); 449 return (0); 450 } 451 452 static int 453 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 454 { 455 456 mtx_lock(&devsoftc.mtx); 457 devsoftc.inuse = 0; 458 devsoftc.nonblock = 0; 459 devsoftc.async = 0; 460 cv_broadcast(&devsoftc.cv); 461 funsetown(&devsoftc.sigio); 462 mtx_unlock(&devsoftc.mtx); 463 return (0); 464 } 465 466 /* 467 * The read channel for this device is used to report changes to 468 * userland in realtime. We are required to free the data as well as 469 * the n1 object because we allocate them separately. Also note that 470 * we return one record at a time. If you try to read this device a 471 * character at a time, you will lose the rest of the data. Listening 472 * programs are expected to cope. 473 */ 474 static int 475 devread(struct cdev *dev, struct uio *uio, int ioflag) 476 { 477 struct dev_event_info *n1; 478 int rv; 479 480 mtx_lock(&devsoftc.mtx); 481 while (TAILQ_EMPTY(&devsoftc.devq)) { 482 if (devsoftc.nonblock) { 483 mtx_unlock(&devsoftc.mtx); 484 return (EAGAIN); 485 } 486 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 487 if (rv) { 488 /* 489 * Need to translate ERESTART to EINTR here? -- jake 490 */ 491 mtx_unlock(&devsoftc.mtx); 492 return (rv); 493 } 494 } 495 n1 = TAILQ_FIRST(&devsoftc.devq); 496 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 497 devsoftc.queued--; 498 mtx_unlock(&devsoftc.mtx); 499 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 500 free(n1->dei_data, M_BUS); 501 free(n1, M_BUS); 502 return (rv); 503 } 504 505 static int 506 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 507 { 508 switch (cmd) { 509 510 case FIONBIO: 511 if (*(int*)data) 512 devsoftc.nonblock = 1; 513 else 514 devsoftc.nonblock = 0; 515 return (0); 516 case FIOASYNC: 517 if (*(int*)data) 518 devsoftc.async = 1; 519 else 520 devsoftc.async = 0; 521 return (0); 522 case FIOSETOWN: 523 return fsetown(*(int *)data, &devsoftc.sigio); 524 case FIOGETOWN: 525 *(int *)data = fgetown(&devsoftc.sigio); 526 return (0); 527 528 /* (un)Support for other fcntl() calls. */ 529 case FIOCLEX: 530 case FIONCLEX: 531 case FIONREAD: 532 default: 533 break; 534 } 535 return (ENOTTY); 536 } 537 538 static int 539 devpoll(struct cdev *dev, int events, struct thread *td) 540 { 541 int revents = 0; 542 543 mtx_lock(&devsoftc.mtx); 544 if (events & (POLLIN | POLLRDNORM)) { 545 if (!TAILQ_EMPTY(&devsoftc.devq)) 546 revents = events & (POLLIN | POLLRDNORM); 547 else 548 selrecord(td, &devsoftc.sel); 549 } 550 mtx_unlock(&devsoftc.mtx); 551 552 return (revents); 553 } 554 555 static int 556 devkqfilter(struct cdev *dev, struct knote *kn) 557 { 558 int error; 559 560 if (kn->kn_filter == EVFILT_READ) { 561 kn->kn_fop = &devctl_rfiltops; 562 knlist_add(&devsoftc.sel.si_note, kn, 0); 563 error = 0; 564 } else 565 error = EINVAL; 566 return (error); 567 } 568 569 static void 570 filt_devctl_detach(struct knote *kn) 571 { 572 573 knlist_remove(&devsoftc.sel.si_note, kn, 0); 574 } 575 576 static int 577 filt_devctl_read(struct knote *kn, long hint) 578 { 579 kn->kn_data = devsoftc.queued; 580 return (kn->kn_data != 0); 581 } 582 583 /** 584 * @brief Return whether the userland process is running 585 */ 586 boolean_t 587 devctl_process_running(void) 588 { 589 return (devsoftc.inuse == 1); 590 } 591 592 /** 593 * @brief Queue data to be read from the devctl device 594 * 595 * Generic interface to queue data to the devctl device. It is 596 * assumed that @p data is properly formatted. It is further assumed 597 * that @p data is allocated using the M_BUS malloc type. 598 */ 599 void 600 devctl_queue_data_f(char *data, int flags) 601 { 602 struct dev_event_info *n1 = NULL, *n2 = NULL; 603 604 if (strlen(data) == 0) 605 goto out; 606 if (devctl_queue_length == 0) 607 goto out; 608 n1 = malloc(sizeof(*n1), M_BUS, flags); 609 if (n1 == NULL) 610 goto out; 611 n1->dei_data = data; 612 mtx_lock(&devsoftc.mtx); 613 if (devctl_queue_length == 0) { 614 mtx_unlock(&devsoftc.mtx); 615 free(n1->dei_data, M_BUS); 616 free(n1, M_BUS); 617 return; 618 } 619 /* Leave at least one spot in the queue... */ 620 while (devsoftc.queued > devctl_queue_length - 1) { 621 n2 = TAILQ_FIRST(&devsoftc.devq); 622 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 623 free(n2->dei_data, M_BUS); 624 free(n2, M_BUS); 625 devsoftc.queued--; 626 } 627 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 628 devsoftc.queued++; 629 cv_broadcast(&devsoftc.cv); 630 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 631 mtx_unlock(&devsoftc.mtx); 632 selwakeup(&devsoftc.sel); 633 if (devsoftc.async && devsoftc.sigio != NULL) 634 pgsigio(&devsoftc.sigio, SIGIO, 0); 635 return; 636 out: 637 /* 638 * We have to free data on all error paths since the caller 639 * assumes it will be free'd when this item is dequeued. 640 */ 641 free(data, M_BUS); 642 return; 643 } 644 645 void 646 devctl_queue_data(char *data) 647 { 648 649 devctl_queue_data_f(data, M_NOWAIT); 650 } 651 652 /** 653 * @brief Send a 'notification' to userland, using standard ways 654 */ 655 void 656 devctl_notify_f(const char *system, const char *subsystem, const char *type, 657 const char *data, int flags) 658 { 659 int len = 0; 660 char *msg; 661 662 if (system == NULL) 663 return; /* BOGUS! Must specify system. */ 664 if (subsystem == NULL) 665 return; /* BOGUS! Must specify subsystem. */ 666 if (type == NULL) 667 return; /* BOGUS! Must specify type. */ 668 len += strlen(" system=") + strlen(system); 669 len += strlen(" subsystem=") + strlen(subsystem); 670 len += strlen(" type=") + strlen(type); 671 /* add in the data message plus newline. */ 672 if (data != NULL) 673 len += strlen(data); 674 len += 3; /* '!', '\n', and NUL */ 675 msg = malloc(len, M_BUS, flags); 676 if (msg == NULL) 677 return; /* Drop it on the floor */ 678 if (data != NULL) 679 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 680 system, subsystem, type, data); 681 else 682 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 683 system, subsystem, type); 684 devctl_queue_data_f(msg, flags); 685 } 686 687 void 688 devctl_notify(const char *system, const char *subsystem, const char *type, 689 const char *data) 690 { 691 692 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 693 } 694 695 /* 696 * Common routine that tries to make sending messages as easy as possible. 697 * We allocate memory for the data, copy strings into that, but do not 698 * free it unless there's an error. The dequeue part of the driver should 699 * free the data. We don't send data when the device is disabled. We do 700 * send data, even when we have no listeners, because we wish to avoid 701 * races relating to startup and restart of listening applications. 702 * 703 * devaddq is designed to string together the type of event, with the 704 * object of that event, plus the plug and play info and location info 705 * for that event. This is likely most useful for devices, but less 706 * useful for other consumers of this interface. Those should use 707 * the devctl_queue_data() interface instead. 708 */ 709 static void 710 devaddq(const char *type, const char *what, device_t dev) 711 { 712 char *data = NULL; 713 char *loc = NULL; 714 char *pnp = NULL; 715 const char *parstr; 716 717 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 718 return; 719 data = malloc(1024, M_BUS, M_NOWAIT); 720 if (data == NULL) 721 goto bad; 722 723 /* get the bus specific location of this device */ 724 loc = malloc(1024, M_BUS, M_NOWAIT); 725 if (loc == NULL) 726 goto bad; 727 *loc = '\0'; 728 bus_child_location_str(dev, loc, 1024); 729 730 /* Get the bus specific pnp info of this device */ 731 pnp = malloc(1024, M_BUS, M_NOWAIT); 732 if (pnp == NULL) 733 goto bad; 734 *pnp = '\0'; 735 bus_child_pnpinfo_str(dev, pnp, 1024); 736 737 /* Get the parent of this device, or / if high enough in the tree. */ 738 if (device_get_parent(dev) == NULL) 739 parstr = "."; /* Or '/' ? */ 740 else 741 parstr = device_get_nameunit(device_get_parent(dev)); 742 /* String it all together. */ 743 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 744 parstr); 745 free(loc, M_BUS); 746 free(pnp, M_BUS); 747 devctl_queue_data(data); 748 return; 749 bad: 750 free(pnp, M_BUS); 751 free(loc, M_BUS); 752 free(data, M_BUS); 753 return; 754 } 755 756 /* 757 * A device was added to the tree. We are called just after it successfully 758 * attaches (that is, probe and attach success for this device). No call 759 * is made if a device is merely parented into the tree. See devnomatch 760 * if probe fails. If attach fails, no notification is sent (but maybe 761 * we should have a different message for this). 762 */ 763 static void 764 devadded(device_t dev) 765 { 766 devaddq("+", device_get_nameunit(dev), dev); 767 } 768 769 /* 770 * A device was removed from the tree. We are called just before this 771 * happens. 772 */ 773 static void 774 devremoved(device_t dev) 775 { 776 devaddq("-", device_get_nameunit(dev), dev); 777 } 778 779 /* 780 * Called when there's no match for this device. This is only called 781 * the first time that no match happens, so we don't keep getting this 782 * message. Should that prove to be undesirable, we can change it. 783 * This is called when all drivers that can attach to a given bus 784 * decline to accept this device. Other errors may not be detected. 785 */ 786 static void 787 devnomatch(device_t dev) 788 { 789 devaddq("?", "", dev); 790 } 791 792 static int 793 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 794 { 795 struct dev_event_info *n1; 796 int dis, error; 797 798 dis = (devctl_queue_length == 0); 799 error = sysctl_handle_int(oidp, &dis, 0, req); 800 if (error || !req->newptr) 801 return (error); 802 if (mtx_initialized(&devsoftc.mtx)) 803 mtx_lock(&devsoftc.mtx); 804 if (dis) { 805 while (!TAILQ_EMPTY(&devsoftc.devq)) { 806 n1 = TAILQ_FIRST(&devsoftc.devq); 807 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 808 free(n1->dei_data, M_BUS); 809 free(n1, M_BUS); 810 } 811 devsoftc.queued = 0; 812 devctl_queue_length = 0; 813 } else { 814 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 815 } 816 if (mtx_initialized(&devsoftc.mtx)) 817 mtx_unlock(&devsoftc.mtx); 818 return (0); 819 } 820 821 static int 822 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 823 { 824 struct dev_event_info *n1; 825 int q, error; 826 827 q = devctl_queue_length; 828 error = sysctl_handle_int(oidp, &q, 0, req); 829 if (error || !req->newptr) 830 return (error); 831 if (q < 0) 832 return (EINVAL); 833 if (mtx_initialized(&devsoftc.mtx)) 834 mtx_lock(&devsoftc.mtx); 835 devctl_queue_length = q; 836 while (devsoftc.queued > devctl_queue_length) { 837 n1 = TAILQ_FIRST(&devsoftc.devq); 838 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 839 free(n1->dei_data, M_BUS); 840 free(n1, M_BUS); 841 devsoftc.queued--; 842 } 843 if (mtx_initialized(&devsoftc.mtx)) 844 mtx_unlock(&devsoftc.mtx); 845 return (0); 846 } 847 848 /* End of /dev/devctl code */ 849 850 static TAILQ_HEAD(,device) bus_data_devices; 851 static int bus_data_generation = 1; 852 853 static kobj_method_t null_methods[] = { 854 KOBJMETHOD_END 855 }; 856 857 DEFINE_CLASS(null, null_methods, 0); 858 859 /* 860 * Bus pass implementation 861 */ 862 863 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 864 int bus_current_pass = BUS_PASS_ROOT; 865 866 /** 867 * @internal 868 * @brief Register the pass level of a new driver attachment 869 * 870 * Register a new driver attachment's pass level. If no driver 871 * attachment with the same pass level has been added, then @p new 872 * will be added to the global passes list. 873 * 874 * @param new the new driver attachment 875 */ 876 static void 877 driver_register_pass(struct driverlink *new) 878 { 879 struct driverlink *dl; 880 881 /* We only consider pass numbers during boot. */ 882 if (bus_current_pass == BUS_PASS_DEFAULT) 883 return; 884 885 /* 886 * Walk the passes list. If we already know about this pass 887 * then there is nothing to do. If we don't, then insert this 888 * driver link into the list. 889 */ 890 TAILQ_FOREACH(dl, &passes, passlink) { 891 if (dl->pass < new->pass) 892 continue; 893 if (dl->pass == new->pass) 894 return; 895 TAILQ_INSERT_BEFORE(dl, new, passlink); 896 return; 897 } 898 TAILQ_INSERT_TAIL(&passes, new, passlink); 899 } 900 901 /** 902 * @brief Raise the current bus pass 903 * 904 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 905 * method on the root bus to kick off a new device tree scan for each 906 * new pass level that has at least one driver. 907 */ 908 void 909 bus_set_pass(int pass) 910 { 911 struct driverlink *dl; 912 913 if (bus_current_pass > pass) 914 panic("Attempt to lower bus pass level"); 915 916 TAILQ_FOREACH(dl, &passes, passlink) { 917 /* Skip pass values below the current pass level. */ 918 if (dl->pass <= bus_current_pass) 919 continue; 920 921 /* 922 * Bail once we hit a driver with a pass level that is 923 * too high. 924 */ 925 if (dl->pass > pass) 926 break; 927 928 /* 929 * Raise the pass level to the next level and rescan 930 * the tree. 931 */ 932 bus_current_pass = dl->pass; 933 BUS_NEW_PASS(root_bus); 934 } 935 936 /* 937 * If there isn't a driver registered for the requested pass, 938 * then bus_current_pass might still be less than 'pass'. Set 939 * it to 'pass' in that case. 940 */ 941 if (bus_current_pass < pass) 942 bus_current_pass = pass; 943 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 944 } 945 946 /* 947 * Devclass implementation 948 */ 949 950 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 951 952 /** 953 * @internal 954 * @brief Find or create a device class 955 * 956 * If a device class with the name @p classname exists, return it, 957 * otherwise if @p create is non-zero create and return a new device 958 * class. 959 * 960 * If @p parentname is non-NULL, the parent of the devclass is set to 961 * the devclass of that name. 962 * 963 * @param classname the devclass name to find or create 964 * @param parentname the parent devclass name or @c NULL 965 * @param create non-zero to create a devclass 966 */ 967 static devclass_t 968 devclass_find_internal(const char *classname, const char *parentname, 969 int create) 970 { 971 devclass_t dc; 972 973 PDEBUG(("looking for %s", classname)); 974 if (!classname) 975 return (NULL); 976 977 TAILQ_FOREACH(dc, &devclasses, link) { 978 if (!strcmp(dc->name, classname)) 979 break; 980 } 981 982 if (create && !dc) { 983 PDEBUG(("creating %s", classname)); 984 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 985 M_BUS, M_NOWAIT | M_ZERO); 986 if (!dc) 987 return (NULL); 988 dc->parent = NULL; 989 dc->name = (char*) (dc + 1); 990 strcpy(dc->name, classname); 991 TAILQ_INIT(&dc->drivers); 992 TAILQ_INSERT_TAIL(&devclasses, dc, link); 993 994 bus_data_generation_update(); 995 } 996 997 /* 998 * If a parent class is specified, then set that as our parent so 999 * that this devclass will support drivers for the parent class as 1000 * well. If the parent class has the same name don't do this though 1001 * as it creates a cycle that can trigger an infinite loop in 1002 * device_probe_child() if a device exists for which there is no 1003 * suitable driver. 1004 */ 1005 if (parentname && dc && !dc->parent && 1006 strcmp(classname, parentname) != 0) { 1007 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1008 dc->parent->flags |= DC_HAS_CHILDREN; 1009 } 1010 1011 return (dc); 1012 } 1013 1014 /** 1015 * @brief Create a device class 1016 * 1017 * If a device class with the name @p classname exists, return it, 1018 * otherwise create and return a new device class. 1019 * 1020 * @param classname the devclass name to find or create 1021 */ 1022 devclass_t 1023 devclass_create(const char *classname) 1024 { 1025 return (devclass_find_internal(classname, NULL, TRUE)); 1026 } 1027 1028 /** 1029 * @brief Find a device class 1030 * 1031 * If a device class with the name @p classname exists, return it, 1032 * otherwise return @c NULL. 1033 * 1034 * @param classname the devclass name to find 1035 */ 1036 devclass_t 1037 devclass_find(const char *classname) 1038 { 1039 return (devclass_find_internal(classname, NULL, FALSE)); 1040 } 1041 1042 /** 1043 * @brief Register that a device driver has been added to a devclass 1044 * 1045 * Register that a device driver has been added to a devclass. This 1046 * is called by devclass_add_driver to accomplish the recursive 1047 * notification of all the children classes of dc, as well as dc. 1048 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1049 * the devclass. 1050 * 1051 * We do a full search here of the devclass list at each iteration 1052 * level to save storing children-lists in the devclass structure. If 1053 * we ever move beyond a few dozen devices doing this, we may need to 1054 * reevaluate... 1055 * 1056 * @param dc the devclass to edit 1057 * @param driver the driver that was just added 1058 */ 1059 static void 1060 devclass_driver_added(devclass_t dc, driver_t *driver) 1061 { 1062 devclass_t parent; 1063 int i; 1064 1065 /* 1066 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1067 */ 1068 for (i = 0; i < dc->maxunit; i++) 1069 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1070 BUS_DRIVER_ADDED(dc->devices[i], driver); 1071 1072 /* 1073 * Walk through the children classes. Since we only keep a 1074 * single parent pointer around, we walk the entire list of 1075 * devclasses looking for children. We set the 1076 * DC_HAS_CHILDREN flag when a child devclass is created on 1077 * the parent, so we only walk the list for those devclasses 1078 * that have children. 1079 */ 1080 if (!(dc->flags & DC_HAS_CHILDREN)) 1081 return; 1082 parent = dc; 1083 TAILQ_FOREACH(dc, &devclasses, link) { 1084 if (dc->parent == parent) 1085 devclass_driver_added(dc, driver); 1086 } 1087 } 1088 1089 /** 1090 * @brief Add a device driver to a device class 1091 * 1092 * Add a device driver to a devclass. This is normally called 1093 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1094 * all devices in the devclass will be called to allow them to attempt 1095 * to re-probe any unmatched children. 1096 * 1097 * @param dc the devclass to edit 1098 * @param driver the driver to register 1099 */ 1100 int 1101 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1102 { 1103 driverlink_t dl; 1104 const char *parentname; 1105 1106 PDEBUG(("%s", DRIVERNAME(driver))); 1107 1108 /* Don't allow invalid pass values. */ 1109 if (pass <= BUS_PASS_ROOT) 1110 return (EINVAL); 1111 1112 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1113 if (!dl) 1114 return (ENOMEM); 1115 1116 /* 1117 * Compile the driver's methods. Also increase the reference count 1118 * so that the class doesn't get freed when the last instance 1119 * goes. This means we can safely use static methods and avoids a 1120 * double-free in devclass_delete_driver. 1121 */ 1122 kobj_class_compile((kobj_class_t) driver); 1123 1124 /* 1125 * If the driver has any base classes, make the 1126 * devclass inherit from the devclass of the driver's 1127 * first base class. This will allow the system to 1128 * search for drivers in both devclasses for children 1129 * of a device using this driver. 1130 */ 1131 if (driver->baseclasses) 1132 parentname = driver->baseclasses[0]->name; 1133 else 1134 parentname = NULL; 1135 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1136 1137 dl->driver = driver; 1138 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1139 driver->refs++; /* XXX: kobj_mtx */ 1140 dl->pass = pass; 1141 driver_register_pass(dl); 1142 1143 devclass_driver_added(dc, driver); 1144 bus_data_generation_update(); 1145 return (0); 1146 } 1147 1148 /** 1149 * @brief Register that a device driver has been deleted from a devclass 1150 * 1151 * Register that a device driver has been removed from a devclass. 1152 * This is called by devclass_delete_driver to accomplish the 1153 * recursive notification of all the children classes of busclass, as 1154 * well as busclass. Each layer will attempt to detach the driver 1155 * from any devices that are children of the bus's devclass. The function 1156 * will return an error if a device fails to detach. 1157 * 1158 * We do a full search here of the devclass list at each iteration 1159 * level to save storing children-lists in the devclass structure. If 1160 * we ever move beyond a few dozen devices doing this, we may need to 1161 * reevaluate... 1162 * 1163 * @param busclass the devclass of the parent bus 1164 * @param dc the devclass of the driver being deleted 1165 * @param driver the driver being deleted 1166 */ 1167 static int 1168 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1169 { 1170 devclass_t parent; 1171 device_t dev; 1172 int error, i; 1173 1174 /* 1175 * Disassociate from any devices. We iterate through all the 1176 * devices in the devclass of the driver and detach any which are 1177 * using the driver and which have a parent in the devclass which 1178 * we are deleting from. 1179 * 1180 * Note that since a driver can be in multiple devclasses, we 1181 * should not detach devices which are not children of devices in 1182 * the affected devclass. 1183 */ 1184 for (i = 0; i < dc->maxunit; i++) { 1185 if (dc->devices[i]) { 1186 dev = dc->devices[i]; 1187 if (dev->driver == driver && dev->parent && 1188 dev->parent->devclass == busclass) { 1189 if ((error = device_detach(dev)) != 0) 1190 return (error); 1191 BUS_PROBE_NOMATCH(dev->parent, dev); 1192 devnomatch(dev); 1193 dev->flags |= DF_DONENOMATCH; 1194 } 1195 } 1196 } 1197 1198 /* 1199 * Walk through the children classes. Since we only keep a 1200 * single parent pointer around, we walk the entire list of 1201 * devclasses looking for children. We set the 1202 * DC_HAS_CHILDREN flag when a child devclass is created on 1203 * the parent, so we only walk the list for those devclasses 1204 * that have children. 1205 */ 1206 if (!(busclass->flags & DC_HAS_CHILDREN)) 1207 return (0); 1208 parent = busclass; 1209 TAILQ_FOREACH(busclass, &devclasses, link) { 1210 if (busclass->parent == parent) { 1211 error = devclass_driver_deleted(busclass, dc, driver); 1212 if (error) 1213 return (error); 1214 } 1215 } 1216 return (0); 1217 } 1218 1219 /** 1220 * @brief Delete a device driver from a device class 1221 * 1222 * Delete a device driver from a devclass. This is normally called 1223 * automatically by DRIVER_MODULE(). 1224 * 1225 * If the driver is currently attached to any devices, 1226 * devclass_delete_driver() will first attempt to detach from each 1227 * device. If one of the detach calls fails, the driver will not be 1228 * deleted. 1229 * 1230 * @param dc the devclass to edit 1231 * @param driver the driver to unregister 1232 */ 1233 int 1234 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1235 { 1236 devclass_t dc = devclass_find(driver->name); 1237 driverlink_t dl; 1238 int error; 1239 1240 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1241 1242 if (!dc) 1243 return (0); 1244 1245 /* 1246 * Find the link structure in the bus' list of drivers. 1247 */ 1248 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1249 if (dl->driver == driver) 1250 break; 1251 } 1252 1253 if (!dl) { 1254 PDEBUG(("%s not found in %s list", driver->name, 1255 busclass->name)); 1256 return (ENOENT); 1257 } 1258 1259 error = devclass_driver_deleted(busclass, dc, driver); 1260 if (error != 0) 1261 return (error); 1262 1263 TAILQ_REMOVE(&busclass->drivers, dl, link); 1264 free(dl, M_BUS); 1265 1266 /* XXX: kobj_mtx */ 1267 driver->refs--; 1268 if (driver->refs == 0) 1269 kobj_class_free((kobj_class_t) driver); 1270 1271 bus_data_generation_update(); 1272 return (0); 1273 } 1274 1275 /** 1276 * @brief Quiesces a set of device drivers from a device class 1277 * 1278 * Quiesce a device driver from a devclass. This is normally called 1279 * automatically by DRIVER_MODULE(). 1280 * 1281 * If the driver is currently attached to any devices, 1282 * devclass_quiesece_driver() will first attempt to quiesce each 1283 * device. 1284 * 1285 * @param dc the devclass to edit 1286 * @param driver the driver to unregister 1287 */ 1288 static int 1289 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1290 { 1291 devclass_t dc = devclass_find(driver->name); 1292 driverlink_t dl; 1293 device_t dev; 1294 int i; 1295 int error; 1296 1297 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1298 1299 if (!dc) 1300 return (0); 1301 1302 /* 1303 * Find the link structure in the bus' list of drivers. 1304 */ 1305 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1306 if (dl->driver == driver) 1307 break; 1308 } 1309 1310 if (!dl) { 1311 PDEBUG(("%s not found in %s list", driver->name, 1312 busclass->name)); 1313 return (ENOENT); 1314 } 1315 1316 /* 1317 * Quiesce all devices. We iterate through all the devices in 1318 * the devclass of the driver and quiesce any which are using 1319 * the driver and which have a parent in the devclass which we 1320 * are quiescing. 1321 * 1322 * Note that since a driver can be in multiple devclasses, we 1323 * should not quiesce devices which are not children of 1324 * devices in the affected devclass. 1325 */ 1326 for (i = 0; i < dc->maxunit; i++) { 1327 if (dc->devices[i]) { 1328 dev = dc->devices[i]; 1329 if (dev->driver == driver && dev->parent && 1330 dev->parent->devclass == busclass) { 1331 if ((error = device_quiesce(dev)) != 0) 1332 return (error); 1333 } 1334 } 1335 } 1336 1337 return (0); 1338 } 1339 1340 /** 1341 * @internal 1342 */ 1343 static driverlink_t 1344 devclass_find_driver_internal(devclass_t dc, const char *classname) 1345 { 1346 driverlink_t dl; 1347 1348 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1349 1350 TAILQ_FOREACH(dl, &dc->drivers, link) { 1351 if (!strcmp(dl->driver->name, classname)) 1352 return (dl); 1353 } 1354 1355 PDEBUG(("not found")); 1356 return (NULL); 1357 } 1358 1359 /** 1360 * @brief Return the name of the devclass 1361 */ 1362 const char * 1363 devclass_get_name(devclass_t dc) 1364 { 1365 return (dc->name); 1366 } 1367 1368 /** 1369 * @brief Find a device given a unit number 1370 * 1371 * @param dc the devclass to search 1372 * @param unit the unit number to search for 1373 * 1374 * @returns the device with the given unit number or @c 1375 * NULL if there is no such device 1376 */ 1377 device_t 1378 devclass_get_device(devclass_t dc, int unit) 1379 { 1380 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1381 return (NULL); 1382 return (dc->devices[unit]); 1383 } 1384 1385 /** 1386 * @brief Find the softc field of a device given a unit number 1387 * 1388 * @param dc the devclass to search 1389 * @param unit the unit number to search for 1390 * 1391 * @returns the softc field of the device with the given 1392 * unit number or @c NULL if there is no such 1393 * device 1394 */ 1395 void * 1396 devclass_get_softc(devclass_t dc, int unit) 1397 { 1398 device_t dev; 1399 1400 dev = devclass_get_device(dc, unit); 1401 if (!dev) 1402 return (NULL); 1403 1404 return (device_get_softc(dev)); 1405 } 1406 1407 /** 1408 * @brief Get a list of devices in the devclass 1409 * 1410 * An array containing a list of all the devices in the given devclass 1411 * is allocated and returned in @p *devlistp. The number of devices 1412 * in the array is returned in @p *devcountp. The caller should free 1413 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1414 * 1415 * @param dc the devclass to examine 1416 * @param devlistp points at location for array pointer return 1417 * value 1418 * @param devcountp points at location for array size return value 1419 * 1420 * @retval 0 success 1421 * @retval ENOMEM the array allocation failed 1422 */ 1423 int 1424 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1425 { 1426 int count, i; 1427 device_t *list; 1428 1429 count = devclass_get_count(dc); 1430 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1431 if (!list) 1432 return (ENOMEM); 1433 1434 count = 0; 1435 for (i = 0; i < dc->maxunit; i++) { 1436 if (dc->devices[i]) { 1437 list[count] = dc->devices[i]; 1438 count++; 1439 } 1440 } 1441 1442 *devlistp = list; 1443 *devcountp = count; 1444 1445 return (0); 1446 } 1447 1448 /** 1449 * @brief Get a list of drivers in the devclass 1450 * 1451 * An array containing a list of pointers to all the drivers in the 1452 * given devclass is allocated and returned in @p *listp. The number 1453 * of drivers in the array is returned in @p *countp. The caller should 1454 * free the array using @c free(p, M_TEMP). 1455 * 1456 * @param dc the devclass to examine 1457 * @param listp gives location for array pointer return value 1458 * @param countp gives location for number of array elements 1459 * return value 1460 * 1461 * @retval 0 success 1462 * @retval ENOMEM the array allocation failed 1463 */ 1464 int 1465 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1466 { 1467 driverlink_t dl; 1468 driver_t **list; 1469 int count; 1470 1471 count = 0; 1472 TAILQ_FOREACH(dl, &dc->drivers, link) 1473 count++; 1474 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1475 if (list == NULL) 1476 return (ENOMEM); 1477 1478 count = 0; 1479 TAILQ_FOREACH(dl, &dc->drivers, link) { 1480 list[count] = dl->driver; 1481 count++; 1482 } 1483 *listp = list; 1484 *countp = count; 1485 1486 return (0); 1487 } 1488 1489 /** 1490 * @brief Get the number of devices in a devclass 1491 * 1492 * @param dc the devclass to examine 1493 */ 1494 int 1495 devclass_get_count(devclass_t dc) 1496 { 1497 int count, i; 1498 1499 count = 0; 1500 for (i = 0; i < dc->maxunit; i++) 1501 if (dc->devices[i]) 1502 count++; 1503 return (count); 1504 } 1505 1506 /** 1507 * @brief Get the maximum unit number used in a devclass 1508 * 1509 * Note that this is one greater than the highest currently-allocated 1510 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1511 * that not even the devclass has been allocated yet. 1512 * 1513 * @param dc the devclass to examine 1514 */ 1515 int 1516 devclass_get_maxunit(devclass_t dc) 1517 { 1518 if (dc == NULL) 1519 return (-1); 1520 return (dc->maxunit); 1521 } 1522 1523 /** 1524 * @brief Find a free unit number in a devclass 1525 * 1526 * This function searches for the first unused unit number greater 1527 * that or equal to @p unit. 1528 * 1529 * @param dc the devclass to examine 1530 * @param unit the first unit number to check 1531 */ 1532 int 1533 devclass_find_free_unit(devclass_t dc, int unit) 1534 { 1535 if (dc == NULL) 1536 return (unit); 1537 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1538 unit++; 1539 return (unit); 1540 } 1541 1542 /** 1543 * @brief Set the parent of a devclass 1544 * 1545 * The parent class is normally initialised automatically by 1546 * DRIVER_MODULE(). 1547 * 1548 * @param dc the devclass to edit 1549 * @param pdc the new parent devclass 1550 */ 1551 void 1552 devclass_set_parent(devclass_t dc, devclass_t pdc) 1553 { 1554 dc->parent = pdc; 1555 } 1556 1557 /** 1558 * @brief Get the parent of a devclass 1559 * 1560 * @param dc the devclass to examine 1561 */ 1562 devclass_t 1563 devclass_get_parent(devclass_t dc) 1564 { 1565 return (dc->parent); 1566 } 1567 1568 struct sysctl_ctx_list * 1569 devclass_get_sysctl_ctx(devclass_t dc) 1570 { 1571 return (&dc->sysctl_ctx); 1572 } 1573 1574 struct sysctl_oid * 1575 devclass_get_sysctl_tree(devclass_t dc) 1576 { 1577 return (dc->sysctl_tree); 1578 } 1579 1580 /** 1581 * @internal 1582 * @brief Allocate a unit number 1583 * 1584 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1585 * will do). The allocated unit number is returned in @p *unitp. 1586 1587 * @param dc the devclass to allocate from 1588 * @param unitp points at the location for the allocated unit 1589 * number 1590 * 1591 * @retval 0 success 1592 * @retval EEXIST the requested unit number is already allocated 1593 * @retval ENOMEM memory allocation failure 1594 */ 1595 static int 1596 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1597 { 1598 const char *s; 1599 int unit = *unitp; 1600 1601 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1602 1603 /* Ask the parent bus if it wants to wire this device. */ 1604 if (unit == -1) 1605 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1606 &unit); 1607 1608 /* If we were given a wired unit number, check for existing device */ 1609 /* XXX imp XXX */ 1610 if (unit != -1) { 1611 if (unit >= 0 && unit < dc->maxunit && 1612 dc->devices[unit] != NULL) { 1613 if (bootverbose) 1614 printf("%s: %s%d already exists; skipping it\n", 1615 dc->name, dc->name, *unitp); 1616 return (EEXIST); 1617 } 1618 } else { 1619 /* Unwired device, find the next available slot for it */ 1620 unit = 0; 1621 for (unit = 0;; unit++) { 1622 /* If there is an "at" hint for a unit then skip it. */ 1623 if (resource_string_value(dc->name, unit, "at", &s) == 1624 0) 1625 continue; 1626 1627 /* If this device slot is already in use, skip it. */ 1628 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1629 continue; 1630 1631 break; 1632 } 1633 } 1634 1635 /* 1636 * We've selected a unit beyond the length of the table, so let's 1637 * extend the table to make room for all units up to and including 1638 * this one. 1639 */ 1640 if (unit >= dc->maxunit) { 1641 device_t *newlist, *oldlist; 1642 int newsize; 1643 1644 oldlist = dc->devices; 1645 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1646 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1647 if (!newlist) 1648 return (ENOMEM); 1649 if (oldlist != NULL) 1650 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1651 bzero(newlist + dc->maxunit, 1652 sizeof(device_t) * (newsize - dc->maxunit)); 1653 dc->devices = newlist; 1654 dc->maxunit = newsize; 1655 if (oldlist != NULL) 1656 free(oldlist, M_BUS); 1657 } 1658 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1659 1660 *unitp = unit; 1661 return (0); 1662 } 1663 1664 /** 1665 * @internal 1666 * @brief Add a device to a devclass 1667 * 1668 * A unit number is allocated for the device (using the device's 1669 * preferred unit number if any) and the device is registered in the 1670 * devclass. This allows the device to be looked up by its unit 1671 * number, e.g. by decoding a dev_t minor number. 1672 * 1673 * @param dc the devclass to add to 1674 * @param dev the device to add 1675 * 1676 * @retval 0 success 1677 * @retval EEXIST the requested unit number is already allocated 1678 * @retval ENOMEM memory allocation failure 1679 */ 1680 static int 1681 devclass_add_device(devclass_t dc, device_t dev) 1682 { 1683 int buflen, error; 1684 1685 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1686 1687 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1688 if (buflen < 0) 1689 return (ENOMEM); 1690 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1691 if (!dev->nameunit) 1692 return (ENOMEM); 1693 1694 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1695 free(dev->nameunit, M_BUS); 1696 dev->nameunit = NULL; 1697 return (error); 1698 } 1699 dc->devices[dev->unit] = dev; 1700 dev->devclass = dc; 1701 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1702 1703 return (0); 1704 } 1705 1706 /** 1707 * @internal 1708 * @brief Delete a device from a devclass 1709 * 1710 * The device is removed from the devclass's device list and its unit 1711 * number is freed. 1712 1713 * @param dc the devclass to delete from 1714 * @param dev the device to delete 1715 * 1716 * @retval 0 success 1717 */ 1718 static int 1719 devclass_delete_device(devclass_t dc, device_t dev) 1720 { 1721 if (!dc || !dev) 1722 return (0); 1723 1724 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1725 1726 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1727 panic("devclass_delete_device: inconsistent device class"); 1728 dc->devices[dev->unit] = NULL; 1729 if (dev->flags & DF_WILDCARD) 1730 dev->unit = -1; 1731 dev->devclass = NULL; 1732 free(dev->nameunit, M_BUS); 1733 dev->nameunit = NULL; 1734 1735 return (0); 1736 } 1737 1738 /** 1739 * @internal 1740 * @brief Make a new device and add it as a child of @p parent 1741 * 1742 * @param parent the parent of the new device 1743 * @param name the devclass name of the new device or @c NULL 1744 * to leave the devclass unspecified 1745 * @parem unit the unit number of the new device of @c -1 to 1746 * leave the unit number unspecified 1747 * 1748 * @returns the new device 1749 */ 1750 static device_t 1751 make_device(device_t parent, const char *name, int unit) 1752 { 1753 device_t dev; 1754 devclass_t dc; 1755 1756 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1757 1758 if (name) { 1759 dc = devclass_find_internal(name, NULL, TRUE); 1760 if (!dc) { 1761 printf("make_device: can't find device class %s\n", 1762 name); 1763 return (NULL); 1764 } 1765 } else { 1766 dc = NULL; 1767 } 1768 1769 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1770 if (!dev) 1771 return (NULL); 1772 1773 dev->parent = parent; 1774 TAILQ_INIT(&dev->children); 1775 kobj_init((kobj_t) dev, &null_class); 1776 dev->driver = NULL; 1777 dev->devclass = NULL; 1778 dev->unit = unit; 1779 dev->nameunit = NULL; 1780 dev->desc = NULL; 1781 dev->busy = 0; 1782 dev->devflags = 0; 1783 dev->flags = DF_ENABLED; 1784 dev->order = 0; 1785 if (unit == -1) 1786 dev->flags |= DF_WILDCARD; 1787 if (name) { 1788 dev->flags |= DF_FIXEDCLASS; 1789 if (devclass_add_device(dc, dev)) { 1790 kobj_delete((kobj_t) dev, M_BUS); 1791 return (NULL); 1792 } 1793 } 1794 dev->ivars = NULL; 1795 dev->softc = NULL; 1796 1797 dev->state = DS_NOTPRESENT; 1798 1799 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1800 bus_data_generation_update(); 1801 1802 return (dev); 1803 } 1804 1805 /** 1806 * @internal 1807 * @brief Print a description of a device. 1808 */ 1809 static int 1810 device_print_child(device_t dev, device_t child) 1811 { 1812 int retval = 0; 1813 1814 if (device_is_alive(child)) 1815 retval += BUS_PRINT_CHILD(dev, child); 1816 else 1817 retval += device_printf(child, " not found\n"); 1818 1819 return (retval); 1820 } 1821 1822 /** 1823 * @brief Create a new device 1824 * 1825 * This creates a new device and adds it as a child of an existing 1826 * parent device. The new device will be added after the last existing 1827 * child with order zero. 1828 * 1829 * @param dev the device which will be the parent of the 1830 * new child device 1831 * @param name devclass name for new device or @c NULL if not 1832 * specified 1833 * @param unit unit number for new device or @c -1 if not 1834 * specified 1835 * 1836 * @returns the new device 1837 */ 1838 device_t 1839 device_add_child(device_t dev, const char *name, int unit) 1840 { 1841 return (device_add_child_ordered(dev, 0, name, unit)); 1842 } 1843 1844 /** 1845 * @brief Create a new device 1846 * 1847 * This creates a new device and adds it as a child of an existing 1848 * parent device. The new device will be added after the last existing 1849 * child with the same order. 1850 * 1851 * @param dev the device which will be the parent of the 1852 * new child device 1853 * @param order a value which is used to partially sort the 1854 * children of @p dev - devices created using 1855 * lower values of @p order appear first in @p 1856 * dev's list of children 1857 * @param name devclass name for new device or @c NULL if not 1858 * specified 1859 * @param unit unit number for new device or @c -1 if not 1860 * specified 1861 * 1862 * @returns the new device 1863 */ 1864 device_t 1865 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1866 { 1867 device_t child; 1868 device_t place; 1869 1870 PDEBUG(("%s at %s with order %u as unit %d", 1871 name, DEVICENAME(dev), order, unit)); 1872 KASSERT(name != NULL || unit == -1, 1873 ("child device with wildcard name and specific unit number")); 1874 1875 child = make_device(dev, name, unit); 1876 if (child == NULL) 1877 return (child); 1878 child->order = order; 1879 1880 TAILQ_FOREACH(place, &dev->children, link) { 1881 if (place->order > order) 1882 break; 1883 } 1884 1885 if (place) { 1886 /* 1887 * The device 'place' is the first device whose order is 1888 * greater than the new child. 1889 */ 1890 TAILQ_INSERT_BEFORE(place, child, link); 1891 } else { 1892 /* 1893 * The new child's order is greater or equal to the order of 1894 * any existing device. Add the child to the tail of the list. 1895 */ 1896 TAILQ_INSERT_TAIL(&dev->children, child, link); 1897 } 1898 1899 bus_data_generation_update(); 1900 return (child); 1901 } 1902 1903 /** 1904 * @brief Delete a device 1905 * 1906 * This function deletes a device along with all of its children. If 1907 * the device currently has a driver attached to it, the device is 1908 * detached first using device_detach(). 1909 * 1910 * @param dev the parent device 1911 * @param child the device to delete 1912 * 1913 * @retval 0 success 1914 * @retval non-zero a unit error code describing the error 1915 */ 1916 int 1917 device_delete_child(device_t dev, device_t child) 1918 { 1919 int error; 1920 device_t grandchild; 1921 1922 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1923 1924 /* remove children first */ 1925 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1926 error = device_delete_child(child, grandchild); 1927 if (error) 1928 return (error); 1929 } 1930 1931 if ((error = device_detach(child)) != 0) 1932 return (error); 1933 if (child->devclass) 1934 devclass_delete_device(child->devclass, child); 1935 if (child->parent) 1936 BUS_CHILD_DELETED(dev, child); 1937 TAILQ_REMOVE(&dev->children, child, link); 1938 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1939 kobj_delete((kobj_t) child, M_BUS); 1940 1941 bus_data_generation_update(); 1942 return (0); 1943 } 1944 1945 /** 1946 * @brief Delete all children devices of the given device, if any. 1947 * 1948 * This function deletes all children devices of the given device, if 1949 * any, using the device_delete_child() function for each device it 1950 * finds. If a child device cannot be deleted, this function will 1951 * return an error code. 1952 * 1953 * @param dev the parent device 1954 * 1955 * @retval 0 success 1956 * @retval non-zero a device would not detach 1957 */ 1958 int 1959 device_delete_children(device_t dev) 1960 { 1961 device_t child; 1962 int error; 1963 1964 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1965 1966 error = 0; 1967 1968 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1969 error = device_delete_child(dev, child); 1970 if (error) { 1971 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1972 break; 1973 } 1974 } 1975 return (error); 1976 } 1977 1978 /** 1979 * @brief Find a device given a unit number 1980 * 1981 * This is similar to devclass_get_devices() but only searches for 1982 * devices which have @p dev as a parent. 1983 * 1984 * @param dev the parent device to search 1985 * @param unit the unit number to search for. If the unit is -1, 1986 * return the first child of @p dev which has name 1987 * @p classname (that is, the one with the lowest unit.) 1988 * 1989 * @returns the device with the given unit number or @c 1990 * NULL if there is no such device 1991 */ 1992 device_t 1993 device_find_child(device_t dev, const char *classname, int unit) 1994 { 1995 devclass_t dc; 1996 device_t child; 1997 1998 dc = devclass_find(classname); 1999 if (!dc) 2000 return (NULL); 2001 2002 if (unit != -1) { 2003 child = devclass_get_device(dc, unit); 2004 if (child && child->parent == dev) 2005 return (child); 2006 } else { 2007 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2008 child = devclass_get_device(dc, unit); 2009 if (child && child->parent == dev) 2010 return (child); 2011 } 2012 } 2013 return (NULL); 2014 } 2015 2016 /** 2017 * @internal 2018 */ 2019 static driverlink_t 2020 first_matching_driver(devclass_t dc, device_t dev) 2021 { 2022 if (dev->devclass) 2023 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2024 return (TAILQ_FIRST(&dc->drivers)); 2025 } 2026 2027 /** 2028 * @internal 2029 */ 2030 static driverlink_t 2031 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2032 { 2033 if (dev->devclass) { 2034 driverlink_t dl; 2035 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2036 if (!strcmp(dev->devclass->name, dl->driver->name)) 2037 return (dl); 2038 return (NULL); 2039 } 2040 return (TAILQ_NEXT(last, link)); 2041 } 2042 2043 /** 2044 * @internal 2045 */ 2046 int 2047 device_probe_child(device_t dev, device_t child) 2048 { 2049 devclass_t dc; 2050 driverlink_t best = NULL; 2051 driverlink_t dl; 2052 int result, pri = 0; 2053 int hasclass = (child->devclass != NULL); 2054 2055 GIANT_REQUIRED; 2056 2057 dc = dev->devclass; 2058 if (!dc) 2059 panic("device_probe_child: parent device has no devclass"); 2060 2061 /* 2062 * If the state is already probed, then return. However, don't 2063 * return if we can rebid this object. 2064 */ 2065 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2066 return (0); 2067 2068 for (; dc; dc = dc->parent) { 2069 for (dl = first_matching_driver(dc, child); 2070 dl; 2071 dl = next_matching_driver(dc, child, dl)) { 2072 /* If this driver's pass is too high, then ignore it. */ 2073 if (dl->pass > bus_current_pass) 2074 continue; 2075 2076 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2077 result = device_set_driver(child, dl->driver); 2078 if (result == ENOMEM) 2079 return (result); 2080 else if (result != 0) 2081 continue; 2082 if (!hasclass) { 2083 if (device_set_devclass(child, 2084 dl->driver->name) != 0) { 2085 char const * devname = 2086 device_get_name(child); 2087 if (devname == NULL) 2088 devname = "(unknown)"; 2089 printf("driver bug: Unable to set " 2090 "devclass (class: %s " 2091 "devname: %s)\n", 2092 dl->driver->name, 2093 devname); 2094 (void)device_set_driver(child, NULL); 2095 continue; 2096 } 2097 } 2098 2099 /* Fetch any flags for the device before probing. */ 2100 resource_int_value(dl->driver->name, child->unit, 2101 "flags", &child->devflags); 2102 2103 result = DEVICE_PROBE(child); 2104 2105 /* Reset flags and devclass before the next probe. */ 2106 child->devflags = 0; 2107 if (!hasclass) 2108 (void)device_set_devclass(child, NULL); 2109 2110 /* 2111 * If the driver returns SUCCESS, there can be 2112 * no higher match for this device. 2113 */ 2114 if (result == 0) { 2115 best = dl; 2116 pri = 0; 2117 break; 2118 } 2119 2120 /* 2121 * The driver returned an error so it 2122 * certainly doesn't match. 2123 */ 2124 if (result > 0) { 2125 (void)device_set_driver(child, NULL); 2126 continue; 2127 } 2128 2129 /* 2130 * A priority lower than SUCCESS, remember the 2131 * best matching driver. Initialise the value 2132 * of pri for the first match. 2133 */ 2134 if (best == NULL || result > pri) { 2135 /* 2136 * Probes that return BUS_PROBE_NOWILDCARD 2137 * or lower only match on devices whose 2138 * driver was explicitly specified. 2139 */ 2140 if (result <= BUS_PROBE_NOWILDCARD && 2141 !(child->flags & DF_FIXEDCLASS)) 2142 continue; 2143 best = dl; 2144 pri = result; 2145 continue; 2146 } 2147 } 2148 /* 2149 * If we have an unambiguous match in this devclass, 2150 * don't look in the parent. 2151 */ 2152 if (best && pri == 0) 2153 break; 2154 } 2155 2156 /* 2157 * If we found a driver, change state and initialise the devclass. 2158 */ 2159 /* XXX What happens if we rebid and got no best? */ 2160 if (best) { 2161 /* 2162 * If this device was attached, and we were asked to 2163 * rescan, and it is a different driver, then we have 2164 * to detach the old driver and reattach this new one. 2165 * Note, we don't have to check for DF_REBID here 2166 * because if the state is > DS_ALIVE, we know it must 2167 * be. 2168 * 2169 * This assumes that all DF_REBID drivers can have 2170 * their probe routine called at any time and that 2171 * they are idempotent as well as completely benign in 2172 * normal operations. 2173 * 2174 * We also have to make sure that the detach 2175 * succeeded, otherwise we fail the operation (or 2176 * maybe it should just fail silently? I'm torn). 2177 */ 2178 if (child->state > DS_ALIVE && best->driver != child->driver) 2179 if ((result = device_detach(dev)) != 0) 2180 return (result); 2181 2182 /* Set the winning driver, devclass, and flags. */ 2183 if (!child->devclass) { 2184 result = device_set_devclass(child, best->driver->name); 2185 if (result != 0) 2186 return (result); 2187 } 2188 result = device_set_driver(child, best->driver); 2189 if (result != 0) 2190 return (result); 2191 resource_int_value(best->driver->name, child->unit, 2192 "flags", &child->devflags); 2193 2194 if (pri < 0) { 2195 /* 2196 * A bit bogus. Call the probe method again to make 2197 * sure that we have the right description. 2198 */ 2199 DEVICE_PROBE(child); 2200 #if 0 2201 child->flags |= DF_REBID; 2202 #endif 2203 } else 2204 child->flags &= ~DF_REBID; 2205 child->state = DS_ALIVE; 2206 2207 bus_data_generation_update(); 2208 return (0); 2209 } 2210 2211 return (ENXIO); 2212 } 2213 2214 /** 2215 * @brief Return the parent of a device 2216 */ 2217 device_t 2218 device_get_parent(device_t dev) 2219 { 2220 return (dev->parent); 2221 } 2222 2223 /** 2224 * @brief Get a list of children of a device 2225 * 2226 * An array containing a list of all the children of the given device 2227 * is allocated and returned in @p *devlistp. The number of devices 2228 * in the array is returned in @p *devcountp. The caller should free 2229 * the array using @c free(p, M_TEMP). 2230 * 2231 * @param dev the device to examine 2232 * @param devlistp points at location for array pointer return 2233 * value 2234 * @param devcountp points at location for array size return value 2235 * 2236 * @retval 0 success 2237 * @retval ENOMEM the array allocation failed 2238 */ 2239 int 2240 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2241 { 2242 int count; 2243 device_t child; 2244 device_t *list; 2245 2246 count = 0; 2247 TAILQ_FOREACH(child, &dev->children, link) { 2248 count++; 2249 } 2250 if (count == 0) { 2251 *devlistp = NULL; 2252 *devcountp = 0; 2253 return (0); 2254 } 2255 2256 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2257 if (!list) 2258 return (ENOMEM); 2259 2260 count = 0; 2261 TAILQ_FOREACH(child, &dev->children, link) { 2262 list[count] = child; 2263 count++; 2264 } 2265 2266 *devlistp = list; 2267 *devcountp = count; 2268 2269 return (0); 2270 } 2271 2272 /** 2273 * @brief Return the current driver for the device or @c NULL if there 2274 * is no driver currently attached 2275 */ 2276 driver_t * 2277 device_get_driver(device_t dev) 2278 { 2279 return (dev->driver); 2280 } 2281 2282 /** 2283 * @brief Return the current devclass for the device or @c NULL if 2284 * there is none. 2285 */ 2286 devclass_t 2287 device_get_devclass(device_t dev) 2288 { 2289 return (dev->devclass); 2290 } 2291 2292 /** 2293 * @brief Return the name of the device's devclass or @c NULL if there 2294 * is none. 2295 */ 2296 const char * 2297 device_get_name(device_t dev) 2298 { 2299 if (dev != NULL && dev->devclass) 2300 return (devclass_get_name(dev->devclass)); 2301 return (NULL); 2302 } 2303 2304 /** 2305 * @brief Return a string containing the device's devclass name 2306 * followed by an ascii representation of the device's unit number 2307 * (e.g. @c "foo2"). 2308 */ 2309 const char * 2310 device_get_nameunit(device_t dev) 2311 { 2312 return (dev->nameunit); 2313 } 2314 2315 /** 2316 * @brief Return the device's unit number. 2317 */ 2318 int 2319 device_get_unit(device_t dev) 2320 { 2321 return (dev->unit); 2322 } 2323 2324 /** 2325 * @brief Return the device's description string 2326 */ 2327 const char * 2328 device_get_desc(device_t dev) 2329 { 2330 return (dev->desc); 2331 } 2332 2333 /** 2334 * @brief Return the device's flags 2335 */ 2336 uint32_t 2337 device_get_flags(device_t dev) 2338 { 2339 return (dev->devflags); 2340 } 2341 2342 struct sysctl_ctx_list * 2343 device_get_sysctl_ctx(device_t dev) 2344 { 2345 return (&dev->sysctl_ctx); 2346 } 2347 2348 struct sysctl_oid * 2349 device_get_sysctl_tree(device_t dev) 2350 { 2351 return (dev->sysctl_tree); 2352 } 2353 2354 /** 2355 * @brief Print the name of the device followed by a colon and a space 2356 * 2357 * @returns the number of characters printed 2358 */ 2359 int 2360 device_print_prettyname(device_t dev) 2361 { 2362 const char *name = device_get_name(dev); 2363 2364 if (name == NULL) 2365 return (printf("unknown: ")); 2366 return (printf("%s%d: ", name, device_get_unit(dev))); 2367 } 2368 2369 /** 2370 * @brief Print the name of the device followed by a colon, a space 2371 * and the result of calling vprintf() with the value of @p fmt and 2372 * the following arguments. 2373 * 2374 * @returns the number of characters printed 2375 */ 2376 int 2377 device_printf(device_t dev, const char * fmt, ...) 2378 { 2379 va_list ap; 2380 int retval; 2381 2382 retval = device_print_prettyname(dev); 2383 va_start(ap, fmt); 2384 retval += vprintf(fmt, ap); 2385 va_end(ap); 2386 return (retval); 2387 } 2388 2389 /** 2390 * @internal 2391 */ 2392 static void 2393 device_set_desc_internal(device_t dev, const char* desc, int copy) 2394 { 2395 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2396 free(dev->desc, M_BUS); 2397 dev->flags &= ~DF_DESCMALLOCED; 2398 dev->desc = NULL; 2399 } 2400 2401 if (copy && desc) { 2402 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2403 if (dev->desc) { 2404 strcpy(dev->desc, desc); 2405 dev->flags |= DF_DESCMALLOCED; 2406 } 2407 } else { 2408 /* Avoid a -Wcast-qual warning */ 2409 dev->desc = (char *)(uintptr_t) desc; 2410 } 2411 2412 bus_data_generation_update(); 2413 } 2414 2415 /** 2416 * @brief Set the device's description 2417 * 2418 * The value of @c desc should be a string constant that will not 2419 * change (at least until the description is changed in a subsequent 2420 * call to device_set_desc() or device_set_desc_copy()). 2421 */ 2422 void 2423 device_set_desc(device_t dev, const char* desc) 2424 { 2425 device_set_desc_internal(dev, desc, FALSE); 2426 } 2427 2428 /** 2429 * @brief Set the device's description 2430 * 2431 * The string pointed to by @c desc is copied. Use this function if 2432 * the device description is generated, (e.g. with sprintf()). 2433 */ 2434 void 2435 device_set_desc_copy(device_t dev, const char* desc) 2436 { 2437 device_set_desc_internal(dev, desc, TRUE); 2438 } 2439 2440 /** 2441 * @brief Set the device's flags 2442 */ 2443 void 2444 device_set_flags(device_t dev, uint32_t flags) 2445 { 2446 dev->devflags = flags; 2447 } 2448 2449 /** 2450 * @brief Return the device's softc field 2451 * 2452 * The softc is allocated and zeroed when a driver is attached, based 2453 * on the size field of the driver. 2454 */ 2455 void * 2456 device_get_softc(device_t dev) 2457 { 2458 return (dev->softc); 2459 } 2460 2461 /** 2462 * @brief Set the device's softc field 2463 * 2464 * Most drivers do not need to use this since the softc is allocated 2465 * automatically when the driver is attached. 2466 */ 2467 void 2468 device_set_softc(device_t dev, void *softc) 2469 { 2470 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2471 free(dev->softc, M_BUS_SC); 2472 dev->softc = softc; 2473 if (dev->softc) 2474 dev->flags |= DF_EXTERNALSOFTC; 2475 else 2476 dev->flags &= ~DF_EXTERNALSOFTC; 2477 } 2478 2479 /** 2480 * @brief Free claimed softc 2481 * 2482 * Most drivers do not need to use this since the softc is freed 2483 * automatically when the driver is detached. 2484 */ 2485 void 2486 device_free_softc(void *softc) 2487 { 2488 free(softc, M_BUS_SC); 2489 } 2490 2491 /** 2492 * @brief Claim softc 2493 * 2494 * This function can be used to let the driver free the automatically 2495 * allocated softc using "device_free_softc()". This function is 2496 * useful when the driver is refcounting the softc and the softc 2497 * cannot be freed when the "device_detach" method is called. 2498 */ 2499 void 2500 device_claim_softc(device_t dev) 2501 { 2502 if (dev->softc) 2503 dev->flags |= DF_EXTERNALSOFTC; 2504 else 2505 dev->flags &= ~DF_EXTERNALSOFTC; 2506 } 2507 2508 /** 2509 * @brief Get the device's ivars field 2510 * 2511 * The ivars field is used by the parent device to store per-device 2512 * state (e.g. the physical location of the device or a list of 2513 * resources). 2514 */ 2515 void * 2516 device_get_ivars(device_t dev) 2517 { 2518 2519 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2520 return (dev->ivars); 2521 } 2522 2523 /** 2524 * @brief Set the device's ivars field 2525 */ 2526 void 2527 device_set_ivars(device_t dev, void * ivars) 2528 { 2529 2530 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2531 dev->ivars = ivars; 2532 } 2533 2534 /** 2535 * @brief Return the device's state 2536 */ 2537 device_state_t 2538 device_get_state(device_t dev) 2539 { 2540 return (dev->state); 2541 } 2542 2543 /** 2544 * @brief Set the DF_ENABLED flag for the device 2545 */ 2546 void 2547 device_enable(device_t dev) 2548 { 2549 dev->flags |= DF_ENABLED; 2550 } 2551 2552 /** 2553 * @brief Clear the DF_ENABLED flag for the device 2554 */ 2555 void 2556 device_disable(device_t dev) 2557 { 2558 dev->flags &= ~DF_ENABLED; 2559 } 2560 2561 /** 2562 * @brief Increment the busy counter for the device 2563 */ 2564 void 2565 device_busy(device_t dev) 2566 { 2567 if (dev->state < DS_ATTACHING) 2568 panic("device_busy: called for unattached device"); 2569 if (dev->busy == 0 && dev->parent) 2570 device_busy(dev->parent); 2571 dev->busy++; 2572 if (dev->state == DS_ATTACHED) 2573 dev->state = DS_BUSY; 2574 } 2575 2576 /** 2577 * @brief Decrement the busy counter for the device 2578 */ 2579 void 2580 device_unbusy(device_t dev) 2581 { 2582 if (dev->busy != 0 && dev->state != DS_BUSY && 2583 dev->state != DS_ATTACHING) 2584 panic("device_unbusy: called for non-busy device %s", 2585 device_get_nameunit(dev)); 2586 dev->busy--; 2587 if (dev->busy == 0) { 2588 if (dev->parent) 2589 device_unbusy(dev->parent); 2590 if (dev->state == DS_BUSY) 2591 dev->state = DS_ATTACHED; 2592 } 2593 } 2594 2595 /** 2596 * @brief Set the DF_QUIET flag for the device 2597 */ 2598 void 2599 device_quiet(device_t dev) 2600 { 2601 dev->flags |= DF_QUIET; 2602 } 2603 2604 /** 2605 * @brief Clear the DF_QUIET flag for the device 2606 */ 2607 void 2608 device_verbose(device_t dev) 2609 { 2610 dev->flags &= ~DF_QUIET; 2611 } 2612 2613 /** 2614 * @brief Return non-zero if the DF_QUIET flag is set on the device 2615 */ 2616 int 2617 device_is_quiet(device_t dev) 2618 { 2619 return ((dev->flags & DF_QUIET) != 0); 2620 } 2621 2622 /** 2623 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2624 */ 2625 int 2626 device_is_enabled(device_t dev) 2627 { 2628 return ((dev->flags & DF_ENABLED) != 0); 2629 } 2630 2631 /** 2632 * @brief Return non-zero if the device was successfully probed 2633 */ 2634 int 2635 device_is_alive(device_t dev) 2636 { 2637 return (dev->state >= DS_ALIVE); 2638 } 2639 2640 /** 2641 * @brief Return non-zero if the device currently has a driver 2642 * attached to it 2643 */ 2644 int 2645 device_is_attached(device_t dev) 2646 { 2647 return (dev->state >= DS_ATTACHED); 2648 } 2649 2650 /** 2651 * @brief Set the devclass of a device 2652 * @see devclass_add_device(). 2653 */ 2654 int 2655 device_set_devclass(device_t dev, const char *classname) 2656 { 2657 devclass_t dc; 2658 int error; 2659 2660 if (!classname) { 2661 if (dev->devclass) 2662 devclass_delete_device(dev->devclass, dev); 2663 return (0); 2664 } 2665 2666 if (dev->devclass) { 2667 printf("device_set_devclass: device class already set\n"); 2668 return (EINVAL); 2669 } 2670 2671 dc = devclass_find_internal(classname, NULL, TRUE); 2672 if (!dc) 2673 return (ENOMEM); 2674 2675 error = devclass_add_device(dc, dev); 2676 2677 bus_data_generation_update(); 2678 return (error); 2679 } 2680 2681 /** 2682 * @brief Set the driver of a device 2683 * 2684 * @retval 0 success 2685 * @retval EBUSY the device already has a driver attached 2686 * @retval ENOMEM a memory allocation failure occurred 2687 */ 2688 int 2689 device_set_driver(device_t dev, driver_t *driver) 2690 { 2691 if (dev->state >= DS_ATTACHED) 2692 return (EBUSY); 2693 2694 if (dev->driver == driver) 2695 return (0); 2696 2697 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2698 free(dev->softc, M_BUS_SC); 2699 dev->softc = NULL; 2700 } 2701 device_set_desc(dev, NULL); 2702 kobj_delete((kobj_t) dev, NULL); 2703 dev->driver = driver; 2704 if (driver) { 2705 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2706 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2707 dev->softc = malloc(driver->size, M_BUS_SC, 2708 M_NOWAIT | M_ZERO); 2709 if (!dev->softc) { 2710 kobj_delete((kobj_t) dev, NULL); 2711 kobj_init((kobj_t) dev, &null_class); 2712 dev->driver = NULL; 2713 return (ENOMEM); 2714 } 2715 } 2716 } else { 2717 kobj_init((kobj_t) dev, &null_class); 2718 } 2719 2720 bus_data_generation_update(); 2721 return (0); 2722 } 2723 2724 /** 2725 * @brief Probe a device, and return this status. 2726 * 2727 * This function is the core of the device autoconfiguration 2728 * system. Its purpose is to select a suitable driver for a device and 2729 * then call that driver to initialise the hardware appropriately. The 2730 * driver is selected by calling the DEVICE_PROBE() method of a set of 2731 * candidate drivers and then choosing the driver which returned the 2732 * best value. This driver is then attached to the device using 2733 * device_attach(). 2734 * 2735 * The set of suitable drivers is taken from the list of drivers in 2736 * the parent device's devclass. If the device was originally created 2737 * with a specific class name (see device_add_child()), only drivers 2738 * with that name are probed, otherwise all drivers in the devclass 2739 * are probed. If no drivers return successful probe values in the 2740 * parent devclass, the search continues in the parent of that 2741 * devclass (see devclass_get_parent()) if any. 2742 * 2743 * @param dev the device to initialise 2744 * 2745 * @retval 0 success 2746 * @retval ENXIO no driver was found 2747 * @retval ENOMEM memory allocation failure 2748 * @retval non-zero some other unix error code 2749 * @retval -1 Device already attached 2750 */ 2751 int 2752 device_probe(device_t dev) 2753 { 2754 int error; 2755 2756 GIANT_REQUIRED; 2757 2758 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2759 return (-1); 2760 2761 if (!(dev->flags & DF_ENABLED)) { 2762 if (bootverbose && device_get_name(dev) != NULL) { 2763 device_print_prettyname(dev); 2764 printf("not probed (disabled)\n"); 2765 } 2766 return (-1); 2767 } 2768 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2769 if (bus_current_pass == BUS_PASS_DEFAULT && 2770 !(dev->flags & DF_DONENOMATCH)) { 2771 BUS_PROBE_NOMATCH(dev->parent, dev); 2772 devnomatch(dev); 2773 dev->flags |= DF_DONENOMATCH; 2774 } 2775 return (error); 2776 } 2777 return (0); 2778 } 2779 2780 /** 2781 * @brief Probe a device and attach a driver if possible 2782 * 2783 * calls device_probe() and attaches if that was successful. 2784 */ 2785 int 2786 device_probe_and_attach(device_t dev) 2787 { 2788 int error; 2789 2790 GIANT_REQUIRED; 2791 2792 error = device_probe(dev); 2793 if (error == -1) 2794 return (0); 2795 else if (error != 0) 2796 return (error); 2797 2798 CURVNET_SET_QUIET(vnet0); 2799 error = device_attach(dev); 2800 CURVNET_RESTORE(); 2801 return error; 2802 } 2803 2804 /** 2805 * @brief Attach a device driver to a device 2806 * 2807 * This function is a wrapper around the DEVICE_ATTACH() driver 2808 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2809 * device's sysctl tree, optionally prints a description of the device 2810 * and queues a notification event for user-based device management 2811 * services. 2812 * 2813 * Normally this function is only called internally from 2814 * device_probe_and_attach(). 2815 * 2816 * @param dev the device to initialise 2817 * 2818 * @retval 0 success 2819 * @retval ENXIO no driver was found 2820 * @retval ENOMEM memory allocation failure 2821 * @retval non-zero some other unix error code 2822 */ 2823 int 2824 device_attach(device_t dev) 2825 { 2826 uint64_t attachtime; 2827 int error; 2828 2829 if (resource_disabled(dev->driver->name, dev->unit)) { 2830 device_disable(dev); 2831 if (bootverbose) 2832 device_printf(dev, "disabled via hints entry\n"); 2833 return (ENXIO); 2834 } 2835 2836 device_sysctl_init(dev); 2837 if (!device_is_quiet(dev)) 2838 device_print_child(dev->parent, dev); 2839 attachtime = get_cyclecount(); 2840 dev->state = DS_ATTACHING; 2841 if ((error = DEVICE_ATTACH(dev)) != 0) { 2842 printf("device_attach: %s%d attach returned %d\n", 2843 dev->driver->name, dev->unit, error); 2844 if (!(dev->flags & DF_FIXEDCLASS)) 2845 devclass_delete_device(dev->devclass, dev); 2846 (void)device_set_driver(dev, NULL); 2847 device_sysctl_fini(dev); 2848 KASSERT(dev->busy == 0, ("attach failed but busy")); 2849 dev->state = DS_NOTPRESENT; 2850 return (error); 2851 } 2852 attachtime = get_cyclecount() - attachtime; 2853 /* 2854 * 4 bits per device is a reasonable value for desktop and server 2855 * hardware with good get_cyclecount() implementations, but may 2856 * need to be adjusted on other platforms. 2857 */ 2858 #ifdef RANDOM_DEBUG 2859 printf("random: %s(): feeding %d bit(s) of entropy from %s%d\n", 2860 __func__, 4, dev->driver->name, dev->unit); 2861 #endif 2862 random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH); 2863 device_sysctl_update(dev); 2864 if (dev->busy) 2865 dev->state = DS_BUSY; 2866 else 2867 dev->state = DS_ATTACHED; 2868 dev->flags &= ~DF_DONENOMATCH; 2869 devadded(dev); 2870 return (0); 2871 } 2872 2873 /** 2874 * @brief Detach a driver from a device 2875 * 2876 * This function is a wrapper around the DEVICE_DETACH() driver 2877 * method. If the call to DEVICE_DETACH() succeeds, it calls 2878 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2879 * notification event for user-based device management services and 2880 * cleans up the device's sysctl tree. 2881 * 2882 * @param dev the device to un-initialise 2883 * 2884 * @retval 0 success 2885 * @retval ENXIO no driver was found 2886 * @retval ENOMEM memory allocation failure 2887 * @retval non-zero some other unix error code 2888 */ 2889 int 2890 device_detach(device_t dev) 2891 { 2892 int error; 2893 2894 GIANT_REQUIRED; 2895 2896 PDEBUG(("%s", DEVICENAME(dev))); 2897 if (dev->state == DS_BUSY) 2898 return (EBUSY); 2899 if (dev->state != DS_ATTACHED) 2900 return (0); 2901 2902 if ((error = DEVICE_DETACH(dev)) != 0) 2903 return (error); 2904 devremoved(dev); 2905 if (!device_is_quiet(dev)) 2906 device_printf(dev, "detached\n"); 2907 if (dev->parent) 2908 BUS_CHILD_DETACHED(dev->parent, dev); 2909 2910 if (!(dev->flags & DF_FIXEDCLASS)) 2911 devclass_delete_device(dev->devclass, dev); 2912 2913 dev->state = DS_NOTPRESENT; 2914 (void)device_set_driver(dev, NULL); 2915 device_sysctl_fini(dev); 2916 2917 return (0); 2918 } 2919 2920 /** 2921 * @brief Tells a driver to quiesce itself. 2922 * 2923 * This function is a wrapper around the DEVICE_QUIESCE() driver 2924 * method. If the call to DEVICE_QUIESCE() succeeds. 2925 * 2926 * @param dev the device to quiesce 2927 * 2928 * @retval 0 success 2929 * @retval ENXIO no driver was found 2930 * @retval ENOMEM memory allocation failure 2931 * @retval non-zero some other unix error code 2932 */ 2933 int 2934 device_quiesce(device_t dev) 2935 { 2936 2937 PDEBUG(("%s", DEVICENAME(dev))); 2938 if (dev->state == DS_BUSY) 2939 return (EBUSY); 2940 if (dev->state != DS_ATTACHED) 2941 return (0); 2942 2943 return (DEVICE_QUIESCE(dev)); 2944 } 2945 2946 /** 2947 * @brief Notify a device of system shutdown 2948 * 2949 * This function calls the DEVICE_SHUTDOWN() driver method if the 2950 * device currently has an attached driver. 2951 * 2952 * @returns the value returned by DEVICE_SHUTDOWN() 2953 */ 2954 int 2955 device_shutdown(device_t dev) 2956 { 2957 if (dev->state < DS_ATTACHED) 2958 return (0); 2959 return (DEVICE_SHUTDOWN(dev)); 2960 } 2961 2962 /** 2963 * @brief Set the unit number of a device 2964 * 2965 * This function can be used to override the unit number used for a 2966 * device (e.g. to wire a device to a pre-configured unit number). 2967 */ 2968 int 2969 device_set_unit(device_t dev, int unit) 2970 { 2971 devclass_t dc; 2972 int err; 2973 2974 dc = device_get_devclass(dev); 2975 if (unit < dc->maxunit && dc->devices[unit]) 2976 return (EBUSY); 2977 err = devclass_delete_device(dc, dev); 2978 if (err) 2979 return (err); 2980 dev->unit = unit; 2981 err = devclass_add_device(dc, dev); 2982 if (err) 2983 return (err); 2984 2985 bus_data_generation_update(); 2986 return (0); 2987 } 2988 2989 /*======================================*/ 2990 /* 2991 * Some useful method implementations to make life easier for bus drivers. 2992 */ 2993 2994 /** 2995 * @brief Initialise a resource list. 2996 * 2997 * @param rl the resource list to initialise 2998 */ 2999 void 3000 resource_list_init(struct resource_list *rl) 3001 { 3002 STAILQ_INIT(rl); 3003 } 3004 3005 /** 3006 * @brief Reclaim memory used by a resource list. 3007 * 3008 * This function frees the memory for all resource entries on the list 3009 * (if any). 3010 * 3011 * @param rl the resource list to free 3012 */ 3013 void 3014 resource_list_free(struct resource_list *rl) 3015 { 3016 struct resource_list_entry *rle; 3017 3018 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3019 if (rle->res) 3020 panic("resource_list_free: resource entry is busy"); 3021 STAILQ_REMOVE_HEAD(rl, link); 3022 free(rle, M_BUS); 3023 } 3024 } 3025 3026 /** 3027 * @brief Add a resource entry. 3028 * 3029 * This function adds a resource entry using the given @p type, @p 3030 * start, @p end and @p count values. A rid value is chosen by 3031 * searching sequentially for the first unused rid starting at zero. 3032 * 3033 * @param rl the resource list to edit 3034 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3035 * @param start the start address of the resource 3036 * @param end the end address of the resource 3037 * @param count XXX end-start+1 3038 */ 3039 int 3040 resource_list_add_next(struct resource_list *rl, int type, u_long start, 3041 u_long end, u_long count) 3042 { 3043 int rid; 3044 3045 rid = 0; 3046 while (resource_list_find(rl, type, rid) != NULL) 3047 rid++; 3048 resource_list_add(rl, type, rid, start, end, count); 3049 return (rid); 3050 } 3051 3052 /** 3053 * @brief Add or modify a resource entry. 3054 * 3055 * If an existing entry exists with the same type and rid, it will be 3056 * modified using the given values of @p start, @p end and @p 3057 * count. If no entry exists, a new one will be created using the 3058 * given values. The resource list entry that matches is then returned. 3059 * 3060 * @param rl the resource list to edit 3061 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3062 * @param rid the resource identifier 3063 * @param start the start address of the resource 3064 * @param end the end address of the resource 3065 * @param count XXX end-start+1 3066 */ 3067 struct resource_list_entry * 3068 resource_list_add(struct resource_list *rl, int type, int rid, 3069 u_long start, u_long end, u_long count) 3070 { 3071 struct resource_list_entry *rle; 3072 3073 rle = resource_list_find(rl, type, rid); 3074 if (!rle) { 3075 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3076 M_NOWAIT); 3077 if (!rle) 3078 panic("resource_list_add: can't record entry"); 3079 STAILQ_INSERT_TAIL(rl, rle, link); 3080 rle->type = type; 3081 rle->rid = rid; 3082 rle->res = NULL; 3083 rle->flags = 0; 3084 } 3085 3086 if (rle->res) 3087 panic("resource_list_add: resource entry is busy"); 3088 3089 rle->start = start; 3090 rle->end = end; 3091 rle->count = count; 3092 return (rle); 3093 } 3094 3095 /** 3096 * @brief Determine if a resource entry is busy. 3097 * 3098 * Returns true if a resource entry is busy meaning that it has an 3099 * associated resource that is not an unallocated "reserved" resource. 3100 * 3101 * @param rl the resource list to search 3102 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3103 * @param rid the resource identifier 3104 * 3105 * @returns Non-zero if the entry is busy, zero otherwise. 3106 */ 3107 int 3108 resource_list_busy(struct resource_list *rl, int type, int rid) 3109 { 3110 struct resource_list_entry *rle; 3111 3112 rle = resource_list_find(rl, type, rid); 3113 if (rle == NULL || rle->res == NULL) 3114 return (0); 3115 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3116 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3117 ("reserved resource is active")); 3118 return (0); 3119 } 3120 return (1); 3121 } 3122 3123 /** 3124 * @brief Determine if a resource entry is reserved. 3125 * 3126 * Returns true if a resource entry is reserved meaning that it has an 3127 * associated "reserved" resource. The resource can either be 3128 * allocated or unallocated. 3129 * 3130 * @param rl the resource list to search 3131 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3132 * @param rid the resource identifier 3133 * 3134 * @returns Non-zero if the entry is reserved, zero otherwise. 3135 */ 3136 int 3137 resource_list_reserved(struct resource_list *rl, int type, int rid) 3138 { 3139 struct resource_list_entry *rle; 3140 3141 rle = resource_list_find(rl, type, rid); 3142 if (rle != NULL && rle->flags & RLE_RESERVED) 3143 return (1); 3144 return (0); 3145 } 3146 3147 /** 3148 * @brief Find a resource entry by type and rid. 3149 * 3150 * @param rl the resource list to search 3151 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3152 * @param rid the resource identifier 3153 * 3154 * @returns the resource entry pointer or NULL if there is no such 3155 * entry. 3156 */ 3157 struct resource_list_entry * 3158 resource_list_find(struct resource_list *rl, int type, int rid) 3159 { 3160 struct resource_list_entry *rle; 3161 3162 STAILQ_FOREACH(rle, rl, link) { 3163 if (rle->type == type && rle->rid == rid) 3164 return (rle); 3165 } 3166 return (NULL); 3167 } 3168 3169 /** 3170 * @brief Delete a resource entry. 3171 * 3172 * @param rl the resource list to edit 3173 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3174 * @param rid the resource identifier 3175 */ 3176 void 3177 resource_list_delete(struct resource_list *rl, int type, int rid) 3178 { 3179 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3180 3181 if (rle) { 3182 if (rle->res != NULL) 3183 panic("resource_list_delete: resource has not been released"); 3184 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3185 free(rle, M_BUS); 3186 } 3187 } 3188 3189 /** 3190 * @brief Allocate a reserved resource 3191 * 3192 * This can be used by busses to force the allocation of resources 3193 * that are always active in the system even if they are not allocated 3194 * by a driver (e.g. PCI BARs). This function is usually called when 3195 * adding a new child to the bus. The resource is allocated from the 3196 * parent bus when it is reserved. The resource list entry is marked 3197 * with RLE_RESERVED to note that it is a reserved resource. 3198 * 3199 * Subsequent attempts to allocate the resource with 3200 * resource_list_alloc() will succeed the first time and will set 3201 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3202 * resource that has been allocated is released with 3203 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3204 * the actual resource remains allocated. The resource can be released to 3205 * the parent bus by calling resource_list_unreserve(). 3206 * 3207 * @param rl the resource list to allocate from 3208 * @param bus the parent device of @p child 3209 * @param child the device for which the resource is being reserved 3210 * @param type the type of resource to allocate 3211 * @param rid a pointer to the resource identifier 3212 * @param start hint at the start of the resource range - pass 3213 * @c 0UL for any start address 3214 * @param end hint at the end of the resource range - pass 3215 * @c ~0UL for any end address 3216 * @param count hint at the size of range required - pass @c 1 3217 * for any size 3218 * @param flags any extra flags to control the resource 3219 * allocation - see @c RF_XXX flags in 3220 * <sys/rman.h> for details 3221 * 3222 * @returns the resource which was allocated or @c NULL if no 3223 * resource could be allocated 3224 */ 3225 struct resource * 3226 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3227 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3228 { 3229 struct resource_list_entry *rle = NULL; 3230 int passthrough = (device_get_parent(child) != bus); 3231 struct resource *r; 3232 3233 if (passthrough) 3234 panic( 3235 "resource_list_reserve() should only be called for direct children"); 3236 if (flags & RF_ACTIVE) 3237 panic( 3238 "resource_list_reserve() should only reserve inactive resources"); 3239 3240 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3241 flags); 3242 if (r != NULL) { 3243 rle = resource_list_find(rl, type, *rid); 3244 rle->flags |= RLE_RESERVED; 3245 } 3246 return (r); 3247 } 3248 3249 /** 3250 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3251 * 3252 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3253 * and passing the allocation up to the parent of @p bus. This assumes 3254 * that the first entry of @c device_get_ivars(child) is a struct 3255 * resource_list. This also handles 'passthrough' allocations where a 3256 * child is a remote descendant of bus by passing the allocation up to 3257 * the parent of bus. 3258 * 3259 * Typically, a bus driver would store a list of child resources 3260 * somewhere in the child device's ivars (see device_get_ivars()) and 3261 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3262 * then call resource_list_alloc() to perform the allocation. 3263 * 3264 * @param rl the resource list to allocate from 3265 * @param bus the parent device of @p child 3266 * @param child the device which is requesting an allocation 3267 * @param type the type of resource to allocate 3268 * @param rid a pointer to the resource identifier 3269 * @param start hint at the start of the resource range - pass 3270 * @c 0UL for any start address 3271 * @param end hint at the end of the resource range - pass 3272 * @c ~0UL for any end address 3273 * @param count hint at the size of range required - pass @c 1 3274 * for any size 3275 * @param flags any extra flags to control the resource 3276 * allocation - see @c RF_XXX flags in 3277 * <sys/rman.h> for details 3278 * 3279 * @returns the resource which was allocated or @c NULL if no 3280 * resource could be allocated 3281 */ 3282 struct resource * 3283 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3284 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3285 { 3286 struct resource_list_entry *rle = NULL; 3287 int passthrough = (device_get_parent(child) != bus); 3288 int isdefault = (start == 0UL && end == ~0UL); 3289 3290 if (passthrough) { 3291 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3292 type, rid, start, end, count, flags)); 3293 } 3294 3295 rle = resource_list_find(rl, type, *rid); 3296 3297 if (!rle) 3298 return (NULL); /* no resource of that type/rid */ 3299 3300 if (rle->res) { 3301 if (rle->flags & RLE_RESERVED) { 3302 if (rle->flags & RLE_ALLOCATED) 3303 return (NULL); 3304 if ((flags & RF_ACTIVE) && 3305 bus_activate_resource(child, type, *rid, 3306 rle->res) != 0) 3307 return (NULL); 3308 rle->flags |= RLE_ALLOCATED; 3309 return (rle->res); 3310 } 3311 device_printf(bus, 3312 "resource entry %#x type %d for child %s is busy\n", *rid, 3313 type, device_get_nameunit(child)); 3314 return (NULL); 3315 } 3316 3317 if (isdefault) { 3318 start = rle->start; 3319 count = ulmax(count, rle->count); 3320 end = ulmax(rle->end, start + count - 1); 3321 } 3322 3323 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3324 type, rid, start, end, count, flags); 3325 3326 /* 3327 * Record the new range. 3328 */ 3329 if (rle->res) { 3330 rle->start = rman_get_start(rle->res); 3331 rle->end = rman_get_end(rle->res); 3332 rle->count = count; 3333 } 3334 3335 return (rle->res); 3336 } 3337 3338 /** 3339 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3340 * 3341 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3342 * used with resource_list_alloc(). 3343 * 3344 * @param rl the resource list which was allocated from 3345 * @param bus the parent device of @p child 3346 * @param child the device which is requesting a release 3347 * @param type the type of resource to release 3348 * @param rid the resource identifier 3349 * @param res the resource to release 3350 * 3351 * @retval 0 success 3352 * @retval non-zero a standard unix error code indicating what 3353 * error condition prevented the operation 3354 */ 3355 int 3356 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3357 int type, int rid, struct resource *res) 3358 { 3359 struct resource_list_entry *rle = NULL; 3360 int passthrough = (device_get_parent(child) != bus); 3361 int error; 3362 3363 if (passthrough) { 3364 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3365 type, rid, res)); 3366 } 3367 3368 rle = resource_list_find(rl, type, rid); 3369 3370 if (!rle) 3371 panic("resource_list_release: can't find resource"); 3372 if (!rle->res) 3373 panic("resource_list_release: resource entry is not busy"); 3374 if (rle->flags & RLE_RESERVED) { 3375 if (rle->flags & RLE_ALLOCATED) { 3376 if (rman_get_flags(res) & RF_ACTIVE) { 3377 error = bus_deactivate_resource(child, type, 3378 rid, res); 3379 if (error) 3380 return (error); 3381 } 3382 rle->flags &= ~RLE_ALLOCATED; 3383 return (0); 3384 } 3385 return (EINVAL); 3386 } 3387 3388 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3389 type, rid, res); 3390 if (error) 3391 return (error); 3392 3393 rle->res = NULL; 3394 return (0); 3395 } 3396 3397 /** 3398 * @brief Release all active resources of a given type 3399 * 3400 * Release all active resources of a specified type. This is intended 3401 * to be used to cleanup resources leaked by a driver after detach or 3402 * a failed attach. 3403 * 3404 * @param rl the resource list which was allocated from 3405 * @param bus the parent device of @p child 3406 * @param child the device whose active resources are being released 3407 * @param type the type of resources to release 3408 * 3409 * @retval 0 success 3410 * @retval EBUSY at least one resource was active 3411 */ 3412 int 3413 resource_list_release_active(struct resource_list *rl, device_t bus, 3414 device_t child, int type) 3415 { 3416 struct resource_list_entry *rle; 3417 int error, retval; 3418 3419 retval = 0; 3420 STAILQ_FOREACH(rle, rl, link) { 3421 if (rle->type != type) 3422 continue; 3423 if (rle->res == NULL) 3424 continue; 3425 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3426 RLE_RESERVED) 3427 continue; 3428 retval = EBUSY; 3429 error = resource_list_release(rl, bus, child, type, 3430 rman_get_rid(rle->res), rle->res); 3431 if (error != 0) 3432 device_printf(bus, 3433 "Failed to release active resource: %d\n", error); 3434 } 3435 return (retval); 3436 } 3437 3438 3439 /** 3440 * @brief Fully release a reserved resource 3441 * 3442 * Fully releases a resource reserved via resource_list_reserve(). 3443 * 3444 * @param rl the resource list which was allocated from 3445 * @param bus the parent device of @p child 3446 * @param child the device whose reserved resource is being released 3447 * @param type the type of resource to release 3448 * @param rid the resource identifier 3449 * @param res the resource to release 3450 * 3451 * @retval 0 success 3452 * @retval non-zero a standard unix error code indicating what 3453 * error condition prevented the operation 3454 */ 3455 int 3456 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3457 int type, int rid) 3458 { 3459 struct resource_list_entry *rle = NULL; 3460 int passthrough = (device_get_parent(child) != bus); 3461 3462 if (passthrough) 3463 panic( 3464 "resource_list_unreserve() should only be called for direct children"); 3465 3466 rle = resource_list_find(rl, type, rid); 3467 3468 if (!rle) 3469 panic("resource_list_unreserve: can't find resource"); 3470 if (!(rle->flags & RLE_RESERVED)) 3471 return (EINVAL); 3472 if (rle->flags & RLE_ALLOCATED) 3473 return (EBUSY); 3474 rle->flags &= ~RLE_RESERVED; 3475 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3476 } 3477 3478 /** 3479 * @brief Print a description of resources in a resource list 3480 * 3481 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3482 * The name is printed if at least one resource of the given type is available. 3483 * The format is used to print resource start and end. 3484 * 3485 * @param rl the resource list to print 3486 * @param name the name of @p type, e.g. @c "memory" 3487 * @param type type type of resource entry to print 3488 * @param format printf(9) format string to print resource 3489 * start and end values 3490 * 3491 * @returns the number of characters printed 3492 */ 3493 int 3494 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3495 const char *format) 3496 { 3497 struct resource_list_entry *rle; 3498 int printed, retval; 3499 3500 printed = 0; 3501 retval = 0; 3502 /* Yes, this is kinda cheating */ 3503 STAILQ_FOREACH(rle, rl, link) { 3504 if (rle->type == type) { 3505 if (printed == 0) 3506 retval += printf(" %s ", name); 3507 else 3508 retval += printf(","); 3509 printed++; 3510 retval += printf(format, rle->start); 3511 if (rle->count > 1) { 3512 retval += printf("-"); 3513 retval += printf(format, rle->start + 3514 rle->count - 1); 3515 } 3516 } 3517 } 3518 return (retval); 3519 } 3520 3521 /** 3522 * @brief Releases all the resources in a list. 3523 * 3524 * @param rl The resource list to purge. 3525 * 3526 * @returns nothing 3527 */ 3528 void 3529 resource_list_purge(struct resource_list *rl) 3530 { 3531 struct resource_list_entry *rle; 3532 3533 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3534 if (rle->res) 3535 bus_release_resource(rman_get_device(rle->res), 3536 rle->type, rle->rid, rle->res); 3537 STAILQ_REMOVE_HEAD(rl, link); 3538 free(rle, M_BUS); 3539 } 3540 } 3541 3542 device_t 3543 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3544 { 3545 3546 return (device_add_child_ordered(dev, order, name, unit)); 3547 } 3548 3549 /** 3550 * @brief Helper function for implementing DEVICE_PROBE() 3551 * 3552 * This function can be used to help implement the DEVICE_PROBE() for 3553 * a bus (i.e. a device which has other devices attached to it). It 3554 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3555 * devclass. 3556 */ 3557 int 3558 bus_generic_probe(device_t dev) 3559 { 3560 devclass_t dc = dev->devclass; 3561 driverlink_t dl; 3562 3563 TAILQ_FOREACH(dl, &dc->drivers, link) { 3564 /* 3565 * If this driver's pass is too high, then ignore it. 3566 * For most drivers in the default pass, this will 3567 * never be true. For early-pass drivers they will 3568 * only call the identify routines of eligible drivers 3569 * when this routine is called. Drivers for later 3570 * passes should have their identify routines called 3571 * on early-pass busses during BUS_NEW_PASS(). 3572 */ 3573 if (dl->pass > bus_current_pass) 3574 continue; 3575 DEVICE_IDENTIFY(dl->driver, dev); 3576 } 3577 3578 return (0); 3579 } 3580 3581 /** 3582 * @brief Helper function for implementing DEVICE_ATTACH() 3583 * 3584 * This function can be used to help implement the DEVICE_ATTACH() for 3585 * a bus. It calls device_probe_and_attach() for each of the device's 3586 * children. 3587 */ 3588 int 3589 bus_generic_attach(device_t dev) 3590 { 3591 device_t child; 3592 3593 TAILQ_FOREACH(child, &dev->children, link) { 3594 device_probe_and_attach(child); 3595 } 3596 3597 return (0); 3598 } 3599 3600 /** 3601 * @brief Helper function for implementing DEVICE_DETACH() 3602 * 3603 * This function can be used to help implement the DEVICE_DETACH() for 3604 * a bus. It calls device_detach() for each of the device's 3605 * children. 3606 */ 3607 int 3608 bus_generic_detach(device_t dev) 3609 { 3610 device_t child; 3611 int error; 3612 3613 if (dev->state != DS_ATTACHED) 3614 return (EBUSY); 3615 3616 TAILQ_FOREACH(child, &dev->children, link) { 3617 if ((error = device_detach(child)) != 0) 3618 return (error); 3619 } 3620 3621 return (0); 3622 } 3623 3624 /** 3625 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3626 * 3627 * This function can be used to help implement the DEVICE_SHUTDOWN() 3628 * for a bus. It calls device_shutdown() for each of the device's 3629 * children. 3630 */ 3631 int 3632 bus_generic_shutdown(device_t dev) 3633 { 3634 device_t child; 3635 3636 TAILQ_FOREACH(child, &dev->children, link) { 3637 device_shutdown(child); 3638 } 3639 3640 return (0); 3641 } 3642 3643 /** 3644 * @brief Default function for suspending a child device. 3645 * 3646 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3647 */ 3648 int 3649 bus_generic_suspend_child(device_t dev, device_t child) 3650 { 3651 int error; 3652 3653 error = DEVICE_SUSPEND(child); 3654 3655 if (error == 0) 3656 dev->flags |= DF_SUSPENDED; 3657 3658 return (error); 3659 } 3660 3661 /** 3662 * @brief Default function for resuming a child device. 3663 * 3664 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3665 */ 3666 int 3667 bus_generic_resume_child(device_t dev, device_t child) 3668 { 3669 3670 DEVICE_RESUME(child); 3671 dev->flags &= ~DF_SUSPENDED; 3672 3673 return (0); 3674 } 3675 3676 /** 3677 * @brief Helper function for implementing DEVICE_SUSPEND() 3678 * 3679 * This function can be used to help implement the DEVICE_SUSPEND() 3680 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3681 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3682 * operation is aborted and any devices which were suspended are 3683 * resumed immediately by calling their DEVICE_RESUME() methods. 3684 */ 3685 int 3686 bus_generic_suspend(device_t dev) 3687 { 3688 int error; 3689 device_t child, child2; 3690 3691 TAILQ_FOREACH(child, &dev->children, link) { 3692 error = BUS_SUSPEND_CHILD(dev, child); 3693 if (error) { 3694 for (child2 = TAILQ_FIRST(&dev->children); 3695 child2 && child2 != child; 3696 child2 = TAILQ_NEXT(child2, link)) 3697 BUS_RESUME_CHILD(dev, child2); 3698 return (error); 3699 } 3700 } 3701 return (0); 3702 } 3703 3704 /** 3705 * @brief Helper function for implementing DEVICE_RESUME() 3706 * 3707 * This function can be used to help implement the DEVICE_RESUME() for 3708 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3709 */ 3710 int 3711 bus_generic_resume(device_t dev) 3712 { 3713 device_t child; 3714 3715 TAILQ_FOREACH(child, &dev->children, link) { 3716 BUS_RESUME_CHILD(dev, child); 3717 /* if resume fails, there's nothing we can usefully do... */ 3718 } 3719 return (0); 3720 } 3721 3722 /** 3723 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3724 * 3725 * This function prints the first part of the ascii representation of 3726 * @p child, including its name, unit and description (if any - see 3727 * device_set_desc()). 3728 * 3729 * @returns the number of characters printed 3730 */ 3731 int 3732 bus_print_child_header(device_t dev, device_t child) 3733 { 3734 int retval = 0; 3735 3736 if (device_get_desc(child)) { 3737 retval += device_printf(child, "<%s>", device_get_desc(child)); 3738 } else { 3739 retval += printf("%s", device_get_nameunit(child)); 3740 } 3741 3742 return (retval); 3743 } 3744 3745 /** 3746 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3747 * 3748 * This function prints the last part of the ascii representation of 3749 * @p child, which consists of the string @c " on " followed by the 3750 * name and unit of the @p dev. 3751 * 3752 * @returns the number of characters printed 3753 */ 3754 int 3755 bus_print_child_footer(device_t dev, device_t child) 3756 { 3757 return (printf(" on %s\n", device_get_nameunit(dev))); 3758 } 3759 3760 /** 3761 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3762 * 3763 * This function prints out the VM domain for the given device. 3764 * 3765 * @returns the number of characters printed 3766 */ 3767 int 3768 bus_print_child_domain(device_t dev, device_t child) 3769 { 3770 int domain; 3771 3772 /* No domain? Don't print anything */ 3773 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3774 return (0); 3775 3776 return (printf(" numa-domain %d", domain)); 3777 } 3778 3779 /** 3780 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3781 * 3782 * This function simply calls bus_print_child_header() followed by 3783 * bus_print_child_footer(). 3784 * 3785 * @returns the number of characters printed 3786 */ 3787 int 3788 bus_generic_print_child(device_t dev, device_t child) 3789 { 3790 int retval = 0; 3791 3792 retval += bus_print_child_header(dev, child); 3793 retval += bus_print_child_domain(dev, child); 3794 retval += bus_print_child_footer(dev, child); 3795 3796 return (retval); 3797 } 3798 3799 /** 3800 * @brief Stub function for implementing BUS_READ_IVAR(). 3801 * 3802 * @returns ENOENT 3803 */ 3804 int 3805 bus_generic_read_ivar(device_t dev, device_t child, int index, 3806 uintptr_t * result) 3807 { 3808 return (ENOENT); 3809 } 3810 3811 /** 3812 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3813 * 3814 * @returns ENOENT 3815 */ 3816 int 3817 bus_generic_write_ivar(device_t dev, device_t child, int index, 3818 uintptr_t value) 3819 { 3820 return (ENOENT); 3821 } 3822 3823 /** 3824 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3825 * 3826 * @returns NULL 3827 */ 3828 struct resource_list * 3829 bus_generic_get_resource_list(device_t dev, device_t child) 3830 { 3831 return (NULL); 3832 } 3833 3834 /** 3835 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3836 * 3837 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3838 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3839 * and then calls device_probe_and_attach() for each unattached child. 3840 */ 3841 void 3842 bus_generic_driver_added(device_t dev, driver_t *driver) 3843 { 3844 device_t child; 3845 3846 DEVICE_IDENTIFY(driver, dev); 3847 TAILQ_FOREACH(child, &dev->children, link) { 3848 if (child->state == DS_NOTPRESENT || 3849 (child->flags & DF_REBID)) 3850 device_probe_and_attach(child); 3851 } 3852 } 3853 3854 /** 3855 * @brief Helper function for implementing BUS_NEW_PASS(). 3856 * 3857 * This implementing of BUS_NEW_PASS() first calls the identify 3858 * routines for any drivers that probe at the current pass. Then it 3859 * walks the list of devices for this bus. If a device is already 3860 * attached, then it calls BUS_NEW_PASS() on that device. If the 3861 * device is not already attached, it attempts to attach a driver to 3862 * it. 3863 */ 3864 void 3865 bus_generic_new_pass(device_t dev) 3866 { 3867 driverlink_t dl; 3868 devclass_t dc; 3869 device_t child; 3870 3871 dc = dev->devclass; 3872 TAILQ_FOREACH(dl, &dc->drivers, link) { 3873 if (dl->pass == bus_current_pass) 3874 DEVICE_IDENTIFY(dl->driver, dev); 3875 } 3876 TAILQ_FOREACH(child, &dev->children, link) { 3877 if (child->state >= DS_ATTACHED) 3878 BUS_NEW_PASS(child); 3879 else if (child->state == DS_NOTPRESENT) 3880 device_probe_and_attach(child); 3881 } 3882 } 3883 3884 /** 3885 * @brief Helper function for implementing BUS_SETUP_INTR(). 3886 * 3887 * This simple implementation of BUS_SETUP_INTR() simply calls the 3888 * BUS_SETUP_INTR() method of the parent of @p dev. 3889 */ 3890 int 3891 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3892 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3893 void **cookiep) 3894 { 3895 /* Propagate up the bus hierarchy until someone handles it. */ 3896 if (dev->parent) 3897 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3898 filter, intr, arg, cookiep)); 3899 return (EINVAL); 3900 } 3901 3902 /** 3903 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3904 * 3905 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3906 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3907 */ 3908 int 3909 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3910 void *cookie) 3911 { 3912 /* Propagate up the bus hierarchy until someone handles it. */ 3913 if (dev->parent) 3914 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3915 return (EINVAL); 3916 } 3917 3918 /** 3919 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3920 * 3921 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3922 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3923 */ 3924 int 3925 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3926 struct resource *r, u_long start, u_long end) 3927 { 3928 /* Propagate up the bus hierarchy until someone handles it. */ 3929 if (dev->parent) 3930 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3931 end)); 3932 return (EINVAL); 3933 } 3934 3935 /** 3936 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3937 * 3938 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3939 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3940 */ 3941 struct resource * 3942 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3943 u_long start, u_long end, u_long count, u_int flags) 3944 { 3945 /* Propagate up the bus hierarchy until someone handles it. */ 3946 if (dev->parent) 3947 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3948 start, end, count, flags)); 3949 return (NULL); 3950 } 3951 3952 /** 3953 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3954 * 3955 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3956 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3957 */ 3958 int 3959 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3960 struct resource *r) 3961 { 3962 /* Propagate up the bus hierarchy until someone handles it. */ 3963 if (dev->parent) 3964 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3965 r)); 3966 return (EINVAL); 3967 } 3968 3969 /** 3970 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3971 * 3972 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3973 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3974 */ 3975 int 3976 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3977 struct resource *r) 3978 { 3979 /* Propagate up the bus hierarchy until someone handles it. */ 3980 if (dev->parent) 3981 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3982 r)); 3983 return (EINVAL); 3984 } 3985 3986 /** 3987 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3988 * 3989 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3990 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3991 */ 3992 int 3993 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3994 int rid, struct resource *r) 3995 { 3996 /* Propagate up the bus hierarchy until someone handles it. */ 3997 if (dev->parent) 3998 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3999 r)); 4000 return (EINVAL); 4001 } 4002 4003 /** 4004 * @brief Helper function for implementing BUS_BIND_INTR(). 4005 * 4006 * This simple implementation of BUS_BIND_INTR() simply calls the 4007 * BUS_BIND_INTR() method of the parent of @p dev. 4008 */ 4009 int 4010 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4011 int cpu) 4012 { 4013 4014 /* Propagate up the bus hierarchy until someone handles it. */ 4015 if (dev->parent) 4016 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4017 return (EINVAL); 4018 } 4019 4020 /** 4021 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4022 * 4023 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4024 * BUS_CONFIG_INTR() method of the parent of @p dev. 4025 */ 4026 int 4027 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4028 enum intr_polarity pol) 4029 { 4030 4031 /* Propagate up the bus hierarchy until someone handles it. */ 4032 if (dev->parent) 4033 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4034 return (EINVAL); 4035 } 4036 4037 /** 4038 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4039 * 4040 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4041 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4042 */ 4043 int 4044 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4045 void *cookie, const char *descr) 4046 { 4047 4048 /* Propagate up the bus hierarchy until someone handles it. */ 4049 if (dev->parent) 4050 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4051 descr)); 4052 return (EINVAL); 4053 } 4054 4055 /** 4056 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4057 * 4058 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4059 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4060 */ 4061 bus_dma_tag_t 4062 bus_generic_get_dma_tag(device_t dev, device_t child) 4063 { 4064 4065 /* Propagate up the bus hierarchy until someone handles it. */ 4066 if (dev->parent != NULL) 4067 return (BUS_GET_DMA_TAG(dev->parent, child)); 4068 return (NULL); 4069 } 4070 4071 /** 4072 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4073 * 4074 * This implementation of BUS_GET_RESOURCE() uses the 4075 * resource_list_find() function to do most of the work. It calls 4076 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4077 * search. 4078 */ 4079 int 4080 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4081 u_long *startp, u_long *countp) 4082 { 4083 struct resource_list * rl = NULL; 4084 struct resource_list_entry * rle = NULL; 4085 4086 rl = BUS_GET_RESOURCE_LIST(dev, child); 4087 if (!rl) 4088 return (EINVAL); 4089 4090 rle = resource_list_find(rl, type, rid); 4091 if (!rle) 4092 return (ENOENT); 4093 4094 if (startp) 4095 *startp = rle->start; 4096 if (countp) 4097 *countp = rle->count; 4098 4099 return (0); 4100 } 4101 4102 /** 4103 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4104 * 4105 * This implementation of BUS_SET_RESOURCE() uses the 4106 * resource_list_add() function to do most of the work. It calls 4107 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4108 * edit. 4109 */ 4110 int 4111 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4112 u_long start, u_long count) 4113 { 4114 struct resource_list * rl = NULL; 4115 4116 rl = BUS_GET_RESOURCE_LIST(dev, child); 4117 if (!rl) 4118 return (EINVAL); 4119 4120 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4121 4122 return (0); 4123 } 4124 4125 /** 4126 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4127 * 4128 * This implementation of BUS_DELETE_RESOURCE() uses the 4129 * resource_list_delete() function to do most of the work. It calls 4130 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4131 * edit. 4132 */ 4133 void 4134 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4135 { 4136 struct resource_list * rl = NULL; 4137 4138 rl = BUS_GET_RESOURCE_LIST(dev, child); 4139 if (!rl) 4140 return; 4141 4142 resource_list_delete(rl, type, rid); 4143 4144 return; 4145 } 4146 4147 /** 4148 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4149 * 4150 * This implementation of BUS_RELEASE_RESOURCE() uses the 4151 * resource_list_release() function to do most of the work. It calls 4152 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4153 */ 4154 int 4155 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4156 int rid, struct resource *r) 4157 { 4158 struct resource_list * rl = NULL; 4159 4160 if (device_get_parent(child) != dev) 4161 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4162 type, rid, r)); 4163 4164 rl = BUS_GET_RESOURCE_LIST(dev, child); 4165 if (!rl) 4166 return (EINVAL); 4167 4168 return (resource_list_release(rl, dev, child, type, rid, r)); 4169 } 4170 4171 /** 4172 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4173 * 4174 * This implementation of BUS_ALLOC_RESOURCE() uses the 4175 * resource_list_alloc() function to do most of the work. It calls 4176 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4177 */ 4178 struct resource * 4179 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4180 int *rid, u_long start, u_long end, u_long count, u_int flags) 4181 { 4182 struct resource_list * rl = NULL; 4183 4184 if (device_get_parent(child) != dev) 4185 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4186 type, rid, start, end, count, flags)); 4187 4188 rl = BUS_GET_RESOURCE_LIST(dev, child); 4189 if (!rl) 4190 return (NULL); 4191 4192 return (resource_list_alloc(rl, dev, child, type, rid, 4193 start, end, count, flags)); 4194 } 4195 4196 /** 4197 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4198 * 4199 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4200 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4201 */ 4202 int 4203 bus_generic_child_present(device_t dev, device_t child) 4204 { 4205 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4206 } 4207 4208 int 4209 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4210 { 4211 4212 if (dev->parent) 4213 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4214 4215 return (ENOENT); 4216 } 4217 4218 /* 4219 * Some convenience functions to make it easier for drivers to use the 4220 * resource-management functions. All these really do is hide the 4221 * indirection through the parent's method table, making for slightly 4222 * less-wordy code. In the future, it might make sense for this code 4223 * to maintain some sort of a list of resources allocated by each device. 4224 */ 4225 4226 int 4227 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4228 struct resource **res) 4229 { 4230 int i; 4231 4232 for (i = 0; rs[i].type != -1; i++) 4233 res[i] = NULL; 4234 for (i = 0; rs[i].type != -1; i++) { 4235 res[i] = bus_alloc_resource_any(dev, 4236 rs[i].type, &rs[i].rid, rs[i].flags); 4237 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4238 bus_release_resources(dev, rs, res); 4239 return (ENXIO); 4240 } 4241 } 4242 return (0); 4243 } 4244 4245 void 4246 bus_release_resources(device_t dev, const struct resource_spec *rs, 4247 struct resource **res) 4248 { 4249 int i; 4250 4251 for (i = 0; rs[i].type != -1; i++) 4252 if (res[i] != NULL) { 4253 bus_release_resource( 4254 dev, rs[i].type, rs[i].rid, res[i]); 4255 res[i] = NULL; 4256 } 4257 } 4258 4259 /** 4260 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4261 * 4262 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4263 * parent of @p dev. 4264 */ 4265 struct resource * 4266 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4267 u_long count, u_int flags) 4268 { 4269 if (dev->parent == NULL) 4270 return (NULL); 4271 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4272 count, flags)); 4273 } 4274 4275 /** 4276 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4277 * 4278 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4279 * parent of @p dev. 4280 */ 4281 int 4282 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4283 u_long end) 4284 { 4285 if (dev->parent == NULL) 4286 return (EINVAL); 4287 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4288 } 4289 4290 /** 4291 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4292 * 4293 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4294 * parent of @p dev. 4295 */ 4296 int 4297 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4298 { 4299 if (dev->parent == NULL) 4300 return (EINVAL); 4301 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4302 } 4303 4304 /** 4305 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4306 * 4307 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4308 * parent of @p dev. 4309 */ 4310 int 4311 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4312 { 4313 if (dev->parent == NULL) 4314 return (EINVAL); 4315 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4316 } 4317 4318 /** 4319 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4320 * 4321 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4322 * parent of @p dev. 4323 */ 4324 int 4325 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4326 { 4327 if (dev->parent == NULL) 4328 return (EINVAL); 4329 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4330 } 4331 4332 /** 4333 * @brief Wrapper function for BUS_SETUP_INTR(). 4334 * 4335 * This function simply calls the BUS_SETUP_INTR() method of the 4336 * parent of @p dev. 4337 */ 4338 int 4339 bus_setup_intr(device_t dev, struct resource *r, int flags, 4340 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4341 { 4342 int error; 4343 4344 if (dev->parent == NULL) 4345 return (EINVAL); 4346 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4347 arg, cookiep); 4348 if (error != 0) 4349 return (error); 4350 if (handler != NULL && !(flags & INTR_MPSAFE)) 4351 device_printf(dev, "[GIANT-LOCKED]\n"); 4352 return (0); 4353 } 4354 4355 /** 4356 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4357 * 4358 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4359 * parent of @p dev. 4360 */ 4361 int 4362 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4363 { 4364 if (dev->parent == NULL) 4365 return (EINVAL); 4366 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4367 } 4368 4369 /** 4370 * @brief Wrapper function for BUS_BIND_INTR(). 4371 * 4372 * This function simply calls the BUS_BIND_INTR() method of the 4373 * parent of @p dev. 4374 */ 4375 int 4376 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4377 { 4378 if (dev->parent == NULL) 4379 return (EINVAL); 4380 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4381 } 4382 4383 /** 4384 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4385 * 4386 * This function first formats the requested description into a 4387 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4388 * the parent of @p dev. 4389 */ 4390 int 4391 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4392 const char *fmt, ...) 4393 { 4394 va_list ap; 4395 char descr[MAXCOMLEN + 1]; 4396 4397 if (dev->parent == NULL) 4398 return (EINVAL); 4399 va_start(ap, fmt); 4400 vsnprintf(descr, sizeof(descr), fmt, ap); 4401 va_end(ap); 4402 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4403 } 4404 4405 /** 4406 * @brief Wrapper function for BUS_SET_RESOURCE(). 4407 * 4408 * This function simply calls the BUS_SET_RESOURCE() method of the 4409 * parent of @p dev. 4410 */ 4411 int 4412 bus_set_resource(device_t dev, int type, int rid, 4413 u_long start, u_long count) 4414 { 4415 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4416 start, count)); 4417 } 4418 4419 /** 4420 * @brief Wrapper function for BUS_GET_RESOURCE(). 4421 * 4422 * This function simply calls the BUS_GET_RESOURCE() method of the 4423 * parent of @p dev. 4424 */ 4425 int 4426 bus_get_resource(device_t dev, int type, int rid, 4427 u_long *startp, u_long *countp) 4428 { 4429 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4430 startp, countp)); 4431 } 4432 4433 /** 4434 * @brief Wrapper function for BUS_GET_RESOURCE(). 4435 * 4436 * This function simply calls the BUS_GET_RESOURCE() method of the 4437 * parent of @p dev and returns the start value. 4438 */ 4439 u_long 4440 bus_get_resource_start(device_t dev, int type, int rid) 4441 { 4442 u_long start, count; 4443 int error; 4444 4445 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4446 &start, &count); 4447 if (error) 4448 return (0); 4449 return (start); 4450 } 4451 4452 /** 4453 * @brief Wrapper function for BUS_GET_RESOURCE(). 4454 * 4455 * This function simply calls the BUS_GET_RESOURCE() method of the 4456 * parent of @p dev and returns the count value. 4457 */ 4458 u_long 4459 bus_get_resource_count(device_t dev, int type, int rid) 4460 { 4461 u_long start, count; 4462 int error; 4463 4464 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4465 &start, &count); 4466 if (error) 4467 return (0); 4468 return (count); 4469 } 4470 4471 /** 4472 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4473 * 4474 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4475 * parent of @p dev. 4476 */ 4477 void 4478 bus_delete_resource(device_t dev, int type, int rid) 4479 { 4480 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4481 } 4482 4483 /** 4484 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4485 * 4486 * This function simply calls the BUS_CHILD_PRESENT() method of the 4487 * parent of @p dev. 4488 */ 4489 int 4490 bus_child_present(device_t child) 4491 { 4492 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4493 } 4494 4495 /** 4496 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4497 * 4498 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4499 * parent of @p dev. 4500 */ 4501 int 4502 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4503 { 4504 device_t parent; 4505 4506 parent = device_get_parent(child); 4507 if (parent == NULL) { 4508 *buf = '\0'; 4509 return (0); 4510 } 4511 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4512 } 4513 4514 /** 4515 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4516 * 4517 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4518 * parent of @p dev. 4519 */ 4520 int 4521 bus_child_location_str(device_t child, char *buf, size_t buflen) 4522 { 4523 device_t parent; 4524 4525 parent = device_get_parent(child); 4526 if (parent == NULL) { 4527 *buf = '\0'; 4528 return (0); 4529 } 4530 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4531 } 4532 4533 /** 4534 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4535 * 4536 * This function simply calls the BUS_GET_DMA_TAG() method of the 4537 * parent of @p dev. 4538 */ 4539 bus_dma_tag_t 4540 bus_get_dma_tag(device_t dev) 4541 { 4542 device_t parent; 4543 4544 parent = device_get_parent(dev); 4545 if (parent == NULL) 4546 return (NULL); 4547 return (BUS_GET_DMA_TAG(parent, dev)); 4548 } 4549 4550 /** 4551 * @brief Wrapper function for BUS_GET_DOMAIN(). 4552 * 4553 * This function simply calls the BUS_GET_DOMAIN() method of the 4554 * parent of @p dev. 4555 */ 4556 int 4557 bus_get_domain(device_t dev, int *domain) 4558 { 4559 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4560 } 4561 4562 /* Resume all devices and then notify userland that we're up again. */ 4563 static int 4564 root_resume(device_t dev) 4565 { 4566 int error; 4567 4568 error = bus_generic_resume(dev); 4569 if (error == 0) 4570 devctl_notify("kern", "power", "resume", NULL); 4571 return (error); 4572 } 4573 4574 static int 4575 root_print_child(device_t dev, device_t child) 4576 { 4577 int retval = 0; 4578 4579 retval += bus_print_child_header(dev, child); 4580 retval += printf("\n"); 4581 4582 return (retval); 4583 } 4584 4585 static int 4586 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4587 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4588 { 4589 /* 4590 * If an interrupt mapping gets to here something bad has happened. 4591 */ 4592 panic("root_setup_intr"); 4593 } 4594 4595 /* 4596 * If we get here, assume that the device is permanant and really is 4597 * present in the system. Removable bus drivers are expected to intercept 4598 * this call long before it gets here. We return -1 so that drivers that 4599 * really care can check vs -1 or some ERRNO returned higher in the food 4600 * chain. 4601 */ 4602 static int 4603 root_child_present(device_t dev, device_t child) 4604 { 4605 return (-1); 4606 } 4607 4608 static kobj_method_t root_methods[] = { 4609 /* Device interface */ 4610 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4611 KOBJMETHOD(device_suspend, bus_generic_suspend), 4612 KOBJMETHOD(device_resume, root_resume), 4613 4614 /* Bus interface */ 4615 KOBJMETHOD(bus_print_child, root_print_child), 4616 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4617 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4618 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4619 KOBJMETHOD(bus_child_present, root_child_present), 4620 4621 KOBJMETHOD_END 4622 }; 4623 4624 static driver_t root_driver = { 4625 "root", 4626 root_methods, 4627 1, /* no softc */ 4628 }; 4629 4630 device_t root_bus; 4631 devclass_t root_devclass; 4632 4633 static int 4634 root_bus_module_handler(module_t mod, int what, void* arg) 4635 { 4636 switch (what) { 4637 case MOD_LOAD: 4638 TAILQ_INIT(&bus_data_devices); 4639 kobj_class_compile((kobj_class_t) &root_driver); 4640 root_bus = make_device(NULL, "root", 0); 4641 root_bus->desc = "System root bus"; 4642 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4643 root_bus->driver = &root_driver; 4644 root_bus->state = DS_ATTACHED; 4645 root_devclass = devclass_find_internal("root", NULL, FALSE); 4646 devinit(); 4647 return (0); 4648 4649 case MOD_SHUTDOWN: 4650 device_shutdown(root_bus); 4651 return (0); 4652 default: 4653 return (EOPNOTSUPP); 4654 } 4655 4656 return (0); 4657 } 4658 4659 static moduledata_t root_bus_mod = { 4660 "rootbus", 4661 root_bus_module_handler, 4662 NULL 4663 }; 4664 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4665 4666 /** 4667 * @brief Automatically configure devices 4668 * 4669 * This function begins the autoconfiguration process by calling 4670 * device_probe_and_attach() for each child of the @c root0 device. 4671 */ 4672 void 4673 root_bus_configure(void) 4674 { 4675 4676 PDEBUG((".")); 4677 4678 /* Eventually this will be split up, but this is sufficient for now. */ 4679 bus_set_pass(BUS_PASS_DEFAULT); 4680 } 4681 4682 /** 4683 * @brief Module handler for registering device drivers 4684 * 4685 * This module handler is used to automatically register device 4686 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4687 * devclass_add_driver() for the driver described by the 4688 * driver_module_data structure pointed to by @p arg 4689 */ 4690 int 4691 driver_module_handler(module_t mod, int what, void *arg) 4692 { 4693 struct driver_module_data *dmd; 4694 devclass_t bus_devclass; 4695 kobj_class_t driver; 4696 int error, pass; 4697 4698 dmd = (struct driver_module_data *)arg; 4699 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4700 error = 0; 4701 4702 switch (what) { 4703 case MOD_LOAD: 4704 if (dmd->dmd_chainevh) 4705 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4706 4707 pass = dmd->dmd_pass; 4708 driver = dmd->dmd_driver; 4709 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4710 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4711 error = devclass_add_driver(bus_devclass, driver, pass, 4712 dmd->dmd_devclass); 4713 break; 4714 4715 case MOD_UNLOAD: 4716 PDEBUG(("Unloading module: driver %s from bus %s", 4717 DRIVERNAME(dmd->dmd_driver), 4718 dmd->dmd_busname)); 4719 error = devclass_delete_driver(bus_devclass, 4720 dmd->dmd_driver); 4721 4722 if (!error && dmd->dmd_chainevh) 4723 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4724 break; 4725 case MOD_QUIESCE: 4726 PDEBUG(("Quiesce module: driver %s from bus %s", 4727 DRIVERNAME(dmd->dmd_driver), 4728 dmd->dmd_busname)); 4729 error = devclass_quiesce_driver(bus_devclass, 4730 dmd->dmd_driver); 4731 4732 if (!error && dmd->dmd_chainevh) 4733 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4734 break; 4735 default: 4736 error = EOPNOTSUPP; 4737 break; 4738 } 4739 4740 return (error); 4741 } 4742 4743 /** 4744 * @brief Enumerate all hinted devices for this bus. 4745 * 4746 * Walks through the hints for this bus and calls the bus_hinted_child 4747 * routine for each one it fines. It searches first for the specific 4748 * bus that's being probed for hinted children (eg isa0), and then for 4749 * generic children (eg isa). 4750 * 4751 * @param dev bus device to enumerate 4752 */ 4753 void 4754 bus_enumerate_hinted_children(device_t bus) 4755 { 4756 int i; 4757 const char *dname, *busname; 4758 int dunit; 4759 4760 /* 4761 * enumerate all devices on the specific bus 4762 */ 4763 busname = device_get_nameunit(bus); 4764 i = 0; 4765 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4766 BUS_HINTED_CHILD(bus, dname, dunit); 4767 4768 /* 4769 * and all the generic ones. 4770 */ 4771 busname = device_get_name(bus); 4772 i = 0; 4773 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4774 BUS_HINTED_CHILD(bus, dname, dunit); 4775 } 4776 4777 #ifdef BUS_DEBUG 4778 4779 /* the _short versions avoid iteration by not calling anything that prints 4780 * more than oneliners. I love oneliners. 4781 */ 4782 4783 static void 4784 print_device_short(device_t dev, int indent) 4785 { 4786 if (!dev) 4787 return; 4788 4789 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4790 dev->unit, dev->desc, 4791 (dev->parent? "":"no "), 4792 (TAILQ_EMPTY(&dev->children)? "no ":""), 4793 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4794 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4795 (dev->flags&DF_WILDCARD? "wildcard,":""), 4796 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4797 (dev->flags&DF_REBID? "rebiddable,":""), 4798 (dev->ivars? "":"no "), 4799 (dev->softc? "":"no "), 4800 dev->busy)); 4801 } 4802 4803 static void 4804 print_device(device_t dev, int indent) 4805 { 4806 if (!dev) 4807 return; 4808 4809 print_device_short(dev, indent); 4810 4811 indentprintf(("Parent:\n")); 4812 print_device_short(dev->parent, indent+1); 4813 indentprintf(("Driver:\n")); 4814 print_driver_short(dev->driver, indent+1); 4815 indentprintf(("Devclass:\n")); 4816 print_devclass_short(dev->devclass, indent+1); 4817 } 4818 4819 void 4820 print_device_tree_short(device_t dev, int indent) 4821 /* print the device and all its children (indented) */ 4822 { 4823 device_t child; 4824 4825 if (!dev) 4826 return; 4827 4828 print_device_short(dev, indent); 4829 4830 TAILQ_FOREACH(child, &dev->children, link) { 4831 print_device_tree_short(child, indent+1); 4832 } 4833 } 4834 4835 void 4836 print_device_tree(device_t dev, int indent) 4837 /* print the device and all its children (indented) */ 4838 { 4839 device_t child; 4840 4841 if (!dev) 4842 return; 4843 4844 print_device(dev, indent); 4845 4846 TAILQ_FOREACH(child, &dev->children, link) { 4847 print_device_tree(child, indent+1); 4848 } 4849 } 4850 4851 static void 4852 print_driver_short(driver_t *driver, int indent) 4853 { 4854 if (!driver) 4855 return; 4856 4857 indentprintf(("driver %s: softc size = %zd\n", 4858 driver->name, driver->size)); 4859 } 4860 4861 static void 4862 print_driver(driver_t *driver, int indent) 4863 { 4864 if (!driver) 4865 return; 4866 4867 print_driver_short(driver, indent); 4868 } 4869 4870 static void 4871 print_driver_list(driver_list_t drivers, int indent) 4872 { 4873 driverlink_t driver; 4874 4875 TAILQ_FOREACH(driver, &drivers, link) { 4876 print_driver(driver->driver, indent); 4877 } 4878 } 4879 4880 static void 4881 print_devclass_short(devclass_t dc, int indent) 4882 { 4883 if ( !dc ) 4884 return; 4885 4886 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4887 } 4888 4889 static void 4890 print_devclass(devclass_t dc, int indent) 4891 { 4892 int i; 4893 4894 if ( !dc ) 4895 return; 4896 4897 print_devclass_short(dc, indent); 4898 indentprintf(("Drivers:\n")); 4899 print_driver_list(dc->drivers, indent+1); 4900 4901 indentprintf(("Devices:\n")); 4902 for (i = 0; i < dc->maxunit; i++) 4903 if (dc->devices[i]) 4904 print_device(dc->devices[i], indent+1); 4905 } 4906 4907 void 4908 print_devclass_list_short(void) 4909 { 4910 devclass_t dc; 4911 4912 printf("Short listing of devclasses, drivers & devices:\n"); 4913 TAILQ_FOREACH(dc, &devclasses, link) { 4914 print_devclass_short(dc, 0); 4915 } 4916 } 4917 4918 void 4919 print_devclass_list(void) 4920 { 4921 devclass_t dc; 4922 4923 printf("Full listing of devclasses, drivers & devices:\n"); 4924 TAILQ_FOREACH(dc, &devclasses, link) { 4925 print_devclass(dc, 0); 4926 } 4927 } 4928 4929 #endif 4930 4931 /* 4932 * User-space access to the device tree. 4933 * 4934 * We implement a small set of nodes: 4935 * 4936 * hw.bus Single integer read method to obtain the 4937 * current generation count. 4938 * hw.bus.devices Reads the entire device tree in flat space. 4939 * hw.bus.rman Resource manager interface 4940 * 4941 * We might like to add the ability to scan devclasses and/or drivers to 4942 * determine what else is currently loaded/available. 4943 */ 4944 4945 static int 4946 sysctl_bus(SYSCTL_HANDLER_ARGS) 4947 { 4948 struct u_businfo ubus; 4949 4950 ubus.ub_version = BUS_USER_VERSION; 4951 ubus.ub_generation = bus_data_generation; 4952 4953 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4954 } 4955 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4956 "bus-related data"); 4957 4958 static int 4959 sysctl_devices(SYSCTL_HANDLER_ARGS) 4960 { 4961 int *name = (int *)arg1; 4962 u_int namelen = arg2; 4963 int index; 4964 struct device *dev; 4965 struct u_device udev; /* XXX this is a bit big */ 4966 int error; 4967 4968 if (namelen != 2) 4969 return (EINVAL); 4970 4971 if (bus_data_generation_check(name[0])) 4972 return (EINVAL); 4973 4974 index = name[1]; 4975 4976 /* 4977 * Scan the list of devices, looking for the requested index. 4978 */ 4979 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4980 if (index-- == 0) 4981 break; 4982 } 4983 if (dev == NULL) 4984 return (ENOENT); 4985 4986 /* 4987 * Populate the return array. 4988 */ 4989 bzero(&udev, sizeof(udev)); 4990 udev.dv_handle = (uintptr_t)dev; 4991 udev.dv_parent = (uintptr_t)dev->parent; 4992 if (dev->nameunit != NULL) 4993 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4994 if (dev->desc != NULL) 4995 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4996 if (dev->driver != NULL && dev->driver->name != NULL) 4997 strlcpy(udev.dv_drivername, dev->driver->name, 4998 sizeof(udev.dv_drivername)); 4999 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5000 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5001 udev.dv_devflags = dev->devflags; 5002 udev.dv_flags = dev->flags; 5003 udev.dv_state = dev->state; 5004 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5005 return (error); 5006 } 5007 5008 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5009 "system device tree"); 5010 5011 int 5012 bus_data_generation_check(int generation) 5013 { 5014 if (generation != bus_data_generation) 5015 return (1); 5016 5017 /* XXX generate optimised lists here? */ 5018 return (0); 5019 } 5020 5021 void 5022 bus_data_generation_update(void) 5023 { 5024 bus_data_generation++; 5025 } 5026 5027 int 5028 bus_free_resource(device_t dev, int type, struct resource *r) 5029 { 5030 if (r == NULL) 5031 return (0); 5032 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5033 } 5034